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In recent years, studies of cis-regulatory mechanisms have

evolved from a predominant focus on promoter regions to the

realization that spatial and temporal gene regulation is

frequently driven by long-range enhancer clusters that operate

within chromosomal compartments. This increased

understanding of genome function, together with the

emergence of technologies that enable whole-genome

sequencing of patients’ DNAs, open the prospect of dissecting

the role of cis-regulatory defects in human disease. In this

review we discuss how recent epigenomic studies have

provided insights into the function of transcriptional enhancers.

We then present examples that illustrate how integrative

genomics can help uncover enhancer sequence variants

underlying Mendelian and common polygenic human disease.
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(CIBERDEM), 08036 Barcelona, Spain
4 Division of Endocrinology, Germans Trias i Pujol University Hospital

and Research Institute and Josep Carreras Leukaemia Research

Institute, 08036 Barcelona, Spain
5 Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain

Corresponding author: Ferrer, Jorge (j.ferrer@imperial.ac.uk)

Current Opinion in Genetics & Development 2015, 33:71–76

This review comes from a themed issue on Molecular and genetic

bases of disease

Edited by Dan E Arking and Johanna M Rommens

http://dx.doi.org/10.1016/j.gde.2015.08.009

0959-437/# 2015 The Authors. Published by Elsevier Ltd. This is an

open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

Introduction
Massive sequencing technologies have demonstrated

an extraordinary power to uncover disease-causing var-

iants in protein-coding sequences. It is now necessary

to ask whether similar technologies can be exploited

to discover defects in the �1 million transcriptional

regulatory sequences that have been unearthed in the

past few years. This challenge, however, is hindered

by our incomplete understanding of the function of
www.sciencedirect.com 
transcriptional regulatory elements. This review will

focus on recent advances in understanding the function

of transcriptional enhancers, and present examples

of how integrative genomics can help identify

enhancer defects that underlie Mendelian and polygen-

ic disease.

Clustering of active enhancers
Enhancers were first defined as DNA sequences that

stimulate transcription from a minimal promoter, regard-

less of orientation or relative distance [1]. Subsequent

studies showed that long-range enhancers are pivotal for

spatial and temporal regulation of gene transcription in

metazoan genomes. Most recently it has become possible

to catalogue the entire genomic repertoire of active

enhancers in any cellular population by exploiting dis-

tinctive enhancer features such as: increased accessibility

to enzymes (DNAse-seq, ATAC-seq), or relative nucleo-

some depletion (FAIRE-seq) [2–4]; enrichment of spe-

cific modified histones (H3K27Ac, H3K4me1) [3,5];

occupancy by co-regulatory factors (p300, BRD4, Media-

tor) [6,7]; and finally, RNA transcription from enhancer-

flanking regions [8]. All such features can now be studied

with high-throughput sequencing-based assays, which

has enabled the generation of enhancer maps in numer-

ous cell lines and primary tissues [8,9��,10,11].

A recurrent theme that emerged from recent enhancer

maps is that most lineage-specific gene transcription

occurs near clusters of active enhancers. This had been

previously recognized in the form of clusters of evolu-

tionary conserved sequences flanking lineage-specific

regulatory genes [12], or from functional studies of nu-

merous individual loci. However, enhancer maps now

provide an unbiased perspective based on genome-scale

experimental data. Regulatory clusters have thus been

described as clusters of open regulatory elements

(COREs) [2], superenhancers [13], stretch enhancers

[14], or enhancer clusters [11]. One study mapped human

pancreatic islet enhancers, and found that most islet-

enriched genes are associated with three or more

clustered enhancers, which tend to be co-occupied by

multiple islet-specific TFs [11]. Chromatin conformation

capture (3C) assays showed that clustered enhancers form

higher order physical structures and establish physical

interactions with target genes [11]. These enhancer clus-

ters were consistent with earlier studies showing COREs

(open chromatin clusters defined by FAIRE-seq) near
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islet-specific genes [2], and with the more general obser-

vation that expression of genes across multiple tissues

correlates with the activity of multiple local enhancers in

the same locus [15]. Another study defined ‘stretch’

enhancers as H3K27Ac-rich chromatin regions >3 kb,

and found them to be frequently located near cell-specific

genes [14]. Another set of studies defined ‘superenhan-

cers’ as extended enhancer regions that show unusually

high occupancy by either Mediator, TFs, or H3K27Ac-

modified nucleosomes [13,16��] (for an in-depth com-

mentary on superenhancers see [17��]). Superenhancers

have been linked to genes that are central for pluripo-

tency or cell type identity as well as to oncogenes, and

shown to be particularly sensitive to targeting by co-

regulator inhibitors [13,16��,18].

