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Abstract 

 

Rationale: Exposure to indoor NO2 has been implicated as a cause of respiratory symptoms 

suggestive of asthma but evidence has been inconsistent. 

Objective: To review the existing evidence and examine the effects of indoor NO2 in adult 

asthma-related symptoms using data from an adult multi-centre cohort (ECRHS) followed up for 

20 years. 

Methods: Studies on respiratory health and indoor NO2 were systematically reviewed and meta-

analyses performed. Cross-sectional analyses within a sub-set of ECRHS participants with 

indoor NO2 measurements were conducted to assess the associations of asthma severity and 

wheeze prevalence with NO2. A regression model was developed to predict indoor NO2 for a 

larger ECRHS sample without indoor NO2 measurements. GEE analyses were conducted to 

examine the long-term effects of gas cooking and modelled indoor NO2 on wheeze and asthma 

score. To investigate the effect of gas-generating NO2 peaks on asthma exacerbation a panel 

study was also piloted using a new-to-market portable NO2 sensor. 

Main results: The systematic review identified 50 studies, mainly in children. Results of meta-

analyses suggested a significant association between 12-month period prevalence of wheeze 

and indoor NO2. Within ECRHS prevalence of wheeze but not asthma severity was associated 

with measured indoor NO2. Long-term associations of asthma-related symptoms with predicted 

indoor NO2 exposure but not gas cooking were significant. Interpreting this is difficult as the latter 

analyses (gas cooking) included a larger number of centres and some heterogeneity across 

centres was observed in the analysis on asthma score. Gas appliances, outdoor NO2, monthly 

temperature and country were the main predictors of indoor NO2. Evaluation of the pilot study 

recommends better recruitment strategies and independent calibration of NO2 sensor. 

Conclusions: There is some evidence for a link between indoor NO2 and asthma-related 

symptoms. Health risks may be small but are applied to a substantial proportion of the 

population. 

..   
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NIHR-CRN National Institute for Health Research Clinical Research Network  

NO Nitric oxide 

NO2 Nitrogen dioxide 

NOx Nitrogen oxides 
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PEF Peak Expiratory Flow 

PEFR Peak Expiratory Flow Rate 
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PIS Participant Information Sheet 
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PM2.5 Particulate Matter with aerodynamic diameter ≤ 2.5 micrometres  

ppb Parts per billion 

ppm Parts per million 

R2 Coefficient of determination 
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SES Social-Economic Status 
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Conversion 

Conversion factor used to convert NO2 reported in ppb to NO2 in µg/m3 = 1.88  

Statistical Conventions 

In this thesis an association is defined as statistically significant when the P value is less than 

0.05. When discussing the significance of an interaction a statistically significant interaction is 

when P value is less than 0 .10. 
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1. Introduction 

Over the last decades multiple epidemiological studies have reported on the potential role of 

inhaled pollutants, such as gases and particles, on respiratory health. Many of these have 

focused on the role of outdoor air pollutants, although the role of a range of indoor pollutants has 

also been explored. On average, active adult urban populations in Europe spend 85–90% of their 

time indoors and indoor exposures may dominate total pollution exposure (Schweizer et al., 

2007). Infants, older people and those who suffer from chronic illness or disabilities may spend 

even more time indoors. With the drive towards improved energy efficiency within homes there is 

concern that associated decreases in home ventilation patterns may lead to increased exposure 

to domestic indoor pollutants. 

One major source of indoor pollution is the burning of fossil fuels for cooking, heating and hot 

water. In many European countries natural or bottled gas is the fuel of choice. One of the major 

indoor pollutants derived from the use of unvented gas appliances is nitrogen dioxide. In this 

thesis I will examine the role of indoor nitrogen dioxide on respiratory health, particularly asthma 

and asthma related symptoms in adults in the following steps:  

1. A systematic review of epidemiological studies that have reported the association of 

respiratory health with indoor nitrogen dioxide. 

  

2. Assessment of the association of measured indoor nitrogen dioxide on adult asthma using 

information from a multi-centre European study conducted in 2002. 

  

3. Development and piloting of a panel study to examine health effects of peak indoor nitrogen 

dioxide levels on respiratory health in women with asthma.  

 

4. Development of a model that predicts indoor nitrogen dioxide using data from the 

aforementioned multi-centre European study.  

 

5. Assessment of the relationship of respiratory symptoms in adults with exposure to gas 

appliances over a twenty-year period within the same cohort study. 
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1.1 Nitrogen dioxide   

Nitrogen dioxide (NO2) is produced very rapidly from oxidation of nitric oxide (NO), which is a 

direct product of combustion. In the presence of available oxidants, such as ozone (O3), oxygen 

(O2) or volatile organic compounds (VOCs) nitric oxide is converted into NO2 as follows: 

NO + O3 →  NO2 + O2  
 

HO2 + NO →  NO2 + OH 
 

RO2 (alkyl peroxide) + NO → RO + NO2 

Nitrogen dioxide is a strong oxidant and further reactions take place in presence of ultraviolet 

light to form ozone (O3), nitric oxide (NO) and various free radicals. On surfaces such as 

suspended particles, soil, walls and within aqueous media NO2 forms inorganic and organic 

species through multi-phase reactions. Some of these species such as nitrous acid (HONO) and 

nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are also thought to be associated with 

adverse health effects (Health Effects Institute, 2010). 

Nitrogen dioxide is formed naturally in the combustion generated from wild fires, during electric 

storms and from soil emission resulting from fertilizers use (Sutton et al., 2011). The main 

anthropogenic source of NO2 is combustion of fossil fuel. In the urban environment NO2 is mainly 

produced from the combustion of fossil fuel used for transport, power generation, heating and 

cooking. The main indoor sources of NO2 are gas stoves and ovens and unvented gas heating 

appliances.  

In UK indoor NO2 concentrations in homes without gas stoves tend to range between 13µg/m3 to 

40µg/m3 and in homes with gas stoves between 25µg/m3 to 70µg/m3 (Kotzias D et al., 2005). 

During an episode of gas cooking NO2 quickly peak to concentrations as high as 1800µg/m3 

(Dennekamp et al., 2001).  

1.1.1 NO2 and mechanism of action on asthma 

As a free radical nitrogen dioxide has the potential to induce oxidative stress leading to cell injury 

and airway inflammation but the mechanisms by which NO2 may induce respiratory symptoms 

typical of asthma are still not completely understood. Several mechanisms have been suggested 

(Gilliland et al., 1999; Kelly, 2003): 
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1. Oxidative stress and antioxidant depletion.  

2. Increased inflammation and airway hyper-responsiveness. 

3. Structural changes in the airways leading to asthma. 

4. Enhanced response to allergens. 

5. Impacts on immunity. 

Animals and in vitro models have shown that at high concentrations NO2 produces eosinophilic 

inflammation, increases epithelial damage, decreases mucin expression and increases baseline 

smooth muscle tone (Gilmour et al., 1996; Bayram et al., 2001; Persinger et al., 2002; Garn et 

al., 2003; Ayyagari et al., 2007). However, mathematical airway models of rats, dogs and 

humans have indicated that there is an interspecies variation in anatomy and respiratory patterns 

between rodents and humans (Tsujino et al., 2005). In rodents it has been observed that 

prolonged exposure to NO2 results in destruction of peripheral airways while studies on mucosal 

biopsy specimens have suggested that in humans inflammation after exposure to NO2 is likely to 

occur in the smaller airways (Blomberg et al., 1997) 

Devalia (1994) observed that exposure of human bronchial epithelial cells in vitro to NO2 

(760µg/m3) led to the release of pro-inflammatory cytokines. Antioxidant tissue depletion, such as 

rapid loss of ascorbic acid, uric acid, lipid peroxidation and depletion of alpha-tocopherol (vitamin 

E) after exposure to NO2 has been observed in a large array of in vitro models (Halliwell et al., 

1992; Kelly and Tetley, 1997) but at extremely high concentrations typically between 2,000µg/m3 

and 20,000µg/m3. These concentrations do not occur under normal conditions.  

1.1.2 Evidence from controlled human exposure studies 

Before 1976 there was a consensus that inhalation at concentrations below 2,820µg/m3 over 2 

hours caused little reduction in lung function in both non-asthmatic and asthmatic individuals 

(Shy et al., 1978). Since then there have been reports of airways changes at concentrations 

lower than that but findings have been inconsistent and difficult to replicate.   

Orehek et al (1976) observed an increase in bronchial-responsiveness in asthmatics at 188µg/m3 

while Koening et al (1987) exposed asthmatic adolescents at 226µg/m3 and 338µg/m3 for an 

hour with intermittent exercises observing no changes in lung function. Bylin et al (1985) exposed 

asthmatics at 910µg/m3 for 20 minutes and found that bronchial reactivity increased significantly. 

Bauer et al (1986) noticed changes in forced expiratory flow rate after exercise in asthmatics at 

560µg/m3 over a 30 minute- period but could not reproduce results in another study. 
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More consistent evidence has been observed in asthmatics after being challenged with an 

allergen. Tunnicliffe (1994) observed a decline of FEV1 in asthmatics when exposed to 760µg/m3 

for one hour followed by a challenge with House Dust Mite (HDM) allergen. Using a similar 

protocol Strand (1997) observed an increase in allergic response when asthmatics were exposed 

at the same concentration (760µg/m3) for 30 minutes.  

A meta-analysis (Folinsbee, 1992) of the evidence on acute effects of short-term controlled 

exposure to NO2  concluded that increasing concentration of NO2 was associated with an 

increase in airways hyper-responsiveness in asthmatics and this was made worse if participants 

exercised (i.e. increased their minute ventilation). This trend was observed at concentrations as 

low as 200µg/m3 in asthmatics but in non-asthmatics was only seen at concentrations above 

1,880µg/m3. The meta-analysis was instrumental in lowering WHO 1-hour exposure guidelines 

for outdoor NO2 from 400µg/m3 to 200µg/m3 (Graham et al., 1997). Two more recent reviews and 

meta-analysis (Goodman et al., 2009; Hesterberg et al., 2009) have concluded that experimental 

data are still inconsistent failing to demonstrate a consistent association of short term exposure 

to NO2 with adverse respiratory health at levels below 376µg/m3.  

It has been suggested (Samet and Utell, 1990) that some inconsistencies could be explained by 

differences in exposure protocols, study design and overreliance on mean group effects making 

studies difficult to compare. For example, the mode of NO2 inhalation may vary; it can be carried 

out via a mouthpiece (i.e. oral exposure) or in a chamber (oral-nasal exposure). Volunteers may 

be asked to rest or exercise after or during exposure. Duration and frequency of exposure at 

similar total dose of NO2 may vary. Statistics such as group mean could be unreliable because of 

the small study group size. Furthermore, most studies focus on tests of the upper airways but 

this may be relatively insensitive to any adverse effect as the major site of NO2 injury is in the 

smaller airways (Chauhan, 1999). 

Controlled human exposure studies are very useful in studying mild and transient responses to 

an exposure as they are conducted for short duration (typically 1-6 hours) and outcomes are 

measured shortly after exposure. However, they assess acute responses to one off exposure 

(often very high) whereas in real life people are exposed to repeated exposure (both low and 

high) that may lead to acute and chronic health effects. 

1.1.3 Evidence from epidemiological studies  

Until the 1970s the only reports of human exposure to NO2 were confined to agricultural and 

industrial accidents at very high concentrations such as the silo filler’s disease (Moskowitz et al., 
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1964). Early observational studies on the health effects of NO2 focused on ambient NO2. One of 

the initial studies was conducted in Chattanooga (US) and found that ambient NO2 was 

associated with respiratory symptoms in school children (Shy et al., 1970). Since then a number 

of observational and ecological studies examining the health effects of outdoor NO2 have been 

published. A recent authoritative report (Health Effects Institute, 2010) on traffic air pollution has 

concluded that evidence of adverse health effects associated with outdoor NO2 is suggestive but 

not sufficient of a causal association. There are difficulties in separating the health effects of NO2 

from the various components present in traffic-related air pollution.  

The first observational studies on indoor NO2 were conducted in UK (Florey et al., 1979) and in 

US (Keller et al., 1979a; Keller et al., 1979b). Both studies were part of larger studies, The 

Cleveland Study (Melia et al., 1977) and The Columbus Study, Ohio (Comstock et al., 1981) 

which examined the respiratory health effects associated with gas cooking. The Columbus Study 

found no evidence of health effects in those using gas compared to those using an electric stove. 

Contrarily, The Cleveland Study found that the prevalence of respiratory illness was higher in 

children from homes where gas was used for cooking than in homes where electricity was used. 

The authors hypothesised that any observed effect was probably due to NO2 from the 

combustion of gas or kerosene (used for heating appliances). Indoor NO2 levels were much 

higher in the UK homes than in the US homes. Findings from NO2 monitoring campaigns in the 

UK study showed some evidence of an effect in girls and not in boys. In an associated 

commentary the authors stated: ‘Health effects due to indoor nitrogen dioxide levels have 

become particularly controversial’ (Goldstein and Melia, 1981). 

Following these early observations some large studies with more than 1,000 participants were 

conducted to examine the health effects of indoor NO2 and gas appliances. A cross-sectional 

study (Brunekreef et al., 1990; Dijkstra et al., 1990) of over 1,000 Dutch children was conducted 

to assess the effect of combustion emissions from unvented geysers (a gas appliance for heating 

water common in Dutch homes until recently). No association of respiratory symptoms/ lung 

function with indoor NO2 or unvented geysers was found. As part of the Six City Study, one of the 

largest multi-city studies on the health effects of ambient air pollution, more than 1,500 children 

living in US were followed up for a year (Neas et al., 1991). This study was one of the few to 

control for indoor particles. A composite of several respiratory symptoms was found to be 

significantly associated with indoor NO2 as well as having a gas stove. In contrast, a study in 

more than 1,000 infants living in Albuquerque (US) who were followed up for over a year with 

NO2 repeatedly monitored in their bedrooms did not observe any association of duration and/or 

frequency of respiratory illness with indoor NO2 or the presence of a gas stove (Samet et al., 

1993). 
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Further studies that examine the health effects of indoor NO2 have been published since then 

(see Chapter 2). They are often conducted supplementary to studies on the health effect of gas 

cooking, the main indoor source of NO2. Findings have been inconsistent. It has been suggested 

(Samet and Utell, 1990) that the heterogeneity in results could be explained by issues related to: 

• Misclassification of exposure to NO2; using a proxy to determine the exposure (e.g. use 

of gas for cooking), assuming that two-week monitored exposure is the same as long-

term exposure or failing to take into account exposure to NO2 peaks may lead to 

misclassification 

• Lack of objective measures of outcome leading to bias when self-reporting symptoms 

• Lack of prospective data 

• Analysis not taking into account the confounding effect of other combustion by-products 

(e.g. particles) or other risk factors associated with the outcome 

• A possible modifying effect of gender, atopic status, diet and genetic make-up.  

The following sections will describe in more details how epidemiological studies measure NO2 

and why this can lead to misclassification, how asthma is assessed and issues related to its 

assessment and the various risk factors that may also be associated with having asthma.  

1.1.4 Measuring NO2 in epidemiological studies  

Chemiluminescence analysers are the ‘gold standard’ for measuring NO2 and are used to 

monitor outdoor NO2 by environmental departments and local authorities. They provide 

continuous NO2 concentration readings in real time but are bulky, expensive, and difficult to 

transport making them unsuitable for measuring NO2 levels in people’s homes in large scale 

epidemiological studies.  

As an alternative, epidemiological studies measure indoor NO2 using passive diffusion samplers. 

These samplers work by passively diffusing NO2 onto an adsorbent - usually, solution of 

triethanolamine (TEA). Nitrogen dioxide reacts with a chemically-treated sorbent (extracted post-

sampling) and the reaction derivatives are chemically analysed using spectrophotometry1. The 

samplers are placed directly in study participants’ homes for one or two weeks providing average 

concentrations over the exposure period. Epidemiological studies then often use these 

measurements to assign exposure over a much longer period of time. Passive diffusion samplers 

1 Spectrophotometry is the quantitative measurement of the reflection or transmission properties of a material 
as a function of wavelength. 
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do not work for short period of exposure because of the slow sampling rate, determined by the 

surface of the adsorption media. Several sampler designs have been developed to minimise this 

problem. While the traditional tube-shaped samplers need to be exposed for at least one week, 

the radial-shape samplers can be exposed for 72 hours (Yu et al., 2008). Passive diffusion 

samplers are cheap and simple to use but do not provide adequate information on short-term 

peaks, which are produced while cooking with gas and may be important when examining health 

effects of NO2 (Noy et al., 1990; Franklin et al., 2006). Recently, new devices such as short-term 

passive samplers and electrochemical gas sensors have appeared on the market. They allow 

monitoring of NO2 over much shorter periods and can identify peaks of NO2 exposure. 

For large scale studies even the use of passive diffusion samplers to assess participants’ 

exposure to indoor NO2 can be expensive and time-consuming and the ‘presence of a gas stove’ 

or ‘use of gas for cooking’ have often been used as proxy indicators of indoor NO2. The presence 

of a gas stove has been estimated to be comparable to approximately 30µg/m3 of long-term 

exposure to indoor NO2  (Hasselblad et al., 1992) but in many reports it is not clear whether the 

term ‘gas stove’ includes a gas oven as well as a gas hob. Other factors such as the intensity of 

gas cooking, indoor ventilation and ambient level of NO2 may also influence the level of indoor 

NO2 produced by these appliances. 

Epidemiological studies on air pollution from traffic have also traditionally used surrogate 

measures, such as distances from road, which tend to misclassify exposure because they are 

not directly estimated from monitoring data. In the last 15 years outdoor air pollution studies have 

increasingly used exposure models to identify small-area (often at residential level) variations in 

pollution. These methods use geographic information systems (GIS) to combine geographic 

information with measurement data from monitoring air pollution stations and/or ad hoc 

monitoring (Jerrett et al., 2005). Several types of models have been developed but dispersion 

models and land use regression (LUR) are the most common. The ESCAPE2 study has used 

land use regression (LUR) to model annual outdoor NO2 and PM2.5 exposures at residential 

levels in 20 European study areas (Beelen et al., 2009) and is a well-known example of such 

methods. 

To my knowledge so far no large scale epidemiological studies have developed a model to 

assess indoor NO2 exposure at household level for assignment to participants in health studies. 

2 ESCAPE has provided outdoor NO2 data for this thesis. 
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1.2  Asthma  

Since it enters the body by inhalation NO2 has long been suspected of being associated with 

common respiratory disorders including asthma and asthma related respiratory symptoms. 

Asthma is a chronic condition that has increased in the last 60 years and affects 300 million 

people worldwide (Vos et al., 2013). It has been defined as ‘the condition of subjects with 

widespread narrowing of the bronchial airways which changes its severity over short period of 

time either spontaneously or under treatment.’ (Fletcher et al., 1959) but clinicians and 

epidemiologists have yet to agree a clear working definition that can be applied in clinical and 

epidemiological settings.  

Asthma is typically associated with intermittent wheezing, shortness of breath (which may come 

on at rest or after vigorous exercise), chest tightness and cough (often nocturnal). 

Bronchoconstriction in response to exercise and inhalation of increasing doses (or 

concentrations) of agents such as histamine or methacholine is a well-recognised feature of this 

disease. Many people with asthma also develop abnormal immune responses to allergens and 

will have measureable serum specific Immunoglobulin E (IgE) to one or more aeroallergens, 

elevated total IgE and other symptoms of allergic disease such as eczema or rhinitis.  

A diagnosis of asthma is a clinical one but there is no standardised definition of the type, severity 

or frequency of symptoms. Diagnosis usually takes into account the patient’s clinical history of 

respiratory symptoms (more than one of wheeze, breathless, chest tightness, cough) and of 

variable airflow obstruction. More recent descriptions of asthma have also included airway 

inflammation and bronchial hyper-responsiveness (SIGN, 2014). The most common medications 

prescribed to people with asthma are inhaled beta-agonists for short term relief of acute 

symptoms and inhaled cortico-steroids (ICS) for longer term management and reduction of 

exacerbations.   

