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Coherent sets in dynamical systems are regions in phase space that optimally “carry mass” with
them under the system’s evolution, so that these regions experience minimal leakage. The dominant
tool for determining coherent sets is the transfer operator, which provides a complete description of
Lagrangian mass transport. In this work, we combine existing transfer operator methods with a
windowing scheme to study the spatial and temporal evolution of a so-called Agulhas ring: a large
anticyclonic mesoscale eddy playing a key role in inter-ocean exchange of climate-relevant proper-
ties. Our focus is on ring decay over time and the windowing scheme enables us to study how the
most coherent region (our estimate of the ring) varies in position and size over a period of more than
two years. We compare the eddy-like structure and its spatio-temporal changes as revealed by our

method and by a classical Eulerian approach. © 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4927830]

Finite-time coherent sets are determined by assembling
gridded Lagrangian trajectories into a grid-to-grid tran-
sition matrix and computing dominant singular vectors
of this matrix. We introduce a new combination of trans-
fer operator based coherent set techniques with an over-
lapping window scheme, which enables ring size to vary
over time, and follow an Agulhas ring’s west-north-west-
ward pathway across the southern Atlantic Ocean for
over more than 2 years. We describe the evolution of the
ring during this long journey and draw relationships
between various dynamical and physical quantities
associated with the ring and its decay. The advantage of
the transfer operator method is that mass loss from rings
is explicitly minimised over moderate periods of time
using Lagrangian trajectory information. Our overlap-
ping window approach readily accommodates the decay
of rings over longer timespans during which part of
the fluid is expelled from the structure. The ring
boundary obtained by our method can then be used to ex-
plicitly study ring decay in both Eulerian and
Lagrangian senses.

I. INTRODUCTION

The study of transport and mixing processes in time-
dependent flows is relevant for a variety of natural phenom-
ena, such as biological dynamics, astrodynamics, molecular
dynamics, and fluid dynamics, including those of the
ocean and the atmosphere. The classical dynamical systems
approach to transport in the autonomous or periodic
time-dependent case has revolved around invariant
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manifolds, which can represent codimension one transport
barriers. If trajectories locally experience (possibly non-
uniform) asymptotic expansion and contraction, and the
vector field is sufficiently smooth, then local stable and
unstable manifolds exist.”>° Each of these manifolds is a
material or equivariant object and is exactly evolved to their
counterparts at later times. The traditional focus has been
on those invariant manifolds that correspond to equilibria
or periodic orbits of low period. The reasoning behind this
is that these fixed and low-period structures are important
in organising the dynamics. This approach has been popu-
larised in so-called “lobe dynamics,”® which provides a
mechanism by which transport can occur across curves
formed by the unions of segments of different invariant
manifolds when there is periodic driving. However, in the
setting with aperiodic time-dependence, there are often no
equilibria that remain fixed in space throughout one driving
period, nor periodic orbits. Thus, it is crucial to identify the
most important material curves or surfaces. There are a
number of methods that have been proposed to select distin-
guished curves. These include Lagrangian and complexity
descriptors, such as**?° finite-time Lyapunov exponents,”'
which look for maximally stretching local curves, which in
2D hyperbolic area-preserving flows are associated with
curves of maximal local repulsion and low cross-transport,
over a finite horizon. Other methods compare local stretch-
ing or shearing with nearby curves,'” and attempt to find
curves with minimal local deformation, again over a finite-
time horizon. The rationale is that diffusive transport across
a boundary is favored by increased filamentation of that
boundary.
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The approach taken in the present paper is to directly (as
opposed to inferring their presence from codimension one
transport barriers) identify regions in the phase space that are
maximally coherent, i.e., that are the best transporters of
mass with minimal leakage over a finite time duration. The
method used to find such regions is based on transfer opera-
tors, or in practice, transition matrices of a coarse-graining
of the state space. The basic methodology originates from
Ref. 17, in which the term “finite-time coherent sets” is
coined in this transport context. We have used this approach
in a previous study'® to analyse a single Agulhas ring in
three-dimensions based on model data over a short time pe-
riod of 6 months. In contrast, here we track an Agulhas ring
over 2 years based on two-dimensional satellite-derived ve-
locity field. Long time-scales are commonly considered in
geophysics, especially for many crucial climate-relevant
issues, because the coupled ocean-atmosphere system is
characterized by interacting processes occurring at multiple
scales ranging from submeso- to global-scale.

