This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

The impact of structural and metabolic variation on the toxicity and carcinogenicity of hydroxy- and alkoxy-substituted allyl- and propenylbenzenes.

Journal:	Chemical Research in Toxicology
Manuscript ID:	Draft
Manuscript Type:	Perspective
Date Submitted by the Author:	n/a
Complete List of Authors:	Rietjens, Ivonne; Wageningen University, Toxicology Adams, Tim; Verto solutions, Bastaki, Maria; Verto solutions, Cohen, Samuel; University of Nebraska Medical Center, Department of Pathology & Microbiology Fukushima, Shoji; Japan Bioassay Research Center, Gooderham, Nigel; Imperial College London, Harman, Christie; Verto solutions, Hecht, Stephen; University of Minnesota, Masonic Cancer Center; University of Minnesota, Chemical Research in Toxicology Marnett, Lawrence; Vanderbilt University, Biochemistry; Vanderbilt University, Smith, Bob Taylor, Sean; Verto solutions,

SCHOLARONE[™] Manuscripts

Chemical Research in Toxicology

2		
3 4	1	The impact of structural and metabolic variation on the toxicity and carcinogenicity of hydroxy-
5 6	2	and alkoxy- substituted allyl- and propenylbenzenes.
7 8 0	3	
9 10 11	4	I.M.C.M. Rietjens ¹ *, T. B. Adams ² , M. Bastaki ² , S.M. Cohen ³ , S. Fukushima ⁴ , N.J. Gooderham ⁵
12 13 14	5	C.G. Harman ² , S. Hecht ⁶ , L. J. Marnett ⁷ , R. L. Smith ⁸ , S. V. Taylor ²
15 16	6	
17 18	7	¹ Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The
19 20	8	Netherlands
21	9	
22	10	² Verto Solutions, 1101, 17th St NW #700, Washington DC 20036 USA
24 25	11	
26 27	12	³ Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha,
28 29	13	Nebraska
30	14	
31 32	15	⁴ Japan Bioassay Research Center, Kanagawa, Japan
33 34	16	
35 36	17	⁵ Dept. of Surgery and Cancer, Imperial College, London
37 38	18	
39 40	19	⁶ Mason IC Cancer Center, University of Minnesota, Minneapolis, Minnesota
40 41	20	
42 43	21	⁷ Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt University, School
44 45	22	of Medicine, , Nashville, Tennessee 37232-0146
46	23	
47 48	24	⁸ Molecular Toxicology, Imperial College London
49 50	25	
51 52 53	26	* To whom correspondence should be addressed: Prof. Dr. I.M.C.M. Rietjens, Division of
54 55	27	Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands, T:
56 57 58 59 60	28	+31-317-483971, F:+31-317-484931, ivonne.rietjens@wur.nl

29 Abstract

> The metabolic fate of a compound is determined by numerous factors including its chemical structure. Although the metabolic options for a variety of functional groups are well understood, and can often provide a rationale for comparison of toxicity based on structural analogy, at times, quite minor structural variations may have major consequences for metabolic outcomes and toxicity. In this paper, the effects of structural variations on metabolic outcomes is detailed for a group of related hydroxy- and alkoxy- substituted allyl- and propenylbenzenes. These classes of compounds are naturally occurring constituents of a variety of botanical based food items. The classes vary from one another by the presence or absence of alkylation of their *para*-hydroxyl substituents and/or the position of the double bond in the alkyl side chain. We provide an overview of how these subtle structural variations alter the metabolism of these important foodborne compounds, ultimately influencing their toxicity, particularly their DNA reactivity and carcinogenic potential. The data reveal that detailed knowledge of the consequences of subtle structural variations for metabolism is essential for adequate comparison of structurally related chemicals. Taken together, it is concluded that predictions in toxicological risk assessment should not be performed on the basis of structural analogy only, but should include analogy of metabolic pathways across compounds and species.

1		
2		
3	51	Keywords: safrole, estragole, methyleugenol, eugenol, chavicol, anethole, isoeugenol,
4 5		
6	52	isoeugenol methyl ether, structure-activity relationship
7		
8	53	
9		
10	54	
12		
13		
14		
15		
16		
17		
19		
20		
21		
22		
23		
24 25		
25 26		
27		
28		
29		
30		
31		
32 33		
33 34		
35		
36		
37		
38		
39		
40 41		
42		
43		
44		
45		
46 47		
48		
49		
50		
51		
52 52		
53 54		
55		
56		
57		
58		
59 60		
00		

55 Introduction

The toxicity of chemical compounds is a function of their structure as well as the structure of the main metabolic products. The metabolic fate of any compound in a biological system is, in turn, primarily determined by its chemical structure and specifically the presence of functional groups and their transformation. Additional factors that play a critical role in determining the specific enzymes involved and the kinetics of the metabolic processes include, to various extents, the dose of the compound, species, stran, sex, co-exposures and genetic factors. A chemical structure is defined by not only the overall molecular skeleton, e.g. aromatic or alicyclic compounds, but also by the type and relative position of functional groups. Minor differences in chemical structure may result in significant differences in either the biological properties of the parent compound or in its metabolic fate, and may have major consequences for the biological activity and therefore toxicity of a compound. In the first case, minor differences in chemical structure may influence the affinity for a molecular target and thus impact the biological activity of a compound. In the second case, apparently minor variations in either the type or the relative position of functional groups of similar compounds may dramatically alter their properties as substrates for metabolic enzymes and may result in major differences in the metabolic products. Consequently, while the metabolic options for a variety of functional groups are well understood, and can often provide a rationale for comparison of metabolic fate and toxicity based on structural analogy, the predictions may not always apply.

The organocyanides (nitriles) provide an illustration of the impact of structural differences on the
 toxicity of compounds carrying the same functional group. The type of molecular skeleton to

Chemical Research in Toxicology

which the nitrile is attached determines the degree of toxicity subsequent to different metabolic outcomes. Specifically, nitrile attached to a simple aliphatic skeleton is metabolised to release toxic hydrogen cyanide, and thus aliphatic nitriles are highly toxic.¹⁻³ However, a nitrile function directly attached to an aromatic ring is metabolically stable and such organonitriles have low toxicity.⁴ A similar example is found in the ability of aliphatic and aromatic carboxylic acids to undergo conjugation reactions. Benzoic acid, in which the carbon of the carboxylic acid is directly attached to the aromatic ring, is conjugated with glycine to form hippuric acid in humans.^{5,6} In contrast, phenylacetic acid, the homologue in which the carboxylic acid is attached on the ring via a spacer of one aliphatic carbon, is conjugated with glutamine to form phenylacetylglutamine.⁷ More interestingly, the presence of an alpha-methyl function (hydratropic acid) on phenylacetic acid results in complete loss of the carboxylic acid's capacity to form amino acid conjugates, and it undergoes metabolism by conjugation with glucuronic acid instead.⁸

The influence of subtle structural variations on the biological properties of chemical compounds is intentionally explored in a variety of chemical applications and in the design of biologically active, novel molecules with applications in therapeutics, where structure is modified according to desired pharmacological activity combined with absence of toxicity. Structurally related substances with different properties can be found as naturally occurring components of plants, including edible ones, in the form of pharmacologically active principles or flavouring substances. For example, 2-hydroxybenzoic acid (salicylic acid) is commonly used for the treatment of acne and warts, while 3-hydroxybenzoic acid is used as a fragrance ingredient.

2	
3	
4	
5	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
40	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	

1

101 In this paper the impact of subtle structural variations on metabolism and resulting toxicity is 102 evaluated for a group of structurally related hydroxy- and alkoxy-substituted allyl- and propenylbenzenes (Figure 1), which are present naturally as constituents of a variety of edible 103 plants and are added as flavouring substances in a range of food items. The nine members of the 104 group examined in this paper are naturally occurring flavouring substances that differ in two 105 106 specific structural features: a) the position of the double bond on the alkyl side chain; and b) the number and alkylation state of the hydroxyl groups on the aromatic ring (Figure 1). All nine 107 structures bear an alkyl side chain and a hydroxy or methoxy (alkoxy) moiety on the para-108 109 position relative to the alkyl side chain. In four of the nine structures an additional methoxy-110 moiety is present on the meta-position relative to the alkyl side chain. 111 112 A number of food compounds belong to each of these classes: allylalkoxybenzenes include estragole, methyleugenol and safrole; propenyl alkoxybenzenes include anethole (4-113 methoxypropenylbenzene) and isoeugenol methyl ether (3.4-dimethoxypropenylbenzene); allyl 114 hydroxybenzenes include chavicol (4-hydroxyallylbenzene) and eugenol (4-hydroxy-3-115 methoxyallylbenzene); and propenyl hydroxybenzenes include isochavicol and isoeugenol (4-116 117 hydroxy-3-methoxypropenylbenzene). An overview of the natural occurrence of these compounds in foods is presented in Table 1. It is clear from this compilation that plants and 118 herbs can contain several of these compounds simultaneously and that each compound is found 119 120 in several different plants. Thus, the allylalkoxybenzenes safrole, methyleugenol and estragole are constituents of nutmeg, cinnamon, anise star, tarragon, sweet basil, and sweet fennel (Table 121 1), and they are present in the essential oils as well as in food products derived from these plants 122 123 (e.g. basil pesto sauce). The members of hydroxy- and alkoxy-substituted allyl- and

Chemical Research in Toxicology

2		
3 4	124	propenylbenzenes are structural analogues that differ in the number of alkylated hydroxyl
5 6 7	125	moieties and/or the position of the double bond in the alkyl side chain. Interestingly, distinct
8 9	126	toxicity has been reported for some but not all of these compounds (Table 2). Thus, safrole,
10 11	127	methyleugenol and estragole have been reported to have DNA reactivity and show hepatotoxicity
12 13 14	128	leading to liver tumors in rodents at high dose levels ⁹⁻¹⁵ , while the related compounds eugenol,
15 16	129	chavicol, isoeugenol, isochavicol, isoeugenol methyl ether and anethole do not show DNA
17 18 10	130	reactivity (Table 2). An overview of the chemical mechanisms responsible for the differential
20 21	131	metabolic fate and subsequent biological properties among these structural analogues is
22 23	132	presented here as a means to understand the ultimate hazard potential of these flavour
24 25 26	133	substances.
27 28	134	
29 30	135	
31 32 33	136	A. Toxicity of hydroxy- and alkoxy-substituted allyl- and propenylbenzenes
34 35	137	
36 37 38	138	The differences in the reported toxicity profiles among the members of these structurally related
39 40	139	groups of hydroxy- and alkoxy-substituted allyl- and propenylbenzenes are intriguing given their
41 42	140	structural similarity and may seem puzzling before their metabolic fate is examined. A brief
43 44 45	141	description of their respective toxicity profiles is presented in the following sections.
46 47	142	
48 49	143	A.1. Allylalkoxybenzenes: safrole, methyleugenol and estragole
50 51 52	144	
53 54	145	There is ample evidence for the carcinogenicity of allylalkoxybenzenes in rodents. Clear
55 56 57 58 59 60	146	evidence of hepatocellular adenomas, hepatocellular carcinomas and hepatoblastomas has been

shown in National Toxicology Program (NTP) studies of methyleugenol, dosing 37, 75, or 150 mg/kg bw/day to B6C3F1 male and female mice by gavage.¹⁶ Similar responses were found in F344/N rats, including increased incidences of hepatocellular adenomas and carcinomas in both males and females, following administration of 37, 75, 150, and 300 mg/kg bw/day of methyleugenol by gavage. Furthermore, the incidences of hepatic cholangiomas and hepatic cholangiocarcinomas were also increased at the two highest dose levels in male rats.¹⁶ These effects have been attributed to the formation of DNA adducts of reactive metabolites, specifically the 1'-sulfoxy metabolites. Similarly, the hepatocarcinogenicity of safrole and estragole has been correlated to the formation of their respective 1'-sulfoxy metabolites (Figure 2).^{9,17-21} The role of the 1'-sulfoxymetabolite in hepatotoxicity and hepatocarcinogenicity of alkenylbenzenes has been revealed in experiments by co-administration of the specific sulfotransferase inhibitor pentachlorophenol (PCP) to mice, which resulted in potent inhibition of hepatic tumour induction upon long-term dietary administration of safrole or its metabolite, 1'hydroxysafrole.^{11,22}

