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Abstract

The digital implementation of model predictive control (MPC) is fundamentally governed by two design parameters; sampling
time and prediction horizon. Knowledge of the properties of the value function with respect to the parameters can be used for
developing optimisation tools to find optimal system designs. In particular, these properties are continuity and monotonicity.
This paper presents analytical results to reveal the smoothness properties of the MPC value function in open- and closed-loop
for constrained linear systems. Continuity of the value function and its differentiability for a given number of prediction steps
are proven mathematically and confirmed with numerical results. Non-monotonicity is shown from the ensuing numerical
investigation. It is shown that increasing sampling rate and/or prediction horizon does not always lead to an improved closed-
loop performance, particularly at faster sampling rates.
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1 Introduction

When designing a model predictive controller (MPC),
it is important to consider the influence of various de-
sign choices on both the performance and computational
complexity of the controller. These design choices could
include attributes of the optimal control problem (OCP)
associated with the MPC such as sampling time, pre-
diction horizon and model order, as well as attributes
of the numerical routine used to solve the OCP. Since
sampling and horizon times are quantities that must be
chosen in any implementation of MPC, this discussion
will focus on the influence of these parameters.

A common practice aimed at improving MPC perfor-
mance is to decrease sampling and/or increase horizon
times, typically whilst meeting computational require-
ments for real-time controller implementation. There is
no guarantee that relying upon this ‘conventional wis-
dom’ will improve performance. It has been previously
established for linear (and nonlinear [7]) quadratic regu-
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lators (LQR) that decreasing sample time or increasing
prediction horizon can degrade closed-loop performance
[7,8]. For MPC, where constraints and finite horizons
complicate matters, a preliminary analysis not consider-
ing state constraints and a terminal cost [1] have echoed
the LQR results. A formalised and rigorous analysis of
closed-loop MPC performance has yet to be addressed.

This paper considers the continuity, differentiability and
monotonicity of control performance in constrained lin-
ear systems, measured by an open- or closed-loop value
function, with respect to the sample and horizon times.
This follows the spirit of related research exploring the
open-loop value function sensitivity, and showing that it
is piecewise quadratic with respect to the current state of
the plant [3,4]. In this paper, an MPC is formulated ini-
tially in continuous-time with a given prediction horizon
and a zero-order-held input, following [5]. The discrete-
time equivalence is then formulated, with a residual sam-
pling interval to account for when the prediction horizon
is not an integer multiple of the sampling time.

Knowledge of the smoothness properties of the MPC
performance with respect to the design parameters is
useful to develop systematic methods such as optimisa-
tion tools, in place of the conventional wisdom, to se-
lect sampling and horizon times that achieve the best
control performance and alleviate online computational
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cost. For example, a gradient-based method might be in-
effective for a discontinuous optimisation surface and a
global optimiser is useful if the surface is non-monotonic.

Perturbation analysis is used below to prove continuity
of the value function and its differentiability for a given
number of prediction steps. Numerical results are pre-
sented to confirm the analytical results and demonstrate
non-monotonicity, thereby providing examples where
conventional wisdom may result in worse MPC designs.

Notational conventions and definitions: For M ∈ Rn×n,
v ∈ Rn×m and s ∈ R with appropriate n andm, ‖v‖2M :=
vTMv. Superscript + denotes the function value after its
argument(s) is perturbed, e.g. M+ := M(s+ δs). ∂sv :=
∂v
∂s

∣∣
s

is the derivative of a differentiable matrix s 7→
v(s) evaluated at s. Big-O notation; f(x) = O(g(x))⇔
∃a ∈ R>0, x0 ∈ R>0 : |f(x)| ≤ a|g(x)| ∀x ∈ [0, x0).
LetO(g1(·), . . . , gn(·)) =

∑n
i=1O(gi(·)). λi(M) is the ith

eigenvalue of the matrix M . =(·) denotes the imaginary
part of its argument.

Definition 1 (Continuity [11]) f(·) : Rn → R is con-
tinuous at s ∈ Rn if limx→s f(x) = f(s).

Definition 2 (Differentiability [11]) f(·) : Rn → R
is differentiable at s ∈ Rn if it can be linearly approxi-
mated in the neighbourhood of the point, i.e.

f(s+ δ) = f(s) + ∆(s) · δ + L(s, δ) · δ,
where the gradient ∆(s) ∈ Rn is independent of δ, and
limδ→0 L(s, δ) = 0, ∀s ∈ Rn constitutes higher order
terms. Differentiability at point s implies continuity at s.

2 Problem Formulation

2.1 Definition of OCP

Consider a linear time-invariant dynamic plant model
ẋ(t) = Ax(t) + Bu(t) with states x(t) ∈ Rnx and inputs
u(t) ∈ Rnu . Discretisation is required for the purpose of
digital control; the plant is controlled in a sampled-data
fashion at sampling instants ti, i ∈ N≥0, with sampling
interval h. A sampling-to-actuation delay of zero is as-
sumed. The control input is restricted to a zero-order-
hold (ZOH); u(t) = ui, ∀t ∈ [ih, ih+ h), i ∈ N≥0.

