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Abstract

Truss-based lattice materials are cellular materials with an outstanding potential for
multi-functional use. This is owing to properties of high compressive strength to density
ratios combined with a periodic and open structure. However, such structures at low rel-
ative densities are particularly vulnerable to elastic buckling failure. Fibre-reinforcement
that increases the buckling strength of lattice materials is proposed and the behaviour of
unit cells that are tessellated within the lattice is investigated. A two-dimensional square
orientated unit cell and a three-dimensional tetrahedron-shaped unit cell are both modelled
discretely using energy principles with the nonlinear interactive buckling behaviour being
analysed. The analytical approach, based on a perturbation method, exhibits excellent
agreement for the mechanical response when compared to results from numerical continu-
ation for moderately large displacements. A fundamental understanding of the mechanical
behaviour of a unit cell can be upscaled in future work. It is postulated that this will
enable the determination of the constitutive behaviour of such lattice materials.

Keywords: mode interaction; analytical modelling; lattice materials; structural stability;
nonlinear mechanics

1. Introduction

In the course of the last few decades, cellular materials, for example metallic foams or
honeycombs, have emerged in various engineering applications, such as core materials in
sandwich panels, due to the combination of advantageous mechanical, thermal and acoustic
properties [1]. Recent progress in additive manufacturing has enabled the production of
truss-based lattice materials that, according to [2], outperform other cellular materials par-
ticularly in terms of the strength-to-density ratio. Lattice materials tend to have periodic,
open topologies that offer possibilities of combining structural functions with thermal ap-
plication, as shown in [3], or in medical applications [4]. However, the compressive strength
of such materials may be limited by the collapse mechanism of the respective unit cell from
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which the lattice material is composed. Cellular materials comprising slender trusses, and
hence low relative densities, are known to be prone to elastic buckling of their internal
structure [5]. In the current context, relative density ρ̄ is defined by the expression:

ρ̄ =
ρ∗

ρs
, (1)

and refers to the ratio of the densities of the actual cellular material ρ∗ to that of a solid
body made from the parent material ρs. The correlation between low relative densities
and an increased vulnerability to elastic buckling was demonstrated experimentally for
different geometries and materials in [6] for ρ̄ = 0.03 and [7] for ρ̄ = 0.014. A mechanism
for increasing the strength in axial compression that is widely applied in civil engineering
is to reinforce compression members by introducing pretensioned elements such as cable
stays. This leads to a higher buckling resistance as the cables help to restrain the structure
against the initial displacement during buckling [8, 9, 10, 11, 12, 13]. By transferring this
concept towards lattice materials the maximum compressive strength can be potentially
increased beyond the conventional eigenvalue buckling load while avoiding a considerable
gain in self-weight, or in the current case avoiding a significant increase in ρ̄.

The objective of the current work is to investigate the potential effect of interwo-
ven fibres on the critical and post-buckling response of lattice materials. Therefore, a
fibre-reinforced lattice material is proposed based on an existing square orientated lattice
material discussed in [6]. The deformational behaviour of the unit cell in the internal
structure under axial compression is investigated using an analytical approach focusing on
elastic buckling behaviour in the nonlinear range. Discrete models of unit cells comprising
rigid links and springs, initially in two-dimensions and subsequently in three-dimensions
are formulated using total potential energy principles. The performance of each model is
evaluated in terms of the critical and post-buckling behaviour both analytically and nu-
merically. Potentially important nonlinear interactions between different instability modes
in the post-buckling range and the consequences to the overall stability are investigated. It
has been demonstrated previously that a fundamental understanding of system behaviour
can facilitate exploitation of these lightweight materials with safety [14]. The article con-
cludes with a discussion where some detailed suggestions for further work are made.

2. Fibre-reinforced square orientated lattice material

2.1. Material development

Figure 1 shows a square orientated lattice material suggested and experimentally eval-
uated with respect to its out-of-plane compressive behaviour in [6]. Figure 1(b) emphasises
the vulnerability to elastic buckling failure of the internal structure with low relative den-
sities. This failure mechanism may be suppressed by a square lattice structure which is
reinforced by fibres. The fibres contribute to the buckling resistance and hence to the over-
all compressive strength of the lattice material. A computer aided design (CAD) model of
such a fibre-reinforced lattice material is presented in Fig. 2.
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Figure 1: Photographs of a square orientated lattice material showing (a) the geometry and (b) the
deformational behaviour exhibiting fibre buckling within the internal structure [6].
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Figure 2: CAD model of a fibre-reinforced lattice material showing its (a) structure and (b) application
as a sandwich core.