The involvement of sulfotransferases in the generation of DNA reactive metabolites was also demonstrated in genotoxicity studies of 1'-hydroxymethyleugenol using Salmonella typhimurium TA100 strains expressing human sulformasferases (SULT), particularly the SULT1A1 and SULT1C2 isoforms.²³ Herrmann et al.²⁴ also studied the role of SULT enzymes in the formation of hepatic DNA adducts by methyleugenol in vivo. Using FVB/N mice [wild-type (wt)] and genetically modified strains including a Sult1a1 knockout (ko) strain, a strain transgenic for human SULT1A1/2 (tg) and for the combination of both modifications (ko-tg), the authors showed that the adduct formation by both methyleugenol and 1'-hydroxymethyleugenol was almost completely dependent on the presence of SULT1A enzymes, with human SULT1A1/2

60

Chemical Research in Toxicology

2		
3 4	170	producing stronger effects than mouse Sult1a1. Further support for the role of SULTs in the
5 6 7	171	formation of the DNA adducts of the allylalkoxybenzenes comes from studies reporting reduced
7 8 9	172	formation of estragole DNA adducts in both in vitro as well as in vivo rat models by the SULT
10 11	173	inhibitor nevadensin, an important flavonoid present in basil. ²⁵⁻²⁷
12 13	174	
14 15 16	175	A.2. Propenyl alkoxybenzenes: anethole and isoeugenol methyl ether
17 18	176	
19 20 21	177	The liver is the target organ for anethole toxicity. Anethole induces liver carcinogenicity in
22 23	178	laboratory animals (female Sprague Dawley rats) at high dose levels in the diet. ²⁸ Unlike the case
24 25	179	of methyleugenol, it was shown that a non-genotoxic mechanism was responsible for the
26 27 28	180	neoplastic effects of anethole, involving continuous elevated tissue concentrations and resulting
29 30	181	in hepatotoxicity of its metabolite, anethole epoxide, that in turn leads to regenerative
31 32	182	hyperplasia. ²⁹⁻⁴⁰ Thus, the liver carcinogenicity of anethole in laboratory animals at high dose
33 34 35	183	levels is likely due to a non-genotoxic mode of action including cytotoxicity followed by
36 37	184	regeneration of damaged tissue. Data on the toxicity of isoeugenol methyl ether are limited.
38 39 40	185	
40 41 42	186	Additional support for a non-genotoxic mechanism for anethole is derived from consistently
43 44	187	negative results for genotoxicity in several in vivo and in vitro studies. When tested in vitro,
45 46 47	188	trans-anethole was negative for mutagenicity in Salmonella typhimurium strains TA98, TA100,
47 48 49	189	TA1535, TA1537, and TA1538, either in the presence or in the absence of metabolic activation
50 51	190	with S-9 at concentrations up to 25,000 μ g/plate. ^{29-31,41,42} Similarly, absence of mutagenicity was
52 53 54	191	reported for anethole in a rec assay in <i>B. subtilis</i> and in a point mutation assay in <i>E. coli</i> ⁴³ , as
55 56	192	well as in a mutagenicity assay in S. cerevisiae. ⁴⁴ In addition, no increase in chromosomal
57 58 59		

aberrations was observed in Chinese hamster ovary cells treated with anethole, either with or without S-9 metabolic activation.³² Furthermore, no increase in unscheduled DNA synthesis was found in studies using primary rat hepatocytes isolated from female SD-CD rats treated with anethole or anethole-1,2-diol at concentrations of 10^{-2} to 10^{-6} M, or up to the highest dose tested $(0.3 \,\mu l/ml)$. ^{33-37,45,46} When assessed in a mouse lymphoma forward mutation assay, anethole was not mutagenic in the absence of metabolic activation. However, in the presence of metabolic activation, anethole induced forward mutations at the thymidine kinase locus of L5178Y TK^{+/-} mouse lymphoma cells, although this seems to be the only incidence of mutagenic activity reported for anethole.³⁰ Lack of genotoxicity was also reported when anethole was tested in vivo, including in three independent mouse micronucleus assays. Anethole did not induce either sister chromatid

exchanges (SCE) or chromosomal aberrations in bone marrow cells of B6C3F1 mice injected

intraperitoneally at doses ranging from 2.5 to 2000 mg/kg bw.^{40,47,48} In a different study,

treatment of Swiss albino mice with 250, 500 or 1000 mg anethole/kg bw/day for 7 days did not
result in an increased number of micronucleated cells in femoral bone marrow cells, even though
target tissue cytotoxicity was documented, as judged by an altered ratio of polychromatic to
normochromatic erythrocytes.⁴⁹

Consistent with the lack of genotoxicity, there was no significant increase in DNA adducts in
bone marrow cells in B6C3F1 or CD-1 mice treated with 0.7 to 10 mg anethole as a single
intraperitoneal injection.^{38,39}

53 214

216	A.3. Allyl hydroxybenzenes: chavicol and eugenol	
-----	--	--

No carcinogenicity has been observed in studies with eugenol in F344/N rats.^{10,50,51} No significant dose related increase in the incidences of hepatocellular neoplasms were observed in either male or female B6C3F1 mice in a 2-year bioassay study.^{50,51} Eugenol is not genotoxic at concentrations that do not result in cellular toxicity⁵²⁻⁵⁴ and short term toxicity tests did not reveal hepatotoxicity in rats.^{53,55,56} This lack of genotoxicity and carcinogencity of eugenol is reflected in the establishment of an Acceptable Daily Intake (ADI) of 0-2.5 mg/kg bw per day by JECFA^{52,53} or of 1.0 mg/kg bw per day by EFSA.⁵⁴ Data on the toxicity of chavicol are limited.

A.4. Propenyl hydroxybenzenes: isochavicol and isoeugenol

In a 2-year NTP bioassay of isoeugenol in B6C3F1 mice some evidence of increased incidences of hepatocellular adenoma, hepatocellular carcinoma, and hepatocellular adenoma or carcinoma (combined) were reported.⁵⁷ However, these responses were not dose-related and were only reported in male B6C3F1 mice, a sex and species with historically high levels of background hepatocellular neoplasms.⁵¹ Hepatotoxic or hepatocarcinogenic effects were not observed in female mice or in either rat sex. Isoeugenol tested negative in various genotoxicity assays⁵⁷ and short term toxicity tests in rats did not reveal hepatotoxicity.⁵⁵ Data on the toxicity of isochavicol are limited.

B. Metabolic pathways

For this group of structural analogues the 1'-sulfoxy metabolites have been identified as the ultimate DNA-reactive metabolites responsible for the carcinogenicity. These metabolites are the products of sulfotransferase-mediated conjugation of the 1'-hydroxy metabolites, formed upon 1'-hydroxylation of the allylalkoxybenzenes by cytochromes P450 (Scheme 1).^{9,17-21} Whether the 1'-sulfoxy metabolite decomposes to give rise to an unstable reactive carbocation that subsequently reacts with nucleophilic sites in macromolecules including DNA (Scheme 1), or whether the 1'-sulfoxy metabolite reacts directly with the nucleophilic sites remains to be elucidated.

B.1. Allylalkoxybenzenes: safrole, methyleugenol and estragole

253 Scheme 1:

Formation of the 1'-hydroxy metabolites of allylalkoxybenzenes was demonstrated using human
liver microsomes. Cytochromes P450 1A2, 2C9 and 2C19 were shown to be the primary
enzymes catalyzing the 1'-hydroxylation of methyleugenol⁵⁸, whereas P450 2C9 and 2A6 were

Chemical Research in Toxicology

2	
3	259
4	_00
5	260
6	200
1	
8	261
9	
10	262
11	
12	262
13	205
14	
16	264
10	
10	265
10	
20	266
20	200
21	
22	267
23	
25	268
26	
27	260
28	209
29	
30	270
31	
32	271
33	
34	272
35	272
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	2/3
46	
47	274
48	
49	275
50	-
51	276
52	270
53	
54	277
55	
56	278
57	
58	
59	

60

identified as the enzymes catalyzing 1'-hydroxylation of safrole⁵⁹, and P450 1A2 and 2A6 were 259 shown to be the principle enzymes for 1'-hydroxylation of estragole.⁶⁰ 260

1

Once formed, the 1'-hydroxy metabolites of allylalkoxybenzenes undergo conjugation reactions. 262 In rats, conjugation with glucuronic acid catalysed by UDP-glucuronosyltransferases (UGTs) 263 appears to be the major detoxification pathway and results in a stable metabolite which is 264 excreted in the urine (Scheme 2).⁶¹⁻⁶⁴ Oxidation of 1'-hydroxy metabolites to the corresponding 265 ketone has been also identified as an alternative but minor metabolic pathway in rats, whereas it 266 appeared a major pathway in humans.⁶⁵⁻⁶⁷ In addition, while glucuronidation is the main 267 conjugation pathway for the 1'-hydroxy metabolites, the keto-metabolite is efficiently 268 conjugated with GSH.⁶⁵ Reduction of the keto metabolite back to 1'-hydroxyestragole has also 269 270 been observed (Scheme 2).

Scheme 2: 272

While the 1'-hydroxylation can lead to downstream bioactivation of safrole, methyleugenol and estragole, two competing metabolic pathways have been described for this group of compounds. In the first alternative pathway, O-dealkylation (Scheme 3) competes favourably with 1'hydroxylation and liberates a free phenolic functional group that provides an efficient

detoxification option for conjugation and elimination.^{64,68,69} Epoxidation of the allyl double
bond is the second alternative pathway (Scheme 3). The epoxides of the allylalkoxybenzenes
have been shown to be DNA-reactive and form adducts *in vitro*. However, these epoxides were
also shown to be rapidly detoxified by epoxide hydrolases and/or glutathione S-transferases *in vivo*.⁷⁰⁻⁷⁴ Therefore, accumulation of these adducts *in vivo* is considered.⁷¹

285 Scheme 3:

Taken together, of three possible metabolic pathways only one leads to the bioactivation of safrole, methyleugenol and estragole, through the formation of DNA reactive 1'-sulfoxy metabolites (Scheme 1). This pathway starts with 1'-hydroxylation, followed by sulfate conjugation, and results in what are currently believed to be the ultimate carcinogenic metabolites for this class of compounds.^{11,20,38,39} These electrophiles may react readily with DNA, RNA and proteins but can also be detoxified through reaction with H₂O or conjugation with glutathione.^{39,76-78} Therefore, only a fraction of the 1'-sulfoxy metabolite is expected to form DNA adducts.

