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Introduction 

 

One noticeable feature that is shared by cabbages, leeks, garlic and onions, amongst 

others, is their strikingly pungent aroma and distinctive taste, mostly attributable to 

sulphur-containing chemicals. Indeed, it has been appreciated for many years that 

these vegetables contain large amounts of sulphurous materials that release volatile 

compounds, especially during the processes involved in food preparation.
1
 

2
 In 

alignment with this, workers have shown that the greatest loss of sulphur from soils 

was found after harvesting peas and cabbage.
3
 Many of these plants, and others 

belonging to the Alliceae (~Liliaceae; now sub-family Alloideae), Brassicaceae 

(Cruciferae) and Fabaceae (Leguminosae) families, are considered beneficial to 

human health and sulphur compounds have been advocated as being responsible.
4-7

 

 

One group of chemicals in particular, known collectively as glucosinolates 

(thioglucosides), have been and still are the prime focus of research in this area. Their 

diversity of structure, with aliphatic, aromatic or heterocyclic side-chains derived 

from amino acids, together with their hydrolysis products (isothiocyanates, 

thiocyanates, nitriles), contribute undoubtedly to the wealth of biological effects 

attributed to these vegetables.
8, 9

 However, another compound, S-methyl-L-cysteine 

sulphoxide (3-(methylsulphinyl)alanine; methiin; SMCSO), which is found in greater 

concentrations in Brassica vegetables (1-2% dry weight) than all glucosinalates 

combined (0.1-0.6% dry weight) (Seigler 1998), may have a significant, but largely 

unrecognised role to play. Although studies examining a mixture of S-alk(en)yl 

cysteine sulphoxide compounds derived from Alliceae species have reported 

promising results, few investigations have explored SMCSO in isolation.
10

 

 

This review aims to summarise available information regarding SMCSO and 

hopefully to act as a catalyst to stimulate further scrutiny of this important amino acid 

derivative. Owing to its ubiquity and abundance in many plant foods it would be, 

perhaps, surprising if this phytochemical was found to be without biological activity 

in man. 

 

 

Occurrence, concentration and distribution in commonly consumed vegetables 

 

S-Methyl-L-cysteine appears to have been first prepared during the 1930’s amidst 

enquiries into the metabolism and interconversion of the sulphur-containing amino 

acids (cysteine and methionine) and during the exploration of cysteine-deficient 

diets.
11-14

 In these studies, although the exhaustive oxidation of the sulphur moiety to 



yield sulphate was measured, the possibility of limited oxidation to yield the stable S-

oxide seemingly was ignored. Mention of the synthesis of SMCSO surfaced in the 

literature in the early 1950’s.
15, 16

 Proof of its existence in nature was revealed during 

1955 in publications that showed that SMCSO could be extracted from cabbage 

leaves and turnip roots
17-19

 and fastidious experimentation demonstrated that this 

sulphoxide did not arise from S-methylcysteine by ‘accidental’ oxidation during the 

isolation procedures.
19

  

 

There was an acknowledged, but now forgotten, precedent to this where a Japanese 

paper published a year earlier (1954) had reported the chromatographic identification 

of SMCSO in extracts from garlic (Allium sativum) and other Allium species. The 

author cited in his English abstract that, ‘the presence of S-methyl- and S-propyl-L-

cysteine sulfoxide species can be assumed in Allium sativum L., besides alliin’.
16

 A 

few years later, in a text concerning the organic chemistry of sulphur, the writer 

remarks pointedly upon the discovery of SMCSO in plant materials; ‘When the results 

were announced they afforded the first instance of the occurrence of a derivative of S-

methylcysteine in nature, nor had the amino acid itself been recognised as a natural 

product. This had always seemed rather surprising in view of the wide occurrence of 

cysteine and cystine and the closely related homologue.
20

 This statement appears to 

ratify the discovery date as the mid 1950’s.  

 

Following these widely publicised key discoveries in vegetables of the Brassicaceae 

family, a series of publications followed rapidly identifying the compound within the 

plant tissues of many members of the Fabaceae (Leguminosae) and Alliaceae 

(~Liliaceae) families.
21-26

 However, it appeared to be most highly concentrated within 

members of the Brassicaceae, and especially within those of the genus, Brassica. 

