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Abstract

Electrostatic control mechanisms underpin a wide range of modern industrial processes, from lab-on-

a-chip devices to microfluidic sensors for security applications. During the last decades, the striking

impact of fluid interface manipulation in contexts such as polymer self-assembly, micromanufacturing

and mixing in viscous media has established the field of electrically driven interfacial flows as invaluable.

This work investigates electrostatically induced interfacial instabilities and subsequent generation of

nonlinear coherent structures in immiscible, viscous, dielectric multi-layer stratified flows confined in

channels with plane walls. The present study demonstrates theoretically that interfacial instabilities

can be utilized to achieve efficient mixing in different immiscible fluid regions. This is accomplished

by electrostatically driving stable flows far from their equilibrium states to attain time-oscillatory and

highly nonlinear flows producing mixing. The nonlinear electrohydrodynamic instabilities play the role

of imposed background velocity fields or moving device parts in more traditional mixing protocols.

Initially, simple yet efficient on-off voltage protocols are investigated and subsequently symmetry-

breaking voltage distributions are considered and shown to considerably enhance the achieved level

of mixing. Both two and three-dimensional flows, containing realistic fluid configurations (water and

oils), are computed using direct numerical simulations based on the Navier-Stokes equations. Such

numerical investigations facilitate the quantitative study of the flow into the fully nonlinear regime

and constitute the basis of optimization methods in the context of microfluidic mixing applications in

two- and three-dimensional geometries.
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1. Introduction

Flow control at increasingly small scales is a key challenge in a wide range of fields, from biology,

chemistry and medicine to industrial design in electronics, just to name a few examples. Physical

interactions in microdevices are very rich, as often multi-physics elements are required to achieve
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specialized goals. Gravitational forces are typically negligible at such small scales and the barrier

to further reduce the dimensions in applications is a challenge that makes microfluidics one of the

most vibrant areas of contemporary research. In multi-fluid flows capillary and viscous forces typically

compete to select the dynamics, however external forces such as electric or magnetic fields and even

acoustic actuators are becoming increasingly more common in the search for optimal solutions.

Lab-on-a-chip devices, as illustrated in the review of Franke & Wixforth [10], play a primary role

in achieving highly efficient solutions for micro scale applications. Such systems have been widely

studied theoretically, computationally and experimentally with convincing degrees of success. We

refer the reader to the work of Stone et al. [33] and the review by Craster & Matar [8] for diverse

examples. Of particular relevance is the case of pattern formation from the self-assembly of polymeric

liquid films, where microfluidic devices have been critical in the search for techniques to reduce the

size of integrated circuit components, as highlighted by Schäffer et al. [31].

In the present work we expand on the role of electric field induced dynamics in microchannels.

The mechanism is particularly attractive due to the ease of its applicability on the micro scale and its

success in achieving control of interfacial fluid motion. It is well known that fields which are parallel

to the fluid-fluid interface have a stabilizing role and may be used to prevent interfacial rupture or

induce and control a certain behavior within a geometry. The theoretical and computational study of

Cimpeanu, Papageorgiou & Petropoulos [6] demonstrates that interfacial oscillations can be sustained

in a flow where heavier fluid lies above lighter fluid (the classical problem of the Rayleigh-Taylor

instability [27, 35]) so that controlled time-periodic motion is achieved in an otherwise highly unstable

system. On the other hand, the pioneering work of Melcher [19, 20] and Taylor & McEwan [36]

outlines how electric fields which are perpendicular to the fluid-fluid interface have a destabilizing

effect on systems that are stable in the absence of an electric field. An increase in the voltage potential

difference produces a stronger instability (expressed via higher growth rates), as well as an increase in

the band of unstable modes. The ability to accurately study and harness this process has led to exciting

advances in soft lithography, as indicated by Schäffer et al. [31]. Theoretically, Ozen et al. [24] and

Li et al. [17] conducted linear and nonlinear stability studies on electrified shear flows, and observed

electrically induced interfacial waves. The experimental work of Ozen et al. [25] demonstrates the use

of electrohydrodynamic instabilities to generate a monodisperse distribution of droplets encapsulated

in a second liquid phase in a microchannel - larger applied voltages produce smaller sized droplets.

We also mention the feedback control experiments of Melcher & Warren [21], who successfully studied

the control of instabilities in a stably stratified air-gas system in a millimeter sized circular device.

Moreover, the influence of AC fields has been studied theoretically and has been shown to allow further

control of the fluid-fluid interfaces in bilayer and trilayer liquid films - see Roberts & Kumar [28, 29].

As mentioned earlier, in contrast to larger scale hydrodynamics, the salient physics within mi-
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crochannels changes significantly. Due to the prominence of viscous forces, the process of mixing

becomes very challenging. Fluid mixing of two (or more) species is related to the interspersion of seg-

regated fluid regions. As highlighted in the work of Ottino & Wiggins [23], efficient mixing is vitally

related to achieving a large interfacial area between the fluids being mixed, thus facilitating intermolec-

ular diffusion. In small devices turbulence is typically absent and so mixing must rely on diffusion

unless the system is subjected to external forces. Furthermore, efficient mixing devices have to reach

their targets in a very small amount of space, with minimal energy, and under time constraints in order

to be practical. We refer the interested reader to the work of Hessel et al. [12] and Suh & Kang [34],

who present many useful mixing principles within the context of microfluidic mixing. Small system

size presents technological assembly challenges (as well as cost), and very often the actuation needs

to be very strong to accurately establish a desired dynamics in the flow. Lee et al. [16] have recently

reviewed the most popular mixing devices in millimeter and sub-millimeter geometries. It is common

to divide mixing into the passive and active categories. Passive mixers often rely on channel geometry

to achieve mixing by enhancing molecular diffusion. This is typically accomplished by allowing more

time for the flow to diffuse within an intricate network of channels or pre-designed spatial structures.