1.2.1 Assessment of asthma in epidemiological studies 

In the absence of a gold standard definition for asthma, interview based epidemiological surveys 

tend to collect information on the presence of relevant symptoms, treatments, diagnosis and 

health service utilisation for asthma. In the last 20 years two major international studies, the 

International Study of Asthma and Allergies in Childhood (ISAAC) (Asher et al., 1995) and the 

European Community Respiratory Health Survey (ECRHS) (Burney et al., 1996) have developed 

standardised instruments for the collection of symptom information from children and adults 
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respectively. As the disease has a variable course, with some people with asthma having 

prolonged periods when they experience few or no symptoms, most of the questions refer to the 

presence of symptoms in the previous 12 months. 

Asking individuals whether they have asthma will depend on whether they have visited a doctor 

and been diagnosed with the disease – it is therefore dependent on diagnostic practice. In young 

adults there may be little variation in this – but in older adults, especially those who smoke, the 

symptoms of asthma may be labelled as chronic obstructive pulmonary disease. Studies report 

that there is under treatment of asthma in many countries, and a proportion of adults who report 

symptoms typical of the disease and who have been diagnosed with asthma, report they only 

infrequently take medication (Janson et al., 2001). 

Some epidemiological studies may include a physical assessment such as lung function tests 

(peak flow, forced expiratory manoeuvres), airway responsiveness and assessment of atopy (by 

skin prick tests, serological tests). These objective measures provide additional evidence of the 

presence of disease. 

A person’s maximum speed of expiration known as peak flow (PEF) has been measured for 

many years by many asthma studies to assess the presence and day to day variation of asthma. 

Peak flow meters are relatively small and cheap but tend to be imprecise. Measurement of daily 

peak flow is considered to be part of the management program for people with asthma. 

The most frequent lung function measurements are Forced Expiratory Volume in 1 second 

(FEV1), Forced Vital Capacity (FVC) and ratio between FEV1 and FVC ( FEV1/FVC) arising from 

a forced expiratory manoeuvre. Participants are asked to take a full inspiration and forcibly 

exhale the air as hard and fast as they can until they cannot go on. Measurements are made 

using a spirometer. Although the test is relatively easy participants need to be instructed and 

may sometimes fail to provide a technically satisfactory manoeuvre. People with asthma may 

demonstrate evidence of airway obstruction (low FEV1/FVC ratio) but due to the day to day 

variability of disease many people with asthma may have results within the normal range. Some 

studies incorporate a test of post-bronchodilator spirometry where measurements are made after 

inhalation of a standard dose of beta-agonist inhaler. Lung function measurements are relatively 

insensitive in detecting early response in small peripheral airway where the major site of NO2 

induced injury has been identified, the transitional zone which is the area between the terminal 

bronchioles and alveoli (Blomberg, 1997; Chauhan, 1999). 
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Airway hyper-responsiveness is assessed by asking participants to inhale increasing amounts of 

an agent (e.g. methacholine) that causes bronchoconstriction. If methacholine is used, a 

cumulative dose up to 1mg or 2mg is often given and responsiveness measured as rate of 

change of FEV1 against the inhaled dose. A fall of 20% or more in FEV1 after challenge is 

generally considered indicative of asthma. The challenge test can only be performed in a clinical 

setting and for this reason it is costly and time-consuming to incorporate into a large scale 

epidemiological study. People with severe asthma are often excluded from participating because 

their FEV1 is already too low to undergo a challenge test.  

1.2.2 Assessment of asthma severity 

In epidemiological studies various approaches have been used to assess asthma severity, 

including a composite measure incorporating symptoms and medications as proposed by the 

Global Initiative for Asthma (GINA), dose-response to methacholine challenge and the amount of 

endogenous nitric oxide exhaled by an individual (FeNO). 

The GINA score is a four-class severity score (intermittent, mild persistent, moderate persistent, 

severe persistent) based on combination of clinical severity and the daily asthma medication 

regimen the participant has taken over the last 12 months. Clinical severity is based on the 

frequency of daytime and night-time symptoms and FEV1 predicted. Daily medication regimes 

are classified into four levels according to the daily dose of inhaled corticosteroids (none, low, 

medium, high dose) (Rabe et al., 2004). 

FeNO has increasingly being measured to ascertain the presence or degree of asthma in 

participants. Nitric oxide is a key signalling molecule involved in a large range of biological 

functions; in the lungs it is an important mediator of the eosinophilic inflammatory response thus, 

an elevated FeNO can be suggestive of asthma. However, in patients with non-eosinophilic 

asthma (up to 50% of total asthma cases) and in smokers exhaled nitric oxide tends to remain 

low (Douwes et al., 2002).   

1.2.3 Risk factors associated with asthma 

Epidemiological studies that examine the effect of NO2 on asthma-related symptoms need to 

take into account the presence of other risk factors that may also be associated with asthma. 

Individual characteristics such as gender, age and genotype, occupational exposure, socio-

economic status, diet and environmental exposures (e.g. air pollutants, tobacco, airborne 
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allergens) have been proposed and identified as potential risk factors but the underlying cause or 

causes of the disease are still poorly understood. 

Age is a main risk factor. Children are particularly vulnerable to the effects of air pollution as they 

breathe 50% more air per kilogram of body weight than adults (Bateson and Schwartz, 2007); 

80% of alveoli are formed after birth and development continues through adolescence (Dietert et 

al., 2000). 

Asthma prevalence varies by gender. Boys tend to have more asthma than girls but women more 

than men. There has been debate on what this reflects: a lower threshold of reporting of 

symptoms in women; the effect of female sex hormones on asthma; different exposures; 

increased susceptibility to exposures to other risk factors in women (Leynaert et al., 2012). This 

has been of particular relevance with regard to exposure to gas cooking (a proxy measure for 

indoor NO2) as women have traditionally spent more time cooking than men. 

A recent genome wide association study has identified genes associated with asthma in children. 

In adults the associations were less clear implying that adult asthma is more related to 

environmental factors than childhood asthma (Bouzigon et al., 2008). With regards to NO2 there 

has been a particular focus on genes that regulate anti-oxidant defences produced in the lungs to 

manage the increased burden of reactive oxygen species (derived from NO2 inhalation). 

Variations of these genes, in particular GSTM1 and GSTP1 could increase susceptibility to 

exacerbation of existing asthma and development of new-onset asthma with exposure to NO2 

(Minelli et al., 2011). 

Between 9% and 15% of all cases of adult asthma are thought to be implicated with some 

occupational exposure, mainly to dust and fumes (Venables and Chan-Yeung, 1997). Work 

exposure to NO2 is usually associated with people working in ice rinks (Brauer et al., 1993) and 

agricultural silos.  Inside a silo fermentation of forage can lead to extremely high concentrations 

of NO2 (over 100,000µg/m3) which can lead to ‘silo-fillers disease’ (Moskowitz, 1964). 

Ecological studies show that as urbanisation increases prevalence of asthma-related symptoms 

increases too (Stewart et al., 2001). In high income countries prevalence of asthma differs across 

different ethnic groups living in the same geographical areas. It has been suggested that such 

differences could be explained by genetic pre-disposition but this may reflect socio-economic 

differences. Higher prevalence of asthma has been observed in people of low-socio economic 

status, who may have restricted access to health service leading to poor control of disease 

(Rona, 2000) or be exposed to other risk factors such as higher air pollution levels (Fecht et al., 
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2015), poor housing conditions (e.g. mouldy homes), a diet low in anti-oxidants (Allen et al., 

2009) or obesity (Beuther et al., 2006). A recent conference paper has reported that 

overweight/obese children with asthma living in inner-city communities were more likely to have 

symptoms when exposed to indoor NO2 that those who were not overweight/obese (Breysse et 

al., 2012) 

Since asthma is a disease of the respiratory airways, inhalation of harmful substances other than 

NO2 has been implicated with respiratory symptoms. Exposure to second-hand tobacco smoke 

has long been recognised to be associated with respiratory symptoms. Children of parents who 

smoke are likely to have more respiratory symptoms associated with asthma than children whose 

parents do not smoke (Cook and Strachan, 1997). In adults evidence of an association of asthma 

with active smoking is less consistent (Accordini et al., 2012). Tobacco smoking generates some 

NO2 but the amount can be negligible and dependent on the intensity of smoking (Leaderer et 

al., 1986). 

Exposure to airborne allergens (i.e. mould spores, pollens, house dust mites, pet allergens) has 

long been identified as potential risk factors for the development and exacerbation of asthma    

(Platts-Mills, 1992) and findings from clinical studies have suggested that exposure to an allergen 

may enhance the effect of exposure to NO2 in atopic people (Folinsbee, 1992). 

Finally, along with NO2 other air pollutants have been associated with the disease. Particles 

generally labelled under the term ‘PM’ (particulate matter) are generated at the same time as 

NO2 during combustion of fossil fuel. Similarly to NO2, they have oxidant properties which can 

cause oxidative stress in the airways leading to lung injury and inflammation (Kelly, 2003). 

Studies have reported that during episodes of a high level of outdoor air pollution the number of 

emergency hospital visits related to asthma morbidity and other respiratory diseases increases 

(Atkinson et al., 2001; Lin et al., 2003). Whether the effect is due to particles or NO2 (or perhaps 

other components in the air pollution mixture) is not so clear and disentangling the possible 

adverse health effects of the two remains difficult (Katsouyanni et al., 2001; Sarnat et al., 2001). 

1.3 Air quality guidelines for NO2 

On the basis of existing epidemiological and clinical evidence WHO annual guidelines have set 

the limit to indoor and outdoor NO2 at the value of 40µg/m3 for annual average exposure and at 
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value of 200µg/m3 for 1-hour average daily maximum concentration (Graham, 1997). These 

values have also been adopted by the EU as a legally binding standard (limit value) (Directive 

2008/50/EC). Indoor guidelines have been re-confirmed by a most recent WHO review of indoor 

air quality guidelines (World Health Organization, 2010).  

The current guidelines for annual average exposure were originally based (Graham, 1997) on a 

meta-analysis published in 1992 (Hasselblad, 1992). The meta-analysis summarised the findings 

of 11 studies that assessed the respiratory health effects associated with measured indoor NO2 

(4 studies) or the use of gas stove as a proxy measure of indoor NO2 exposure (7 studies). It 

concluded that a 30µg/m3 increase (comparable to the increase resulting from exposure to a gas 

stove) in indoor NO2 exposure was associated with a 20% increase in respiratory symptoms in 

children. On the basis of this conclusion and assuming a background level of 15µg/m3 (to avoid 

the most severe exposure) WHO annual guidelines were proposed.  

Since the publication of the meta-analysis (1992) several more studies have been published and 

more systematic reviews have been conducted but there has been no concerted effort to conduct 

a formal meta-analysis of the epidemiological studies (Basu, 1999; Nitschke, 1999; Brauer, 2002; 

Fuentes-Leonarte et al., 2009; World Health Organization, 2010) 

The meta-analysis conducted by Hasselblad will be discussed in more details in the following 

chapter (Chapter 2) and an updated meta-analysis that includes most recent findings of studies 

that measured indoor NO2 (rather than gas proxy studies) will be presented.  

1.4 Summary 

Exposure to NO2 has been implicated as a cause of respiratory symptoms suggestive of asthma 

but evidence has been inconsistent. Indoors the main source of NO2 is gas cooking and 

epidemiological studies have often used the presence of a gas stove as a proxy indicator for 

indoor NO2. This can be imprecise and may lead to exposure misclassification error. Improving 

exposure assessment may help to solve some of these inconsistencies.  

Clinical studies suggest that asthmatics could be at higher risk at short-term high exposure to 

NO2. As short-term high concentrations of NO2 are emitted during gas combustion asthmatics 
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could be at higher risk when cooking with gas but epidemiological evidence of short-term effects 

of indoor NO2 in asthmatic adults is scarce.  

There is no gold standard definition for asthma and asthma severity; physical assessment of 

study participants can be costly and is recommended to be used in addition to standardised 

questionnaires that have been developed for the collection of symptoms. As the disease has a 

variable course, with some people with asthma having prolonged periods when they experience 

few or no symptoms most of the questions refer to the presence of symptoms in the previous 

year but the prospective collection of symptoms repeatedly over the year may be of help in 

understanding the effects of long-term exposure to indoor NO2 on asthma-related symptoms. 

Some risk factors associated with asthma may modify the effect of indoor NO2 on asthma, 

particularly in the long-term 

WHO recommends that annual average indoor and outdoor exposure to NO2 should not exceed 

the annual average level of 40µg/m3. Nitrogen dioxide is present in indoor air with some evidence 

that levels exceed these guidelines in homes, particularly those that have unvented gas 

appliances and poor ventilation. The guidelines were based on the conclusion of a meta-analysis 

published in 1992 and since then an array of studies have been published but the meta-analysis 

has not been updated yet. 

1.5 Hypothesis 

Indoor NO2 exerts an effect on human respiratory health at indoor levels associated with gas 

cooking. 

1.5.1 Objectives 

1. To review the evidence of published literature on the association of respiratory health and 

long-term exposure to indoor NO2 - Chapter 2  

 

2. To examine whether exposure to indoor NO2 affects the severity of asthma in a 

susceptible group, i.e. adults (who generally cook and hence are more exposed to indoor 

NO2) with asthma - Chapter 3  
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3. To develop a study that can examine the health effects of indoor NO2 peaks generated 

from gas cooking in people with asthma - Chapter 4 

 

4. To model exposure to indoor NO2 by qualifying the sources and factors which determine 

the level of indoor NO2 - Chapter 5  

 

5. To assess the health effect of long term-exposure to gas cooking and (modelled) indoor 

NO2 levels in adults and determine whether observed effects are modified by sex, 

smoking, atopy and asthmatic status - Chapter 6 . 
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2. Systematic review of epidemiological studies on the 
association of respiratory health and indoor NO2 

2.1 Introduction 

2.1.1 Background 

It is not generally known that the current WHO outdoor air quality guidelines for annual average 

exposure to NO2 are based on a meta-analysis (Hasselblad, 1992) of indoor studies that was 

conducted over 30 years ago. The meta-analysis summarised the evidence of an association of 

respiratory illness in children and indoor NO2 in studies published up to 1992. It combined 4 

studies that measured indoor NO2 with 7 studies that assessed the use of a gas stove as a proxy 

measure of NO2 exposure. It was assumed that homes with a gas stove had an additional 

30µg/m3 of average NO2 compared to homes without a gas stove. Respiratory illness included 

any respiratory symptoms, from ‘non-specific’ to a composite measure of symptoms of wheeze, 

colds, coughs going to the chest, shortness of breath and bronchitis. The meta-analysis 

concluded that a 30µg/m3 increase in NO2 exposure was associated with a 20% increase in 

respiratory symptoms in children (OR 1.19, 95% CI 1.09, 1.30 from a random effect estimate 

based on DerSimonian and Laird method (DerSimonian and Laird, 1986). The risk of wheeze 

slightly increased (OR 1.27, 95%CI 1.02 to 1.58) when studies in which gas stove was used as a 

proxy for average NO2 exposure were removed from the analysis. 

The Hasselblad meta-analysis is quite remarkable as it is one of the first examples of using 

meta-analysis to synthesise evidence from different studies. Its findings were fundamental to 

help draw the WHO recommendations for annual outdoor NO2 in 1997 (Graham, 1997). The 

guidelines were proposed on the basis of an NO2 background level of 15µg/m3 and the fact that 

significant adverse health effects occur with an additional level of 28µg/m3 or more. The value of 

40µg/m3 was recommended to avoid the most severe exposures. 

Although there have been attempts to incorporate evidence from more recent studies into the 

setting of this guideline no further attempts at meta-analysis had been conducted by 2011. 

Updating of the meta-analyses could strengthen the evidence base upon which both indoor and 

outdoor guideline values are set, particularly as more studies have been conducted and changes 
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in home ventilation and perhaps gas sources (e.g. from coal gas to natural gas) may have led to 

differences in health effects. 

Synthesis of available evidence should provide further scientific support to the NO2 air quality 

guidelines, identifying dose-response relationships and identifying sub-populations and life 

stages that may be at greater risk of experiencing effects from pollutant exposure. In light of an 

increasing literature on the health effects of measured indoor levels the original meta-analysis 

published in 1992 should be updated, gaps in the current epidemiological work identified and 

further appropriate research identified.  

2.1.2 Objectives 

1. To review and replicate the original meta-analyses that identified associations of respiratory 

illness, including asthma with NO2 

2. To conduct a systematic review of epidemiological studies which have assessed the 

association of respiratory symptoms with directly measured indoor NO2 levels 

3. To carry out meta-analyses of the effect estimates reported by the studies identified from the 

systematic review where appropriate 

4. To identify current gaps in epidemiological studies examining health effects of indoor NO2. 

2.2 Method  

2.2.1 Replication of Hasselbald meta-analysis 

The meta-analysis carried out by Hasselblad and colleagues (Hasselblad, 1992) was replicated 

to understand how the combined effect of indoor NO2 on respiratory illness was estimated and 

possibly, to replicate the same method using more recent publications. Only those publications 

included in the meta-analysis and measured indoor NO2 were considered (Melia, 1980; Melia et 

al., 1982; Dijkstra, 1990; Neas, 1990).  

Three of these papers reported symptoms prevalence in grouped categories of NO2 exposure 

but did not report a dose response relationship (Melia, 1980; Melia, 1982; Dijkstra, 1990). A 

dose-response estimate was calculated using the same method as first described by Hasselblad 

(1980): ‘Since most studies of gas stove exposure ..... show an approximate increase of 30µg/m3 
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in NO2 levels, the slope was multiplied by 30 to get the increase due to gas stove exposure, and 

then converted to an odds ratio by exponentiation. All of this assumed that the logarithm of the 

odds ratio was linear in NO2 exposure (pg 665)’. Grouped NO2 levels were fitted to a log-normal 

distribution, the expected mean values for each interval taken and a grouped logistic regression 

was run to calculate an effect estimate. The meta-analysis was carried out using current 

standard statistical techniques for meta-analysis (DerSimonian and Laird, 1986).  

As in Hasselblad, the combined effect of the meta-analysis was presented per 30µg/m3 of indoor 

NO2, i.e. the assumed long-term indoor NO2 average concentration associated with a gas stove 

and separate intercepts for girls and boys were computed using Melia’s data (Melia et al, 1980, 

Melia et al, 1982). 

2.2.2 Literature search 

Epidemiological studies reporting an association between measured indoor NO2 exposure and 

respiratory health were identified by running a search string in three main bibliographic 

databases: Medline, Embase and ISI Web of Science.  

The search string used Boolean logic ‘AND’ to link the key words for exposure (NO2 and NO2 

related species), the outcome (respiratory health) and location (indoor environment). Table 2.1 

lists the key words used to identify the studies. Key terms in the same category were linked with 

the Boolean logic ‘OR’. The search string was originated by identifying the key words of some of 

the most cited papers on indoor NO2 and respiratory health. As the search aimed to be as 

inclusive as possible a variety of key terms with similar meaning were used. 
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Table 2.1 List of key words of the search string used to identify studies on respiratory health and indoor 
nitrogen dioxide 

 Key words 
NO2 NO2 OR HONO OR Nitrogen dioxide OR Nitrogen oxides OR Nitrous acid OR NOx  
 AND 

Respiratory health 

Airway OR Allerg* OR Asthma* OR Breath* OR Atop* OR Breath* OR bronch* OR COPD OR Cough 
OR FEV1 OR FVC OR IgE OR Infection OR Lung function OR Peak flow OR PEF OR Phlegm OR 
Pulmonary OR Reactivity OR Respiratory OR Responsiveness OR Rhinitis OR Shortness of breathOR 
SOB OR Wheez*  

 AND 
Indoors Bedroom OR Classroom OR Domestic  OR Home OR Indoor OR Kitchen OR Personal OR Room 
* by adding the asterisk at the end of word the search will include any word starting with the letters that precede the 
asterisk 
 
 

The literature search was run on 17/10/2011 and repeated on 11/12/2013. No publication year or 

language limits were included in the search. Results from the searches were saved and merged 

in the reference management database EndNote X5. Duplicates were removed using EndNote 

facilities (‘Find duplicates’).  