The types of DNA adducts formed have been examined for estragole *in vitro* (Figure 2). The major adduct formed was with the guanine base, specifically the N^2 -(*trans*-isoestragol-3'-yl)-

Chemical Research in Toxicology

1
2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
17
18
19
20
21
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
27
20
20
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
5/
54
50
30 57
5/
58
59
60

299	deoxyguanosine (E-3'- N^2 -dG). Other adducts included N^2 -(estragol-1'-yl) deoxyguanosine (E-1'-
300	N ² -dG), 7-(<i>trans</i> -isoestragol-3'-yl)-deoxyguanosine (E-3'-7-dG), and 8-(<i>trans</i> -isoestragol-3'-yl)-
301	deoxyguanosine (E-3'-8-dG). ^{75,79} Adducts of estragole with deoxyadeninosine, such as N^6 -
302	(<i>trans</i> -isoestragol-3'-yl)-deoxyadenosine (E-3'- N^6 -dA), are also formed to a significant extent in
303	the liver of male rats (F344) exposed to 600 mg/kg bw of estragole for 4 weeks. ⁷⁸ The structure
304	of these adducts is consistent with initial formation of the 1'-sulfoxy metabolite of estragole, and
305	the loss of the sulfate moiety which is facilitated by resonance stabilisation via isomerisation of
306	the allylic double bond from the C2'-C3 to the C1'-C2' position, and the presence of the para-
307	methoxy substituent on the phenyl ring. ⁸⁰
308	
309	Herrmann et al. ⁸¹ reported the detection of similar adducts of methyleugenol in surgical human
310	liver samples from 30 subjects. Using isotope-dilution ultra-performance liquid chromatography-
311	tandem mass spectrometry (UPLC-MS/MS), they detected N^2 -(<i>trans</i> -methylisoeugenol-3'-yl)-2'-
312	deoxyguanosine adducts (Figure 3) in 29 liver samples as the major adduct and N^6 -(<i>trans</i> -
313	methylisoeugenol-3'-yl)-2'-deoxyadenosine (Figure 3) at lower levels in most samples as well.
314	The maximal and median levels of both adducts combined were 37 and 13 adducts per 10^8
315	nucleosides.
316	
317	The biotransformation of these substances and the likely formation of DNA adducts is both dose-
318	dependent and species-specific. Conversion by O-dealkylation to metabolites with a free
319	phenolic functional group that can be readily excreted with or without conjugation is the
320	predominant route of biotransformation for this group of compounds at low doses in rodents and
321	humans. ^{64,68,69,82,83} In contrast, oxidation of the allyl side chain that generates 1'-hydroxy

Page 16 of 50

2	
3	
4	
5	
5	
6	
7	
8	
õ	
3	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
21	
28	
29	
30	
31	
22	
32	
33	
34	
35	
36	
00	
37	
38	
39	
40	
11	
41	
42	
43	
44	
45	
16	
40	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
00	
56	
57	
58	
50	
03	
υu	

1

metabolites and alkene epoxides occurs at higher dose levels.^{64,68} Rodent toxicity and 322 323 carcinogenicity studies typically employ high dose levels, thus favouring the latter metabolic pathways. This is demonstrated by the results of studies reporting that the metabolite profile of 324 safrole changed in a dose-dependent fashion over a range of oral dose levels of 0.9, 60 or 600 325 mg/kg bw. As predicted, a shift from mainly O-dealkylated metabolites detected at lower dose 326 levels to 1'-hydroxylation products on the allyl side chain and/or epoxide formation was 327 observed that was more prominent when the dose increased from 60 to 600 mg/kg bw.⁶² A 328 similar shift in metabolic profile of estragole was reported in another study in mice and rats. As 329 330 the dose increased (0.05, 5, 50, 500,1 000 mg/kg bw), the relative extent of O-demethylation decreased with a parallel increase in 1'-hydroxylation, the latter amounting to 1.3, 2.1, 5.2, 7.8 331 and 9.4% of the dose at increasing dose levels in the mouse study.^{64,68} This dose-dependent 332 333 metabolic shift from O-demethylation to 1'-hydroxylation was consistent with the results of pharmacokinetic modeling using a physiologically based kinetic (PBK) model developed for 334 estragole bioactivation and detoxification in the male rat (Punt et al., 2008). The main metabolic 335 336 pathway of estragole at low doses was shown to be O-demethylation. Saturation of the Odemethylation pathway was shown to occur at higher doses of estragole leading to increased 337 relative formation of 1'-hydroxyestragole. 338

In contrast to this, a study on hepatic DNA adduct formation in mice exposed to methyleugenol did not provide an indication of a dose dependent metabolic shift.²⁴ Also, Gupta et al.⁸⁵ reported a nearly linear dose response curve for hepatic DNA adduct formation upon exposure of mice to a dose range of safrole varying from 0.001 to 10 mg per mouse. This linear dose response behaviour is also in line with results from physiologically based kinetic (PBK) modelling, which predicted that formation of the reactive sulfoxy metabolites and the resulting DNA adducts

Page 17 of 50

1

Chemical Research in Toxicology

2		
2		
ں ۸		
4		
5		
6		
7		
Ŕ		
ი ი		
9	~	
1	0	
1	1	
1	2	
1	3	
4	1	
1	4	
1	5	
1	6	
1	7	
1	8	
1	a	
י ר	5 ^	
2	U v	
2	1	
2	2	
2	3	
2	Δ	
<u>^</u>	-	
2	0	
2	6	
2	7	
2	8	
2	9	
2	ñ	
5	4	
3	1	
3	2	
3	3	
3	4	
3	5	
2	6 6	
ა ი	0	
3	1	
3	8	
3	9	
Δ	Ô	
1	1	
+	ו ^	
4	2	
4	3	
4	4	
4	5	
۵	6	
1	7	
4	í c	
4	8	
4	9	
5	0	
5	1	
5	ว	
с Г	~	
5	3	
5	4	
5	5	
5	6	
5	7	
г	1 0	
Э	Ø	

59

60

formed upon exposure to methyleugenol, estragole or safrole would be linear with the dose at dose levels as high as the ones causing tumors in rodent bioassays down to dose levels in the range of realistic human exposure.^{66,67,86,88} It might be that the metabolic shift occurs especially at dose levels higher than the ones causing tumors in rodent bioassays.

349 Overall, these studies demonstrate that a reactive intermediate carbocation is the ultimate 350 carcinogenic metabolite by virtue of DNA adduct formation. The generation of the carbocation 351 in this group of related *para*-allylalkoxyalkylbenzenes is the result of a bioactivation pathway 352 involving cytochrome P450-mediated allyl side chain 1'-hydroxylation followed by sulfate 353 conjugation of the hydroxyl moiety to form the 1'-sulfoxy metabolite. The presence of a 2,3-354 unsaturated allyl side chain provides the activated carbon (C1), which is both allylic and benzylic 355 356 and serves as the required electrophilic moiety. The overview also suggests that O-dealkylation that liberates a hydroxyl moiety is an efficient detoxification pathway that facilitates excretion. 357 Several species differences have been identified in the relative contribution and efficiency of 358 359 metabolic pathways involved in the biotransformation of allylalkoxybenzenes. Among the three main pathways, namely O-dealkylation, allyl chain epoxidation and allyl chain 1'-hydroxylation, 360 evidence has shown that O-dealkylation appears to be more favoured in the mouse and human 361 than in the rat at comparable doses.^{64,68,69} Consistent with this difference, the metabolic shift 362 from O-dealkylation to 1'-hydroxylation of the allyl side chain with increasing dose is more 363 significant and readily observed in rats compared to mice.^{10,20,75} In addition, in rats, a clear dose-364 dependent increase in 1'-hydroxysafrole or its downstream metabolites is observed in the urine, 365 whereas no evidence was found of such metabolites occurring in humans at low dose (1.66 mg; 366 ~ 0.03 mg/kg bw).⁶² In in vitro incubations the metabolic fate of the 1'-hydroxyl moiety toward 367

oxidation or conjugation appeared to be species dependent. Oxidation to the ketone, which is efficiently scavenged by GSH, appeared to be a minor pathway for 1'-hydroxyestragole conversion inincubations with rat liver microsomes, compared to 1'-hydroxyl glucuronidation⁸⁴. but appears to be the major pathway for conversion of 1'-hydroxyestragole in incubations with human liver microsomes.⁶⁵ In spite of this species difference, the formation of 1'-sulfoxyestragole was found to vary less than 2-fold between rat and human.⁶⁵ Studies with 1'-hydroxymethyleugenol and 1'-hydroxysafrole have also revealed the same species-specific differences between glucuronidation and oxidation routes of metabolism as well as a similar relatively small difference in the formation of the 1'-sulfoxy metabolite between rat and human.^{66,67}

379 B.2. Propenyl alkoxybenzenes: anethole and isoeugenol methyl ether

Anethole and isoeugenol are the propenyl relatives of estragole and methyleugenol, respectively, as a result of isomerisation of the double bond in the allyl side chain (Figure 1). Anethole epoxide has been determined to be the ultimate hepatotoxic metabolite of anethole based on extensive biochemical and toxicological data.⁸⁸ The target organ for anethole toxicity is the liver where anethole epoxide has been shown to be 10 times more potent and exhibit hepatocellular cytotoxicity at concentrations 10 times lower compared to those of anethole itself.^{33-37,89} The primary role of the epoxide is also corroborated by the increase in the hepatotoxic effects of anethole that are observed in freshly isolated rat hepatocytes in the presence of inhibitors of enzymes responsible for anethole epoxide detoxification, such as epoxide hydrolase and glutathione S-transferase.³⁵ Furthermore, from data based on species and sex differences it can

Chemical Research in Toxicology

3 4	391	be seen that the higher the rate of daily production of anethole epoxide, i.e. the more efficient the
5 6 7	392	formation of the active metabolite, the lower the dose levels of anethole that result in signs of
8 9	393	hepatotoxicity. ^{88,90} A correlation between the rate of conversion of anethole to anethole epoxide
10 11	394	and the hepatotoxic effects observed in short-term and long-term rodent studies have been
12 13 14	395	quantitatively demonstrated. ²⁸
15 16	396	
17 18	397	Efficient detoxification of anethole epoxide in vivo, by epoxide hydrolase and/or glutathione S-
19 20 21	398	transferases, is likely at low doses and maintains the epoxide metabolite at non-hepatotoxic
22 23	399	levels. Similar observations have been reported in the case of the epoxides of the
24 25	400	allylalkoxybenzenes ⁷⁰⁻⁷⁴ , such that the epoxide DNA adducts shown to form <i>in vitro</i> , are
26 27 28	401	considered unlikely to accumulate in vivo at low doses. ⁷¹
29 30	402	
31 32 22	403	An alternative metabolic pathway for propenyl alkoxybenzenes is the 3'-hydroxylation of the
34 35	404	side chain (Scheme 4) and this is the main route in humans at low dose levels. ⁹¹ Following 3'-
36 37	405	hydroxylation, <i>trans</i> -anethole is efficiently detoxified via subsequent β -oxidation that yields
38 39 40	406	para-methoxy benzoic acid (Scheme 4), followed in turn by rapid conjugation with glycine and
41 42	407	elimination in the urine. ^{82,91} This pathway competes effectively with epoxidation at low dose
43 44	408	levels, making bioactivation and toxicity less likely. Therefore, at low dose levels, epoxidation is
45 46 47	409	a minor pathway and is quantitatively similar among mice, rats, and humans albeit slightly more
48 49	410	prominent in the rat compared to the mouse or human.
50 51 52	411	
52 53 54	412	
55 56	413	
57 58 59		
60		19

The shift between 1'-hydroxylation and 3'-hydroxylation of the side chain is an illustration of the metabolic and toxicological impact that results from a small structural difference between isomers, comparing those with an allyl double bond and those with a propenyl double bond in the side chain. The change in the location of the double bond results in a different regioselectivity of the cytochrome P450 catalysed reaction resulting in the formation of a non-genotoxic metabolic intermediate (3'-hydroxy-) instead of the proximate carcinogenic metabolite (1'-hydroxy-). By extension, the location of the double bond shifts the toxicological profile from that of DNA adduct-forming genotoxic compounds to that of non-genotoxic ones which are readily conjugated and rapidly excreted in the urine.

