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Abstract 

The seismic nonlinear behaviour of earth dams is investigated by using a well-documented 

case study and employing advanced static and dynamic coupled-consolidation finite element 

analysis. The static part of the analysis considers the layered construction, reservoir 

impoundment and consolidation, whereas the dynamic part considers the response of the 

dam to two earthquakes of different magnitude, duration and frequency content. The results 

of the analysis are compared with the recorded response of the dam and exhibit a generally 

good agreement. The effects of the narrow canyon geometry, the reservoir impoundment 

and the elasto-plastic soil behaviour on the seismic dam behaviour are investigated. Finally 

the implications of the adopted constitutive modelling assumptions on the predicted 

response are discussed. 

1. Introduction 

The early studies on the seismic response of dams followed the pseudo-static method of 

analysis (Terzaghi, 1950; Sarma, 1979) and aimed to calculate the minimum seismic load 

that could cause instability of the dam slope. Later, sliding block methods of analysis 

(Newmark, 1965; Ambraseys & Sarma, 1967; Ambraseys & Menu, 1988; Bray & 

Travasarou, 2007) concentrated on estimating the seismically induced permanent 

displacements. 
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More advanced shear beam analyses investigated the dynamic response of dams 

considering transverse (Ambraseys, 1960; Gazetas, 1982), vertical (Gazetas, 1981a) and 

longitudinal (Abdel-Ghaffar & Koh, 1981; Gazetas, 1981b) vibrations. Besides, the shear 

beam method was extended to consider the effects of canyon geometry (Dakoulas & 

Gazetas, 1987) and inhomogeneous dam materials (Abdel-Ghaffar & Koh, 1981; Gazetas, 

1982; Dakoulas & Gazetas, 1985). 

Subsequent finite element (FE) studies concentrated on the three-dimensional (3D) analysis 

of earth dams (Griffiths & Prevost, 1988; Dakoulas, 2012), elasto-plastic behaviour of the soil 

materials (Prevost et al., 1985; Woodward & Griffiths, 1996), hydrodynamic pressures on 

dams (Pelecanos et al., 2013), coupled-consolidation analysis (Lacy & Prevost, 1987; Sica 

et al., 2008, Elia et al., 2010) and estimation of critical seismic coefficients (Andrianopoulos 

et al., 2014, Papadimitriou et al., 2014) using constitutive models of various levels of 

complexity. The FE method is considered one of the most powerful tools to analyse the 

response of dams during earthquakes, however most of the numerical studies mentioned 

were not compared to field measurements and therefore their reliability is questioned. 

This paper presents a numerical analysis of a dam case study, the La Villita earth dam in 

Mexico, with the objective of performing a "blind" prediction of the dam's behaviour using as 

input the available information about the foundation soils, materials of the dam structure and 

historic construction and earthquake records, to develop the numerical model. Both static 

and dynamic FE analyses are then performed to obtain the response of the dam during 

previous earthquakes and compare its predicted and recorded behaviour. The investigation 

considers the full stress-history of the dam, the coupled-consolidation behaviour of the 

materials and the effect of the 3D canyon geometry under two seismic events of distinct 

intensity. The aim of this study is to examine to what extent nonlinear FE analysis is able to 

reproduce the observed seismic dam response and to investigate the effects of some 

inevitable assumptions introduced in the numerical model. 
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2. La Villita dam 

2.1. Description of the dam 

La Villita is a 60m high zoned earth dam in Mexico with a slightly curved crest about 420m 

long, which is founded on an alluvium layer of varying thickness. The dam cross-section is 

composed of a central clay core of very low permeability, with sand filters and rockfill shells. 

Alluvial deposits beneath the clay core were grouted below the dam, while there is alsoa 

concrete cut-off wall to control seepage through the alluvium below the dam. Figures 1 and 2 

show the transverse and longitudinal sections of the dam respectively. 

The dam experienced six major seismic events during the period between 1975 and 1985 

(Table 1). Although it did not fail, it sustained some deformations. The earthquake motions 

were recorded by three accelerometers which were installed on the dam soon after the end 

of construction. There is one instrument on rock at the right rock bank (point R in Figure 2) 

and two at the dam body which are located at the crest and the downstream berm (points C 

and B in Figures 1 and 2). 

Table 1: Summary of earthquake events 

No Date Ms Epic. 

Dist. 

[km] 

Max. 

Rock 

accel. 

[g] 

Max. 

Berm 

accel. 

[g] 

Max. 

Crest 

accel. 

[g] 

Rock 

predom. 

period 

[sec] 

Berm 

predom. 

period 

[sec] 

Crest 

predom. 

Period 

[sec] 

EQ1 11/10/1975 4.5 52 0.07 0.09 0.36 0.2 0.18 0.32 

EQ2 15/11/1975 5.9 10 0.04 0.08 0.21 0.18 0.34 0.77 

EQ3 14/3/1979 7.6 121 0.02 0.14 0.40 0.16 0.32 0.28 

EQ4 25/10/1981 7.3 31 0.09 0.24 0.43 - 0.29 0.27 

EQ5 19/11/1985 8.1 58 0.12 - 0.76 0.57 - 0.75 

EQ6 21/11/1985 7.5 61 0.04 - 0.21 0.37 - 0.65 
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Not all three acceleration records in all three global directions are available. Some of the 

records are incomplete, containing only a small part of the actual record. Elgamal (1992) 

states that due to instrument malfunction at the right rock bank, only the bedrock records of 

15 November 1975 (EQ2) and 19 November 1985 (EQ5) are useful for numerical analysis. 

Also, it should be noted that only a portion of the bedrock record of EQ2 is available (which 

can be used as input to a numerical analysis). 