Recent work'* provides an analytic setup, proving vari-
ous optimality results in a mesh-free setting. The approach in
Refs. 14 and 17 focusses on determining a pair of coherent
sets: one at a specified initial time and the other at a specified
final time. It has been observed in Ref. 16 that in the pres-
ence of strong hyperbolicity, the coherent set at initial time
has boundaries mostly aligned with stable directions, while
the coherent set at the final time has boundaries mostly
aligned with unstable directions. This is a quite natural result
as the method of Refs. 14 and 17 tries to minimise diffusive
leakage across the boundaries of the coherent sets by reduc-
ing their boundary sizes at both initial and final times. If one
wishes to link independent coherent set calculations on adja-
cent time windows, it is preferable to consider “unbiased”
(neither stable nor unstable) coherent sets. Two modifica-
tions are proposed in Ref. 16: one involves the computation
of a related matrix and is considered in detail in Ref. 16,
while the other reuses information from the original compu-
tations and is only briefly mentioned in Section 5.2 of Ref.
16. It is this latter approach that we develop and further
explore here, motivated by long-term tracking of Agulhas
rings. We choose the latter approach as it is less memory-
intensive (the matrices used in the computation are much
sparser) and one has more control on the diffusion process.

From an oceanographic point of view, we wish to quan-
tify the amount of water effectively transported by oceanic
eddies. This is tantamount to assessing the “leakage” of water
occurring across the boundaries of the structure. Agulhas
rings, anti-cyclonically rotating vortices with a typical diame-
ter of 200 km, are among the largest meso-scale eddies in the
ocean and form south of Africa due to instabilities in the
Agulhas Current and its retroflection, e.g., Refs. 1 and 9. As
the Agulhas rings shed from the main current pathway, they
start moving north-westward in the South Atlantic due to the
latitude dependence of the Coriolis parameter.** It has long
been thought that the five to six rings per year are the domi-
nant agents by which Indian Ocean water enters the Atlantic
Ocean.'®

Recently,” tracked Agulhas rings using geodesic theory,
focussing on the coherent, non-leaking, portion of the rings.
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They look for curves that enclose areas with very little
change over time. This curve is usually in the interior of the
Agulhas ring, where the dynamics is more regular and spa-
tially separated from more complicated dynamics occurring
further from the ring’s core. However, both Refs. 12 and 35
suggested that at least half of the transport of water from the
Indian to the Atlantic Ocean occurs outside of Agulhas rings
through horizontal advection mediated by (sub)mesoscale fil-
aments and jets. Using satellite data, Refs. 30 and 5 have
also shown that Agulhas rings reduce in surface area as they
travel across the South Atlantic Ocean. This crucial process
for climatic issues, referred to as “ring decay,” has been
associated to a significant leaking of the warm and salty
Indian Ocean waters within the core of the eddy into the
colder and fresher South Atlantic Ocean surrounding waters.
Indeed, while some authors [e.g., Ref. 2] focused their efforts
on tracking the cores of Agulhas rings, it is more relevant for
climatic questions to examine how much water an Agulhas
ring loses along its path across the Atlantic Ocean. To do
this, it is necessary to properly define 3-dimensional eddy-
like structures with the objective detection of their bounda-
ries.>!> However, since 3-dimensional oceanic datasets rely
essentially on numerical models, other authors intend to
derive surface proxies of the “ring decay.”'?%32-33

Here, we use data from satellite altimetry to focus on a
typical Agulhas ring (shed in December 1998 from the
Agulhas Current), using it as a case study to test our novel
eddy-detection technique and investigate its decay. This pa-
per is organised as follows. In Section II, we introduce a
method for the tracking of coherent sets and allowing mass
loss over time, based on several independent transfer opera-
tor calculations. This method is applied in Section III to the
oceanic surface flow and the results are discussed in Section
IV to conclude in Section IV C.

Il. TRACKING THE EVOLUTION OF COHERENT SETS
A. A pair of coherent sets

In this study, we make repeated use of the concept of
coherent pairs, introduced by Froyland er al.'” to create a
sequence of several dynamically connected coherent sets.
We consider the following time-dependent ordinary differen-
tial equation (ODE):

X =f(x,1), )

on X ¢ RY with f: X x R — R sufficiently smooth that
for every initial condition x(fp) = xo, a unique solution x :
Ry — X eexists. Then, ¢:R xR, xX—-X with
¢(t0, 7,x0) = x(7), defines the flow generated by the ODE (1).