In the context of optimal regulation, the control com-
mand can be obtained by solving a finite-horizon, opti-
mal control problem (OCP) at each sampling instant i;

min
(u,x)

∫ T

0

(
‖x(τ)‖2Q + ‖u(τ)‖2R

)
dτ + ‖x(T )‖2Qf

(1a)

s.t. x(0) = x(ti) (1b)

ẋ(τ) = Ax(τ) +Bu(τ) ∀τ ∈ [0, T ] (1c)

x(τ) ∈ [x̌, x̂], u(τ) ∈ [ǔ, û] ∀τ ∈ [0, T ) (1d)

u(τ) = u(kh), ∀k ∈ N≥0 ∀τ ∈ [kh, kh+ h). (1e)

Note the distinction between the real-time variable x and
predictive variable x used. h is the sampling interval and
T is the prediction horizon. Dependence on these is ubiq-
uitous in subsequent derivations and, when obvious, not
explicitly written to maintain notational succinctness.

The cost (1a) consists of the stage cost weighted by Q ≥
0 and R > 0, and terminal cost weighted by Qf ≥ 0
to penalise the state/input deviations from zero. The
predictive model (1c) and constraints (1d) represent the
dynamics and limitations of the plant. The ZOH control
(1e) discretises the control command over the sampling
steps k ∈ {0, . . . , N} with N := bT/hc ∈ N>0. The
‘residual sampling interval’ is denoted as hr := T −Nh.
Note that no terminal constraint is imposed and stability
is guaranteed only by the use of a terminal cost.

The plant can be represented in discrete-time with
xi+1 = Axi +Bui, ∀i ∈ N≥0. xi ∈ Rnx and ui ∈ Rnu are
the states and inputs at sampling instant i. The state
transition matrices are

A := Φ(h) := eAh, B := Γ(h) :=

∫ h

0

eA(h−τ)dτ B.

Ar := Φ(hr) and Br := Γ(hr) for the residual sampling
interval. The predicted states and input are presented in
discrete-time with the vectors x := [xT0 · · · xTN+1]T and

u := [uT0 · · · uTN ]T. The following representation of (1d);
xk ∈ [x̌, x̂] , ∀k ∈ {0, . . . , N + 1}, and uk ∈ [ǔ, û] , ∀k ∈
{0, . . . , N} can be used. Note that this only guarantees
state constraint satisfaction at sampling instances.

Consequently, the continuous-time OCP (1) is replaced
by a quadratic program (QP) in the form

min
(u,x)

`(xi,u,x)

:=

N−1∑
k=0

∥∥∥∥∥
[
xk

uk

]∥∥∥∥∥
2[
Q S

S
T
R

]+

∥∥∥∥∥
[
xN

uN

]∥∥∥∥∥
2[
Qr Sr

S
T
r Rr

]+‖xf‖2Qf
(2a)

s.t. x0 = xi (2b)

xk+1 = Axk +Buk ∀k ∈ {0, . . . , N − 1}
xf = ArxN +BruN

}
(2c)

xk ∈ [x̌, x̂] , uk ∈ [ǔ, û] ∀k ∈ {0, . . . , N}
xf ∈ [x̌, x̂]

}
(2d)

The open-loop value function and OCP solution are

J(h, T, xi) := min
(u,x)

`(xi,u,x) s.t. (2b–d)

(u∗(xi),x
∗(xi)) := arg min

(u,x)
`(xi,u,x) s.t. (2b–d).

(3)

Note the (h, T ) dependence of `, x∗ and u∗ is not written
explicitly. The 2nd term in (2a) is used to account for the
cost integral (1a) in the interval [0, T ] when T/h /∈ N>0.
The 3rd term is the more commonly known terminal cost,
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also used in (1a), that if appropriately chosen makes the
cost function replicate an infinite-horizon cost to help
provide stability guarantees [9].

The cost of the discrete-time problem (2) can be made
equivalent to the continuous-time one (1) by setting [5]

Q := ΞQ(h), R := ΞR(h), S := ΞS(h),

and Qr := ΞQ(hr), Rr := ΞR(hr), Sr := ΞS(hr) where

ΞQ(h) :=

∫ h

0

‖Φ(τ)‖2Q dτ, ΞS(h) :=

∫ h

0

Φ(τ)TQΓ(τ) dτ,

ΞR(h) :=

∫ h

0

‖Γ(τ)‖2Q dτ + hR.

The solution to the OCP (2) is applied in closed-loop in a
receding horizon fashion with the associated control law

ui = u∗0(h, T, xi). (4)

To define the ‘closed-loop value function’, first let

`0(h, T, xi) :=

∥∥∥∥∥
[

xi
u∗0(·, xi)

]∥∥∥∥∥
2[
Q S

S
T
R

] . (5)

The closed-loop value function is given analytically as

V (h, T, x0) :=

∞∑
i=0

`0(h, T, xi) (6a)

s.t. xi+1 = Axi +Bu∗0(h, T, xi) ∀i ∈ N≥0. (6b)

The closed-loop value function is an infinite series. Its
convergence relies on the stability of the system as dis-
cussed later in Lemma 11. To numerically measure per-
formance, a closed-loop simulation must be performed
in finite time t ∈ [0, Tsim := Nsimh]. The infinite series is
truncated after Nsim ∈ N>0 steps.

