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Abstract This paper proposes an efficient computational techniquéhopti-
mal control of linear discrete-time systems subject to lleuhdisturbances with
mixed linear constraints on the states and inputs. The @nobF computing an op-
timal state feedback control policy, given the currenteststnon-convex. A recent
breakthrough has been the application of robust optindnagchniques to repa-
rameterize this problem as a convex program. While the agpeterized problem
is theoretically tractable, the number of variables is gatid in the number of
stages or horizon lengtR and has no apparent exploitable structure, leading to
computational time o®(N®) per iteration of an interior-point method. We focus
on the case when the disturbance sei-isorm bounded or the linear map of a hy-
percube, and the cost function involves the minimizatioa qtiadratic cost. Here
we make use of state variables to regain a sparse probleotwsteuhat is related
to the structure of the original problem, that is, the poligtimization problem
may be decomposed into a set of coupled finite horizon coptaiblems. This
decomposition can then be formulated as a highly structquediratic program,
solvable by primal-dual interior-point methods in whictckateration requires
O(N?) time. This cubic iteration time can be guaranteed using adidbased
block factorization technique, which is standard in digeitame optimal control.
Numerical results are presented, using a standard spams&l{glual interior point
solver, that illustrate the efficiency of this approach.
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1 Introduction
Robust and predictive control

This paper is concerned with the efficient computation ofreat control policies
for constrained discrete-time linear systems subject tontled disturbances on
the state. In particular, we consider the problem of findowgr a finite horizon of
lengthN, afeedback policy

m:={to("),...,un-1(-)} 1)

for a discrete-time linear dynamical system of the form
Xi+1 = AX +Bu +w 2)
ui:“i(xo,"wxi) (3)

which guarantees satisfaction of a set of mixed constraimtie states and inputs
at each time, for all possible realizations of the distudesm;, while minimizing
a given cost function.

The statex; and inputsy; are constrained to lie in a compact and convex set
Z,l.e.

(x,u) ez, Vvie{01,...,.N—1} 4)
with an additional terminal constrairt, € X;. We assume nothing about the dis-
turbances other than that they lie in a given compadi\set

The above, rather abstract problem is motivated by the lfiettfor many real-
life control applications, optimal operation nearly alwayccurs on or close to
some constraints [41]. These constraints typically afisegxample, due to ac-
tuator limitations, safe regions of operation, or perfonce specifications. For
safety-critical applications, it is crucial that some oralthese constraints are
met despite the presence of unknown disturbances.

Because of its importance, the above problem and derivatibit have been
studied for some time now, with a large body of literature talis under the broad
banner of “robust control” (see [7,53] for some seminal wankthe subject). The
field of linear robust control, which is mainly motivated by frequency-dom
performance criteria [57] and doestexplicitly consider time-domain constraints
as in the above problem formulation, is considered to be reand a number of
excellent references are available on the subject [19,89/5 contrast, there
are few tractable, non-conservative solutions to the alwovestrained problem,
even if all the constraint sets are considered to be polgtopellipsoids; see, for
example, the literature on set invariance theory [9¥00ptimal control [14, 21,
49,52].

A control design method that is particularly suitable fog 8ynthesis of con-
trollers for systems with constraints, is predictive cohft2,41]. Predictive con-
trol is a family of optimal control techniques where, at etioke instant, a finite-
horizon constrained optimal control problem is solved gdimols from mathe-
matical programming. The solution to this optimizationigdesm is usually imple-
mented in a receding horizon fashion, i.e. at each timembséameasurement of
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the system is obtained, the associated optimization pmidesolved and only the
first control input in the optimal policy is implemented. Bese of this ability to

solve a sequence of complicatemnstrainedoptimal control problems in real-
time, predictive control is synonymous with “advanced colfitin the chemical

process industries [45].

The theory on predictive contrelithoutdisturbances is relatively mature and
most of the fundamental problems are well-understood. Mewelespite recent
advances, there are many open questions remaining in thefaobustpredictive
control [4,42,43]. In particular, efficient optimizationetiods have to be devel-
oped for solving the above problem before robust predictorgrol methods can
be applied to unstable or safety-critical applications@sa such as aerospace and
automotive applications [50].

Robust control models

The core difficulty with the problem (1)—(4) is that optinmgithe feedback policy
1T over arbitrary nonlinear functions is extremely difficult, in general. pos-
als which take this approach, such as those based on roboainity program-
ming [3, 15], or those based on enumeration of extreme diahae sequences
generated from the s@, as in [47], are typically intractable for all but the small-
est problems. Conversely, optimization owgren-loopcontrol sequences, while
tractable, is considered unacceptable since problemdezsibility or instability
may easily arise [43].

An obvious sub-optimal proposal is to parameterize therobiplicy 17 in
terms ofaffinefunctions of the sequence of states, i.e. to parameterizedhtrol
sequence as

i
u=g+ E Li jX; (5)
i i pA INEM|

where the matricek; j and vectorsy; are decision variables. However, the set
of constraint admissible policies of this form is easily whoto benon-convex
in general. As a result, most proposals that take this appr{iy 13, 37, 38, 44]
fix a stabilizing feedback gaild, then parameterize the control sequencsg, as
Kx; 4+ gi and optimize the design parametgrsThough tractable, this approach
is problematic since it is unclear how one should select #ir I§ to minimize
conservativeness.

A recent discovery [5, 28] showed that the problem of optingzover state
feedback policies of the form (5) is equivalent to the prablef optimizing over
disturbance feedback policies of the form

i—1
U =V+ |V|i7jo. (6)
2

The particular advantage of the parameterization (6) itkieeset of constraint
admissible policy paramete{§M, j },{vi}} is guaranteed to be convex when the
constraint set€ andX; are convex.

The parameterization (6) has been proposed as a means fogfswutions
to a general class of robust optimization problems, calfédedy adjustable ro-
bust counterpart (AARC) problems [6, 30]. The same pararizetion has also
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appeared specifically in application to robust model pitdgiccontrol problems
in [31, 32, 39, 40], and appears to have originally been sstggewithin the con-
text of stochastic programs with recourse [23]. In the patér control context
considered here, the reparameterization of (5) to the cdioven (6) may be con-
sidered a special case of the well-known Youla parametiizéan linear system
theory [56] [58, Ch. 12].

Using the parameterization (6), robust optimization mibdgltechniques [5,
6, 30] are used to eliminate the unknown disturbaregand formulate the ad-
missible set of control policies wit®(N2mn) variables, wheré\ is the horizon
length as above, and andn are the respective dimensions of the contrpland
statesx; at each stage. This implies that, given a suitable objeétimetion, an
optimal affine state feedback policy (5) can be found in tiheg ts polynomially
bounded in the size of the problem data.