2.2. Previous research on La Villita dam 

Because of the available ground motion data, a number of researchers have previously 

investigated this dam. Moreover, what attracted the researchers’ attention was the 

asymmetry of the acceleration record of the crest of the dam, which showed higher values of 

acceleration in the positive (downstream) direction (Figure 12(a)). High values of peak 

acceleration could potentially suggest the existence of a localised failure with some 

permanent displacements, as the integration of an asymmetric acceleration record results in 

residual displacements (see Fig. 15). Elgamal et al. (1990) used a simple sliding block model 

to investigate the observed acceleration asymmetry concluding that the latter was the result 

of a localised slip failure, while Elgamal (1992) employed a 3D shear beam method to 

numerically analyse its performance during two earthquakes. Succarieh et al. (1993) used a 

1D shear beam method to analyse the dynamic response of the dam and further utilised the 

Newmark (1965) sliding-block method to compute the permanent displacements.  

Gazetas & Uddin (1994) developed a procedure for analysing earth dams in which, using 

pseudo-static slope stability analysis, a potential failure surface was identified. Finite element 

analysis (FE) was then performed with the pre-specified sliding surface behaving as 

perfectly plastic material (i.e. sliding occured when the acceleration exceeded the strength of 

the material), whereas the rest of the dam body behaved in a visco-elastic manner. The 

above-described method was applied on La Villita dam (Uddin, 1997) to investigate the 

observed response asymmetry. Two points on the two edges of the dam crest were 

monitored (one inside and one outside the sliding mass) and their response was compared, 
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showing that the point inside the sliding mass presented an asymmetric acceleration 

response. Finally, Papalou & Bielak (2001, 2004) performed 3D numerical (combined FE 

and shear beam) elastic and elasto-plastic analyses of the dam with the surrounding canyon 

and showed that dam-canyon interaction results in smaller accelerations in the dam.  

Based on the previous findings, the premise of the current study is that the observed 

acceleration record is the result of the combination of (a) the dynamic behaviour of the dam 

structure and (b) the high acceleration peaks due to a localised failure close to the 

monitoring instrument. 

3. Numerical model 

Finite element (FE) analyses, employing the Imperial College Finite Element Program 

(ICFEP) (Potts & Zdravković, 1999, 2001) are performed to analyse the response of the 

dam. Two-dimensional plane-strain static and dynamic in the time domain coupled-

consolidation analyses are carried out in order to model the history of the dam prior to the 

earthquake events and its subsequent seismic response. 

3.1. Stages of analysis 

First, layered construction of the embankment is modelled over one year (1967), followed by 

one year of consolidation (1968). Then, water impoundment is simulated over six months 

(1969) followed by another long period of pure consolidation (6.5 years: 1969-1975), before 

the dynamic analysis of the first seismic event (EQ2 in 1975). Subsequently, a further period 

of 10 years of static consolidation is modelled before the final dynamic analysis of the 

second seismic event (EQ5 in 1985). 

3.2. FE model geometry & boundary conditions 

The FE mesh employed is shown in Figure 3. It consists of 1503 eight-noded isoparametric 

quadrilateral elements. Elements of consolidating materials (clay core and alluvium only) 

have also pore water pressure degrees-of-freedom at corner nodes. The maximum element 
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size (6m) is chosen to be smaller than 1/5 of the smallest wavelength (lowest shear wave 

velocity over the highest frequency of the input wave). The highest considered frequency of 

the input motion is taken as 12Hz, which is determined from the Fourier Amplitude Spectra 

(FAS) of the two motions used. The cut-off value used is the frequency for which the 

corresponding Fourier Amplitude (FA) value becomes less than 10% of the highest value of 

FA (i.e. much higher than the predominant frequencies of the input records, predominant 

periods listed in Table 1). 

The adopted deformation boundary conditions (BCs) for the static part of the analysis are: 

full fixity (displacements in both directions are zero) at the bottom boundary of the mesh and 

horizontal fixity (horizontal displacements are zero) at the lateral boundaries of the mesh. 

For the dynamic part of the analysis, the BCs along the bottom boundary are: fixity in the 

vertical direction and prescribed values of acceleration in the horizontal, whereas the tied-

degrees-of-freedom (TDOF) BC was applied along the vertical sides of the alluvium layer in 

both directions. Hydrodynamic pressures are not taken into account in these simulations, 

because they are not considered significant for earth dams (Hall & Chopra, 1982; Gazetas, 

1987; Pelecanos, 2013, Pelecanos et al, 2013). The reservoir hydrostatic pressures are 

used throughout the analysis. The bottom boundary of the mesh is placed at the interface 

between the foundation alluvium and the rigid bedrock, which is considered “infinitely” stiff, 

while the lateral boundaries are placed sufficiently far, so that interaction between them and 

the dam is avoided. The location of the latter boundaries was established after a parametric 

investigation, which compared the acceleration response at the far-field boundary of the 

model against the free-field response resulting from one-dimensional propagation from a 

column analysis of the alluvium layer. Figure 4 shows a comparison of the surface 

acceleration time history at point DB (see Figure 3) for the dynamic analysis during EQ2 

(with the updated shear stiffness, see Section 5.1), and that computed at the top of a 70m 

deep column analysis representing the free-field response of the alluvium layer. The good 
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agreement between the two time histories confirms the adequacy of the lateral size of the 

model and the associated boundary conditions. 