In the following, we restrict to a subset X of the domain
X, where we seek pairs of sets for which the probability of a
trajectory flowing from the initial to the final set over a spe-
cific time interval is maximized. For this reason, in the re-
mainder of the paper, we denote by r € R the initial point in
time and by 7 + 7, with © € R, the final point in time. Thus,
the pair A;,A,; of subsets of X should satisfy
A = @(t,7,A,). To measure the likelihood of points flow-
ing from A, to A,., we denote by my the normalized
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Lebesgue (volume) measure on X. As our focus here is on
seawater, whose density can be approximated to be quasi-
uniform, we use volume as a proxy for water mass and com-
pute the amount of mass which is transported from A, to A,
over the time t

At y T 7AI T
P(ALAr) = A QSISX—’(_A‘i) - )) @

We call p(A,,A,y.) for a fixed ¢ and 7 the coherence of the
pair A, A, over the duration 7.

The numerical methodology proposed in Ref. 17 finds
pairs of sets for which the coherence is maximized under the
addition of small-amplitude diffusion (this idea is formalised
in Ref. 14). The first step is to cover X and the image ¥ =
¢(t,7,X) C X by a collection of disjoint subsets of small di-
ameter, {By, ..., B,,} and {C1, ..., C, }, respectively. To obtain
probabilistic information on trajectories flowing from one
subset of X to another, we construct the transition matrix

mX(B,' N ¢(f+ T,

. -1,C)))
(RN My (Bz) .

3)

The entry P, .;; can be interpreted as the probability that a
particle selected uniformly at random in B; at time ¢ will be
in C; at time ¢+ 7. The matrix (3) is a finite-dimensional
approximation of the ¢(z,1,-)-induced action on signed
probability measures.

The entries P;.;; of (3) cannot be easily calculated
exactly and are typically numerically approximated: choose /
test points {z;,},_, , uniformly distributed over each box B;,
i =1,...,m and compute

ﬁ{r SZig S Biv d)(tv T, Zi,r) S CJ}

lst,f;i.j = /

“)

Under the assumptions on ¢, for fixed ¢ and =,

|l~),ﬁf;,-_j—Pm;,-J| — 0 for each i, j as | — oo. In general, [
should be chosen so that {¢(t,7,z;,):r=1,...,[} is a
good representation of ¢(¢,t,B;) for each i = 1,...,m. For

the remainder of the paper, we revert to the notation P
with the understanding that numerically we use P.

We set p; =myx(B;) for i=1,..,m and define
q = pP; .. The vector g denotes the distribution of mass on
the C;,j = 1, ..., n, after applying the dynamics given by ¢
from time ¢ to 7+ 1. The following algorithm'” describes
how to identify the most coherent pair of sets, denoted
An A, using singular vectors of P. Steps 1-3 perform the
singular vector computation, and steps 4—6 threshold the left
and right singular vectors and ensure that the masses of the
two coherent sets A;, A, are as similar as possible, consid-
ering a given box resolution.

Algorithm 1 (Input: p, P; Output: u,, v, I;, I;’, p,A,, Al

(1) Define diagonal matrices(Il,),, =p;, i =1,...,m, and
(Hq)jj =q,j=1..n

(2) Compute the second largest singular value o, <1 of
H,l,/ 2PH;1/ 2 and corresponding left and right singular
vectors iy, Uy.

(3) Set uy := i T1 "2, vy 1= BT 12,

pi = [50(x) dm(x),
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(4) Denote I(b) ={i:up; > b}, J(V)={j:v2; >V}
Perform a line search on b to solve
. o) PiPii
— max Zzel(b)i/ej(b)p j )

beR:Y S pi<1/2 Zie[(h) Di
selecting b' = b'(b) so that |3 .y pi
minimised.

(5) Repeat step 4, replacing u, with —u, and v, with —uv,
(note this is equivalent to redefining 1(b) = {i : up; <
b}, J(b') = {j : va; < b'} to consider sublevel sets rather
than superlevel sets). In step 6 (and for the Output of this
Algorithm), use the parity that yields the maximum value
of p.