Indeed, the initial isolators of this compound remarked that, ‘our experience with non-

crucifers indicates the sulfoxide to be a minor constituent of the non-protein fraction 

if it is present at all’.
27

 As analytical technologies progressed (from paper 

chromatography) SMCSO was identified in many more species. It was also 

recognised in combination with glutamic acid as a dipeptide (γ-glutamyl-S-

methylcysteine sulphoxide) in these vegetables and also in many types of legumes 

such as Lima beans (Phaseolus lunatus), kidney beans (Phaseolus vulgaris) and mung 

beans (Phaseolus aureus). Of particular interest is a relatively high concentration in 

plants of the genus Astragalus (<3000 species) of herbs and shrubs such as 

Astragalus propinquus that is considered one of the 50 fundamental herbs employed 

in traditional Chinese medicine, also known as huáng qí (yellow leader).
28-32

  

 

Perhaps it is surprising that SMCSO has not been found to be a normal constituent of 

proteins or in its free form in animals. It is believed generally that this methylated 

cysteine does not form part of the free amino acid pool in mammals by enzymatic 

conversion to either cysteine or methionine. 

 

 

Biosynthesis and potential role within the plant 

 

The pathways involved in the biosynthesis of cysteine and substituted cysteine 

molecules within plants have been explored by chemical analysis and radiolabel 

feeding and tracer studies.
5, 6, 28, 29

 Inorganic sulphate is the primary source of sulphur 

in plants and is accumulated in the root cells where it is initially converted to 5-



adenylsulphate (APS; adenosine phosphosulphate) by the enzyme ATP sulphurylase. 

Two enzymes, APS reductase and sulphide reductase, then sequentially reduce the 

APS to sulphite and sulphide. Cysteine and acetate are formed by reaction of the 

sulphide with O-acetylserine, catalysed by the enzyme, O-acetylserine-thiol-lyase (O-

acetylserine sulphydrylase or transsulphurylase; cysteine synthase) Interestingly, this 

latter reaction, forming cysteine from serine and sulphide, also occurs in mammals, 

but is deemed of little importance.
33, 34

 The above sequence is considered to be the 

main pathway of cysteine biosynthesis in plants (and microbes).
35

 

 

Some workers have proposed that the direct methylation of cysteine, to form S-

methyl-L-cysteine followed by sulphur oxygenation, is the route of synthesis of 

SMCSO.
36

 Others have suggested the S-methyl-L-cysteine is produced by reaction of 

serine with methyl mercaptan, employing the thiomethyl moiety of methionine, and 

again followed by sulphur oxygenation.
37-41

  

 

When 
35

SO4 was fed to garlic and onions, radiolabelled SMCSO could be isolated 

from their leaves. In similar plants, the radiolabel from [
14

C]-serine was rapidly 

assimilated into [
14

C]-SMCSO, but when their leaves were exposed to an atmosphere 

containing hydrogen sulphide (presumed to rapidly form cysteine from serine), the 

radiolabel was still incorporated, even though [
14

C]-cysteine (isolated) was evidently 

produced as an intermediate.
42

 The feeding of [
14

C]-DL-cystine led to appreciable 

amounts of radiolabel being present as [
14

C]-SMCSO in crucifers but little if any 

when the kidney bean was examined. The lack of rapid metabolism of SMCSO in 

cruciferous vegetables was proffered to help explain these latter findings.
36

 The 

radiolabelled methyl group from [
14

C]-methionine was transferred to [
14

C]-SMCSO 

either via a [
14

C]-CH3· moiety to cysteine or via a [
14

C]-CH3S· moiety to serine. 

Employing [
35

S]-methionine, radiolabel was integrated into [
35

S]-SMCSO and it was 

postulated that this was a direct thiomethyl transfer reaction, or even via the 

production of free methyl mercaptan, both involving serine. However, this latter 

observation could also be explained by evoking a trans-sulphuration via cystathionine 

and then utilizing cysteine.
39, 42

 

 

To reconcile these observations, it has been suggested that both routes (via cysteine 

and via serine) underlie the synthesis of SMCSO, but other homologues such as S-

allyl-L-cysteine sulphoxide (alliin) and S-propyl-L-cysteine sulphoxide (dihydroalliin) 

only arise via the serine pathway, at least in Allium species.
42

 

 

Apart from the fact that SMCSO appears universally present, the actual content within 

different, and even the same, Brassica crops displays great variations. Many factors, 

including species, varietal and cultivar differences, growing, nutriment 

supplementation and environmental conditions, and times of harvest and subsequent 

storage have great influence on SMCSO concentrations.
8, 43-47

 Only small amounts of 

SMCSO are found in seeds. However, there is an initiation of its synthesis following 

germination and during the plant’s sexual development and secondary growth. These 

developmentally influenced increases in SMCSO concentrations support the idea that 

the compound functions as a phytoalexin at key growth stages. Initially to prevent soil 

microbial attack and consequent pathogenesis of the hypocotyl and root at 

germination and later to offset or minimize damage owing to herbivorous attack 

during secondary growth and flowering. Not surprisingly, the highest concentrations 



of SMCSO are usually found in younger leaves when compared to the more mature 

leaves, such as the outer layers of the common onion (Allium cepa).
48

  

 

Following the mechanical disruption of vegetable tissue, cysteine sulphoxide lyases 

that are normally kept safely within plant vacuoles are released and break down 

SMCSO into ammonia, pyruvate and methanesulphenic acid.
49-51

 Dependent upon 

prevailing conditions, the highly reactive methanesulphenic acid undergoes 

immediate chemical disproportionation to form methane thiol and methane sulphinate. 

