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Abstract

We developed a machine learning methodology for automatic sleep stage

scoring. Our time-frequency analysis-based feature extraction is fine-tuned

to capture sleep stage-specific signal features as described in the American

Academy of Sleep Medicine (AASM) manual that the human experts follow.

We used ensemble learning with an ensemble of stacked sparse autoencoders

for classifying the sleep stages. We used class-balanced random sampling

across sleep stages for each model in the ensemble to avoid skewed perfor-

mance in favour of the most represented sleep stages, and addressed the prob-

lem of misclassification errors due to class imbalance while significantly im-

proving worst-stage classification. We used an openly available dataset from

20 healthy young adults for evaluation. We used a single channel of EEG from

this dataset, which makes our method a suitable candidate for longitudinal

monitoring using wearable EEG in real-world settings. Our method has both

high overall accuracy (79%, range 76–81%), and high mean F1-score (85%,

range 83–87%) and mean accuracy across individual sleep stages (87%, range

85–88%) over all subjects. The performance of our method appears to be

uncorrelated with the sleep efficiency and percentage of transitional epochs in

each recording.

Key Terms— Electroencephalography, EEG, Deep learning, Ensemble

learning

1 Introduction

Sleep is central to human health. The health consequences of reduced sleep, abnor-

mal sleep patterns or desynchronized circadian rhythms can be emotional, cognitive, or

somatic [26]. Associations between disruption of normal sleep patterns and neurodegen-

erative diseases are well recognised [26].

According to the American Academy of Sleep Medicine (AASM) manual [11], sleep is

categorised into four stages. These are Rapid Eye Movement (stage R) sleep and 3 non-R
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stages, stages N1, N2 and N3. Formerly, stage N3 (also called Slow Wave Sleep, or SWS)

was divided into two distinct stages, N3 and N4 [20]. To these a Wake (W) stage is added.

These stages are defined by electrical activity recorded from sensors placed at different

parts of the body. The totality of the signals that are recorded through these sensors is

called a polysomnogram (PSG). The PSG includes an electroencephalogram (EEG), an

electrooculogram (EOG), an electromyogram (EMG), and an electrocardiogram (ECG).

After the PSG is recorded, it is divided into 30-second intervals, called epochs. Then,

one or more experts classify each epoch into one of the five stages (N1, N2, N3, R or

W) by quantitatively and qualitatively examining the signals of the PSG in the time and

frequency domains. Sleep scoring is performed according to the Rechtschaffen and Kales

sleep staging criteria [20]. In Table 1 we reproduce the Rechtschaffen and Kales sleep

staging criteria [22], merging the criteria for N3 and N4 into a single stage (N3).

Recent research suggests that detection of sleep/circadian disruption could be a valu-

able marker of vulnerability and risk in the early stages of neurodegenerative diseases,

such as Alzheimer’s disease, Parkinson’s disease and multiple sclerosis, and that sleep

stabilisation could improve the patients’ quality of life [26]. There is therefore a pressing

need for longitudinal sleep monitoring for both medical research and medical practice. In

this case an affordable, portable and unobtrusive sleep monitoring system for unsuper-

vised at-home use would be ideal. Wearable EEG is a strong candidate for such use. A

core software component of such a system is a sleep scoring algorithm, which can reliably

perform automatic sleep stage scoring given the patient’s EEG signals.

In this study we present and evaluate a machine learning methodology for automatic

sleep stage scoring using a single channel of EEG. Our methodology is based on time-

frequency analysis [4] and stacked sparse autoencoders [1]. We compared the performance

of our method with three existing studies. In [6] the data consisted of 16 subjects (aged

30–75 years) and the EEG channel used was C3-A1. The authors’ method was time-

frequency analysis using the Continuous Wavelet Transform (CWT) and Renyi’s entropy

for feature extraction, and the random forest classifier. In [16] the first dataset comprised

20 subjects (aged 20–22 years), using channel C3-A2. The second dataset [19] comprised
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8 subjects (aged 21–35 years), and the authors chose channel Pz-Oz. The authors used

multiscale entropy (MSE) for feature extraction from the EEG signal, and they also

fitted an autoregressive (AR) model to the signal. They then trained a linear discriminant

analysis (LDA) model using the MSE features and the fitted parameters of the AR model

as features, employing a set of 11 a priori ‘smoothing rules’ on the hypnogram after the

initial sleep scoring. In [3] the authors used a dataset comprising 15 subjects (aged 29.2

± 8 years). The feature extraction methods and the machine learning algorithm are not

described in detail in [3].