3.3. Material properties & constitutive models 

A summary of the properties of the materials of the dam are listed in Table 2. The properties 

are taken from Elgamal (1992), who does not mention what types of tests were carried out to 

characterise the material. All subsequent studies on this dam (Succarieh et al, 1993; 

Gazetas & Uddin, 1994; Papalou & Bielak, 2001, 2004) adopt the same properties listed in 

Elgamal (1992), without any additional information about them, or any new data. Following 

Elgamal (1992), a linear variation of the maximum shear stiffness, Gmax, is used for all the 

materials in the dam embankment (140-260 MPa from top to bottom), whereas a constant 

value of 200 MPa is used in the alluvium. The values adopted for the permeability for the 

consolidating materials (clay and alluvium) are Kclay = 1·10-10 m/s and Kalluvium = 1·10-7 m/s. 

The remaining materials are considered to behave in a drained manner. 

Table 2: Summary of known material properties 

No Material Mass 

density 

Poisson 

ratio 

Cohesion Angle of 

shearing 

Angle of 

dilation 

ρ [kg/m3] v [ ] c’ [kPa] φ’ [deg] ψ [deg] 

1 Clay core 2000 0.49 5 25 0 

2 Sand filters 2180 0.33 0 35 0 

3 Inner 

Rockfill 

2080 0.33 5 45 0 

4 Outer 

Rockfill 

2080 0.33 5 45 0 

5 Alluvium 2080 0.33 5 35 17.5 
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The constitutive model used is a cyclic nonlinear model (CNL), which adopts a logarithmic 

function to describe the backbone curve (Puzrin & Burland, 2000; Taborda, 2011) coupled 

with a Mohr-Coulomb failure criterion. The logarithmic relation (Equation A1) dictates the 

degradation of shear stiffness, G, and the increase of damping, ξ, with cyclic shear strain, γ. 

The relationships associated with the adopted CNL are presented in Appendix A.  

Due to the lack of experimental data the CNL is calibrated on empirical relations. The 

Vucetic & Dobry (1991) curves are used for the clay core, the curves of Seed et al. (1986) 

are used for the sand filters and finally the curves of Rollins et al. (1998) are used for the 

rockfill and alluvium materials. Table 3 lists the results of the calibration. It should be noted 

that 200 MPa is the average value for the Gmax within the dam. As the value of Gmax affects 

the degradation of stiffness in the adopted constitutive model (see Appendix A), an average 

value was used in the calibration. The calibration for the CNL model (i.e. for the nonlinear 

elastic part) is shown graphically in Figure 5. It is recognised from the latter figure that the 

predicted value of damping decreases beyond a certain threshold deviatoric strain value 

(Ed,L), as the model assumes a linear deviatoric stress – deviatoric strain (J- Ed) relationship 

beyond this strain value Ed,L. Care is taken so that the calibration of the CNL model exhibits 

a good agreement with the adopted empirical curves within the strain range that is relevant 

in the examined problem. In this study, the strains do not exceed 0.1% (examples shown in 

Figures 19 (a) and (b)) and therefore the damping mismatch for γ>0.1% is not expected to 

have an impact on  the predicted response. 

Table 3: Calibration parameters for the Logarithmic CNL model (see also Appendix A) 

Material Logarithmic CNL model parameters 

Gmax EdL JL c Gmin 

[MPa] [ ] [kPa] [ ] [MPa] 

Clay core 200 0.0019 185 0.4 20 

Sand filters 200 0.0014 65 1.0 20 
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Rockfill & Alluvium 200 0.0004 45 0.3 20 

 

4. Static analysis 

After establishing the initial stress conditions (i.e. level ground with Ko = 1-sinφ’ and the 

water table at 2m depth), the embankment is constructed in 10 successive layers of 6m 

height over a period of 1 year. The clay core is considered to have suction due to its 

compacted nature and a value of tensile pore water pressure of 50 kPa is specified on 

construction of each clay core layer, whereas all the rest of the embankment materials were 

compacted on construction with zero pore pressure. Subsequently, one year of pure 

consolidation (no additional loading, only dissipation of excess pore pressures) is modelled 

and then water is impounded in the reservoir.  

The reservoir impoundment is modelled over a total duration of 6 months and water level is 

raised over 10 time increments. Therefore, the water in the reservoir is modelled as an 

additional external hydrostatic boundary stress on the upstream face of the dam up to a 

height of 54m. Besides, an additional boundary stress is applied on the upstream riverbed 

alluvium equal to the maximum hydrostatic value. At the same time of the application of the 

external boundary stress, the pore pressure in the elements of the upstream rockfill and 

sand filters is prescribed to be in equilibrium with the externally applied boundary stress, i.e. 

hydrostatic. 

The deformation BCs are previously described in Section 3.2. The hydraulic BCs are: along 

the bottom boundary zero flow is prescribed, whereas along the lateral boundaries no 

change in pore water pressure is prescribed, in order to maintain the initial hydrostatic 

conditions. The hydraulic BCs on the boundaries of the core are: no flow on the bottom and 

top boundaries, and precipitation BC on the two lateral sides of the core. The precipitation 

BC (Potts & Zdravković, 1999, 2001) is an advanced BC which allows the prescription of 

dual hydraulic conditions. It may act as a prescribed flow in one direction, or as a prescribed 
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value of pore water pressure, u. On both US and DS core sides, it is specified that if the 

water pressure is more tensile in the core than on the core boundary, there is no flow of 

water into the core from the fill (which is dry and therefore u= 0). On the other hand, if the 

pore pressures in the core are more compressive (u>0) than those on the core boundary, 

then the pore water pressure value on the boundary is prescribed to be equal to zero. In that 

case, there is going to be flow of water from within the core, towards rockfill, with such a flow 

rate, that the value of the pore water pressure, u on the core boundary will be equal to zero. 

