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Abstract This paper proposes an efficient computational technique for the opti-
mal control of linear discrete-time systems subject to bounded disturbances with
mixed linear constraints on the states and inputs. The problem of computing an op-
timal state feedback control policy, given the current state, is non-convex. A recent
breakthrough has been the application of robust optimization techniques to repa-
rameterize this problem as a convex program. While the reparameterized problem
is theoretically tractable, the number of variables is quadratic in the number of
stages or horizon lengthN and has no apparent exploitable structure, leading to
computational time ofO(N6) per iteration of an interior-point method. We focus
on the case when the disturbance set is∞-norm bounded or the linear map of a hy-
percube, and the cost function involves the minimization ofa quadratic cost. Here
we make use of state variables to regain a sparse problem structure that is related
to the structure of the original problem, that is, the policyoptimization problem
may be decomposed into a set of coupled finite horizon controlproblems. This
decomposition can then be formulated as a highly structuredquadratic program,
solvable by primal-dual interior-point methods in which each iteration requires
O(N3) time. This cubic iteration time can be guaranteed using a Riccati-based
block factorization technique, which is standard in discrete-time optimal control.
Numerical results are presented, using a standard sparse primal-dual interior point
solver, that illustrate the efficiency of this approach.
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1 Introduction

Robust and predictive control

This paper is concerned with the efficient computation of optimal control policies
for constrained discrete-time linear systems subject to bounded disturbances on
the state. In particular, we consider the problem of finding,over a finite horizon of
lengthN, a feedback policy

π := {µ0(·), . . . ,µN−1(·)} (1)

for a discrete-time linear dynamical system of the form

xi+1 = Axi +Bui +wi (2)

ui = µi(x0, . . . ,xi) (3)

which guarantees satisfaction of a set of mixed constraintson the states and inputs
at each time, for all possible realizations of the disturbanceswi , while minimizing
a given cost function.

The statesxi and inputsui are constrained to lie in a compact and convex set
Z, i.e.

(xi ,ui) ∈ Z, ∀i ∈ {0,1, . . . ,N−1} (4)
with an additional terminal constraintxN ∈ Xf . We assume nothing about the dis-
turbances other than that they lie in a given compact setW.

The above, rather abstract problem is motivated by the fact that for many real-
life control applications, optimal operation nearly always occurs on or close to
some constraints [41]. These constraints typically arise,for example, due to ac-
tuator limitations, safe regions of operation, or performance specifications. For
safety-critical applications, it is crucial that some or all of these constraints are
met despite the presence of unknown disturbances.

Because of its importance, the above problem and derivations of it have been
studied for some time now, with a large body of literature that falls under the broad
banner of “robust control” (see [7,53] for some seminal workon the subject). The
field of linear robust control, which is mainly motivated by frequency-domain
performance criteria [57] and doesnotexplicitly consider time-domain constraints
as in the above problem formulation, is considered to be mature and a number of
excellent references are available on the subject [19, 29, 58]. In contrast, there
are few tractable, non-conservative solutions to the aboveconstrained problem,
even if all the constraint sets are considered to be polytopes or ellipsoids; see, for
example, the literature on set invariance theory [9] orℓ1 optimal control [14, 21,
49,52].

A control design method that is particularly suitable for the synthesis of con-
trollers for systems with constraints, is predictive control [12,41]. Predictive con-
trol is a family of optimal control techniques where, at eachtime instant, a finite-
horizon constrained optimal control problem is solved using tools from mathe-
matical programming. The solution to this optimization problem is usually imple-
mented in a receding horizon fashion, i.e. at each time instant, a measurement of
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the system is obtained, the associated optimization problem is solved and only the
first control input in the optimal policy is implemented. Because of this ability to
solve a sequence of complicated,constrainedoptimal control problems in real-
time, predictive control is synonymous with “advanced control” in the chemical
process industries [45].

The theory on predictive controlwithoutdisturbances is relatively mature and
most of the fundamental problems are well-understood. However, despite recent
advances, there are many open questions remaining in the area ofrobustpredictive
control [4, 42, 43]. In particular, efficient optimization methods have to be devel-
oped for solving the above problem before robust predictivecontrol methods can
be applied to unstable or safety-critical applications in areas such as aerospace and
automotive applications [50].

Robust control models

The core difficulty with the problem (1)–(4) is that optimizing the feedback policy
π over arbitrary nonlinear functions is extremely difficult, in general. Propos-
als which take this approach, such as those based on robust dynamic program-
ming [3, 15], or those based on enumeration of extreme disturbance sequences
generated from the setW, as in [47], are typically intractable for all but the small-
est problems. Conversely, optimization overopen-loopcontrol sequences, while
tractable, is considered unacceptable since problems of infeasibility or instability
may easily arise [43].

An obvious sub-optimal proposal is to parameterize the control policy π in
terms ofaffinefunctions of the sequence of states, i.e. to parameterize the control
sequence as

ui = gi +
i

∑
j=0

Li, jx j (5)

where the matricesLi, j and vectorsgi are decision variables. However, the set
of constraint admissible policies of this form is easily shown to benon-convex
in general. As a result, most proposals that take this approach [2, 13, 37, 38, 44]
fix a stabilizing feedback gainK, then parameterize the control sequence asui =
Kxi + gi and optimize the design parametersgi . Though tractable, this approach
is problematic since it is unclear how one should select the gain K to minimize
conservativeness.

A recent discovery [5, 28] showed that the problem of optimizing over state
feedback policies of the form (5) is equivalent to the problem of optimizing over
disturbance feedback policies of the form

ui = vi +
i−1

∑
j=0

Mi, jwj . (6)

The particular advantage of the parameterization (6) is that the set of constraint
admissible policy parameters{{Mi, j},{vi}} is guaranteed to be convex when the
constraint setsZ andXf are convex.

The parameterization (6) has been proposed as a means for finding solutions
to a general class of robust optimization problems, called affinely adjustable ro-
bust counterpart (AARC) problems [6, 30]. The same parameterization has also
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appeared specifically in application to robust model predictive control problems
in [31, 32, 39, 40], and appears to have originally been suggested within the con-
text of stochastic programs with recourse [23]. In the particular control context
considered here, the reparameterization of (5) to the convex form (6) may be con-
sidered a special case of the well-known Youla parameterization in linear system
theory [56] [58, Ch. 12].

Using the parameterization (6), robust optimization modelling techniques [5,
6, 30] are used to eliminate the unknown disturbanceswj and formulate the ad-
missible set of control policies withO(N2mn) variables, whereN is the horizon
length as above, andm andn are the respective dimensions of the controlsui and
statesxi at each stage. This implies that, given a suitable objectivefunction, an
optimal affine state feedback policy (5) can be found in time that is polynomially
bounded in the size of the problem data.

Efficient computation in robust optimal control

In the present paper we demonstrate that an optimal policy ofthe form (6), equiv-
alently (5), can be efficiently calculated in practice, given suitable polytopic as-
sumptions on the constraint setsW, Z andXf . This result is critical for practical
applications, since one would generally implement a controller in a receding hori-
zon fashion by calculating, on-line and at each time instant, an admissible control
policy (5), given the current statex. Such a control strategy has been shown to
allow for the synthesis of stabilizing, nonlinear time-invariant control laws that
guarantee satisfaction of the constraintsZ for all time, for all possible disturbance
sequences generated fromW [28].

While convexity of the robust optimal problem arising out of(6) is key, the
resulting optimization problem is a dense convex quadraticprogram withO(N2)
variables (see Section 2.3, cf. [28]), assumingN dominates the dimension of con-
trolsmand statesn at each stage. Hence each iteration of an interior-point method
will require the solution of a dense linear system and thus requireO(N6) time. This
situation is common, for example, in the rapidly growing number of aerospace and
automotive applications of predictive control [41, Sec. 3.3] [45]. We show that
when the disturbance set is∞-norm bounded or the linear map of a hypercube, the
special structure of the robust optimal control problem canbe exploited to devise
a sparse formulation of the problem, thereby realizing a substantial reduction in
computational effort toO(N3) work per interior-point iteration.