(6) Denote by b b the optimal b,b’ and set A, = Uier(s )B

Ar+‘r =U el (b ’)C

For applications in which an a priori known structure
needs to be identified, the selection of the parity in step 5 can
be replaced in such a way that the positive entries of u, and
v, indicate the desired structure. For example, if we wish to
identify a ring, either the positive entries of u, and v, indi-
cate a ring or they indicate the rest of the domain with a
“hole” where the ring is; we choose the parity of u, and v, to
indicate the former. In Section IV, we will use this modifica-
tion to identify a sequence of Agulhas rings along the ring’s
pathway in the South Atlantic Ocean.

- Zje.l(b/) qjl is

B. Computing a sequence of coherent sets
via overlapping time windows

The output of Algorithm 2 is designed to maximize the
amount of mass that is transported from the initial set A, at
time ¢ to the final set A,y at time #+ 7 in the presence of
small diffusion. Furthermore, by construction, the surface
areas (captured by p and ¢ at times ¢ and ¢ + 7, respectively)
of A, and A, , are (very close to) identical. In the case of di-
vergent flows (e.g., when Ekman currents are added to the
geostrophic currents), the vector p would describe surface
water mass rather than surface area. In the above specific
example, we would replace the definition p; = my(B;) with
where ¢:X — R% is the two-
dimensional density of seawater and m is two-dimensional
Lebesgue measure (area). The vector ¢ is defined as before:
q = pP; .. Such a divergent situation was studied in two and
three dimensions in Example 2 of Ref. 17 for atmospheric
flows.

To calculate intermediate coherent structures, one can
use the push forward of the initial set A, over a time shorter
than 7. However, this approach is not useful for estimating
the decay of Agulhas rings over very long flow durations
because we expect the surface area of these rings to shrink as
they eventually decay. Therefore, we present in the follow-
ing a novel approach allowing a family of coherent sets com-
puted over shorter time durations to shrink or grow over an
extended period of time. This is necessary in order to study
the rate at which the ring decays.

Thus, given times tq, ..., fy, we wish to generate a corre-
sponding sequence of max1mally coherent sets A, ..., A, .
We fix t to be the time duration over which we wish to
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calculate coherence and consider time windows [t — 7,# +
1], [a—1t,00+7],.... [ty —7,tn + 7]. Because we desire
some continuity properties of the A, with respect to ¢, these
windows need to overlap so that adjacent windows share
some dynamics. At a minimum, we require fy; — 4 < 27,
k=1,...,N—1, and better, #;,; — # < t so that adjacent
windows share at least half of their dynamics. Each time
window [t; — 7, #; + 7] will be independently used to calcu-
late a coherent set A, , k =1,...,N.

For each k= 1,...,N, we build an my; X n; transition
matrix P,,_; >, (describing dynamics over [ty — 1, # + 1]) and
an my X oy transition matrix P, .. (describing dynamics
over [ty — 7,#]). The basic idea is to run Algorithm 1 using
P, > to obtain a coherent pair over the full time window
[tx — 7,4 + t]. The mass of the sets A,A T,A[kﬂ will fix the
mass for the coherent set at time #;, but we do not yet have a
coherent set at #;; only at #; — 7 and #; + 7. To get a coherent
set at #;, we push forward the vector u, at time #; — 7 to time
1 with the second matrix P, _; . and then threshold to match
masses at times #; — t and #; + 1. We refer to Figure 1 for a
schematic illustration of Algorithm 2.

In the following algorithm we denote by prthe 1 x my
probability vector, p¥ = m(B¥)/ > m(B¥), where m still
measures volume and B, ... B’,‘nk denote boxes covering the
relevant part of phase space at time #; — 7. Similarly, the vec-
tor * will describe the volume of the box collection
{Df,...,D} } at time 1.

Algorlthm 2 (Input: p ,P,‘ —z0s Py —72:; Output: A,k)

(1) Apply Algorithm 1 using p*, P, _.o: as input, yielding
Uy, s, l;, B’,AA,k_T,AAfL_H as output.

(2) Define k= PkPrrr,r (the mass probability vector at time
ty on the box collection D¥)

(3) Set wy = (uPy ;) /%, where division is meant
component-wise (this pushes forward the vector us,
which is anchored at time t;, — T to the vector w», which
is anchored at the desired time ty,).