The MPC value functions have now been formulated.
Amongst their arguments, the design parameters h and
T are the subjects of the investigation. Other design
variables are kept constant.

2.2 Solution to the OCP

Both the open- and closed-loop value functions are func-
tions of the solution x∗ and u∗. This can be classified by
writing the OCP (2) in standard QP form. First let

z := u +Rx +H−1FTxi (7)

whereR := diag (RS
T
, . . . , R S

T
, RrS

T
r ), z =: [zT0 · · · zTN ]T

and z ∈ RNnu . H := 2 (B̃TQ̃B̃ + R) > 0 is invertible
as a consequence of the cost weight restrictions Q ≥ 0,
R > 0 and Qf ≥ 0. Further, let the block matrices

H be as above, L := 2ÃTQ̃Ã−FH−1FT, F := 2ÃTQ̃B̃

with block transition matrices and block cost weights

Ã :=
[

Ã

ÃrÃ
N

]
, B̃ :=

[
B̃

ÃrÃ
N−1B ÃrÃ

N−2B ··· Br

]
,

Ã :=

 Ã0

Ã1

...
ÃN

 , B̃ :=


0 ···
B

...
ÃB B 0
...

. . .
...

ÃN−1B ÃN−2B B

 , (8a)

Q̃ := diag
(
Q̃, . . . , Q̃, Q̃r, Qf

)
,R := diag

(
R, . . . , R,Rr

)
.

(8b)

Here, the shifted matrices Ã := A−BR−1
S
T

, Ãr := Ar−
BrR

−1

r S
T
r , Q̃ := Q−S R−1

S
T

and Q̃r := Qr−SrR
−1

r S
T
r

account for the cross terms in the cost function (2a).
Finally, let the parameters for the constraints be

Y := E +GH−1FT, (9a)

G :=

 I−RB̃
−(I−RB̃)

B̃

−B̃

,W :=

[
û
−ǔ
x̂
−x̌

]
, E :=

 RÃ
−RÃ
−Ã
Ã

. (9b)

Consequently, the OCP can be written as

min
z

`z(h, T, xi, z) :=
1

2
‖z‖2H(h,T ) +

1

2
‖xi‖2L(h,T ) (10a)

s.t. Gz ≤W + Y xi. (10b)

This formulation is commonly used, e.g. in [4], except
that z in (7) is modified slightly to accommodate for the
cross terms associated with S and Sr in (2a). Further,
the residual prediction step changes the constituents of
the block matrices.

The value function and associated solution are

Jz(h, T, xi) := min
z

`z(h, T, xi, z) s.t. (10b) (11a)

= J(h, T, xi) given in (3) (11b)

z∗(h, T, xi) := arg min
z

`z(h, T, xi, z) s.t. (10b). (11c)

z∗ is the solution that minimises the value function. In
the following, key properties of the OCP are highlighted
to gain insight on how the optimality of a point changes
as h and T are perturbed.

3 Key properties of the system

3.1 Differentiability of transition and cost matrices

The matrices A, B,Q,R and S are differentiable w.r.t. h
and independent of T . The Taylor series expansion for
the perturbation h+ := h+ δh as δh → 0 is

A
+

:= A(h+) = A(h) + ∂hA(h)δh +O(δ2
h)

and similarly for B,Q,R and S. The matrices Ar,
Br, Qr, Rr and Sr are differentiable w.r.t. hr, thus
differentiable w.r.t. (h, T ), for all hr ∈ (0, h) since
hr := T −Nh.
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3.2 Optimality of the OCP solution

Optimality is identified by the Karush-Kuhn-Tucker
(KKT) conditions [12]. z∗ is a solution to (10) iff

∃µ :


−Hz∗ = GTµ

µ ≥ 0

µjcj(z
∗) = 0 ∀j ∈ {1, . . . , nc}.

(12a)

(12b)

(12c)

The solution is z∗ = −H−1GTµ. H is invertible as de-
fined in §2.2. µ =: [µ1 · · · µnc

]T contains the Lagrange
multipliers associated with the constraints denoted by
c(z) ≤ 0 where c(z) := Gz −W − Y xi. cj denotes the
jth constraint i.e. jth row of c(z).

The active set A(z∗) := {j|cj(z∗) = 0} contains the in-
dices of the active constraints at the solution z∗. Let the
accent ′ denotes correspondence to active constraints,
e.g. µ́ := {µj |j ∈ A(z∗)}, µ́ ∈ Rna and na := |A| is the
number of active constraints. From the complementarity
condition (12c), elements of µ for inactive constraints
must be 0, and those for the active constraints are

0 = ć = Ǵz∗ − Ẃ − Ý xi

= −ǴH−1ǴTµ́− Ẃ − Ý xi

therefore, µ́ = −
(
ǴH−1ǴT

)−1 (
Ẃ + Ý xi

)
(13a)

µ = IA(z∗)µ́. (13b)

The inverse in (13a) exists iff Ǵ is full rank. IA ∈
{0, 1}nc×na is used to organise the Lagrange multipliers
of the active constraint µ́ into respective rows of µ.