We demonstrate that the cubic-time performance of interior-point algorithms
at each step can be guaranteed when using a factorization technique based on Ric-
cati recursion and block elimination. Numerical results are presented that demon-
strate that the technique is computationally feasible for systems of appreciable
complexity using the standard sparse linear system solver MA27 [34] within the
primal-dual interior-point solver OOQP [24]. We compare this primal-dual
interior-point approach to the sparse active-set method PATH [17] on both the
dense and sparse problem formulations. Our results suggestthat the interior-point
method applied to the sparse formulation is the most practical method for solving
robust optimal control problems, at least in the “cold start” situation when optimal
active set information is unavailable.
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A final remark is that the sparse formulation of robust optimal control results
from a decomposition technique that can be used to separate the problem into
a set of coupled finite horizon control problems. This reduction of effort is the
analogue, for robust control, to the situation in classicalunconstrained optimal
control in which Linear Quadratic Regulator (LQR) problemscan be solved in
O(N) time, using a Riccati [1, Sec. 2.4] or Differential Dynamic Programming
[35] technique in which the state feedback equationx+ = Ax+ Bu is explicit in
every stage, compared toO(N3) time for the more compact formulation in which
states are eliminated from the system. More direct motivation for our work comes
from [8, 16, 46, 51, 54], which describe efficient implementations of optimization
methods for solving optimal control problems with state andcontrol constraints,
though without disturbances.

Contents

The paper is organized as follows: Section 2 introduces the optimal control prob-
lem considered throughout the paper, and shows how the classof affine distur-
bance feedback policies described in [28] may be used to design a receding hori-
zon control (RHC) law which can be implemented via the solution of a quadratic
program (QP) at each time step. Section 3 gives an equivalentformulation for
this QP that can be decomposed into a highly structured, singly-bordered block-
diagonal quadratic program through reintroduction of appropriate state variables.
Section 4 demonstrates that, when using a primal-dual interior-point solution tech-
nique, the decomposed quadratic program can always be solved in an amount of
time which is cubic in the horizon length at each interior-point iteration. Section 5
demonstrates through numerical examples that the proposeddecomposition can
be solved much more efficiently than the equivalent originalformulation. The pa-
per concludes in Section 6 with suggestions for further research.

Notation: The set of integers{i, . . . , j} is denotedZ[i, j]. Given vectorsx andy
and matricesA andB, A≻ 0 (� 0) means thatA is positive (semi)definite,A⊗B
is the Kronecker product ofA andB, x′ is the transpose ofx, vec(x,y) := [x′ y′]′

and‖x‖A :=
√

x′Ax. For scalarq, ⌊q⌋ is the largest integer less than or equal toq.
The vector1 is an appropriately sized column vector with all entries equal to 1.

2 Problem Statement

Consider the following discrete-time linear time-invariant system:

x+ = Ax+Bu+w, (7)

wherex∈ R
n is the system state at the current time instant,x+ is the state at the

next time instant,u∈ R
m is the control input andw∈ R

n is the disturbance. It is
assumed that(A,B) is stabilizable and that at each sample instant a measurement
of the state is available. It is further assumed that the current and future values of
the disturbance are unknown and may change unpredictably from one time instant
to the next, but are contained in a convex and compact (closedand bounded) setW,
which contains the origin.
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The system is subject to mixed constraints on the state and input:

Z := {(x,u) ∈ R
n×R

m |Cx+Du≤ b} , (8)

where the matricesC ∈ R
s×n, D ∈ R

s×m and the vectorb ∈ R
s; s is the number

of affine inequality constraints that defineZ. A design goal is to guarantee that
the state and input of the closed-loop system remain inZ for all time and for all
allowable disturbance sequences.

In addition toZ, a target/terminal constraint setXf is given by

Xf := {x∈ R
n | Yx≤ z} , (9)

where the matrixY∈R
r×n and the vectorz∈R

r ; r is the number of affine inequal-
ity constraints that defineXf . The setXf can, for example, be used as a target set in
time-optimal control or, if defined to be robust positively invariant, to design a re-
ceding horizon controller with guaranteed invariance and stability properties [28].

Before proceeding, we define some additional notation. In the sequel, predic-
tions of the system’s evolution over a finite control/planning horizon will be used
to define a number of suitable control policies. Let the length N of this planning
horizon be a positive integer and define stacked versions of the predicted input,
state and disturbance vectorsu ∈ R

mN, x ∈ R
n(N+1) andw ∈ R

nN, respectively, as

x := vec(x0, . . . ,xN−1,xN),

u := vec(u0, . . . ,uN−1),

w := vec(w0, . . . ,wN−1),

wherex0 = x denotes the current measured value of the state andxi+1 := Axi +
Bui + wi , i = 0, . . . ,N−1 denotes the prediction of the state afteri time instants
into the future. Finally, let the setW := WN := W×·· ·×W, so thatw ∈W.

2.1 Affine Disturbance Feedback Policies

As noted in the Introduction, the problem of constructing a constraint admissible
finite horizon feedback policyπ for the system (2), where the control input at each
time is specified as anarbitrary function of prior states, is extremely difficult in
general. We therefore choose to employ a more restricted class ofaffinefeedback
policies, where the control input at each time is modelled asan affine function of
the sequence of past disturbances, so that

ui = vi +
i−1

∑
j=0

Mi, jwj , ∀i ∈ Z[0,N−1], (11)

where eachMi, j ∈ R
m×n and vi ∈ R

m are decision variables to be specified in
the construction of the control policy. We note that, since full state feedback is
assumed, the past disturbance sequence is easily calculated as the difference be-
tween the predicted and actual states at each step, i.e.

wi = xi+1−Axi−Bui , ∀i ∈ Z[0,N−1]. (12)
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Define the variablev∈R
mN and the block lower triangular matrixM ∈R

mN×nN

such that

M :=







0 · · · · · · 0
M1,0 0 · · · 0...

...
...

...
MN−1,0 · · · MN−1,N−2 0






, v :=







v0......
vN−1






, (13)

so that the control input sequence can be written asu = Mw +v. Define the set of
admissible policies(M ,v), for which the constraints (8) and (9) are satisfied, as:

Πd f
N (x) :=























(M ,v)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(M ,v) satisfies (13),x = x0
xi+1 = Axi +Bui +wi

ui = vi +∑i−1
j=0Mi, jwj

Cxi +Dui ≤ b, YxN ≤ z
∀wi ∈W, ∀i ∈ Z[0,N−1]























, (14)

and define the set of initial statesx for which an admissible control policy of the
form (11) exists as

Xd f
N := {x∈ R

n |Πd f
N (x) 6= /0}. (15)

Note that, as shown in [27,28], the setsΠd f
N (x) andXd f

N are convex since the sets
Z andXf are convex.

2.2 A Receding Horizon Control Law

We are chiefly interested in employing the policy parameterization (11) to con-
struct areceding horizon control(RHC) law for the uncertain linear system (2),
i.e. at each sample instant, given a measurement of the current statex, we would
like to calculateon-line a constraint admissible policy(M(x),v(x)) ∈ Πd f

N (x)
that is optimal with respect to some cost function, and applythe first component
of this policy to the system (2). We stress that, for problemsof non-trivial size,
this determination of control policiesmustbe performed on-line, since it is gener-
ally not possible to select a single pair(M ,v) such that(M ,v) ∈ Πd f

N (x) for all

x∈ Xd f
N . The main contribution of this paper is to describe an efficient computa-

tional method by which this on-line calculation may be performed.
In particular, we define an optimal policy pair(M ∗(x),v∗(x)) ∈ Πd f

N (x) to be
one that minimizes the value of a cost function that is quadratic in the disturbance-
free state and input sequence. We thus define:

VN(x,v) :=
1
2
‖x̂N‖2P+

N−1

∑
i=0

(

1
2
‖x̂i‖2Q+

1
2
‖vi‖2R

)

(16)

where x̂0 = x, x̂i+1 = Ax̂i + Bvi for i = 0, . . . ,N− 1; the matricesQ and P are
assumed positive semidefinite, andR is assumed positive definite. The cost func-
tion (16) can alternatively be written in vectorized form as

VN(x,v) =
1
2
‖Ax+Bv‖2Q +

1
2
‖v‖2R, (17)
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whereA ∈ R
n(N+1)×n andB ∈ R

n(N+1)×mN are defined in Appendix A and where
Q := [ I⊗Q

P] andR := I ⊗R. We define an optimal policy pair as

(M ∗(x),v∗(x)) := argmin
(M ,v)∈Πd f

N (x)

VN(x,v). (18)

For the receding-horizon control case, atime-invariantcontrol lawµN : Xd f
N →R

m

can be implemented by using the first part of this optimal control policy at each
time instant, i.e.