Other products formed from this reactive intermediate via dimerization and redox 

procedures, amongst others, include S-methyl methanethiosulphinate (dimethyl 

disulphide sulphoxide; MMTSI), S-methyl methanethiosulfonate (dimethyl disulphide 

sulphone; MMTSO), dimethyl disulphide and methanethiol (Fig. X).
52, 53

 Indeed, 

dimethyl disulphide has been detected in the air above fields of Brassicas during the 

growing and flowering periods.
54, 55

 The major end products of this lyase-mediated 

reaction sequence, MMTSI and MMTSO, are regarded as phytoalexins that, on plant 

tissue wounding, prevent bacterial or yeast infections from taking hold.
51, 56

 

Interestingly, during germination the concentration of the cysteine-lyases increases 

linearly with that of its substrate, SMCSO, suggesting that the enzymatic release of 

these volatile sulphur compounds almost certainly functions to help establish the plant 

in the soil at this crucial stage. Some workers have intimated the lyase enzymes 

within Brassica vegetables are not very active in vivo, presumably not being required 

until tissue damage and cellular disruption occurs.
36

 

 

 

Mammalian Metabolism 

 

A near complete recovery of radioactivity was achieved within 14 days following the 

oral administration of [
35

S]-SMCSO (200mg) to male volunteers. Excellent absorption 

from the gastrointestinal tract was evidenced by primarily urinary excretion (c.96% 

dose) and a consequent low faecal contribution. Over half of the radioactivity (c.60% 

dose) was recovered during the first day with a large proportion (c.33% dose) 

excreted between 3-9 hours post ingestion. This was in contrast to a comparable 

human study where [
35

S]-S-methyl-L-cysteine (150mg) was swallowed and a lower 0-

24 hour recovery (c. 41%dose) was obtained.
57, 58

 The difference in clearance rates 

between these two cysteine analogues was most probably attributable to steric factors 

in the initial stages of metabolism coupled with potential transporter difficulties. 

 

Although the metabolic fate of [
35

S]-SMCSO was not determined in this study, it was 

apparent that a substantial amount of the urinary radioactivity was present in the form 

of inorganic sulphate, with up to 20% excreted in this form during the first day and a 

total of 35-40% over the course of the 14 day study.
57, 58

 It was also noticed, 

incidentally, that no sulphoxide reduction to yield S-methyl-L-cysteine had occurred 

(Waring and Mitchell, unpublished observations). 

 

Studies in man employing three S-methyl-L-cysteine preparations containing 

radiolabels in different positions ([
35

S]-; [thiomethyl-
14

C]-; [backbone-
14

C]-), enabled 

a thorough investigation of its metabolic fate to be undertaken .
57, 58

The most striking 

observation was the extensive degradation of the molecule (c.50% dose) to yield 

inorganic sulphate, urea and carbon dioxide. Earlier workers had also seen an increase 

in urinary sulphate that continued to be excreted over several days.
11, 13, 14

 The 



terminal methyl group has also been shown previously to be removed and oxidised to 

carbon dioxide.
59, 60

 However, this terminal methyl group cannot be removed intact, 

thereby producing cysteine, as S-methyl-L-cysteine has been shown to be unable to 

replace cysteine in deficient diets.
11, 13

 Also, no demethylation was observed when S-

methyl-L-cysteine was incubated with kidney slices.
11

 It has been suggested that, like 

the example of methanol, the methyl group, ‘is handled by the processes of oxidation 

and reduction before incorporation’ as opposed to a straight transmethylation 

reaction.
59

 It is probable that the molecule is cleaved at the β-carbon (β-lyase activity) 

position on the amino acid side of the sulphur and only then further degraded or 

desulphurated and reassigned. 