3.3 Feasibility

Existence of the solution depends on the feasibility of the
OCP, which in the context of designing h and T follows:

Definition 3 (Feasible design set HOCP
F (xi) of (2))

HOCP
F (xi) contains all (h, T ) for which the OCP (2) is

feasible given a current state xi.

In closed-loop, this notion is extended to recursive feasi-
bility. This requires control invariance, i.e. for an initial
state x0 the MPC law (4) is feasible and keeps the sys-
tem feasible at all subsequent sampling steps. This can
be guaranteed with appropriately chosen h and T [9].

Definition 4 (Feasible design set HMPC
F (x0) of (6))

HMPC
F (x0) contains all (h, T ) such that the closed-loop

system (6) is recursively feasible given an initial state x0.

3.4 Uniqueness and non-degeneracy

A sufficient condition for uniqueness is satisfaction of
the linear independence constraint qualification (LICQ)

[12], achieved if the active constraint gradients are lin-

early independent, i.e. Ǵ has full row rank so that the
solution (13a) to the KKT conditions (12) is unique.

Definition 5 (Non-degenerate OCP) An OCP with
solution z∗ and active set A(z∗) whose active constraint

gradients Ǵ satisfies LICQ is defined as non-degenerate.

Non-degeneracy can, for example, be guaranteed by re-
moving state constraints.

Lemma 6 For a solution z∗ of the OCP (10), if x̌ =
−{1}nx∞, x̂ = {1}nx∞ and ǔ<û, then LICQ is satisfied.

PROOF. With no state constraints,G constitutes only
the upper two row blocks in (9b). Linear dependence
comes from row pairs r and r + (N + 1)nu for r ∈
{1, . . . , Nnu}, each with rows that are negative multiples
of each other. These correspond to the upper and lower-
bound for an input element that cannot both be active si-
multaneously. Therefore the active constraint gradients
in the rows of Ǵ must be linearly independent. 2

3.5 Continuity of the OCP solution

The residual sampling interval hr ensures that the OCP
solution remains continuous across changing N .

Lemma 7 (Continuity of z∗ at T/h ∈ N>0) Consider
an OCP (2) that is non-degenerate per Definition 5,
given an xi ∈ Rnx such that (h, T ) ∈ HOCP

F (xi) 6= ∅.
The unique optimal solution (h, T ) 7→ z∗(h, T, xi) of the
OCP is a continuous function of (h, T ) at T/h ∈ N>0

i.e. at boundaries where N changes.

PROOF. An OCP (2) with N prediction steps and
hr = 0 has the same solution z∗ as that with N −1 steps
and hr = h, relying on the uniqueness of z∗ (§3.4). z∗ has
effectively the same dimension N for both cases. Hence,
z∗ must be continuous at theN to (N−1) boundary. 2

3.6 Stability of the closed-loop system

The closed-loop value function (6a) is an infinite series.
For it to be finite-valued, it has to be convergent, which
can be guaranteed by stability of the closed-loop system.

Definition 8 (Stable design set HMPC
S (x0) of (6))

HMPC
S (x0) ⊆ HMPC

F (x0) contains all (h, T ) such that the
closed-loop system (6) has a region of attraction con-
taining the initial state x0 as well as an origin that is
reachable and exponentially stable.

Lemma 9 (Exponential stability of (2a–c)) If

(A,B) is reachable, and
[
Q S

S
T
R

]
≥ 0 and

[
Qr Sr

S
T
r Rr

]
≥ 0,

then the origin of the unconstrained system (2a–c) is ex-
ponentially stable.

PROOF. The proof follows Theorem 4.1 in [6].
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Remark 10 In Lemma 9, the first condition requires
that (A,B) is reachable, and h 6= 2πn/=(λi(A)−λj(A)),
∀i, j ∈ {1, . . . , nx}, i 6= j, n ∈ N>0 [8] when A has
complex eigenvalues. Let HC contain all of these ‘crit-
ical’ sampling periods. The second condition is equiv-
alent to a positive semidefinite stage cost, which has
been guaranteed by Q ≥ 0, R > 0. It follows that
HMPC
S (x0) ⊆ HMPC

F (x0)\{(h, T )|h ∈ HC}. Stability of
the full system (2) is discussed in e.g. [10].

Lemma 11 For (h, T ) ∈ HMPC
S (x0), the closed-loop

value function V (·, ·, x0) in (6) is a convergent series.

PROOF. (h, T ) ∈ HMPC
S (x0) ⇒ exponential sta-

bility of (6). Thus, the ratio test [11] on (5) yields

limi→∞
`0(h,T,xi+1)
`0(h,T,xi)

= ρ < 1. Therefore, V is a conver-

gent series and finite-valued in the limit i→∞. 2

4 Smoothness properties of the value function

4.1 Open-loop

The following analysis considers the optimal control at
a given sampling instant w.r.t. sampling and prediction
horizon times. This extends investigations such as [5]
that solely analyse sampling time.