Additional metabolic options for detoxification are available in compounds with an additional
methoxy substituent at the meta-position, as in the case of isoeugenol methyl ether. The
additional methoxy group increases the probability of detoxification via *O*-demethylation and
subsequent conjugation of the hydroxyl group with a concomitant reduction in the formation of
the corresponding epoxide.⁹² The fraction of metabolites resulting from the epoxidation pathway
account for less than 1% of the urinary metabolites detected in male Wistar rats administered a
single oral dose of 200 or 400 mg isoeugenol methyl ether/kg bw. The majority of urinary

Page 21 of 50

Chemical Research in Toxicology

metabolites, greater than 77%, were products of 3- and 4-O-demethylation and 3'-hydroxylation. The extent of hepatotoxic effects reported for isoeugenyl methyl ether is directly correlated to the levels of formation of the corresponding epoxide. Taken together, exposure to anethole and isoeugenol methyl ether at dose levels relevant for human dietary intake is consistent with absence of toxicity given the efficient detoxification that occurs at similar levels in rodents and humans. It is only in the context of chronic exposure to high dose levels in female rats that the continuous daily production of hepatotoxic concentrations of anethole epoxide has been shown to occur which in turn results in a continuum of cytotoxicity, cell death, regenerative cell proliferation, and following prolonged exposure, liver tumors. The relationship between highdose anethole exposure, epoxide formation and hepatotoxicity has been also assessed quantitatively in a 2-year study using female rats.²⁸ A higher fraction of anethole was converted to the epoxide with higher dose of parent compound. A dose of 200 mg/kg bw per day of anethole resulted in 15% epoxide metabolites, with an estimated epoxide dose of 30 mg/kg bw per day, whereas a dose of 550 mg/kg bw per day of anethole resulted in 23% epoxide metabolites, with an estimated epoxide dose of 120 mg/kg bw per day and a proportional increase in the incidence and severity of hepatotoxicity.⁸⁸ A clear threshold of anethole hepatoxicity can be determined, as shown by the absence of hepatotoxicity at a dietary dose of 120 mg/kg bw per day of anethole and an estimated epoxide dose of approximately 22 mg /kg bw per day. Female rats exhibited both hepatic toxicity and hepatic tumors at the highest dietary dose of anethole (550 mg/kg bw per day). By comparison, human exposure to anethole is estimated to be a daily intake of 0.002 mg/kg bw, orders of magnitude below the no-effect dose in rodents. Clearly, a large margin of safety exists between dose levels causing hepatotoxicity in experimental animals and levels expected to occur in realistic human exposure scenarios.

2 3 4	457	
5 6 7	458	Thus, comparison of the metabolic profile of anethole and isoeugenyl methyl ether to that of the
7 8 9	459	related allylalkoxybenzenes safrole, methyleugenol and estragole, reveals that a small structural
10 11	460	difference such as the isomerisation of the double bond in the allyl side chain results in distinct
12 13 14	461	metabolic pathways that favor detoxification.
15 16	462	
17 18 10	463	Metabolic studies have shown that at low dose levels (<5 mg/kg bw/day) anethole is rapidly
20 21	464	absorbed and detoxified in rodents primarily by O-demethylation and in humans primarily by 3'-
22 23	465	hydroxylation (scheme 4). ^{82,89,91,93}
24 25 26	466	
20 27 28	467	B.3. Allyl hydroxybenzenes: chavicol and eugenol
29 30	468	
31 32 33	469	Chavicol and eugenol are allyl hydroxybenzenes and the structural analogues of methyleugenol
34 35	470	and estragole, respectively, lacking the methoxy substituent but containing a hydroxyl moiety
36 37	471	para- to the allyl side chain (Figure 1). Thus, the presence of a free hydroxyl moiety on the ring
38 39 40	472	accounts for the difference in toxicity of eugenol and chavicol compared to that of
41 42	473	methyleugenol and estragole. The free phenolic function allows conjugation to become a primary
43 44 45	474	mode of metabolism and excretion (Scheme 5). Additional metabolic options for eugenol
45 46 47	475	include: a) isomerization to yield isoeugenol, with the subsequent paths to epoxidation of the
48 49	476	allyl double bond yielding an epoxide that hydrolyzes to the corresponding diol; b)
50 51 52	477	hydroxylation at the allyl position to yield 1'-hydroxyeugenol; c) O-dealkylation at position 3' of
53 54	478	the ring to yield 3,4-dihydroxypropenylbenzene; or d) reduction of the double bond of the side
55 56 57 58 59	479	chain to yield 3-methoxy-4-hydroxypropylbenzene (Scheme 5). Compared to the primary

of eugenol (approximately 2.5 mg/kg bw) in gelatin tablets after consumption of a normal
breakfast, more than 55% of the eugenol dose was excreted in the urine as the glucuronic acid or

sulfate conjugates within 24 hours. An additional 40% of the dose was accounted for by other

conjugated metabolites of isomerized, epoxidized, or reduced forms of eugenol. In total, conjugated eugenol and its conjugated metabolites accounted for >95% of the administered dose, while unconjugated eugenol accounted for less than 0.1%.⁹⁴ The authors concluded that eugenol undergoes rapid first pass conjugation and rapid elimination.⁹⁴ Even though eugenol and chavicol share the allyl side chain with methyleugenol and the allylalkoxybenzenes, the free phenolic hydroxyl moiety is a major structural difference that increases possibilities for swift conjugation and excretion, which likely explains the absence of DNA reactivity and carcinogenicity for eugenol compared to methyleugenol.^{16,51} The metabolic fate of eugenol in rodents is reported to be similar to that in humans with respect to rapid conjugation and elimination.^{95,96} However, sulfate conjugates appear to be the primary metabolites, while glucuronic acid conjugates seem to form as a result of saturation of sulfate conjugation pathways. Thus, at least in rodents, the type of conjugates also seems to be dose-dependent, with sulfate conjugates being the principle metabolites at low doses (0.5, 5, and 50 mg/kg bw), and glucuronic acid conjugates predominating at the highest dose (1000 mg/kg bw). **B.4.** Propenyl hydroxybenzenes: isochavicol and isoeugenol This group, represented by isochavicol and isoeugenol, combines two structural differences relative to the allylalkoxybenzenes, namely isomerisation of the allyl side chain and replacement

- of the *para*-methoxy substituent by a *para*-hydroxyl moiety. Both changes convert
- 517 methyleugenol to isoeugenol, while the isomerisation of the allyl side chain distinguishes
- 518 isoeugenol from eugenol (Figure 1). The equivalent changes distinguish isochavicol from

Page 25 of 50

Chemical Research in Toxicology

estragole and chavicol, respectively. Anethole and isochavicol share the propenyl side chain and differ only in the presence of the free phenolic group. A dramatically different toxicity profile is also observed for the propenyl hydroxybenzenes compared to the allylalkoxybenzene relatives as a result of different metabolic fates associated with the presence of a hydroxyl substituent at the para-position in combination with the shift in the double bond in the allyl side chain. As expected, the predominant detoxification pathway for isoeugenol is the conjugation of the free phenolic function with sulfate and glucuronic acid. Indeed, greater than 85% of $[^{14}C]$ -isoeugenol administered at a dose of 156 mg/kg bw by gavage to male Fischer-344 rats is excreted in the urine within 72 hours as the glucuronic acid and sulfate conjugates.⁹⁷ Intravenous administration results in a similar metabolic and elimination pattern with 82% of a 15.6 mg/kg bw dose of [¹⁴C]-isoeugenol excreted as the same urinary conjugates within 72 hours. Regardless of administration route, the remaining dose was accounted for with approximately 10% excreted in the feces, up to 0.1% recovered as expired CO₂, and less than 0.25% remaining in selected tissues. The conclusion that isoeugenol does not present a carcinogenic hazard is consistent with the efficient detoxification of isoeugenol, due to its free phenolic hydroxyl, similar to the group of allyl hydroxybenzenes.

536 Conclusions

6 537

A mechanism-based approach has been taken to illustrate how minor structural changes may result in different metabolic pathways of either bioactivation or detoxification with a significant impact on the toxicological outcome. The impact of small structural differences on toxicity is important to consider when using structural analogy as a rationale for predictions in toxicity

2	
3	
4	
5	
5	
6	
7	
8	
9	
10	
14	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
30	
39	
40	
41	
42	
43	
44	
45	
46	
40	
4/	
48	
49	
50	
51	
52	
52 53	
52 53	
52 53 54	
52 53 54 55	
52 53 54 55 56	
52 53 54 55 56 57	
52 53 54 55 56 57 58	
52 53 54 55 56 57 58 59	

542 assessment. The structural similarities and differences among allylalkoxybenzenes, propenyl alkoxybenzenes and their allyl and propenyl hydroxybenzene relatives were presented in this 543 paper as examples. When viewed in the context of their metabolic fate, it is clear that structural 544 features alone are not adequate as the basis for comparative toxicity assessment. Comparative 545 approaches are more effective in assessing toxicity when based on a combination of both 546 547 structural analogy and metabolic analogy as has been demonstrated here by comparing the metabolic fate and toxicity outcomes of structurally related substances naturally occurring in 548 foods that differ only in the position of the double bond of the alkenyl side chain and/or in the 549 550 presence of a *para*-hydroxy or *para*-methoxy functional group. The relationship between chemical structure and ADME (absorption, distribution, metabolism and excretion) 551 characteristics determines whether detoxification or bioactivation of the parent compound may 552 553 occur and whether effective elimination of metabolites may follow. The impact of subtle structural changes on the metabolic fate for the four types of substances demonstrates that a 554 mode-of-action-based approach that includes both parent compound and metabolites can more 555 556 accurately evaluate the potential toxicity, DNA reactivity and carcinogenicity of these related food constituents. It is concluded that isomerisation of the double bond in the allyl side chain 557 558 and/or the presence of a free phenolic hydroxyl moiety shifts the metabolism in favour of detoxification and eliminates the possibilities for formation of a DNA reactive carcinogenic 559 metabolite. It is with this insight that the remarkable differences in the toxicity of these related 560 561 hydroxy- and alkoxy-substituted allyl-and propenyl-benzenes can be explained. It also illustrates how subtle structural changes among parent compounds that do not seem critical in and of 562 themselves can have significant effects on toxicity simply due to critical divergence in the 563 564 relevant metabolic products. Furthermore, species differences in relative metabolic pathway

Chemical Research in Toxicology

2	
3	565
4 5	
6	566
7	
8 0	567
9 10	
11	568
12	FGO
13 14	209
15	570
16	570
17 18	571
19	
20	
21	
22	
23	
25	
26	
27	
28	
29	
30 31	
32	
33	
34	
35	
30 37	
38	
39	
40	
41	
4∠ ∕\3	
44	
45	
46	
47	
48 ⊿0	
5 0	
51	
52	
53	
54 55	
50 56	
57	
58	
59	

60

contributions to biotransformation of a compound must also be taken into account, as illustrated in the case of the allylalkoxybenzenes by the preferential formation of the 1'-hydroxy metabolite and its glucuronidated product in rodents but an oxo-metabolite and its glutathione conjugate in humans. It is concluded that comparisons in toxicological risk assessment should be done on the basis of structural analogy, not only of the parent compounds but also for the metabolic products with due consideration to species-specific metabolic pathways.