µN(x) := v∗0(x). (19)

wherev∗(x) =: (v∗0(x), . . . ,v
∗
N−1(x)). We emphasize that, due to the dependence of

the optimization problem (18) on the current statex, the control lawµN(·) will, in
general, be anonlinear function with respect to the current state, even though it
may have been defined in terms of the class of affine feedback policies (11).

The control lawµN(·) has many attractive geometric and system-theoretic
properties. In particular, implementation of the recedinghorizon control lawµN(·)
renders the setXd f

N robust positively invariant, i.e. ifx∈Xd f
N , then it can be shown

thatAx+BµN(x)+w∈ Xd f
N for all w∈W, subject to certain technical conditions

on the terminal setXf . Furthermore, the control lawµN(·) is uniquely defined for
eachx, and the closed-loop system is guaranteed to be input-to-state (ISS) stable
under suitable assumptions onQ, P, R andXf . Finally, calculation of an optimal
policy in (18) requires the minimization of a convex function over a convex set, so
thatµN(·) in (19) is thus practically realizable for a variety of disturbance classes.
The reader is referred to [27,28] for a proof of these resultsand a review of other
system-theoretic properties of this parameterization.

2.3 Solution via Quadratic Programming

As shown in [28], it is possible to eliminate the universal quantifier in (14) and
construct matricesF ∈ R

(sN+r)×mN, G∈ R
(sN+r)×nN andT ∈ R

(sN+r)×n, and vec-
tor c∈ R

sN+r (defined in Appendix A) such that the set of feasible pairs(M ,v)
can be written as:

Πd f
N (x) =

{

(M ,v)

∣

∣

∣

∣

∣

(M ,v) satisfies (13)

Fv+ max
w∈W

(FM +G)w≤ c+Tx

}

, (20)

where maxw∈W (FM + G)w denotes row-wise maximization – note that this is
equivalent to evaluating thesupport functionof the setW for each column of the
matrix(FM +G)′, and that these maxima always exist since the setW is assumed
to be compact. In the remainder of this paper, we consider theparticular case
whereW is generated as the linear map of a hypercube. Define

W = {w∈ R
n | w = Ed, ‖d‖∞ ≤ 1}, (21)

whereE∈R
n×l is assumed to have full column rank, so that the stacked generating

disturbance sequenced ∈ R
lN is

d := vec(d0, . . . ,dN−1), (22)
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and define the matrixJ := IN⊗E ∈ R
Nn×Nl , so thatw = Jd. From the properties

of the dual norm [33], when the generating disturbanced is an∞-norm bounded
signal given as in (21), then

max
w∈W

a′w = ‖E′a‖1 (23)

for any vectora∈ Rn. Straightforward application of (23) to the row-wise maxi-
mization in (20) yields

Πd f
N (x) =

{

(M ,v)
(M ,v) satisfies (13)

Fv+abs(FMJ+GJ)1≤ c+Tx

}

, (24)

where abs(FMJ+GJ)1 is a vector formed from the 1-norms of the rows of the
matrix (FMJ+GJ). This can be written as a set of purely affine constraints by
introducing slack variables and rewriting as

Πd f
N (x) =







(M ,v)
(M ,v) satisfies (13),∃Λ s.t.

Fv+Λ1≤ c+Tx
−Λ≤ (FMJ+GJ)≤Λ







. (25)

The control policy optimization problem (18) can thus be solved in this case by
forming a quadratic program in the variablesM , Λ, andv, i.e.

min
M ,Λ,v

1
2
‖Ax+Bv‖2Q +

1
2
‖v‖2R (26a)

subject to:

Mi, j = 0, ∀i ≤ j (26b)

Fv+Λ1≤ c+Tx (26c)

−Λ≤ (FMJ+GJ)≤Λ. (26d)

Remark 1The total number of decision variables in (26) ismnN(N−1)/2 in M ,
mN in v and(slN2 + rlN) in Λ, with the number of constraints equal to(sN+ r)
+ 2(slN2 + rlN)), orO(N2) overall. For a naive interior-point computational ap-
proach using a dense factorization method, the resulting quadratic program would
thus require computation time ofO(N6) at each iteration.

2.3.1 WritingΠd f
N (x) in Separable Form

We next define the variable transformationU := MJ, such thatU ∈ R
mN×lN has

block lower triangular structure similar to that defined in (13) forM . Note that use
of this variable transformation is tantamount to parameterizing the control policy
directly in terms of the generating disturbancesdi , so thatui = vi +∑i−1

j=0Ui, jdj , or
u = Ud+v.

When the matrixE is full column rank, the QP (26) may be solved using this
variable transformation by solving an equivalent QP in the variablesU, Λ andv:

min
U,Λ,v

1
2
‖Ax+Bv‖2Q +

1
2
‖v‖2R (27a)
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subject to:

Ui, j = 0, ∀i ≤ j (27b)

Fv+Λ1≤ c+Tx (27c)

−Λ≤ (FU+GJ)≤Λ. (27d)

The equivalence between the QPs (26) and (27) whenE (and thusJ) has full col-
umn rank is easily demonstrated by employing a left inverseJ† such thatJ†J = I ,
since any feasible solution(M ,Λ,v) satisfying the constraint in (27d) also satisfies
the constraint (26d) withM = UJ†.

Remark 2The critical feature of the quadratic program (27) is that the columns of
the variablesU andΛ are decoupled in the constraint (27d). This allows column-
wise separation of the constraint into a number of subproblems, subject to the
coupling constraint (27c). The reader is referred to [28] for details on the solu-
tion of the optimization problem (18) whenW is an arbitrary polytope or 2–norm
bounded.

2.4 Soft Constraints and Guaranteed Feasibility

An important practical consideration for control applications is the handling of
potential infeasibility of the optimization problem (18).If the RHC lawµN(·) is
to be implemented on-line for a real system, it is important to guarantee reason-
able controller behavior if the plant enters a statex such thatΠd f

N (x) is empty

(equivalently,x /∈ Xd f
N ). A common approach in the literature in receding hori-

zon control is to treat some or all of the constraints inZ or Xf as so-calledsoft
constraints, i.e. constraints that may be violated if necessary to guarantee that the
optimization problem (27), and particularly the constraint (27c), is feasible for all
x. Techniques for soft constraint handling are well established in the literature on
linear predictive control for undisturbed systems [41,46,48], and we show briefly
how these ideas may be extended to cover the robust control problem considered
here. Without loss of generality, we consider the simplest case where every con-
straint is a soft constraint, and replace the hard state and input constraints in (14)
with soft constraints of the form

Cxi +Dui ≤ b+ξi , ξi ≥ 0, ∀i ∈ Z[0,N−1] (28a)

YxN ≤ z+ξN, ξN ≥ 0, (28b)

and augment the objective function with linear-quadratic terms(γ ′i ξi +ξ ′i Γiξi) pe-
nalizing the soft constraint violationsξi , whereΓi � 0. The optimization prob-
lem (27) becomes

min
U,Λ,v,ξ

1
2
‖Ax+Bv‖2Q +

1
2
‖v‖2R +

N

∑
i=0

(γ ′i ξi +ξ ′i Γiξi) (29a)
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subject to:

Ui, j = 0, ∀i ≤ j (29b)

Fv+Λ1≤ c+Tx+ξ, ξ ≥ 0, (29c)

−Λ≤ (FU+GJ)≤Λ, (29d)

whereξ := vec(ξ0, . . . ,ξN). Note that the quadratic program (29) is feasible for all
x, so that a receding horizon controller synthesized via repeated solution of this
QP is defined everywhere onRn. A well-known feature of such penalty function
formulations is that if, in the spirit of [22, Sec. 12.3] [41,Sec. 3.4], if one defines
an exact penalty function (by choosingγi large enough), then solutions to (29)
correspond exactly to solution of (27) for allx∈ Xd f

N .