On the other hand, active mixers abandon complex geometries in favor of the use of external forces

(such as electricity, magnetism, acoustics or time pulsing). Channels are often simplistic in design and

the focus lies in constructing optimal external force fields on the flow.

One of the most studied active devices is the T-mixer. The simple layout allows for extensive

experimental explorations and it often offers a straightforward option to incorporate additional effects

into the flow. Variations to traditional mixing, including time pulsing, have been explored by Glasgow

& Aubry [1] and Goullet et al. [11]. El Moctar et al. [22] present an extension of the classical T-mixer

using electric fields, which is also expanded on in Tsouris et al. [39]. The strength of the electric fields

involved is most often of order 105 to 107 V/m, which can easily be achieved by imposing a voltage

potential difference ofO(102) V across a millimeter sized geometry (or less). Zahn & Reddy [42] present

an extension to a T-mixer with three fluid layers and conduct both theoretical and experimental studies

with voltage potential differences of up to 9× 105 V/m.

Here we present a novel approach that introduces an active mixer which does not require an

imposed velocity field or any moving parts. We extend the preliminary work of Cimpeanu & Pa-

pageorgiou [4] and incorporate the concepts of sustained interfacial oscillations [6] and non-uniform,

symmetry-breaking electric field distributions [5] to the advantage of mixing at small scales. The

system is driven exclusively by the action of the electric field and we show how efficient mixing can

be achieved in practical situations, by modeling real-life fluids in both two-dimensional and three-

dimensional geometries.

The structure of the rest of the paper is as follows. Section 2 presents the mathematical model and
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outlines the relevant physical quantities and governing equations (subsection 2.1), carries out a linear

stability analysis (subsection 2.2), and validates the theory using direct simulations (subsection 2.3)

where we elaborate further on the numerical aspects of our work. Section 3 illustrates the effect of

simple electric field protocols which are expected to be easy to design in experimental conditions.

Two-dimensional (subsection 3.1) and three-dimensional (subsection 3.2) results are presented and

the performance of the imposed protocols is assessed using classical molecular diffusion arguments.

Conclusions and comments on future work are given in section 4.

2. Mathematical Model

The mathematical model that follows is similar to that presented by Cimpeanu and Papageor-

giou [5] in the context of microfluidic pumping, hence the description here will be brief. Consider two

incompressible, immiscible and viscous fluids of arbitrary constant densities ρ1,2 and constant viscosi-

ties µ1,2. The fluids are assumed to be perfect dielectrics and have constant permittivities ε1,2 - we

assume that there are no impressed charges in the flow. A schematic is provided in Fig. 1. A Cartesian

coordinate system is used with the channel walls parallel to the horizontal x−axis; the channel has

height L and is considered to be sufficiently long - in the numerical work that follows it is reasonable

to assume periodic boundary conditions in the horizontal direction. A constant vertical electric field of

magnitude V̄ ∗/L is imposed by a voltage potential difference V̄ ∗ across the channel walls - see Fig. 1.

The interface is denoted by y = S(x, t) and the lower fluid 1 occupies the region −L/2 < y <

S(x, t), while the upper fluid 2 occupies the domain S(x, t) < y < L/2 (our numerical results capture

multivalued interfaces but for clarity we present the model in terms of Cartesian coordinates). We use

subscripts 1, 2 to refer to quantities in each corresponding region. An extension to three dimensions,

studied at a later stage, is shown in Fig. 1b. All quantities of interest extend naturally and the interface

in this case is described by y = S(x, z, t).

Velocity fields and pressures are denoted by u1,2 and p1,2, respectively. Surface tension is present

with constant coefficient σ and even though we expect gravity to play a negligible role at very small

scales, it is nonetheless useful to retain it for generality. It is shown in section 3 using a concrete

example, that in the framework of desktop experiments the induced magnetic field is negligible and

hence the electrostatic approximation of Maxwell’s equations holds. In this limit we have ∇×E1,2 = 0

and ∇ · (ε1,2E1,2) = 0. The former equation implies that the electric fields can be described in terms

of voltage potentials E1,2 = −∇V1,2, hence the second equation (Gauss’s law) shows that away from

the interface the voltage potentials satisfy Laplace’s equation in each region.
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Figure 1: Schematic of the a) periodic two-dimensional and b) doubly periodic three-dimensional

domain.

2.1. Problem Formulation

The governing equations are the Navier-Stokes and continuity equations in each phase

ρ1(u1t + (u1 · ∇)u1) = −∇p1 + µ1∆u1 − ρ1gj, (1)

ρ2(u2t + (u2 · ∇)u2) = −∇p2 + µ2∆u2 − ρ2gj, (2)

∇ · u1,2 = 0, (3)

with no-slip and impermeability imposed at the walls for u1,2. The Laplace equations for the electric

potentials in each fluid are (
∂2

∂x2
+

∂2

∂y2

)
V1,2 = 0. (4)

We apply Dirichlet boundary conditions at the walls y = ±L/2 for the potentials,

V1(x,−L/2, t) = 0, V2(x, L/2, t) = V̄ ∗,

where V̄ ∗ is a constant. Lorentz forces are absent in the momentum equations due to the constant

electrical properties of the perfect dielectrics and the absence of charges in the flow. The coupling be-

tween hydrodynamics and electrostatics enters through the nonlinear interfacial boundary conditions.