References

- 573 (1) Williams, R. T. (1959) In Detoxication Mechanisms: "The metabolism and detoxication of
- 574 drugs, toxic substances and other organic compounds. Chapman and Hall, London, pp 390-408.
- 575 (2) Willhite, C. C., and Smith, R.P. (1981) The role of cyanide liberation in the acute toxicity of
- 576 aliphatic nitriles. *Toxicol. Appl. Pharmacol.* 59, 589-602.
- 577 (3) Potter, J., Smith, R. L., and Api, A. M. (2001) Urinary thiocyanate as a biomarker for the
- 578 generation of inorganic cyanide from benzyl cyanide in the rat. *Fd. Chem. Toxicol. 39*, 141-146.
- 579 (4) Tanii, H., and Hashimoto, K. (1984) Studies on the mechanism of acute toxicity of nitriles in
 580 mice. *Arch.Toxicol.* 56, 47-54.
- 581 (5) Bridges, J. W., French, M. R., Smith, R. L., and Williams, R. T. (1970) The Fate of Benzoic
 582 Acid in Various Species. *Biochem. J.* 118, 47-51.
- 583 (6) Caldwell, J, Idle J. R., and Smith, R. L. (1980) The amino acid conjugations. Extrahepatic
- 584 Metabolism of Drugs and Other Foreign Compounds. Gram, TE; SP Medical and Scientific
 585 Books, New York, 453-492.
- 586 (7) James, M. O., Smith, R. L., Williams, R. T., Reidenberg, F. R. S., and Reidenberg, M.
- 587 (1972). The conjugation of phenylacetic acid in man, sub-human primates and some non-primate
 588 species. *Proc. R. Soc. Lond. B.* 182, 25-35.
 - 589 (8) Dixon, P. A. F., Caldwell, J., and Smith, R. L. (1977) Metabolism of Arylacetic Acids.2. The
 590 Fate of Hydratropic Acid and its Variation with Species. *Xenobiotica* 7, 707-715.
- 591 (9) Drinkwater, N. R., Miller, E. C., Miller, J. A., and Pitot, H. C. (1976) Hepatocarcinogenicity
- 592 of estragole (1-allyl-4-methoxybenzene) and 1'-hydroxyestragole in the mouse and mutagenicity
- 593 of 1'-acetoxyestragole in bacteria. J.Natl. Cancer Inst. 57, 1323-1331.

2
3
1
4 5
5
6
7
8
9
10
11
12
13
14
14
10
10
17
18
19
20
21
22
23
24
24
20
26
27
28
29
30
31
32
33
34
25
30
36
37
38
39
40
41
42
43
10
 15
40
46
47
48
49
50
51
52
53
5/
54
55
56
57
58
59

60

594 (10) Miller, E. C., Swanson, A. B., Phillips, D. H., Fletcher, T. L., Liem, A., and Miller, J. (1983) Structure-activity studies of the carcinogenicities in the mouse and rat of some naturally 595 occurring and synthetic alkenylbenzene derivatives related to safrole and estragole. *Cancer Res.* 596 43, 1124-1134. 597 (11) Wiseman, R. W., Miller, E. C., Miller, J. A., and Liem, A. (1987) Structure-activity studies 598 of the hepatocarcinogenicities of alkenylbenzene derivatives related to estragole and safrole on 599 administration to preweanling male C57BL/6J x C3H/HeJ F1mice. Cancer Res. 47, 2275-2283. 600 (12) SCF, European Commission (2001a) Opinion of the Scientific Committee on Food on 601 602 estragole (1-allyl-4-methoxybenzene). (13) SCF, European Commission (2001b) Opinion of the Scientific Committee on Food on 603 methyleugenol (4-allyl-1,2-dimethoxybenzene). 604 605 (14) SCF, European Commission (2001c) Opinion of the Scientific Committee on Food on the safety of the presence of safrole (1-allyl-3,4-methylene dioxy benzene) in flavourings and other 606 food ingredients with flavouring properties. 607 (15) Smith, R. L., Adams, T. B., Doull, J., Feron, V. J., Goodman, J. I., Marnett, L. J., 608 Portoghese, P. S., Waddell, W. J., Wagner, B. M., Rogers, A. E., Caldwell, J., and Sipes, I. G. 609 610 (2002) Safety assessment of allylalkoxybenzene derivatives used as flavouring substances methyleugenol and estragole. Fd. Chem. Toxicol. 40, 851-870. 611 (16) NTP, National Toxicology Program (2000) NTP Toxicology and carcinogenesis studies of 612

- 613 methyleugenol (CAS No. 93-15-2) in F344/N rats and B6C3F1 mice (gavage studies). NTP Rep.
- 614 Ser.,491. National Toxicology Program. Research Triangle Park, NC, USA.
- 615 (17) Borchert, P., Miller, J. A., Miller, E. C., and Shires, T. K. (1973) 1'-Hydroxysafrole a
- 616 proximate carcinogenic metabolite of safrole in the rat and mouse. *Cancer Res. 33*, 590-600.

2
3
4
5
6
7
1
8
9
10
11
12
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
20
20
27
28
29
30
31
20
32
33
34
35
36
27
37
38
39
40
41
42
43
11
44 45
45
46
47
48
19
50
50
51
52
53
54
55
55
00
5/
58
59
60

617 (18) Wislocki, P. G., Borchert, P., Miller, J. A., and Miller, E. C. (1976) The metabolic

- 618 activation of the carcinogen 1'-hydroxysafrole in vivo and in vitro and the electrophilic
- 619 reactivities of possible ultimate carcinogens. *Cancer Res. 36*, 1686-1695.
- 620 (19) Wislocki, P. G., Miller, E. C., Miller, J. A., McCoy, E. C., and Rosenkranz, H. S. (1977)

621 Carcinogenic and mutagenic activities of safrole, 1'-hydroxysafrole, and some known or possible

- 622 metabolites. *Cancer Res.* 37, 1883-1891.
- 623 (20) Wiseman, R. W., Fennell, T. R., Miller, J. A., and Miller, E. C. (1985) Further
- 624 characterization of the DNA adducts formed by electrophilic esters of the hepatocarcinogens 1'-
- 625 hydroxysafrole and 1'-hydroxyestragole in vitro and in mouse liver in vivo, including new
- 626 adducts at C-8 and N-7 of guanine residues. *Cancer Res.* 45, 3096-3105.
- 627 (21) Miller, J. J., Powell, G. M., Olavesen, A. H., and Curtis, C. G. (1976) The toxicity of
- 628 dimethoxyphenol and related compounds in the cat. *Toxicol. Appl. Pharmacol.* 38, 47-57.
- 629 (22) Boberg, E. W., Miller, E. C., Miller, J. A., Poland, A., and Liem, A. (1983) Strong evidence
- 630 from studies with Brachymorphic mice and pentachlorophenol that 1'-sulfooxysafrole is the
- 631 major ultimate electrophilic and carcinogenic metabolite of 1'-hydroxysafrole in mouse liver.
- 632 *Cancer Res.* 43, 5163-5173.
- 633 (23) Herrmann, K., Engst, W., Appel, K. E., Monien, B. H., and Glatt, H. (2012) Identification of
 634 human and murine sulfotransferases able to activate hydroxylated metabolites of methyleugenol
- 635 to mutagens in Salmonella typhimurium and detection of associated DNA adducts using UPLC-
- 636 MS/MS methods. *Mutagenesis* 27, 453-462.
- 637 (24) Herrmann, K., Engst, W., Meinl, W., Florian, S., Cartus, A. T., Schrenk, D., Appel, K. E.,
- 638 Nolden, T., Himmelbauer, H., and Glatt, H. (2013) Formation of hepatic DNA adducts by

Chemical Research in Toxicology

1
2
3
4
5
6
7
1
8
9
10
11
12
13
14
15
16
17
18
19
20
21
∠ I 22
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
27
20
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
52
55
04 55
55
56
57
58
59
60

639	methyleugenol in mouse models: drastic decrease by Sult1a1 knockout and strong increase by
640	transgenic human SULT1A1/2. Carcinogenesis. 2013 Dec 31. [Epub ahead of print].
641	(25) Jeurissen, S. M. F., Punt, A., Delatour T., and Rietjens, I. M. C. M. (2008) Basil extract
642	inhibits the sulfotransferase mediated formation of DNA adducts of the procarcinogen 1'-
643	hydroxyestragole by rat and human liver S9 homogenates and in HepG2 human hepatoma cells.
644	Fd. Chem. Toxicol. 46, 2296-2302.
645	(26) Alhusainy, W., Paini, A., Punt, A., Louisse, J., Spenkelink, B., Vervoort, J., Delatour, T.,
646	Scholz, G., Schilter, B., Adams, T., van Bladeren, P. J., and Rietjens, I. M. C. M. (2010)
647	Identification of nevadensin as an important herb-based constituent inhibiting estragole
648	bioactivation and physiology-based biokinetic modeling of its possible in vivo effect. Toxicol.
649	Appl. Pharmacol. 245, 179-190.
650	(27) Alhusainy, W., Paini, A., van den Berg, J. H. J., Punt, A., Scholz, G., Schilter, B., van
651	Bladeren, P. J., Taylor, S., Adams, T. B., and Rietjens, I. M. C. M. (2013) In vivo validation and
652	physiologically based modelling of the inhibition of SULT-mediated estragole DNA adduct
653	formation in the liver of male Sprague-Dawley rats by the basil flavonoid nevadensin. Mol. Nutr.
654	Food Res. 57, 1969-1978.
655	(28) Truhaut, R., Le Bourhis, B., Attia, M., Glomot, R., Newman, J., and Caldwell, J. (1989)
656	Chronic toxicity/carcinogenicity study of trans-anethole in rats. Fd. Chem. Toxicol. 27, 11704-
657	11720.
658	(29) Nestmann, E. R., Lee, E. G. H., Matula, T. I., Douglas, G. R., and Mueller, J. C. (1980)
659	Mutagenicity of constituents identified in pulp and paper mill effluents using the
660	Salmonella/mammalian-microsome assay. Mut.Res.79, 203-212.