3 Recovering Structure in the Robust Control Problem

The quadratic program (QP) defined in (27) can be rewritten ina more computa-
tionally attractive form by re-introducing the eliminatedstate variables to achieve
greater structure. The re-modelling process separates theoriginal problem into
subproblems; a nominal problem, consisting of that part of the state resulting from
the nominal control vectorv, and a set of perturbation problems, each representing
the components of the state resulting from each of the columns of (27d) in turn.

Nominal States and Inputs

We first define a constraint contraction vectorδc∈ R
sN+r such that

δc := vec(δc0, . . . ,δcN) = Λ1, (30)

so that the constraint (27c) becomes

Fv+δc≤ c+Tx. (31)

Recalling that the nominal states ˆxi are defined in (16) as the expected states given
no disturbances, it is easy to show that the constraint (31) can be written explicitly
in terms of the nominal controlsvi and states ˆxi as

x̂i+1−Ax̂i−Bvi = 0, ∀i ∈ Z[0,N−1] (32a)

Cx̂i +Dvi +δci ≤ b, ∀i ∈ Z[0,N−1] (32b)

Yx̂N +δcN ≤ z, (32c)

wherex̂0 = x, which is in a form that isexactly the sameas that in conventional
receding horizon control problem with no disturbances, butwith the right-hand
sides of the state and input constraints at each stagei modified by the constraint
contraction termsδci ; compare (32a)–(32c) and (7)–(9) respectively.
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Perturbed States and Inputs

We next consider the effects of each of the columns of(FU + GJ) in turn, and
seek to construct a set of problems similar to that in (32). Wetreat each column
as the output of a system subject to a unit impulse in a single element ofd, and
construct a subproblem that calculates the effect of that disturbance on the nom-
inal problem constraints (32b)–(32c) by determining its contribution to the total
constraint contraction vectorδc.

From the original QP constraint (27d), the constraint contraction vectorδc can
be written as

abs(FU+GJ)1≤Λ1 = δc. (33)

The left-hand side of (33) is just a summation over the columns of the matrix
abs(FU+GJ), so that

abs(FU+GJ)1=
lN

∑
p=1

abs((FU+GJ)ep). (34)

whereep ∈R
lN is a vector whosepth element is equal to 1, with all other elements

equal to zero. Defineyp ∈ R
sN+r andδcp ∈ R

sN+r as

yp := (FU+GJ)ep (35)

δcp := abs(yp). (36)

Note that the unit vectorep models a unit disturbance in some elementj of the
generating disturbancedk at some time stepk, with no disturbances at any other
step1. If we denote thejth column ofE asE( j), then it is easy to recognizeyp as
the stacked output vector of the system

(up
i ,xp

i ,yp
i ) = 0, ∀i ∈ Z[0,k] (37a)

xp
k+1 = E( j), (37b)

xp
i+1−Axp

i −Bup
i = 0, ∀i ∈ Z[k+1,N−1] (37c)

yp
i −Cxp

i −Dup
i = 0, ∀i ∈ Z[k+1,N−1] (37d)

yp
N−Yxp

N = 0, (37e)

whereyp = vec(yp
0, . . . ,yp

N). The inputsup
i of this system come directly from the

pth column of the matrixU, i.e. they are the columns of the sub-matricesUi,k.
If the constraint termsδcp for each subproblem are similarly defined asδcp :=
vec(δcp

0, . . . ,δcp
N), then each component must satisfyδcp

i = abs(yp
i ), or in linear

inequality constraint form

−δcp
i ≤ yp

i ≤ δcp
i . (38)

Note also that for thepth subproblem, representing a disturbance at stagek=⌊p−1
l ⌋,

the constraint contraction terms are zero prior to stage(k+1).

1 Note that this impliesp = lk+ j, k = ⌊ p−1
l ⌋ and j = 1+((p−1) modl).
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By further defining

C̄ :=

[

+C
−C

]

D̄ :=

[

+D
−D

]

Ȳ :=

[

+Y
−Y

]

H :=

[

−Is
−Is

]

H f :=

[

−Ir
−Ir

]

, (39)

equations (37d) and (37e) can be combined with (38) to give

C̄xp
i + D̄up

i +Hδcp
i ≤ 0, ∀i ∈ Z[k+1,N−1] (40a)

Ȳ xp
N +H f δcp

N ≤ 0. (40b)

3.1 Complete Robust Control Problem

We can now restate the complete robust optimization problem(27) as:

min
x̂1,...,x̂N,v0,...vN−1,δc0,...,δcN,

x1
0,...,x

1
N,u1

0,...u1
N−1,δc1

0,...,δc1
N,

...,
xlN
0 ,...,xlN

N ,ulN
0 ,...ulN

N−1,δclN
0 ,...,δclN

N

1
2
‖x̂N‖2P +

N−1

∑
i=0

(

1
2
‖x̂i‖2Q +

1
2
‖vi‖2R

)

(41)

subject to (32), (37a)–(37c) and (40), which we restate herefor convenience:

x̂i+1−Ax̂i−Bvi = 0, ∀i ∈ Z[0,N−1] (42a)

Cx̂i +Dvi +δci ≤ b, ∀i ∈ Z[0,N−1] (42b)

Yx̂N +δcN ≤ z, (42c)

wherex̂0 = x, and

δci =
lN

∑
p=1

δcp
i , ∀i ∈ Z[0,N], (43)

and, for eachp∈ Z[1,lN ]:

(up
i ,xp

i ,δcp
i ) = 0, ∀i ∈ Z[0,k] (44a)

xp
k+1 = E( j), (44b)

xp
i+1−Axp

i −Bup
i = 0, ∀i ∈ Z[k+1,N−1] (44c)

C̄xp
i + D̄up

i +Hδcp
i ≤ 0, ∀i ∈ Z[k+1,N−1] (44d)

Ȳ xp
N +H f δcp

N ≤ 0. (44e)

wherek= ⌊ p−1
l ⌋ and j = 1+((p−1) modl). The decision variables in this prob-

lem are the nominal states and controls ˆxi andvi at each stage (the initial state ˆx0
is known, hencenot a decision variable), plus the perturbed states, controls,and
constraint contraction termsxp

i , up
i , andδcp

i for each subproblem at each stage.
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Remark 3Recalling the discussion of Section 2.4, soft constraints are easily in-
corporated into the optimization problem (41)–(44) via modification of the cost
function (41) and of the constraints (42b)–(42c). The important point regarding
this soft constraint inclusion is that itdoes notresult in a modification of any of
the perturbation constraints (44), so that the qualitativeresults to be presented in
Section 4 relating to efficient solution of the QP (41)–(44) are not fundamentally
altered by the incorporation of soft constraints.

We can now state the following key result, proof of which follows directly from
the discussion of Section 2.3.1 and of this section.

Theorem 1 The convex, tractable QP(41)–(44) is equivalent to the robust opti-
mal control problems(26) and (27). The receding horizon control law u= µN(x)
in (19) can be implemented using the solution to(41)–(44) as u= v∗0(x).