Efficient computation in robust optimal control

In the present paper we demonstrate that an optimal politlyedform (6), equiv-
alently (5), can be efficiently calculated in practice, givaiitable polytopic as-
sumptions on the constraint sét§ Z andX;. This result is critical for practical
applications, since one would generally implement a cdietrin a receding hori-
zon fashion by calculating, on-line and at each time instamadmissible control
policy (5), given the current state Such a control strategy has been shown to
allow for the synthesis of stabilizing, nonlinear time-amiant control laws that
guarantee satisfaction of the constraifitéor all time, for all possible disturbance
sequences generated frakh[28].

While convexity of the robust optimal problem arising out(6j is key, the
resulting optimization problem is a dense convex quadgtigram withO(N?)
variables (see Section 2.3, cf. [28]), assuniihgominates the dimension of con-
trolsmand states at each stage. Hence each iteration of an interior-pointoaet
will require the solution of a dense linear system and thqaireO(N°) time. This
situation is common, for example, in the rapidly growing m&mnof aerospace and
automotive applications of predictive control [41, Se®]345]. We show that
when the disturbance setidsnorm bounded or the linear map of a hypercube, the
special structure of the robust optimal control problem loamexploited to devise
a sparse formulation of the problem, thereby realizing astsuttial reduction in
computational effort t@(N®) work per interior-point iteration.

We demonstrate that the cubic-time performance of intgriont algorithms
at each step can be guaranteed when using a factorizatlundgee based on Ric-
cati recursion and block elimination. Numerical resulis gresented that demon-
strate that the technique is computationally feasible f@teans of appreciable
complexity using the standard sparse linear system solv&™34] within the
primal-dual interior-point solver OOQP [24]. We comparésthprimal-dual
interior-point approach to the sparse active-set methétHPAL 7] on both the
dense and sparse problem formulations. Our results sutigeshe interior-point
method applied to the sparse formulation is the most praatiethod for solving
robust optimal control problems, at least in the “cold Stsittiation when optimal
active set information is unavailable.
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A final remark is that the sparse formulation of robust optiotatrol results
from a decomposition technigue that can be used to sepdmtproblem into
a set of coupled finite horizon control problems. This reiucbf effort is the
analogue, for robust control, to the situation in classigatonstrained optimal
control in which Linear Quadratic Regulator (LQR) problenoan be solved in
O(N) time, using a Riccati [1, Sec. 2.4] or Differential Dynamim&ramming
[35] technigue in which the state feedback equativn= Ax-+ Bu is explicit in
every stage, compared @N?®) time for the more compact formulation in which
states are eliminated from the system. More direct motiveltor our work comes
from [8, 16, 46, 51, 54], which describe efficient implemeiotas of optimization
methods for solving optimal control problems with state andtrol constraints,
though without disturbances.

Contents

The paper is organized as follows: Section 2 introduces ptienal control prob-
lem considered throughout the paper, and shows how the afaffine distur-
bance feedback policies described in [28] may be used tguesieceding hori-
zon control (RHC) law which can be implemented via the solutif a quadratic
program (QP) at each time step. Section 3 gives an equividemulation for
this QP that can be decomposed into a highly structuredlysbaydered block-
diagonal quadratic program through reintroduction of appate state variables.
Section 4 demonstrates that, when using a primal-duaiantpoint solution tech-
nique, the decomposed quadratic program can always bedsioia amount of
time which is cubic in the horizon length at each interiompderation. Section 5
demonstrates through numerical examples that the promtesszmposition can
be solved much more efficiently than the equivalent origioahulation. The pa-
per concludes in Section 6 with suggestions for furtherasde

Notation: The set of integersi,..., j} is denotedZ; ;. Given vectors< andy
and matriced\ andB, A > 0 (> 0) means tha#\ is positive (semi)definiteA B
is the Kronecker product oA andB, X' is the transpose of, vedx,y) := [X' Y]
and||x||a := VX Ax For scalaq, |q] is the largest integer less than or equadjto
The vectorl is an appropriately sized column vector with all entriesaddor 1.

2 Problem Statement

Consider the following discrete-time linear time-invartigystem:
X" = Ax+Bu+w, (7)

wherex € R" is the system state at the current time instahtis the state at the
next time instanty € R™ is the control input anev € R" is the disturbance. It is
assumed thatA, B) is stabilizable and that at each sample instant a measutemen
of the state is available. It is further assumed that theeciirand future values of
the disturbance are unknown and may change unpredictatydne time instant

to the next, but are contained in a convex and compact (cisgtounded) s&Y,
which contains the origin.
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The system is subject to mixed constraints on the state goud:in
Z:={(x,u) e R""xR™ |Cx+Du<b}, 8)

where the matrice€ € R¥", D € RS*™ and the vectob € RS; sis the number
of affine inequality constraints that defii® A design goal is to guarantee that
the state and input of the closed-loop system remaif for all time and for all
allowable disturbance sequences.

In addition toZ, a target/terminal constraint 9€{ is given by

Xi:={xeR" |Yx<z}, 9)

where the matri¥ € R™" and the vectoz € R'; r is the number of affine inequal-
ity constraints that defin¥;. The seiX; can, for example, be used as a target setin
time-optimal control or, if defined to be robust positiveyariant, to design a re-
ceding horizon controller with guaranteed invariance aaldity properties [28].
Before proceeding, we define some additional notation. érsdquel, predic-
tions of the system’s evolution over a finite control/plarghorizon will be used
to define a number of suitable control policies. Let the largtof this planning
horizon be a positive integer and define stacked versionseoptedicted input,
state and disturbance vectars R™, x € R"N+1 andw € R™, respectively, as

X :=VveqXo, ..., XN-1,XN);
u:=vedup,...,UN_1),
w = vedWwp,...,Wn_1),

wherexg = x denotes the current measured value of the statexand= Ax +
By +w;, i =0,...,N—1 denotes the prediction of the state aftéme instants
into the future. Finally, let the s := WN :=W x --- x W, so thatw € W.

2.1 Affine Disturbance Feedback Policies

As noted in the Introduction, the problem of constructingpastraint admissible
finite horizon feedback policy for the system (2), where the control input at each
time is specified as aarbitrary function of prior states, is extremely difficult in
general. We therefore choose to employ a more restricted ofaffinefeedback
policies, where the control input at each time is modelledraaffine function of
the sequence of past disturbances, so that

i—1
u=V+ zOMLJ'Wj, Vi e Z[O,N—l], (ll)
j=

where eachV j € R™" andv; € R™ are decision variables to be specified in
the construction of the control policy. We note that, singk $tate feedback is
assumed, the past disturbance sequence is easily cattaktbe difference be-
tween the predicted and actual states at each step, i.e.

Wi =X11—AX —Bu, Vie€Zgn_q (12)
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Define the variable € R™N and the block lower triangular matri € R™N<nN
such that

0 - . 0 Vo
M= | Mo O O vi=| & |, (13)
MN-120 --- Mn—1N-—20 VN-1

so that the control input sequence can be writtem adViw + v. Define the set of
admissible policie$M, v), for which the constraints (8) and (9) are satisfied, as:

(M, v) satisfies (13x = xo
Xit+1 =A% +Bu +w
I‘I,‘jf(x) =< (M,v) U =V +Z'j;% Mijwj 5, 14)
Cx+Du<b Yx<z
Yw € W, Vi € Z[O.,Nfl]

and define the set of initial statggor which an admissible control policy of the
form (11) exists as

X' = {xeR"| 1§ (x) £ 0} (15)

Note that, as shown in [27, 28], the sﬂﬂf (X) andX,f’,f are convex since the sets
Z andX; are convex.