(4) Denote H(b) = {h:wy, > b} and select b" so that

| 2 ic15) Pi — 2nen) X| is minimised, denoting the
minimal b" by b
(5) SetA, = UheH(E”)Dﬁ'
Remark 1. Instead of pushing forward u, from time # —
T to time f;, one could consider pulling back v, from time

Ptk—T‘QT
Step 1: P _rr
Calculate transition
matrices Py, 7 -

and Py, ;27 t o - tlk H

Step 2: U Vo
Calculate coherent * *
pair between t, — 7

and ty, + 7 Ap—r

Step 3: Wy =
Threghold ws such *
that A;, has the same _
volume as At R Ay,

FIG. 1. Visualisation of the overlapping window process.
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fx + 7 to 1 to obtain w) = ng . The vectors w, and w) are
similar but because the numerlcal diffusion generated by the
grid is different for the forward and backward (dual) proc-
esses, the result is not the same in general.

lll. OCEAN SURFACE FLOW AND LAGRANGIAN
CALCULATIONS

In this section, we describe the input data used to track
the evolution of an Agulhas ring and to monitor its decay
during its 116-week (December 2, 1998 to February 21,
2001) journey across the South Atlantic.

A. Time-dependent surface flow derived from satellite

The time-dependent vector fields used to define ¢ in this
study are given by surface geostrophic currents computed
from the elevation of the Sea Surface Height (SSH) refer-
enced by the geoid. In particular, these total SSH fields were
obtained by adding Sea Level Anomalies (SLA) measured
by altimetry to a mean dynamic topography.?” The SLA field
was distributed by the Data Unification and Altimeter
Combination System (DUACS) available from AVISO
(Archiving, Validation and Interpretation of Satellite
Oceanographic data). This global product provides a weekly
resolution onto a Mercator grid at a spatial resolution of 1/3°
in zonal direction, and between 1/4° and 1/3° in meridional
direction over the Agulhas region.

B. Selection of initial domain, trajectory integration,
and transition matrix calculation

From a visual analysis of the time-evolution of the SSH
field over the South Atlantic, we selected a domain contain-
ing a ring-like structure that will be the focus of our investi-
gations. This structure appears to be a large anticyclonic
eddy, or Agulhas ring, released from the Agulhas retroflec-
tion approximately on 2nd December 1998 at 34°S/14°E.

In our application of Algorithm 2, we chose ¢ =
30th December 1998, t = four weeks, and spaced the #; four
weeks apart, k = 1, ..., 29, thus obtaining an estimate of the
ring at four-week intervals. The choice of T = four weeks is
made for a number of reasons. First, the flow time of 27 =
eight weeks should be sufficiently long for one to observe
nontrivial dynamics; the flow map ¢(z, 27, -) should capture
enough nonlinearity to distinguish a ring from Lagrangian
trajectory information. Because the altimetry data are output
weekly, we need several weeks of flow to achieve this nonli-
nearity. Second, we cannot flow much longer than eight
weeks because the computations quickly become prohibi-
tively expensive. The exponential rate of separation of
nearby trajectories means that the number of test points z; ,
(see Eq. (4)) required to accurately represent the image box
¢ (1,21, B;) grow exponentially quickly 7. In general, the esti-
mates of the rings obtained depend on the length of the
finite-time interval 2t over which we optimise the coherence
or mass transport.

Several algorithms of “automatic eddy detection” based
on instantaneous SSH fields exist; for example, Refs. 8 and
23. These algorithms usually return the center of eddies, their
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radius and trajectories over time, and such algorithms could
be combined with our approach to produce a more system-
atic way to successively define the domains of interest. We
cover the initial domain by boxes (rectangles), where each
box has a side length of 0.044° longitude and 0.056° latitude.
The side lengths are chosen such that the boxes are approxi-
mately square, so that the numerical diffusion produced by
the grid is approximately isotropic.