This is prescribed only during the construction phase, when the fill is dry. The reason for the 

use of this advanced BC is to avoid the unrealistic inflow of water in the core when there is 

suction during its construction. During and after reservoir impoundment, the hydraulic BCs 

for the upstream lateral boundary of the mesh are: the prescribed pore water pressures are 

increased according to the pore pressure change due to the water level rise. Moreover, the 

hydraulic BC on the upstream face of the core has prescribed values of the pore water 

pressure according to the elemental pore pressures prescribed within in the upstream rockfill 

(i.e. a hydrostatic variation). This allows water seepage through the core according to the 

value of the material permeability. 

Figure 6 shows the pore water pressure distribution in the dam after water impoundment, 

whereas Figure 7 shows the flow net in the clay core. It is shown from the first figure that 

there are pore pressures in the upstream rockfill as a result of the water impoundment. This 

distribution is linear in the vertical direction as the water penetrates quickly in the coarse 

rockfill and hydrostatic conditions are established. Moreover, pore pressures drop in the clay 

core which means that the pressure reduces in the downstream side of the core, compared 

to the hydrostatic values on the upstream side. There is still some suction in the upper part 

of the clay core, which indicates that a part of the core is still not fully saturated. Besides, 

comparing the two parts of the foundation alluvium, the upstream part shows significantly 

higher values of water pressure which are a result of the reservoir water. As far as the flow 

net in the core is concerned, flow lines (black) and equipotential lines (grey) are clearly 
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formed indicating seepage from the upstream to the downstream side of the clay core. 

Finally, Figure 8 shows the calculated and recorded settlement history of the dam crest prior 

to the EQ events which exhibit a good agreement. It is therefore confirmed that the static 

part of the analysis (construction and impounding) is satisfactorily captured and that the 

appropriate stress conditions within the dam prior to the seismic events are established. 

5. Dynamic analysis 

The seismic analysis of the response of the dam under the EQ2 and EQ5 seismic events is 

performed with dynamic-in-the-time-domain FE analysis. The time integration scheme 

employed is the generalised-αalgorithm of Chung & Hulbert (1993) which is able to use 

numerical damping and selectively filter the high frequency components (Kontoe, 2006; 

Kontoe et al. 2008). The deformation BCs are those described in Section 3.2 and the 

hydraulic BCs are the same as those adopted in the static analysis after the reservoir 

impoundment, discussed in Section 4. The right-bank (rock) acceleration records for EQ2 

and EQ5 are used as input to the dynamic analyses (following Elgamal, 1992). 

5.1. Effect of canyon geometry 

Figure 9 shows the calculated and recorded accelerations and the associated response 

spectra for EQ5 respectively at the crest of the dam (Point C in Figure 3). It is observed that 

the calculated accelerations are found to be significantly smaller than the recorded ones. A 

similar trend is observed in the corresponding response spectra, where the calculated 

spectral acceleration, Sa, values are generally smaller than the recorded ones. Interestingly, 

the calculated values of the spectral acceleration Sa are found to be smaller than the 

recorded values for small values of the period, T < 1.3 s, and larger for large values of the 

period, T > 1.3 s. This implies that higher accelerations are observed for larger values of the 

fundamental period, which would occur if a softer (i.e. with a larger fundamental period) 

system was considered. Therefore, this shows that the calculated response of the dam is 

softer than the recorded. 
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It is long known (Hatanaka, 1952; Ambraseys, 1960; Mejia & Seed, 1983; Dakoulas & 

Gazetas, 1987) that dams built in narrow canyons exhibit a stiffer response than dams built 

in wide canyons. In this case, La Villita is a 60m high dam founded on a 70m alluvial deposit 

and its crest length is about 420m. Therefore, the canyon length over height, L/H ratio is 

equal to 420/(60+70) = 3.2. This implies that canyon effects could be significant and a 2D 

analysis would be inappropriate as the real problem is stiffer than the corresponding 2D 

plane strain model. Such a 2D analysis would be suitable for a wide canyon (L/H >4) 

(Ambraseys, 1960). In order to overcome this soft response of a 2D analysis, the stiffening 

effect of the canyon geometry is taken into account by increasing the material stiffness of the 

dam. A parametric study is carried out to determine the ratio of the new updated shear 

stiffness over the initial stiffness, which would provide the best match between the calculated 

and recorded response spectra. It is found that the shape of the response spectrum (and 

therefore the fundamental period of the dam) is improved if the shear modulus, Gmax(z), is 

increased by 3.5 times. Therefore, the updated value of the maximum shear stiffness, 

G*max,for all the materials in the dam embankment is 490-910 MPa, and 700 MPa for the 

alluvium. Because the calibration of the CNL model depends on the value of G*max, a new 

calibration is carried out for these new updated values. The results of the new calibration are 

shown in Figure 10, whereas the corresponding parameters are shown in Table 4. 

Table 4: New updated calibration parameters for the Logarithmic CNL model (see also 

Appendix A) 

Material Logarithmic CNL model parameters 

G*max E*dL J*L c* G*min 

[MPa] [ ] [kPa] [ ] [MPa] 

Clay core 700 0.0005 220 0.4 70 

Sand filters 700 0.0004 100 0.5 70 

Rockfill & Alluvium 700 0.0009 280 0.4 70 
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Figures 11 (a) and 12 (a) show the calculated acceleration time histories at the crest of the 

dam for EQ2 and EQ5 respectively with the updated values of G*max. Likewise, Figures 11 

(b) and 12 (b) show the corresponding response spectra for the two earthquakes 

respectively. The former figures show that the new calculated accelerations are found to be 

in much better agreement with the recorded values. It should be noted that the short-

duration time-histories (e.g. EQ2) are due to the unavailability of the full records of some 

events. 