In subsequent analyses, non-degeneracy of the KKT con-
ditions is assumed.

Assumption 12 (Non-degeneracy of the OCP (2))
If the equivalent OCP(10) is non-degenerate per Defini-
tion 5, then the OCP (2) is non-degenerate.

To show smoothness properties, a perturbation h+ :=
h + δh and/or T+ := T + δT as δh → 0 and/or δT → 0
is performed. Consider when the perturbation does not
change N = bT/hc. Let the perturbed optimal solution
be z+, with perturbed Lagrange multipliers µ+ and per-
turbed value function J+

z . To prove that Jz is differen-
tiable, the differentiability of the Lagrange multipliers
and OCP solution are first considered.

Lemma 13 (Differentiability of µ) The Lagrange
multipliers µ are differentiable w.r.t. (h, T ) for a non-
degenerate OCP (10) per Definition 5 and a given N .

PROOF. The proof is given in Appendix A. 2

Lemma 14 (Differentiability of z∗) For a non-
degenerate OCP (10) per Definition 5, the solution z∗ is
differentiable w.r.t. (h, T ) for a given N . Guarantees of
differentiability are lost across changes in N .

PROOF. The proof is given in Appendix B. 2

Knowing the differentiability of the Lagrange multipliers
and solution to the OCP, the main result of the differen-
tiability of the open-loop value function can be stated.

Theorem 15 (Continuity of J) Consider the OCP (2),
given an xi ∈ Rnx such that (h, T ) ∈ HOCP

F (xi) 6= ∅ and
Assumption 12 is satisfied. The open-loop value function
(h, T ) 7→ J(h, T, xi) is a
• continuous function of (h, T ),
• differentiable function of (h, T ) for a fixed N := bh/T c.

PROOF. Consider the value function Jz(h, T, xi) (11a)
of problem (10) at a solution z∗, with µ satisfying the
KKT conditions (12). Consider a perturbation h+ := h+
δh as δh → 0 and T+ := T + δT as δT → 0 that does not
change N = bT/hc. From Lemma 14, and satisfaction of
Assumption 12, the value function can be expressed as

Jz(h
+, T+, xi)

= `+z (z+) + ∂h`z(z
+)δh + ∂T `z(z

+)δT +O(δ2
h, δ

2
T )

= ‖z∗ + ∂hzδh + ∂T zδT ‖2H+∂hHδh+∂THδT +

‖xi‖2L+∂hLδh+∂TLδT +O(δ2
h, δ

2
T )

= Jz(h, T, xi) + ∂hJzδh + ∂TJzδT +O(δ2
h, δ

2
T )

for some finite ∂hJz(h, T ) and ∂TJz(h, T ). From (11b),
Jz(h, T, xi) = J(h, T, xi). Hence, the value function J
is differentiable, thus also continuous w.r.t. (h, T ) for a
fixed N . At boundaries where N changes, continuity of
the value function is implied by Lemma 7. 2

To illustrate the results, consider a harmonic oscillator

ẋ =
[

0 ω
−ω 0

]
x + [ 0

1 ] u. (14)

with ω = 1. Following a number of trials on different
plant models, the harmonic oscillator is chosen as it helps
to best demonstrate the theoretical results numerically.
The cost weights are chosen as

Q = [ 3 0
0 2 ] , R = 1, Qf = as specified in

figure captions. (15)

If no state constraint is imposed, non-degeneracy is guar-
anteed (Lemma 6). An illustrative case is given in Fig. 1.
The open-loop value-function remains continuous and
appears differentiable with changing active set and non-
differentiable across changes in N , as per Theorem 15.
Non-monotonicity w.r.t. (h, T ) is observed, particularly
more often at small sampling times.

J

1
2 |A(z∗)|

≥ 8T

N = 1

N = 2

h

h

2.4 2.6

0
4

8

47

49

0
4

8
0

50

100

Fig. 1. Open-loop value function J for the harmonic oscilla-
tor (14) with the OCP (2). |u| ≤ 1

4
, xi = [1 1]T, Qf = 10Q.

The contour of |A(z∗)| is plotted on the z-plane.
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J

T

Infeasible
(h, T ) /∈ HOCP

F

h

Discontinuity
at h = π

|A(z∗)|

4

5
2

3

1 2 3 40

2

4
0

20

40

Fig. 2. Open-loop value function J for the harmonic oscil-
lator (14) with the OCP (2). |x| ≤ 1, |u| ≤ 1, xi = [1 1]T,
Qf = 0. The contour of |A(z∗)| is plotted on the z-plane.

The problem is degenerate if state constraints are im-
posed (§3.4). Solution to the KKT conditions is non-
unique, inconsistent with (A.1). Consequently, continu-
ity is not guaranteed anymore across active set changes,
as seen in Fig. 2. Discontinuity happens at h = π, where
the size of the active set changes to 2 from either 5 or 4.
The loss of guarantee is consistent with the results in [3].
The figure also demonstrates the region associated with
the infeasible design set (h, T ) /∈ HOCP

F (xi).