 

Other reactions to form metabolites, as opposed to degradation products, included 

oxygenation of the sulphur moiety and N-acetylation and deamination/transamination 

of the amino acid chain. These pathways have been demonstrated previously for S-

methyl-L-cysteine and other S-alkyl-L-cysteines and are expected and common routes 

within amino acid catabolism.
61, 62

 

 

From this data, and owing to the similarity in structures, a tentative but probable 

metabolic scheme for SMCSO may be proposed (Fig Y). A point arising from these 

limited studies is that the near complete recovery of radioactivity suggests that the 

plant derived amino acids, SMCSO and S-methyl-L-cysteine, do not appear to enter 

the mammalian free amino acid pool and are not incorporated into any sulphur-

containing biomolecules for any considerable time period. However, one must 

consider acute versus chronic dosage. The results obtained from this single acute 

ingestion of SMCSO may not reflect the metabolic fate and disposition of SMCSO 

ingested in lower concentrations over longer periods of time. Only further studies 

could resolve this irksome issue.  

 

It is generally thought that SMCSO observed in human biofuids originate entirely 

from plant dietary sources
63, 64

 but it has been shown that methylating agents such as 

methyl chloride and dimethyl nitrosamine may also engender low level SMCSO 

excretion via methylation of cysteine within endogenous glutathione, haemoglobin 

and other cysteine residues followed by subsequent cleavage and sulphur 

oxygenation.
65-67

 

 

It is apparent that cleaving the β-C-S bond of S-methyl-L-cysteine produces 

methanethiol that, like most thiols, is a relatively reactive compound, capable of 

dimerization and thiol-disulphide disruptive activity if the surrounding conditions are 

favourable. However, breaking this bond in SMCSO liberates methanesulphenic acid, 

a ‘transient species’ that is extremely reactive. Unlike the few known stable sulphenic 

acids, methanesulphenic acid has neither a polar or bulky group adjacent to the 

sulphenic acid moiety nor does it entertain intramolecular hydrogen bonding, all 

properties able to bestow stability. The highly nucleophilic/electrophilic nature of 

methanesulphenic acid encourages intermolecular hydrogen bonding and facilitates its 

self-condensation, leading to a variety of end products.
68

 Hence, it is fortuitous that 

the SMCSO is available as the substrate for plant cysteine lyase and not the sulphide, 

as its hydrolysis product is more reactive and able to initiate a stream of adept 

molecules able to defend the plant against attack. 

 

 



Microorganism metabolism 

 

It has been reported that many bacteria of the human microbiota exhibit a cysteine β-

lyase activity that is able to cleave the C-S bonds of many S-alkyl-cysteine molecules, 

liberating ammonia, pyruvate and the corresponding thiol, in a similar fashion to the 

cysteine lyases found in plant materials. Such activity has been shown to be widely 

distributed throughout various microorganisms, many of which reside within the 

gastroinestinal tract, including, Anaerovibrio lipolytica, Bacillus subtilis, Bacteroides 

spp., Escherichia coli, Eubacterium limosum, Fusobacterium necrophorum and 

varium, Lactobacillus spp., Megasphaera elsdenii, Pseudomonas cruciviae and 

Veillonella alcalescens.
69-76

 These cysteine β-lyases located within the gut microbiota 

demonstrated wide substrate specificity when compared to their mammalian 

counterparts and undoubtedly perform an important role in the metabolism of alkyl-

cysteine conjugates in the diet. Assuming the cysteine β-lyases found within the plant 

matrix are denatured due to high temperature/microwave cooking the gut microbiota 

offer the first point of contact and are almost certainly responsible for the further 

metabolism of SMCSO, being the major site of cleavage of dietary SMCSO to its 

reactive metabolic end-products.  

 

A cysteine conjugate β-lyase activity, purified from rat liver, has been identified to 

which L-cysteine conjugates of aromatic compounds were good substrates, but those 

molecules with aliphatic or alicyclic S-substituents were stated as being virtually 

unaltered. S-Methyl-L-cysteine was shown not to be a substrate.
77

 Other 

investigations have found that although a variety of alkyl-cysteine conjugates had 

high substrate specificity for another hepatic extract, SMCSO was not cleaved.
78

 

However, there are reports of partially purified mammalian enzyme (‘thionase’) 

activity that was able to liberate methanethiol from S-methyl-L-cysteine, and also the 

corresponding thiols from other S-alkyl cysteines, but no studies have involved 

SMCSO.
79

 This activity has been taken as being a crude mix of cystathionine-

cleaving enzymes. Since that time, it has been demonstrated that cystathionase 

purified from rat liver was highly substrate specific to various S-alkyl-L-cysteine 

conjugates and amino acids such as L-cysteine, L-homoserine and L-cystathionine. 

However, no cleavage of the C-S bond of S-methylcysteine or S-ethylcysteine was 

observed.
80

 On balance, it is probable that these enzymes within mammalian tissue 

add little to the overall biotransformation of SMCSO derived from the diet, or even 

ingested as the pure material; the gut microflora, if reached, are presumably quite 

capable of metabolising the compound. 