Moreover, good agreement is also observed in the corresponding response spectra (Figures 

11 (b) and 12 (b)) where the calculated spectral acceleration Sa values are closer to the 

corresponding recorded. The previously observed small and high values of amplification for 

smaller and larger values of the period respectively vanish and the calculated spectral 

accelerations exhibit large amplifications for the smaller values of the fundamental period. 

This shows that a better match of the fundamental period of the dam is achieved by 

increasing the material stiffness (shear modulus, G*max). 

According to the study of Dakoulas & Gazetas (1987), the ratio of the fundamental period of 

vibration of a dam built in a narrow canyon, Tn, over that of a dam built in an infinitely wide 

canyon, Tw, for L/H = 3.2 and for various shapes of the canyon is: Tn/Tw = 0.6 ~ 0.75. In the 

present study, the updated value of the shear modulus is taken as G*max = 3.5·Gmax. The 

shear wave velocity, Vs, is given by Equation 1 (where, ρ is mass density). 

𝑉௦∗ = ටఘீ     (1) 

Therefore the updated value of the shear wave velocity, V*s is given by Equation 2. 

𝑉௦∗ = √3.5𝑉௦     (2) 

Finally, the fundamental period of vibration, T, is inversely proportional to the shear wave 

velocity (Ambraseys, 1960) and therefore, the new updated value of the fundamental period 

of vibration, T*, is given by Equation 3. 
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𝑇∗ = ଵ√ଷ.ହ 𝑇 = 0.54 𝑇     (3) 

Therefore, the ratio T*/T = 0.54 is close to the ratio suggested by Dakoulas & Gazetas 

(1987) (0.6 ~ 0.75) for various shapes of the canyon. This observation confirms that the 

calculated stiffening of the narrow canyon is in agreement with earlier work from the 

literature. However, the stiffening observed in the present study was found to be slightly 

larger, i.e. the ratio of T*/T is smaller than the ratio suggested in the literature. This 

difference could be attributed to the different assumptions of this work and the previous 

theoretical studies, i.e. an idealised geometry of earth dam and canyon geometries, and a 

linear soil material behaviour (see also Pelecanos (2013)). It could also be attributed to the 

uncertainty associated with the original material properties that are found from the literature 

(Elgamal, 1992). The increase of material stiffness was introduced to artificially take account 

of the 3D geometric stiffness due to a narrow canyon. Despite the good agreement of the 

response spectra and the amount of additional stiffening with analytical solutions, it should 

be recognised that the adoption of higher stiffness is not ideal, as this affects the predicted 

response in terms of shear strains and can also impact the prediction of topographic 

amplification effects which relate to the ratio of dam height to predominant wavelength of the 

response. An analysis considering the full 3D geometry of the dam-canyon problem should 

be able to provide a better insight into the complicated canyon-dam interaction and confirm 

the results of this study. However, recognising that an accurate full 3D nonlinear dynamic 

coupled-consolidation analysis is extremely computationally demanding, a 2D plane-strain 

analysis following the suggestions proposed in this study presents a reasonable 

compromise, as long as appropriate assumptions are made. 

5.2. Dynamic response of the dam 

Figure 13 shows the accelerations and associated response spectra at the berm of the dam 

for EQ2 (Point B in Figure 3). It is observed that, similar to the response at the crest, a very 

good agreement is achieved between the recorded and calculated response at the berm. It 

should be mentioned that no berm record is available for EQ5. 
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Moreover, the response spectrum of the dam crest response for EQ5 predicted by Elgamal 

(1992) is included in Figure 12 (b) for comparison. It is evident that the predicted response in 

this work is in better agreement with the recorded one than the response calculated by 

Elgamal (1992). The response spectrum of Elgamal (1992), obtained from a 3D shear beam 

analysis has a narrower frequency content and higher amplifications at the significant 

frequencies, whereas the broader frequency content of the spectrum from the present study 

matches better the low frequency spectral ordinates.  

Those high acceleration values for high frequencies in the response spectrum of the 

recorded motion are believed to originate from asymmetric high peak values of acceleration 

observed in the recorded acceleration time-history at the crest of the dam for EQ5. These 

high peaks are believed to be due to a localised slope failure, as suggested by previous 

researchers (see Section 2.2), which was not predicted by the FE analysis in this study. The 

present numerical model does not include any pre-defined weak zones, as this aspect was 

already addressed in the work of Gazetas & Uddin (1994), and instead attempts a more 

direct "blind" prediction of the response. If the high frequencies are filtered from the recorded 

accelerations at the crest, a better agreement is obtained between the recorded and the 

calculated response. Figure 14 (a) shows a comparison between the filtered recorded 

accelerations at the crest for EQ5 and those calculated in this work, whereas Figure 14 (b) 

shows the associated response spectra. The filtering was performed using SeismoSignal 

(Antoniou & Pinho, 2004), adopting a 4th order Bandpass Butterworth filter for frequencies 

higher than 4 Hz (i.e. periods smaller than 0.25s). The frequency for the filtering was 

obtained from a parametric study and was taken as the magnitude at which the high values 

of peak acceleration (due to the localised slip failure) vanish, rendering the record symmetric 

and consequently representative of the overall dynamic behaviour of the dam structure). The 

filtering does not filter out the predominant frequency of the input motion which is around 

1.8Hz (i.e. period of 0.57s, shown graphically in Figure 14 (b)). The reason behind the 

filtering is that by eliminating the high values of peak accelerations (due to the localised slip) 
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the remaining record shows the dynamic behaviour of the dam and this is used to check 

whether the vibration characteristics (e.g. fundamental period of vibration) have been 

predicted well by the adopted model. Besides, Figure 15 shows a comparison between the 

calculated and recorded (filtered and original) horizontal displacements at the crest of the 

dam for EQ5. 