2.2 A Receding Horizon Control Law

We are chiefly interested in employing the policy paramegtion (11) to con-
struct areceding horizon controfRHC) law for the uncertain linear system (2),
i.e. at each sample instant, given a measurement of thentstegtex, we would
like to calculateon-line a constraint admissible policjM (x),v(x)) € I‘I,‘\j,f(x)
that is optimal with respect to some cost function, and apmdyfirst component
of this policy to the system (2). We stress that, for probleheon-trivial size,
this determination of control policieaustbe performed on-line, since it is gener-
ally not possible to select a single p&M,v) such thatM,v) € I'Iﬂf(x) for all

X € Xﬂf. The main contribution of this paper is to describe an efficemputa-
tional method by which this on-line calculation may be perfed.

In particular, we define an optimal policy pdv*(x),v*(x)) € I‘I,‘\j,f(x) to be
one that minimizes the value of a cost function that is quédiathe disturbance-
free state and input sequence. We thus define:

1. N-1r7q 1
WN(X,V) i= EHXNII%+ Z) <§||Xi Hé+§||Vi I%> (16)
1=

wherexp = X, Xiy1 =A%+ By for i =0,...,N —1; the matriceQ andP are
assumed positive semidefinite, aRds assumed positive definite. The cost func-
tion (16) can alternatively be written in vectorized form as

1 1
WN(X V) = §||Ax+ BVHZQ+§HVH§@ 17)
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whereA € R"N+1xN gndB € R'N+D>MN gre defined in Appendix A and where
Q:=['"Q JandR := | ® R We define an optimal policy pair as

(M*(x),v*(x)) := argmin Wn(X,V). (18)
Mv)endfx

For the receding-horizon control caseimae-invariantcontrol lawpiy : Xﬂf —RM
can be implemented by using the first part of this optimal drgolicy at each

time instant, i.e.
HN(X) = VH(X). (19)

wherev*(x) =: (Vy(X),...,Vy_1(X)). We emphasize that, due to the dependence of
the optimization problem (18) on the current statehe control lawuy (-) will, in
general, be aonlinearfunction with respect to the current state, even though it
may have been defined in terms of the class of affine feedbditigso(11).

The control lawpuy(-) has many attractive geometric and system-theoretic
properties. In particular, implementation of the recedingzon control lawu (+)

renders the se(,‘jf robust positively invariant, i.e. ¥ € Xﬂf, then it can be shown

thatAx+ By (X) +w e X,‘jf for all w e W, subject to certain technical conditions
on the terminal seXs. Furthermore, the control lag (-) is uniquely defined for
eachx, and the closed-loop system is guaranteed to be inputte-aSS) stable
under suitable assumptions @) P, R andX;. Finally, calculation of an optimal
policy in (18) requires the minimization of a convex functiover a convex set, so
thatun(+) in (19) is thus practically realizable for a variety of didtance classes.
The reader is referred to [27, 28] for a proof of these requitsa review of other
system-theoretic properties of this parameterization.

2.3 Solution via Quadratic Programming

As shown in [28], it is possible to eliminate the universahntifier in (14) and
construct matriceB € RENMXMN G ¢ R(SN)XIN gndT ¢ R(SN)*N and vec-
tor c € RS (defined in Appendix A) such that the set of feasible pélifsv)
can be written as:

my' () = {(M,V) (20)

(M,v) satisfies (13
Fv+ max(FM +Gw<c+Tx ("’
weWw

where mayecyy (FM + G)w denotes row-wise maximization — note that this is
equivalent to evaluating treupport functiorof the setV for each column of the
matrix (FM 4+ G)’, and that these maxima always exist since th@\&t assumed
to be compact. In the remainder of this paper, we considepé#ncular case
whereW is generated as the linear map of a hypercube. Define

W={weR"|w=Ed, ||d| <1}, (21)

whereE € R™! is assumed to have full column rank, so that the stacked gtngr
disturbance sequendes RN is

d:=vedd,...,dy-1), (22)
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and define the matrid := Iy ® E € RN™N! 5o thatw = Jd. From the properties
of the dual norm [33], when the generating disturbaddg anc-norm bounded
signal given as in (21), then

'w = ||E’ 2
maxalw |Eal|y (23)

for any vectora € R". Straightforward application of (23) to the row-wise maxi-
mization in (20) yields

g’ (x) = {(M V) (24)

(M,v) satisfies (13
Fv+ab§FMJ+GJ)1<c+Tx|’

where ab&MJ+ GJ)1 is a vector formed from the 1-norms of the rows of the
matrix (FMJ+ GJ). This can be written as a set of purely affine constraints by
introducing slack variables and rewriting as

(M, v) satisfies (13)7A s.t.
Fv+A1<c+Tx ;. (25)
—A<(FMJ+GJ) <A

' (x) =14 M,v)

The control policy optimization problem (18) can thus bevedlin this case by
forming a quadratic program in the variabMs A, andv, i.e.

1 1
in Z||Ax+Bv|% + = ||v|? 2
min SlIAx+BYI[G + 5 lIvI% (262)
subject to:
Mij=0, Vi<] (26b)
Fv+Al<c+Tx (26¢)
—A<(FMJ+GJ) <A. (26d)

Remark 1The total number of decision variables in (26MsaN(N —1)/2 in M,
mNin v and(sIN? 4+ rIN) in A, with the number of constraints equal(®N+r)

+ 2(sIN?+rIN)), or O(N?) overall. For a naive interior-point computational ap-
proach using a dense factorization method, the resultiagmiic program would
thus require computation time 6f(N®) at each iteration.

23.1 Writingﬂﬂf(x) in Separable Form

We next define the variable transformation= MJ, such thaty € R™<IN has
block lower triangular structure similar to that definedi8) for M. Note that use
of this variable transformation is tantamount to paranigtey the control policy
directly in terms of the generating disturbandgsso thaty; = v; + le_:](')Ui7jdj, or
u=Ud+v.

When the matridE is full column rank, the QP (26) may be solved using this
variable transformation by solving an equivalent QP in tagablesU, A andv:

min =||Ax+Bv —|lv 27a
min 5 IAx+BY|S + 5 vI% (27)
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subject to:
Uj=0, ¥i<]j (27b)
Fv+Al<c+Tx (27¢c)
—A<(FU+GJ) <A. (27d)

The equivalence between the QPs (26) and (27) vehémd thusJ) has full col-
umn rank is easily demonstrated by employing a left invéfssuch thati’J =1,
since any feasible solutiqiM , A, v) satisfying the constraint in (27d) also satisfies
the constraint (26d) witM = UJT.