2.2. Model development

A unit cell of the internal fibre-reinforced structure is modelled to obtain a deeper un-
derstanding of the deformational behaviour at cell level during elastic buckling. Therefore,
a cross-shaped unit cell, as highlighted in Fig. 2(b), is modelled as a multiple-degree-of-
freedom system in two dimensions, as represented in Fig. 3. The horizontal and vertical
struts are modelled by pin-jointed rigid links, whereas the joints are reinforced by rota-
tional springs of stiffness cy. The horizontal strut is connected to the vertical strut at
mid-height rigidly. Moreover, a lateral spring acts with stiffness k at mid-height of the
horizontal strut to model the lateral resistance contributed by the interwoven fibres. The
cell is assumed to be fully fixed at the upper and lower ends. Hence, the x-displacement
and rotation of the outer links of length a is prevented such that they remain vertical. The
respective ends of the horizontal crossarm, assigned with length b, are allowed to move in
the x- as well as the z-direction. However, it is assumed that they remain horizontal as well
as at the same height as the rigid corner. This enables the comprehensive description of
the deformational behaviour at the cell level using only two generalized coordinates q1, q2.
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Figure 3: (a) Configuration of the undeflected rigid link model for the unit cell shown in Fig. 2(b), and
(b) an arbitrarily deflected state under axial load P .

In the case where one cell would be embedded into a grid of many cells, the constraints
arising from the neighbouring cells would need to be considered also.

2.3. Total Potential Energy

The total potential energy function V for a single cell is formulated by evaluating the
total strain energy stored in all the springs U and the work done by the external load P∆
[15]:

V (qi, P ) = U(qi)− P∆(qi) (2)

where currently i = {1, 2}. The total strain energy is decomposed into two constituent
parts, the contribution from the longitudinal springs UL and those from the rotational
springs UR. These terms are developed by considering an arbitrarily deflected state in
the xz-plane, as shown in Fig. 3(b). The energy stored in the lateral spring gives the
expression:

UL =
kl2

8
(q1 + q2)

2 . (3)

For the strain energy stored in the rotational springs, the behaviour of the horizontal
strut becomes significant due to the rigid joint at mid-height. Hence, UR consists of one
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component being active, i.e. non-zero, for every deflected shape and a second component
being non-zero only for buckling shapes where q1 6= q2. This leads to the expression:

UR =
cy
2

[
θ21 + θ23 + θ24 + θ26 + (θ1 − θ2)2 + (θ2 + θ3)

2 + (θ4 − θ5)2 + (θ5 + θ6)
2
]
, (4)

in which:

θ1 = arcsin(q1), θ2 = arcsin(q2 − q1), θ3 = arcsin(q2),

θ4 = arcsin

(
q1 − q2

2

)
, θ5 = arcsin(q2 − q1), θ6 = arcsin

(
q2 − q1

2

)
.

The end-shortening displacement ∆ contributes to the work done by the load P and is
given by the expression:

∆ = l

[
3−

(√
1− q21 +

√
1− (q2 − q1)2 +

√
1− q22

)]
. (5)

Assuming only moderately large deformations, the energy is expressed as a power series
and is truncated after order four. The total potential energy V can be non-dimensionalized
by dividing through the rotational stiffness cy, thus:

Ṽ (q1, q2, p) =
11

2
q21 − 9q1q2 +

13

2
q21q

2
2 −

9

2
q31q2 +

11

2
q22 −

9

2
q1q

3
2 +

19

12

(
q41 + q42

)
+
K

8

(
q21 + q22

+2q1q2)− p
(
q21 − q1q2 +

3

4
q21q

2
2 −

1

2
q31q2 + q22 −

1

2
q1q

3
2 +

1

4
q41 +

1

4
q42

)
,

(6)
with the now non-dimensionalized parameters given by:

Ṽ =
V

cy
, K =

kl2

cy
, p =

Pl

cy
.

The potential energy expression is also diagonalized using the following transformation:

u1 = q1 + q2, u2 = q1 − q2. (7)

This results in the diagonalized non-dimensional total potential energy expressionA(u1, u2, p):

A(u1, u2, p) =
1

2
u21 + 5u22 +

3

8
u21u

2
2 +

1

24
u41 +

7

6
u42 +

K

8
u21

− p

4

(
u21 + 3u22 +

3

8
u21u

2
2 +

1

16
u41 +

9

16
u42

)
.

(8)

2.4. Critical equilibrium

The normalized critical loads pCi of two different buckling modes are subsequently cal-
culated through linear eigenvalue analysis where the Hessian matrix of A becomes singular,
thus:

det(A) = AF
11A

F
22 = 0 (9)

5



with AF
ij =

(
∂2A

∂ui∂uj

)
being evaluated along the fundamental equilibrium path F, which in

this case can be determined to be q1 = q2 = 0 and hence u1 = u2 = 0. The associated
buckling modes are determined through the calculation of the respective eigenvectors ~ai:

pC1 =
1

2
K + 2, ~a1 = [1, 0]T ⇒ q1 = q2

pC2 =
20

3
, ~a2 = [0, 1]T ⇒ q1 = −q2.

(10)

In the following discussion, mode 1 will be referred to as the symmetric mode with the
active coordinate u1, whereas mode 2 will be referred to as the antisymmetric mode with u2
being the active coordinate. The critical loads are plotted in Fig. 4 against the normalized
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Figure 4: Distribution of critical loads pCi in terms of K.

lateral stiffness parameter K. Note that pC2 is independent of K because the midspan
lateral displacement is zero in the antisymmetric mode. Moreover, note that pC1 = pC2
when K = 28/3 and mode 2 is critical when K > 28/3.