4.2 Closed-loop

In control applications, the closed-loop value function is
a true measure of performance. Smoothness properties
of the closed-loop value function can be established fol-
lowing the results for the open-loop case.

Lemma 16 (Differentiability of state transition)
The transition of the state (6b) of the closed-loop sys-
tem (6) is differentiable w.r.t. (h, T ) for a given N .

PROOF. Consider the state transition at time i = 0;
x1 = Ax0 + Bu∗0(h, T, x0). The OCP solution is differ-
entiable w.r.t. (h, T ) for a given N as per Lemma 14,
hence also the optimal input. That is, the perturbation
h+ := h + δh as δh → 0 yields u∗0

+(xi) = u∗0(xi) +
∂hu

∗
0(xi)δh +O(δ2

h) and

x+
1 =

(
A+ ∂hAδh

)
x0+(

B + ∂hBδh
)

(u∗0(x0) + ∂hu
∗
0(x0)δh) +O(δ2

h)

= x1 + ∂hx1δh +O(δ2
h).

So, at each sampling instant after the initial, x+
i = xi +

∂hxiδh + O(δ2
h), ∀i ∈ N>0. A perturbation on T affects

the system similarly. 2

Consider now the properties of the term `0 for the closed-
loop value function V (6a), following Theorem 15.

Lemma 17 (Differentiability of `0) Consider the
OCP (2), given an xi ∈ Rnx such that (h, T ) ∈
HOCP
F (xi) 6= ∅ and Assumption 12 is satisfied. The first

element of the cost function (h, T ) 7→ `0(h, T, xi) is
differentiable w.r.t. (h, T ) for a fixed N .

PROOF. For a perturbation h+ := h + δh as δh → 0
which does not change N , `0 (5) is expressed as `+0 :=

`0(h+) =
∥∥∥[ x+

i

u∗
0
+(xi)

]∥∥∥2[
Q

+
S

+

S
+T

R
+

]
for some perturbed cost

weights Q
+

, R
+

and S
+

, current state x+
i , and optimal

input u∗0
+(xi). The cost weights are differentiable; Q

+
=

Q+∂hQδh+O(δ2
h) etc. Lemma 16 states that the current

state and optimal input are differentiable. Hence, the
perturbed value of `0 can be expressed as

`+0 =

∥∥∥∥∥
[

xi + ∂hxiδh

u∗0(xi) + ∂hu
∗δh

]∥∥∥∥∥
2[
Q+∂hQδh S+∂hSδh

(S+∂hSδh)T R+∂hRδh

]+O(δ2
h)

= `0(h, xi) + ∂h`0δh +O(δ2
h).

A perturbation in T affects the system similarly. 2

Theorem 18 (Continuity of V ) Consider the MPC
system (6), given an x0 ∈ Rnx such that (h, T ) ∈
HMPC
S (x0) 6= ∅, controlled by (4) from an OCP (2) sat-

isfying Assumption 12. The closed-loop value function
(h, T ) 7→ V (h, T, x0) is a
• continuous function of (h, T ),
• differentiable function of (h, T ) for a fixed N := bh/T c.

PROOF. The closed-loop value function (6a) is a
sum of the terms `0 so that V + := V (h+, T+, x0) =
`0(h+, T+, x0) +

∑∞
i=1 `0(h+, T+, x+

i ). For (h, T ) ∈
HMPC
S (x0), the summation series would be convergent

(finite-valued) by Lemma 11. From Lemmas 16 and 17,
V + can be expanded to yield

V + = V (h, T, x0) + ∂hV δh + ∂TV δT +O(δ2
h, δ

2
T ).

for some finite ∂hV (h, T ) and ∂TV (h, T ). Therefore, the
value function V is differentiable w.r.t. (h, T ) for a fixed
N . At boundaries where N changes, continuity of the
value function is implied by Lemma 7. 2

Remark 19 A linear combination of the value function
V (h, T, x0) (or J(h, T, xi)) for different initial states x0

(or xi) preserves the smoothness properties presented.

So far, control performance is measured by the value
function for a given initial condition. A more comprehen-
sive measure that considers multiple initial conditions
can be easily obtained (Remark 19).

Fig. 3 plots the closed-loop value function for the har-
monic oscillator (14,15) and Qf = PDARE is the solu-
tion of the discrete algebraic Riccati equation, chosen to
emulate an infinite horizon cost. The function is contin-
uous as per Theorem 18. Non-differentiability at chang-
ingN is observed. The value function becomes very large
around h = π, as π ∈ HC is a critical sampling period
for the system (14) [8]. The discrete plant (A,B) loses
full controllability and is unstable, as {(h, T )|h = π} /∈
HMPC
S (x0) (Remark 10). At these points the value func-

tion Vu becomes unbounded and continuity is lost.
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Fig. 3. Closed-loop value function V for the harmonic oscilla-
tor (14) with the OCP (2). |u| ≤ 1

4
, x0 = [1 1]T, Qf = PDARE,

Nsim = 250. z-axis is truncated for clarity.