Remark 2The critical feature of the quadratic program (27) is thateblumns of
the variabledJ and A are decoupled in the constraint (27d). This allows column-
wise separation of the constraint into a number of subproblesubject to the
coupling constraint (27c). The reader is referred to [28]details on the solu-
tion of the optimization problem (18) whél is an arbitrary polytope or 2—norm
bounded.

2.4 Soft Constraints and Guaranteed Feasibility

An important practical consideration for control applioast is the handling of
potential infeasibility of the optimization problem (18).the RHC lawpy(-) is
to be implemented on-line for a real system, it is importanjuarantee reason-

able controller behavior if the plant enters a statguch thatl'l,f’,f(x) is empty

(equivalently,x ¢ Xﬂf). A common approach in the literature in receding hori-
zon control is to treat some or all of the constraintsZiror X; as so-calledoft
constraintsi.e. constraints that may be violated if necessary to guaesthat the
optimization problem (27), and particularly the constt##vc), is feasible for all

x. Techniques for soft constraint handling are well estalikin the literature on
linear predictive control for undisturbed systems [4148}, and we show briefly
how these ideas may be extended to cover the robust contiollepn considered
here. Without loss of generality, we consider the simplastavhere every con-
straint is a soft constraint, and replace the hard statergmd constraints in (14)
with soft constraints of the form

Cx +Duy; < b+ Ei, Ei > O, Vie Z[O,N—l] (28a)

Yxn <z+én, én >0, (28b)

and augment the objective function with linear-quadraiats(y/ & + &/ &) pe-
nalizing the soft constraint violation§, wherel; = 0. The optimization prob-
lem (27) becomes

.1 1 N
Jmin, SllAx+ Bv|5+ 5HVH%+%<% +ERE) (29a)
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subject to:
Uij=0vi<] (29b)
Fv+Al<c+Tx+&, €>0, (29c¢)
—A < (FU+GJ) <A, (29d)

where¢ :=ved &, ...,én). Note that the quadratic program (29) is feasible for all
X, SO that a receding horizon controller synthesized viaagggesolution of this
QP is defined everywhere @i'. A well-known feature of such penalty function
formulations is that if, in the spirit of [22, Sec. 12.3] [43ec. 3.4], if one defines
an exact penalty function (by choosinglarge enough), then solutions to (29)

correspond exactly to solution of (27) for alk Xﬂf.

3 Recovering Structure in the Robust Control Problem

The quadratic program (QP) defined in (27) can be rewrittennmore computa-
tionally attractive form by re-introducing the eliminatsiéte variables to achieve
greater structure. The re-modelling process separatesrifji@al problem into
subproblems; a nominal problem, consisting of that pateftate resulting from

the nominal control vectar, and a set of perturbation problems, each representing
the components of the state resulting from each of the catuwh(27d) in turn.

Nominal States and Inputs
We first define a constraint contraction vecbare RSN such that
oc :=vedqdcy,...,0cN) = Al, (30)
so that the constraint (27c¢) becomes
Fv+dc<c+Tx (31)
Recalling that the nominal statesate defined in (16) as the expected states given

no disturbances, it is easy to show that the constraint @i e written explicitly
in terms of the nominal controlg and states; as

Xit1—AX—Bvi =0, Vi€Zgon_q (32a)
C% +Dvi+36 <b, ¥ieZgy y (32b)
YN+ 0cy < Z, (32¢)

wherexg = x, which is in a form that i€xactly the samas that in conventional
receding horizon control problem with no disturbances, vt the right-hand
sides of the state and input constraints at each stag®lified by the constraint
contraction term@c;; compare (32a)—(32c) and (7)—(9) respectively.



12 Paul J. Goulart et al.

Perturbed States and Inputs

We next consider the effects of each of the column$Faf + GJ) in turn, and
seek to construct a set of problems similar to that in (32).ti&at each column
as the output of a system subject to a unit impulse in a sifglaent ofd, and
construct a subproblem that calculates the effect of thaitidhance on the nom-
inal problem constraints (32b)—(32c) by determining itatdbution to the total
constraint contraction vectdrc.

From the original QP constraint (27d), the constraint @wtion vectodc can
be written as

abfFU+GJ)1 < Al=dc. (33)

The left-hand side of (33) is just a summation over the colimhthe matrix
abgFU + GJ), so that

abgFU+GJ)1= I%abs{(FUJrGJ)ep). (34)
p=1

whereep, € RN is a vector whose'" element is equal to 1, with all other elements
equal to zero. DefingP € RSMT anddcP € RSNt as

yP:= (FU+GJ)ep (35)
ocP ;= abgyP). (36)

Note that the unit vectog, models a unit disturbance in some elemgmaff the
generating disturbanad at some time stef, with no disturbances at any other
steg. If we denote thg™" column of E asEj), then it is easy to recognize as
the stacked output vector of the system

Wl Py =0, VieZgy (37a)

X1 = Eqj)s (37b)

X —AY—BW =0, Vi€ Zyin 1 (37¢)
yP—Cx—Duf =0, Vi€ Zy N1 (37d)
YR—YxR =0, (37€)

whereyP = vedyp,...,yR). The inputsuP of this system come directly from the
p"" column of the matrixJ, i.e. they are the columns of the sub-matritgg.

If the constraint term@cP for each subproblem are similarly defined&® :=
veq ey, . .., 5¢), then each component must satisif’ = abgy’), or in linear
inequality constraint form

—ocP <yP < acl. (38)

Note also that for the™ subproblem, representing a disturbance at Q(agp"f—lj ,
the constraint contraction terms are zero prior to stkgel).

1 Note that this impliegp = Ik + j, k= | 22| andj = 1+ ((p— 1) modl).
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By further defining
~. |+C +D Y —ls =
o [ o= [ 28] v [N we- [ we- [ oo
equations (37d) and (37e) can be combined with (38) to give

Cx+DuP +H5cP <0, VieZy iy g (40a)
Y +H¢dck <0. (40b)

3.1 Complete Robust Control Problem

We can now restate the complete robust optimization prolfgtas:

A min L iRlB+ 20( %13+ 2 |v.|R) (41)
Xl,....XN VOo,.--VN— 1500 ..... 5CN

Koo Xy UG- UYy_1,0C8,...,6CH,

,
IN IN uN N IN IN
XQ sees U »++-UNL1,0Cp 5+, OCN

subject to (32), (37a)—(37c) and (40), which we restate fagreonvenience:

Xii1—AX—Bv =0, Vie Z[O.,Nfl] (42a)
Cii —+ DVi —+ 5Ci < b, Vi e Z[O,N—l] (42b)
Yin + Ocn < z, (42c)
wherexp = x, and
IN
5=y &c, VieZpp), (43)
=1

and, for eactp € Zj )

(Ul P 8cf) =0, VieZygy (44a)
Xee1=E(j): (44D)
|+1—A)ﬂ Bui =0, Vi GZ[k+1N 1 (44c)
CxX +DuP +HSCP <0, Vi€ Zy,in 1 (44d)
Y +H¢dck <. (44e)
wherek = L J andj =14 ((p—1) modl). The decision variables in this prob-

lem are the nomlnal states and contrglaridy; at each stage (the initial statg ~
is known, hencenot a decision variable), plus the perturbed states, contaoid,
constraint contraction term¢, u’, andéc? for each subproblem at each stage.
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Remark 3Recalling the discussion of Section 2.4, soft constrainéseasily in-
corporated into the optimization problem (41)—(44) via ifiodtion of the cost
function (41) and of the constraints (42b)—(42c). The intgatr point regarding
this soft constraint inclusion is thatdioes notresult in a modification of any of
the perturbation constraints (44), so that the qualitatégilts to be presented in
Section 4 relating to efficient solution of the QP (41)—(44 aot fundamentally
altered by the incorporation of soft constraints.