There are two main limitations in the existing literature. First, regarding the results

of the proposed methods, in all three studies we observe imbalance in the scoring perfor-

mance across sleep stages. For example, the F1-score in the worst-classified sleep stage

(N1) can be as low as 30% in [16]. Second, regarding the evaluation methodology, in

all three studies the authors evaluated their methods using a single training-testing split

of the data, and did not perform any type of cross-validation. Furthermore, in [6] the

authors trained and tested their algorithm using epochs from all subjects, which means

that the training and testing datasets were not independent. In this work we mitigated

skewed sleep scoring performance in favour of the most represented sleep stages, and ad-

dressed the problem of misclassification errors due to class imbalance in the training data

while significantly improving worst-stage classification. Our experimental design employs

cross-validation across subjects, ensuring independence of training and testing data.

2 Materials and Methods

2.1 Data

The dataset that we used to evaluate our method is a publicly available sleep PSG dataset

[14] from the PhysioNet repository [7] that can be downloaded from [18]. The data was

collected from electrodes Fpz-Cz and Pz-Oz, instead of the standard C3-A2 and C4-A1.

The sleep stages were scored according to the Rechtschaffen and Kales guidelines [20].

The epochs of each recording were scored by a single expert (6 experts in total). The sleep
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stages that are scored in this dataset are Wake (W), REM (R), non-R stages 1–4 (N1, N2,

N3, N4), Movement and Not Scored. For our study, we removed the very small number

of Movement and Not Scored epochs (Not Scored epochs were at the start or end of each

recording), and also merged the N3 and N4 stages into a single N3 stage, as it is currently

the recommended by the American Academy of Sleep Medicine (AASM) [11, 22]. There

were 61 movement epochs in our data in total, and only 17 of the 39 recordings had

movement artifacts. The maximum number of movement epochs per recording was 12.

The rationale behind the decision of removing the movement epochs was based on two

facts. First, these epochs had not been scored by the human expert as belonging to any of

the 5 sleep stages, as it is recommended in the current AASM manual [11, p. 31]. Second,

their number was so small that they could not be used as a separate ‘movement class’ for

learning. The public dataset includes 20 healthy subjects, 10 male and 10 female, aged

25–34 years. There are two approximately 20-hour recordings per subject, apart from a

single subject for whom there is only a single recording. To evaluate our method we used

the in-bed part of the recording. The sampling rate is 100 Hz and the epoch duration is

30 seconds.

2.2 Feature extraction

For feature extraction we performed time-frequency analysis using complex Morlet wavelets

(see, for example, Chapters 12 and 13, pp. 141–174 in [4]). The reason for preferring a

time-frequency-based feature extraction method over the Fourier transform was that we

wanted to extract features that capture the mixture of frequencies and their interrelations

at different points in time as features.

For time-frequency analysis using complex Morlet wavelets there are two sets of pa-

rameters that need to be chosen, the peak frequencies and the number of wavelet cycles

per frequency. The number of wavelet cycles defines its width and controls the trade-off

between temporal and frequency precision. Specifically, increasing the number of cycles

increases the frequency precision but decreases the temporal precision, while decreasing

the number of cycles increases the temporal precision but decreases the frequency preci-
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sion. In this study we selected the peak frequencies and the number of cycles based on

the sleep scoring criteria in Table 1, taking into account the transition rules in Table 2.

In Table 3 we summarise the parameters chosen.

After extracting the frequency-band power for each peak frequency given in Table 3,

the features that we computed for each epoch were the power of the frequency-band power

signal, the power of the time-domain signal, the Pearson correlation coefficient between

each pair of frequency-band power signals and the autocorrelation in the time-domain

signal for 50 time lags (i.e. up to 0.5 seconds). Additionally, we used a sliding window to

extract the power of the frequency-band power and the power of the time-domain signal

at different intervals within each epoch. Specifically, we used a sliding window of duration

of 5 seconds and step of 2.5 seconds, which resulted in 11 power of frequency-band power

features per frequency band per epoch and 11 power of the time-domain signal features

per epoch. All the extracted features are summarised in Table 4. We mapped all the

features in the [0,1] interval, and centred their distribution using transformations (see

Table 4), as this is beneficial for our learning algorithm. We then normalised the features

from each trial of each subject.