 

 

Janus properties: Ruminant Toxicity and Chemoprotective Activity 

 

Ruminant Toxicity 

 

It was over seventy years ago that the agricultural world was alerted to health 

problems that may occur in animals consuming a diet of kale,
81, 82

 and with ensuing 

reports from several countries it soon became common knowledge that when 

ruminant animals were fed mainly or exclusively on kale or on a variety of Brassica 

crops, it was probable that illness would follow. (The term ‘kale’ was usually taken as 

a generic name for various edible plants of the genus Brassica). In the majority of 

cases, a severe haemolytic anaemia would develop within 7 to 21 days after feeding 



commenced. A fall in blood haemoglobin levels, haemoglobinuria, tachycardia, 

jaundice, loss of appetite, growth stasis, decreased milk production and a decreased 

conception rate may follow, as may liver and kidney damage.
83, 84

 Cattle that survived 

the haemolytic crisis showed a gradual recovery in haemoglobin content despite 

continued kale feeding, although further cycles of haemolysis and partial recovery 

were observed. This cyclic nature of haemolysis lent some insight into the mechanism 

of the problem; it has been suggested that increased glutathione levels seen in young 

red cell populations (replacing damaged erythrocytes) offered a temporary, although 

eventually futile, ability to resist haemolysis.
85, 86

 The observation of dense particles 

and clumps (Heinz-Ehrlich bodies) within erythrocytes had been known for many 

years to be indicative of some type of poison or toxic chemical within the circulation. 

These Heinz-Ehrlich bodies were an easily detectable marker during the examination 

of a blood smear and consist of dark-staining refractile granules of denatured 

haemoglobin that are apparently attached to the inner surface of the red cell plasma 

membrane thereby distorting the shape of the erythrocyte. This deformation makes 

them more susceptible to rupture and signals their impending destruction by the 

spleen and other segments of the reticuloendothelial system.
87

 

 

Armed with this knowledge, the search for the agent(s) responsible for this kale-

related haemocytolysis was underway. Mineral and vitamin deficiencies were 

considered initially as being responsible for the anaemia but experimentation could 

not confirm this hypothesis.
88, 89

 However, although not the primary causation, a 

generalised poor nutritional status should not be overlooked as a contributing factor to 

such problems, especially when the majority of cases surfaced during the winter 

months when feeding may have been almost exclusively restricted to stored kale and 

related crops. Nitrates, hydroxylamines and various glucosinolates and their 

hydrolysis products, were also excluded from the list of culpable chemicals.
83, 90, 91

  

 

In 1973, SMCSO was implicated. Studies with goats showed that irrespective of the 

source of the sulphoxide, whether it was derived from kale or dosed as the pure 

synthetic compound, similar daily intakes gave comparable haemolytic responses.
75

 

Another study cited that ingestion of feed mixed with SMCSO (2-4% w/w) led to 

anaemia in rats, the condition being reversible after about 14 days.
91, 92

 However, the 

compound has been administered to man without obvious untoward effect
58

 but this 

was at a much lower dose level (c. 2.3mg/kg body weight), probably a thousand times 

less than that consumed by the rats (c. 2-4g/kg body weight, estimated). Interestingly, 

MMTSO has been fed to rats (1g/kg body weight) for 7 days with no signs of 

toxicity.
93

 

 

Although normally quoted as between 1-2% (w/w) dry weight
25, 94-97

 some Brassica 

crops may contain up to 5% (w/w) dry matter as SMCSO,
84, 85, 91

 and it has been 

suggested that levels as low as 0.35% (w/w) dry weight may lead to production of 

Heinz-Ehrlich bodies.
98

 As a rough guide, daily intakes of 15 to 20g SMCSO per 

100kg live weight are sufficient to elicit a haemolytic response. Although difficult to 

generalise, a bull may weigh in the region of 1000kg or more meaning that this toxic 

level corresponds to a daily sulphoxide intake of 150 to 200g. Lower intakes (10-

15g/100kg) may give rise to mild disturbances.
85

 

 

However, when SMCSO is incubated with erythrocytes no haemolysis is observed. It 

appears that species differences play a part in kale-associated anaemia and that the 



phenomenon is restricted mainly to ruminants. Cattle, goats and to a lesser extent 

sheep, together with rats and fowl, have been found to be susceptible whereas guinea 

pigs, hamsters, mice and rabbits did not become anaemic when fed fresh or dried 

kale.
91, 92, 99-103

 Amongst several possibilities lies the suggestion that the toxic 

haemolysin is produced via fermentation in contact with the rumen microorganisms. 