2.5. Post-buckling behaviour

According to the perturbation method introduced in [16] and [17], the equilibrium
equations derived from the truncated potential energy expression in Eq. (8) can be written
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in general form:

∂A

∂u1
=AF

11u1 +
1

2
AF

1122u1u
2
2 +

1

6
AF

1111u
3
1 + δpA′F11u1 = 0,

∂A

∂u2
=AF

22u2 +
1

2
AF

1122u
2
1u2 +

1

6
AF

2222u
3
2 + δpA′F22u2 = 0,

(11)

where δp = p− p0 is a load increment in p from an arbitrary load level p0. The respective
coefficients are:

AF
11 =

1

4
K + 1− 1

2
p0, AF

22 = 10− 3

2
p0, AF

1122 =
3

2
− 3

8
p0,

AF
1111 = 1− 3

8
p0, AF

2222 = 28− 27

8
p0 A′F11 = −1

2
, A′F22 = − 3

16
.

(12)

To find a relationship between u1 and u2, both equilibrium equations from Eq. (11) are
respectively solved for δp and subsequently equated. The resulting relationship:

u21

(
1

6

AF
1111

A′F11
− 1

2

AF
1122

A′F22

)
+ u22

(
1

2

AF
1122

A′F11
− 1

6

AF
2222

A′F22

)
=
AF

22

A′F22
− AF

11

A′F11
, (13)

reveals that the post-buckling behaviour will be either elliptic or hyperbolic-shaped as it
follows the specific form

a1u
2
1 + a2u

2
2 = a3 (14)

which gives

• a hyperbola branching from the u1-axis for a1, a3 > 0, a2 < 0 or a1, a3 < 0, a2 > 0,

• a hyberbola branching from the u2-axis for a1 < 0, a2, a3 > 0 or a1 > 0, a2, a3 < 0,

• straight lines through the origin for a1 > 0, a2 < 0, a3 = 0 or a1 < 0, a2 > 0, a3 = 0 or

• an ellipse for a1, a2, a3 > 0.

Hence, the characteristic of the post-buckling behaviour depends on the magnitude and
signs of the respective terms a1, a2, a3. If p0 = pC1 the solution in the u1u2-plane can be
rewritten thus:

u21

(
1

6
AF

1111 −
1

2
AF

1122

A′F11
A′F22

)
︸ ︷︷ ︸

a1

+u22

(
1

2
AF

1122 −
1

6
AF

2222

A′F11
A′F22

)
︸ ︷︷ ︸

a2

= −∆pA′F11︸ ︷︷ ︸
a3

, (15)

where ∆p = pC2 − pC1 . Since only moderately large deflections are considered and ∆p obvi-
ously influences the distance of the coupled-buckling curve from the origin, the following
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considerations are limited to values of K within the vicinity of K = 28/3 where ∆p = 0.
Within this region it is valid since:

AF
1111 > 3AF

1122

A′F11
A′F22
⇒ a1 > 0

AF
2222 > 3AF

1122

A′F22
A′F11
⇒ a2 < 0.

(16)

Hence, the form of coupled buckling is determined solely by the term a3 = −∆pA′F11. Since
A′F11 is a constant, Table 1 shows the possible forms of interactive buckling for moderately

u1

u2

u1

u2

u1

u2

K = 9.30 (∆p < 0) K = 28/3 (∆p = 0) K = 9.40 (∆p > 0)

hyperbola branching straight lines going hyperbola branching

from u1-axis through origin from u2-axis

symmetric mode compound branching antisymmetric mode

critical point critical

Table 1: Forms of the coupled solutions for the symmetric and antisymmetric modes being critical and
simultaneous.

large deflections solely dependent on ∆p. The equilibrium paths for the case where K =
28/3 are shown in Fig. 5. Note that the paths showing interactive buckling are less stable
than those from the pure modes.

3. Tetrahedron-shaped unit cell

The previous section began on the material level and focused then on the derivation
and modelling of a representative element taken from the proposed fibre-reinforced square
orientated lattice material. The current section considers an element that comprises two
tetrahedrons shaping a fibre-reinforced unit cell in three dimensions (Fig. 6). Owing to
its regular geometry, it can be reproduced periodically to manufacture a lattice material.
Considering the increasing advances in the technology of additive manufacturing, the cur-
rent work could be considered as groundwork for the future development of this range
of lattice materials. Therefore, the unit cell is devised, structurally analysed under axial
compression and compared to the element in the previous section.

8



−0.4 −0.2 0 0.2 0.4

5.4

5.8

6.2

6.6

u1

p

pure-mode buckling
interactive buckling

2

4

6

−0.4 −0.2 0 0.2 0.4

u2

p

−0.4 −0.2 0.2 0.4

−0.4

−0.2

0.2

0.4

u1

u2

u1
u2

p

2

6

−0.5

0.5
0

0.2

−0.2

Figure 5: Pure and coupled buckling for K = 28/3. Note that the interactive buckling branches are less
stable than those from the pure buckling modes.