The AASM manual [11] includes a number of rules that recommend taking into ac-

count neighbouring epochs for the scoring of each current epoch under certain circum-

stances. We identified 12 rules in total concerning the transition between certain sleep

stage pairs that refer to 7 distinct transition patterns, as shown in Table 2. These rules

apply to three sleep stage pairs, N1-N2, N1-R and N2-R. The transition patterns include

up to two preceding or succeeding neighbouring epochs. Trying to capture the effect

of these transition rules in an automatic sleep scoring algorithm by simply including

transition probabilities between sleep stages is not a suitable approach. The reason is

that the algorithm could overfit to hypnogram-level patterns from the subjects we used

for training, especially when the training data do not include data from different sleep

pathologies.

We incorporated transition information directly as features for our machine learn-

ing algorithm. Specifically, for the classification of each epoch, apart from the features
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corresponding to itself, we included the features from the preceding two and succeeding

two epochs. We addressed the possibility of overfitting which exists in this case in our

experimental design (Subsection 2.4). In the literature, Liang et al. [16] used 11 a priori

hypnogram ‘smoothing rules’ in order to capture transition information. These rules are

applied on the scored epochs after automatic sleep scoring has taken place, effectively

changing the classification of each epoch given the sleep stage of its neighbours. Unfor-

tunately, the authors described only 2 of the rules in their paper, and, notably, did not

discuss the order in which the rules are applied to the estimated hypnogram.

2.3 Machine learning methodology

Stacked sparse autoencoders [1] are a specific type of neural network model. The key

difference between stacked autoencoders and standard neural networks is layer-wise pre-

training using unlabelled data (i.e. without class labels) before fine-tuning the network

as a whole [2]. Autoencoders are trained using iterative optimisation with the backprop-

agation algorithm. The optimisation method we used was L-BFGS, as recommended in

[15]. The hyperparameters of a sparse autoencoder-based model are: (1) a regularisa-

tion weight λ which is used to decrease the magnitude of the parameters and prevent

overfitting, (2) a sparsity weight β which controls the relative importance of the sparsity

penalty term, (3) a sparsity parameter ρ which sets the desired level of sparsity, and (4)

the number of units n in the hidden layer of the autoencoder. The only hyperparameter

for the optimisation is the total number of iterations r.

The combinatorial space to explore all the possible combinations of hyperparameters

is huge. Therefore, we decided to choose the same hyperparameters across all layers. Our

final choice was λ = 1×10−5, β = 2.0, ρ = 0.2, n = 20, and r = 60. We used autoencoders

with the sigmoid activation function, which is symmetric. This is the reason that our

features were transformed so that their distribution be approximately centred around the

mean.

The classes (sleep stages) in our dataset, as in any PSG dataset, were not balanced, i.e.

there were a lot more epochs for some stages (particularly N2) than others (particularly W
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and N1). In such a situation, if all the data is used as is, it is highly likely that a classifier

will exhibit skewed performance favouring the most represented classes, unless the least

represented classes are very distinct from the other classes. In order to resolve the issues

stemming from imbalanced classes we decided to employ class-balanced random sampling

with an ensemble of classifiers, each one being trained on a different sample of the data.

Our final model consisted of an ensemble of 20 independent stacked sparse autoencoders

(SSAEs) with the same hyperparameters. Each of the 20 SSAEs was trained using a

sample of the data in which the number of epochs per stage per recording was equal to

the number of epochs of the least represented stage (N1). The classification of the epochs

in the testing recordings was done by taking the mean of the class probabilities that each

of the 20 SSAEs outputs, and then selecting the class with the highest probability.

We used our own Matlab implementation for time-frequency analysis and stacked

autoencoders, and the Matlab implementation by Mark Schmidt for L-BFGS (http:

//www.cs.ubc.ca/~schmidtm/Software/minFunc.html).

2.4 Evaluation

To evaluate the generalisability of our method, we obtained our results using 20-fold

cross-validation. Specifically, in each fold we used the recordings of a single subject for

testing and all other recordings for training. We used each subject’s recordings only once

for testing, thus obtaining a one-to-one correspondence of cross-validation folds and test

subjects. We chose per-subject cross-validation as we also performed comparisons across

individual recordings. With this experimental design, we were able to assess both the

overall performance of our method and the performance across recordings with a single

set of experimental results.

We report the evaluation metrics using their average across all recordings. Specifi-

cally, we report their mean value across all 5 sleep stages and their value for the most

misclassified sleep stage, which gives information about the robustness of the method

across sleep stages. We tested our method with both available EEG electrodes (Fpz-Cz

and Pz-Oz). We report the scoring performance using the best electrode, which was Fpz-
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Cz. Finally, we calculated 95% confidence intervals for each of the performance metrics

by bootstrapping using 1000 bootstrap samples across the 39 recordings.