We can now state the following key result, proof of which dak directly from
the discussion of Section 2.3.1 and of this section.

Theorem 1 The convex, tractable QR1){44) is equivalent to the robust opti-
mal control problem¢26) and (27). The receding horizon control law= iy (X)
in (19) can be implemented using the solutior{4)+44) as u= v{(x).

The importance of the re-introduction of states in (42) af) (s that significant
structure and sparsity can be revealed in the problem thremgnterleaving of
decision variables by time index. For the nominal probleetfjre the stacked
vector of variables:

Xp = veo(vo,f(l,vl,...,)‘(N,l,vN,l,f(N). (45)

For the pi" perturbation problem in (44), which models a unit distudmmt
stagek = | 21|, define:

= veduly, 868, X 5 W .6

p p p P 5P (46)

XN-1> Un-15 OCN_1, XN, OCN)-

Using this reordering, the constraints (42)—(44) can béevrias a single set of

linear constraints in singly-bordered block-diagonahiavith considerable struc-
ture and sparsity:

Ao X0 bo CoJi--- JN] [0 do
A1 X1 bq C1 X1 dy

= .1, <o @
And Lxin bin Cnd ain din

The coefficient matricedy andCgp in (47) originate from the nominal problem
constraints (42), and are defined as

B —I
A B —I
Ag:= . , Co:i= , (48)

A B -l

with corresponding right hand sides

bo :=veq—Ax0,0,...,0), do:=vedb—Cxb,...,b,2). (49)
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The coefficient matrice8, andCp in (47) originate from the constraints for the
p'" perturbation subproblem in (44), and are defined as

D H
B O —I e
A BO I CDH
' CDH
A BO-lO 7 H
(50)
with corresponding right hand sides

bp :=veq—AE;),0,...,0), dp:=veq0,0,...,0,0). (51)

The coupling matricesp in (47) are then easily constructed from the coupling
equation (43).

Remark 41t is possible to define a problem structure similar to thaih)—(44)
for the more general polytopic disturbance sets discussg28j via introduction
of states in a similar manner. However, in this case the peation subproblems
(44) require an additional coupling constraint for the sobfems associated with
each stage.

4 |nterior-Point Method for Robust Control

In this section we demonstrate that, using a primal-duariot-point solution
technique, the quadratic program defined in (41)—(44) casobeed with a per-
iteration computational effort that grows cubicly with therizon lengthN, when
n+ mis dominated byN; this situation is common, for example, in the rapidly
growing number of aerospace and automotive applicationsedictive control
[41, Sec. 3.3] [45]. This is a major improvement on tD(eNG) work per iteration
associated with the compact (dense) formulation (26), ®rtuivalent problem
(27); cf. Remark 1. The improvement in computational efficiecomes about
due to the improved structure and sparsity of the problemedd, akin to the
situation in [46], we will show that each subproblem in the (3R)—(44) has
the same structure as that of an unconstrained optimalaigurisblem without
disturbances.

We first outline some of the general properties of interioinpsolution meth-
ods.

4.1 General Interior-Point Methods

We consider the general constrained quadratic optimizgtioblem

1
meinEG’Qe subject toAf = b, CO < d, (52)
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where the matribQ is positive semidefinite. A solutiof to this system exists
if and only if the Karush-Kuhn-Tucker conditions are sagidfii.e. there exist
additional vectorgt, A andz satisfying the following conditions:

QO+A'm+CA=0 (53a)
AG—b=0 (53b)
—C6+d—-z=0 (53c)
(A,2>0 (53d)

A'z=0 (53e)

In primal-dual interior point methods [55], theentral pathis defined as the set
of parameter§6, 1, A, z) satisfying (53a)—(53d), with the complementarity condi-
tion (53e) relaxed, for each elemento Ajz = u, whereu > 0 parameterizes the
path. This guarantees thatandz are strictly positive vectors. The central path
converges to a solution of (53) as| 0 if such a solution exists.

The constraintdjz = ¢ can be rewritten in a slightly more convenient form
by defining diagonal matrices andZ such that

An Zn

so that the relaxed complementarity condition becog4 = ul. Primal-dual
interior-point algorithms search for a solution to the KKanditions (53) by pro-
ducing a sequence of iterat@‘, ¢, A%, Z¢), which approximate the central path
solution at someuX > 0. These iterates are updated via repeated solution of a set
of Newton-like equations of the form

QA C AO ro

A Am|  |ra

C L |ad] = |rel| (55)
Z N Az rz

where the residual§g,ra,rc) take the values of the left-hand sides of (53a)—
(53c) respectively, evaluated at the current val(@'§ i, A% Z¢), and the ma-
trices (Z,A\) are formed from the current iteratéz‘,A%) as in (54). The vec-
tor rz is typically defined agz = (AZ1— 1u), whereu is chosen such that
U € (0, uX). Once the linear system (55) has been solved, the solutigriisted as
(OKFL L AKFL 4L (85, 1€, AK Z) +a(AB,AT, AN, Az), wherea > 0

is chosen to maintain strict positivity &1 and Z+1, and the path parameter
uX is updated to somg**! € (0, u*). The particular method for selecting the
parametergl anda at each iteration depends on the specific interior-poirt-alg
rithm employed; the reader is referred to [55] for a thoroughiew. Since all
such methods maintain the strict inequaliti2sz) > O at each iteration gs | 0,

the matriceg\ andZ are guaranteed to remain full rank, and the system of equa-
tions in (55) can be simplified through elimination of theigatesAzto form the
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reduced system

QA A6 ro
A Amt| =— ra . (56)
C —A71z| |AA (re=A1rz)

Since the number of interior-point iterations required ragtice is only weakly
related to the number of variables [55], the principal cdegition is the time
required to factor the Jacobian matrix (i.e., the matrix lwa left-hand-side), and
solve the linear system in (56). In the remainder of the papeifocus on the
development of an efficient solution procedure for this dineystem when the
problem data for the QP (52) is defined by the robust contablem (41)—(44).