This notion was further supported by the observation that SMCSO was inactive in 

germ-free (gnotobiotic) lambs.
91

 

 

Hydrolytic activity has been associated with gastrointestinal microbes since heat-

sterilized rapeseed meal was not toxic when given to germ-free animals.
104-106

 

Incubation of SMCSO with fresh rumen contents afforded, amongst other products, 

large amounts of dimethyl disulphide and when this compound was administered to a 

young goat it gave a haemolytic response characteristic of kale or SMCSO 

poisoning.
75, 85

 Additionally, the ingestion of dimethyl disulphide by chickens for 12 

days produced Heinz bodies in their erythrocytes followed by a generalised leg 

weakness, feather ruffling and lethargy.
107

 

 

Other studies in cattle showed that blood levels of dimethyl disulphide increased as 

the SMCSO intake from Brassica crops progressed. These levels were maximal at the 

haemolytic crisis (20-50μM; 1.8-4.7mg/l) but declined with the emergence of young 

erythrocytes, to increase again as the new red blood cells matured.
84, 108

 In contrast, 

plasma SMCSO levels did not rise with increasing sulphoxide intake in sheep fed 

fresh kale plus sulphoxide supplement, indicating negligible absorption of the 

unchanged compound (or its lack of availability owing to degradation) from the 

ruminant digestive system.
95

  

 

It appears that the particular microorganisms within the ruminant gastrointestinal tract 

undertake effectively two reactions; firstly an initial lyase procedure to produce 

MMTSI followed by a removal of oxygen (reduction) to dimethyl disulphide, the 

active haemolytic agent.
90, 109

 In the reducing environment of the bowel the disulphide 

may also be cleaved to the free sulphydryl structure. Both of these compounds, in 

equilibrium, appear to be rapidly absorbed and participate insidiously in thiol-

disulphide exchange reactions, disrupting thiol-containing enzymes such as 

gluathione reductase within erythrocytes thereby depleting protective glutathione 

levels. The reduction of antioxidant potential and initiation of free radical activity 

precipitates oxidative stress, altering membrane permeability, causing intracellular 

disruption and leading to haemolytic sequelae.
84, 110

 

 

In summary, SMCSO is effectively innocuous, but becomes toxic when given in 

relatively large doses and also finds itself in an environment where the resident 

microorganisms are able to chemically degrade it to release a reactive sulphydryl 

grouping. Also, and in part owing to specific ruminant microflora and differences in 

erythrocyte fragility, certain animal species are more susceptible to its effects than 

others. We thus have an almost perfect example of a compound that illustrates the 

three principles that usually pervade a toxic response; dose matters, things change, 

people (species) differ.
111

  

 

Fortunately, for cattle and the agricultural industry, the incidence of kale-associated 

anaemia has dropped dramatically in the past few decades. This is due mainly to the 

creation of new cultivars that have drastically reduced the concentrations of SMCSO 



present in Brassica species employed for cattle fodder thereby effectively abolishing 

potential problems.
43, 112

 However, the cysteine sulphoxide lyase activity responsible 

for the production of dimethyl disulphide (and hence methanethiol) from ingested 

SMCSO has been shown to be present in several microorganisms that inhabit the 

human gastrointestinal tract
113-115

 and hence could equally well liberate potentially 

toxic dimethyl disulphide within the human bowel. A single meal (150g) of Brussel’s 

sprouts can provide 0.25g SMCSO
116

 and broccoli and cauliflower florets up to 

0.36g.
27

 For a 70kg human this is a dose rate of about 0.5g/100kg body weight. 

Should we be considering low-grade anaemia as a consequence of Brassica ingestion? 

Do certain individuals within the population possess a gut microbiota that would 

make them more susceptible to these problems? Should we be restricting, not 

encouraging, Brassica intake? 

 

One must keep this in perspective; humans tend to cook their food. Boiling tends to 

reduce the overall sulphur content of Brassicas.
117

 Acid catalysed thermal hydrolysis 

of SMCSO to MMTSO and dimethyl disulphide has been shown to occur in the 

laboratory.
118

 Degradation of SMCSO within plant material would undoubtedly occur 

during food processing. Cutting and chopping during the initial preparation liberates 

cysteine sulfoxide lyase from Brassica tissue (similar to alliinase purified from garlic; 

Stoll and Seebeck 1949)
119

 with the consequent release of volatile materials.
49, 51, 53

 It 

has been reported that the concentration of SMCSO was higher in the juice obtained 

from heated cabbage than from unheated vegetable and it was proposed that the 

heating process may have facilitated the release of SMCSO by cellular disruption, 

assisted in its liberation from a bound form or thermally degraded a precursor 

compound.
49, 51, 53

 In general agreement with this, measurement of SMCSO levels in 

plant tissue both before and after cooking showed that virtually all the material had 

been removed, with considerable amounts being extracted into the cooking water 

(Waring and Mitchell, unpublished results). 