The initial domains for the subsequent time windows
[ty — T, tx + 7], k=2, ...,N are chosen manually, using the
SSH field as a guide, similar to what was done in step 1, and
enclosing the area of interest by a rectangular domain at least
twice the size of the suspected ring location, but not many
times larger as we wish the computation to focus on the ring.
Again, these initial domains are covered by approximately
square boxes. On average, we have m; = 7870 and n;, = 11246
boxes for the initial and final domain, respectively. At time
t — T, within each box, 169 = 13% Lagrangian particles are
uniformly distributed on a finer sub-box grid and advected in
the satellite-derived surface flow field with a 4th-order
Runge-Kutta integration scheme for a period of 8 weeks,
using the Connectivity Modelling System described in
Ref. 24. The box covering at time #; + 7 consists of boxes of
the same side lengths that cover the terminal points in the
8-week trajectories.

IV. INVESTIGATION OF THE PATHWAY
OF AN AGULHAS RING

A. Boundaries, pathways, and comparison
with other ring diagnostics

By seeking maximally coherent structures in the
Lagrangian fluid flow, our methodology allows the precise
detection of the successive position and 2-D shape of the
ring. Figure 2 shows the locations of the ring as determined
by Algorithm 2 for the period 30th December 1998-21st
February 2001.

The ring is initially moving westward for 12 weeks after
which it veers northward for another 8 weeks. It then returns
on an almost westward pathway, until it reaches the shallow
bathymetry of the Walvis Ridge (the south-west to north-
west feature around 5° E in Figure 2) in early October 1999.
After having crossed the Walvis Ridge, the ring continues on
a nearly linear westward path across the Mid-Atlantic Ridge
(the north to south feature at 15° W in Figure 2) and towards
the Brazilian coast. The ring in the middle of the first turn
northwards (24 Feb 1999) was difficult to estimate well, and
we used the averaged push-forward/pull-back procedure
described in Remark 1. After February 2001, the ring has

Ring locations each 28 days
e )

n
(=]

2
[z

Latitude
W w nN
g < g
» B D

40°W 30°W 20°W 10°W 10°E ]
Longitude
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decayed so much that it cannot be detected anymore with the
technique described here. We ended up with more than 2
years of ring pathway.

Comparing the shape of the ring detected by our method
with a visual inspection of the SSH field (Figure 3), we
observe a reasonable correspondence between the two diag-
nostics. The boundaries of the intermediate coherent sets
superimposed well with regions of elevated SSH (~0.75 to
1.5 m). However, contours of elevated SSH are mainly circu-
lar along the whole journey of the ring while the boundaries
of the coherent sets exhibit complex shapes.

Similar conclusions can be drawn when comparing the
boundaries of the coherent sets with another Eulerian diag-
nostic, the vorticity field (not shown).

B. Decay

In order to estimate the effective transport of heat, salt,
and other tracers of oceanographic and climatic interests
from the Indian basin to the South Atlantic Ocean, many
authors have focussed their attention on measuring the
“decay” of the Agulhas rings. The decay of Agulhas rings
has been assessed by measuring over time the strength of the
SSH anomalies (cf. Refs. 4, 11, 30, and 32, and references
therein), the strength of azimuthal velocities (Refs. 32 and
33), the concentration of (numerical) passive tracers,'® the
magnitude of potential vorticity,>> and more recently the
water mass characteristics.” These studies usually examine
the area of “elevated energy,” as measured by SSH or other
Eulerian measurement directly derived from the velocity
field (e.g., azimuthal velocities or vorticity).

Here, we estimate the decay of a ring by considering the
successive structures detected by our method. Since the ring
identified at time ¢ loses the least water mass over a 8-week
period (centred at time ), our coherent set approach is well
adapted to study water mass transport, in a Lagrangian sense,
as opposed to the indirect Eulerian diagnostics mentioned
above.

Figure 4 summarises the area and coherence (i.e., the
proportion of Lagrangian particles remaining in AIHT after
starting in A,k,f over time 2t at each windowing step), cf.
Figure 1 and Eq. (2).

The area of the box ranges from 24.25km’ to
27.71 km?, thus our estimates of ring area can only be accu-
rate to this quantum of area, which represents between
0.25% and 0.04% of the ring area. This relatively coarse grid
introduces numerical diffusion of a diameter between
4.89km and 5.66 km every 8 weeks, which is of the same

FIG. 2. Successive positions of the
0 Agulhas ring tracked over more than 2

years. The colored elliptic shapes rep-
-2000 resent the ring boundaries, going from
blue through green to red contours as
time progresses. Blue shading indi-
cates the main bathymetric features
(according to the colorscale).