4.2 Robust Control Formulation

For the robust optimal control problem described in (413 }(the system of equa-
tions in (56) can be arranged to yield a highly structuredo$dinear equations
through appropriate ordering of the primal and dual vagalzind their Lagrange
multipliers at each stage. As will be shown, this orderingt#es the development
of an efficient solution procedure for the linear system i) (5

We use); andAy to denote the Lagrange multipliers for the constraints J42b
and (42c) in the nominal system, apdandzy for the corresponding slack vari-
ables. We similarly us” andA; to denote the multipliers in (44d) and (44e) for

the pth perturbation subproblem, with slack variab#sandz. We userg andrs®
to denote the dual variables for (42) and (44).

The linear system (56), defined for the particular robustrobproblem (41)—
(44), can then be reordered to form a symmetric, block-trediebanded diagonal
set of equations by interleaving the primal and dual vaealithin the nominal
and perturbed problems, while keeping the variables frooh sabproblem sepa-
rate. If thep™" perturbation subproblem corresponds to a unit disturbanseme
stagek = Lpl;lj , then the components of the system of equations (56) camnelsp

ing to the nominal variables and the variables for pHeperturbation subproblem
are coupled at all stages after

Considering for the moment only that part of (44) correspogdo the first
perturbation problem (witp = 1), this reordering yields the coupled linear system
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(57)
The diagonal matriceg; and Zip in (57) correspond to the matrix products
A~1Zin (56), and are defined as

5=z, VieZgy (58)
SP._ (Aip)—lzip’ Vi e Z[k+1,N]a (59)

|
where the matriceg\;, /\ip, Zi, and Zip are diagonal matrices formed from the
Lagrange multipliers and slack variablés A, z andz” from the nominal and
perturbation subproblems.
If all of the perturbation problems (44) are incorporatetb ia linear system
of the form (57), the result is a system of equations whos#icmnt matrix can
be partitioned into block-bordered form as

A LTz TN [Xa ba

Ji By X1 by
Jy B2 X2 | — | b2 | (60)
N Bind [xin bin

where the banded matri is derived from the coefficients in the nominal problem
(42), the banded matrices;, are derived from théN perturbation subproblems
(44), and the matriceg, represent the coupling between the systems. The vectors
ba, bp, Xa, andx, (which should not be confused with the sequence of state vec-
torsx) are constructed from the primal and dual variables andluets using the
ordering in (57). The matrice$, are constructed from identity matrices coupling
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the rows of A that contain theXj terms with the columns aB,, that contain the
H terms. It should of course be noted that for the maftjx corresponding to a

unit disturbance at stadge= Lpl;lj, terms from stages prior to stage- 1 are not
required.

4.3 Solving for an Interior-Point Step

We can now estimate the solution time for the robust optitiongproblem (41)—
(44) by demonstrating that the linear system (60) can besgldhvO((m+ n)3N?®)
operations. We recall that, in practice, the number of iatgyoint iterations is
only weakly dependent on the size of the problem [55]. Thhawg this section,
we make the simplifying assumption that the number of cangss andr in (8)
and (9) are?(m+n) andO(n), respectively.

We first require the following standing assumption and prilary results:

Assumption 1 The constraint matri® in (8) has full column rank.

Note that this assumption can always be satisfied by intiaduadditional input
constraints with suitably large bounds. This allows us tavéehe following two
results, proofs for which can be found in Appendices B.1 artirBspectively.

Lemma 1 For the robust control problerd1)}{44), the Jacobian matrix if57)
has full rank.

Lemma 2 The sub-matriceB arising from the perturbation subproblems(B0)
have full rank. Additionally, recalling that ¥ Lpl;lj,

(i) Asolution to the linear systefpx, = by, can be found ir© ((m+n)3(N —k+ 1))
operations.

(i) If a solution to (i) above has been found, then a solution for each additional
right hand side require® ((m+n)?(N —k+ 1)) operations.

Note that each of the blockS, on the diagonal of (60) is banded and sym-
metric indefinite. Several methods exist for the stable tantson of Cholesky-
like decompositions of symmetric indefinite matrices ins&mtbrs of the form
LDL’ [11], and efficient algorithms for performing this factation for sparse
matrices are freely available [18, 34]. However, it is gatigrnot possible to
guarantee that the banded structure of an indefinite matuoh asBp, will be
exploited using these methods if symmetry and stabilityheffactorization are to
be preserved. Instead, the special structure of the matsicallows us to employ
a specialized technique for solution of the linear systé§r, = b, based on a
Riccati recursion [46,51] in the proof of Lemma 2 in Appen8i2.

We can now demonstrate that it is always possible to solvéiritkar system
(60) in O((m+n)3N3) operations.

Theorem 2 For the robust optimal control probler@1)}+(44), each primal-dual
interior-point iteration requires no more tha@((m+-n)°N3) operations.
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Proof The linear system (60) can be factored and solved using ar $cimple-
ment technique, so that

XA I At | B =B —TinBi] [ha

X1 -BlJi | Bt I by

X | —| -B17 1 Byt b | |

XIN —Bﬁ\llﬂ/,\‘ | Bﬁ\ll bin
with

IN
A=A=Y TByTy
p=1

where, by virtue of Lemma 1, the matri is always full rank [33, Thm. 0.8.5].
The O((m4-n)3N3) complexity bound can then be attained by solving (60) using
the following procedure:

Operation Complexity
solve:X, = B, bp VP E Zjyn IN-O((m+n)3N) (61a)
Sp=Tp (By*T5) VpeZyn  IN-O((m+n)®N?)  (61b)
IN
factor: A =A—% Sp IN-O((m+n)N) (61c)
p=1
=LaDaly O((m+n)3N%)  (61d)
IN
solve: za =ba — z (TpXp)s IN-O((m+n)N) (61e)
p=1
xa= (Lp) H(Dz(Ly"2a)), O((m+n)?N?)  (61f)
Zp = JpXa, VP € Zjgn IN-O((m+n)N)  (619)
Xp = Xp— Bp'2zp. VP € Zig IN-O((m+n)2N).  (61h)

The complexity of the solution to the linear system (6 1dpfet from Lemma 2(i).
The complexity of the solution to (61b) and (61h) followsrfrd_emma 2(ii),
where each of the matriceg) in (61b) haveO((m-n)N) non-zero columns.

Remark 5For the solution procedure in (61), it is important to notatthince
the coupling matriceg’; have no more than a single 1 on every row and column,
matrix products involving left or right multiplication by; or 7/ do not require
any floating point operations to calculate. The reader is retéto [10, App. C]

for a more complete treatment of complexity analysis forrira@iperations.

Remark 61f the solution procedure (61) is employed, then the robysintza-
tion problem is an obvious candidate for parallel implera&oh. However, it is
generally not necessary to hand implement the suggestiadleinterleaving and
block factorization procedure to realize the suggestedkshmrdered structure in
(60) andO((m+ n)°N3) solution time, as any reasonably efficient sparse factor-
ization code can be expected to perform similar steps autoatig; see [18]. Note
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that the “arrowhead” structure in (60) should be reversed ointing down and
to the right) in order for diredt DL’ factorization to produce sparse factors.