At the sharp interface y = S(x, t) we impose (in order) kinematic conditions, continuity of velocities,

continuity of normal and tangential stresses, continuity of the voltage displacement field (Gauss’s law),
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and continuity of voltage potentials. These are

vi = St + uiSx, i = 1, 2, (5)

[n · T · n]
1
2 = σκ, (6)

[t · T · n]
1
2 = 0, (7)

[u]
1
2 = 0, (8)

[εE · n]
1
2 = 0, (9)

[V ]
1
2 = 0, (10)

where [(·)]12 = (·)1 − (·)2 represents the jump across the interface, n = (−Sx, 1)/(1 + S2
x)1/2, t =

(1, Sx)/(1 + S2
x)1/2 are the unit normal and tangent to the interface, respectively, and κ = Sxx/(1 +

S2
x)3/2 is the interfacial curvature. The stress tensor T is given by

Tmn = −p δmn + µ

(
∂um
∂xn

+
∂un
∂xm

)
+ εEmEn −

1

2
ε |E|2 δmn, (11)

to be evaluated in each fluid region as needed.

To non-dimensionalize we scale lengths by L, velocities by a reference value U (e.g. for capillary

scales U = σ/µ1; similarly gravitational or electrical scales can be defined), time by L/U and pressures

by ρ1U
2. The emerging dimensionless parameters correspond to a dimensionless viscosity (inverse

Reynolds number), an inverse Weber number, an inverse square Froude number, a voltage scaling, and

density, viscosity and permittivity ratios, respectively,

µ̃ =
µ1

ρ1UL
, σ̃ =

σ

ρ1gL2
, g̃ =

gL

U2
, V ∗ = UL

√
ρ1

ε1
,

r = ρ1/ρ2, m = µ2/µ1, ε = ε1/ε2, (12)

where ε0 is the permittivity of free space. With U = σ/µ1, we obtain µ̃ = O2
h, where Oh is the

Ohnesorge number. Utilizing these scalings provides the dimensionless system

ũ1t + (ũ1 · ∇)ũ1 = −∇p̃1 + µ̃∆ũ1 − g̃j, (13)

ũ2t + (ũ2 · ∇)ũ2 = −r∇p̃2 +mµ̃r∆ũ2 − g̃j, (14)

∇ · ũ1,2 = 0, (15)

where j = (0, 1), and tildes are used to denote dimensionless quantities. The Laplace equations (4)

are unchanged (except for the addition of tildes), and the boundary conditions at the channel walls

become

ũ1 = 0, Ṽ1 = 0 at y = −1/2, (16)

ũ2 = 0, Ṽ2 = V̄ at y = 1/2, (17)
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where V̄ = V̄ ∗/V ∗. Boundary and interfacial conditions (5) maintain their form and obtain tilde

decorations; the dimensionless stress tensor reads

T̃mn = −p̃δmn + µ̃

(
∂ũm
∂xj

+
∂ũn
∂xm

)
+ ε̃ẼmẼn −

1

2
ε̃|Ẽ|2δmn. (18)

The well known expression for electrohydrodynamic coupling through the stress tensor (18) has been

extensively studied and the reader is referred to Saville [30] for a comprehensive discussion.

2.2. Linear Stability

In what follows we carry out a linear stability analysis (concisely presented, as full details are

available in Cimpeanu & Papageorgiou [5]) to determine growth rates in the presence of destabilizing

electric fields. Apart from providing a fundamental understanding of the physics of the problem,

the results also serve as a basis for comparison and verification of the fully nonlinear computations

presented later. The base state solution is given by a flat interface, zero velocities and a uniform

vertical electric field in each of the two fluids. A constant undisturbed electric pressure difference at

the interface is induced and can be calculated from the normal stress balance to yield

pE = p2 − p1 = 2V̄ 2 1− ε
(ε+ 1)2

. (19)

We linearize the equations and boundary conditions by introducing perturbations

ũ1,2 = δû1,2, p̃1 = −g̃y + δp̂1, p̃2 = −g̃y/r + pE + δp̂2, (20)

Ṽ1 =
V̄

ε+ 1
(2y + 1) + δV̂1, Ṽ2 =

V̄

ε+ 1
(2εy + 1) + δV̂2, S̃ = δŜ, (21)

where δ � 1. Normal modes are introduced in the form û1,2(x, y, t) = ŭ1,2(y)eikx+ωt + c.c., Ŝ(x, t) =

S̆eikx+ωt + c.c., V̂1,2(x, y, t) = V̆1,2(y) eikx+ωt + c.c., p̂1,2(x, y, t) = p̆1,2(y)eikx+ωt + c.c., where c.c.

denotes complex conjugates, and the eigenfunctions are determined analytically utilizing the boundary

conditions. This leads to a system of homogeneous linear equations for the unknown constants of

integration, and a dispersion relation for ω(k) follows in order to ensure non-trivial solutions (the

equation is transcendental and so elementary root finding methods are needed to obtain solutions

numerically).

Sample stability results are given in Fig. 2 for increasing values of the imposed electric field V̄ .