3.1. Model development

The unit cell is modelled by discretizing it into a three-dimensional multiple degree-
of-freedom system. The unit cell, as illustrated in Fig. 6, comprises a slender column
equipped with three crossarms at mid-height. The ends of the crossarms are connected
with the tips of the column by fibres. The discrete model of the unit cell is shown in Fig.
7; it comprises three nodes and four rigid links of length l. The rotational movement at the
nodes is restrained by rotational springs of stiffness cx and cy which respectively represent
the flexural rigidity about the x- and y-axis. A rosette of three lateral springs of stiffness
k and natural length a is positioned at the central node to model the resistance against
buckling from the fibre-supported crossarms. The displacements at every node are given
by qixl and qiyl for i = {1, 2, 3} with qix and qiy as non-dimensional generalized coordinates.
Hence, the system has six degrees of freedom: three concerning deflection in the x-direction
and a further three for the y-direction respectively.
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Figure 6: Unit cell comprising two tetrahedrons forming a fibre-supported lattice.
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Figure 7: Model comprising rigid links and springs for the tetrahedron shaped unit cell in (a) an isometric
view and (b) a plan view of mid-section spring rosette that resists lateral displacement.
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3.2. Total potential energy

The equilibrium equations are again determined according to the minimum total po-
tential energy principle. The strain energy from the longitudinal springs UL is developed
by considering an arbitrarily deflected state in the xy-plane, which has the general form:

UL =
k

2

3∑
i=1

(a− li)2, (17)

where a is the rosette link natural length and li is the current length in the deflected state.
The expression for UL is derived by means of Fig. 8 and is given by the expression:

q2xl
q 2

y
l

a
l2

β

q2xl

q 2
y
l

l3
a

β

q2xl

q 2
y
l

a

a

a

l1

l2

l3

β

β

(a) (b) (c)

Figure 8: Calculation of strain energy stored in the spring rosette: (a) change in length of all elements;
(b–c) deflection of individual rosette link elements.

UL =
kl2

2

[(√
(α + q2x)2 + q22y − α

)2
+

(√(√
3α/2− q2y

)2
+ (α/2− q2x)2 − α

)2

+

(√(√
3α/2 + q2y

)2
+ (α/2− q2x)2 − α

)2 ]
,

(18)

where α = a/l.
The strain energy contribution of the rotational springs can be derived from Fig. 9(a),

which is analogous to the formulation in [18], and is given by the expression:

UR =
cy
2

{[
(θ0x − θ1x)2 + (θ1x + θ3x)2 + (θ4x − θ3x)2

]
+R

[
(θ0y − θ1y)2 + (θ1y + θ3y)

2 +(θ4y − θ3y)2
]}
,

(19)

11



q1yl
q1xl

q2yl

q3yl

q2xl

q3xl

l

l

l

l

√
q21xl

2 + q21yl
2

√
(q2x − q1x)2l2 + (q2y − q1y)2l2

√
(q2x − q3x)2l2 + (q2y − q3y)2l2 √

q23xl
2 + q23yl

2

y

z

x

z

x

θ0x

l

l

l

l

q1xl

q2xl

q3xl

θ1x

θ3x

θ4x

P P

(a) (b)

Figure 9: (a) Angles of rotation about the y-axis ; (b) evaluation of the vertical end-shortening to calculate
the work done by the load P .
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where:

R = cx/cy, θ0y = arcsin(q1y), θ1y = arcsin(q2y − q1y),
θ3y = arcsin(q2y − q3y), θ4y = arcsin(q3y), θ0x = arcsin(q1x),

θ1x = arcsin(q2x − q1x), θ3x = arcsin(q2x − q3x), θ4x = arcsin(q3x).

(20)

The total strain energy is given by the expression:

U = UL + UR. (21)

The work done by the load term P∆ is also calculated using a procedure analogous to the
three-dimensional link model by [18] and has the expression thus:

P∆ =Pl

{
4−

[√
1− (q21x + q21y) +

√
1− (q2x − q1x)2 − (q2y − q1y)2

+
√

1− (q2x − q3x)2 − (q2y − q3y)2 +
√

1− (q23x + q23y)

]}
.

(22)

3.3. Critical equilibrium

Prior to determining the critical and post-buckling behaviour, the energy formulation
is truncated beyond order 4 once more. Subsequently the expression is diagonalized by
changing the set of variables from qix, qiy for i = {1, 2, 3} to the pure modal-coordinates uj
for j = {1, 2 . . . , 6} as presented in Appendix A. Hence, the diagonalized potential energy
expression becomes a function A dependent on those new coordinates as well as on the
load parameter p; hence

A = A(u1, u2, . . . , u6, p). (23)

Linear eigenvalue analysis, as in the previous section, yields the following normalized crit-
ical loads:

pC1 = 2 +
3

4
K − 1

4

√
32− 24K + 9K2

pC2 = 2

pC3 = 2 +
3

4
K +

1

4

√
32− 24K + 9K2

pC4 = 2R +
3

4
K − 1

4

√
32R2 − 24KR + 9K2

pC5 = 2R

pC6 = 2R +
3

4
K +

1

4

√
32R2 − 24KR + 9K2.