The importance of the re-introduction of states in (42) and (44) is that significant
structure and sparsity can be revealed in the problem through an interleaving of
decision variables by time index. For the nominal problem, define the stacked
vector of variables:

x0 := vec(v0, x̂1,v1, . . . , x̂N−1,vN−1, x̂N). (45)

For the pth perturbation problem in (44), which models a unit disturbance at
stagek = ⌊ p−1

l ⌋, define:

xp := vec(up
k+1,δcp

k+1,x
p
k+2,u

p
k+2,δcp

k+2, . . . ,

xp
N−1,u

p
N−1,δcp

N−1,x
p
N,δcp

N).
(46)

Using this reordering, the constraints (42)–(44) can be written as a single set of
linear constraints in singly-bordered block-diagonal form with considerable struc-
ture and sparsity:









A0
A1

. ..
AlN

















x0
x1
...

xlN









=









b0
b1
...

blN









,









C0 J1 · · · JlN
C1

.. .
ClN

















x0
x1
...

xlN









≤









d0
d1
...

dlN









. (47)

The coefficient matricesA0 andC0 in (47) originate from the nominal problem
constraints (42), and are defined as

A0 :=







B −I
A B −I

...
A B −I






, C0 :=











D
C D

...
C D

Y











, (48)

with corresponding right hand sides

b0 := vec(−Ax,0,0, . . . ,0), d0 := vec(b−Cx,b, . . . ,b,z). (49)
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The coefficient matricesAp andCp in (47) originate from the constraints for the
pth perturbation subproblem in (44), and are defined as

Ap :=







B 0 −I
A B 0 −I

...
A B 0 −I 0






, Cp :=











D̄ H
C̄ D̄ H

...
C̄ D̄ H

Ȳ Hf











,

(50)
with corresponding right hand sides

bp := vec(−AE( j),0, . . . ,0), dp := vec(0,0, . . . ,0,0). (51)

The coupling matricesJp in (47) are then easily constructed from the coupling
equation (43).

Remark 4It is possible to define a problem structure similar to that in(41)–(44)
for the more general polytopic disturbance sets discussed in [28] via introduction
of states in a similar manner. However, in this case the perturbation subproblems
(44) require an additional coupling constraint for the subproblems associated with
each stage.

4 Interior-Point Method for Robust Control

In this section we demonstrate that, using a primal-dual interior-point solution
technique, the quadratic program defined in (41)–(44) can besolved with a per-
iteration computational effort that grows cubicly with thehorizon lengthN, when
n+ m is dominated byN; this situation is common, for example, in the rapidly
growing number of aerospace and automotive applications ofpredictive control
[41, Sec. 3.3] [45]. This is a major improvement on theO(N6) work per iteration
associated with the compact (dense) formulation (26), or the equivalent problem
(27); cf. Remark 1. The improvement in computational efficiency comes about
due to the improved structure and sparsity of the problem. Indeed, akin to the
situation in [46], we will show that each subproblem in the QP(41)–(44) has
the same structure as that of an unconstrained optimal control problem without
disturbances.

We first outline some of the general properties of interior-point solution meth-
ods.

4.1 General Interior-Point Methods

We consider the general constrained quadratic optimization problem

min
θ

1
2

θ ′Qθ subject toAθ = b, Cθ ≤ d, (52)
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where the matrixQ is positive semidefinite. A solutionθ to this system exists
if and only if the Karush-Kuhn-Tucker conditions are satisfied, i.e. there exist
additional vectorsπ, λ andzsatisfying the following conditions:

Qθ +A
′π +C

′λ = 0 (53a)

Aθ −b = 0 (53b)

−Cθ +d−z= 0 (53c)

(λ ,z) ≥ 0 (53d)

λ ′z= 0 (53e)

In primal-dual interior point methods [55], thecentral pathis defined as the set
of parameters(θ ,π,λ ,z) satisfying (53a)–(53d), with the complementarity condi-
tion (53e) relaxed, for each elementi, to λizi = µ , whereµ > 0 parameterizes the
path. This guarantees thatλ andz are strictly positive vectors. The central path
converges to a solution of (53) asµ ↓ 0 if such a solution exists.

The constraintsλizi = µ can be rewritten in a slightly more convenient form
by defining diagonal matricesΛ andZ such that

Λ =







λ1
.. .

λn






, Z =







z1
. ..

zn






, (54)

so that the relaxed complementarity condition becomesΛZ1 = µ1. Primal-dual
interior-point algorithms search for a solution to the KKT conditions (53) by pro-
ducing a sequence of iterates(θ κ ,πκ ,λ κ ,zκ), which approximate the central path
solution at someµκ > 0. These iterates are updated via repeated solution of a set
of Newton-like equations of the form







Q A′ C′

A

C I
Z Λ













∆θ
∆π
∆λ
∆z






=−







rQ
rA
rC
rZ






, (55)

where the residuals(rQ, rA, rC) take the values of the left-hand sides of (53a)–
(53c) respectively, evaluated at the current values(θ κ ,πκ ,λ κ ,zκ), and the ma-
trices (Z,Λ ) are formed from the current iterates(zκ ,λ κ) as in (54). The vec-
tor rZ is typically defined asrZ = (ΛZ1− 1µ̄), where µ̄ is chosen such that
µ̄ ∈ (0,µκ). Once the linear system (55) has been solved, the solution isupdated as
(θ κ+1,πκ+1,λ κ+1,zκ+1)← (θ κ ,πκ ,λ κ ,zκ)+α(∆θ ,∆π,∆λ ,∆z), whereα > 0
is chosen to maintain strict positivity ofλ k+1 andzk+1, and the path parameter
µκ is updated to someµκ+1 ∈ (0,µκ). The particular method for selecting the
parameters̄µ andα at each iteration depends on the specific interior-point algo-
rithm employed; the reader is referred to [55] for a thoroughreview. Since all
such methods maintain the strict inequalities(λ ,z) > 0 at each iteration asµ ↓ 0,
the matricesΛ andZ are guaranteed to remain full rank, and the system of equa-
tions in (55) can be simplified through elimination of the variables∆z to form the
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reduced system





Q A′ C′

A

C −Λ−1Z









∆θ
∆π
∆λ



=−





rQ
rA

(

rC−Λ−1rZ
)



 . (56)

Since the number of interior-point iterations required in practice is only weakly
related to the number of variables [55], the principal consideration is the time
required to factor the Jacobian matrix (i.e., the matrix on the left-hand-side), and
solve the linear system in (56). In the remainder of the paperwe focus on the
development of an efficient solution procedure for this linear system when the
problem data for the QP (52) is defined by the robust control problem (41)–(44).

4.2 Robust Control Formulation

For the robust optimal control problem described in (41)–(44), the system of equa-
tions in (56) can be arranged to yield a highly structured setof linear equations
through appropriate ordering of the primal and dual variables and their Lagrange
multipliers at each stage. As will be shown, this ordering enables the development
of an efficient solution procedure for the linear system in (56).

We useλi andλN to denote the Lagrange multipliers for the constraints (42b)
and (42c) in the nominal system, andzi andzN for the corresponding slack vari-
ables. We similarly useλ p

i andλ p
N to denote the multipliers in (44d) and (44e) for

thepth perturbation subproblem, with slack variableszp
i andzp

N. We useπi andπ p
i

to denote the dual variables for (42) and (44).

The linear system (56), defined for the particular robust control problem (41)–
(44), can then be reordered to form a symmetric, block-bordered, banded diagonal
set of equations by interleaving the primal and dual variables within the nominal
and perturbed problems, while keeping the variables from each subproblem sepa-
rate. If thepth perturbation subproblem corresponds to a unit disturbanceat some
stagek= ⌊ p−1

l ⌋, then the components of the system of equations (56) correspond-
ing to the nominal variables and the variables for thepth perturbation subproblem
are coupled at all stages afterk.

Considering for the moment only that part of (44) corresponding to the first
perturbation problem (withp= 1), this reordering yields the coupled linear system
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R D′ B′

D −Σ0 0

B 0 0 −I

−I Q 0 C′ A′

0 R D′ B′

C D −Σ1 0 I

A B 0 0 −I

−I Q 0 C′ A′

0 R D′ B′

C D −Σ2 0 I

A B 0

.
.
.

.
.
.