We also tested our algorithm using 5-fold cross-validation with non-independent train-

ing and testing sets by mixing the subjects’ epochs as the authors in [6] did. This was

done to show the improvement in the results that such a flawed practice can result into,

and appropriately compare our method to [6]. We do not consider this performance in-

dicative of the quality of our method, or any method targeted in EEG sleep scoring, as

it is not practical in the real world. These results are separated from the others in Table

6.

To further evaluate the generalisability of our method, we performed two tests on

our results to assess the correlation between scoring performance and (1) a measure of

the sleep quality of each recording, and (2) the percentage of transitional epochs in each

recording. Robust scoring performance across sleep quality and temporal sleep variability,

can be seen as further indicators of the generalisability of an automatic sleep stage scoring

algorithm. The reason is that low sleep quality and high sleep stage variability across the

hypnogram are prevalent in sleep pathologies (see, for example, [17]).

We measured sleep quality with a widely-used index, called sleep efficiency. Sleep

efficiency is defined as the percentage of the total time in bed that a subject was asleep

[23, p. 226]. Our data contain a ‘lights out’ indicator, which signifies the start of the

time in bed. We identified the sleep onset as the first non-W epoch that occurred after

lights were out. We identified the end of sleep as the last non-W epoch after sleep onset,

as our dataset does not contain a ‘lights on’ indicator. The number of epochs between

the start of time in bed and the end of sleep was the total time in bed, within which

we counted the non-W epochs; this was the total time asleep. We defined transitional

epochs as those whose preceding or succeeding epochs were of a different sleep stage

than them. We computed their percentage with respect to the total time in bed. In

our experiments we computed the R2 and its associated p-value between sleep efficiency

and scoring performance, and between percentage of transitional epochs and scoring

performance.
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All scoring performance metrics are derived from the confusion matrix. Using a

‘raw’ confusion matrix in the presence of imbalanced classes implicitly assumes that the

relative importance of correctly detecting a class is directly proportional to its frequency of

occurrence. This is not desirable for sleep staging. What we need to mitigate the negative

effects of imbalanced classes on classification performance measurement is effectively a

normalised or ‘class-balanced’ confusion matrix that places equal weight into each class.

Surprisingly, in the single-channel EEG sleep staging literature there are examples of

such mistakenly reported performance results using the raw confusion matrix. For this

reason, we compared our work only with the studies in the literature that provided the raw

confusion matrix, from which we computed the performance metrics after class-balancing.

The metrics we computed were precision, sensitivity, F1-score, per-stage accuracy,

and overall accuracy. The F1-score is the harmonic mean of precision and sensitivity

and is a more comprehensive performance measure than precision and sensitivity by

themselves. The reason is that precision and sensitivity can each be improved at the

expense of the other. All the metrics apart from overall accuracy are binary. However, in

our case we have 5 classes. Therefore, after we performed the classification and computed

the normalised confusion matrix, we converted our problem into 5 binary classification

problems each time considering a single class as the ‘positive’ class and all other classes

combined as a single ‘negative’ class (one-vs-all classification).

Finally, we computed the scoring performance of our algorithm without and with

features from neighbouring epochs. If we observed improvement in sleep stage pairs

which are not included in the transition rules (i.e. any pair other than N1-N2, N1-R

and N2-R, see Table 2), we would conclude that the algorithm learned spurious patterns

that are an artifact of our training data. Additionally, we should observe at least some

small improvement and certainly no decrease in the classification performance between

pairs N1-N2, N1-R and N2-R. In this case, even without having data from different sleep

pathologies we can evaluate whether the epoch-to-epoch or hypnogram-level patterns that

our algorithm learned were akin to the generic guidelines or overfitting to the training

data.
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3 Results

As we show in the the normalised confusion matrix in Table 5, the most correctly classified

sleep stage was N3, with around 90% of stage N3 epochs correctly classified. Stages

N2, R and W follow, with around 80% of epochs correctly classified for each stage.

The most misclassified stage was N1 with 60% of stage N1 epochs correctly classified.