2 3	661	(30) Heck, J. D., Vollmuth, T. A., Cifone, M. A., Jagannath, D. R., Myhr, B., and Curren, R. D.
4 5 6 7 8 9	662	(1989) An evaluation of food flavoring ingredients in a genetic toxicity screening battery.
	663	Toxicologist 1 257
	000	10///00/03/01 1, 2011
10 11 12	664	(31) Mortelmans, K., Haworth, S., Lawlor, T., Speck, W., Tainer, B., and Zeiger, E. (1986)
12 13 14	665	Salmonella mutagenicity tests: II. Results from the testing of 270 chemicals. Environ. Mutagen.
15 16	666	8, 1-119.
17 18	667	(32) Gorelick, N. J. (1995) Genotoxicity of trans-anethole in vitro. Mutat. Res. 326, 199-209.
19 20 21 22 23 24 25 26 27 28 29 30	668	(33) Howes, A.J., Chan, V. S. W., and Caldwell, J. (1990a) Induction of unscheduled DNA
	669	synthesis in cultured rat hepatocytes by natural food flavours. Mutagenesis 5, 85.
	670	(34) Howes, A. J., Chan, V. S. W, and Caldwell, J. (1990b) Structure-specificity of the
	671	genotoxicity of some naturally occurring alkenylbenzenes determined by the unscheduled DNA
	672	synthesis assay in rat hepatocytes. Fd. Chem. Toxicol. 28, 537-542.
31 32	673	(35) Marshall, A. D., and Caldwell, J. (1992) Influence of modulators of epoxide metabolism on
33 34 35	674	the cytotoxicity of trans-anethole in freshly isolated rat hepatocytes. Fd. Chem. Toxicol. 30, 467-
36 37	675	473.
38 39	676	(36) Marshall, A. D., and Caldwell J. (1996) Lack of influence of modulators of epoxide
40 41 42	677	metabolism on the genotoxicity of <i>trans</i> -anethole in freshly isolated rat hepatocytes assessed
43 44	678	with the unscheduled DNA synthesis assay. Fd. Chem. Toxicol. 34, 337-345.
45 46	679	(37) Caldwell, J., Chan, V. S. W., Marshall, A. D., Hasheminejad, G., and Bounds, S. V. J.
47 48 49	680	(1992) 1'-Hydroxylation is the only metabolic pathway of simple alkenylbenzenes involved in
50 51 52 53	681	their genotoxicity. Toxicologist 12, 56.
54 55 56		
оо 57		
58 59		
60		32

Page 33 of 50

1	
2	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21 22	
22	
23	
24	
25	
26	
27	
28	
29	
20	
20	
31	
32	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
_+0 //7	
41	
48	
49	
50	
51	
52	
53	
54	
55	
50	
56	
57	
58	
59	
60	

682	(38) Randerath, K., Haglund, R. E., Phillips, D. H., and Reddy, M. V. (1984) ³² P-post-labelling
683	analysis of DNA adducts formed in the livers of animals treated with safrole, estragole and other
684	naturally-occurring alkenylbenzenes. I. Adult female CD-1 mice. Carcinogenesis 5, 1613-1622.
685	(39) Phillips, D. H., Reddy, M. V., and Randerath, K. (1984) ³² P-post-labelling analysis of DNA
686	adducts formed in the livers of animals treated with safrole, estragole and other naturally-
687	occurring alkenylbenzenes. II. Newborn male B6C3F1 mice. Carcinogenesis 5, 1623-1628.
688	(40) Marzin, D. (1979) Recherche d'une action mutagene par le test du micronucleus chez la
689	souris. Unpublished report of DREBS. Submitted to WHO by Pernod Ricard. Cited in JECFA,
690	1991.
691	(41) To, L. P., Hunt, T. P., and Andersen, M. E. (1982) Mutagenicity of trans-anethole,
692	estragole, eugenol and safrole in the Ames Salmonella typhimurium assay. Bull. Environ.
693	Contam. Toxicol. 28, 647-654.
694	(42) Swanson, A. B., Chambliss, D. D., Blomquist, J. C., Miller, E. C., and Miller, J. A. (1979)
695	The mutagenicities of safrole, estragole, eugenol, trans-anethole and some of their known or
696	possible metabolites for Salmonella typhimurium mutants. Mut. Res. 60,143-153.
697	(43) Sekizawa, J., and Shibamoto, T. (1982) Genotoxicity of safrole-related chemicals in
698	microbial test systems. Mut. Res. 101, 127-140.
699	(44) Nestmann, E. R., and Lee, E. G. H. (1983) Mutagenicity of constituents of pulp and paper
700	mill effluent in growing cells of Saccharomyces cerevisiae. Mut. Res. 119, 273-280.
701	(45) Muller, L., Kasper, P., Muler-Tegethoff, K., and Petr, T. (1994) The genotoxic potential in
702	vitro and in vivo of the allyl benzene etheric oils estagole, basil oil and <i>trans</i> -anethole. Mut. Res.
703	325, 129-136.

2
2
3
4
5
e e
0
7
8
0
9
10
11
10
12
13
14
15
15
16
17
10
10
19
20
21
<u>~</u> 1
22
23
24
24
25
26
27
21
28
29
30
50
31
32
33
55
34
35
36
30
37
38
30
39
40
41
12
72
43
44
45
40
46
47
<u>48</u>
40
49
50
51
51
52
53
51
55
56
57
57
58
59
60
ΟU

704	(46) Lorillard Inc. (1987). Unscheduled DNA synthesis in rat primary hepatocytes test article
705	anethole lot no. 104048. Study no. T5407.380. Microbiological Associates, Inc., Rockville, MD.
706	Unpublished report to the Flavor and Extract Manufacturers Association of the USA,
707	Washington, DC.
708	(47) Siou, G., Lerond-Conan, L., El Haitem, M., and Lancrampe, M. (1984) Recherche d'une
709	eventuelle potentilaite genotoxique du p-methoxy-propenylbenzene par la technique du
710	micronucleus chez la souris. Unpublished report of C.E.R.T.I. Submitted to WHO by Pernod
711	Ricard.
712	(48) Abraham, S. K. (1996) Anti-genotoxic effects in mice after the interaction between coffee
713	and dietary constituents. Food Chem. Toxicol. 34,15-20.
714	(49) Al-Harbi, M. M., Qureshi, S., Raza, M., Ahmed, M. M., and Giangreco A. B. (1995)
715	Influence of anethole treatment on the tumour induced by Ehrlich ascites carcinoma cells in paw
716	of Swiss albino mice. Eur. J. Cancer Pre. 4, 307-318.
717	(50) NTP, National Toxicology Program (1983) Carcinogenesis studies of eugenol (CAS No. 97-
718	53-0) in F344/N rats and B6C3F1 mice (feed studies). NTP TR 223. NTP publication number
719	84-1779. National Toxicology Program research Triangle Park, NC, USA.
720	(51) Maronpot, R. R., Haseman, J. K., Boorman, G. A., Eustis, S. E., Rao, G. N., and Huff, J. E.
721	(1987) Liver lesions in B6C3F1 mice: The National Toxicology Program, experience and
722	position. Arch. Toxicol., Suppl. 10, 10-26.
723	(52) JECFA (Joint FAO/WHO Expert Committee on Food Additives) (1982) Toxicological
724	Evaluation of certain veterinary drug residues in food. WHO Food Additives series 17.
725	(53) JECFA (Joint FAO/WHO Expert Committee on Food Additives) (2006) Safety Evaluation
726	of certain food additives. WHO Food Additives series 56, 155-161.

Chemical Research in Toxicology

2
3
Δ
5
0
6
7
8
9
10
10
11
12
13
14
15
16
17
17
18
19
20
21
22
22 22
23
24
25
26
27
28
20
29
30
31
32
33
31
25
30
36
37
38
39
10
- 1 0 //
41
42
43
44
45
46
40
41
48
49
50
51
52
52
23
54
55
56
57
58
50
59

60

727	(54) EFSA (European Food Safety Authority) (2012) Conclusion on the peer review of the
728	pesticide risk assessment of the active substance eugenol. EFSA Journal 2012;10(11):2914.
729	doi:10.2903/j.efsa.2012.2914. Available online: www.efsa.europa.eu/efsajournal © European
730	Food Safety Authority, 2012.
731	(55) Hagan, E. C., Hansen, W. H., Fitzhugh, O. G., Jenner, P. M., Jones, W. I., Taylor, J. M.,
732	Long, E. L., Nelson, A. A., and Brouwer, J. B. (1967) Food flavourings and compounds of
733	related structure. II. Subacute and chronic toxicity. Fd. Cosmet. Toxicol. 5, 141-157.
734	(56) Hirose, M. A., Imaida, K., Kagawa, M., Tsuda, H., and Ito, N. (1987) Induction of
735	forestomach lesions in rats by oral administrations of naturally occurring antioxidants for 4
736	weeks. Jpn. J. Cancer Res. 78, 317-321.
737	(57) NTP, National Toxicology Program (2010) Toxicology and carcinogenesis studies of
738	isoeugenol (CAS No. 97-54-1) in F344/N rats and B6C3F1 mice (gavage studies). NTP Rep.
739	Ser., 551:1-178. National Toxicology Program research Triangle Park, NC, USA.
740	(58) Jeurissen, S. M. F., Bogaards, J. J. P. Boersma, M. G., Ter Horst, J. P. F., Awad, H. M.,
741	Fiamegos, Y. C., Van Beek, T. A. Alink, G. M., Sudhölter, E. J. R., Cnubben, N. H. P., and
742	Rietjens I. M. C. M. (2009) Human cytochrome P450 enzymes and inter- and intraspecies
743	differences of importance for the bioactivation of methyleugenol to the proximate carcinogen
744	1'-hydroxymethyleugenol. Chem. Res. Toxicol. 19, 111-116.
745	(59) Jeurissen, S. M. F., Bogaards, J. J. P., Awad, H. M., Boersma, M. G., Brand, W., Fiamegos,
746	Y.C., Van Beek, T. A., Alink, G. M., Südholter, E.J.R., Cnubben, N. H. P., and Rietjens I. M. C.
747	M. (2004) Human cytochrome P450 enzyme specificity for bioactivation of safrole to the
748	proximate carcinogen 1'-hydroxysafrole. Chem. Res. Toxicol. 17, 1245-1250.