 

 

Chemoprotective Activity 

 

Anti-carcinogenic effects 

 

As the majority of research, albeit a small amount, has concentrated upon the anti-

carcinogenic activity of the glucosinolates and their hydrolysis products, the possible 

contribution of SMCSO to the beneficial effects of Brassica vegetables virtually has 

been overlooked. However, the anti-mutagenic activity of SMCSO in isolation has 

been demonstrated utilising the mouse bone marrow micronucleus assay where mice 

(ICR) were treated with the tobacco carcinogen, benzo[a]pyrene, and concurrent 

administration of SMCSO and its metabolite, MMTSI. Observation of resulting 

micronucleated polychromatic erythrocytes showed that low levels of these materials 

(0.05mmol/kg body weight) produced around 33% reduction in micronucleus 

formation.
120

 This suggests that these two plant derived compounds also may 

contribute to the observed anticarcinogenic activity of Brassica plant juices in 

addition to the hydrolysis products of glucosinolates.  

 

A mixture of thiosulphinates, mainly consisting of MMTSI and S-methyl-2-propene-

1-thiosulphinate, isolated from the garlic chive (Chinese chive; Allium tuberosum) 

have shown promise in inhibiting the in vitro proliferation of human prostate and 



colon cancer cell lines. They also have shown success in increasing the life 

expectancy of mice inoculated with a fibrosarcoma cell line. The detailed mechanism 

of action is uncertain but apoptosis is induced by both caspase-dependent and 

caspase-independent pathways.
121-124

 The nucleophilic centre of the thiosulphinate 

also may have the ability to scavenge electrophilic carcinogenic intermediates and 

inhibit genotoxic initiation.
120

 

 

Others have shown that MMTSO is an effective antimutagen in vivo, decreasing the 

incidence of mutant wing spots induced by mitomycin C in the somatic mutation and 

recombination test (SMART) of Drosophila melanogaster and also the number of 

micronucleated peripheral reticulocytes found after mitomycin C treatment in mice.
125

 

 

The sulphone-containing molecule, MMTSO, has also been shown to have a 

restraining effect on the mutagen aflatoxin B1, an indirectly acting carcinogen that 

induces clastogenic and aneugenic changes in mammalian cells. Aflatoxin B1 

chromosome aberrations were observed readily in treated rat bone marrow cells but 

their formation was found to be potently suppressed by MMTSO (given in the range 

of 1-20mg/kg body weight) particularly if injected in a window of two hours before 

and two hours after treatment with aflatoxin B1. It is thought that MMTSO exhibits 

this anti-genotoxic effect by modulation of enzymatic sulfhydryl groups. This 

proposed mechanism of action was identified by a similar effect on aflatoxin B1 

induced chromosome aberrations by diphenyl disulphide that is known to modify 

sulphydryl groups in proteins. Juices of both cabbages and onion were also shown to 

produce the same effect further strengthening the idea that SMCSO is a 

chemoprotective compound in the human diet.
126

 

 

In addition, MMTSO was also shown to modify the effect of azoxymethane on rat 

colon carcinogenesis upon dietary exposure. Over the course of five weeks, rats were 

given azoxymethane (15mg/kg body weight) and concurrently fed with MMTSO 

(5mg/kg body weight). When the rat colon was examined, MMTSO was shown to 

have reduced the occurrence of aberrant crypt foci, which are regarded as precursor 

lesions of colorectal cancer. Also several biomarkers of cell proliferation; colonic 

mucosal ornithine decarboxylase activity, silver stained nucleolar organiser regions 

per nucleus in colonic epithelium and polyamine levels in blood; were significantly 

reduced.
93

 The incidence of intestinal neoplasms in a longer term study with 

azoxymethane was also shown to decrease in a dose dependent manner with MMTSO 

administration and MMTSO appeared not only to be able to prevent the development 

of aberrant crypt foci, but could also regress these lesions.
127

 Further to this, a year-

long study examining the suppression of intestinal neoplasms demonstrated a 

synergistic effect of MMTSO when administered with sulindac, a non-steroidal anti-

inflammatory drug.
128

 

 

 

Anti-diabetic and cardiovascular effects 

 