(24)

The individual elements of the Hessian matrix A of the potential energy normalized by
dividing through by cy are listed in Appendix B. The loads triggering modes 1 and 4,
modes 2 and 5, and modes 3 and 6 would respectively coincide for the case R = 1. It is
observed, that modes 1 and 4 are critical for small K, whereas for larger K modes 2 and
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5 become critical. For the sake of clarity the critical loads have been plotted in Fig. 10
against the non-dimensional parameter of lateral stiffness K for the case where R = 2.
The respective eigenvectors are also calculated (see Appendix C). The shapes of the six
modes are illustrated in Fig. 11, where λi expressions for i = {1, 3, 4, 6} are dependent on
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Figure 11: Discrete buckling eigenmodes for the tetrahedron unit cell link model.

R and K as found in Eq. (A.2).

3.4. Modal interactions

The results for mode interaction between both symmetric and antisymmetric modes
are now presented. Under the assumption that the configuration of the model parameters
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separates the bifurcation points of the remaining modes sufficiently, the remaining modes
are considered to be non-active. Hence, the set of governing equilibrium equations is
reduced; later, however, the full system of untruncated equations is solved numerically for
validation purposes.

3.4.1. Symmetric modes

For the investigation of the interaction of modes 1 and 4 it is assumed that only those
two modes are active as functions of the perturbation factor δp.

u1 = α(δp), u2 = u3 = 0, u4 = β(δp), u5 = u6 = 0 (25)

Hence, the governing equilibrium equations are again truncated after the quartic term and
reduced to the following two equations:

∂A

∂u1
=AF

11u1 +
1

2

[
AF

111u
2
1 + AF

144u
2
4

]
+

1

6
AF

1111u
3
1 +

1

2
AF

1144u1u
2
4

+ δpA′F11u1 = 0,

∂A

∂u4
=AF

44u4 + AF
144u1u4 +

1

2
AF

1144u
2
1u4 +

1

6
AF

4444u
3
4 + δpA′F44u4 = 0.

(26)

By eliminating δp in both equations the solution is projected onto the u1u4-plane. For
p0 = pC1 the coupled solution becomes

u1

(
AF

111

2
− AF

144A
′F
11

A′F44

)
︸ ︷︷ ︸

a4

+
u24
u1

AF
144

2︸︷︷︸
a5

+u21

(
AF

1111

6
− 1

2

AF
1144A

′F
11

A′F44

)
︸ ︷︷ ︸

a1

+ u24

(
AF

1144

2
− 1

6

AF
4444A

′F
11

A′F44

)
︸ ︷︷ ︸

a2

= −∆pA′F11︸ ︷︷ ︸
a3

,

(27)

with ∆p = pC4 − pC1 . This equation has a similar form to the coupled-buckling equation
for the square lattice model in Eq. (15) apart from the additional terms a4u1 and a5u

2
4/u1.

The respective coefficients a4, a5 are linearly dependent on the lateral spring stiffness K.
Hence, for the case of no influence of the spring rosette, i.e.K = 0, the coupled buckling

behaviour is reduced to either elliptic or hyperbolic behaviour dependent on a1, a2 and a3
as already discussed in §2.5. In the vicinity of R = 1 (∆p = 0) it is valid that since

AF
1144 <

1

3

AF
1111A

′F
44

A′F11
⇒ a1 > 0

AF
1144 <

1

3

AF
4444A

′F
11

A′F44
⇒ a2 < 0,

(28)

the sign of ∆p determines the form of interactive buckling. This is shown in the first line
of Table 2.
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K = 0

K > 0

R < 1(∆p < 0) R = 1(∆p = 0) R > 1(∆p > 0)

hyperbola branching
from u4-axis

straight lines going
through origin

hyperbola branching
from u1-axis

u1

u4

u1

u4

u1

u4

u1

u4

u1

u4

u1

u4

asymmetric branching
from u1 and u4-axis

symmetric branching
from u4-axis

asymmetric branching
from u1 and u4-axis

mode 4 critical compound branching mode 1 critical

point

Table 2: Forms of the coupled solution for modes 1 and 4.

In the case where the energy contribution of the lateral spring rosette is taken into
account, i.e. K > 0, the post-buckling response becomes asymmetric as shown in the
second row of Table 2. This is owing to the influence of the linear term as well as the cubic
cross term, assigned with the coefficients a4 and a5, which break the inherent symmetry in
terms of the u4-axis. The signs of a4 and a5 are given by the following conditions, since

AF
111 < 2AF

144

A′F11
A′F44
⇒ a4 < 0

AF
114 > 0 ⇒ a5 > 0.

(29)

For R 6= 1, a secondary bifurcation point is observed along the u1-axis while another
secondary bifurcation is supposed to lie in the origin (u1 = u4 = 0). However, the truncated
post-buckling solution exhibits a singularity in u1 = 0 so that the analytical solution is
not defined in that point. It is important to note that the coupled buckling paths remain
symmetric with respect to the u1-axis, but symmetry is lost in terms of the u4-axis due to
the influence of K. Only for the case where R = 1 is symmetry maintained with respect
to both axes.