One might expect that longer prediction horizons
and/or shorter sampling intervals are always desirable;
a longer prediction horizon retrieves more future infor-
mation while a shorter sampling interval gives better
information resolution and more responsiveness, since
control actions can be applied at a higher rate. However,
Fig. 3 demonstrates that these expectations are not
necessarily upheld. It shows that there are multiple lo-
cal minima on the surface w.r.t. both sampling interval
and prediction horizon, particularly at smaller sampling
times. The non-monotonicity is made clear by the sub-
plots showing slices for a given h or T . Such a property
is also observed in the open-loop case w.r.t. h (Fig. 1).

5 Conclusions and future work

We have investigated the smoothness properties of the
MPC value function in open- and closed-loop as per-
formance measures of constrained linear systems. The
main results presented are: (1) The open- and closed-
loop value functions are continuous w.r.t. sampling and
horizon times, as well as differentiable for a given number
of prediction steps, if the OCP is non-degenerate. If the
OCP is degenerate, the guarantee of continuity is lost,
as demonstrated numerically. (2) The open- and closed-
loop value functions are non-monotonic w.r.t. sampling
period and prediction horizon, as shown numerically.

The control architecture considered in this paper is an
MPC scheme with linear constraints and prediction
model. For future work, typical extensions could include
a nonlinear terminal constraint or nonlinear prediction
model for the purpose of guaranteeing stability and bet-
ter control performance [2]. With these extensions, the
problem might involve more complex KKT conditions.

The body of work presented in the paper is useful in
the context of developing systematic methods for the
selection of optimal sampling and prediction times
for MPC. Such approaches, for example, would seek
an optimal trade-off between closed-loop performance
and computational effort, as well as be able to han-
dle non-differentiability and multiple optima, i.e. non-
monotonicity on the optimisation surface.
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A Proof of Lemma 13

This proof will show that the Lagrange multipliers can
be expressed in the form

µ+ = µ∗ + ∂hµδh + ∂TµδT +O(δ2
h, δ

2
T ) (A.1)

for some finite ∂hµ and ∂Tµ, showing the differentiability
of µ. Consider a perturbation h+ = h+ δh as δh → 0.

Case 1 (A(z∗) = A(z+)) If the active set stays the same,
the perturbed KKT conditions have a solution of µ́+ =

−
(
(Ǵ+ ∂hǴδh)(H + ∂hHδh)−1(Ǵ+ ∂hǴδh)T

)−1(
Ẃ +

(Ý + ∂hÝ δh)xi
)

= µ́∗ + ∂hµ́δh + O(δ2
h) for some finite

∂hµ́, instead of (13a). This is organised as follows:

µ+ = IA(z+)µ́
+ = IA(z∗)

(
µ́∗ + ∂hµ́δh +O(δ2

h)
)

= µ∗ + ∂hµδh +O(δ2
h).

Case 2 (A(z∗) ⊂ A(z+)) Consider a perturbation caus-
ing a constraint e /∈ A(z∗) to be active at some point
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along the perturbation, A(z∗) ⊂ A(z+) = A(z∗) ∪ {e}.
The multipliers µ́+ as constraint e activates are

µ́+ =
[
µ́+
o

µ́+
e

]
=

(∥∥∥[ Ǵ+∂hǴδh
Ǵ+

e

]
T
∥∥∥2

(H+∂hHδh)−1

)−1

[
Ẃ+(Ý+∂hÝ δh)xi

Ẃ+
e +Ý +

e xi

]
+O(δ2

h)

=

[
ǴH−1ǴT ǴH−1Ǵ+

e
T

Ǵ+
e H

−1ǴT Ǵ+
e H

−1Ǵ+
e

T

]−1 [
Ẃ+Ý xi

Ẃ+
e +Ý +

e xi

]
+
[
∂hµ́o

∂hµ́e

]
δh +O(δ2

h) (A.2)

for some finite ∂hǴ, ∂hµ́o and ∂hµ́e. The subscript e
denotes rows of Ǵ, Ẃ , etc. associated with the enter-
ing constraint, and o for the original constraint set. Let[
ǴH−1ǴT ǴH−1Ǵ+

e
T

Ǵ+
e H

−1ǴT Ǵ+
e H

−1Ǵ+
e

T

]
=
[ G1 G2
G3 G4

]
=: G and the Schur’s

complement GS := G4 −G3G−1
1 G2. The solution to (A.2)

can be found first by block inversion of G.

First, the lower block can be expressed as µ́+
e =

−G−1
S

(
G3G−1

1 (Ẃ+Ý xi)−Ẃ+
e −Ý +

e xi
)
+∂hµ́eδh+O(δ2

h).
After some algebra, expansion of the bracketed terms
above would reveal that G3G−1

1 (Ẃ+Ý xi)−Ẃ+
e −Ý +

e xi =
0 + ∂hGeδh + O(δ2

h). This consistent with the fact that
µ∗e = 0 since the constraint e is inactive in the unper-
turbed OCP i.e. ce(z

∗) < 0. Substitution yields the
Lagrange multiplier for the newly active constraint
µ́+
e = (∂hµ́e + ∂hGe) δh +O(δ2

h).