(60) Jeurissen, S. M. F., Punt, A. Boersma, M. G., Boogaards, J. J. P., Fiamegos, Y. C., Schilter,

- 750 B., Van Bladeren, P. J., Cnubben, N. H. P., and Rietjens, I. M. C. M. (2007) Human cytochrome
- 751 P450 enzyme specificity for the bioactivation of estragole and related alkenylbenzenes. *Chem.*
- *Res. Toxicol.* 20, 798-806.
 - 753 (61) Stillwell, W. G., Carman, M. J., Bell, L., and Horning, M. G. (1974) The metabolism of
- safrole and 2',3'-epoxysafrole in the rat and guinea pig. *Drug Metab. Dispos.* 2, 489-498.
- (62) Benedetti, M. S., Malnoë, A., and Broillet, A. L. (1977) Absorption, metabolism and
- r56 excretion of safrole in the rat and man. *Toxicology* 7, 69-83.
- 757 (63) Solheim, E. and Scheline R. R. (1973) Metabolism of alkenebenzene derivatives in the rat I.
- p-Methoxyallylbenzene (estragole) and p-Methoxypropenylbenzene (Anethole). *Xenobiotica 3*, 493-510.
- 760 (64) Anthony, A., Caldwell, J., Hutt, A. J., and Smith, R. L. (1987) Metabolism of estragole in
- rat and mouse and influence of dose size on excretion of the proximate carcinogen 1'-
- 762 hydroxyestragole. *Food Chem. Toxicol.* 25, 799-806.
- 763 (65) Punt, A., Paini, A., Boersma, M. G., Freidig, A. P., Delatour, T., Scholz, G., Schilter, B.,
- 764 Van Bladeren, P. J., and Rietjens, I. M. C. M. (2009) Use of physiologically based biokinetic
- 765 (PBBK) modeling to study estragole bioactivation and detoxification in humans as compared
- 766 with male rats. *Toxicol. Sci. 110*, 255-269.
- 767 (66) Al-Subeihi, A. A., Spenkelink, B., Punt, A., Boersma, M.G., Van Bladeren, P. J., and
- 768 Rietjens, I. M. C. M. (2012) Physiologically based kinetic modeling of bioactivation and
- 769 detoxification of the alkenylbenzene methyleugenol in human as compared to rat. *Toxicol. Appl.*
- ³ 770 *Pharmacol.* 260, 271-284.

1
2
3
4
5
6
7
0
0
9
10
11
12
13
14
15
16
17
18
19
20
2U 01
21
22
23
24
25
26
27
28
29
20
24
31
32
33
34
35
36
37
38
39
40
11
-TI // 2
+∠ ∕\?
43
44
45
46
47
48
49
50
51
52
52
55
54
55
56
57
58
59

771	(67) Martati, E.,	, Boersma, M. C	., Spenkelink	, A., Khadka,	, D. B., Punt, A.	, Van Bladeren, P. J.,
-----	-------------------	-----------------	---------------	---------------	-------------------	------------------------

and Rietjens I. M. C. M. (2012) Physiologically based biokinetic (PBBK) modeling of safrole

bioactivation and detoxification in human as compared with rat. *Toxicol. Sci.* 12, 301-316.

774 (68) Zangouras, A., Caldwell, J., Hutt, A.J., and Smith, R. L. (1981) Dose dependent conversion

of estragole in the rat and mouse to the carcinogenic metabolite, 1'-hydroxyestragole. *Biochem*.

776 *Pharmacol. 30*, 1383-1386.

777 (69) Sangster, S. A., Caldwell, J., Hutt, A. J., and Smith, R. L. (1983) The metabolism of p-

propylanisole in the rat and mouse and its variation with dose. *Fd. Chem. Toxicol.* 21, 263-271.

779 (70) Luo, G., Qato, M. K., and Guenthner, T. M. (1992) Hydrolysis of the 2',3'-allylic epoxides

780 of allylbenzene, estragole, eugenol, and safrole by both microsomal and cytosolic epoxide

781 hydrolases. *Drug Metab. Dispos. 20*, 440-445.

782 (71) Luo, G., and Guenthner, T. M. (1995) Metabolism of allylbenzene 2',3'-oxide and estragole

783 2',3'-oxide in the isolated perfused rat liver. J. Pharmacol. Exp. Therapeut. 272, 588-596.

784 (72) Guenthner, T. M., and Luo, G. (2001) Investigation of the role of the 2',3'-epoxidation

pathway in the bioactivation and genotoxicity of dietary allylbenzene analogs. *Toxicology 160*,

786 47-58.

787 (73) Ioannides, C., Delaforge, M., and Parke, D. V. (1981) Safrole: Its metabolism,

788 carcinogenicity and interactions with cytochrome P-450. *Fd. Cosmet. Toxicol.* 19, 657-666.

789 (74) Klungsøyr, J., and Scheline, R. R. (1983) Metabolism of safrole in the rat. *Acta Pharmacol.*790 *Toxicol.* 52, 211-216.

(75) Phillips, D. H., Miller, J. A., Miller, E. C., and Adams, B. (1981) Structures of the DNA
adducts formed in mouse liver after administration of the proximate hepatocarcinogen 1'-

793 hydroxyestragole. *Cancer Res.* 41, 176-186.

3
4
4
5
6
7
0
0
9
10
11
12
12
13
14
15
16
47
17
18
19
20
24
21
22
23
24
25
20
26
27
28
20
29
30
31
32
33
00
34
35
36
37
20
38
39
40
41
41 42
41 42
41 42 43
41 42 43 44
41 42 43 44 45
41 42 43 44 45 45
41 42 43 44 45 46
41 42 43 44 45 46 47
41 42 43 44 45 46 47 48
41 42 43 44 45 46 47 48 49
41 42 43 44 45 46 47 48 49 50
41 42 43 44 45 46 47 48 49 50
41 42 43 44 45 46 47 48 49 50 51
41 42 43 44 45 46 47 48 49 50 51 52
41 42 43 44 45 46 47 48 49 50 51 52 53
41 42 43 44 45 46 47 48 50 51 52 53 54
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
41 42 43 44 45 46 47 48 9 50 51 52 53 45 55 56 57
41 42 43 44 45 46 47 48 9 50 51 52 53 45 56 57 58
41 42 43 44 45 46 47 48 49 50 51 52 53 4 55 56 57 80
41 42 43 44 45 46 47 48 49 50 51 52 53 55 57 58 9

794 (76) Miller, J. A., and Miller E. C. (1983) The metabolic activation and nucleic acid adducts of naturally-occuring carcinogens: Recent results with ethyl carbamate and the spice flavors safrole 795 and estragole. Br. J. Cancer 48, 1-15. 796 797 (77) Fennell, T. R., Miller J. A., and Miller, E. C. (1984) Characterization of the biliary and urinary glutathione and N-acetylcysteine metabolites of the hepatic carcinogen 1'-798 hydroxysafrole and its 1'-oxo metabolite in rats and mice. Cancer Res. 44, 3231-3240. 799 (78) Ishii, Y., Suzuki, Y., Hibi, D., Jin, M., Fukuhara, K., Umemura, T., and Nishikawa, A. 800 (2011) Detection and Quantification of Specific DNA Adducts by Liquid Chromatography-801 802 Tandem Mass Spectrometry in the Livers of Rats Given Estragole at the Carcinogenic Dose. Chem. Res. Toxicol. 24, 532-541. 803 (79) Punt, A., Delatour, T., Scholz, G., Schilter, B., van Bladeren, P. J., and Rietjens, I. M. C. M. 804 (2007) Tandem mass spectrometry analysis of N^2 -(*trans*-isoestragole-3'-yl)-2'deoxyguanosime 805 as a strategy to study species differences in sulfotransferase conversion of the proximate 806 carcinogen 1'-hydroxyestragole. Chem. Res. Toxicol. 20, 991-998. 807

- 808 (80) Jung, Y. H., and Kim, J.D. (2003) Mechanism studies on the CSI reaction with allyl ethers
 809 by varying p-substituent. *Arch. Pharm. Res.* 26, 667-678.
- 810 (81) Herrmann, K., Schumacher, F., Engst, W., Appel, K. E., Klein, K., Zanger, U. M., and
- 811 Glatt, H. (2013). Abundance of DNA adducts of methyleugenol, a rodent hepatocarcinogen, in
 812 human liver samples. *Carcinogenesis 34*, 1025-1030.
- 813 (82) Sangster, S. A., Caldwell, J., Hutt, A. J., Anthony, A., and Smith, R. L. (1987) The
- 814 metabolic disposition of [methoxy-¹⁴C]-labelled *trans*-anethole, estragole and p-propylanisole in
- 815 human volunteers. *Xenobiotica 17*, 1223-1232.

1 2			
3 4	816	(83) Beyer, J., Ehlers, D., and Maurer, H. H. (2006) Abuse of nutmeg (Myristica fragrans	
5 6	817	Houtt.): studies on the metabolism and the toxicologic detection of its ingredients elemicin,	
7 8 9 10 11	818	myristicin, and safrole in rat and human urine using gas chromatography/mass spectrometry.	
	819	<i>Ther. Drug Monit.</i> 28, 568-575.	
12 13	820	(84) Punt, A., Freidig, A. P., Delatour, T., Scholz, G., Boersma, M. G., Schilter, B., Van	
14 15 16	821	Bladeren, P. J., and Rietjens, I. M. C. M. (2008) A physiologically based biokinetic (PBBK)	
17 18	822	model for estragole bioactivation and detoxification in rat. Toxicol. Appl. Pharmacol. 231, 248	3-
19 20 21	823	259.	
21 22 23	824	(85) Gupta, K. P. van Golen K. L., Putman, K. L., and Randerath, K. (1993) Formation and	
24 25	825	persistence of safrole-DNA adducts over a 10,000-fold dose range in mouse liver.	
26 27 28	826	Carcinogenesis 14, 1517–1521.	
29 30	827	(86) Rietjens, I. M. C. M., Punt, A., Schilter, B., Scholz, G., Delatour, T., and van Bladeren, P.	J.
31 32	828	(2010) In-silico methods for physiologically based biokinetic models describing bioactivation	
33 34 35	829	and detoxification of coumarin and estragole: Implications for risk assessment. Mol. Nutr. Fd.	
36 37	830	Res. 54, 195-207.	
38 39 40	831	(87) Paini, A., Punt, A., Viton, F., Scholz, G., Delatour, T., Marin-Kuan, M., Schilter, B., van	
40 41 42	832	Bladeren, P. J., and Rietjens, I. M. C. M. (2010) A physiologically based biodynamic (PBBD)	
43 44	833	model for estragole DNA binding in rat liver based on in vitro kinetic data and estragole DNA	
45 46 47	834	adduct formation in rat primary hepatocytes. Toxicol. Appl. Pharmacol. 245, 57-66.	
48 49	835	(88) Newberne, P., Smith, R. L., Doull, J., Goodman, J. I., Munro, I. C., Portoghese, P. S.,	
50 51 52 53 54	836	Wagner, B. M., Weil, C. S., Woods, L. A., Adams, T. B., Lucas, C. D., and Ford, R. A. (1999))
	837	The FEMA GRAS assessment of <i>trans</i> -anethole used as a flavor substance. <i>Fd. Chem. Toxico</i>	l.
55 56	838	37, 789-811.	
57 58			
59 60			39

2
3
4
5
6
7
1
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
∠ I 20
22
23
24
25
26
27
28
20
20
30
31
32
33
34
35
36
37
20
30
39
40
41
42
43
44
45
16
40
41
48
49
50
51
52
53
54
55
55
00
5/
58
59
60

(89) Bounds, S. V., and Caldwell, J. (1992) Influence of pre-feeding upon the disposition of 14 C-