Regardless of varying definitions and nomenclatures,

recently described enhancer domains are, in essence, sets

of adjacent active enhancers. This raises the question of

why there is a need for multiple enhancers to create cell-

specific transcription. Possible explanations include re-

dundancy (‘shadow’ enhancers) and combinatorial or

synergistic specificity, although recent genetic studies

provide further explanations. Spitz and colleagues, for

example, used a broad range of mouse genetic tools to

dissect an enhancer cluster regulating Fgf8 [19�]. This

showed that the regulatory output of an enhancer cluster

(in this case the cell types in which Fgf8 is expressed) is

not simply a summation of individual enhancer activities,

but is instead dependent on a combined function of

clustered enhancers, or ‘holo-enhancer units’ [19�]. On

the other hand, multiple studies indicate that enhancer

clusters form higher-order 3D structures [11,20–22,23�],
suggesting that ‘holo-structures’ might be crucial for cell-

specific transcription.

Enhancer function in the context of the 3D
genome
3C studies have established general principles that un-

derlie 3D genome organization, and promise to enlighten

how enhancers interact with their functional targets. Hi-C

sequencing has shown that the genome is packaged at

multiple organizational levels, including so-called topo-

logically associated domains (TADs) [24��]. TADs, which

span on average �0.8 Mb, are defined by a high number

of intra-domain 3C interactions and rare interactions

between adjacent domains. A recent study used random

insertions of a reporter that acts as a sensor of endogenous

enhancer activity, and showed that TADs provide a

spatial compartment within which enhancers interact

functionally (and not solely physically) with their target

promoters [25]. Others have demonstrated coordinated

gene regulation within the confines of TADs [26,27].

Increased resolution mapping using 5C or Hi-C libraries

revealed further subdomains within TADs, including

‘loops’ that are bound at their stem by CTCF, as well
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as cohesin and mediator-bound cell-specific ‘loops’ that

link enhancers to promoters [28,29]. 4C-seq studies, a 3C

variant that interrogates all genomic sites interacting with

a viewpoint of interest at very high resolution, have shown

that clusters of lineage-specific enhancers establish fre-

quent interactions amongst themselves and with target

gene promoters [11,20–22]. Interestingly, while TAD

boundaries are typically invariant across cell types, they

contain structures that are often cell-specific and dynamic

[28,30].

Looping into promoters is thought to underlie enhancer

function, and this was recently tested by artificial tether-

ing of an enhancer to a promoter, leading to increased

transcriptional activity [31]. It is nevertheless also true

that each enhancer often shows 3C interaction signals

with multiple nearby enhancers and promoters, and each

promoter with multiple enhancers and promoters [32,33].

One theoretical implication of this observation is that if all

such interactions are functional, then sequence variation

in single enhancers could potentially impact multiple

genes. However, while 3C assays most probably do cap-

ture regulatory interactions between enhancers and pro-

moters, it is unclear if all 3C interactions are functional. In

fact, studies have challenged the significance of 3C inter-

actions, and questioned whether other variables apart

from physical proximity affect ligation frequency in 3C

experiments, and whether 3C interaction signals repre-

sent discrete loops [34]. This warrants a need for cross-

link-independent methods for studying 3D structure.

Interestingly, a recent study used high-resolution live

cell imaging to show widespread Sox2-bound clustered

enhancers in ESCs, providing further independent evi-

dence that enhancer clusters form structural units [23�].
Diverse approaches are thus becoming available to probe

the impact of enhancer mutations on higher order chro-

matin structures.

Taken together, recent studies provide an initial frame-

work for understanding how long-range enhancers oper-

ate in the context of genome organization. Future studies

that couple 3D interaction experiments with functional

perturbations, including targeted mutations and eQTL

studies, should provide further light on mechanistic and

functional relationships between enhancers and target

genes. This type of knowledge will be vital for under-

standing how enhancer variants could be deleterious in

the context of 3D chromosomal structure, and to identify

the genes that are affected by defective enhancers.