Most misclassifications occurred between the pairs N1-W and N1-R (about 15% and 13%

respectively), followed by pairs N1-N2 and N2-N3 (about 8%), and N2-R and R-W (about

4%). The remaining pairs had either misclassification rates smaller than 4% (N2-W and

N3-W) or almost no misclassifications at all (N1-N3 and N3-R). We also observe that the

percentage of false negatives with respect to each stage (non-diagonal elements in each

row) per pair of stages was approximately balanced between the stages in the pair (the

only conspicuous exception is the pair N1-W, and, to a lesser extent, the pair N2-W).

Effectively the upper and lower triangle of the confusion matrix are close to being mirror

images of each other. This is a strong indication that the misclassification errors due to

class imbalance have been mitigated.

As we show in Table 6, our method has both high overall accuracy (78%, range 75–

80%), and high mean F1-score (84%, range 82–86%) and mean accuracy across individual

sleep stages (86%, range 84–88%) over all subjects. From the scoring performance metrics

results in Table 6 we observe that our method either outperformed or had approximately

equal performance with the methods in the literature in all metrics apart from worst-

stage precision (the non-independent testing results at the bottom row are not taken into

account). In many cases, even the lower end of the 95% confidence interval (the top

number in parentheses) was higher than the corresponding metric for the other methods.

Table 6 also summarises the improvement of our method over the state of the art, i.e.

the best of all the methods in the literature in that particular metric (negative numbers

indicate worse performance than the state of the art). Overall, our method exhibits

improved performance over the state of the art in automated sleep scoring using single-

channel EEG across the five scoring performance metrics.

In Table 7 we show the results of the algorithm without and with information from
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neighbouring epochs. We observe that there is no mutual improvement in any other

stages apart from the targeted pairs N1-N2, N1-R and N2-R.

We also assessed the independence of the scoring performance (for F1-score and overall

accuracy) of our method across recordings relative to sleep efficiency and the percentage

of transitional epochs per recording (Table 8). The p-values of the regression coefficients

are all above 0.15, which means that we fail to reject the null hypothesis of zero R2, which

is already negligible (lower than 0.1) in all cases. For clarity we present the data for these

tests graphically for the F1-score results in Figures 1 and 2. Our dataset contained 10

recordings with sleep efficiency below 90% (in the range 60-89%), which is the threshold

recommended in [23, p. 7] for young adults. The percentage of transitional epochs ranged

from 10-30% across recordings.

Finally, in Figure 3 we present an original manually scored hypnogram and its corre-

sponding estimated sleep hypnogram using our algorithm for a single PSG for which the

overall F1-score was approximately equal to the mean F1-score across the entire dataset.

4 Discussion

Given the high disagreement across epochs between human experts [24] a 1–2% improve-

ment in mean scoring performance may not be considered significant. We think that there

are two characteristics that render our method better than the state of the art. First,

we significantly decreased the gap between the mean performance over all sleep stages

and the most misclassified stage performance (stage N1) compared to the state of the

art with about 20% improvement in the F1-score and 10% improvement in accuracy over

the state of the art (with independent testing). Second, we mitigated the adverse effects

of class imbalance to sleep stage scoring. This is an indication that our method could

be generalised to data with varying proportions across sleep stages, and is not markedly

affected by these proportions, as other methods in the literature seem to be by inspecting

their normalised confusion matrices. In our future work we aim to replicate these results

in independent datasets. After addressing class imbalance, the majority of the remain-
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ing misclassification errors is likely due to either differences in EEG patterns that our

feature extraction methodology cannot sufficiently capture, difficulty in capturing EOG

and EMG-related that are important in distinguishing between certain sleep stage pairs

features through the single channel of EEG, or inherent similarities between sleep stages

in epochs that even experts would disagree with one another about.

The most misclassified pair of sleep stages using our method was N1-W; about 15%

false negatives for each stage were accounted for by the other. We think that the root

cause of the problem is the similarity in the characteristic EEG frequency patterns of

sleep stages N1 and W, as described in the AASM sleep scoring manual [11]. Specifically,

relatively low voltage mixed 2–7 Hz and alpha (8–13 Hz) activity are described as criteria

for both stages. The second most misclassified pair of sleep stages was N1-R, for which

the characteristic EEG frequency patterns are similar as well. There are 4 transition

rules which pertain to the N1-R pair in the AASM manual, which have proven useful,

as we showed in Table 7. However, some of these rules rely heavily on EOG and EMG,

so it was difficult to exploit their full potential. The next most misclassified pairs of

sleep stages were N1-N2 and N2-N3 (about 8%). The classification between stages N1

and N2 depends to a great extent on transition patterns (Table 2) that partly rely on

the detection of arousals (and, in particular, on K-complexes associated or not with

arousals), body movements and slow eye movements, which can be difficult to capture

using a single channel of EEG. The misclassification between stages N2 and N3 could be

partly attributed to the potential persistence of sleep spindles in stage N3 [11, p. 27].