A study was identified as relevant if: 

• It reported an effect estimate of the association between any respiratory health 

parameter (symptoms, diagnosis lung function, airway inflammation or atopy) and 

measured indoor NO2 (either domestic and/or classroom-based in children) 

• It reported original results (reviews or studies reporting results published elsewhere were 

excluded) 

• It was peer-reviewed  

• Analyses were adjusted for at least sex or age. 

Studies on biomass fuel combustion, occupational exposure and high indoor exposures in an ice-

rink (there are isolated reports of high levels associated with use of de-icing equipment) were 

excluded. 

Relevant studies were initially sifted by title and abstract relevance and then by full text. The 

bibliographies of existing reviews and relevant studies were checked for studies that had not 

been identified by the search.  

At each step the PRISMA guidelines were followed (Moher et al., 2009) – and when appropriate 

deviations from the guidelines noted. 
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2.2.3 Extraction of data from relevant studies 

The full text of each publication identified as relevant was read and data were extracted and 

recorded into two extraction forms:  

• Extraction form Level 1, which included details of the study and its characteristics (e.g. 

location, study population, exposure assessment); 

• Extraction form Level 2, which included details of the health effect estimates (e.g. 

coefficient size and precision, outcome, statistical method) (see Appendix of Chapter 2 

for details of the Extraction forms). 

An Access database (Microsoft ACCESS version 2002, Microsoft Corporation, Redmond, WA, 

USA) was created for the purpose to store the extracted information. Details of the effect 

estimates were then transferred to Stata. When units were reported in ppb they were converted 

into µg/m3 using the conversion factor 1.88. Whenever possible estimates were recorded as 

change per 10µg/m3 of indoor NO2.  

2.2.4 Meta-analysis  

Effect estimates were combined using the fixed effect and random effect meta-analysis models 

(DerSimonian and Laird, 1986). The assumption of a fixed-effect model is that the studies effects 

share the same underlying average effect while the assumption of a random-effect model is the 

effects are coming from a common underlying distribution of effects. 

A meta-analysis was carried out if:  

• Effect estimates shared the same outcome and epidemiological measure (e.g. 

prevalence)  

• Effect estimates could be standardised to  a change in health effect for a 10µg/m3 

increase in NO2  

• At least four effect estimates in study populations which were independent to each other 

could be included. 

Only one estimate per study population was included. If monitoring was carried out in more than 

one room (e.g. kitchen, bedroom living room) and effect estimates were reported for each room 

only one estimate was selected; in this case, the estimate associated with measurement in the 

living room was chosen (this was a pragmatic decision as this was the room where most studies 
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conducted NO2 monitoring). If a publication presented only stratified analysis by a particular 

factor then the estimate of each stratum was selected. For example, if the stratification was by 

gender, then both estimates for males and females were selected. If results were stratified by 

season because repeated measurements were taken through the year, a combined estimate was 

computed by taking the weighted average of the log of the odds ratio and then exponentiating. 

Results of the meta-analyses were presented using forest plots. Each line of the forest plot 

represents an effect estimate and its 95% confidence intervals. The effect estimates were 

standardised (per 10µg/m3) to describe the increase in risk associated with a 10µg/m3 of 

increase indoor NO2. Results were presented in subgroups determined by the population under 

study: 

• Infants from the general population  

• Children from the general population 

• Adults from the general population  

• Schools (children attended same schools and indoor NO2 measurements were taken 

inside the schools) 

• High-risk groups (i.e. having a family member with asthma) 

• Asthmatics.  

The summary effect (I-V Overall and D+L Overall) was reported for each sub-group. ‘I-V Overall’ 

stands for Inverse-Variance and is often named as the ‘fixed effect’; ‘D+L Overall’ stands for 

DerSimonian and Laird, who first introduced the standard techniques for meta-analysis, and is 

commonly named as the ‘random effect’. Heterogeneity between studies was assessed by 

calculating the I2 of Higgins and Thompson (Higgins et al., 2003), which describes the 

percentage of total variation across studies that is due to heterogeneity rather than chance. A 

value of 0 indicates no observed heterogeneity; the larger the I2 the greater the heterogeneity. 

Since in absence of heterogeneity the random effect does not differ from the fixed effect, I will 

focus on the random effect results.  

Studies included in the meta-analysis were assessed for publication bias through the visual 

inspection of funnel plots and formal statistical tests (Begg and Mazumdar, 1994; Egger et al., 

1997). The Begg’s test is an adjusted rank correlation test based on Kendall’s tau for the 

association between the effect estimate and their variance. The Egger’s test plots the regression 

line between precision of the studies (independent variable) and the standardised effect 

(dependent variable). It assumes that when there is no publication bias the intercept (the bias 

coefficient) is equal to zero; as bias increases the bias coefficient is expected to increase. 
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Egger’s test has more statistical power than Begg’s test but the power of both tests is limited 

particularly for moderate amounts of bias or when meta-analysis are based on a small number of 

small studies (n<10). In the absence of linear trend between precision and standardised effect 

Begg’s test will perform better than Egger’s test as the former assesses bias by examining the 

correlations by rank (Sterne et al., 2000). 

Sensitivity analyses were carried out to investigate the influence of study characteristics on the 

meta-analysis results. A quality score weighting was initially considered and eventually discarded 

as inappropriate for the scope of this meta-analysis 

Statistical analyses were carried out in Stata 12.1 (release 12.1; StataCorp. College Station, TX, 

USA). The meta commands were used to run the meta-analysis, forest plots and funnel plots. 

2.2.5 Summary of studies not included in the meta-analysis 

Since the meta-analyses did not include all studies identified by the systematic review, the final 

part of the Results section summarises the significant findings reported by all studies and 

focuses on reviewing those studies and those topics that it was felt were not adequately covered 

by the meta-analyses, i.e. studies in adults, studies in people with asthma, studies in people with 

COPD, studies on lung function, studies on FeNO, studies that adjusted for other air pollutants, 

studies that reported stratified analysis by effect modifier.  

2.3 Results 

2.3.1 Replication of Hasselblad meta-analysis 

Among the 11 studies included in the Hasselblad meta-analysis four studies incorporated 

measured indoor NO2 (Melia, 1980; Melia, 1982; Dijkstra, 1990; Neas, 1990). All four studies 

were in children aged between 5 and 11. 

Two studies were UK based (Melia 1980; Melia 1982). They were carried out in different 

populations two years a part living in the same area (Middlesbrough) and included between 100 

and 200 children. Indoor NO2 was measured with Palmes diffusion tubes for one week in the 

children’s bedroom and living room and the prevalence of any ‘respiratory condition’, a composite 
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of one or more respiratory conditions (i.e. usually cough in morning, day or night, colds going to 

the chest, ever wheezing or whistling attack of asthma or bronchitis in the last 12 months) was 

assessed with the use of questionnaire to be filled in by the child’s parents. 

One study (Dijkstra, 1990) was conducted in The Netherlands. It was a large prospective study of 

775 children, whose symptoms were assessed twice over a 2-years period and weekly average 

NO2 measured in children’s kitchen, living room and bedroom. The outcome considered in the 

Hasselblad meta-analysis was a composite of any wheeze (i.e. wheezy or whistling sounds in the 

chest in the last year), cough (i.e. cough on most day, for at least 3 months consecutively, in the 

autumn-winter season) or asthma (i.e. attacks of shortness of breath with wheezing in the last 

year).  

One study was conducted in the US (Neas, 1990). It examined 1286 children, who were part of a 

larger cohort (Six US Cities Study). Indoor NO2 was measured in each child’s home for two 

weeks during the cold season and repeated in the warm season. Parents completed a 

questionnaire that reported symptoms during the previous year. Effect estimates for several 

symptoms were reported and none reached statistical significance. The estimate for lower 

respiratory symptoms, a composite of the occurrence during the prior year of one of five 

symptoms (shortness of breath with wheezing, persistent wheeze, chronic cough, chronic 

phlegm and bronchitis) was selected as in Hasselblad.  

Neas (1990) study is the only one to report an effect estimate on a continuous NO2 scale; the 

estimate was also adjusted for sex, age, parental history of respiratory conditions, socio-

economic status and indoor particles. Dijkstra et al (1990) and Melia et al (1980) presented 

estimates on a categorical scale and as in Hasselblad, they were combined together to estimate 

an effect per 30µg/m3 indoor NO2 exposure by fitting a lognormal distribution to the exposure 

categorical data.  
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Figure 2.1 Meta-analysis of studies included in Hasselblad (1992) reporting an association between 

respiratory symptoms and measured indoor NO2 – published results (top) and replication of 
analysis (bottom) 

Figure 2.1 shows the results of the replication of the original analysis and those from the 

Hasselblad analysis. The replicated coefficient beta (β=0.077) of Melia study (1980) was different 

from the coefficient estimated by Hasselblad (β=0.015). I contacted the author for clarification but 

he did not have any of the old documentation that could help me (personal communication 

24/01/2012). The fixed effect (OR 1.24; 95% CI 1.10, 1.41 per 30µg/m3 NO2) and the random 

effect (OR 1.23; 95% CI 1.04, 1.45 per 30µg/m3 NO2) of the replicated meta-analysis were very 

close to the effects estimated by Hasselblad. 
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Please, note that the common metric currently reported in the literature of epidemiological 

studies on outdoor and indoor NO2 is 10µg/m3 increase (rather than 30µg/m3 ) of NO2. This is the 

risk metric that I will use in this thesis. For future reference, the combined random effect reported 

by Hasselblad is OR 1.08 (95%CI 1.01, 1.16) per 10µg/m3 increase of indoor NO2.   

2.3.2 Literature search 

The search in the bibliographic databases yielded 1624 results of which 596 were duplicates and 

removed. After assessing the abstract for relevance further 963 studies were removed. The 

inspection of all the reviews and the bibliographies of the 48 relevant studies identified two 

additional studies. The full text of the remaining 67 studies was read and 17 irrelevant studies 

were excluded for the following reasons:  

• Not original studies (Melia et al., 1985; Gent et al., 2012; Belanger et al., 2013) 

• Not adjusted (Erdei et al., 2003) 

• Examined risk factors for personal exposure only (Ponsonby et al., 2001) 

•  On urinary nitrate as a biomarker of exposure to nitrogen dioxide and its association with 

asthma prevalence (Ciuk et al., 2001)  

• No effect estimate reported because NO2 levels were too low (Martins et al., 2012), or 

effect estimate not significant:(Smedje et al., 1997; Diette et al., 2007) 

• No effect estimate reported and/or could not be interpolated from graphs and data 

provided (Ng et al., 2001; Pilotto et al., 2004; Howden-Chapman et al., 2008; Marks et 

al., 2010; Gul et al., 2011; Hulin et al., 2011; Yeatts et al., 2012).  

The Hasselblad’s meta-analysis included two studies which were not retrieved by the search:   

Melia (1980) and Neas (1990). Melia (1980) was published in Clinical Respiratory Physiology 

(the precursor of European Respiratory Journal), a journal not indexed by the three bibliographic 

databases. Results of the same study were previously published in another article (Florey, 1979), 

which was retrieved by the literature search. Neas (1990) is a conference proceeding, which was 

not included the systematic review because of not being not peer reviewed. Results of this 

conference proceeding were published the following year in a peer-reviewed journal (Neas, 

1991) and the article was identified by the literature search. 
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Figure 2.2 PRISMA flow diagram of literature search up to 11/12/2013 for studies on the association of 
respiratory health and indoor NO2  

2.3.3 Summary of the reviewed studies 

The literature search identified 50 studies reporting an association between measured indoor 

NO2 and respiratory health. A brief summary of each study is given in Table 2.2. Studies have 
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been listed in alphabetical order by first author in order to facilitate browsing the table. Each 

study has been summarised by the following characteristics: 

• Design and Participants - it includes details of study design, population and location 

where it was carried out 

• Exposure assessment - it includes details of NO2 monitoring (e.g. type of monitor, 

frequency and duration of monitoring, room where monitoring took place) and reported 

indoor NO2 levels 

• Outcome assessment - it includes details of the health outcomes and the epidemiological 

measure (e.g. prevalence, incidence) 

• Statistical analysis - it includes details of statistical analysis, the type of effect estimate 

(e.g. odds ratio, hazard ratio) and details of any stratified analysis 

• Adjusted for - it lists the confounders the study adjusted the analyses for  

• Significant associations - it lists the outcomes whose association with indoor NO2 was 

significant (P<0.05). 

. 
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Table 2.2 Summary of studies' characteristics    

Author Design and Participants Exposure assessment Outcome assessment Statistical analysis Adjusted for Significant associations 

An
ne

si
-M

ae
sa

no
 2

01
2 

cross-sectional  
study (French Six Cities 
Study) 
 
6590 children    from 
108 primary schools 
(401 randomly chosen 
classrooms) 
age: 9-10 years 
 
-Bordeaux, Clermont-
Ferrand, Cre´teil, 
Marseille, Strasbourg, 
Reims (France) 

Radiello passive diffusion 
samplers   placed in 
classrooms for 5 days;  
 
range (33th-66th 
percentiles)   23.7 µg/m3 -
31.6  µg/m3 
 
no gas sources mentioned 
 
-also indoor PM 2.5, indoor 
CH2O 

Asthma prevalence  in the last 
year (defined using ISAAC 
questionnaire)  
 
rhinoconjunctivitis prevalence 
 
skin prick testing (SPT) for 10 
common allergens  
 
exercise-induced asthma (EIA) 
prevalence 
 
    

Marginal model using 
GEE approach with 
independent working 
correlation structure 
using the city as stratum 
 
stratified by atopic 
status 
 
OR reported by tertiles 
of NO2 exposure  on 
graphs  
  

age, 
 sex,  
passive smoking,  
paternal or maternal history 
of asthma, 
 allergic diseases, 
 dampness, 
 gas appliance, 
 ethnicity, SES 

Past year asthma 
(stronger for allergic 
asthma) 

Be
la

ng
er

 2
00

3 

-prospective (1 year) 
high-risk birth cohort , 
Yale Childhood Asthma 
Study (YCAS)      
 
849 new-borns   with an 
asthmatic sibling (see 
Belanger 2006 for 
siblings’ analysis) 
recruited between 1996-
98 
 
Connecticut and 
Massachusetts, US 
 
-same cohort as in van 
Strien 2004 

Palmes tube placed in living 
area for   10-14 days. 
 
459 homes with  NO2 ≤ 
10ppb (=19  µg/m3 ); 390 
homes with  NO2 >10ppb 
 
34 % homes with gas stove   

wheeze,  
frequency of persistent cough 
reported monthly for one year 
and analysed as none, <30days, 
≥30days over a year. 
 
symptoms recorded by parent in 
a daily diary 

Ordered logistic 
regression  
 
Stratified analysis by 
mother’s asthmatic 
status (yes/no)  
 
OR on a continuous 
scale (18.8   µg/m3 );  

maternal education,  
mould, 
sex,  
dust mites, 
cockroaches, 
cats,  
dogs,  
smoking at home 

Persistent cough in 
children whose mother 
did not have asthma 
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Author Design and Participants Exposure assessment Outcome assessment Statistical analysis Adjusted for Significant associations 

Be
la

ng
er

 2
00

6 

retrospective (1 year) 
study (YCAS study) 
 
728 children with active 
asthma (siblings of YCAS 
cohort,  see Belanger 
2003); 
age: 66.5% younger than 
6 years, 33.5% between 
6 and 12 years 
 
Connecticut and 
Massachusetts, US 

Palmes tubes placed in main 
living area for 10 to 14 days 
 
 single-family homes: 
median? 14.3 (IQR 14.3)  
µg/m3 ; 23.5% of gas stoves 
 
 multi-family housing 
median  35.5 (IQR 36.8)  
µg/m3 ; 23.5% of gas stoves   

wheeze,  
persistent cough,  
SOB,  
chest tightness assessed for the 
month before sampling  NO2 
 
number of days with respiratory 
symptoms in the year previous 
to   NO2 

-logistic regression and 
Poisson regression (for 
days of symptoms);  
 
 Stratified analysis by 
multi-family   and 
single-family housing   
 
OR on a continuous 
scale (37.6 ug/m3) 

age, 
 season of sampling,  
ethnicity, 
 mould/mildew, 
 water leaks, 
 maintenance medication 
use  
 
 
-smoking not included 
because of being a source of  
NO2 

Wheeze, SOB, and chest 
tightness in multi-family 
housing   

Be
la

ng
er

 2
01

3 

Prospective study (1 
year) (Study of Traffic, 
Air quality and 
Respiratory Health) 
 
1342 children with 
active asthma; 
age:5-10;   
 
Connecticut and 
Massachusetts, US, 
period: 2006-2009 

Palmes tubes placed  in 
dayroom and bedroom 
exposed for one month and 
repeated every 3 months 
throughout the year (4 in 
total) 
 
 overall mean 19.6  µg/m3 , 
IQR (8.5-23.5  µg/m3 ) 
 
no details of gas usage  

asthma severity  score according 
to GINA (0= no symptoms, 
1=mild transient, 2=mild 
persistent, 3=moderate 
persistent, 4=severe persistent),  
frequency of   wheeze, frequency 
of night symptoms, 
frequency of rescue medication 
use   
 

 Hierarchical ordered 
logistic regression using 
a Bayesian approach 
 
OR reported by quartile 
and as continuous using 
a threshold model in 
log; increment is 
reported by 5-fold 
increase  
 
frequency of symptoms 
reported as zero days, 
1-3 days, 4-19 and more 
than 19 days per month 

-SES, 
 age, 
 sex,  
 general atopy, 
 season, 
 indoor allergens, 
 ethnicity, 
 mother’s education,  
smoking in the home (for 
asthma severity score 
analysis) 
 
 mother’s education, 
smoking, ethnicity were 
replaced with ‘maintenance 
medication use’  in the 
analysis of symptoms 
because of collinearity with 
the ‘use of rescue 
medication’ 
 

Asthma severity, 
wheeze, night 
symptoms and rescue 
medication use 
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Be
rw

ic
k 

19
89

 

- Panel study (Yale 
Health and Heating 
Study) lasting 12 weeks  
during which 
participants’ parents 
were phone-interviewed 
6 times 
 
- 113 children 
Age: <13 yrs 
 
-New Haven, 
Connecticut, US 

- Palmes tubes placed in  
kitchen, living room and 
bedroom  for 2 weeks 
 
- in the kitchen: (kerosene 
heater + gas stove  
168.4  µg/m3 ), gas stove 
(76.9  µg/m3 ); 
in the bedroom: (kerosene 
heater + gas stove 196.9  
µg/m3 , gas stove 53.7  
µg/m3 ) 
 
-49% housing with 
kerosene, 51% with no 
kerosene 
 

Presence of lower respiratory 
symptoms (fever, chest pain, 
productive cough, wheeze,   
bronchitis,  pneumonia or 
asthma) over a 12-week period 

-Logistic regression with  
results stratified   by age 
(<7yrs and  ≥7yrs);  
 
-OR on a continuous 
scale (per 30  µg/m3 ) 

age, 
 sex,  
history of respiratory 
illnesses, 
 Hollingshead scale (an SES 
measure) 

LRS in children aged 
above 7  

Br
au

n-
Fa

hr
la

nd
er

 C
. 1

99
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- Panel study lasting for 
6 weeks during which  
NO2 and symptoms are 
daily recorded 
 
-625 children 
Age:0-5 yrs   
 
-Zurich, Basel 

-Palmes tube placed in the 
room where   child stays 
more frequently and 
changed weekly for 6 weeks 
 
-31.31  µg/m3 average in 
Basel; 
27.31  µg/m3 average in 
Zurich  
 
- 35.5% of homes with gas 
cooking 

cough during day,  
cough at night, 
 breathing difficulty  
sore throat, runny nose, fever, 
earache combined as URI   

-Poisson regression (for 
the daily rate of 
symptoms incidence) 
- linear regression for 
the mean duration of 
symptoms  
 
-Relative risk and 
duration rate per 20  
µg/m3  NO2 

sex, 
 SES, 
 history of asthma,  
history of bronchitis,  
history of frequent colds,  
passive smoking 

N.S.   
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Br
un

ek
re

ef
 1

99
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- Panel study lasting for 
2 years during which  
lung function is 
measured 4 times   
(same study as in 
Dijkstra 1990) 
 
-876 children; 
Age: 6-12 years 
 
-The Netherlands  

-Palmes tubes placed   in 
kitchen, living room and 
child's bedroom   
 
- mean (IQR): 23.6 (12-24)  
µg/m3 in homes without 
kitchen geyser, 40.3 (24-50)  
µg/m3 in homes with vented 
kitchen geyser, 71.7 (46-73)  
µg/m3 in homes with 
unvented kitchen geyser 

FVC, 
FEV1,  
PEF, 
MMEF 

-Linear regression for % 
differences in lung 
function  by the year of 
the clinical test  
 
-beta coefficient 
reported on categorical 
scale (0-20  µg/m3 , 21-
40  µg/m3 , 41-60  
µg/m3 , >60  µg/m3 ).  
  