.
.
. P Y′

Y −ΣN I

0 0 D̄′ B′

I 0 0 H′ 0

D̄ H −Σ1
1 0

B 0 0 0 −I

−I 0 0 0 C̄′ A′

0 0 0 D̄′ B′

I 0 0 0 H′ 0

C̄ D̄ H −Σ1
2 0

A B 0 0

.
.
.

.
.
.

.
.
. 0 0 Ȳ′

I 0 0 H′f
Ȳ Hf −Σ1

N





































































































































∆v0

∆λ0

∆π0

∆x1

∆v1

∆λ1

∆π1

∆x2

∆v2

∆λ2.
.
.

∆xN

∆λN

∆u1
1

∆δ c1
1

∆λ1
1

∆π1
1

∆x1
2

∆u1
2

∆δ c1
2

∆λ1
2.

.

.

∆x1
N

∆δ c1
N

∆λ1
N
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rv0

rλ0

rπ0

rx1

rv1

rλ1

rπ1

rx2

rv2

rλ2.
.
.

rxN

rλN

r
u1
1

r
δ c1

1

r
λ1
1

r
π1
1

r
x1
2

r
u1
2

r
δ c1

2

r
λ1
2.
.
.

r
x1
N

r
δ c1

N

r
λ1
N





































































.

(57)
The diagonal matricesΣi andΣ p

i in (57) correspond to the matrix products
Λ−1Z in (56), and are defined as

Σi := (Λi)
−1Zi , ∀i ∈ Z[0,N] (58)

Σ p
i := (Λ p

i )−1Zp
i , ∀i ∈ Z[k+1,N], (59)

where the matricesΛi , Λ p
i , Zi , andZp

i are diagonal matrices formed from the
Lagrange multipliers and slack variablesλi , λ p

i , zi andzp
i from the nominal and

perturbation subproblems.
If all of the perturbation problems (44) are incorporated into a linear system

of the form (57), the result is a system of equations whose coefficient matrix can
be partitioned into block-bordered form as













A J1 J2 · · · JlN
J ′1 B1
J ′2 B2
...

. ..
J ′lN BlN

























xA
x1
x2
...

xlN













=













bA
b1
b2
...

blN













, (60)

where the banded matrixA is derived from the coefficients in the nominal problem
(42), the banded matricesBp are derived from thelN perturbation subproblems
(44), and the matricesJp represent the coupling between the systems. The vectors
bA, bp, xA, andxp (which should not be confused with the sequence of state vec-
torsx) are constructed from the primal and dual variables and residuals using the
ordering in (57). The matricesJp are constructed from identity matrices coupling
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the rows ofA that contain theΣi terms with the columns ofBp that contain the
H terms. It should of course be noted that for the matrixBp, corresponding to a
unit disturbance at stagek = ⌊ p−1

l ⌋, terms from stages prior to stagek+1 are not
required.

4.3 Solving for an Interior-Point Step

We can now estimate the solution time for the robust optimization problem (41)–
(44) by demonstrating that the linear system (60) can be solved inO((m+n)3N3)
operations. We recall that, in practice, the number of interior-point iterations is
only weakly dependent on the size of the problem [55]. Throughout this section,
we make the simplifying assumption that the number of constraintss andr in (8)
and (9) areO(m+n) andO(n), respectively.

We first require the following standing assumption and preliminary results:

Assumption 1 The constraint matrixD in (8) has full column rank.

Note that this assumption can always be satisfied by introducing additional input
constraints with suitably large bounds. This allows us to derive the following two
results, proofs for which can be found in Appendices B.1 and B.2 respectively.

Lemma 1 For the robust control problem(41)–(44), the Jacobian matrix in(57)
has full rank.

Lemma 2 The sub-matricesBp arising from the perturbation subproblems in(60)
have full rank. Additionally, recalling that k= ⌊ p−1

l ⌋,

(i) A solution to the linear systemBpxp = bp can be found inO
(

(m+n)3(N−k+1)
)

operations.
(ii) If a solution to(i) above has been found, then a solution for each additional

right hand side requiresO
(

(m+n)2(N−k+1)
)

operations.

Note that each of the blocksBp on the diagonal of (60) is banded and sym-
metric indefinite. Several methods exist for the stable construction of Cholesky-
like decompositions of symmetric indefinite matrices into factors of the form
LDL′ [11], and efficient algorithms for performing this factorization for sparse
matrices are freely available [18, 34]. However, it is generally not possible to
guarantee that the banded structure of an indefinite matrix,such asBp, will be
exploited using these methods if symmetry and stability of the factorization are to
be preserved. Instead, the special structure of the matricesBp allows us to employ
a specialized technique for solution of the linear systemBpxp = bp based on a
Riccati recursion [46,51] in the proof of Lemma 2 in AppendixB.2.

We can now demonstrate that it is always possible to solve thelinear system
(60) inO((m+n)3N3) operations.

Theorem 2 For the robust optimal control problem(41)–(44), each primal-dual
interior-point iteration requires no more thanO((m+n)3N3) operations.
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Proof The linear system (60) can be factored and solved using a Schur comple-
ment technique, so that
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.

.
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1 J ′1 I
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,

with

∆ :=A−
lN

∑
p=1
JpB−1

p J ′p.

where, by virtue of Lemma 1, the matrix∆ is always full rank [33, Thm. 0.8.5].
TheO((m+n)3N3) complexity bound can then be attained by solving (60) using
the following procedure:

Operation Complexity

solve:x̃p = B−1
p bp ∀p∈ Z[1,lN ] lN ·O((m+n)3N) (61a)

Sp = Jp
(

B−1
p J ′p

)

∀p∈ Z[1,lN ] lN ·O((m+n)3N2) (61b)

factor: ∆ =A−
lN

∑
p=1

Sp lN ·O((m+n)N) (61c)

= L∆ D∆ L′∆ O((m+n)3N3) (61d)

solve: zA = bA−
lN

∑
p=1

(Jpx̃p), lN ·O((m+n)N) (61e)

xA = (L′∆ )−1(D−1
∆ (L−1

∆ zA)), O((m+n)2N2) (61f)

zp = J ′pxA, ∀p∈ Z[1,lN ] lN ·O((m+n)N) (61g)

xp = x̃p−B−1
p zp. ∀p∈ Z[1,lN ] lN ·O((m+n)2N). (61h)

The complexity of the solution to the linear system (61a) follows from Lemma 2(i).
The complexity of the solution to (61b) and (61h) follows from Lemma 2(ii),
where each of the matricesJ ′p in (61b) haveO((m+n)N) non-zero columns.

Remark 5For the solution procedure in (61), it is important to note that since
the coupling matricesJi have no more than a single 1 on every row and column,
matrix products involving left or right multiplication byJi or J ′i do not require
any floating point operations to calculate. The reader is referred to [10, App. C]
for a more complete treatment of complexity analysis for matrix operations.

Remark 6If the solution procedure (61) is employed, then the robust optimiza-
tion problem is an obvious candidate for parallel implementation. However, it is
generally not necessary to hand implement the suggested variable interleaving and
block factorization procedure to realize the suggested block-bordered structure in
(60) andO((m+ n)3N3) solution time, as any reasonably efficient sparse factor-
ization code can be expected to perform similar steps automatically; see [18]. Note
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that the “arrowhead” structure in (60) should be reversed (i.e. pointing down and
to the right) in order for directLDL′ factorization to produce sparse factors.

Remark 7Recalling the discussion of soft constraint handling in Section 2.4 and
Remark 3, it is easy to show that the inclusion of soft constraints does not qual-
itatively alter the complexity results of Theorem 2, since the inclusion of such
constraints amounts only to a modification of the matrixA (and thus of the dense
matrix ∆ ) in (61c), and doesnot effect the complexity of any of the operations
involving the banded matricesBi .

5 Results

Two sparse QP solvers were used to evaluate the proposed formulation. The first,
OOQP [24], uses a primal-dual interior-point approach configured with the sparse
factorization code MA27 from the HSL library [34] and the OOQP version of the
multiple-corrector interior-point method of Gondzio [25].