Mendelian regulatory defects
Notable examples of long-range enhancer mutations that

cause monogenic disorders include those regulating SHH
(preaxial polydactyly) [35], SOX9 (Pierre Robin Syn-

drome) [36], and TBX5 (congenital heart disease) [37].

These and other known enhancer mutations were identi-

fied after careful functional characterization of enhancers,
www.sciencedirect.com
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followed by targeted sequencing, or else by the discovery

of large deletions or rearrangements that were subse-

quently shown to contain enhancers. This approach is

relatively inefficient when compared with the success of

whole-exome sequencing for detection of protein-coding

mutations.

A recent study exemplifies a systematic approach to

discover enhancer mutations (Figure 1). Hattersley and

colleagues carried out whole-genome sequencing and

homozygosity mapping of SNPs in two unrelated consan-

guineous probands with isolated pancreas agenesis and no

causal protein-coding mutations [38��]. Integration of this

data with enhancer charts from human embryonic pan-

creatic progenitors revealed homozygous point mutations

in a single unannotated enhancer >25 kb from PTF1A, a

known pancreatic regulatory gene. Subsequent analysis of

12 unrelated families with isolated pancreas agenesis

showed that 10 had rare homozygous mutations in this
Figure 1
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∼3,6 million variants

Regulatory maps
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progenitors

 ∼6,000 regulatory regions
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(a)

Integrative genomics reveals that isolated pancreas agenesis is caused by e

two patients with pancreatic agenesis with maps of active enhancers profile

recessive mutations. These mutations map to a previously unannotated enh

be essential for the embryonic development of the pancreas. (b) Schematic

mutated (G) enhancer sequences. The newly identified enhancer (indented r

and is bound by regulatory factors such as FOXA2 (green teardrop). The pr

pancreatic agenesis (g.23508437A > G) disrupts binding by FOXA2, abolish

of the enhancer cluster. A deletion of this enhancer region or other single b

binding protein cause the same phenotype, thus highlighting a crucial role o
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enhancer, including a large deletion and point mutations

that disrupted functional binding sites of pancreatic de-

velopmental TFs [38��].

The analysis of isolated pancreas agenesis has noteworthy

implications. One is that it illustrates how one can prog-

ress from a person’s inventory of >3 million non-coding

variants to the identification of a causal non-coding mu-

tation. It was also an unbiased genome-scale analysis that

showed that mutations that disrupt recognizable cis-reg-

ulatory sequences can be the most common cause of a

discrete phenotype (in this case isolated pancreas agene-

sis). It is also noteworthy that the pancreatic progenitor

enhancer that harbored mutations was inactive in a broad

panel of tissues, which highlights that any search for non-

coding defects needs to focus on disease-relevant epige-

nomic annotations. Finally, it is interesting that despite

that there are multiple pancreatic progenitor enhancers

near PTF1A [4,39], all mutations fell in a single enhancer.
Healthy individual

Patient with
pancreas agenesis

G

A

WT enhancer

Mutated enhancer

(b)
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nhancer mutations. (a) Integration of whole genome sequences from

d in human embryonic pancreatic progenitors identified causal

ancer 25 kb away from PTF1A, a transcription factor that is known to

 representation of the PTF1A locus harboring wild-type (A) and

ed box) establishes a physical interaction with the PTF1A promoter

esence of a single-nucleotide enhancer variant in some patients with

es enhancer activity and potentially alters the local chromatin structure

ase mutations that disrupt binding of FOXA2, PDX1 or an unidentified

f this enhancer in the active conformation of the PTF1A locus.

Current Opinion in Genetics & Development 2015, 33:71–76



74 Molecular and genetic bases of disease
Analogously, engineered mutations in enhancer clusters

show that only some clustered enhancers in Sox2 are

essential in ESCs [40]. This suggests a functional hierar-

chy within enhancer clusters, perhaps due to a hub-like

function of specific enhancers within 3D structures.

The pancreas agenesis studies support future efforts to

integrate whole genome sequencing with regulatory

annotations to discover Mendelian non-coding defects.

Further discoveries of pathogenic enhancer mutations

from screens of natural and engineered variants should

inform computational algorithms that enable prediction

of pathogenic regulatory variants. Despite the limited

amount of data, several approaches have already been

developed to predict which non-coding variants within

regulatory elements are functional. Most have examined

whether variants affect nucleotides in TF-binding motifs,

are under evolutionary selective pressure, or show poly-

morphism in humans [41–43]. Additional factors, such as

the position of variant enhancers in the context of regu-

latory domains, are also probably to affect pathogenicity.