Remark 7Recalling the discussion of soft constraint handling int®ec2.4 and
Remark 3, it is easy to show that the inclusion of soft comstsadoes not qual-
itatively alter the complexity results of Theorem 2, sinbe inclusion of such
constraints amounts only to a modification of the mattixand thus of the dense
matrix A) in (61c), and doesot effect the complexity of any of the operations
involving the banded matricds;.

5 Results

Two sparse QP solvers were used to evaluate the proposedi&bion. The first,
OOQP [24], uses a primal-dual interior-point approach guméd with the sparse
factorization code MA27 from the HSL library [34] and the OB®ersion of the
multiple-corrector interior-point method of Gondzio [25]

The second sparse solver used was the QP interface to the RATKolver.
This code solves mixed complementarity problems using déimeaset method,
and hence can be applied to the stationary conditions of aagrgtic program.
Note that since we are dealing with convex QPs, each opttraizaroblem and
its associated complementarity system have equivaleutignlsets.

All results reported in this section were generated on alsipgpcessor ma-
chine with a 3 GHz Pentium 4 processor and 2GB of RAM. We retstir atten-
tion to sparse solvers as the amount of memory required éopithblems consid-
ered is prohibitively large for dense factorization method

A set of test cases was generated to compare the performéihestewo sparse
solvers using théM, v) formulation in (26) and the decomposition-based method
of Section 3. Each test case is defined by its number of stated horizon length
N. The remaining problem parameters were chosen using tloavfob rules:

— There are twice as many states as inputs.

— The constraint seW/, Z andX; represent randomly selected symmetric bounds
on the states and inputs subjected to a random similaritgtoamation.

— The state space matricAsandB are randomly generated, witA, B) control-
lable, and withA potentially unstable.

— The dimension of the generating disturbance is chosen as half the number of
states, with randomly generat&df full column rank.

— All test cases have feasible solutions. The initial statselected such that
at least some of the inequality constraints in (42b) arevact the optimal
solution.

The average computational times required by each of the dlvers for the two
problem formulations for a range of problem sizes are showmable 1. Each
entry represents the average of ten test cases, unleswistheoted.

Itis clear from these results that, as expected, the decsitipo-based formu-
lation can be solved much more efficiently than the origiiv v) formulation for
robust optimal control problems of nontrivial size, ancttime difference in solu-
tion times increases dramatically with increased problamedsion. Additionally,
the decomposition formulation seems particularly weltesdito the interior-point
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Table 1 Average Solution Times (sec)

(M,v) Decomposition
Problem Size OOQP PATH OOQP PATH
2 states, 4 stages 0.004 0.003 0.004 0.004
2 states, 8 stages 0.020 0.010 0.016 0.019
2 states, 12 stages 0.061 0.027 0.037 0.052
2 states, 16 stages 0.172 0.091 0.072 0.198
2 states, 20 stages 0.432 0.123 0.132 1.431
4 states, 4 stages 0.024 0.026 0.018 0.024
4 states, 8 stages 0.220 0.316 0.099 0.357
4 states, 12 stages 0.969 1.162 0.264 2.019
4 states, 16 stages 3.755 17.50 0.576 16.63
4 states, 20 stages 11.67 41.45 1.047 22.26
8 states, 4 stages 0.667 1282 0.136 0.261
8 states, 8 stages 7.882 81.50 0.858 14.89
8 states, 12 stages ~ 46.97 25979 281 1838
8 states, 16 stages ~ 189.75 2660 6.781  288.9
8 states, 20 stages 620.3 X 13.30 X
12 states, 4 stages 6.292 75.608 0.512 5.044
12 states, 8 stages 1321 1160 4.671 388.9

12 states, 12 stages  907.4 X 14.08 X
12 states, 16 stages X X 37.99 X
12 states, 20 stages X X 82.06 X

X — Solver failed all test cases
T — Based on limited data set due to failures

solver (OOQP), rather than the active set method (PATH).ekbeless we ex-
pect the performance of active set methods to improve veladi interior-point

methods when solving a sequence of similar QPs that wouldraonmredictive

control, where a good estimate of the optimal active setpgally available at
the start of computation. That is, interior-point methouos @articularly effective
in “cold start” situations, while the efficiency of activetsaethods is likely to
improve given a “warm start”.

Figure 1 shows that the interior-point solution time ina@scubicly with hori-
zon length for randomly generated problems with 2, 4, 8 andtates. The per-
formance closely matches the predicted behavior desciib8dction 3. For the
particular problems shown, the number of iterations remglifor the OOQP algo-
rithm to converge varied from 12 to 20 over the range of hariemgths and state
dimensions considered.

6 Conclusions and Future Work

We have derived a highly efficient computational method &dcglation of affine

state feedback policies for robust control of constraingstesns with bounded
disturbances. This is done by exploiting the structure efithderlying optimiza-

tion problem and deriving an equivalent problem with coasidble structure and
sparsity, resulting in a problem formulation that is parkiely suited to an interior-
point solution method. As a result, robustly stabilizingeding horizon control

laws based on optimal state-feedback policies have becoactiqally realizable,

even for systems of significant size or with long horizon tasg
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Fig. 1 Computation time vs. horizon length for systems of incregistate dimension, using the
decomposition method and OOQP solver. Also shown is thetaontneN3 /1000 for compar-
ison.

In Section 4 we proved that, when applying an interior-paioiution tech-
nigue to our robust optimal control problem, each iteratibthe method can be
solved using a number of operations proportional to the ofiiee control horizon
length. We appeal to the Riccati based factorization teglain [46, 51] to sup-
port this claim. However, we stress that the results in $adj which demonstrate
this cubic-time behavior numerically, are based on freghilable optimization
and linear algebra packages atwnotrely on any special factorization methods.

A number of open research issues remain. It may be possililetteer ex-
ploit the structure of our control problem by developingaphkzed factorization
algorithms for the factorization of each interior-poirgst e.g. through the paral-
lel block factorization procedure alluded to in Remark 6nhy also be possible
to achieve considerably better performance by placindnéurconstraints on the
structure of the disturbance feedback maldixthough this appears difficult to do
if the attractive invariance and stability properties of ghresent formulation are
to be preserved.

Many of the system-theoretic results developed in [28] Hiotda fairly broad
class of disturbances and cost functions [27]. For examyien the disturbance
is Gaussian the problem may be modified to require that the atad input con-
straints hold with a certain pre-specified probability, ahd probabilistic con-
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straints converted to second-order cone constraints [LA,57—8]. Alternatively,
the cost function for the finite horizon control problem mayuire the minimiza-
tion of the finite-horizor/, gain of a system [26, 36]. In all of these cases, there
is a strong possibility that the underlying problem struetmay be exploited to
realize a substantial increase in computational efficiency
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A Matrix Definitions

Let the matriced € RMN+Dxn gpdE ¢ RNUN+1L*0N ha defined as

In 0 o ---0
A; In 0O ---0

A= A , E:= A h 0 (62)
A.N ANLl ANLZ |n

We also define the matric&e RMNTUxmN ¢ ¢ R(SN+N)xN(N+1) gpdp ¢ RSN MmN 5
. . IN®C O . INn®D
B.:E(IN®B),C.:[NO Y},D.:[NO } (63)

and defineF := CB+D, G:=CE, T :=—CA, c:= [IZb].