Height, 
 Weight 
 Gender 
parental education smoking 
at home 

N.S. 

Ca
rle

st
en

 2
01

1 

-Intervention study  (to 
reduce suspected indoor 
allergens)   of birth 
cohort (Childhood 
Asthma Primary 
Prevention Study) 
followed during first 
year of life (at birth and 
at 4, 8, 12 months)  and 
then at age 7   
 
- 380 high-risk (i.e. with 
at least one first-degree 
relative with asthma or 
two first degree relative 
with immunoglobulin E-
mediated allergic 
disease) children; 
Age: 7 at last follow-up 
 
-Vancouver and 
Winnipeg, Canada 

-Palmes diffusion tubes in 
child's bedroom for 2 week 
measured during first year 
of life.   
 
- median (range): 18.8  
µg/m3 (4.5-69.2  µg/m3) 
 
-37 (9.7%)  homes with gas 
stove over a total 380 

Diagnosis of asthma, 
bronchial hyperactivity (BHR)  at 
age 7,  
atopy at age 1, 
atopy at age7  
urinary cotinine. 

-Logistic regression  
 
-OR for binary exposure 
using median as the cut-
off point 
 
-Main focus of analysis 
is on the effect   of a 
combined exposure to 
dog and indoor 
pollution ( NO2 , ETS).   

 group allocation 
(intervention),  
race,  
sex, 
 history of asthma,  
maternal education,  
city of residence, 
 season 
 
-confounders  selected using 
a stepwise approach 

Asthma and BHR when   
NO2 interacting with   
Can-F1 positive  
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Di
jk

st
ra

 1
99

0 

- Prospective study;  
symptoms assessed two 
times, lung function 
measured four times   
over a 2- year period 
(same study as   in 
Brunkreef 1990) 
 
 
-832 children; 
 Age: 6-12 yrs   
 
-The Netherlands 

-Palmes tubes placed   in 
kitchen, living room and 
child's bedroom in most of 
the homes of the study 
population   
 
- mean (IQR):  
in homes without kitchen 
geyser: 23.6 (12-24)  µg/m3 , 
 in homes with vented 
kitchen geyser: 40.3 (24-50)  
µg/m3 ,  
in homes with unvented 
kitchen geyser: 71.7 (46-73)  
µg/m3 
 
-15.3% had a vented kitchen 
geyser in the home, and 
16.5% had an unvented 
kitchen geyser in the home. 

cough, 
wheeze,  
asthma, 
FVC, 
FEV1,  
PEF,  
MMEF 
FVC growth 
FEV1 growth 
PEF growth 
MMEF growth 
 

-Linear regression for % 
differences in lung 
function  
-logistic regression for 
respiratory symptoms.  
 
Estimates on a 
categorical scale (0-20  
µg/m3 , 21-40  µg/m3 , 
41-60ug/m3, >60  
µg/m3).  
 
[OR estimated on a 
continuous scale per 
combined symptoms 
estimated using 
Hasselblad's method] 

age, 
 sex,  
parental education 

N.S.    

Em
en

iu
s 2

00
3 

 

-nested case-control 
within BAMSE  birth 
cohort study  
 
-cases= children with 
recurrent wheezing 
matched with controls 
by date of birth. 
 
- 540 children  
Age: 0-2  
 
-Stockholm, Sweden 

- Palmes tubes placed in 
living room for 4 weeks   
 
- 22.6ug/m3 in homes with 
gas stove; 16.4  µg/m3 in 
homes without gas stove 
 
-  8.52% of homes with gas 
stove 
 
-also outdoor  NO2 

recurrent wheezing (i.e.3 or 
more episodes of wheezing not 
associated with common colds 
after 3 months of age, combined 
with symptoms of bronchial 
hyperactivity, i.e. cough during 
sleep, play and laughter or 
inhaled steroid treatment) 

-Conditional logistic 
regression.  
 
-Stratified by ETS 
 
-OR for period 
prevalence (1 year) at 
age 1 and age 2 and 
lifetime prevalence up 
to age 2 per quartiles of 
exposure.   
 
[ NO2 reported as a 
continuous variable (per 
10 ug/m3  NO2 ) in the 
text.]  

parental atopy, 
 sex, 
 maternal smoking,  
maternal age,  
breastfeeding (<6 months, 
>=6 months) 

Recurrent wheezing 
when indoor  NO2 
interacting with ETS     
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Es
pl

ug
ue

s  
20

11
 

- retrospective study of 
a  birth cohort sub-
sample  (INMA),  
 
 -352 children (50% of 
total cohort)  
Age: 1 
 
-a study on outdoor and 
indoor NO2 
 
-Valencia, Spain 
 

-Passive samplers for 2 
weeks (sampler and location 
where sampler was placed 
unspecified) after birth 
 
-median:18.1ug/m3 (IQR 
14.5  µg/m3 ); mean:19.7  
µg/m3 
 
- 41.7% of homes with 
electric cooker; 58% with 
gas cooker (natural 34%, 
butane 22%, propane 2%)   
(from Esplugues 2010) 
 
-also outdoor NO2 

Cumulative 12 months incidence   
of lower respiratory tract 
infection (i.e. any episode of   
bronchitis, bronchiolitis or 
pneumonia  during 1st year of 
life) 
cumulative incidence of wheeze, 
cumulative incidence of 
persistent cough (lasting for 
longer than 3 weeks)  
 
-health data collected 
retrospectively 
 

logistic regression 
  
OR per 10ug/m3 
increment  
 
[30 outcomes reported 
but no Bonferroni 
correction] 

sex, 
 daycare, 
 smoking at week 12 of 
pregnancy, 
 season of birth, 
season of measurement, 
 number of persons who live 
together, 
 zone of residence 

Persistent cough 

Fa
rr

ow
 1

99
7 

-prospective study of 
birth cohort (ALSPAC); 
Follow-up: 1year 
  
-921 new-borns 
Age: 3-12 months age   
 
-Avon, UK 

- Palmes tube placed in 
infants’ bedroom  for 10 
days    
 
-median: 12.8  µg/m3 , range 
(1.1 – 161.7  µg/m3) 
 
-no details of gas usage 

20 outcomes assessed during the 
2-week monitoring period  
including cough, wheezing,  
earache,  high temperature,  
breathlessness   

logistic regression ORs 
reported    on the basis 
of doubling the level of  
NO2 .  
 
[To get an OR on a 
continuous scale for 
meta analysis the 
median has been taken 
as a numerical value to 
compare the odds 
ratios.] 

maternal education,  
mould, 
 age, 
 smoking at home,  
parity, 
 maternal age, 
 preterm birth 

Diarrhoea  
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Fi
sc

he
r 1

98
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-cross-sectional (period: 
1982) and longitudinal 
analysis (start date: 
1965)  in a cohort sub-
sample   
 
- 97 adult non-smoking 
women living in rural 
area  
 
 - Some of the 
participants already in 
Fischer 1989 
 
- Vlagtwedde, The 
Netherlands 

-Passive diffusion tubes 
placed in kitchen, living 
room and bedroom for one 
week in the winter    
 
- average: 10-391  µg/m3 in 
kitchens, 8-198  µg/m3 in 
living rooms, 8-53  µg/m3 in 
bedrooms (period: 1982-83) 
 
  

- IVC and FEV1 every three years   
 
-FVC, PEF, MEFV (period: 1982) 

-longitudinal analysis for 
IVC and FEV1 decline 
from 1965 to 1982 (age 
group 40-60 year  only, 
N=81)  
 
- Cross-sectional 
analysis (all ages) in 
1982 using multiple 
linear regression 
 
-Estimates as beta with 
standard error 
 
(longitudinal analysis 
did not take into 
account within 
individual variation) 
 

Age, 
 Height, 
passive smoking,  
educational level 

 FEV1 and MEFV and 
living room indoor NO2 
(negative association) 

Fi
sc

he
r 1

98
9 

-cross-sectional analysis 
of a   longitudinal study 
(1965-1982, same as in 
Fischer 1985)  
 
-612 adult women  
 
- Vlagtwedde (rural), 
Vlaardingen (industrial), 
The Netherlands 
 

-Palmes diffusion tubes for 1 
week in kitchen, living room, 
bedroom, measured in 
1982/83 
 
- range from 17  µg/m3 
bedroom in rural area to 96  
µg/m3 in kitchen (urban 
area); unvented geyser 
(kitchen 120(sd 55)  µg/m3 ; 
vented geiser (kitchen 71(sd 
53) µg/m3 ); no geiser 
(kitchen 49(sd30)  µg/m3 )  
  

FEV1, 
 PEF, 
 MMEF, 
 IVC 

linear regression for 
difference in lung 
function 
 
-stratified by smoking 
status and residential 
area (rural, urban) 

age, 
 passive smoking, 
 height, 
 educational level 

Lung function ( non-
smoking rural 
participants-negative 
association) 
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Fl
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-sub-sample of cross-
sectional  
study (French Six Cities 
Study, see Annesi-
Maesano 2012) 
 
-104 children ((34 
asthmatic and 70 non-
asthmatics) in 33 
classrooms of 14 
schools,  
Age: 10.3 years average  
 
-Bordeaux, Clermont-
Ferrand, Cre´teil, 
Marseille, Strasbourg, 
Reims (France) 

Radiello passive diffusion 
samplers   placed in 
classrooms for 5 days;  
 
- Exposure range:15-33  
µg/m3 
 
-PM2.5, CH2O also 
measured indoors 
 
-no details of gas usage 

-FeNO  measured during the 
week of air quality monitoring 

linear regression 
analyses using marginal 
models with GEE 
approach stratified on 
asthmatic status 
 
-stratified by atopic 
status;  
 
[effects presented 
graphically but no 
numerical information 
given] 

atopy,  
parental education,  
geographical origin of 
mother, 
 family history of allergy,  
passive smoking during 
childhood. 

Increase in FeNO in 
atopic children 

Fl
or

ey
 1

97
9 

 

- cross-sectional (The 
Cleveland Study) 
 
- 428 children from 10 
schools; 
Age:   6-7 years   
 
Middlesbrough, UK 
 

-passive diffusion tubes in 
kitchens and 25% random 
sample also in children’s 
bedrooms for one week 
 
- range: 11.3-353.4  µg/m3 
and 9.4-596.0   µg/m3 in 
homes with electric cooker 
(n=87) and gas cooker 
(n=428) respectively;  
 
-outdoor  NO2 also 
measured 
  

FEV 0.75 
PEFR 
MMF 
Any respiratory illness (usually 
cough in morning, day or night, 
colds going to the chest, ever 
wheezing or whistling, attack of 
asthma or bronchitis in the last 
12 months) 
 

- Linear model by 
exposure category 
 
 

Age 
 Height 
 weight 
 

N.S. 
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G
ar

re
tt

 1
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-Panel study lasting one 
year during which NO2 
was monitored 5 times 
and  data on respiratory 
symptoms experienced 
during the monitoring 
period were collected 
 
-148 children (53 are 
asthmatic and 61% have 
at least one +ve skin 
prick test) 
Age: 7-14 yrs.   
 
-a study on  NO2 and gas 
stoves. 
 
-Victoria, Australia 

Passive diffusion tubes 
placed in child's bedroom, 
living room and kitchen 
repeated for 4 days x 5   
over one year in 80 
households (more than one 
child per household)  
 
-median:11.6  µg/m3 ; range 
(10th-90th percentile): 5.01-
27. µg/m3 
 
 
 

-frequency of lower respiratory 
symptoms (cough, SOB, waking 
SOB, wheeze, asthma attack, 
chest tightness, cough in the 
morning, chest tightness in the 
morning)  
-PEFR  measured for 2 weeks in 
winter and 2 weeks in late spring 
 
-Results for symptoms score and 
PEFR only partially reported 
   

-logistic regression 
  
-also stratified by atopic 
and non-atopic.  
 
-analysis repeated 
substituting NO2 with 
gas stove  
 
OR per 10  µg/m3  NO2 
 
[Analyses do not take 
into account household 
clustering]  

sex, 
parental asthma, 
parental allergy 

N.S.   (significant for 
cough and chest 
tightness when 
considering gas stove) 
 
N.S. difference between 
atopic and non-atopic 

G
ill

es
pi

e 
20

11
 

- secondary analysis  of a 
clustered, 
randomised intervention   
trial (Housing, Heating 
and Health Study, see 
Howden-Chapman 
2008)  lasting for 112 
days during which 
symptoms are recorded 
daily in a diary 
 
- intervention: homes 
having their  unflued gas 
heater been replaced 
with a less polluting 
heating (replaced with 
heat pump, wood pellet 
burner, flued gas) 

-Passive diffusion tubes 
placed in living rooms for 4-
week period x 4   
 
- Geometric mean: 11.4  
µg/m3 
 
-also outdoor  NO2 
measured 

evening FEV1, 
morning FEV1, 
evening PEFR, 
morning PEFR; 
asthma symptoms severity score 
(scale 0-3) 
for: 
cough at night, cough during the 
day, cough on waking, wheeze at 
night, wheeze during the day, 
wheeze on waking preventer 
use, preventer use, reliever puffs 
per day, lower respiratory 
symptoms and upper respiratory 
symptoms   

-Linear mixed-effect 
model with random 
effects for repeated 
measures within 
individual and fixed 
effect of  NO2 on health 
outcome  
 
- 'change in mean 
symptom rate’ and 
change in lung function 
effect per logged unit 
increase in  NO2 level 

age, 
sex, 
parental asthma,  
smoking, 
outcome at baseline,  
region, 
ethnicity, 
effect of intervention,  
low income  
 
N.B. groups were 
randomised 

-change in mean 
symptoms score (for all 
symptoms but 
preventer use) 
 
-  change in evening and 
morning FEV1 (negative 
association) 
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-349 children with 
asthma 
Age: 6-13 yrs 
 
-New Zealand 
 

Ha
ns

el
 2

00
8 

-prospective study 
(Baltimore Indoor 
Environment Study of 
Asthma in Kids) – 
participants visited 
home 3 times over a 12-
months period and 
asked about symptoms 
in the previous two 
week 
 
-150 children with 
asthma  
Age: 2-6 yrs;   
 
-Baltimore, US 

-Ogawa badges placed in 
child's sleeping room for 
72 hours x 3 (baseline, 3 
months, 6 months)  
 
-Mean: 56.4  µg/m3 ; 
range:5.5-740.7  µg/m3 
 
-83% homes with gas stove 
(12% reporting using gas 
stove/oven for heating) 
 
-also indoor PM 2.5 
 
   

Number of days over 2 weeks 
with the following symptoms: 
-Daytime wheezing, coughing or 
chest tightness,  
-slowing activity due to asthma, 
wheeze, chest tightness or cough 
-limited speech due to wheeze 
-wheeze, cough, or chest 
tightness while running 
-coughing without a cold 
-nocturnal awakenings due to 
cough, wheeze, shortness of 
breath or chest tightness 

 Negative binomial with 
generalised estimating 
equations  
 
-logistic regression 
models  
 
-stratified by atopic 
status 
 
 IRRs (incidence rate 
ratios) and ORs on a 
continuous   scale 

caregiver education level, 
age, 
sex,  
season of sampling,  
PM2.5,  
Second hand Smoke,  
distance from kerb, 
type of street in front of 
home,  
race 

Limited speech due to 
wheeze and nocturnal 
awakening due to 
cough, wheeze, SOB or 
chest tightness 
(nocturnal symptoms 
stronger in atopic 
children) 
 
  

Ha
ns

el
 2

01
3 

-prospective study;  
 
-84 adult former 
smokers with moderate 
or severe COPD and a 
mean FEV1 of 48.6% 
predicted; 
Age: mean 68.9 (sd 7.4) 
yr 
 
-Baltimore, US 

-Ogawa passive diffusion 
badges; monitored over a 1-
week period in the 
participants’ bedroom and 
main living area at baseline, 
3 months, and 6 months.  
 
-Living area: mean 22.9 ( SD 
22.8)  µg/m3 ; bedroom 
:mean 20.3 (SD19.9)  µg/m3 
 
-no details of gas appliances 
 

FEV1% predicted, dyspnoea, 
wheeze, nocturnal symptoms, 
usual cough,  usual phlegm, 
frequency of inhaler use, SGRQ 
(St George Respiratory 
Questionnaire), any 
exacerbations, sever 
exacerbations.  
 
All outcomes were assessed at 
each home visit, which took 
place at baseline, 3 months and 
6 months.  Exacerbations were 

generalised  estimating 
equations model for 
repeated 
measurements 
  

 Age 
Sex 
Education 
Season of sampling 
FEV1 % predicted 
Air nicotine 
Hair nicotine 

  dyspnoea  and inhaler 
use (living area NO2); 
   nocturnal symptoms 
and severe COPD 
(bedroom  NO2); 
  increase in FEV1 % 
predicted (living area  
NO2 )    
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-also PM2.5 measured 
  

assessed by questionnaires at 
each clinic visits and monthly by 
phone 
 
 

Ho
ek

 1
98

4 

-case-control study with 
cases being children 
from the data of the city 
School Health Service 
reporting suffering from 
asthma, bronchitis , 
frequent cough or colds 
and allergy 
 
-128 cases and 103 
controls ; 
Age: 6 yrs  

Palmes diffusion tubes    in 
kitchen, living room and 
bedroom for 1 week   
 
-range; kitchen 110-789  
µg/m3 , living room 17-277  
µg/m3 , bedroom 10-146  
µg/m3 
 
-no gas details given 

Asthma 
Bronchitis 
Cough 
Wheeze 
Breathlessness 
combined symptoms 
 
[prevalence period non found in 
text] 

-logistic regression 
 
- OR (90% CI) to an 
increase of the 10 log 
NO2 concentrations 
with once unit  NO2 
time weighted 
   
[standardisation to 10 
ug/m3carried out using 
estimates reported in Li 
2013] 

age, 
sex, 
parental education,  
bedroom heating, 
mother smoking, 
home humidity, 
parental respiratory 
symptoms 

N.S. 

Ja
rv

is
 2

00
5 

-Sub-sample of a 
longitudinal study 
(ECRHS ) started in 1990 
 
-276 adults; 
mean age: 43 
 
-a study mainly focusing 
on indoor nitrous acid. 
 