It is shown that the peak values of recorded accelerations vanish along with the observed 

asymmetry in the record leading to a better agreement between the calculated and recorded 

accelerations time-histories. Therefore, after filtering, the predicted response spectrum 

compares also very well with the one of the recorded motion. Finally, the recorded residual 

seismic displacements disappear and the calculated and recorded displacement time-

histories agree very well. 

Figure 16 shows the vectors of sub-accumulated displacement for the duration of EQ5, i.e. 

the deformations that occurred only due to and during the EQ5 seismic event (i.e. excluding 

the deformations from the previous static and EQ2 parts). It should be noted that the relative 

magnitudes of the vectors (rather than absolute) are important in this figure, as they show 

the mechanism of dam deformation. It is therefore shown that the deformations that occurred 

during the EQ5 seismic event are concentrated on the upstream part of the dam in the 

rockfill. No major failure is indicated, but some slope movements. However, the magnitude of 

these deformations is still very small and not comparable to the recorded vertical settlement 

of the crest during EQ5 (around 30cm). In the same figure, the value and orientation of 

maximum displacement (3.6cm) is represented by a grey vector and it is located at the 

upstream dam slope. Moreover, the maximum calculated vertical displacement at the crest is 

found to be around 1.5cm which is much smaller than the corresponding recorded value. 

This means that the calculated deformations resulting from the earthquake events are very 

small compared to the recorded values. Figure 17 shows the time-history of the calculated 

vertical displacements at the crest of the dam for EQ5. 
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Figure 18 shows the contours of stress level, S, in the dam during EQ5. The stress level, S 

is defined as the ratio of the current deviatoric stress, Jc, over the value of the deviatoric 

stress at yield conditions, Jy, at the same value of the mean effective stress, p’ (see 

Equations 4 & 5, where σ’1, σ’2, σ’3 are the principal stresses).  

𝐽 = ଵ√଺ ඥ(𝜎ଵᇱ − 𝜎ଶᇱ)ଶ + (𝜎ଶᇱ − 𝜎ଷᇱ)ଶ + (𝜎ଷᇱ − 𝜎ଵᇱ)ଶ     (4) 

𝑝ᇱ = ଵଷ (𝜎ଵᇱ + 𝜎ଶᇱ + 𝜎ଷᇱ)     (5) 

Therefore, S, takes values from 0 to 1, and shows how close the stress state of the soil is to 

yielding. It is shown that the values of stress level generally go up to 0.8 (contour B) at some 

places within the upstream rockfill, the downstream alluvium and the downstream dam 

slope. However, the maximum value of S is close to 0.95 (contour C) and therefore the soil 

in the dam is generally found not to be at the yielding stress state after the end of the 

earthquake. 

5.3. Dynamic soil behaviour 

A better understanding of the seismic response of the dam can be obtained by observing the 

behaviour of the soil during the seismic events. Figure 19 shows (a) the shear stress-strain 

and (b) the strain time-history in the upstream rockfill (at the 1st Gauss integration point of 

element UR in Figure 3). It may be observed that the behaviour of the soil in the rockfill is 

slightly nonlinear exhibiting small hysteretic loops and an accumulation of some residual 

strain. However, the magnitude of the induced stress and strains (0.01%) seems to be very 

small to cause severe plastic yielding and induce major failure of the dam slope.  

Figure 20 shows the stress paths, J-p’, (see Equations 4 & 5) for elements in the upstream 

(UR) and downstream (DR) rockfill respectively (see Figure 3). The figure includes the stress 

paths for the whole analysis, i.e. the static and dynamic (both EQ2 and EQ5) parts. On the 

same figure, the Mohr-Coulomb yield surface (YS) is also plotted. It should be noted that the 

Mohr Coulomb YS is not constant, but changes with the Lode's angle, θ (see Potts & 
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Zdravković, 1999). In these figures, the YS plotted corresponds to the point that the YS was 

first engaged, i.e. the first time that plastic strain developed at that point. However, it should 

be commented that the YS was found not to change considerably during the analysis. It is 

shown that for the upstream rockfill, the stress path approaches the yield surface and travels 

along it at around J = 100 kPa and p’= 120 kPa. This means that at that instant plasticity is 

introduced, which leads to permanent values of shear strain, as shown in Figure 19 (b). 

Plasticity is not introduced in the downstream rockfill, as the stress paths are far away from 

the yield surface. It is shown that the reservoir impoundment causes a change in the 

direction of the stress path, as it results in smaller values of the mean effective stress, p’, 

and brings the stress path closer to the yield surface. This is why more plasticity is 

introduced in the upstream rockfill. 

5.4. Comments 

The high peak values of acceleration observed in the recorded acceleration and already 

attributed by previous researchers to a localised failure close to the monitoring instrument 

were not captured. Such a localised failure was not predicted, from the inspection of the 

vectors of displacement plot after the earthquake. Nevertheless, when the high frequencies 

(originating from the localised slip failure) from the recorded accelerations are filtered, an 

excellent agreement is obtained between the calculated and recorded accelerations and 

response spectra. This shows that the dynamic response of the dam is well captured and the 

frequency content of the resulting calculated crest accelerations match the recorded. 