In the interest of modeling systems of practical interest, we choose parameters pertaining to a stably

stratified two-fluid system of water at 20◦C (density ρ1 = 998.207 kg/m
3
, viscosity µ1 = 8.95 × 10−4

Pa·s and electrical permittivity ε1 = 80.4 ε0) and olive oil (ρ2 = 918 kg/m
3
, µ2 = 0.081 Pa·s and

ε2 = 3.1ε0), where ε0 = 8.85 × 10−12 m−3kg−1s4A2 is the permittivity of free space; the surface

tension between olive oil and water is 0.02 kg · s−2. We use a channel of height L = 7.5 mm under

the action of a gravitational acceleration of 9.80655 m · s−2. Previous work in a similar context, such
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as the investigations of Tsouris et al. [39] and Zahn & Reddy [42], impose electric field strengths of

up to O(107) V/m, which is below the dielectric breakdown limit for common fluids. In Fig. 2 we

consider five numerical experiments with voltages ranging from V̄ = 0.1 to V̄ = 0.5 non-dimensionally,

corresponding to 2× 106 V/m up to 107 V/m.

We are interested in the effect of the electric field on the instability, and expect an increase in

growth rates and a widening of the band of unstable modes as the electric field strength increases.

This is indeed the case as seen in Fig. 2; for low values of V̄ = 0.1, 0.2 for example, a small band of

long waves are unstable and the size of the band increases (shorter waves becoming unstable) as V̄

is increased. Fig. 2 also includes results from direct numerical simulations starting from small initial

conditions where linear theory holds, and agreement between analysis and computation is excellent.

We elaborate on this aspect in the following subsection.

2.3. Computational Capabilities and Validation

Our numerical methods are based on a volume-of-fluid platform adapted from the Gerris suite of

algorithms, constructed by Popinet [26]. We also use the electrohydrodynamics module available in

the code architecture and expanded upon by López-Herrera et al. [18]. Adaptive meshing and accurate

multiphase fluid representation are some of the features that make the computational platform highly

suitable for our study. We also mention the extensive numerical studies of Bagué et al. [2], López-

Herrera et al. [18] and references therein, validating and extending the implementation, as well as

directing the modules to concrete applications of interest.

One of the essential features is the representation of physical quantities in the region containing

the fluid-fluid interface. The density ρ̃ is written in terms of a volume fraction C(x, t) as

ρ̃(C) ≡ Cρ̃1 + (1− C)ρ̃2, (22)

where ρ̃1 and ρ̃2 are the constant values of the density in the two phases of the flow field. The general

density equation is transformed to a volume fraction equation

Ct +∇ · (Cũ) = 0, (23)

and once this is solved for C the density follows from (22). Viscosity and permittivity differences

between phases are treated in an analogous way. In particular, the algorithm incorporates smooth

independent variations of ε across the thin interface region, with well studied specialized interpolation

techniques, as discussed in Tomar et al. [38]. The electrostatic potential (in the absence of impressed

charges as is the case here) satisfies elliptic equations of the form ∇·(ε̃∇Ṽ ) = 0, that reduce to Laplace

equations away from the interface where the permittivity is constant. We solve for Ṽ throughout the

domain since ε̃ is known from an equation analogous to (22). The electrostatic forces in the bulk can
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Figure 2: Growth rates ω(k) illustrating the effect of increasing voltage potential difference V̄ on the

instability.

be found from taking the divergence of the Maxwell stress tensor - see (18) - and this yields

Fe = −1

2
|Ẽ|2∇ε̃. (24)

These forces are zero away from the interface as expected.

The symbols in Fig. 2 were calculated from direct numerical simulations using Gerris, with fluid pa-

rameters corresponding to a water-olive oil system. The initial perturbation of the fluid-fluid interface

is described by

S(x, 0) = Ai cos(2qπx), (25)

where q is a positive integer and Ai is the perturbation amplitude, selected to be of O(10−3) and hence

within the realm of linear theory initially, allowing the flow to evolve for sufficiently long times prior

to reaching the nonlinear regime. To quantify the interfacial dynamics we track the position of several

points on the interface throughout the simulation and use a sliding least squares method to extract

the relevant growth rates. Thus, the linear regime can be evaluated accurately by reconstruction of

the linear dispersion relation as shown by the excellent agreement in Fig. 2. This validation underpins

numerical experiments into the nonlinear regime enabling the exploration of efficient microfluidic mix-

ing. Knowing the most unstable wavenumber for a given electric field strength and fluid parameters,

we tailor the electric field to allow the manipulation of the dynamics within the confined geometry.

In the next section we illustrate how this information can be used to sustain oscillations that lead to

enhanced mixing in this class of problems.
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3. Results

In this section we present numerical results that show how time varying electric fields can be used

to achieve mixing by nudging nonlinear interfacial oscillations that would be absent if the field is

switched and kept off. In subsection 3.1 we propose a set of time varying electric fields to be used in

this context, and also analyse their performance with regards to mixing efficiency.

3.1. Two Dimensional Flows

3.1.1. On-off time variations in the electric field

We begin by considering simple on-off time variations for the applied electric field, noting that the

applied electric field is constant over the channel during the on stage. During the on stage the electric

field is above the critical value predicted by linear theory and if it is kept on, the interface generically

undergoes nonlinear growth and eventually touches one of the walls in finite time. Hence, we switch the

electric field off before touchdown and allow the interface to relax towards its base state solution (this

is possible due to the presence of viscosity and the stable stratification of the flow). This procedure

is repeated to sustain interfacial oscillations in the flow that in turn induce time oscillatory velocity

fields. Such electrostatic forcing was considered by Cimpeanu & Papageorgiou [4] and salient results

are reviewed in order to set the stage for more inducing mixing for realistic fluids and particularly the

need for electrophoretic forcing considered in section 3.1.2.