The second sparse solver used was the QP interface to the PATH[17] solver.
This code solves mixed complementarity problems using an active-set method,
and hence can be applied to the stationary conditions of any quadratic program.
Note that since we are dealing with convex QPs, each optimization problem and
its associated complementarity system have equivalent solution sets.

All results reported in this section were generated on a single processor ma-
chine with a 3 GHz Pentium 4 processor and 2GB of RAM. We restrict our atten-
tion to sparse solvers as the amount of memory required for the problems consid-
ered is prohibitively large for dense factorization methods.

A set of test cases was generated to compare the performance of the two sparse
solvers using the(M ,v) formulation in (26) and the decomposition-based method
of Section 3. Each test case is defined by its number of statesn and horizon length
N. The remaining problem parameters were chosen using the following rules:

– There are twice as many states as inputs.
– The constraint setsW,Z andXf represent randomly selected symmetric bounds

on the states and inputs subjected to a random similarity transformation.
– The state space matricesA andB are randomly generated, with(A,B) control-

lable, and withA potentially unstable.
– The dimensionl of the generating disturbance is chosen as half the number of

states, with randomly generatedE of full column rank.
– All test cases have feasible solutions. The initial state isselected such that

at least some of the inequality constraints in (42b) are active at the optimal
solution.

The average computational times required by each of the two solvers for the two
problem formulations for a range of problem sizes are shown in Table 1. Each
entry represents the average of ten test cases, unless otherwise noted.

It is clear from these results that, as expected, the decomposition-based formu-
lation can be solved much more efficiently than the original(M ,v) formulation for
robust optimal control problems of nontrivial size, and that the difference in solu-
tion times increases dramatically with increased problem dimension. Additionally,
the decomposition formulation seems particularly well suited to the interior-point
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Table 1 Average Solution Times (sec)

(M ,v) Decomposition
Problem Size OOQP PATH OOQP PATH
2 states, 4 stages 0.004 0.003 0.004 0.004
2 states, 8 stages 0.020 0.010 0.016 0.019
2 states, 12 stages 0.061 0.027 0.037 0.052
2 states, 16 stages 0.172 0.091 0.072 0.198
2 states, 20 stages 0.432 0.123 0.132 1.431
4 states, 4 stages 0.024 0.026 0.018 0.024
4 states, 8 stages 0.220 0.316 0.099 0.357
4 states, 12 stages 0.969 1.162 0.264 2.019
4 states, 16 stages 3.755 17.50 0.576 16.63
4 states, 20 stages 11.67 41.45 1.047 22.26
8 states, 4 stages 0.667 1.282 0.136 0.261
8 states, 8 stages 7.882 81.50 0.858 14.89
8 states, 12 stages 46.97 257.9† 2.81 183.8†

8 states, 16 stages 189.75 2660† 6.781 288.9†

8 states, 20 stages 620.3 x 13.30 x
12 states, 4 stages 6.292 75.608 0.512 5.044
12 states, 8 stages 132.1 1160† 4.671 388.9†

12 states, 12 stages 907.4 x 14.08 x
12 states, 16 stages x x 37.99 x
12 states, 20 stages x x 82.06 x
x – Solver failed all test cases
† – Based on limited data set due to failures

solver (OOQP), rather than the active set method (PATH). Nevertheless we ex-
pect the performance of active set methods to improve relative to interior-point
methods when solving a sequence of similar QPs that would occur in predictive
control, where a good estimate of the optimal active set is typically available at
the start of computation. That is, interior-point methods are particularly effective
in “cold start” situations, while the efficiency of active set methods is likely to
improve given a “warm start”.

Figure 1 shows that the interior-point solution time increases cubicly with hori-
zon length for randomly generated problems with 2, 4, 8 and 12states. The per-
formance closely matches the predicted behavior describedin Section 3. For the
particular problems shown, the number of iterations required for the OOQP algo-
rithm to converge varied from 12 to 20 over the range of horizon lengths and state
dimensions considered.

6 Conclusions and Future Work

We have derived a highly efficient computational method for calculation of affine
state feedback policies for robust control of constrained systems with bounded
disturbances. This is done by exploiting the structure of the underlying optimiza-
tion problem and deriving an equivalent problem with considerable structure and
sparsity, resulting in a problem formulation that is particularly suited to an interior-
point solution method. As a result, robustly stabilizing receding horizon control
laws based on optimal state-feedback policies have become practically realizable,
even for systems of significant size or with long horizon lengths.
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Fig. 1 Computation time vs. horizon length for systems of increasing state dimension, using the
decomposition method and OOQP solver. Also shown is the constant lineN3/1000 for compar-
ison.

In Section 4 we proved that, when applying an interior-pointsolution tech-
nique to our robust optimal control problem, each iterationof the method can be
solved using a number of operations proportional to the cubeof the control horizon
length. We appeal to the Riccati based factorization technique in [46, 51] to sup-
port this claim. However, we stress that the results in Section 5, which demonstrate
this cubic-time behavior numerically, are based on freely available optimization
and linear algebra packages anddo notrely on any special factorization methods.

A number of open research issues remain. It may be possible tofurther ex-
ploit the structure of our control problem by developing specialized factorization
algorithms for the factorization of each interior-point step, e.g. through the paral-
lel block factorization procedure alluded to in Remark 6. Itmay also be possible
to achieve considerably better performance by placing further constraints on the
structure of the disturbance feedback matrixM , though this appears difficult to do
if the attractive invariance and stability properties of the present formulation are
to be preserved.

Many of the system-theoretic results developed in [28] holdfor a fairly broad
class of disturbances and cost functions [27]. For example,when the disturbance
is Gaussian the problem may be modified to require that the state and input con-
straints hold with a certain pre-specified probability, andthe probabilistic con-
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straints converted to second-order cone constraints [10, pp. 157–8]. Alternatively,
the cost function for the finite horizon control problem may require the minimiza-
tion of the finite-horizonℓ2 gain of a system [26, 36]. In all of these cases, there
is a strong possibility that the underlying problem structure may be exploited to
realize a substantial increase in computational efficiency.
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A Matrix Definitions

Let the matricesA ∈ R
n(N+1)×n andE ∈ R

n(N+1)×nN be defined as

A :=













In
A
A2

...
AN













, E :=













0 0 · · · 0
In 0 · · · 0
A In · · · 0
...

...
...

...
AN−1 AN−2 · · · In













. (62)

We also define the matricesB ∈ R
n(N+1)×mN, C ∈ R

(sN+r)×n(N+1) andD ∈ R
(sN+r)×mN as

B := E(IN⊗B), C :=

[

IN⊗C 0
0 Y

]

, D :=

[

IN⊗D
0

]

. (63)

and defineF := CB+D, G := CE, T :=−CA, c :=
[

1N⊗b
z

]

.

B Rank of the Jacobian and Reduction to Riccati Form

B.1 Rank of the Robust Control Problem Jacobian (Proof of Lemma 1)

We demonstrate that the Jacobian matrix defined in (57) is always full rank. Recalling the dis-
cussion in Section 4.1, forany quadratic program the Jacobian matrix is full rank if the only
solution to the system

[

Q A′ C′

A 0 0
C 0 −Σ

][∆θ
∆π
∆λ

]

=

[

0
0
0

]

(64)

satisfies∆θ = 0, ∆π = 0, and∆λ = 0, whereΣ := Λ−1Z≻ 0, Q� 0 and the coefficient matri-
cesA andC come from the equality and inequality constraints of the QP respectively (cf. (52)).
From the first two rows of this system,

∆θ ′Q∆θ +(∆θ ′A′)∆π +∆θ ′C′∆λ = ∆θ ′Q∆θ +∆θ ′C′∆λ = 0. (65)

Incorporating the final block row,C∆θ = Σ∆λ , we have

∆θ ′Q∆θ +∆λ ′Σ∆λ = 0. (66)

SinceQ � 0 for a convex QP andΣ ≻ 0 for a strictly interior point, we conclude that∆λ = 0.
We next make use of the following matrix condition, which is easily verified:
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Fact 1 The matrix
[

X Y
0 Z

]

is full column rank for anyY if both X andZ are full column rank.