It is believed that the failure of this study to predict the high values of recorded acceleration 

and the recorded displacements could be due to the possible pre-existence of a discontinuity 

in the embankment. Following the conclusions of previous researchers (Elgamal et al., 1990; 

Elgamal, 1992; Succarieh et al., 1993; Gazetas & Uddin, 1994; Uddin, 1997), it is suggested 

that perhaps some minor localised failure at the position close to the monitoring instrument 

may have happened before, which could have created a local discontinuity. This could have 
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originated possibly from a previous seismic event or even from some construction 

processes. If such a discontinuity exists, it can form a weak zone in the dam and will be 

sensitive to seismic loads. As far as modelling is concerned, the adopted procedure in this 

work assumes uniform materials in the dam body, without artificial inclusion of weak zones, 

such as those in the work of Gazetas & Uddin (1994). 

The observed asymmetry in the crest accelerations for EQ5 was also observed in previous 

strong events, e.g. EQ3 and EQ4 (Elgamal, 1992; Pelecanos, 2013), and therefore it is not 

unreasonable to assume that these events introduced gradually a shear surface in the 

vicinity of the crest. However, the unavailability of reliable and useful input motions for all the 

prior seismic events is a significant obstacle in performing a series of successive seismic 

analyses of all the previous earthquakes and hence appropriately model the development of 

plastic strains in the dam which might have created a sliding surface that can cause 

asymmetric crest accelerations. This highlights the importance of modelling all the previous 

events (including prior earthquakes) before the studied earthquake so that appropriate stress 

states are modelled. 

Finally, if reliable input motions for all the seismic events were available, along with 

adequate experimental data from advanced tests performed on materials of the dams, then 

an advanced constitutive model, such as kinematic hardening model of the type employed in 

Kontoe et al. (2011), could be adopted to introduce early plasticity in the dam and potential 

strain softening in dam materials, in order to predict more reliably the occurrence of localised 

failure.  

6. Conclusions 

This paper describes the numerical study carried out to investigate the static and dynamic 

behaviour of La Villita dam. The dam is considered to be a reasonably well-documented 

case study because of the available information, i.e. material properties and monitored 

response. The dam is analysed in both static and dynamic conditions, considering nonlinear 
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elasto-plastic soil behaviour. Two-dimensional plane-strain coupled-consolidation static and 

dynamic FE analyses are performed.  

The aim of this investigation is to “blindly” analyse (using existing constitutive models) the 

observed seismic response of an earth dam, for which certain (material and earthquake) 

data are available. In summary, it is believed that this study:  

 has been successful in (a) predicting the overall dynamic behaviour of the dam 

structure for two earthquakes of different magnitude, duration and frequency content; 

and (b) demonstrating (indirectly by careful filtering of the record) the validity of the 

assumption taken from the studies by previous researchers that the observed 

acceleration asymmetry and large displacements have likely resulted from localised 

failure near the measuring instrument; 

 showed that increasing the stiffness of the dam materials in a 2D analysis, using a 

carefully designed parametric study, is an acceptable approximate way to take 

account of the stiffening effect of the 3D canyon (good prediction of the fundamental 

period of vibration, shown by the response spectra). The amount of stiffening agrees 

reasonably well with previous linear analytical solutions (Dakoulas & Gazetas, 1987) 

and therefore the developed numerical model may be considered as verification of 

these analytical solutions. 

 examined whether a uniform continuum model (i.e. without introducing a pre-

determined localised weak zone, either by interface elements or by decreasing 

locally the stiffness) can fully reproduce the observed localised deformations and 

corresponding asymmetric accelerations. In this case, it is anticipated that the dam 

materials may not be uniform in the field (i.e. there could be a localised discontinuity). 

As a consequence, any uniform continuum model would find it difficult to fully capture 

the observed behaviour. 
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Appendix A 

The cyclic nonlinear model (CNL) adopted in this work has 4 distinct parameters: the initial 

(maximum) shear stiffness Gmax, the limit strain Ed,L, the limit stress Jd,L and c which is the 

inclination coefficient of the linear part of the stress-strain curve (the stress strain curve is 

linear beyond the point Jd,L, Ed,L). The parameters Ed,L, Jd,L control mainly the shape of the 

stiffness and damping curves for small to medium strain levels, while the parameter c 

controls the residual secant stiffness and the maximum damping ratio. 

The backbone curve is described by the logarithmic relation in Equation A1. 

𝑱 =  𝑬𝒅𝑮𝒎𝒂𝒙 ൜𝟏 − 𝜶 ቂ𝐥𝐧 ቀ𝟏 + |𝑬𝒅|𝑮𝒎𝒂𝒙𝑱𝑳 ቁቃ𝑹ൠ      (A1) 

where J and Ed are the stress and strain invariants respectively, whereas α and R are 

auxiliary constants defined by Equations A2 and A3.  

𝜶 =  𝒙𝑳ି 𝟏𝝌𝑳[𝐥𝐧(𝟏ା𝝌𝑳)]𝑹      (A2) 

𝑹 =  𝒄(𝟏ା𝝌𝑳)𝒍𝒏(𝟏ା𝝌𝑳)𝝌𝑳(𝝌𝑳ି𝟏)       (A3) 

And χL is defined by Equation A4. 