-Ipswich and Norwich, 
UK 

passive diffusion tubes for 
NO2 measured in kitchen 
away from window for 14 
days 
 
 
- NO2 median 24.66  µg/m3 
(IQR 14.55, 42.00  µg/m3); 
HONO median 3.10 ppb (IQR 
2.05, 5.09) 
 
-57.7% of homes with HONO 
measurements had mostly 
used gas for cooking 
 
-HONO also measured 
 

change in FEV1% predicted, 
FEV1/FVC,  

linear regression  
for change in lung 
function  
 
effect estimate on 
continuous scale     

age,  
sex,  
dampness, 
city, 
season of lung testing,  
season of measurement,  
smoking status, 
pack years of smoking,  
occupational group 

N.S.   
(but significant 
association with HONO) 
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Ka
tt
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-Panel study lasting for 1 
year with assessment at 
baseline and 3, 6, 9 and 
12 months) – National 
Cooperative Inner-City 
Asthma Study (NCICAS) 
 
-1528 children with 
current asthma  with 
NO2 measurement in 
663 homes; 
Age: 4-9 yr (NCICAS);  
 
- Eight inner cities, US 
(Bronx NY, East Harlem 
NY, St Louis MO, 
Washington DC, 
Baltimore MI, Chicago 
Ill, Cleveland Ohio, 
Detroit Mitch 
 

-Palmes tube in child's 
sleeping area for 7 days  
 
-median: 56  µg/m3 , 24% of 
children exposed to  NO2 
>75.2  µg/m3 
 
-gas stove in 87.8% of 
homes 

Asthma morbidity (4 or more 
days with wheeze during a two-
week period, any unscheduled 
medical visit for asthma in the 
past 3 months and PEF <80% 
predicted, health service used in 
the previous 3 months)  

-longitudinal binomial 
regression model. 
results presented high 
(>75 percentile) vs low; 
 
- stratified by atopy and 
season (<15.6 C  vs 
>=15.6 C) 
 
-Effect estimates on 
binary scale ( cut-off 
point   99.6  µg/m3 = 
75th centile) 

smoking at home, 
family history of asthma, 
use of steroid medication,  
family income,  
study site,  
psychosocial status 

asthma symptoms;   
decrease in PEF in non-
atopic children (only 
when    levels of indoor 
NO2   are high) 

Ki
m

 2
01

1 

-cross-sectional study on 
home, school and 
outdoor environment 
 
-1028 children from 34 
classroom; 
mean age 10yr;  
 
-Three cities, Korea   
 

 -passive diffusion   samplers 
(IVL)    placed on a wall in 
each classroom   for 7 days 
during November or 
December 
 
-19  µg/m3mean, range 7-38  
µg/m3 
 
-no details of gas usage 
 
- also measured outdoor   
NO2 and indoor/outdoor , 
O3, formaldehyde, UFP  
 

wheeze,  
doctor diagnosed asthma,  
current asthma (medication 
or/and asthma attacks during the 
last 12 months)   

-generalised linear and 
latent mixed model with  
three-levels (individual-
school-city) and random 
intercept   
 
-OR on a continuous 
scale ( per 10  µg/m3  
NO2 ) 

age,  
sex, 
ETS,  
furry pets,  
pollen allergy, 
home environment 

NS 
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nested case (see 
definition in outcome)-
control within the Oslo 
Birth Cohort 
 
-153 one-to-one 
matched pairs of 
children 
 
-age: 2 years  

Passive diffusion tubes 
exposed for 2 weeks in 
kitchen, child’s bedroom, 
main living room and in day-
care site if child attending it  
 
-child's sleeping room mean 
(range) 13.2 (5-33)  µg/m3 
 
-no details of gas given 
 
-also measured outdoor  
NO2 
 

cases must have developed  at 
least 2 episodes of bronchial 
obstruction during first 2 years of 
life or  one episode lasting for 
more than 4 weeks  

conditional logistic 
regression 
 
OR on a continuous 
scale  
[in text] 

gender,  
parental asthma, 
 maternal education, 
 ETS, 
 birth weight,  
breastfeeding 

N.S 

M
at
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-prospective study, 
participants followed for 
1 year and clinically 
assessed at baseline, 3, 
6, 9 and 12 months at 
same period as NO2 
monitoring 
 
-146 children with 
persistent asthma 
Age:5-17 years 
 
 -Baltimore, US 

- Ogawa passive diffusion 
badges  placed  in child’s 
bedroom for  5-7 days x 4 
within two weeks of clinic 
visit 
 
-median 39.1 (IQR: 26.3-
58.3)  µg/m3 
 
-gas details: NR 
 
- Also indoor  PM 2.5  

FEV1/FVC % predicted, 
FeNO, 
Acute visit to emergency 
department, 
Oral corticosteroid burst, 
Reversibility, 
Beta-agonist use, 
Maximum symptoms days, 
Wheeze,  
Cough,  
Chest tightness, 
Exercise-related symptoms 
 

Logistic regression  
(exposure of interest is  
endotoxin)  
 
Estimates on binary 
exposure for  NO2 (high  
NO2 ≥37.6  µg/m3 vs low  
NO2 <37.6  µg/m3 )      

age, 
sex,  
lot of endotoxin assay,  
airborne mouse allergen,  
total IgE, 
controller medication  
air nicotine 
 
the following were 
considered but not included 
in the final model because   
of no confounding effect: 
SES, season, PM   

wheeze, cough, chest 
tightness, exercise-
related symptoms when 
high  NO2 levels 
interacting with 
endotoxin (negative 
association) 
  
  

M
el
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-cross-sectional study 
(The Cleveland study) 
 
-191 children in 183 
homes living in homes 
using gas for cooking 
Age: 5-6 years  
 
-Middlesbrough UK 

Palmes diffusion tubes for 
one week in the child’s 
bedroom and living room  
 
-bedroom range: 8.8 to 
302.3  µg/m3 ; living room 
range : 16.9 to 549.3  µg/m3 
.  
 

one or more respiratory 
conditions (usually cough in 
morning, day or night, colds 
going to the chest, ever 
wheezing or whistling, attack of 
asthma or bronchitis in the last 
12 months) 
 

-Generalised linear 
modelling  
 
-estimates on a tertile 
scale ( 0-37.6  µg/m3 , 
37.6-75.0  µg/m3 , 
>=75.2  µg/m3 ) 
  

age, 
sex, 
smoking at home, 
social class 

N.S. 
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- 100% of participants’ 
homes use gas for cooking 

M
i 2

00
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-cross-sectional study 
looking at the influence 
of building ventilation,  
NO2 , O3 and 
formaldehyde in 
classrooms 
 
-1414 children  from  30 
classes in 10 different 
schools; 
Age: 13-14 yrs.  
 
-Shanghai, China  

Badge diffusion sampler 
(IVL) for seven days  in each 
classroom (n=30)  
 
-min-max valued in 
classrooms: 33-86  µg/m3 
 
-outdoor  NO2 measured 
(47-83  µg/m3 )  
 
-no heating system in the 
building; indoor  NO2 
probably from outside 
sources 
 

current wheeze, 
daytime breathlessness,  
nocturnal breathlessness,  
asthma attacks, 
asthma medication,  
current asthma in previous 12 
months 

logistic  regression  
 
OR per 10  µg/m3 
increment 
 
 

age,  
sex, 
dampness,  
smoking 

Current asthma and 
asthma medication 

M
uk

al
a 

20
00

 

-Panel study lasting for 
13 weeks with daily 
recording of symptoms 
 
-162 children in 12  days 
care centers (8 in more 
polluted central areas 
and 4 in cleaner 
suburban areas) 
Age: 3-6 
 
-Helsinki, Finland 

- Palmes tubes  placed 
inside day-care centers for 
13 week  - only tubes that 
had collected for 168(+-24 
hr) were accepted for 
analysis;  
 
-also  indoor and outdoor 
NO2 exposure measured 
with Palmes tubes placed on 
children ‘s garnments 
 
-  max median : 47 (range 
22-83)  µg/m3 in 
spring/central area; min 
median : 23 (range 14-33)  
µg/m3 sping/suburban area 
 
-no details of gas usage 

cough episodes recorded daily   Poisson regression 
using GEE option with 
independent correlation 
structure assuming that 
correlation of responses 
followed the first-order 
autoregressive process.  
 
- stratified by season 
(winter, spring).  
 
-Estimates on a 
categorical scale  and  
continuous scale (in 
text) 

parental education, 
ETS, 
allergies,  
oven (gas/electric),  
day care centre 

NS 
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N
ea

s 1
99

1 

-a sub-sample of a   
large cohort study (The 
Harvard Six Cities) 
assessed every year for 
3 consecutive  years 
 
-1567 children selected 
with a stratified strategy 
to obtain 70% (achieved 
58%) smoking 
households and 70% 
(achieved 48%) with 
major  NO2 sources (gas 
cooking stove or 
kerosene heater) 
 
Age:7-11  

-Palmes tubes in 2 
consecutive 1-week 
sampling periods in winter 
and summer; in kitchen, 
activity room and child's 
bedroom  
 
-household without a major 
indoor  NO2  source: mean 
16.2  µg/m3 ; households 
with a major indoor NO2 
source (48%): 44.2  µg/m3 
 
-. Gas stove 623/751; 
kerosene heater 156/751 
 
-PM also measured 
 

Previous year prevalence of: 
LRS (any SOB or wheeze or cough 
or phlegm or bronchitis 
combined),  
SOB,  
chronic  wheeze,  
chronic cough,  
bronchitis,  
hay fever,  
earache 
 
Also FVC, FEV1 mL, FEV1/FVC, FEV 
0.75, FEF 25-75, FEV 25-75/FVC, 
 

logistic regression 
models  
 
-generalized estimating 
equations   for 
incidence 
 
-stratified by gender 
and smoking at home 
 
OR per 28.2  µg/m3 
 
 

age, 
sex, 
city, 
parental history of 
bronchitis, 
parental history of asthma, 
parental college education, 
single parent family status, 
respirable particulates at 
home 
 
-analysis stratified by gender 
and smoking homes 
 
-no adjustment for indoor 
smoking 

LRS  (when stratified 
significant only ic girls 
and in smoking homes) 

N
its

ch
ke
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00
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- panel   daily lasting  for 
12 weeks with 
symptoms recorded 
daily in a diary and  NO2 
exposure measured in 
schools and home; 
schools had taken part 
in intervention trial (see 
Pilotto 2004) 
 
 -174 children with 
asthma from 18 schools 
Age: 5-13 yr 
 
-Adelaide, Australia 
  

-passive diffusion badges in 
schools on 3 consecutive 
days  over three times and 
at home  for 3 days over one 
time at home (home 
exposure recorded from 
time children arrive back 
from school until bedtime) 
during winter season 
 
-Measurements are based 
on max exposure values as a 
proxy for peaks exposure:  
 
 -kitchen: range 5.6-795.2  
µg/m3 ; median 41.4  µg/m3 
Classroom: range 16.9-577.2  
µg/m3 , median 73.3  µg/m3 

chest tightness, 
cough 
wheeze, 
breathing difficulty, 
breathlessness on exertion,  
daytime asthma attacks,  
night asthma attacks,  
outcomes measured as 
symptoms counts, 
FEV1% taken at beginning and 
end of study 
 

negative binomial 
model for   symptoms 
rate and symptom 
counts  
 
exposure: maximum 
NO2 level at home (and 
school)  
 
 -sub-group analysis in 
children sensitised to 
HDM for modifying 
effect of HDM with  NO2 
 
-relative risk per 18.8 
µg/m3increase in  NO2 
 
[32 outcomes and not 

age, 
sex, 
smoking at home,  
ethnicity, 
hayfever, 
parental education,  
clustering by school,  
serious respiratory illness 
before age 2 

Difficult breathing 
during the day (school 
exposure) and at night 
(kitchen exposure),   
asthma attacks at night 
and night-time wheeze 
(kitchen exposure), 
decrease in FEV1 % 
predicted (kitchen 
exposure),  
 
(In sensitised children: if 
Der p low then wheeze 
at night increases, if Der 
p is high then wheeze at 
night decreases) 
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 -use of gas cooking or UFG 
at home 
 

adjusted for Bonferroni] 
 

O
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cross-sectional study on 
indoor air quality, 
HEART (Home 
Environment and 
Respiratory Health) 
 
- 148 adults with severe 
COPD 
- Age: mean 69 years (SD  
8.2) 
 
-Aberdeen UK 

-Palmes tubes in living room 
and bedroom left for 1 week 
in the living room and 
bedroom  
 
-median (IQR): living room 
14.7 ( 8.8-23.3)  µg/m3 , 
bedroom 13.3 ( 7.3-19.6)  
µg/m3 
 
-no gas details reported 
 
-indoor PM 2.5 and 
endotoxins also measured 

COPD health status measured 
using the St George's Respiratory 
Questionnaire 

-Linear regression 
 
-estimate reported as 
beta with SE 
 
-stratified by  smokers 
and non-smokers 

age, 
lung's function 

N.S. 

Pi
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o 
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-panel study   on indoor 
classroom  (n=41) and 
homes (n=121)  with 
unflued gas appliances 
exposure over a winter 
period (March-Sep) 
during which children 
kept a daily symptoms 
diary 
 
-388 children from 41  
classrooms in 4 schools 
with unflued gas heating 
and 4 schools with 
electric heating 
 
-Sidney, Australia 
 

-  passive diffusion  badges  
to open when gas appliance 
on and close when 
appliance off  for two weeks 
 
-Classroom  monitored daily 
over 9 alternated weeks for 
6-hous school day daily 
 
-Classroom: electric (mean 
range 7-48.9  µg/m3 ), 
unflued gas (7.5-248.2  
µg/m3 )   
 
-Homes: 100% unflued gas 
appliances and non-smoking 
 83% of homes with  NO2 
between  75.2 and 150.4  

hoarse voice,  
sore throat, 
cough with phlegm,  
dry cough,  
sneeze,  
stopped up nose, 
runny nose, 
wheeze,  
cold,  
absent from school 

-generalised linear 
mixed model   (GLMM) 
with binomial error 
distribution and logit 
link specification that 
takes into account 
classroom correlation  
 
-mean symptoms rate 
 
-OR  (proportion of 
children with at least 
one symptoms per day) 
for binary exposure   
(<75. µg/m3 vs >75.2  
µg/m3 ) 
 
-analysis do not take 

age, 
sex, 
area, 
history of asthma,  
early severe chest illness 
 
in non-smoking homes only 
 
  

Mean difference for  
daily rate of symptoms 
(cough with phlegm, 
cold, absent from 
school) and  absence for 
school 
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 µg/m3 
 . 

into account individual 
correlation 
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 -panel study study on 
the exposure 
assessment approaches 
to estimate personal 
exposure to indoor and 
outdoor  NO2 and PM 
 
 - 400 children (30 
asthmatics) 
age 6-15 yrs  

-Palmes diffusion tubes in 
the kitchen, main living area 
and child's bedroom for two 
weeks.   
 
-median (IQR): kitchen 
(electric) 13.6(9.2-19.4)  
µg/m3 , kitchen (gas) 36.8 
(26.0-58.5) µg/m3 ; 
bedroom (electric) 11.5 (7.5-
17.7)  µg/m3 ; bedroom 
(gas) 26.4 (19.0-34.3)  µg/m3 
 
-Also outdoor NO2 and PM 
(indoor and outdoor) 
measurements. 
- 100% gas ranges 

PEFR,  
acute respiratory illness,  
allergic symptoms 

-random effects 
longitudinal model for 
PEFR;  
-regressive logistic 
model for occurrence of 
daily symptoms  
 
- results reported only 
for children with asthma 
(n=30) and children with 
no lifetime history of 
asthmatic symptoms 
 
OR per 10  µg/m3 [see 
text] 

not clear Morning PEFR and high 
bedroom NO2 in 
asthmatic children 
(negative association) 

Ra
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-prospective birth 
cohort study 
(Copenhagen 
Prospective Study on 
Asthma in Childhood, 
COPSAC)  
 
-411 high-risk infants 
(with asthmatic mother) 
Age:18 months   
 
-Copenhagen, Denmark  

Palmes diffusion tubes in 
children's bedrooms   three 
times over 18 months of life 
for 10 weeks in each 
occasion 
 
 
- Median (bedroom):  NO2  
7.5  µg/m3 (range 5th -95th 
3.3-17.0  µg/m3 ) 
 
-gas details not reported 
 
 -NOx, PM 2.5, BS, CH2O  also 
measured indoors 
 

Daily wheezing symptoms 
recorded in diary over 18 months 
from birth. 
 
Wheezing (any symptoms 
severely affecting the child's 
breathing such as noisy 
breathing (wheeze or whistling 
sounds), breathlessness 
SOB or persistent, troublesome 
cough) 
 

-logistic regression (for 
symptoms)  
- linear regression (for 
number of 
symptoms/days) 
 
Estimates per   quintile 
of exposure 

sex,  
area, 
lung function (FEV 0.5) at 1 
month of age, 
mother’s education 
 

N.S. 
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-prospective study (from 
birth to 18 months) 
during which mother 
reported daily 
occurrence of symptoms 
every 2 weeks  
 
-1205 healthy infants 
from homes without 
smokers    
 
-Albuquerque, New 
Mexico, US 

-Palmes diffusion tubes 
measured placed for two 
weeks in child's bedroom 
year around 
 
- homes with gas stove 
measurements repeated 
every two weeks.  
 
-22% of homes  measures 
greater than 37.6  µg/m3 
 
-79% of homes with gas 
cooking,  21% electric 
cooking 
 

Wet cough 
wheeze 
Upper illness (runny or stuffy 
nose occurring at least in two 
consecutive days) 
All lower illness (at least one day 
of cough or wheeze) 
  
 

Generalised estimating 
equations (lagged and 
unlagged estimates) 
ratio and duration of 
illness  on a categorical 
scale  
 
-incidence rate (i.e. ratio 
number of events to 
number of days at risk)  
-duration of illness 

maternal education, 
age,  
sex,  
ethnicity breastfeeding in 
infancy, 
parental history of asthma,  
parental history of allergic 
diseases, 
season,  
household income, 
birth order 
 
-only non-smoking homes 
were selected 

NS 
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Panel study lasting 16 
weeks during which eNO 
is measured every week 
 
- 58 current asthmatic 
children from  two 
schools in Mexico and 
two schools in US across 
the border ; 
Age: 6-12 
 
-border across Mexico 
and US 

Ogawa passive diffusion 
samplers  measuring 
exposure in computer room, 
library and  classroom   for 
96 hours  
 
-Indoor  NO2 levels were 
40.0, 6.6 and 14.9  µg/m3 in 
3 schools but in the other 
one were 157.7  µg/m3 
(which is extremely high, 
but the school is located 
adjacent a bus station) 
 
- no details of gas appliances 
in schools; indoor  NO2 
source is   NO2 from traffic 
 
Also measured 
indoor/outdoor PM10, PM10-

Exhaled NO, 
respiratory symptoms  

Generalised estimating 
equations  (for 
percentage change in 
eNO per IQR increase (= 
35.7  µg/m3 )  

school, 
indoor NO (as it may 
interfere with exhale NO 
measurements),  
ambient temperature,  
relative humidity 

eNO (stronger effect 
with outdoor  NO2 ) 
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2.5,  PM25., BC and  outdoor  
NO2 
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-prospective study 
looking at the effect of 
outdoor and indoor NO2 
and assessing   children 
with a questionnaire 
every year for 3 years  
 
-842 children living in 
urban, sub-urban and 
rural districts; 
 Age: 9-10 yrs at 
baseline  
 
-Chiba prefecture, Japan 

Passive diffusion badge-type 
sampler (Toyo Roshi) 
measuring 24-h average   in 
living room twice (winter 
1993 and summer 1993)    
 
-vented: mean ( µg/m3 ) 
annual 34.6, winter 45.1, 
summer 28.6 unvented: 
mean( µg/m3 ) annual 60.9, 
winter 141.2, summer n.a. 
 