Rats maintained on a special hypercholesterolaemic diet, which produced high 

cholesterol levels in both the blood plasma and liver tissue, showed a marked 

depression of these cholesterol levels, particularly LDL and VLDL, following the 

addition of SMCSO to their diet. The sulphide amino acid, S-methyl-L-cysteine, had a 

smaller but measurable effect whereas S-methyl-L-cysteine sulphone and cysteine 



were without activity.
129-131

 Lipid profiles in serum and tissues showed a reduced 

concentration of total cholesterol and triglycerides but little effect on 

phospholipids.
129

 Total lipoprotein lipase activity in the adipose tissues was decreased 

with a subsequent decrease in the free fatty acid levels in serum and tissues. Increased 

excretion of bile acids and sterols was also observed following the SMCSO dosing 

regimen.
132

 In alloxan-induced diabetic rats, SMCSO demonstrated both 

antihyperlipidemic and antidiabetic properties, significantly controlling blood lipid 

and glucose levels, with the authors mentioning that these effects were comparable to 

those observed with insulin.
133-135

 

 

The results of these studies suggest that SMCSO causes reduction of endogenous 

lipogenesis, increased lipid catabolism and excretion of bile acids. This is thought to 

occur by interaction of the cysteine moiety of SMCSO inhibiting lipogenic enzymes 

within the liver as well as increasing activity of cholesterol 7α-hydroxylase, the rate-

limiting enzyme of bile acid biosynthesis.
132, 133

 In agreement with this, the oral 

administration of SMCSO was found to mimic the effects of cabbage extract in 

suppressing hypercholesterolemia by upregulating cholesterol catabolism, namely 

cholesterol 7α-hydroxylase, in hepatoma-bearing rats.
136

 Also, the reduction of 

SMCSO contributes to oxidation of the lipogenic coenzyme NADPH that may be 

contributing to the hypolipidaemia observed.
137

  

 

In biochemical analysis, MMTSO is well known as a reagent in enzyme activation 

and protein function studies as it reversibly blocks cysteines and other sulfhydryl 

groups in thiol containing molecules. MMTSO modifies thiol groups to dithiomethane 

(-S-S-CH3), proximal or adjacent thiol groups within the proteins have the ability to 

reduce this dithiomethane group.
138, 139

 This modification of thiol groups of cysteines 

moieties of enzymes, proteins and reduced glutathione serves as potential mechanism 

of the in vivo and in vitro biological effects of MMTSO but requires further 

investigation. 

 

It should also be appreciated that MMTSI contains the thiosulphinate functional group 

R-S(O)-S-R, a commonality with the alliciin compound found in garlic which is 

thoroughly researched and implicated in many of the health benefits of Alliums found 

in animal studies. Alliciin is thought to be responsible for reducing atherosclerosis 

and fat deposition, normalising the lipoprotein balance, decreasing blood pressure, 

anti-thrombotic effects, anti-inflammatory activities and functions as an antioxidant.
10

 

It is expected that SMCSO and its products, MMTSI and MMTSO, would share many 

of these biological effects and this is reflected by the few studies that are, at present, 

available in the literature. 

 

 

End Note 

 

With the increasing number of observations indicating that SMCSO and its metabolic 

products exhibit biological properties that could be exploited, it is disturbing that 

more research has not been undertaken in this area. There exists a general agreement 

that vegetables containing SMCSO, consumed in moderation, are beneficial to health, 

but the presence of glucosinolates has dominated the scene. Any potential 

contribution arising from SMCSO appears to have been overlooked or disregarded as 

unimportant. However, this may change. Preparations from vegetables (including 



broccoli and cabbage) containing SMCSO (15-400mg) have been patented already as 

drugs and health foods and drinks for lowering serum cholesterol levels, although this 

aspect still remains to be developed.
140

 The prophylactic use of non-nutritive amino 

acids, particularly one as abundant in the human diet as SMCSO, certainly should be 

investigated.  

 

Epidemiological studies involving sometimes vast cohorts and, unfortunately, usually 

within poorly controlled situations, are able to provide pointers to environmental and 

life-style factors that are deleterious of beneficial to health. In such studies that may 

relate to SMCSO, it is essential to confirm objectively that Brassica material has been 

eaten as part of the diet. Recent detailed work employing high-throughput 
1
NMR 

coupled with multivariate chemometrics, has shown that SMCSO, and three other 

distinct but as yet unidentified methyl-sulphoxide proton features, provided a 

metabolic finger-print in human urine acting as a biomarker of previous Brassica 

vegetable consumption. Refinement of this technique to enable quantitative 

measurements, followed by specific targeted research, may help to uncover hitherto 

unappreciated beneficial aspects of SMCSO intake. Hopefully, this relatively simple 

derivative of cysteine, with its oxygenated sulphur moiety, will prove to be useful as 

adjunctive therapy in a wide range of harmful human conditions. 

 

 

 

****************** 
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