The availability of large numbers of regulatory mutations

should thus facilitate future understanding of Mendelian

and complex non-coding defects.

Common variation in enhancers and human
disease
Most common diseases, including prevalent forms of

cancer, Type 2 diabetes, or late-onset Alzheimer’s dis-

ease, result from environmental factors interacting with

genetic susceptibility variants. Genome-wide association

studies (GWAS) have identified thousands of loci that

affect the susceptibility to common diseases. Many risk

loci do not contain causal protein-coding variants, sug-

gesting a role for regulatory variation [44,45�,46]. This

entails major challenges for translating GWAS findings to

molecular insights. Associated haplotype blocks include

many variants, which means that it is necessary to identify

the specific causal regulatory variants at each associated

locus. Even after prioritizing functional variants, there is

no straightforward approach to conclusively establish the

genes that are affected by the variant, and the relevant

biological context. Only when this information is avail-

able is it possible to study how inherited changes in gene

regulation affect cellular pathways that underlie disease.

Recent studies have made considerable progress to address

these challenges. A plethora of studies have now shown

that variants associated with common diseases are enriched

in enhancers, and this has sometimes led to identification of

functional variants [9��,11,16��,44,45�,47��,48]. Studies

have further revealed a specific enrichment in enhancer

clusters or superenhancers that are active in cell types that

match a coherent pathophysiological model of the disease

[11,14,16��,49]. Two studies, for example, showed that

SNPs associated with Type 2 diabetes and fasting glycemia

levels are enriched in pancreatic islet clustered enhancers
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and stretch enhancers [11,14]. This showed that islet-

specific regulatory variation is relevant to Type 2 diabetes

pathophysiology, and enabled functional characterization

of discrete risk variants that disrupt TF-binding motifs and

impact the activity of islet enhancers [11]. Another exam-

ple focused on 21 autoimmune disorders, and used dense

genotyping of large patient cohorts to greatly reduce the

number of candidate causal variants per locus [45�]. These

SNPs were enriched in non-synonymous protein-coding

variants, but also in enhancer variants, with a notorious

enrichment in dynamically stimulated and clustered T-cell

enhancers [45�]. Taken together, recent work has shown

that it is possible to identify disease-associated functional

variants in cell-specific enhancers, which represents a giant

step towards understanding molecular mechanisms of

common diseases.

In addition to identifying functional variants, it is chal-

lenging to define which genes are affected. A study that

analyzed FTO, the major obesity susceptibility locus,

provides a paradigm for how this problem can be tackled

[50�]. Risk variants in FTO intronic regions were pre-

sumed to affect FTO, whose mouse KO phenotype causes

reduced body size [51,52]. Unexpectedly, FTO regions

carrying risk variants form 3C interactions with IRX3,

located >400 kb away, and confer enhancer activity in

cellular domains that coincide with IRX3 (rather than

FTO) expression [50�]. Furthermore, risk SNPs at FTO
were associated with brain eQTLs that affected expres-

sion of IRX3, but not FTO. Interestingly IRX3 KO mice

show decreased lean body mass [50�]. This landmark

study therefore shows that contrary to previous assump-

tions IRX3 is a functional target of regulatory variants that

affect obesity susceptibility.

In summary, recent studies have started to deploy a broad

range of genetic and functional tools that enable untan-

gling the regulatory function of common disease-associ-

ated variants. Clearly, the level of evidence that is needed

to conclusively implicate a specific non-coding variant in

causality remains a challenge. Importantly, most common

diseases are not easily modeled in an organism by intro-

ducing a single regulatory allele. However, as in classic

protein-coding Mendelian diseases, it should be possible

to implicate a genetic variant by combining multiple lines

of evidence, including human genetics (fine mapping,

transethnic studies) and functional studies (allelic expres-

sion, reporter and 3C assays, genome editing). Ultimately,

the goal is not solely to determine which variants are

causal, but to understand the genetic pathways they

regulate and to harness this knowledge to develop more

efficient therapies.

Until very recent times, the fields of gene regulation and

human genetics were largely unlinked. The studies we

have reviewed illustrate how recent advances in these two

fields are rapidly converging to enlighten new genetic
www.sciencedirect.com
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mechanisms underlying Mendelian and polygenic human

disease.
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