-4000
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FIG. 3. Sea surface height field during the first 44 weeks of tracking, i.e., from 30 December 1998 to 6 October 1999, when the ring is still within the Cape
Basin. The outputs of Algorithm 2 are overlaid with the thick black curves. Note the good agreement between the tracking method and the SSH field.

order of magnitude of the accepted subgrid-scale diffusion
processes.

We found that the 8-week coherence p(A,_:,A, ;)
associated with each successive ring A, is quite stable and
remains very high, a result of our optimized diagnostic.
However, the successively detected rings A, have areas that
vary substantially from about 19 000 km? up to 100 000 km?.
While the bottom topography potentially influences ring area
(cf. Ref. 20), as does ring decay over time due to energy
loss, some of the large fluctuations observed are likely due to
a “flat optimum” in the calculation of p in Eq. (5). In other
words, several contours of the vectors u, and v, achieve very
similar values of p. Dynamically, it suggests that the most
coherent ring is ambiguous with several nested rings of dif-
ferent sizes being approximately equally coherent.

Within our framework, a natural way to estimate the
decay of the ring in terms of transport (water carried within
the ring) is to investigate how many particles remain within
the structure detected by our method. For this, we did a for-
ward Runge-Kutta integration (using the same Connectivity
Modelling System>* and vector fields as used to construct

the transition matrix) of 20000 particles initialized within
the ring boundary on 30 December 1999. The particles were
integrated forward in time for 116 weeks, and their location
was recorded every 4 weeks, coinciding with the times at
which ring boundaries were available. Then, for each snap-
shot of ring boundary, the number of particles inside and out-
side of the ring was counted.

Figure 5 shows the proportion of particles remaining
within the ring along its temporal evolution. This has been
measured in two ways: for each snapshot, we are (i) counting
how many particles are in the ring (green line), i.e., F;(k)
= (f particles in ring k) /(§ particles in ring 1), and (ii) count-
ing only the particles that have been in the ring in all preced-
ing snapshots (red line), i.e., F,(k) = (4 particles in rings
1,...,k)/(# particles in ring 1). To compare these Lagrangian
diagnostics of decay with a common Eulerian proxy,*° the
time-evolution of the maximum SSH value observed within
the ring is also shown (blue line, Figure 5).

Both lines drop significantly, by more than 10% between
steps 2 and 3 (Feb—Mar 1999), since some particles are
expelled from the initial ring in filamentous structures
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drifting away from the core of the ring. This fast decay may
be due to the ring pathway that made a sudden turn from a
westward course to a northward course (see Fig. 2), possibly
favouring instabilities and thus the formation of mesoscale
filaments. Another possible explanation for this fast decay in
Feb—Mar 1999 may be that the time-parameter retained here
(i.e., t=4 weeks) might not be appropriate to capture such
fast dynamics. Later, while F', decreases further and remains
below 90% from April 1999, F; rebounds in May 1999 to
about 95% as many of the particles expelled in step 2 were
recaptured by the ring. Another significant drop occurs from
July to October 1999 in both F; and F,. After that date, the
amount of particles within the ring slowly decreases, simi-
larly in both proxies F; and F5, to about 80%—85% until the
end of the 116-week period.

Overall, our analyses suggest that only 15%—-20% of the
water carried by the ring leaked away from the structure dur-
ing this 2-year journey. Note that the Eulerian estimate of
decay based on SSH reveals a larger temporal variability and
suggests a higher decay of about 30% over the same period.

C. Discussion and conclusions

We have proposed a novel approach for the analysis of
Agulhas rings based on a sequence of coherent sets and we
have successfully applied this method for the tracking of an

Agulhas ring for over 2 years. More precisely, we have dem-
onstrated the existence of a family of rings, indexed four-
weekly, which carry a high amount of tracer initialized in the
first ring, over a two-year period. Furthermore, we analysed
the decay of the ring measured by other methods.