3.4.2. Antisymmetric modes

With higher values of K, the antisymmetric modes 2 and 5 interact. Since the central
node does not deflect in this case, the non-dimensional lateral stiffness K does not in fact
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contribute to the critical load expressions pC2 and pC5 . Assuming that only these two modes
are active, which implies that the following expressions hold:

u1 = 0, u2 = α(δp), u3 = u4 = 0, u5 = β(δp), u6 = 0, (30)

the system is reduced to the following two equilibrium equations:

∂A

∂u2
= AF

22u2 +
1

6
AF

2222u
3
2 +

1

2
AF

2255u2u
2
5 + δpA′F22u2 = 0,

∂A

∂u5
= AF

55u5 +
1

2
AF

2255u
2
2u5 +

1

6
AF

5555u
3
5 + δpA′F55u5 = 0.

(31)

Projected onto the u2u5-plane for p0 = pC5 , the equilibrium branches of coupled buckling
are described by the equation:

u22

(
1

2
AF

2255 −
1

6

AF
2222A

′F
55

A′F22

)
︸ ︷︷ ︸

a1

+u25

(
1

6
AF

5555 −
1

2

AF
2255A

′F
55

A′F22

)
︸ ︷︷ ︸

a2

= −∆pA′F55︸ ︷︷ ︸
a3

, (32)

with ∆p = pC2 − pC5 which resembles the post-buckling path from the square lattice model
in §2.5. Herein, the coefficients a1, a2 evaluated close to R = 1 are given by:

AF
2255 <

1

3

AF
2222A

′F
55

A′F22
⇒ a1 < 0

AF
2255 <

1

3

AF
5555A

′F
22

A′F55
⇒ a2 > 0.

(33)

Hence, there remains the dependence on a3 – more precisely on ∆p – which is shown
qualitatively in Table 3. Note that quantitative statements regarding the bifurcation points
could be made by evaluating the coefficients for a given parameter configuration.

3.5. Comparison with Auto-07p

The results presented hitherto are compared against results obtained with Auto-07p
[19], a well-known numerical continuation package that is able to locate bifurcation points
as well as compute and switch between the associated stable and unstable branches. In
accordance with Tables 2 and 3, two particular cases for R < 1, K > 0 and R > 1, K > 0
are studied in the following.

3.5.1. Case: R = 0.98, K = 0.5

Figure 12 clearly indicates mode interaction between modes 1 and 4, as well as be-
tween modes 2 and 5. In order to compare the analytically predicted and the numerically
computed results, both curves are superimposed. This was performed for both coupled
buckling phenomena and is shown in Fig. 13. Note that Auto solves the full set of un-
truncated equilibrium equations numerically, whereas the analytical method solves the a
reduced set of truncated equilibrium equations. This justifies the underlying assumptions
presented in §3.4, thus:
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Figure 12: Coupled equilibrium paths, where K = 0.5, R = 0.98, generated by Auto, showing a series of
primary and secondary bifurcations.
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R < 1 (∆p > 0) R = 1 (∆p = 0) R > 1 (∆p < 0)

u2

u5

u2

u5 u5

u2

hyperbola branching

from u5-axis

straight lines going

through origin

hyperbola branching

from u2-axis

mode 5 critical compound branching mode 2 critical

point

Table 3: Forms of the coupled solution for modes 2 and 5.

0.1
u1

−0.1

u4

−0.1

0.1

u5

0.1−0.1
u2

0.1

−0.1

0.2

−0.2

Auto-07p
analytical

(a) (b)

Figure 13: Comparison between the results determined numerically within Auto and the analytical results
for the case K = 0.5, R = 0.98: coupled forms of buckling between (a) modes 1 and 4 and (b) modes 2
and 5; the differences are not distinguishable.
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• when the deformations of the structure are moderately large so that they are de-
scribed sufficiently well by total potential energy terms up to and including quartic,

• in case the competing modes are separated sufficiently from the remaining modes,
e.g. modes 1 and 4 from 2 and 5, the interactive behaviour is precisely described by
a reduced set of equilibrium equations.

3.5.2. Case: R = 1.02, K = 0.5

For the sake of completeness the case R > 0 while K > 0 is investigated in the following
Figures 14 and 15. The results found in the previous subsection are also applicable for the

(a)

−0.5 0 0.5

1

2

q1x

p

−0.5 0.5

−0.4

0.4

q1x

q1y

(b)

(c)

pure-mode buckling
interactive buckling

1

2

p

0.5

q1x

q1y

−0.5

−0.5
0.5

Figure 14: Coupled equilibrium paths, where K = 0.5, R = 1.02, generated by Auto, showing a series of
primary and secondary bifurcations.

current case. Again, it is found that the comparison between the truncated energy model
results and the numerical results from Auto are barely distinguishable.
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0.1−0.1
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0.1

−0.1

0.2−0.2

Auto-07p
analytical

(b)

Figure 15: Comparison between the results determined numerically within Auto and the analytical results
for the case K = 0.5, R = 1.02: coupled forms of buckling between (a) modes 1 and 4 and (b) modes 2
and 5; the differences are again barely distinguishable.