For the upper block, values are obtained by substituting
(13a) and the bracket expansion above after the block-
wise inversion, yielding µ́+

o = µ́∗ + (∂hµ́o + ∂hGo) δh +
O(δ2

h). Substituting these into (A.2) yields

µ+ = IA(z+)µ́
+ = µ∗ +

(
IA(z∗)(∂hµ́o + ∂hGo)+

I{e}(∂hµ́e + ∂hGe)
)
δh +O(δ2

h).

Case 3 (A(z∗) ⊃ A(z+)) To keep the working tidy,
suppose that the exiting constraint is located at the
end of the set A(z∗). The perturbed solution is now

µ́+ = IA(z∗)

(
‖(Ǵ+∂hGδh)T‖2

(H+∂hHδh)−1

)−1(
Ẃ+(Ý +

∂Yh δh)xi
)
−I{e}

(
‖(Ǵe+∂hGeδh)T‖2(H+∂hHδh)−1

)−1(
Ẃe+

(Ýe + ∂hYeδh)xi
)
, where the subtractive term is to make

the Lagrange multipliers associated with the exiting con-
straint zero. Further expansion yields

µ́+ = IA(z∗)

(
ǴH−1ǴT

)−1(
Ẃ + Ý xi

)
−

I{e}
(
ǴeH

−1ǴT
e

)−1(
Ẃe + Ýexi

)
+ ∂hµδh +O(δ2

h)

=
[
IA(z+) 0

]
µ́∗ + ∂hµ́δh +O(δ2

h).

B Proof of Lemma 14

Case 1 (Constant N) Consider a perturbation h+ :=
h + δh as δh → 0 and that, over the perturbation, the

number of prediction steps remains constant. Subject to
this, H(h+) = H(h) + ∂Hh δh + O(δ2

h) and similarly for
L, G, W and Y as these matrices consist of addition,
multiplication and/or inversion of the differentiable A,
B,Q,R, S,Qr, Rr and/or Sr. The perturbed OCP is

z∗+(xi) = arg min
z

`+z (z, h+) (B.1a)

where `+z (z, h+) := ‖z‖2H+∂hHδh
+‖xi‖2L+∂hLδh

+O(δ2
h) =

`z(z) + ∂h`z(z)δh +O(δ2
h). Subject to

0 ≥ c+(z∗+) = (G+ ∂hGδh)z∗+−
W − (Y + ∂hY δh)xi +O(δ2

h) (B.1b)

with a value function J+
z = `+z (z∗+). The perturbed solu-

tion is z∗+ = −(H+∂hHδh)−1(G+∂hGδh)Tµ++O(δ2
h).

Substituting (A.1) yields a solution of the form z∗+ =
z∗ + ∂hzδh + O(δ2

h). A similar sequence of derivations

can be followed for T , T+ = T +δT , affecting Qr, Rr and
Sr and yielding the perturbed system of the form (B.1).
The solution can consequently be expressed as

z∗+ = z∗ + ∂hz
∗δh + ∂T zδT +O(δ2

h, δ
2
T ) (B.2)

for some finite ∂hz and ∂T z. Hence, z∗ is differentiable.

Case 2 (Changing N) Now consider a perturbation
h+ := h + δh as 0 < δ → 0 applied to an OCP with
N − 1 prediction steps and hr = h. The unperturbed
OCP has the following matrices related to (8) and (9):

B̃ = [ B̃ B̃• ]
T
, Q̃ = diag (Q̃,Qf ), R = R, R = R.

Now consider a perturbation h− = h − δh as 0 < δ →
0 on an OCP with N prediction steps and hr = 0.

The unperturbed OCP now has B̃ =
[
B̃ B̃• B̃•
0 0 0

]T
, Q̃ =

diag (Q̃, 0, Qf ),R =
[
R

0

]
,R =

[R
0

]
. After some al-

gebra, it can be shown that the solution z∗ = −H−1GTµ
associated with these block matrices are

z∗(1) = α [ (I−RB̃) −(I−RB̃) B̃ B̃• −B̃ −B̃• ]µ, (B.3)

z∗(2) =

[
α [ (I−RB̃) 0 −(I−RB̃) 0 B̃ B̃• B̃• −B̃ −B̃• −B̃• ]

0

]
µ

respectively, where α := −2
(
B̃

T
Q̃B̃ + B̃T

•Qf B̃• + R
)
.

The two equations in (B.3) yields the same solution (the
residual step in z∗(2) contributes only addition of zeroes).

However, the rate of change over the perturbation is not.

For the OCP with N prediction steps and hr = 0, the
rate of change of z∗ w.r.t. h can be obtained from ∂hz

∗
(2)

before the substitution hr = 0. This would have addi-
tional terms compared to ∂hz

∗
(1) of that withN−1 steps.

These terms are associated with the constraints for the
additional prediction step and will be zero only if the
additional constraints are inactive so that the Lagrange
multipliers and their rates of change are zero. Hence, the
solution cannot be expressed as (B.2) in general, since
∂hz
∗ is not guaranteed to be unique and differentiability

of z∗ at changing N is not guaranteed. A similar result
is obtained when looking at the rate of change w.r.t. T .

8