Our technique of performing Lagrangian computations
on many short overlapping time intervals was motivated by
the desire to allow the coherent sets to vary in size over time.
A computational advantage of stitching together a sequence
of overlapping short flow times of 8 weeks is that the number
of sample points per box can remain relatively low; to
achieve a good sampling over the full 116 weeks would
require a great deal more tracer particles. The overlapping
time window approach proved successful in terms of track-
ing the location of the ring. It is unclear whether the some-
times rapidly varying size of the computed rings is an
artefact of the technique or a reflection of the dynamics
in the vector field. It would be possible to include some
ad hoc changes to Algorithms 1 and 2 to enforce less
variation in ring size. For example, when optimising p in
(5) one could include a penalty term proportional to the
size difference between the current and past ring, or
include physically motivated hard constraints on the rate
of change of ring area. However, given the ambiguity in
the physical definition of the ring boundary, it is not clear
whether this is desirable.

. FIG. 5. Time evolution of two
Lagrangian proxies of decay of the ring,
F, and F,, derived from our method
versus a simple Eulerian proxy based
on SSH. The blue line represents the
maximum SSH values within the ring,
the green line is the amount of particles
in the ring at all snapshots () and the
red line is the number of particles in the
ring that have been in the ring on all
snapshots before (F,). All time series
are normalised for the ease of
comparison.
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Agulhas rings have long been known to carry warm and
saline Indian Ocean water into the Southwestern Atlantic
Ocean. How much water they carry, however, is under
debate. Many studies have documented that Agulhas rings
quickly decay in the first 6 months after formation’*>** and
that up to half of the Indian Ocean water that reaches the
Atlantic Ocean does so outside Agulhas rings. To better
understand the relation between the decay of an Agulhas
ring and the amount of water being effectively transported
within them, a necessary first step is to accurately identify
them in noisy velocity fields. While the recent study of Ref.
2 made progress on this, their assumption of area conserva-
tion within the rings meant they were not able to study the
decay of the rings. For this reason, the approach followed
here is complementary to the geodesic method of Ref. 2; we
explicitly allow the ring to change surface (volume) over its
lifetime. Moreover, contrasting the study of Ref. 2, we spe-
cifically identify the largest possible ring, consistent with a
given level of coherence. We also track the ring for a much
longer period of time than the computations in Ref. 2, and
note that our overlapping window approach could easily be
combined with the method of Ref. 2 or other Lagrangian
diagnostic methods.

For the case study here, i.e., a typical ring shed in
December 1999, we found that approximately 15% of the
Indian Ocean water has leaked from the time-indexed
sequence of rings we identified by the time the final ring in
the sequence reaches 25°W in the western Atlantic Ocean.
This is a smaller decay than the ones previously reported by
Refs. 30, 32, and 35. Increasing the flow time 2t beyond 8
weeks, if it becomes computationally accessible, may lead to
slightly different delimitations of the ring for which the
decay could be even smaller than reported here because the
coherence will be optimised over a longer time duration.
Note that another 3% of the water initially in the ring has
been outside of the ring, and later recaptured, along its 116
week lifetime, highlighting how complex the ring evolution
is Ref. 4.

There are a few caveats in our study. First, geostrophic
currents derived from gridded SSH might not be the most
appropriate flow field to accurately estimate the decay of
Agulhas rings since, although SSH has a technical resolution
of 0.25°, its effective resolution is much lower (~1°).2! To
better estimate how remotely observed rings decay, it would
be interesting to compare the present calculation against a
new altimetric dataset recently reprocessed by Aviso to
improve its spatial resolution. Comparing the newer and for-
mer products, Ref. 6 found it offers a description of meso-
scale activity closer to observations with significantly higher
eddy kinetic energy levels, higher eddy densities, and
smaller eddy radii. This suggests that both resolution and
precision of the velocity field used in our calculation have
significant but difficult to predict effects on decay estimates.
Going to even smaller spatial scales, geostrophic velocities
do not capture the submesoscale processes that are often
seen on the flank of larger vortex although they do contribute
largely to an effective mixing between the core and the sur-
rounding waters. Second, the oceanic flow is three-
dimensional in nature and water can move vertically."?
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However, as in Ref. 2 we here use a two-dimensional alti-
metric velocity field so that this vertical circulation cannot
be resolved.

To study the leakage of tracer out of Agulhas rings over
long time period, future work may use high-resolution ocean
model to properly consider the effect of these smaller-scale
processes in three dimensions. The technique developed here
and those described by Refs. 3 and 15 are indeed equally ap-
plicable to 3D fields from numerical simulations.
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