-61.1 % homes with 
unvented heaters 
 
-also outdoor  NO2 

Asthma  prevalence and 
incidence (3 yr)  of (i.e. 2 
episodes of wheezing with 
dyspnoea that had ever been 
given the dx of asthma ), 
 Wheeze prevalence and 
incidence 
 bronchitis prevalence and 
incidence 

-logistic regression 
 
-stratified by gender 
  
- OR per 18.8  µg/m3 
 
-No cluster analysis by 
area 

sex,  
history of respiratory 
illnesses, 
breastfeeding in infancy,  
parental history of allergic 
diseases, 
respiratory diseases under 2 
years of age,  
parental smoking, use of 
unvented heater in winter,  
outdoor  NO2, 
 history of allergic diseases 
 

N.S. 
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-  cross-sectional study 
of sub-sample in Simoni 
2004   
 
-383 adults  
 age 15-72 years 
 
- Delta Po, Italy 

Palmes diffusion tubes for 2 
weeks (1 week in winter, 1 
week in summer) installed 
in kitchen, living room and 
in 1 or 2 bedrooms. 
 
median: 37.6 µg/m3 
(winter), 26.3 µg/m3 
(summer); kitchen (winter) 
62.0  µg/m3 ; kitchen 
(summer) 37.0µg/m3 
 
-PM 2.5 also measured 
 
- no gas details available 
 
 

 PEF(mean, AMP/MEAN, 
MAX/MIN) as binary variable  
ARI (acute respiratory illnesses 
with fever) 
 WFRI (chronic bronchitis and/or 
asthmatic symptoms  without 
fever and without ARI) 
 IRR (irritation without fever) 

Logistic regression for 
daily indices of exposure 
(weekly mean x daily 
time of exposure) 
 
-sub-group analysis for 
winter/   summer and 
chronic bronchitis,  
 
OR on binary scale 
(median as cut off 
point) 

age,  
sex,  
smoking, 
asthma chronic, 
bronchitis chronic,  
rhinitis 

Bronchitis/asthmatic 
symptoms in winter and   
PEF in people with 
chronic respiratory 
disease (asthma or 
bronchitis)  
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m

on
i 2

00
4 

-cross-sectional study 
(sub-sample in Simoni 
2002)  
 
-421 adults living in one 
urban and one  rural 
areas 
Age: mean 40 years 
 
-Delta Po, Pisa ( Italy) 

Palmes diffusion tubes for 2 
weeks (1 week in winter, 1 
week in summer) installed 
in kitchen, living room and 
in 1 or 2 bedrooms. 
 
 mean (kitchen-Pisa): 28.2  
µg/m3 (winter) 24.4 µg/m3 
(summer); mean (kitchen-Po 
Delta): 62.0 µg/m3 (winter), 
28.2 µg/m3 (summer) 
 
gas furnace : Pisa 85%, 
PoDelta 97% 

ARI (acute resp illnesses i.e. 
runny nose, sore throat, sputum 
from the chest, chest cold, SOB)  
WFRI (bronchitis and/or 
asthmatic sx (sputum from the 
chest, SOB, attack of SOB, 
wheeze) without fever and 
without ARI) 
IRR (irritant symptoms) 
GENER (non-specific symptoms) 
Max amplitude PEF 

Logistic regression.  
 
Estimates per  high vs 
low exposure 
 
Results reported only 
for the winter period 
   

age,  
sex, 
area, 
smoking 

ARI 

Sm
ith

 2
00

0 -panel study lasting 6 
weeks 
 
-129 participants with 
current asthma  living in 

Passive diffusion lapel badge 
monitor to be attached to 
participant when arriving home 
from daily activities; badge 
cover removed when cooking 

chest tightness,  
cough, 
 wheeze,  
breathlessness,  
breathlessness on 

GEE with imputation (for 
missing data).  
 
- Lag 0 and lag 1 
considered in analysis 

age, 
sex, 
area, 
smoking, 
SO2,  

chest tightness (lag 0 
and lag 1), 
daytime/night time 
asthma attacks (lag 0), 
breathlessness on 
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104 households 
Age: any (adults and 
children). 
 
-Port Adelaide, Australia 

and heating and time recorded;  
cover replaced at bed time and 
time recorded; one week cycle 
x 6. 
- median range: 7.0-275.7 
µg/m3; IQR within subject 1.1-
288.6µg/m3 
-64% households with gas for 
cooking and heating 

exertion,  
daytime asthma attacks,  
night asthma attacks 
recorded in diary. 
Asthma attack definition: 
any asthmatic episode 
involving breathlessness 
and/or wheezing and/or 
chest tightness and/or 
coughing that interrupts 
ongoing activities or 
requires some procedures, 
e.g. resting or using 
nebulizer to resume 
normal and comfortable 
breathing 
 

 
- stratified by age group 
 
- daily asthma symptoms 
and daily NO2 exposure  
 
-OR on a continuous scale 
 
-household not treated as 
cluster in the analysis 
70 outcomes but not 
corrected for Bonferroni 
 

O3, 
wind, 
relative humidity, highest 
level of education at home,  
minimum temperature, total 
fungal spore counts,  
Cladosporium, Alternaria 

exertion (lag 1) in 
participants of age  ≤   
14 years; 
 cough (lag 1) in 
participants of age 35-
49 
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ny

er
 2

00
4 

Cross-sectional analysis   
of a birth cohort study 
(Asthma Multicentre 
Infants Cohort Study 
AMICS) 
 
1611 infants   followed 
up for a year  
 
Ashford (UK), Barcelona 
and Menorca (Spain)   

Palmes diffusion tubes for 2-
week period installed in the 
living room 
 
 median : UK 10.9µg/m3, 
Barcelona 86.3µg/m3,  
Menorca 22.3µg/m3 
 
gas stove use: UK 60%, 
Barcelona 74%, Menorca 72%. 
Gas heater use: UK 83%, 
Barcelona 34%, Menorca 25% 

- cumulative incidence of 
LRTI (defined as a positive 
answer to "has a doctor 
ever told you that your 
son/daughter has had a 
chest infection?") and use 
of antibiotics during first 
year of life; 
- frequency of LRTI 
symptoms (recorded 
retrospectively by 
mothers) 

logistic regression 
 
Estimates by category 
(<=9.4, 9.4-18.8, 18.8-56.4, 
>56.4 µg/m3) 

parental atopy,  
sex, 
maternal smoking,  
family size, 
breastfeeding in infancy, 
social class,  
parental asthma,  
season 

N.S. 
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Case-control study   
(Indoor Pollution 
Endotoxin Allergen 
Damp and Asthma in 
Manchester, IPEADAM)  
matched for age, sex, 
sib-ship size,  
 
-90 matched children-
pairs 
age 4-17 
 
-Manchester, UK 

-passive diffusion tubes kept for 
one week in the living and in 
the child's bedroom 
 
-no details of NO2 
measurements or gas usage 
 
-PM 2.5, VOC, formaldehyde, 
endotoxin also measured 

cases: asthma diagnosis Conditional logistic 
regression 
 
OR (no  
details of NO2increment or 
comparisons between 
categories) 

controls matched for age,  
sex and sib-ship size 

N.S  
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-prospective study –
women keep record of 
daily symptoms over 
one year period 
 
- 888 adult women  non-
smoking    
 
-Connecticut and 
Virginia, US 

- Palmes diffusion tubes placed 
in the main living area for 2 
weeks in homes with electric 
stove and 3 to 6 weeks in 
homes with kerosene heaters 
and gas stove in winter.   
 
-median: gas space heater (103 
µg/m3), no gas space heater 
(23.5µg/m3) 
 
-34% of women using gas stove 
 
- Also SO2 measured 
 

chest tightness,  
cough, 
 wheeze,  
sore throat,  
runny or stuffy  nose, 
laryngitis. 
  

log-linear Poisson using 
generalised estimating 
equations for rate of days 
with   symptoms over 
frequency use of secondary 
heating source 
 
estimates for number of 
days with symptoms on 
categorical scale  
(≤150.4 µg/m3 vs >150.4 
µg/m3) 

race,  
history of allergies,  
number of children, 
dwelling type, 
residence state, 
education 
 
(only non-smokers) 

Wheeze when 
considering high NO2 

exposure (> 150.4 
µg/m3 =top quartile) vs 
lowest quartiles (≤150.4 
µg/m3)  
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Author Design and Participants Exposure assessment Outcome assessment Statistical analysis Adjusted for Significant associations 

va
n 

St
rie

n 
20

04
 

-prospective study (YCAS 
– same cohort as 
Belanger 2003) during 
which parents record 
daily symptoms over a 
year 
 
-652 high risk infants 
(must  have an 
asthmatic sibling of age 
younger than 11) 
Age:0-1    
-- Connecticut and 
Massachusetts, US 

-Palmes tubes placed in main 
living room for a 2-wk period 
over the year 
 
- median 18.6µg/m3 (IQR 9.6-
32.7µg/m3) 
 
-also   HONO measured 

days of wheeze, 
 days of SOB,  
days of persistent cough 
over one year prevalence 
recorded by parents in a 
daily calendar  

Poisson regression 
 
-Stratified  by cold and 
warm seasons. 
 
-Estimate as rate ratios on 
categorical scale (<80 
µg/m3 vs >80 µg/m3) 

maternal education,  
sex,  
smoking at home,  
HONO (for NO2 analysis) and 
NO2 (for HONO analysis), 
siblings, 
season of sampling,  
daycare, 
living in flat,  
ethnicity, 
parental asthma 

Cough, SOB when 
considering highest 
quartile vs lowest 
quartile  (but not for 
HONO). Stronger effect 
in winter 

Ve
nn

 2
00

3 

case-control study; 
cases= 193children with 
persistent wheezing and 
223 controls; age: 9-11 
years; location: 
Nottingham, UK 

-passive diffusion tubes in 
kitchen over a four week period 
 
- Mean levels of NO2 were 
higher in subjects from homes 
where gas was used for cooking 
(50.4µg/m3) than where gas 
was not used (21.2µg/m3) 
 
-CH20  also measured 

morning and evening PEF 
night-time and daytime 
symptoms score on a scale 
0 to 5 over the 4 week 
period when NO2 was 
measured. 

regression model 
- stratified by atopic status 
    
OR reported by quartile  

sex,  
age  
SES. 

N.S.  
   

Vi
ei

ra
 2

01
2 

cross-sectional study; 
 
64  children    aged 6-10 
yr,    
 
Sao Paulo, Brasil 

- passive diffusion  tubes placed 
in the participant’s living room  
measured for 30 days (2x 15 
days) 
 
-mean 17.6 (SD 3.9) µg/m3 

asthma medication in the 
last 12 months, asthma 
medical diagnosis,  
wheezing at some time,  
pneumonia 

logistic regression 
 
-exposure comparison not 
clear 
 

age,  
sex, 
maternal schooling,  
smoking in the home,  
presence of siblings 

Doctor diagnosis 
asthma, wheeze at 
some time  
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Author Design and Participants Exposure assessment Outcome assessment Statistical analysis Adjusted for Significant associations 

Zh
an

g 
G

 2
00

4 

-cross-sectional study 
 
-88 children 
Age: 4-6   
 
-Perth, Australia 

-Palmes diffusion tubes placed 
in living room and child's 
bedroom for 24 hours X 2  
 
-geometric mean (min-max) 
living room-winter - in non-
snoring children  homes: 38 (9-
314) µg/m3; in snoring children 
homes: 48 (6-345) µg/m3 
 
 -in non-snoring homes 57.5% 
gas cooking; in snoring homes 
53.0% gas cooking; in 
infrequent snoring homes 
63.0% gas cooking 

snoring Logistic  regression 
 
OR on binary scale (low, 
medium high) 

age, 
sex, 
pets, 
smoking at home 

Snoring 

Zh
ao

 2
00

8 

cross-sectional study, 
survey carried out 1 
week before class 
measurement; 
 
-1193 children in 46 
classrooms 
Age: 11-15   
 
-Taijuan, China (see 
Zhang X 2011) 
 
 

-IVL Passive diffusion samplers 
placed in classroom for 7 days   
(no school had mechanical 
ventilation) 
 
-39.4µg/m3 indoor classroom 
average, range 16-62µg/m3 
 
-no details of gas usage  
 
-also outdoor NO2, ind/out SO2, 
O3, CH2O measured 
 

cumulative asthma,  
wheeze or whistling in the 
chest  (12 months 
prevalence) 
 daytime attacks of 
breathlessness  (12 
months prevalence )  
nocturnal attacks of 
breathlessness   (12 
months prevalence ) 
 furry pet or pollen allergy  
(12 months prevalence )  
respiratory infection  (3 
months prevalence ) 
 

logistic  regression with 
hierarchical model (school-
class-student) 
 
OR on a continuous scale 
per 10 µg/m3 

age,  
sex,  
parental asthma,  
parental allergy, 
ETS, 
new painting, 
new floor material, 
new furniture 

Nocturnal attacks of 
breathlessness (but NS 
when adjusted for other 
pollutants) 
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Author Design and Participants Exposure assessment Outcome assessment Statistical analysis Adjusted for Significant associations 

Zh
an

g 
X 

20
11

 

- cross-sectional analysis 
of Zhao 2008 study, two 
years after  
 
-1143 children in 34 
classrooms 
Age: 11-15  years 
 
Taijuan, China (see Zhao 
2008) 
 

-IVL Passive diffusion sampler 
exposed for 7 days in 34 
classrooms 
 
39.4µg/m3 average 
 
-no gas heater 
-also measured SO2 
 

Any symptoms 
Improved if away from 
school 
Any mucus 
Any skin problem 
 

Logistic regression with 
hierarchical model (school, 
class-student) 
 
-HR for new onset or 
remission 
 
OR cross-sectional per 10 
µg/m3 increment  

age, 
sex, 
parental allergy or asthma 

Any symptoms, 
improved away from 
school and any mucus 

IVL Swedish Environmental Research Institute : IVL brochure. Diffusive samplers for air monitoring, available at: 
http://www3.ivl.se/affar/miljo_kartl/proj/passive_sampl/PassivaProvtagare.pdf. Swedish, Environmental Research Institute, Ltd..;  
Ogawa Ogawa protocol. NO, NO2, NOX and SO2 sampling protocol using the Ogawa sampler, Edition 6.06, June, 2006, available at: http://www.ogawausa.com/protocol.html. Ogawa & 
Company, USA, Inc. 
Palmes Palmes E.D., Gunnison A.F., Dimattio J., and Tomczyk C. Personal sampler for nitrogen dioxide. Am Ind Hyg Assoc J 1976: 37: 570–577. 
Radiello Radiello manual. English Edition v. 01-2006, available at: http://www.radiello.  com/english/Radiello’s manual 01-06.pdf. Fondazione Salvatore Maugeri – 
 
 

http://www3/
http://www.radiello/
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Design and participants   

Sixteen studies were published before 2000, the earliest being published in 1979 (Florey, 1979) 

and the remaining 34 studies from 2000 onwards. Twenty-three studies were carried out in 

Europe (6 in UK), 15 in US and Canada, 6 in Australia and New Zealand, 5 in China, Korea and 

Japan and 1 in Brazil. Twenty-nine studies were in children, 11 in infants (age 2 or younger), 9 in 

adults and 1 (Smith et al., 2000) in participants of any age (from 2 to 84 years). Thirty-four 

studies were in the general population, 10 in asthmatics, 4 in high-risk groups (defined by having 

a family member with asthma) and 2 studies in people with a diagnosis of COPD. Seven studies 

were carried out in school and one study in a nursery. 

Seven pairs of studies reported analyses using the same study population (or sub-groups 

belonging to the same population): (1) (Brunekreef, 1990; Dijkstra, 1990); (2) (Hansel et al., 

2008; Matsui et al., 2013); (3) (Fischer et al., 1985; Fischer et al., 1989); (4) (Annesi-Maesano et 

al., 2012; Matsui, 2013); (5) (Simoni et al., 2002; Simoni et al., 2004); (6) (Zhao et al., 2008; 

Zhang et al., 2011); (7) (Belanger et al., 2003a; van Strien et al., 2004). The study population of 

the latter pair of studies was also related (siblings) to the study population in Belanger (2006). 

The study sample size varied across the studies ranging from over 1,000 participants (Neas, 

1991; Braun-Fahrlander et al., 1992; Samet, 1993; Sunyer et al., 2004; Mi et al., 2006; Zhao, 

2008; Hulin, 2011; Kim et al., 2011; Zhang, 2011) to less than 150 (Fischer, 1985; Berwick et al., 

1989; Quackenboss et al., 1991; Garrett et al., 1998; Smith, 2000; Ng, 2001; Zhang et al., 2004; 

Hansel, 2008). 

Fifteen studies reported cross-sectional analysis of data collected at a single follow-up within 

cohort studies. Thirteen studies were cross-sectional and reported cross-sectional analysis; 

eleven studies were panel studies and 7 studies were case-control (Hoek et al., 1984; Venn et 

al., 2003; Tavernier et al., 2005), or case-control nested in a cohort (Magnus et al., 1998; 

Emenius et al., 2003). One cohort study reported longitudinal analysis for lung function decline 

over a 18-year period (Fischer, 1985) and a Japanese child cohort examined the association of  

wheeze and asthma incidence and indoor NO2 over a 3-year period (Shima and Adachi, 

2000).Two studies (Pilotto et al., 1997; Nitschke et al., 2006; Gillespie-Bennett et al., 2011) 

reported secondary analyses of intervention studies that looked at the health effects of replacing 

unflued gas heaters with flued gas or electric heaters in schools or at home 
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Indoor NO2 monitoring 

The most common rooms where indoor NO2 monitoring was carried out were the living room, 

followed by bedroom and kitchen. Seven studies monitored NO2 in children’s classrooms 

(Smedje, 1997; Mukala et al., 2000; Mi, 2006; Zhao, 2008; Flamant-Hulin et al., 2010; Hulin, 

2011; Kim, 2011; Sarnat et al., 2011; Zhang, 2011; Annesi-Maesano, 2012) or day-care centre 

(Mukala, 2000). Two studies measured indoor NO2 exposure both at school and home (Pilotto, 

1997; Nitschke, 2006). 

All studies measured NO2 with passive diffusion samplers. Although the design of a passive 

diffusion sampler can vary, the working principle is similar and can only provide concentration 

averages based upon the time the sampler is kept open. The majority of studies used a tube-

design sampler (Palmes, 1981), eight studies a badge design sampler (Ogawa, Toyo Roshi), 

four studies used a sampler produced by the Swedish Environmental Research Institute IVL and 

two studies a sampler with a radial design (Radiello, 2012). 

One-week or two-week average concentrations were the most common measurements as most 

measurement devices are not recommended for less than one week exposure periods. Three 

studies used samplers that can be used for shorter periods: one study (Shima and Adachi, 

2000). limited monitoring to one day in summer and one day in winter and the other two studies 

(Nitschke, 2006, Hansel, 2008) limited the monitoring to 72 hours repeated three times over the 

year. All three studies used badges for sampling. 

Pilotto (1997) and Smith (2000) attempted to measure short-term exposure to NO2 during 

periods of gas appliances use by keeping the passive diffusion badges open only during the time 

the appliance was on.  Simoni (2002; 2004) attempted to interpolate a daily index of personal 

exposure by measuring weekly average of NO2 with Palmes diffusion tubes and multiplying the 

measured concentration by the time participant spent home. 

A few studies repeated the exposure measurements throughout the year (Braun-Fahrlander, 

1992; Samet, 1993; Garrett, 1998; Raaschou-Nielsen et al., 2010) or at different seasons (Neas, 

1991, Shima 2000). Five studies measured indoor NO2 during the cold season only (Fischer, 

1985; Magnus, 1998; Triche et al., 2005; Nitschke, 2006; Kim, 2011).  
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Indoor NO2 levels   

The reported average levels of indoor NO2 varied within and between studies. For example, the 

median of 10-day average measured in UK infants’ bedroom (Farrow et al., 1997) was 13µg/m3 

but individual household average concentrations ranged from 1µg/m3 to 162µg/m3. In a study 

conducted in Sweden (Magnus, 1998)  the bedroom mean weekly average was 13µg/m3 but in a 

study conducted in US inner cities, the National Cooperative Inner-City Asthma Study  (Kattan et 

al., 2007) the reported median weekly average was 56µg/m3.  