Of the two electrodes in the dataset, we achieved better results using the signal from

electrode Fpz-Cz. We hypothesised that this was due to fact that the Fpz-Cz position can

better capture most of the frequency band activity that is important for sleep staging.

Specifically, delta activity [5], K-complexes [9] and lower frequency sleep spindles [12] are

predominantly frontal phenomena, and alpha activity, although it is predominantly an

occipital phenomenon, can manifest itself in frontal derivations [5]. Theta activity [5]

and higher frequency sleep spindles [12] are mostly parietal phenomena. However, theta

activity is present in multiple sleep stages, so even if it were captured more effectively
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from the Pz-Oz position it might not have been very beneficial by itself. In our future

work, we aim to work with datasets with more electrodes so that we can rigorously test

specific hypotheses about the suitability of different electrode positions.

Although we recognise that our dataset does not contain a very large number of record-

ings of bad sleep quality, we found no statistically significant correlation between sleep

efficiency and mean scoring performance. Similarly, there was no statistically significant

correlation between the percentage of transitional epochs (which are by definition more

ambiguous) and mean sleep scoring performance. These statistical test results indicate

that our method could be robust across a number of potentially adverse factors. In our

future work we aim to perform the same tests in datasets containing a wider range of

ages and sleep pathologies.

Mean interrater agreement between human sleep scorers across subjects and stages can

vary significantly. For example, in [24] the consensus agreement among three experts was

between 60-80%. It would therefore be desirable that the difference in the performance of

an automated scoring algorithm across scorers is not significant (i.e. that the algorithm

does not overfit to a specific expert’s scoring style). Each recording in our dataset was

scored by one of six different experts. In total there are 27 recordings scored by a single

expert (expert C), and 12 recordings scored by all other five experts combined. The

number of recordings per expert was not sufficiently large to perform a formal statistical

test to assess the significance of differences in scoring performance across experts. Both

the mean F1-score for the recordings scored by expert C and the mean F1-score for the

recordings scored by any of the other experts were between 83–84%. Both values are

close to each other and the overall F1-score. In our future work we aim to work with

datasets that either, preferably, are scored using consensus agreement or, alternatively,

contain a larger number of recordings per expert.

For different pathologies that are related with sleep disorders, there are different sleep

stages that are relatively more important for distinguishing them from normal sleep. For

instance, to distinguish normal sleep from sleep in patients with depression stages R

and N3 are relatively more important than other stages (see for example [21]). Common
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measures of sleep quality, include sleep efficiency, wake after sleep onset and sleep latency

[23, p. 226], for all of which detection of stage W is essential. Different drugs are

associated with effects in all non-R sleep stages N1, N2 and N3 [23, p. 9]. Excessive

daytime sleepiness and sudden-onset sleep (sudden W to N2 transition) are present in

Parkinson’s disease [10], and detection of stages N1 and N2 are particularly important for

those. These examples indicate the broad range of sleep architecture aspects that need

to be targeted across different pathologies. Therefore, the accurate scoring of the entire

sleep architecture would be beneficial for a wide range of biomedical applications.

Our method can account for case-specific relative importance of sleep stages in a

straightforward way. Our classification algorithm outputs class probabilities. Since in

our paper we placed the same weight to each sleep stage, we classified each epoch to the

stage that had the highest class probability. If we wanted to place different weight to

each class, we could multiply each stage’s probability with a stage-specific weight before

choosing the stage with the highest class probability (of course, these weights should be

the same for each classified epoch). This would incorporate the relative importance that

a researcher places on each sleep stage given the specific sleep pathology that they are

trying to identify.

To the best of our knowledge our method has the best performance in the literature

when classification is done across all five sleep stages simultaneously using a single channel

of EEG. This is different from doing fewer than five one-vs-all classification tasks, as in

the latter case, if the eventual overall objective is simultaneous 5-class classification, the

performance is likely overestimated. There are examples in the literature that achieve

higher performance in a single or two one-vs-all classification tasks, especially for the most

easily distinguishable stages N3 and W. However, this is not the same as achieving high

performance in a 5-class classification problem, because the errors in the remaining classes

are not taken into account. Therefore, since our method achieved very high performance

for stages N3 and W, while simultaneously achieving good performance in the remaining

stages, it is preferable to a method that achieves high performance in a stage W versus

N3-only classification task.
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Figure captions

Figure 1: F1-score as a function of sleep efficiency.