Six on-off electric field protocols are considered as shown in Fig. 3. The shaded regions indicate

the time intervals during which the electric field is turned on inducing a vertical electric field. For this

set of numerical experiments we use parameters (recall (12) for definitions) r = 6, m = 0.25, ε = 2,

µ̃ = 0.1 and σ̃ = 0.5, and a prescribed voltage potential difference V̄ = 15.0 (these parameters pertain

to a system of size L = 1.9 mm, and a total duration of approximately 0.3 s). Fluid 1 is chosen to

be a typical oil (e.g. olive oil); the density, viscosity and permittivity ratios are of O(1) providing a

wide range of choices for the second fluid - specific water-oil systems are considered later in section

3.1.2. From a computational perspective it is preferable to have a strong density contrast in order to

facilitate faster relaxation of the interface towards its flat state when the electric field is switched off.

Our model uses the electrostatic assumption and in what follows we provide a justification of its

validity for time-dependent fields (see also Conroy et al. [7]) and in particular the absence of induced

magnetic fields of any relevance. The magnetic induction equation is given by

∇×H = J + ε
∂E

∂t
, (26)

where H is the magnetic field and J is the current. By construction, the electric field is scaled by

E0 ∼ V̄ ∗/L and we write H = H0H
′. The frequency Ω with which the electric field is switched on

and off reflects the time-dependent element in the voltage model. Using the induction equation (26)
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Figure 3: The time variation of each of the six imposed on-off protocols; shaded regions represent the

times when the electric field is kept on with a constant voltage that enables the destabilization of the

fluid-fluid interface.
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yields H0 ∼ ε0E0LΩ. Consider approximations ε0 ∼ 10−11 F m−1, L ∼ 10−3 m and typical electric

field strength E0 ∼ 106−7 V m−1. This results in H0 being at most H0 ∼ 10−7Ω T s, measured in an

appropriate timescale 1/Ω, where T denotes teslas and s seconds. Based on an appropriately defined

timescale, the duration of the proposed experiment is approximately 1.38 s. With at most 8 on-off

switches (evenly distributed in time) this implies Ω ∼ O(10−1 − 100) Hz, and hence H0 ≈ 10−7 T , i.e.

the contribution of the magnetic field is negligible. Even in the kilohertz range, the induced magnetic

field would still be negligible.

We quantify mixing via numerical experiments in the following manner. A droplet of dimensionless

radius rd = 0.15 is introduced in the upper fluid within our computational domain as sketched in

Fig. 1. The droplet has the same properties as the upper fluid and represents a region occupied by a

passive scalar (a dye, for example) at the initial time. By observing the concentration field c of this

passive tracer in time, we deduce the level of mixing induced by the action of the electric field and

resulting hydrodynamics. Sample evolutions of the passive tracer field are produced in Fig. 4, where

protocols 3 and 5 are shown at different times of the simulation. We note that numerical artifacts in the

passive tracer advection lead to minor breaches through the interface (observable in Fig. 5); a careful

study reveals that this does not affect the calculated degree of mixing, since the amount of dyed fluid

outside the desired region is negligible and this numerical process is restricted to the passive tracer,

computed by approximating the velocity field. Furthermore, stringent error tolerances and increased

grid refinement levels can be imposed to completely eliminate such effects, but we did not undertake

such computations due to the high cost involved.

To quantify the mixing efficiency we follow the ideas of Glasgow & Aubry [1] who propose a measure

of mixing in the case of a T-mixer with time pulsing, which also accounts for non-uniform mass flow

rate within the channel. In our case there is no background velocity field and hence the quantification

of Jha et al. [15] is suitable. Briefly, the mixing index χ(t) is defined by

χ(t) = 1− β2(t)

β2
max

, (27)

where β2 ≡ 〈c2〉−〈c〉2; here 〈·〉 denotes spatial averaging over the domain, while β2
max is the variance of

the fully segregated state. A variance-based indicator is a natural candidate for assessing mixing qual-

ity, due to the direct comparison to the perfectly mixed state. Several other mathematical properties

of this index, as well as other specialized alternatives, are highlighted by Thiffeault [37]. Inspecting

equation (27) we notice that χ(t) varies from 0 in a fully unmixed regime up to 1 for perfect mixing.

In an ideal situation a fully mixed state is described by a constant concentration which is equal to

the ratio of the area of the initial passive scalar to the total area of the domain which is the area of

region 2 in our case. Fig. 5 shows the evolution of the mixing index χ(t) for each of the six protocols

introduced in Fig. 3. It can be seen from our results that efficient mixing usually occurs when a strong
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(a) Protocol 3, t = 0.0. (b) Protocol 3, t = 10.0. (c) Protocol 3, t = 20.0.

(d) Protocol 5, t = 0.0. (e) Protocol 5, t = 10.0. (f) Protocol 5, t = 20.0.