B Rank of the Jacobian and Reduction to Riccati Form

B.1 Rank of the Robust Control Problem Jacobian (Proof of inam)

We demonstrate that the Jacobian matrix defined in (57) iayaviull rank. Recalling the dis-
cussion in Section 4.1, faany quadratic program the Jacobian matrix is full rank if theyonl
solution to the system

QA C'1[4A6] [0
A0 0]|an|=]0 (64)
co-x||ax] |o

satisfiesAd = 0, Ar= 0, andAX = 0, whereX := A~1Z - 0, Q = 0 and the coefficient matri-
cesA andC come from the equality and inequality constraints of the €épectively (cf. (52)).
From the first two rows of this system,

AO'QAB+ (AG'ANATT+ A C'AXN =AB'QAB+AH'C'AN =0. (65)
Incorporating the final block rov;A6 = ZAA, we have
AO'QAB+AN'ZAX =0. (66)

SinceQ > 0 for a convex QP and > 0 for a strictly interior point, we conclude tha = 0.
We next make use of the following matrix condition, which &siy verified:
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Fact 1 The matrix[§ ¥] is full column rank for anyy if both X andZ are full column rank.

SinceAA = 0 always holds, sufficient conditions to guarante®= 0 andAmr= 0 in (64)
are that:

(i) Ais full row rank.
(i) [2] is full column rank.

For the quadratic program defined by the robust control prab{42)-(44), the equality and
inequality constraints are defined as in (47). For this cor@P, it is straightforward to show
that the above rank conditions dnandC are equivalent to requiring that:

(i) Each of the matricef,A1,...,An is full row rank.
(i) Each of the matrice%’ég] , [‘c\ﬂ yeees {ém is full column rank.

The condition (ii) is derived by noting that, for the parfieuproblem (42)-(44), the general rank
condition on[ 2] is equivalent to requiring that the matrix

Co J1 J2 ... JINT
Ao
Cy
A
C
Az
Cin
L AN

is full column rank, which reduces to (ii) upon repeated aggpion of Fact 1 above to eliminate
the coupling termd . If Assumption 1 holds, both of these rank conditions ardyweerified by
examination of the definitions in (48) and (50). The Jacolmatrix for the QP defined in (42)-
(44) is thus full rank, and it remains full rank if its rows acdlumns are reordered as in (57).

B.2 Solution ofBpx, = by, via Riccati recursion (Proof of Lemma 2)

We demonstrate that the system of equatiBps, = b, has a unique solution for evety,,
whereB,, xp andby, are defined as

[o0 O ¥
oo H o0
5 p
DH -3, 0
BO 0 0l
-tooo C A
ooo D ¥
= 7
Bp 000 H 0 ’ (67a)
) p
CDH-%, 0
ABO 0
“o o0 VY
!
0 0 H}

¥ oHe 28]

. p p p p p p p p p P
Xp:= (AUg, 1, A0CR, | AXS 1, ATR, 1 AX, 0, AUR, 5, ASCE, 5, AN 5, ... AXY, ASCY, AAY),
p p p p p p P p p p
bp:=( rtict | rOCi1 , M1 , rr‘fﬂ , 2|tz 192 , M2 e, PN oy , r’\N)

andk = Lpl—’lj, and that this solution is obtainable @((m-n)3N) time. We first perform a
single step of block elimination on the variablmlip andAécEH, so that the resulting linear
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system is solvable via specialized methods based on Rigmatision techniques [46, 51] (see
also related results in [20] for the unconstrained case).
Itis straightforward to eliminate the ternds, P andAscP from each of the subproblems,

yielding a linear systen%, = bp. The coefh(:lent matrixBp is:

(R @
B 0 —I
1O, MG, A
o MR R B
Bp = A B 0 I (68)
Qg MR A
MR 3) RE g B
A B
L QR
where, for stagese Zigiin-1-
oP =H'(zP)"H (692)
o = (gp)*1 (ZP) (@) H(5P) ! (69b)
iP —C @pC (690)
RP:=DoP D (69d)
MP:=C'ePD (69)
and for stageN:
@ = H{(Z§) Hs (69f)
O = (20— (2N Hi (@) Hi(EH) ! (699)
QR =Yofy. (69h)
The vectorsk, andby, are defined as:
= (AU, 1, ATR, 1, A% 5. AU 5, ATR 5., AX) (70)
5 = (e, P, Pz PR e PR (71)
where, for stagese Z k+LN-1°
P = ¥ C(OPrY — () HH (@) 1ro?) (72a)
pof = ol 5<@ipr)\ip ~ (&))" (‘Dip)*lréc‘p) ; (72b)
and, for stagé\:
PR= R +\?(e§r"ﬁ - (zﬁ)*le(a>,5)*1r5°ﬁ) . (72¢)

Remark 8 The matrixlg‘p is equivalent to the KKT matrix for the unconstrained cohproblem:

u min ( XuQUXn + z (foi"m + URPU + 2% Mf’uﬂ) (73)
X150 XN k+1
subject to:
ubj %= E(j), (74a)
Xi+1 =A% +BU, Vi€ Zgiin-g- (74b)
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Lemma 3 Each of the matrices R QP and @ are positive semi-definite. If Assumption 1 holds,
then R is positive definite.
Proof Recall that the matri®” is defined as

1

0F = (Z) T = () THH(Z)H) H(ED) T (75)

and partition the diagonal and positive definite matf|9< into Zip = Fol 202]. Recalling that

H:=—[!], © can be written as
—1 —1/s-1 —1\-1s-1 “1s-1 ~-1y-1
S [ G e S M (O
—5 () T I -5+ )y,
| _
~[ ]z @)

which is easily verified using standard matrix identitied #me fact that the matrices; and 2>
are diagonal. B

Recalling thaD := [_B], it follows thatRP is positive semidefinite since it can be written
as

R =D [_:] (21+3) 71 -1]D (78)
=4D'(21+ %) D= 0. (79)

If Assumption 1 holds, so thdd is full column rank, therRP is positive definite. A similar
argument establishes the result @t andQg.

We are now in a position to prove Lemma 2. Sir@is positive definite and3 and QY
are positive semidefinite, the linear systéspX, = b, (and consequently the original sys-
temBpx, = bp) has a unigue solution that can found®{(m+n)3(N—k-+1)) operations using
the Riccati recursion procedure described in [46,51]. G a solution has been obtained, a
solution for each additional right hand side requig2§(m-+n)?(N—k+1)) operations [46, Sec.
3.4]. We note that in [46] the Riccati factorization proceslis shown to be numerically stable,
and that similar arguments can be used to show that factiorizaf (68) is also stable. We omit
details of this for brevity.