In more than 30 studies the 75th centile of measured average NO2 was above 40µg/m3. 

Households or classrooms with unvented gas heating appliances tended to have the highest 

levels of indoor NO2. For example, in a Dutch study conducted in the late 1980s (Djjkstra, 1990) 

the median weekly indoor NO2 average in homes with an unvented kitchen geyser was 72µg/m3 

while the median in homes with a vented geyser was 40µg/m3. Households that cooked on a gas 

stove had higher indoor NO2 levels than those who cooked on an electric stove. For example, 

British homes that cooked with gas had a weekly average mean of around 50µg/m3 while homes 

that did not use gas for cooking had a mean of 21µg/m3 (Venn, 2003). 

Studies published before 2000 tended to report higher indoor NO2 levels than studies published 

after 2000. Eight of the 10 studies published before 2000 reported mean or median weekly or bi-

weekly averages concentrations above 40µg/m3. A Dutch study (Hoek, 1984) reported extremely 

high upper range values reaching levels above 700µg/m3. Studies with extremely high 

measurements tended to report the presence of unvented geyser heaters (Hoek, 1984; Fischer, 

1985; 1989), kerosene appliances (Berwick, 1989) or unflued gas heaters (Florey, 1979; Melia 

1982).  

Two Australian studies measured indoor NO2 only when gas appliances were on (Pilotto, 1997; 

Smith, 2000) and these measurements tended to be higher than weekly averages. In Pilotto 

(1997) measurements ranged from 75µg/m3 to 150.4µg/m3 in homes with unflued gas 

appliances; in Smith the median ranged from 7µg/m3 to 276ug/m3.  

Ten studies (Magnus, 1998; Mukala, 2000; Mi, 2006; Zhao, 2008; Raaschou-Nielsen, 2010; 

Flamant-Hulin, 2010; Annesi-Maesano, 2012; Kim, 2011; Zhang X, 2011; Sarnat, 2012) did not 

report the presence of any gas appliances and indoor NO2 levels tended to be low. For example, 

the weekly median indoor NO2 in Danish children’s bedroom was 7.5µg/m3 (Raaschou-Nielsen, 

2010), likely to be influenced by the absence of indoor NO2 sources. However, when outdoor 
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NO2 was high (above 80µg/m3) indoor NO2 levels tended to be above 40µg/m3 (Mukala, 2000; 

Mi, 2006; Sarnat, 2012). 

Health outcomes 

Respiratory symptoms were assessed using questionnaires to be completed by a field worker at 

interview or health diaries to be self-completed or completed by parents (if participant was a 

child) at home. Questionnaires asked retrospectively whether a symptom or diagnosis had been 

present usually in the 12 months prior to interview and NO2 monitoring. Diaries were used to 

keep a daily record of symptoms over a period that stretched from a couple of weeks (Hansel, 

2008) to 18 months (Raaschou-Nielsen, 2010) during which NO2 would be monitored 

periodically. 

Studies tended to assess symptoms more frequently than lung function. Wheeze was the most 

common symptom to be assessed (23 studies), followed by cough (14), shortness of breath (10), 

upper respiratory symptoms (7), chest tightness (6); FEV1 was the most common lung function 

measurement to be reported (8 studies).  

Statistical analyses   

The epidemiological measure of the outcome influenced the choice of statistical analysis. Studies 

that looked at a prevalence of a symptom or disease (i.e. asthma) over a period of time used 

logistic regression to estimate the odds ratio of having the symptom. Changes in lung function 

were estimated using linear regression.  

When the symptom was recorded daily the study estimated the frequency using a multi-level 

mixed model (Pilotto, 1997; Gillispie, 2011; Belanger, 2013) or a generalised estimating equation 

approach (Samet, 1993; Mukala, 2000; Smith 2000; Triche, 2005; Hansel, 2008; Flamant-Hulin, 

2010; Annesi-Maesano 2012; Sarnat, 2012; Hansel, 2013).  

Two studies (Samet, 1993; Smith, 2000) considered the lag effects (0 day and 1 day) of indoor 

NO2 exposure.  

Health effect estimates were reported as a continuous association per increment of NO2 (µg/m3 

or ppb) or by comparing the lowest exposure vs higher exposures, divided into percentiles.  
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Adjustment for confounders   

As required by inclusion criteria all studies adjusted the analysis for at least one confounder: sex, 

age, some indicators of socio-economic status (mainly parental education if participants was a 

child or educational level if participant was an adult), exposure to active or passive smoking, 

parental history of asthma or atopy, history of respiratory disease, season when indoor NO2 

monitoring was carried out, indoor allergen level (pets, cockroaches, fungal spores) and 

presence of dampness or mould at home. 

Fifteen studies did not adjust exposure to environmental tobacco smoke (ETS) or stratify for 

active smoking. The authors of a study conducted in children living in Boston argued that 

‘smoking (environmental tobacco smoke) is a source of NO2 exposure’ (Belanger, 2006, pg 298) 

and therefore not included as a confounder. A Canadian study excluded ETS exposure after 

applying a stepwise regression approach to determine the confounders to include in the analysis 

(Carlsten et al., 2011). Two studies (Pilotto, 1997; Samet, 1992) recruited only people who lived 

in non-smoking homes and as a consequence, analyses were not adjusted for ETS. Nine more 

studies (Florey, 1979; Berwick, 1989; Dijkstra, 1990; Garrett, 1998; Magnus, 1998; Venn, 2003; 

Tavenier, 2005; Raaschou-Nielsen, 2009; Sarnat, 2012) also did not adjust for exposure to 

smoking and no explanation was given. Two studies that excluded the effect of personal smoking 

by recruiting only non-smoking women (Triche, 2005) and former smokers (Hansel, 2013) did not 

adjust for ETS. 

Studies that adjusted for other air pollutants will be discussed separately later on in Section 2.3.7 

‘Studies that adjusted for other air pollutants’. 

2.3.4 Meta-analyses 

Studies excluded from the meta-analyses 

Of the fifty studies which were included in the systematic review only 17 could be incorporated 

into the meta-analysis. The remaining studies were not included in because: 

• There were less than four studies that reported the same outcome. The outcomes are 

listed below: 

− chronic obstructive pulmonary disease (Osman et al., 2007) 

− bronchial obstruction (Magnus, 1998) 
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− interaction with endotoxin (Matsui, 2013) 

− exhaled nitric oxide (FeNO) (Flamant-Hulin, 2010) 

− snoring (Zhang, 2004) 

− FVC (Florey , 1979, Brunekreef, 1990) 

− FEV1 (Fischer, 1985; Fischer, 1989)  but examining the same study population 

− FEV1 % change  (Brunekreef, 1990; Djikstra,1990 ; Neas, 1991)  

− FEV1 % predicted (Jarvis, 2005; Gillespie-Bennett, 2011; Nitschke,1999)   

− PEF ( Fischer, 1985;  1989; Kattan, 2007)  

− FEV1/FVC % predicted (Jarvis, 2005). 

 

• There were less than four studies that reported the same form of effect estimate (for the 

same outcome). The form of effect estimates are listed below: 

− exposure index (Simoni, 2002; Simoni, 2004) 

− duration of symptoms (Braun-Fahrlander, 1992) 

− change in daily symptoms score (Gillespie-Bennett, 2011) 

− incidence rate ratio of symptoms (Hansel, 2008) 

− occurrence of daily symptoms (Quackenboss, 1991) 

− relative symptoms rate (Samet, 1993; Nitschke, 2006). 

 

• Estimates could not be standardised to 10µg/m3 of NO2 because the reported effect was 

not given in a continuous scale  (Pilotto, 1997; Sunyer, 2004; van Strien, 2004; Triche, 

2005; Kattan, 2007; Raaschou-Nielsen, 2010; Hulin, 2011) 

In the following sections I am going to present the meta-analysis results starting with the most 

frequently reported outcome, 12-month prevalence of wheeze followed by prevalence of wheeze 

(any period prevalence), life-time prevalence of asthma, cough, shortness of breath (SOB), chest 

tightness and ‘non-specific’ respiratory symptoms  

Twelve-month period prevalence of wheeze  

Ten estimates for the association of 12-month prevalent wheeze with indoor NO2 were identified 

in 8 studies (Garrett, 1998; Shima and Adachi, 2000; Belanger, 2003; Belanger et al., 2003b; Mi, 

2006; Zhao, 2008; Esplugues et al., 2011; Kim, 2011). Individual strata estimates were entered 

for Shima and Adachi 2000 (strata - females and males) and for Belanger et al 2006 (strata - 

children with mother who was asthmatic and children whose mother was not asthmatic). Results 

 

 



82 

 

are shown in Fig 2.3. Most of the effect estimates were non-significant (P>0.05) and tended to be 

positive (with the exception of the estimate for boys in Shima and Adachi) but once combined the 

summary effects was positive and significant (OR for random effect 1.06, 95%CI 1.02, 1.12 per 

10µg/m3 of NO2). There is no evidence of heterogeneity (I2 0.0%, P=0.853) thus the fixed and 

random effects do not differ.  

Publication bias was assessed visually with the use of funnel plot (Figure 2.4). The plot shows a 

cluster of studies on the low-right hand side of the plot. This indicates a cluster of small studies 

publishing effect estimates that are larger than the combined effect (the line in the middle of the 

plot). It suggests publication bias as small studies are more likely to be published if they report 

positive results. The result from the Egger’s tests suggests some evidence of publication bias 

(P=0.032). Egger’s test has more statistical power than the Begg’s test and this may explain why 

the Begg’s test did not find any evidence in publication bias (P=0.16). 
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Figure 2.3 Forest plot and meta-analysis of estimates for 12-month period prevalence of wheeze and indoor 
NO2 per 10µg/m3 increase stratified by type of study population 

 

Figure 2.4 Funnel plot showing the estimates for 12-month period prevalence of wheeze and indoor NO2 per 
10 µg/m3 increase 
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Prevalence of wheeze (all periods) 

Five more studies (Hoek, 1984; Farrow, 1997; Smith, 2000; Emenius, 2003; Belanger, 2006) 

reported an estimate for prevalent wheeze using a time period other than 12 months. Stratified 

results were entered for Belanger (strata - living in single-family housing and multi-family 

housing) and Smith (strata –age groups). After adding the five studies the size of random effect 

decreased to 1.02 (95%CI 1.00, 1.03) per 10µg/m3 of NO2 (Figure 2.5).The estimate arising for 

the 0 to 14 year age group from Smith et al, contributed to more than 50% of random effect 

(59.6% weight), possibly largely contributing to the heterogeneity in the asthmatics sub-group (I2 

26.5 %, 6 estimates). The funnel plot (Figure 2.6) and the formal statistical tests suggest some 

publication bias (P value for the Egger’s test=0.006; P value for the Begg’s test=0.08). The 

estimates reported by Smith (2000) have very narrow confidence intervals; this could be 

explained by the increasing statistical power of repeated observations and that NO2 was 

measured only when gas appliances were on. 

Life-time prevalence of asthma 

Seven studies reported an estimate for the lifetime prevalence of asthma and indoor NO2 that 

could be standardised per 10µg/m3 increment and combined for a meta-analysis (Figure 2.7). 

The random effect was 1.05 (95%CI 0.94, 1.17). The estimate from Hoek study had the largest 

weight (60.6%). There was moderate heterogeneity between the groups (I2 42.0%, P=0.098) and 

within the school sub-group (69.3%). There was no evidence of publication bias (Egger’s test P 

value=0.94 Brigg’s test P value=0.92), but again the number of estimates was small (Figure 2.8). 
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Figure 2.5 Forest plot and meta-analysis of estimates for prevalence of wheeze (all periods) and indoor NO2 
per 10µg/m3 increase stratified by type of study population   

 

Figure 2.6 Funnel plot for prevalence of wheeze (all periods) and indoor NO2 
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Figure 2.7 Forest plot and meta-analysis of the estimates for life-time prevalence of asthma and indoor NO2 
per 10µg/m3 increase stratified by type of study population 

 

Figure 2.8 Funnel plot for life-time prevalence of asthma and indoor NO2  
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Prevalence of cough  

Figure 2.9 shows the forest plot of the estimates for prevalent cough (all periods) stratified by 

type of population study. It includes 8 studies and 13 estimates as 4 studies reported stratified 

results. The random effect is OR 1.01, 95% CI 0.99, 1.03 per 10µg/m3 of NO2. There was some 

moderate heterogeneity (I2 29.0%, P=0.15), which was more obvious within some sub-groups 

(infants, children and high-risk sub-groups). Again, the estimates from the Smith study had a 

considerable weight in this meta-analysis (53.4% from the estimate in people aged 35-49 and 

27.0% from estimate in people aged 0-14).The funnel plot and formal test for bias (P value for 

the Egger’s test=0.20, P value for the Begg’s test= 0.10) did not suggest any evidence of 

publication bias  

Figure 2.10). 

Prevalence of SOB 

Figure 2.11 shows the forest plot of the estimates for SOB within each sub-group. Seven studies 

were included in the meta-analysis for prevalent SOB; the 11 estimates (three studies had 

stratified analysis) combined together gave a random effect of 1.01, 95% CI 0.99, 1.03 per 

10µg/m3 of indoor NO2. There was some heterogeneity (I2 23.4%, P value=0.22). As in the 

previous plots, the estimates from Smith’s study, (age 35-49) had a large weight (89.65%). The 

funnel plot (Figure 2.12) suggested some publication bias (P value for Egger’s test= 0.081, P 

value for Begg’s test= 0.029).  

Prevalence of chest tightness 

Figure 2.13 shows the forest plot from 7 estimates arising from 3 studies included in the meta-

analysis for the symptoms of chest tightness (prevalence determined over any time frame). The 

random effect was 1.02, 95%CI 0.99, 1.04 per 10µg/m3 of NO2. There was considerable 

heterogeneity (I2 71.9%, P value=0.002). The funnel plot of Figure 2.14 does not suggest any 

publication bias although the number of estimates is too small to be able to draw any conclusions 

(P value for Egger’s test= 0.478; P value for Begg’s test= 0.23). 
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Figure 2.9 Forest plot and meta-analysis of estimates for prevalent of cough (all periods) and indoor NO2 per 
10µg/m3 increase stratified by type of study population correct spacing  

 

Figure 2.10 Funnel plot for prevalence of cough (all periods) and indoor NO2 
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Figure 2.11 Forest plot and meta-analysis of estimates for prevalence of SOB (all periods) and indoor NO2 
per 10µg/m3 increase stratified by type of study population  

 

Figure 2.12 Funnel plot for prevalence of SOB (all periods) and indoor NO2  
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Figure 2.13 Forest plot and meta-analysis of prevalence of chest tightness (all periods) and indoor NO2 per 
10µg/m3 increase stratified by type of study population  

 

 

Figure 2.14 Funnel plot for prevalence of chest tightness (all periods) and indoor NO2 
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Prevalence of non-specific respiratory symptom   

Finally, as in Hasselblad the estimates of the association between ‘non-specific’ respiratory 

symptoms or disease and exposure to indoor NO2 were meta-analysed (Figure 2.15). Eight 

studies were identified reporting estimates of non-specific respiratory symptoms. These were: 

• Berwick (1989) – two or more of the following symptoms reported for one time period (12 

weeks): fever, chest pain, productive cough, wheeze, doctor diagnosis of bronchitis, 

doctor diagnosis of pneumonia and asthma 

• Dijkstra (1990) - any of the following: cough, wheeze and asthma 

• Espluges (2011) - any episode of bronchitis, bronchiolitis or pneumonia during first year 

of life diagnosed by a doctor 

• Garrett (1998) - presence of at least one of the following symptoms: cough, SOB, waking 

due to SOB, wheeze, asthma attacks, chest tightness, cough in the morning, chest 

tightness in the morning 

• Melia (1980) - morning cough, day or night cough, or colds going to chest, or whether the 

child's chest ever wheezy or whistling, asthma attacks or bronchitis 

• Melia (1982) - morning cough, day or night cough, or colds going to chest, or whether the 

child's chest ever wheezy or whistling, asthma attacks or bronchitis 

• Neas (1991) - any of the following symptoms: SOB, chronic wheeze, chronic cough, 

chronic phlegm, bronchitis 

• Shima (2000) - any chest illness ever diagnosed as bronchitis by a doctor 

• Zhao (2008) - recent respiratory infections defined as either cold, upper respiratory 

infection, or middle ear infection in the preceding3 months. 

The estimate reported by Melia (1980; 1985) and Dijkstra (1990) were tabulated as in Hasselblad 

(1992) (see section 2.3.1). The overall combined effect was 1.05, 95%CI 1.00, 1.10 per 10µg/m3 

increase indoor NO2. There was considerable heterogeneity (I2=41.3%, P=0.066). Visual 

inspection of the funnel plot (Figure 2.16) and formal statistical test did not suggest any evidence 

of publication bias (P for Egger’s test=0.66, P for Begg’s test=0.95). 
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Figure 2.15 Forest plot and meta-analysis of the estimates for the prevalence of ‘non-specific’ respiratory 
symptoms and indoor NO2 per 10µg/m3 increase stratified by type of study population  

 

Figure 2.16 Funnel plot for the prevalence of any ‘non-specific’ respiratory symptoms and indoor NO 
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Summary of meta-analyses results 

The results of each individual meta-analysis have been summarised in Figure 2.17. The results 

of meta-analysis for wheeze (both 12 months and any period prevalence) and ‘non-specific’ 

respiratory symptoms suggest there is a positive significant association of poor respiratory health 

and average exposure to indoor NO2. Heterogeneity was present in all of the meta-analyses 

except for the one relating to the outcome of 12-month period prevalence of wheeze which also 

had sufficient number of studies to consider a sensitivity analysis worthwhile. 

There were a small number of studies included in most of the analyses and so sensitivity 

analysis was restricted to the meta-analysis of 12-month prevalent wheeze.  

 

Figure 2.17 Graph plot summarising the random effect (odds ratio per 10 ug/m3 increase of indoor NO2) of 
the meta analyses (Het. = heterogeneity; any_rs=any respiratory symptoms) 

Sensitivity analysis  

Sensitivity analyses were carried for the meta-analyses of 12-month prevalence of wheeze and 

investigated the role of gas sources, the effect of indoor NO2 in the general population and the 

effect of adjusting for ETS. 

The role of indoor gas sources was investigated by removing those studies (Mi, 2006; Zhao, 

2008; Kim, 2011) that did not report presence of any gas (or other fossil fuels) appliances 
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indoors.  The random effect slightly decreased from 1.06 (95%CI 1.02, 1.12) to 1.05 (95%CI 

1.00, 1.11). There was no heterogeneity between studies (I2 = 0.0%). On the other hand, meta-

analysis of estimates of studies in which there were no indoor gas sources showed a random 

effect of OR 1.20 (95%CI 1.02, 1.41). This may imply that outdoor NO2 effect is separate from 

indoor NO2 effect and that outdoor air was driving the association rather than emission from 

indoor gas sources. 

The effect of indoor NO2 exposure on the general population was investigated by removing those 

studies in high risk-groups, defined as having a family member with asthma (Belanger, 2003). 

The random effect slightly increased and the precision decreased (OR 1.08, 95%CI 1.01 to 

1.16); there was no evidence of heterogeneity (I2=0.0%, P= 0.73). 

The effect of adjusting for environmental tobacco smoking was investigated by removing those 

studies that did not adjust for it (Garrett, 1998). There was no change in the random effect; the 

95% confidence interval slightly decreased (OR 1.06, 95%CI 1.01 to 1.11); there was no 

evidence of heterogeneity (I2 =0.0%, P value= 0.81). 