Figure 4: The passive tracer field (background) and fluid-fluid interface (highlighted in white) under

the action of protocol 3 (top) and protocol 5 (bottom) from Fig. 3 at three different times: t = 0.0

(left), t = 10.0 (center) and t = 20.0 (right). The succession of plots shows the gradual mixing of the

passive tracer due to the hydrodynamics induced by the electric field. An animation for each of the

six on-off protocols is available as electronic supplementary material.
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destabilizing electric field persists for a moderate amount of time, so that the interface is close to reach-

ing the channel walls during its unstable cycle. After this initial spreading has occurred, successive

on-off switches of short duration are found to sustain interfacial oscillations and lead to highly efficient

mixing, with indexes exceeding 0.7. The results presented in Fig. 5 (a subset of which are illustrated in

Fig. 4) compete well with previous state-of-the-art examples of both passive and active micromixers,

as highlighted in the review of Hessel et al. [12] or in the particular cases of Bhagat et al. [3], Wang et

al. [40] and Hossain and Kim [14]. In the aforementioned studies (and numerous others), the devices

considered reach mixing indexes of up to 0.5− 0.6 (using similar performance measurement methods).

Fig. 5 shows that the best mixing is obtained for protocol 3, which achieves a mixing efficiency of over

0.9. We have not addressed the problem of optimal mixing, for example what electric field variations

would one need to achieve optimal mixing in a given time, however our results form the basis of such

investigations.

The level of improvement in mixing is also quantified by comparing the results to molecular dif-

fusion. Using Fick’s law in two dimensions, the mean radius of a diffusing passive scalar droplet in

two dimensions, is given by s ∼
√

4Dt, where t is dimensional time and D is the self-diffusion coef-

ficient. For standard fluids (including the ones here), D = O(10−12 − 10−9) - see, for example, the

experiments of Holz et al. [13] and Denkova et al. [9]. A straightforward approximation with a value

of D = 10−10 m2 s−1 amounts to an average spread of s ∼ 1.09 · 10−5 m in the time frame of the

numerical experiments in the 1.9× 10−3 m channel; this is seen to be two orders of magnitude lower

than the mean particle displacement under the action of electrohydrodynamic mixing. The evolution

of the mixing index solely via molecular diffusion has been computed for reference (see Fig. 5) and

evolves from 0.0369, the starting value given by the discretization of the concentration field, to 0.0377

by the end of the runs.

3.1.2. Water-oil systems: On-off and dielectrophoresis-inducing voltage protocols

In this section we present computations for water-oil systems. The relevant dimensionless param-

eters in this case are r = 1.0837, m = 90.5027, ε = 25.9354, µ̃ = 4.4082 × 10−4, and σ̃ = 0.0363. As

mentioned earlier such computations are challenging particularly due to the relatively slow relaxation

of the interface to its initial position during times when the field is switched off.

After extensive numerical experimentation we concluded that good mixing results can be achieved

in this case if in addition to switching the field on-off, the imposed voltage at the upper electrode also

has a spatial variation that is linear in x (such non-uniform voltages were imposed by Yeo et al. [41] in

their study of electrophoretically induced droplet splitting and by Singh & Aubry [32] in the context

of droplet translation in microdevices). More precisely we impose the following voltage at the upper
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Figure 5: Evolution of mixing index χ(t) under the action of the six selected on-off protocols presented

in Fig. 3.

electrode y = L/2

V2(x, L/2, t) =


C +Ax+

A

2

(
− 2

π
tan−1(δ′(x+ 0.5))− 2

π
tan−1(δ′(x− 0.5))

)
if ton,

0 if toff .

(28)

In (28) the parameters ton and toff measure the times when the voltage is on or off, respectively.

Also, C is a constant and for all the experiments in this subsection it is taken to be 0.3 (this value

corresponds to the third curve in Fig. 2). The contribution Ax introduces dielectrophoretic effects into

the model with strength measured by A. The trigonometric terms in equation (28) are used to produce

a smooth transition at the edges of the domain x = ±1/2 so that V2(x, L/2) is a smooth spatially

periodic function; the parameter D describes the sharpness of this transition with larger values of D

producing sharper transitions - we use D = 50 in all our numerical experiments. The voltage on the

lower electrode remains fixed at 0, such that V1(x,−L/2, t) = 0 for all t.

We construct a series of nine runs spanning over 50 dimensionless time units. The first run is a

control with the field switched off and the passive scalar allowed to spread under molecular diffusion.

All subsequent cases represent scenarios in which the electric field is switched on at the start of the

simulation and the interface is allowed to grow until it is in close proximity to the wall. We wish to

prevent wall touchdown (the topological transition is unlikely to be beneficial to mixing, and also such

phenomena are beyond the scope of the present computational study) and so switch the electric field

off, thus prompting the relaxation to a flat interfacial position. The relaxation time toff from near the

wall towards the base state is considerably larger than the time ton taken by the interface to reach
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Figure 6: Evolution of the mixing index χ(t) for the best performing on-off protocols. The two examples

have on-off cycles of 9 dimensionless time units; A = 0.05 for protocol 2 and A = 0.1 for protocol 3.

All numerical experiments use C = 0.3 and δ′ = 50 - see equation 28 for the imposed voltage at the

upper wall.

the walls. By allowing for successive relatively short on intervals long off intervals, we find that the

induced hydrodynamics produce strong mixing.