Figure 2: F1-score as a function of transitional epochs.

Figure 3: The original manually scored hypnogram (top) and the estimated
hypnogram using our algorithm (bottom) for the second night of subject number 2.
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Table 1: The Rechtschaffen and Kales sleep staging criteria [20], adapted from [22].

Sleep Stage Scoring Criteria

Non-REM 1 (N1) 50% of the epoch consists of relatively low voltage mixed (2-7 Hz) activity,

and < 50% of the epoch contains alpha (8-13 Hz) activity. Slow rolling eye

movements lasting several seconds often seen in early N1.

Non-REM 2 (N2) Appearance of sleep spindles and/or K complexes and < 20% of the epoch

may contain high voltage (> 75 µV, < 2 Hz) activity. Sleep spindles and K

complexes each must last > 0.5 seconds.

Non-REM 3 (N3) 20%− 50% (formerly N3) or > 50% (formerly N4) of the epoch consists of high

voltage (> 75 µV), low frequency (< 2 Hz) activity.

REM (R) Relatively low voltage mixed (2-7 Hz) frequency EEG with episodic rapid eye

movements and absent or reduced chin EMG activity.

Wake (W) > 50% of the epoch consists of alpha (8-13 Hz) activity or low voltage, mixed

(2-7 Hz) frequency activity.
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Table 2: The transition rules summarised from the AASM sleep scoring manual [11,
Chapter IV: Visual Rules for Adults, pp. 23–31].

Stage Pair Transition Pattern Rule Differentiating Features

N1-N2

N1-{N1,N2} 5.A.Note.1 Arousal, K-complexes, sleep spindles

(N2-)N2-{N1,N2}(-N2)
5.B.1 K-complexes, sleep spindles

5.C.1.b Arousal, K-complexes, sleep spindles

N2-{N1-N1,N2-N2}-N2 5.C.1.c Alpha, body movement, slow eye movement

N1-R
R-R-{N1,R}-N2

7.B Chin EMG tone

7.C.1.b Chin EMG tone

7.C.1.c Chin EMG tone, arousal, slow eye movement

R-{N1-N1-N1,R-R-R} 7.C.1.d Alpha, body movement, slow eye movement

N2-R

R-R-{N2,R}-N2 7.C.1.e Sleep spindles

(N2-)N2-{N2,R}-R(-R)

7.D.1 Chin EMG tone

7.D.2 Chin EMG tone, K-complexes, sleep spindles

7.D.3 K-complexes, sleep spindles

Curly braces indicate choice between the stages or stage progressions in the set based on the dis-

tinctive features, and parentheses indicate optional epochs.
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Table 3: Peak frequencies and number of wavelet cycles per frequency for
time-frequency analysis using complex Morlet wavelets.

Target Target Frequency Peak Number of

Frequency Sleep or Time Frequency Wavelet

Band Stages Precision (Hz) Cycles

slow (0.5-2 Hz) N3 Time 0.7 3

slow (0.5-2 Hz) N3 Time 1 3

slow (0.5-2 Hz) N3 Time 1.5 3

slow (0.5-2 Hz) N3 Time 2 3

K-complex (1.6-4 Hz) [9] N2 Time 2 3

K-complex (1.6-4 Hz) [9] N2 Time 3.2 3

delta/theta (2-7 Hz) N1,R,W Intermediate 3 5

delta/theta (2-7 Hz) N1,R,W Intermediate 4 5

delta/theta (2-7 Hz) N1,R,W Intermediate 5 5

delta/theta (2-7 Hz) N1,R,W Intermediate 6 5

alpha (8-13 Hz) N1,W Frequency 8 10

alpha (8-13 Hz) N1,W Frequency 10 10

alpha (8-13 Hz) N1,W Frequency 12 10

spindle (12-15 Hz) N2,N3 Time 12 3

spindle (12-15 Hz) N2, N3 Time 13 3

spindle (12-15 Hz) N2,N3 Time 14 3

spindle (12-15 Hz) N2,N3 Time 15 3

beta (15-30 Hz) N1 (arousal) Time 16 3

beta (15-30 Hz) N1 (arousal) Time 18 3

beta (15-30 Hz) W Intermediate 20 5

gamma (30-100 Hz) * N1,N2,N3,R,W Intermediate 40 5

* There is evidence in the literature that features from modalities other than EEG, such as eye

movements [27], stage R sleep [13] and EMG activity [8, 25], can manifest themselves in the gamma

activity of EEG.
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Table 4: Features extracted from the single-channel EEG signal.