Since∆λ = 0 always holds, sufficient conditions to guarantee∆θ = 0 and∆π = 0 in (64)
are that:

(i) A is full row rank.
(ii)

[

A

C

]

is full column rank.

For the quadratic program defined by the robust control problem (42)-(44), the equality and
inequality constraints are defined as in (47). For this convex QP, it is straightforward to show
that the above rank conditions onA andC are equivalent to requiring that:

(i) Each of the matricesA0,A1, . . . ,AlN is full row rank.

(ii) Each of the matrices
[

A0
C0

]

,
[

A1
C1

]

, . . . ,
[

AlN
ClN

]

is full column rank.

The condition (ii) is derived by noting that, for the particular problem (42)-(44), the general rank
condition on

[

A

C

]

is equivalent to requiring that the matrix



























C0 J1 J2 . . . JlN
A0

C1
A1

C2
A2

...
ClN
AlN



























is full column rank, which reduces to (ii) upon repeated application of Fact 1 above to eliminate
the coupling termsJp. If Assumption 1 holds, both of these rank conditions are easily verified by
examination of the definitions in (48) and (50). The Jacobianmatrix for the QP defined in (42)-
(44) is thus full rank, and it remains full rank if its rows andcolumns are reordered as in (57).

B.2 Solution ofBpxp = bp via Riccati recursion (Proof of Lemma 2)

We demonstrate that the system of equationsBpxp = bp has a unique solution for everybp,
whereBp, xp andbp are defined as

Bp :=



































0 0 D̄′ B′

0 0 H′ 0

D̄ H −Σ p
k+1 0

B 0 0 0 −I

−I 0 0 0 C̄′ A′

0 0 0 D̄′ B′

0 0 0 H′ 0

C̄ D̄ H −Σ p
k+2 0

A B 0 0

.
.
.

.
.
.

.
.
. 0 0 Ȳ′

0 0 H′f
Ȳ Hf −Σ p

N



































, (67a)

xp :=(∆up
k+1,∆δcp

k+1,∆λ p
k+1,∆π p

k+1,∆xp
k+2,∆up

k+2,∆δcp
k+2,∆λ p

k+2, . . . ,∆xp
N,∆δcp

N,∆λ p
N),

bp :=( rup
k+1 , rδcp

k+1 , rλ p
k+1 , rπ p

k+1 , rxp
k+2 , rup

k+2 , rδcp
k+2 , rλ p

k+2 , . . . , rxp
N , rδcp

N , rλ p
N )

andk = ⌊ p−1
l ⌋, and that this solution is obtainable inO((m+ n)3N) time. We first perform a

single step of block elimination on the variables∆λ p
i and∆δcp

k+1, so that the resulting linear
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system is solvable via specialized methods based on Riccatirecursion techniques [46, 51] (see
also related results in [20] for the unconstrained case).

It is straightforward to eliminate the terms∆λ p
i and∆δcp

i from each of the subproblems,
yielding a linear system̃Bpx̃p = b̃p. The coefficient matrixB̃p is:

B̃p :=

























R
p
k+1 B′

B 0 −I

−I Qp
k+2 Mp

k+2 A′

(M
p
k+2)

′
R

p
k+2 B′

A B 0 −I

−I Qp
k+3 Mp

k+3 A′

(Mp
k+3)

′
Rp

k+3 B′

A B

.
.
.

.
.
.

.
.
. Qp

N

























(68)

where, for stagesi ∈ Z[k+1,N−1]:

Φ p
i := H ′(Σ p

i )−1H (69a)

Θ p
i := (Σ p

i )−1− (Σ p
i )−1H(Φ p

i )−1H ′(Σ p
i )−1 (69b)

Qp
i := C̄′Θ p

i C̄ (69c)

Rp
i := D̄′Θ p

i D̄ (69d)

Mp
i := C̄′Θ p

i D̄, (69e)

and for stageN:

Φ p
N := H ′f (Σ

p
N)−1H f (69f)

Θ p
N := (Σ p

N)−1− (Σ p
N)−1H f (Φ p

N)−1H ′f (Σ
p
N)−1 (69g)

Qp
N := Ȳ′Θ p

NȲ. (69h)

The vectors̃xp andb̃p are defined as:

x̃p := (∆up
k+1,∆π p

k+1,∆xp
k+2,∆up

k+2,∆π p
k+2, . . . ,∆xp

N) (70)

b̃p := ( r̃up
k+1 , rπ p

k+1 , r̃xp
k+2 , r̃up

k+2 , rπ p
k+2 , . . . , r̃xp

N) , (71)

where, for stagesi ∈ Z[k+1,N−1]:

r̃xp
i := rxp

i +C̄
(

Θ p
i rλ p

i − (Σ p
i )−1H(Φ p

i )−1rδcp
i

)

(72a)

r̃up
i := rup

i + D̄
(

Θ p
i rλ p

i − (Σ p
i )−1H(Φ p

i )−1rδcp
i

)

, (72b)

and, for stageN:

r̃xp
N := rxp

N +Ȳ
(

Θ p
Nrλ p

N − (Σ p
N)−1H f (Φ p

N)−1rδcp
N

)

. (72c)

Remark 8The matrixB̃p is equivalent to the KKT matrix for the unconstrained control problem:

min
uk+1,...,uN−1,

xk+1,...,xN

(

1
2

x′NQp
NxN +

N−1

∑
i=(k+1)

1
2
(x′iQ

p
i xi +u′iR

p
i ui +2xiM

p
i ui)

)

(73)

subject to: xk = E( j), (74a)

xi+1 = Axi +Bui , ∀i ∈ Z[k+1,N−1]. (74b)
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Lemma 3 Each of the matrices Rpi , Qp
i and Qp

N are positive semi-definite. If Assumption 1 holds,
then Rp

i is positive definite.

Proof Recall that the matrixΘ p
i is defined as

Θ p
i = (Σ p

i )−1− (Σ p
i )−1H

(

H ′(Σ p
i )−1H

)−1
H ′(Σ p

i )−1, (75)

and partition the diagonal and positive definite matrixΣ p
i into Σ p

i =
[

Σ1 0
0 Σ2

]

. Recalling that

H :=−
[

I
I

]

, Θ p
i can be written as

Θ p
i =

[

Σ−1
1 −Σ−1

1 (Σ−1
1 +Σ−1

2 )−1Σ−1
1 −Σ−1

1 (Σ−1
1 +Σ−1

2 )−1Σ−1
2

−Σ−1
2 (Σ−1

1 +Σ−1
2 )−1Σ−1

1 Σ−1
1 −Σ−1

2 (Σ−1
1 +Σ−1

2 )−1Σ−1
2

]

(76)

=

[

I
−I

]

(Σ1 +Σ2)
−1 [I −I ] (77)

which is easily verified using standard matrix identities and the fact that the matricesΣ1 andΣ2
are diagonal.

Recalling thatD̄ :=
[

D
−D

]

, it follows thatRp
i is positive semidefinite since it can be written

as

Rp
i = D̄′

[

I
−I

]

(Σ1 +Σ2)
−1 [I −I ] D̄ (78)

= 4D′(Σ1 +Σ2)
−1D� 0. (79)

If Assumption 1 holds, so thatD is full column rank, thenRp
i is positive definite. A similar

argument establishes the result forQp
i andQp

N.

We are now in a position to prove Lemma 2. SinceRp
i is positive definite andQp

i and Qp
N

are positive semidefinite, the linear system̃Bpx̃p = b̃p (and consequently the original sys-
temBpxp = bp) has a unique solution that can found inO((m+n)3(N−k+1)) operations using
the Riccati recursion procedure described in [46,51]. Oncesuch a solution has been obtained, a
solution for each additional right hand side requiresO

(

(m+n)2(N−k+1)
)

operations [46, Sec.
3.4]. We note that in [46] the Riccati factorization procedure is shown to be numerically stable,
and that similar arguments can be used to show that factorization of (68) is also stable. We omit
details of this for brevity.