The relevant computational parameters that remain in equation (28) are the parameter Ameasuring

the horizontal voltage non-uniformity, and the times ton and toff . We considered two families of tests

with four subcases each (defined by A = {0.0, 0.05, 0.1, 0.2}), in addition to the non-electrified control

experiment. The first set of tests has ton = 0.65, followed by relaxation periods toff of 8.35 dimensionless

time units. Thus we use cycles of 9 dimensionless units that run in sequence until the maximum time

of 50 units is reached, for each value of A starting from 0 corresponding to constant voltage, and

increasing thus imposing stronger directionality in the flow. This is desirable since it introduces a

break in symmetry that significantly enhances mixing. The second test covers the same range of

values in A, however the on-off cycle is different and is described by ton = 0.3, followed by smaller

relaxation periods toff = 5.7 units, i.e. introducing cycles of total duration of 6 time units.

Before presenting results we emphasize that this is a more difficult system to work with due to the

values of density, viscosity and permittivity ratios that make it challenging to achieve good mixing due

to unwanted nonlinear phenomena that can emerge, such as interfacial wall touchdown and topological

transitions. In addition, other protocols can lead to the mixing index χ reaching a small value plateau

due to interface flattening which is undesirable for mixing. In Fig. 6 we illustrate results for the

successful protocols 2 and 3, along with the self-diffusion case which is seen as the bottom curve with

white squares - it attains a mixing index of approximately χ = 0.037. Based on molecular diffusion

arguments we can estimate the average spread of the passive scalar to be s ∼ 2.35× 10−5 m. On the
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other hand, protocols 2 and 3 show a marked improvement of the mixing index, becoming larger than

0.5 in the former case. In all cases, there is a sensitivity in the dynamics that we wish to highlight. As

mentioned above, when wall touchdown occurs the simulation is interrupted - protocols 1 and 7 are

such examples that are terminated after t = 30 − 35 units. On the other hand, if the overall action

of the electric field is too weak it then allows a full relaxation of the interface without generating

instability and sustained oscillations of sufficiently high amplitude to have a visible effect on mixing -

such is the case for protocols 4 and 8, where A = 0.2. The reason for this is that with A = 0.2 the

voltage potential (see (28)) varies between 0.1 and 0.5 and so a relatively weak field acts on the left of

the domain - contrast this with A = 0, for example, when a larger uniform field would be acting there.

We observe that the even though the horizontal distribution of the voltage at the upper wall steers the

interface towards the edges of the domain through a displacement of equipotential lines, the interval

ton is too small to induce a large interfacial displacement, and the subsequent relaxation returns the

interface to its flat base state. Further cycles have little effect in the area outside the immediate vicinity

of the fluid-fluid interface leading to diffusion with a modest evolution of the mixing index in time. The

parameters can be optimized to overcome these shortcomings, however it is important to underline

their significance and physical effects on the flow. With appropriately tuned values for A and ton-toff

cycles, desirable results are found for protocols 2 and 3 as shown. We also point out that protocols

1 and 5, which have A = 0 and coincide with the constant voltage scenarios, are not as successful as

their non-uniform counterparts. We conclude that an optimization procedure would produce significant

improvements and perhaps a feedback control mechanism that adapts to flow conditions (interfacial

position in the domain) in the selection of ton and toff would be beneficial and a possible future step

in this study.

To conclude, efficient mixing occurs when a strong destabilizing electric field persists for a moderate

amount of time, such that the fluid-fluid interface gets close to the channel walls. After the initial

spreading has occurred, successive on-off switches of appropriately chosen intervals in time, sustain

interfacial oscillations and generate mixing with indexes exceeding 0.5 in a very short timescale. In

the following subsection we explore similar mixing mechanisms in three dimensions.

3.2. Mixing in Three Dimensional Flows

The two-dimensional results described above have been extended to three dimensions in order

to investigate mixing for single or multiple droplets of passive scalars. A doubly periodic (in x−

and z−directions) domain is used between two solid wall electrodes at y = −L/2 and y = L/2 (in

dimensional terms). As established already, the electric field perpendicular to the fluid-fluid interface

has a destabilizing effect and we use on-off protocols with both uniform and non-uniform voltage

potential distributions in order to generate efficient mixing within such a geometry. The imposed
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voltage at the upper wall is taken to be

V1(x,−L/2, z, t) =


C +Ax+

A

2

(
− 2

π
tan−1(δ′(x+ 0.5))− 2

π
tan−1(δ′(x− 0.5))

)
if ton,

0 if toff ,

(29)

and this is a straightforward extension of condition (28) used for two-diemensional flows, but now we

impose a non-uniform voltage on the lower wall (mixing is tracked in the lower fluid now). We have

chosen to model a spherical drop of dimensionless radius rd = 0.15 in the bottom fluid (mostly for

better visualization reasons). We select one uniform electric field case (A = 0.0) and contrast it to a

regime with a moderate value A = −0.1 - the non-zero value of A was chosen so as to prevent wall

touchdown but still allow for symmetry-breaking effects.

Due to the complexity of the three-dimensional setup and in the interest of computational efficiency,

we did not use the exact water-oil parameters described in section 2. In particular we changed the

density ratio of the two fluids to be r = 6. Such a more stably stratified system leads to faster

relaxation times during toff , and this considerably improves computational runtimes. Secondly, we

altered the dimensional height of the domain from L = 7.5 mm to L = 25 mm. These alterations do

not interfere with the physical mechanisms involved and have been introduced strictly for numerical

reasons. The duration of the numerical experiments in physical time is approximately 0.5 s.