- 840 *trans*-anethole in the Sprague-Dawley CD rat. The Fourth North American ISSX Meeting, Bar
- 841 Harbour, Florida, November, 1992. Meeting 2, 159.
- 842 (90) Newberne, P. M., Carlton, W. W., and Brown, W. R. (1989) Histopathological evaluation of
- 843 proliferative liver lesions in rats fed *trans*-anethole in chronic studies. Fd. Chem. Toxicol. 27,
- 844 21-26.
- 845 (91) Caldwell, J., and Sutton, J. D. (1988) Influence of dose size on the disposition of *trans*-
- 846 [methoxy-¹⁴C]anethole in human volunteers. *Fd. Chem. Toxicol.* 26, 87-91.
- 847 (92) Solheim, E., and Scheline, R. R., (1976) Metabolism of alkenebenzene derivatives in the rat.
- 848 II. Eugenol and Isoeugenol Methyl Ethers. *Xenobiotica* 6, 137-150.
- (93) Bounds, S. V., and Caldwell, J. (1996) Pathways of metabolism of [1'-¹⁴C] *trans*-anethole in
 the rat and mouse. *Drug Metab. Dispos.* 24, 717-724.
- 851 (94) Fischer, I. U., von Unruh, G. E., and Dengler, H. J. (1990) The metabolism of eugenol in
 852 man. *Xenobiotica 20*, 209-222.
- 853 (95) Sutton, J.D. (1986) Doctorial Dissertation: Metabolic Studies of Eugenol in Relation to its
- 854 Safety Evaluation. Unpublished. A thesis submitted for the degree of Doctor of Philosophy in the
 1 855 University of London.
- 856 (96) Sutton, J.D., Sangster, S., and Caldwell, J. (1985) Dose-dependent variation in the
- disposition of eugenol in the rat. *Biochem. Pharmacol.* 34, 465-466.
- 858 (97) Badger, D. A., Kattnig, M. J., Smith, R. L., Bao, J., and Sipes I. G. (1999) The disposition
 - of isoeugenol in the male Fischer-344 rat. *Toxicologist* 48(1-S), 224.

1 2			
3 4	860	(98) Nijssen, L. M., Van Ingen-Visscher, C. A., Donders, J. J. H. (2012) VCF Volatile	
5 6	861	Compounds in Food: database – Version 13.1 – TNO Triskelion, 1963-2011. Zeist (The	
7 8 9	862	Netherlands). <u>http://www.vcf-online.nl/VcfHome.cfm</u> .	
10 11	863		
12 13 14	864		
15 16	865		
17 18 19	866		
20 21	867		
22 23	868		
24 25 26	869		
27 28	870		
29 30	871		
31 32 33	872		
34 35	873		
36 37	874		
38 39 40	875		
41 42	876		
43 44 45	877		
46 47	878		
48 49	879		
50 51 52	880		
53 54	881		
55 56	882		
57 58 59			
60			41
		ACS Paragon Plus Environment	

1	
2 3 4	883
5 6 7	884
8 9	885
10 11	886
12 13 14	887
15 16	888
17 18	889
20 21	890
22 23	891
24 25 26	892
20 27 28	893
29 30	894
31 32 33	895
34 35	896
36 37	897
38 39 40	898
41 42	899
43 44 45	900
43 46 47	901
48 49	902
50 51 52	903
53 54	904
55 56	
57 58	
59 60	

Acknowledgements TBA made his contribution to the manuscript while at Verto Solutions, Washington DC.

Table 1. Occurrence of allylalkoxybenzenes in the modern food chain.⁹⁸

Substance	Natural occurrence in Food
Anethole	Anise hyssop, fresh apple, fennel, buckwheat, caraway, cheese, cherimoya, clove, coriander seed, dill seed, elder glower, ginger, green tea, juniper
	berry, lemon balm, licorice, mastic, mustard, myrtle berry, basil, ouzo, passion fruit, pastis, pepper, peppermint oil, piper betle, rhubarb, star anise, sweet grass oil, sweet marjoram
Chavicol	Apple brandy, cassia leaf, chervil, cider, cloudberry, clove bud, clove stem, galangal, basil, passion fruit juice, pimento berry and leaf, pineapple, piper betle, rosemary, sour cherry, sweet marjoram, wheaten bread
Estragole	Anise, anise hyssop, fresh apple, apple juice, bilberry, fennel, nutmeg, chervil, cider, cinnamonium, cinnamon bark, clove bud and leaf, coriander seed, elder flower, Korean mint, laurel, lemon balm, licorice, mastic, mustard, myrtle berry and leaf, basil, orange juice, passion fruit, pimento berry and leaf, piper betle, rosemary, sage, star anise, sweet fennel, sweet grass oil, sweet marjoram, tarragon, grapes
Eugenol	Honey, acerola, American cranberry, anise, anise hyssop, apple brandy, fresh apple, apricot, arctic bramble, Armagnac, Ashanti pepper, banana, beer, stone apple, bilberry, black choke berry, black currents, blackberry, porcino mushrooms, botrytised wine, bourbon vanilla, bourbon whiskey,

	buchu oil, buckwheat, calamus, Canadian whiskey, bell pepper, carrot,
	cassia leaf, celery seed oil, chervil, Chinese quince, cider, cinnamon bark,
	leaf and root bark, clary sage, cloudberry, clove bud, leaf and stem, cocoa,
	coffee, cognac, crispbread, cuttlefish, dill herb and seed, elder flower,
	elderberry juice, European cranberry, smoked fatty fish, fenugreek, fig,
	ginger, globe artichoke, grape brandy, grapefruit oil, green mate, guava
	fruit, blueberry, Indian dill seed, Irish whiskey, Japanese whiskey, dried
	bonito, Korean mint, kumquat oil, lamb's lettuce, laurel, smoked lean fish,
	lemon peel oil, licorice, lime oil, lingonberry, macadamia nut, mace, malt
	whiskey, mango, mastic, mate, melon, myrtle leaf, basil, okra, orange juice,
	orange oil, oregano, ouzo, passion fruit, pennyroyal oil, pepper, peppermint
	oil, pimento berry and leaf, piper betle, plum, plum brandy, plum wine,
	pickled plum, quince, raspberry, red wine, rhubarb, rose wine, rosemary,
	rum, sage, Scotch blended whiskey, Scotch spearmint oil, sea buckthorn,
	sherry, sour cherry, sage, spearmint oil, strawberry, savory, sweet cherry,
	sweet grass oil, sweet marjoram, tamarind, Caja fruit, tarragon, tequila,
	thyme, fresh tomato, tomato juice and paste, wax jambu, white wine, yuzu
	oil
Ischavicol	Apple cider
Isoeugenol	Apple brandy, beer, bilberry, blackberry, Chinese quince, cinnamon leaf,
	clove bud and stem, coffee, cuttlefish, dill seed, elder flower, smoked fatty
	fish, grapefruit juice, green tea, guava fruit, blueberry, dried bonito, mace,

1	
2 3	
4 5	
6 7	
8	
9 10	
11 12	
13 14	
15 16	
17	
18 19	
20 21	
22 23	
24 25	
25 26	
27 28	
29 30	
31 32	
33 34	
35	
36 37	
38 39	
40 41	
42 43	
44 45	
45 46	
47 48	
49 50	007
51 52	907
53 54	908
55 50	
56 57	
58 59	
60	

	malt, mate, mushroom, nutmeg, pimento leaf, piper betle, plum, rum,
	thyme, fresh tomato, wort, yuzu oil
Methyl	Anise hyssop, apple brandy, fresh apple, arctic bramble, Ashanti pepper,
eugenol	banana, bilberry, black tea, blackberry, buchu oil, buckwheat, calamus,
	cardamom, carrot, chervil, Chinese quince, cinnamomum, clove bud and
	leaf, cognac, lemon grass oil, eucalyptus oil, grapefruit juice, galangal, hog
	plum, kaboso oil, dried bonito, Korean mint, kumquat oil, laurel, lemon
	balm, lovage seed, mace, mastic, myrtle berry and leaf, nutmeg, basil,
	orange juice and oil, parsnip, peach, pepper, pimento berry and leaf, piper
	betle, plum, prune, quince, rosemary, sapodilla fruit, sherry, star anise,
	strawberry guava, sweet grass oil, tarragon, grapes
Isoeugenol	Calamus, ginger, dried bonito, mastic, orange oil, citrus fruits, nutmeg,
methyl	tarragon, calamus, dill, soursop
ether	
Safrole	Acerola, Ashanti pepper, banana, cinnamomum, cinnamon bark, leaf and
	root bark, cocoa, coriander seed, dill herb, green mate, dried bonito,
	kumquat oil, lemon balm, macadamia nut, mace, nutmeg, basil, pepper,
	piper betle, star anise, tamarind

909 Table 2. Summary of hepatotoxicity, genotoxicity and carcinogenicity of the hydroxy- and

910 alkoxy-substituted allyl- and propenylbenzenes.

compounds	hepatotoxicity	genotoxicity	carcinogenicit
Allylalkoxybenzenes			
(estragole, m	ethyleugenol, safrole)		
(estragete, m			
	+	+	+
Propenyl alkoxybenze	enes	I	I
(anethole iso	eugenal methylether)		
(unethole, iso			
	+	-	+
Allyl hydroxybenzene	S		I
(chavical eu	zenol)		
			1
	-	-	-
Propenyl hydroxyben	zenes		I
(isochavicol. i	soeugenol)		
(150011477001)			
	-	-	-

1 2		
2 3 4	913	Figure legends
5 6	914	
7 8 9	915	Figure 1. Structural formulas of the hydroxy- and alkoxy- substituted alkyl- and
10 11	916	propenylbenzenes included in the present structure activity analysis.
12 13	917	
14 15 16	918	Figure 2. Schematic presentations of DNA adducts formed with allylalkoxybenzenes using
17 18	919	estragole as the model compound: N^2 -(<i>trans</i> -isoestragol-3'-yl)-deoxyguanosine (E-3'- N^2 -
19 20	920	dG), N^2 -(estragol-1'-yl)-deoxyguanosine (E-1'- N^2 -dG), 7-(<i>trans</i> -isoestragol-3'-yl)-
21 22 23	921	deoxyguanosine (E-3'-7-dG), 8-(<i>trans</i> -isoestragol-3'-yl)-deoxyguanosine (E-3'-8-dG), and N^6 -
24 25	922	(<i>trans</i> -isoestragole-3'-yl)-deoxyadenosine (E-3'-N ⁶ -dA). ^{75,79}
26 27 28	923	
20 29 30	924	Figure 3. Schematic presentations of methyleugenol DNA adducts detected in surgical human
31 32	925	liver samples: N^2 -(<i>trans</i> -methylisoeugenol-3'-yl)-2'-deoxyguanosine (ME-3'- N^2 -dG) and N^6 -
33 34 35 36	926	(<i>trans</i> -methylisoeugenol-3'-yl)-2'-deoxyadenosine (ME-3'-N ⁶ -dA). ⁸¹
37 38		
39 40 41		
41 42 43		
43 44 45		
40 46 47		
47		
49 50		
51 52		
53 54		
55 56		
57 58		
59 60		2

Page 49 of 50

Chemical Research in Toxicology