3.6. More complex interactions

Following the thorough description of the coupled buckling behaviour due to the inter-
action of two modes, more complex mode interactions are considered. This includes the
interaction of three and four modes. The inherent instabilities caused by such interactions
should be particularly taken into account by the designer when reinforcing the unit cell
using fibres. The following results are derived numerically with Auto-07p.

3.6.1. Interactions between 3 modes

Interactions between three buckling modes occur so long as the buckling loads of three
different modes are in close proximity. All six critical loads are plotted for K > 0, R = 2
in Fig. 10. The buckling loads presented in Equation (24) reveal that a three-fold modal
interaction can only arise from the symmetric and antisymmetric modes in the xz-plane
coupled together with the higher symmetric mode in the yz-plane or vice versa. Hence, a
three-fold coupling between

• modes 1, 2 and 6 occurs for R→ 0, K = 4/3 or

• modes 3, 4 and 5 occurs for R→∞, K = 4R/3

is theoretically feasible. However, the rotational stiffness ratio R must therefore come
close to zero or infinity. This would refer to constitutive struts with a rotationally highly
asymmetric cross-section. The numerical results shown in Fig. 16 show that the post-
buckling behaviour is no longer hyperbolic as it is shown in §3.4 for interactions between
two modes.

3.6.2. Interactions between 4 modes

Interactive buckling behaviour due to the coincidence of four buckling modes is perfectly
feasible for rotationally symmetric geometries where R = 1. This case leads to mode 1
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Figure 16: Coupled equilibrium paths, where K = 4/3, R = 0.01, generated by Auto, showing a 3-mode
interaction between mode 1, mode 2 and mode 6.

being coincident with mode 4, mode 2 with mode 5 and mode 3 with mode 6. As shown
in Fig. 10, as soon as the normalized lateral spring stiffness reaches K = 4/3, the critical
loads of modes 1, 2, 4 and 5 are coincident. The numerical results from Auto by solving
the full set of equilibrium equations numerically leads to the results presented in Fig. 17.

However, these situations where interactions between three and four buckling modes
can be prevented by avoiding the specific conditions for the stiffness parameters K and R
respectively by pre-designing the lattice structural geometry.

4. Discussion and Outlook

The work presented is part of a multi-scale design process of truss-based lattice materi-
als. The aim has been to address the problem of finding effective material parameters at the
cell level by modelling the deformational behaviour of a single unit cell analytically. This
is necessary as the well-known scaling laws given in [5] are only applicable for stochastic
cellular materials, so that new methods for periodically structured lattice materials need
to be developed. Furthermore, the analytical approach promotes the fundamental under-
standing of the elastic failure mechanisms within the individual unit cells. As a means to
influence the behaviour of such unit cells additionally, the use of fibres has been proposed.

Discrete models of two different fibre-reinforced unit cells – a two-dimensional cross-
shaped cell and a three-dimensional tetrahedron-shaped cell – have subsequently been
developed. Against the background of the aforementioned experimentally observed stabil-
ity problems for lattice materials under compression, as shown for instance in Fig. 1(b),
both models have been evaluated within the elastic range. The evaluation of the total
potential energy led to the determination of a series of buckling loads triggering different
modes in terms of the model parameters. The influence of the interwoven fibres, modelled
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Figure 17: Coupled equilibrium paths, where K = 4/3, R = 0.98, generated by Auto, showing a 4-mode
interaction between mode 1, mode 2, mode 4 and mode 5.

with the normalized longitudinal spring stiffness K, being identified herein as a crucially
important parameter.

Even though both models provide valuable results for the respective geometries, it could
be argued that a comparison between them has only limited value. Apart from the differ-
ence in dimensions, the cross-shaped model respects fully fixed boundary conditions due to
the face-sheets whereas the tetrahedron-shaped model imposes no rotational constraint on
the outer links. Furthermore, the two-dimensional model considers buckling of the cross-
member. This leads to an interaction between symmetric and antisymmetric buckling
modes at a considerably higher K value when compared to the tetrahedron-shaped model.
The results for the latter model showed good qualitative agreement nevertheless with pre-
vious work from [13]; where analysis was conducted on a symmetric two-dimensional link
model that behaved in a similar fashion to those presented currently (apart from the fact
that the three-dimensional tetrahedron-shaped unit cell model buckles in two dimensions).

Furthermore, both models provided significant results for their post-buckling behaviour.
Parametric studies performed on the governing model parameters revealed several forms
of post-buckling including nonlinear modal interactions. These were analysed using a
perturbation method on the truncated potential energy and results were subsequently
compared against solutions of the full model from Auto-07p. These showed excellent
agreement for the interaction between two modes even for relatively large displacements.
Interactions between more than two modes have been found to exhibit more complex
behaviour. It has been demonstrated that the interactions between three modes can only
practically occur in exceptional geometries. However, interactions between four buckling
modes are quite feasible, in particular for rotationally symmetric unit cells.