The results of utilizing a uniform voltage potential distribution are presented in Fig. 7 (a)-(c),

which illustrates the time evolution of the concentration isocontour having a value equal to the target

concentration value in the problem, i.e. the constant obtained by dividing the volume of the sphere

into half of the volume of the box domain (the passive tracer is restricted to the region occupied

by fluid 1). In addition, the plots present the pressure field at the cross-section z = −0.2, with red

color-coding denoting high pressures (bottom of the container) and blue denoting low values (top

of the container), along with the computational mesh at that particular time - the mesh is seen to

be heavily refined around the interface (depicted by a dark curve) between the fluids. We notice a

progressive modification of the drop shape and this provides a strong indication of mixing in the flow.

We turn again to the efficiency evaluation against molecular self-diffusion by comparing the average

theoretical spread under diffusion with paths of individual particles in the simulated flow. To this end,

in Fig. 7 (d)-(e), we marked four particles that were positioned on the surface of the spherical drop at

t = 0.0. Note that a significantly higher number of such Lagrangian particles was tracked and analyzed

statistically, however for visualization purposes we illustrate results for the four particles included in

Fig. 7. For reference we note that in the same time frame as the simulations, the root mean square

distance of the particles with a self-diffusion coefficient of D = 10−10 m2/s is 1.73× 10−5 m. This is

well below (two orders of magnitude or more) the distances traversed by the tracked particles in our

O(10−2) m sized domain. We observe significantly improved results when comparing to molecular self-
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Figure 7: Isosurface of the passive tracer with a value equal to the target concentration shown at, a)

t = 0.0, b) t = 5.0, and c) t = 10.0, under the action of a symmetric voltage potential distribution;

examples of particles originally on the surface of the spherical droplet tracked in the flow at d) t = 2.5,

and e) t = 5.0. The cross-section at z = 0 shows the computational mesh and the pressure distribution

(red representing high values and blue low ones). An animation of the flow is available as electronic

supplementary material.
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Figure 8: Isosurface of the passive tracer with a value equal to the target concentration shown at, a)

t = 0.0, b) t = 5.0, and c) t = 10.0, under the action of an asymmetric voltage potential distribution;

examples of particles originally on the surface of the spherical droplet tracked in the flow at d) t = 2.5,

and e) t = 5.0. The cross-section at z = 0 shows the computational mesh and the pressure distribution

(red representing high values and blue low ones). An animation of the flow is available as electronic

supplementary material.
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diffusion, however in order to provide a competitive alternative to other active mixers, the inclusion

of dielectrophoresis was found to be necessary.

Fig. 8 illustrates the three-dimensional results obtained using the non-uniform voltage potential

distribution (29). In this case, particles are steered towards the negative x−direction, as can be

observed in subfigures (d) and (e). The distance covered by the particles over a similar amount of time

as in the results of Fig. 7 is visibly improved (consult values on the x−axis), and subfigures (a)-(c)

depict more complex trajectories, both in terms of spread as well as the topology of the considered

isosurface. The mixing index as described in equation (27), reveals an increase of up to 0.83 in this

case. A similar calculation for the uniform voltage distribution shown in Fig. 7 produces a mixing

index of approximately 0.47, thus reinforcing the crucial role of the dielectrophoretic effects on mixing.

The computational results presented here provide strong quantitative evidence of the feasibility of

electrostatically induced mixing in multi fluid systems; further optimization is likely to generate results

that are even better with high mixing indexes attained at shorter times or with optimal time-dependent

voltage distributions. We note that both uniform and non-uniform configurations lead to reasonable

degrees of mixing in the domain within short time scales. Our computational results show, however,

that there is a notable advantage to introducing asymmetry in the voltage distribution model - mixing

indexes can be increased significantly in such cases and this may be useful in applications.

4. Conclusions

This theoretical study has successfully identified efficient mixing mechanisms involving the use of

electric fields acting on small-scale flow configurations. Our efforts have been directed towards real

physical systems forced by simple on-off protocols and dielectrophoretic techniques; the numerical

results indicate promising experimental directions in the investigation of enhancing mixing on the mi-

croscale. The proposed approach is based on imposing modulated electric fields across the domain and

requires no moving parts or mass inflow into the system. The field induces interfacial instabilities and

is shown to be capable (under judicious choices of parameters) of generating and sustaining nonlinear

spatiotemporal oscillations. These oscillations in turn underpin the enhanced mixing observed in our

computations, and high mixing indexes are shown to be possible. We also note that dielectrophoretic

traveling-wave voltage boundary conditions have also been shown to produce pumping by generating

nonlinear interfacial traveling waves in otherwise stable and quiescent multi fluid flows - see Cimpeanu

and Papageorgiou [5] - thus adding further flexibility in applications. We have examined both two-

and three-dimensional flows in a variety of test cases using direct numerical simulations based on the

VOF method to fully resolve the dynamics well into the nonlinear regime.

Optimization of the presented methods has so far not been tackled. The possibility to expand
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the present work to include more specialized voltage potential distributions, as well as perhaps the

inclusion of feedback control into such systems is very attractive and merits further exploration.

Acknowledgement

The work of D.T.P. was supported in part by EPSRC grant EP/K041134/1; R.C. acknowledges a

Roth Doctoral Fellowship from the Department of Mathematics, Imperial College London.

References

[1] N. Aubry and I. Glasgow. Enhancement of microfluidic mixing using time pulsing. Lab Chip,

3:114–20, 2003.
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