Feature Number Purpose Transform

Power of frequency-band

power over the entire epoch

22 Capture the overall presence of the partic-

ular frequency band in the signal

log(x)

Power of frequency-band

power using a sliding window

231 Capture the presence of the particular fre-

quency band in the signal across time

log(x)

Time-domain signal

power over the entire epoch

1 Capture the overall amplitude characteris-

tics of the signal

log(x)

Time-domain signal

power using a sliding window

11 Capture the amplitude characteristics of

the signal over time

log(x)

Frequency-band

power-power correlation

242 Capture the relationships between the dif-

ferent frequency bands over time

None

Time-domain signal

autocorrelation

50 Capture long-term dependencies in the sig-

nal

x2

ALL 557
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Table 5: Confusion matrix from cross-validation using the Fpz-Cz electrode.

N1 N2 N3 R W

(algorithm) (algorithm) (algorithm) (algorithm) (algorithm)

N1 (expert) 1654 (60%) 262 (10%) 8 (0%) 366 (13%) 472 (17%)

N2 (expert) 1270 (7%) 13696 (78%) 1231 (7%) 760 (4%) 621 (4%)

N3 (expert) 7 (0%) 469 (8%) 4966 (89%) 6 (0%) 143 (3%)

R (expert) 899 (12%) 340 (4%) 0 (0%) 6164 (80%) 308 (4%)

W (expert) 441 (13%) 34 (1%) 23 (1%) 138 (4%) 2744 (81%)

This confusion matrix is the sum of the confusion matrices from each fold. The numbers in bold

are numbers of epochs. The numbers in parentheses are the percentage of epochs that belong to the

class classified by the expert (rows) that were classified by our algorithm as belonging to the class

indicated by the columns.
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Table 6: Comparison between our method and the literature across the five scoring
performance metrics (precision, sensitivity, F1-score, per-stage accuracy, and overall

accuracy).

Scoring performance metrics

Precision Sensitivity F1-score Accuracy

Study Mean Worst Mean Worst Mean Worst Mean Worst Overall

Independent training and testing

[16] 93 89 77 29 82 43 86 63 77

[16] 90 82 73 19 77 31 83 57 73

[3] 92 88 74 36 81 51 84 66 74

(92) (86) (75) (55) (82) (68) (84) (74) (75)

current 93 88 78 60 84 71 86 76 78

(94) (90) (80) (65) (86) (75) (88) (78) (80)

0 -1 +1 +24 +2 +20 0 +10 +1

Non-independent training and testing

[6] 93 88 77 53 84 68 86 75 77

current 95 91 82 65 88 76 89 79 82

+2 +3 +5 +8 +4 +8 +3 +4 +5

For the binary metrics, we report the mean performance (over all five sleep stages) as well as

the worst performance (in the most misclassified sleep stage, always stage N1). We present the

results for our method using the Fpz-Cz electrode with cross-validation using both independent

and non-independent training and testing. The numbers in parentheses are the bootstrap 95%

confidence interval bounds for the mean performance across subjects. The signed numbers in italics

indicate the improvement (positive) or deterioration (negative) in performance over the second best

(improvement) or best (deterioration) method in the literature.
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Table 7: Normalised confusion matrices from 20-fold cross-validation using the Fpz-Cz
electrode without and with neighbouring epochs. All values are percentages. Pairs of

stages with mutual improvement are in bold (N1-N2, N1-R and N2-R).

Algorithm

Without neighbouring epochs With neighbouring epochs

N1 N2 N3 R W N1 N2 N3 R W

N1 (expert) 53 11 0 17 18 60 9 0 13 17

N2 (expert) 8 77 7 5 4 7 78 7 4 4

N3 (expert) 0 8 89 0 3 0 8 89 0 3

R (expert) 18 5 0 73 5 12 4 0 80 4

W (expert) 13 1 1 4 82 13 1 1 4 81
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Table 8: Correlation between sleep efficiency and percentage of transitional epochs,
and scoring performance (F1-score and overall accuracy).

Recording parameters

Sleep efficiency Percentage of transitional epochs

Metric R2 p-value R2 p-value

F1-score 0.02 0.42 0.04 0.20

Overall accuracy 0.02 0.46 0.05 0.17
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