While the application of the current methodology has been demonstrated for modelling
the constitutive elements of lattice materials within the elastic range, additional work needs
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to be conducted in order to increase their practicality. Elastic instability provides only an
upper bound for slender geometries. In the first instance, the consideration of plastic
buckling failure within the model would enable the definition of a lower bound for less
slender geometries. Considerable groundwork may be found in earlier analytical studies by
Hunt [20], where the Shanley model for plastic buckling of columns [21] was adapted and an
equivalent elastic model was formulated. Serially arranged springs were manipulated and
the post-buckling behaviour changed qualitatively. Secondly, the aforementioned findings
for the unit cell need to be scaled to the macroscopic scale level to find the effective
material parameters and hence the constitutive relationship that can be applied in design.
This can be achieved by connecting several unit cells in a grid. The constraints imposed
on the boundary of the respective cell need to depend on the neighbouring elements in this
case. Therefore, the current work marks a point of departure from where more complex
analytical models could be evaluated with the energy principles applied presently. The
finite element (FE) method is likely to be very useful for investigating larger lattices in
conjunction with the analytical formulations. The analytical framework would facilitate
the understanding how individual unit cells influence the global behaviour of the lattice
material; the global behaviour being studied principally using FE.

Apart from the mentioned model extensions, additional work could be conducted con-
structing prototypes with prestressed fibres and investigating them experimentally. Con-
sidering the production, this could be achieved using a lay-up process similar to [6], where
the fibres would be interwoven within the single layers and prestressed subsequently prior
to bonding. Although, to the authors’ knowledge this has not been attempted before, the
potential is highly promising as the presented analytical considerations and previous work
on prestressed compression members have demonstrated [10, 11].

5. Concluding remarks

A couple of fibre-reinforced materials have been proposed. One is based on a square
orientated lattice material with a cross-shaped unit cell that has been modelled in two
dimensions using rigid links and springs. The second is a tetrahedron-shaped unit cell and
has been modelled discretely in three dimensions. The geometrically nonlinear behaviour
under compression has been analysed through the principles of minimum total potential
energy.

Both models have been demonstrated to be successful in exhibiting the experimentally
observed vulnerability to instability that is dependent on the unit cell geometry. The ap-
plication of a perturbation method on a truncated potential energy expression provided
significant results for the behaviour in the post-buckling range. In particular, the method-
ology was demonstrated to be an effective analytical tool for determining and classifying
modal interactions. Cases have been presented for both geometries showing different forms
of interactive buckling dependent on the geometric properties. Whereas numerical tech-
niques, e.g. the FE method, would require the introduction of imperfections to demonstrate
the same physical responses [22].
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The post-buckling response of the unit cells could be manipulated by means of the re-
sults presented. This could be practically useful for determining the large scale constitutive
behaviour in the conceptual design stages. Therefore, further research into the quantitative
assignment of the model parameters is necessary and suggestions using the FE method in
conjunction with developing prestressed prototypes have been outlined.

Appendix A. Diagonalizing transformation

For the tetrahedron-shaped unit cell model, the original generalized coordinates qix, qiy
for i = {1, 2, 3} are defined in terms of new coordinates uj for j = {1, 2, . . . , 6}, thus:

q1x = u1 + u2 + u3

q1y = u4 + u5 + u6

q2x = λ1u1 − λ3u3
q2y = λ4u4 − λ6u6
q3x = u1 − u2 + u3

q3y = u4 − u5 + u6.

(A.1)

The values of λi for i = {1, 3, 4, 6} are assigned based on the condition that no quadratic
cross terms uiuj (for i 6= j) should appear in the total potential energy formulation; this
leads to the following relationships in terms of K and R:

λ1 =
3K −

√
9K2 + 32− 24K

3K − 4

λ3 =
λ1 − 2

1− λ1
,

λ4 =
3K −

√
9K2 + 32R2 − 24RK

3K − 4R
,

λ6 =
λ4 − 2

1− λ4
.

(A.2)
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Appendix B. Diagonal elements of Hessian Matrix A

The Hessian matrix of A for the model of the tetrahedron-shaped unit cell has the
following elements:

AF
11 = λ21

(
6 +

3

2
K − 2p

)
+ λ1 (4p− 16) + 12− 4p

AF
22 = 8− 4p

AF
33 = λ3

(
6 +

3

2
K − 2p

)
+ λ3 (16− 4p) + 12− 4p

AF
44 = λ24

(
6R +

3

2
K − 2p

)
+ λ4 (4p− 16R) + 12R− 4p

AF
55 = 8R− 4p

AF
66 = λ26

(
6R +

3

2
K − 2p

)
+ λ6 (16R− 4p) + 12R− 4p.

(B.1)

Appendix C. Eigenvectors of buckling modes

The critical buckling eigenvectors associated with the eigenvalues pCi for the tetrahedron-
shaped unit cell model are denoted as ~ai for i = {1, 2, . . . , 6} thus:

~a1 = [1, 0, λ1, 0, 1, 0]T

~a2 = [−1, 0, 0, 0, 1, 0]T

~a3 =

[
3K − 4

8
λ1, 0, 1, 0,

3K − 4

8
λ1, 0

]T
~a4 = [0, 1, 0, λ4, 0, 1]T

~a5 = [0,−1, 0, 0, 0, 1]T

~a6 =

[
0,

3K − 4R

8R
λ4, 0, 1, 0,

3K − 4R

8R
λ4

]T
.

(C.1)
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