𝝌𝑳 =  𝑬𝒅𝑳𝑱𝑳 𝑮𝒎𝒂𝒙      (A4) 

Then, the stress-strain behaviour is defined by Equation A5. 

𝑱 = 𝑱𝒓 + (𝑬𝒅 − 𝑬𝒅𝒓)𝑮𝒎𝒂𝒙[𝟏 − 𝜶𝑳𝑹]      (A5) 
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where Jr, Edr are the deviatoric stress and strain respectively at the last known reversal point, 

whereas L is defined by Equation A6. 

𝑳 = 𝒍𝒏 ቀ𝟏 + 𝑮𝒎𝒂𝒙|𝑬𝒅ି𝑬𝒅𝒓|𝒏𝑱𝑳 ቁ      (A6) 

where n is a Masing rule scaling factor of the backbone curve, which becomes 1 for initial 

loading and 2 during and after the first stress reversal.  

The CNL model follows a non-linear (logarithmic) relation for J and Ed for very small strains 

up to J=JL, Ed=EdL and then it follows a linear relationship with stiffness (slope) Gimp defined 

by Equation A7. 

𝑮𝒊𝒎𝒑 = 𝑮𝒎𝒂𝒙 (𝟏ି𝒄)𝜲𝑳       (A7) 

There is also an option in the model to specify a minimum value of shear stiffness, Gmin 

which functions as long as the value of Gmin is larger than Gimp. A constant value of Poisson’s 

ratio is used to calculate the bulk modulus. 

In the present study the CNL model is used in conjunction with a Mohr-Coulomb (MC) failure 

envelope. A sub-stepping stress-point algorithm is employed at all times for accurate 

integration of constitutive equations (as explained in Potts & Zdravkovic, 1999). In such 

coupling the linear elasticity of the standard MC model which requires two input parameters, 

a Young’s modulus and a Poisson’s ratio, or a shear, G, and a bulk, K, moduli, is replaced 

by the nonlinear elastic CNL model. CNL defines a nonlinear elastic shear modulus and, with 

the addition of a constant Poisson’s ratio, also the nonlinear elastic bulk modulus. While the 

stress state is below the MC envelope, the material behaviour is governed by the CNL 

model. Once the MC envelope is reached, plastic strains accumulate and the backbone 

curve is controlled by the MC model. When a reversal occurs and the stress path moves 

away from the MC envelope within the elastic area, the hardening parameters are 

accordingly updated. 
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Nomenclature 

a acceleration 

c cohesion 

Ed deviatoric strain 

G shear modulus 

H height of the dam 

J deviatoric stress 

JL calibration parameter of the Logarithmic CNL model 

K permeability 

L length of the dam crest 

p’ mean effective stress 

R calibration parameter of the Logarithmic CNL model 

S stress level 

Sa spectral acceleration 

t time 

T period of vibration 

u pore water pressure 

v Poisson ratio 

Vs shear wave velocity 
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α calibration parameter of the Logarithmic CNL model 

γ shear strain 

ε normal strain 

ρ mass density 

σ normal stress 

τ shear stress 

φ angle of shearing resistance 

χL calibration parameter of the Logarithmic CNL model 

ψ angle of dilation 
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List of Figure captions 

Figure 1: Cross-sectional view of La Villita dam. 

Figure 2: Longitudinal section of La Villita dam and canyon. 

Figure 3: FE mesh used in the analysis of La Villita dam. 

Figure 4: Comparison of free-field accelerations for EQ2 from the downstream boundary 

edge of the FE mesh and from the top of a 70m alluvium column analysis. 

Figure 5: Calibration of the CNL model against empirical curves: (a) stiffness degradation 

and (b) damping. 

Figure 6: Contours of pore water pressure in the dam after the end of the reservoir 

impoundment. 

Figure 7: Flow net (contours of stream and potential functions) in the clay core after the end 

of the reservoir impoundment. 

Figure 8: Calculated and recorded crest settlement history of the dam crest prior to the EQ 

events. 
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Figure 9: Comparison of calculated results and recorded data at the crest of the dam for 

EQ5: (a) acceleration time-history and (b) response spectra. 

Figure 10: New updated calibration of the CNL model against empirical curves: (a) stiffness 

degradation and (b) damping. 

Figure 11: Comparison of calculated results and recorded data at the crest of the dam for 

EQ2 with the new updated material parameters: (a) acceleration time-history and (b) 

response spectra. 

Figure 12: Comparison of calculated results and recorded data at the crest of the dam for 

EQ5 with the new updated material parameters: (a) acceleration time-history and (b) 

response spectra. 

Figure 13: Comparison of calculated results and recorded data at the berm of the dam for 

EQ2 with the new updated material parameters: (a) acceleration time-history and (b) 

response spectra. 

Figure 14: Comparison of calculated results and filtered recorded data at the crest of the 

dam for EQ5 with the new updated material parameters: (a) acceleration time-history and (b) 

response spectra. 

Figure 15: Comparison of calculated and recorded horizontal displacements at the crest of 

the dam for EQ5 with the new updated material parameters. 

Figure16: Vectors of sub-accumulated displacements at the end of EQ5. 

Figure 17: Calculated vertical displacement time-history at the crest of the dam for EQ5. 

Figure 18: Contours of stress level at the end of EQ5. 

Figure 19: Calculated dynamic soil behaviour in the upstream rockfill (element UR) during 

EQ5: (a) shear stress-strain and (b) shear strain time-history. 
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Figure 20: Stress paths for the whole duration of the numerical static and dynamic analysis: 

(a) upstream rockfill (element UR) and (b) downstream rockfill (element DR). 
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