2.3.5 Summary of significant findings reported by all studies 

Since the majority of the studies could not be included in the meta-analyses a summary of the 

significance of findings reported by all studies is presented in Table 2.3. The table shows the 

direction of effect and significance of the reported associations. The studies are listed in 

alphabetical order by first author in order to facilitate browsing across the table. The table 

includes:  

• Publication year 

• The WHO region where the study was conducted 

• Type of study population (general population, high-risk group, asthmatics or COPD-

diagnosed) 

• Age group of study population 

• The outcome reported in the paper and the direction of the effect associated with indoor 

NO2. The outcomes are divided into ten categories:  

− Asthma (ever asthma, doctor diagnosis of asthma, asthma attack, asthma 

severity) 

− Wheeze  
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− Cough 

− SOB  

− Chest tightness 

− Upper respiratory symptoms (URS) 

− Other (e.g. composite of respiratory symptoms, lower respiratory tract infections 

(LRTI), asthma medication taken, FEV1/FVC predicted %) 

− PEF 

− FEV1 

− FVC. 

• Other indoor or outdoor air pollutants which have been assessed for any association with 

respiratory health in the same publication. The direction of effect of the association is 

shown (outcome not listed). 

The direction of the health effect is represented with the symbol “+”, which stands for positive 

effect or the symbol “-“, which stands for negative effect. Note that if there is an effect of indoor 

NO2 on lung function (PEF, FEV1, FVC, FEV1/FVC %) the association is expected to have a 

negative direction, i.e. a decrease in lung function. Statistically significant associations (P<0.05) 

are indicated by a double “+” (if positive) or double “-“ (if negative). Findings from stratified 

analysis are listed only if significant and are indicated with an ‘s’ after  the “++” or “ - - “symbols; 

the stratum is specified in the footnote. Studies included in one of the meta-analyses are 

highlighted in grey. 

Twenty-seven of the 50 studies reported a significant association of respiratory symptoms, 

diagnosis or lung function with exposure to indoor NO2 in the study population, with 11 showing 

these associations only in a sub-group of the study population. Six of the 24 studies which 

examined the association of indoor NO2 with wheeze reported a positive significant association, 

4 studies (of 15) reported a positive significant association with cough, 4 studies (of 10) a 

significant association with SOB, 4 studies (of 7) with chest tightness, 6 studies (of 16) with 

asthma diagnosis or severity and 4 studies (of 9) reported a negative significant association with 

FEV1 and 1 (of 5) a negative significant association with FVC. 

There was a geographical variation in the number of publications reporting significant findings. Of 

the 23 studies conducted in Europe, only 5 reported significant associations between respiratory 

health and indoor NO2 while among the 16 studies based in North-America (US and Canada) 13 

published some significant findings.   
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Table 2.3 Table showing the significance of associations of respiratory health and indoor nitrogen dioxide 
and other air pollutants  

Studies included in the meta-analyses are highlighted in grey 
WHO regions: E-European region, A= Regions of Americas, SEA=South-East Asia Region, WP=Western Pacific Region 
(includes Australia, New Zealand, China, Korea, Japan, Hong Kong 
Population: GP= general population; COPD= with a diagnosis of COPD;   As= with a diagnosis of asthma; HR= at high-
risk (i.e. having a relative with asthma) 
Age group: C= children ; I= infants; A= adults 
Other air pollutants: “ind”=indoor; “out”=outdoor; “pers”=personal  
s =stratified results  
Outcome: “++”= positive significant (p value<0.05) association; “+” = positive association not significant; ”—“=negative 
significant association; ”-“=negative association not significant; “s”=for stratified analysis only (see footnote for details 
of stratification); N.S.= non- significant (P value ≥0.05) 
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Annesi-
Maesano 2012 E GP C +     -     

indPM2.5 ++ 
indCH2O++ 
 

Belanger 2003 A HR I  + ++s 3         

Belanger 2006 A AS I  ++s4 + + ++s       

Belanger 2013 A As I ++5 ++     ++6 
++7     

Berwick 1989 A GP I       ++s8     

Braun-
Fahrlander 1992 E GP I/C      + +9    outNO2++ 

outTSP++ 

Brunekreef 1990 E GP C        - - -  
 

Carlesten 2011 A HR C +      +10     
 

Dijkstra 1990 E GP C - - -     - - -  
 

Emenius 2003 E GP I  +         outNO2++ 

Esplugues 2011 E GP I  + +    +, -11    outNO2++ 

Farrow 1997 E GP I  + + + + + +     
 

3 In children with non-asthmatic mothers;  
4 In multi-family housing; 
5 Asthma severity score; 
6 Night symptoms; 
7 Use of rescue medications; 
8 for lower respiratory symptoms , stratum: age>=7 year; 
9 Respiratory symptoms; 
10 Bronchial responsiveness; 
11 Positive  for LRTI, negative for bronchitis; 
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Fischer 1985 E GP A         -- --  
 

Fischer 1989 E GP A        - --s 12   
 

Flamant-Hulin 2010 E GP C       ++s13    indPM2.5 ++, 
indCH2O++ 

Florey 1979 E GP C          -  

Garrett 1998 WP GP C + + + + +  +14     

Gillespie 2011 WP As C  ++ ++   ++ ++15 
+16 - --  outNO2 + 

Hansel 2013 A COPD A       ++17    indPM2.5 ++ 

Hansel 2008 A As C  ++ ++ ++ ++       

Hoek 1984 E GP C + + +    +18     

Jarvis 2005 E GP A       -19  -  indHONO -- 
outNO2- 

Kattan 2007 A As C ++s20      + --s21 +   

Kim 2011 WP GP C - +         
outNO2++ 
out O3 --, 
outUFP ++ 

Magnus 1998 E GP I       +22    outNO2 – 

Matsui 2013 A GP C  --s23     --24     
 

Melia 1982 E GP C      +      
 

Mi 2006 A GP C ++ +  -   ++25    
ind/out O3 – 
outNO2++ 
out/indCH2O + 

Mukala 2000 E GP C   +        persNO2++ 

Neas 1991 A GP C + +  + +  ++26  - - PMn.a 27. 

12 In non-smoking women living in rural areas 
13 for FeNO; significant in non-atopic non-asthmatic 
14 For  Respiratory symptoms 
15 Lower respiratory symptoms 
16 Preventer use 
17 COPD severity 
18 For bronchitis and symptoms combined together 
19 FEV1/FVC % 
20 outcome: morbidity; stratum: non-atopic 
21 Stratum: cold season 
22 Bronchial obstructiveness 
23  Endotoxin interacting with high NO2  
24 Exercise related symptoms 
25 Asthma medication and asthma attacks 
26 Lower respiratory symptoms 
27 Not reported, but estimates for NO2 adjusted for PM 
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Nitschke 2007 WP As C + + + ++28 ++    --s29   

Osman 2007 E COPD A       + 30    indPM2.5 ++ in 
smokers 

Pilotto 1997 WP GP C  + +   ++ ++31     

Quackenboss 1991 A As C        -   indPM 
+outNO2— 

Raaschou-
Nielssen 2009 E HR I  -         

ind(PM2.5, BS, 
NOX , CH2O) all 
N.S . 

Samet 1993 A GP I  + -   + -32     

Sarnat 2012 A As C       ++33    

ind/outPM10++, 
indPM10-2.5++, 
indPM2.5++, 
outBC++, 
outNO2 ++ 

Shima 2000 WP GP C + +     ++s34    outNO2++ 

Simoni 2004 E GP A       ++s35 ++s36   indPM2.5++ 

Simoni 2002 E GP A       ++37 +   indPM2.5++ 

Smith 2000 WP As C/A +,  
++s38 +,- +,  

++s39 +,- +, 
++s40       

Sunyer 2004 E GP C       -41     

Tavernier 2005 E As C -           

Trishe 2005 A GP A  ++s42         indSO2++ 

van Strien 2004 A HR C  + + ++s43       HONO 

Venn 2003 E GP C  -         indCH20 N.S. 

28 Difficulty breathing 
29  Maximum kitchen exposure 
30 COPD morbidity 
31 For colds and absence from school;  
32 Lower respiratory symptoms duration 
33 eNO 
34 Bronchitis (significant in  females but not in males) 
35 ARI (acute respiratory illnesses with fever), WFRI (chronic bronchitis and/or asthmatic symptoms without 
fever and without ARI, IRR ( irritation without fever); significant only in winter in  people with asthma or bronchitis  
36 in winter in  people with asthma or bronchitis 
37 ARI (acute respiratory illnesses with fever), 
38 age<=14yr 
39 age 35-49 yr 
40 age<=14yr 
41 Lower respiratory tract infections and use of antibiotics 
42 80ppb vs =<80ppb 
43 (cold season) 
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Vieira 2012 A GP C ++44          
indO3++ 

outO3 N.S. 
outNO2 N.S. 

Zhang 2004 WP GP C       ++45     

Zhang X 2011 WP GP C       ++ 46 
++47    indSO2++ 

Zhao 2008 WP GP C ++48   ++       

indO3 ++, 
ind/outCH2O++ 

outNO2 N.S. 
indSO2++ 

44 Doctor diagnosis of asthma 
45 snoring 
46 Mucosal symptoms 
47 Symptoms  better away from school 
48 Nocturnal attack 
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2.3.6 Studies not included in the meta-analyses 

Studies in adults 

Of the 17 studies incorporated in the meta-analyses only one (Smith, 2000) included any adults. 

The systematic review identified a further 8 studies in adults, but two pairs of studies (Simoni, 

2002; 2004; Fischer, 1985; 1989) reported findings from the same study population. Four studies 

investigated the association of indoor NO2 with respiratory symptoms (Smith, 2000; Simoni, 

2002; Simoni, 2004; Triche, 2005), three studies with lung function (Fischer 1985; 1989; Jarvis, 

2005) and two study with COPD severity (Osman, 2007; Hansel et al., 2013).  

Fisher (1985 and 1989) found a negative significant association with several lung function 

parameters and weekly average indoor NO2 but not with lung function decline over 18 years of 

follow-up in women. 

Smith (2000) examined the respiratory health effect of daily average NO2 levels measured while 

gas appliances were on in asthmatics age 2 to 84. The lag effect at day 0 and day 1 were also 

examined. There was no association for wheeze or cough in adults except for cough at lag 1 in 

participants aged 35-49. 

Simoni (2002) multiplied the average weekly indoor NO2 level by the length of time spent indoors 

to estimate a daily index of NO2 exposure (NO2 -IndEx) and found a significant positive 

association with a combination of respiratory symptoms and daily PEF in winter in people with a 

chronic respiratory disease (bronchitis and asthma) living in a rural area. They went on to include 

an urban population, and overall having adjusted for area only acute respiratory illnesses with 

fever but not bronchitis/asthmatic symptoms were found to be significantly associated with daily 

index of NO2 (Simoni, 2004). 

Triche (2005) found a strong association with wheeze and indoor NO2 in women exposed to 

weekly average level above 150µg/m3(equivalent to the upper quartile) compared to women 

exposed to weekly average levels below 150µg/m3  who lived in in Connecticut and Virginia (US). 

Jarvis et al. (2005) measured NO2 and nitrous acid (a gas combustion product as well as by-

product of NO2 reaction with water) in the kitchens in a sub- set of an adult cohort  and found 

significant association with lung function decrements and nitrous acid but not indoor fourteen day 

average NO2.  
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For more details on studies on lung functions see section below on ‘Studies on lung function’; for 

details of studies on COPD see section ‘Studies in people with COPD’. 

Studies in people with asthma 

Nine studies were in children with asthma (Quanckenboss, 1991; Nietsche, 1999; Belanger 

2006; Kattan, 2007; Hansel, 2008; Gillespie-Bennett, 2011; Sarnat, 2011; Belanger 2013; Matsui, 

2013) and one study in children and adults with asthma (Smith, 2000). Most of the studies 

assessed the association of indoor NO2 with asthma morbidity by investigating: 

• The frequency (i.e. number of days) of symptoms (Smith,  2000; Belanger, 2006; 

Nitschke,  2006; Kattan, 2007; Hansel, 2008; Gillespie-Bennett,  2011; Belanger,  2013) 

• Acute visit to emergency rooms over an extended period (Matsui, 2013)  

• Changes in asthma severity score (Gillespie-Bennett, 2011; Belanger, 2013)  

• Changes in morning and evening FEV1 (Gillespie-Bennett); 

• Changes in FEV1% predicted (Nitschke , 2006); 

• Changes in FeNO (Sarnat, 2012; Matsui, 2013) over a certain period of time.  

Respiratory outcomes were usually assessed at the same time as indoor NO2 monitoring 

(Quackenboss, 1991; Smith, 2000; Nitschke, 2006; Hansel, 2008; Gillespie-Bennett, 2011; 

Sarnat, 2012, Belanger, 2013; Matsui, 2013) or before monitoring. Belanger (2006) assessed the 

prevalence of symptoms in the 12 months before monitoring and Kattan (2007) in the past 3 

months. 

Belanger (2006) found a significant association between weekly average indoor NO2 and the 

presence and frequency of symptoms in asthmatic children who lived in multi-family housing but 

not in children who lived in single-family housing. In Connecticut and Massachusetts (US) where 

the study was conducted, multi-family housing is a characteristic of lower socio-economic status, 

higher proportion of gas stoves (54.6% compared to 23.5% single-family housing) and lower use 

of asthma maintenance medication (i.e. inhaled or systemic steroids, cromolyn sodium,long-

acting β2-agonists, leukotriene inhibitors). A more recent study by the same author (Belanger, 

2013) reported findings of a longitudinal study with repeated monthly average levels of NO2 and 

outcome assessment on a larger and more diverse population than the population in Belanger 

2006. After adjustment for other risk factors, a significant dose-dependent increase in severity 

score, wheeze, night symptoms and rescue medication use was observed above a threshold of 

11µg/m3 of indoor NO2. Another US study on an inner city children living in Baltimore (Hansel, 
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2008) found that an increase in 3-day average NO2 was significantly associated with an increase 

in the number of days with limited speech, cough and nocturnal symptoms. 

Significant associations between daily NO2 from gas appliances and symptoms (chest tightness, 

asthma attacks, breathlessness on exertion) were also observed in younger asthmatic 

participants (age ≤14 years) living in Port Adelaide, Australia (Smith, 2000). No significant 

associations between respiratory symptoms and NO2 from gas appliances in the older age group 

except for cough in participants age 35-49. 

Sarnat (2012) examined FeNO in schoolchildren with asthma and found a positive association 

when considering the percentage change in FeNO and four-day average indoor NO2 in children’s 

schools.  

Kattan (2007) reported a significant increase in the risk for asthma symptoms with increased 

weekly NO2 average exposure only in children who did not have positive skin test responses 

(n=76 i.e. 16% of the whole cohort). Quackenboss (1991) found morning PEFR decreased in 

those asthmatic children with elevated NO2 weekly average although the association was 

significant with outdoor NO2 but not with indoor NO2. 

Nitschke (2006) investigated the dose-response relationship between asthma symptoms and 

indoor NO2 (3-day average measured at school and home) and house dust mite (HDM) allergen 

(Der p 1) in children. Significant associations were found between school NO2 levels and 

difficulty breathing during the day, at night and for chest tightness at night. Kitchen NO2 levels 

were significantly associated with FEV1. Stronger effects were observed in children sensitised to 

HDM. Matsui (2013) studied the same children population as in Hansel (2008) at an older age 

and found that endotoxin present indoors was positively associated with asthma morbidity (for 

maximum days with symptoms, exercise-related symptoms and wheeze/cough/chest tightness) 

in homes of low NO2 weekly average exposure (cut off point of 38µg/m3); the association tended 

to be ‘protective’ in homes with high NO2 exposure suggesting an interaction between household 

endotoxin and NO2 (but the interaction was not observed with PM). 

Gillespie-Bennett (2011) found that high NO2 (4-weekly average equal or above 15.9µg/m3) was 

significantly associated with greater daily reports of lower an upper respiratory tract symptoms 

and daily evening and morning FEV1 (but not PEFR) during winter. 
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Studies in people with COPD  

Two studies examined whether indoor NO2 exposure exacerbates COPD symptoms in people 

diagnosed with COPD. Osman (2007) assessed the health status of participants using the St 

George’ Respiratory Health Questionnaire (which assesses symptoms, activity limitation and 

disease impact) and found significant association with indoor PM2.5 but not with weekly average 

indoor NO2. Levels of indoor PM2.5 were four times higher in smoking households (49% of 

participants) than in non-smoking households while there was no significant difference of indoor 

NO2 levels in smoking and non-smoking households. Hansel 2013 measured averaged 1-week 

NO2 at baseline, 3 months and 6 months during which participants completed a spirometry test 

and a respiratory symptoms questionnaire. Hansel (2013) found that increase in NO2 

concentrations in the main living area was associated with worse dyspnoea and an increase in 

bedroom NO2 concentrations was associated with increasing nocturnal symptoms and COPD 

exacerbations after adjusting for passive smoking. No significant association was found with % 

predicted FEV1 and NO2 concentrations and no effect modification was found when including 

indoor PM2.5 into the model. The potential for these associations to be driven by the ingress of 

outdoor NO2 (and other traffic related pollutants) cannot be dismissed as 61% of participants 

lived 7.6 meter or less away from the kerb. 

Studies on lung function 

The association between lung functions in children and indoor NO2 was assessed in 8 studies 

(Florey, 1979; Brunekreef, 1990; Djikstra, 1990; Neas, 1991; Quanckenboss, 1991; Nitschke, 

1999; Kattan, 2007; Gillespie-Bennett, 2011), four of which reported significant findings. 

Quackenboss (1991) measured peak expiratory flow rate for up to four times a day during two-

week study period and found a significant reduction in morning PEFR in children with a current 

diagnosis of asthma but not in the remaining non-asthmatic cohort. In a secondary analysis of a 

randomised community trial in asthmatic children Gillespie-Bennett (2011) observed a significant 

association with a decrease in morning and evening FEV1 but not with the evening and morning 

PEFR. A significant negative dose-response relationship between percentage predicted FEV1 

and kitchen NO2 (0.4% per 18.8µg/m3 increase) but not in schools was also observed in 

asthmatic children by Nitschke (1999). Kattan (2007) observed a decrease in PEF associated 

with high levels of NO2 in non-atopic children during the cold months.  

Morning and evening PEF was tested in a case-control study (Venn, 2003), the cases being the 

children with persistent wheezing. No significant differences between the two groups were found. 

In three large studies with more than 800 children aged 5-11 lung functions was measured and 
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association with weekly average indoor NO2 assessed. Florey (1979) measured FEV0.75 in 808 

children of age 6-7; Neas (1991) measured several lung function (FVC, FEV1, FEV1/FVC, 

FEV0.75, FEF25-75% , FEV25-75/FVC) in more than 1,500 children aged 7-1; Brunekreef (1990) and 

Dijkstra (1990) measured FVC, FEV1, PEF, MMEF in 800 children over a 2-year period. None of 

the studies found any significant association with lung function. 

Five studies assessed the association between lung function in adults and indoor NO2. In a 

cross-sectional analyses of a sub-sample of 97 non-smoking women, Fischer (1985) found some 

significant negative associations between indoor NO2 exposure and several lung function 

parameters (IVC, FEV1, FVC, PEF, MEF75, MEF50, MEF25, MMEF) as measured in 1982 and no 

significant association with lung function decline since the start of the study in 1965. In a later 

study (Fischer, 1989) significant associations were found between exposure to NO2 and lung 

function (FEV1, PEF, MMEF, IVC) only among the non-smoking women living in rural area 

compared to smoking women living in rural area and in both smoking and non-smoking women 

living in urban areas.  

Simoni (2002) found significant associations between daily peak flow and daily indices of 

exposure to indoor NO2 only in subjects with chronic respiratory disease (i.e. asthma and 

bronchitis) and only in winter. When the sample was enriched with adults living in an urban 

environment (Simoni, 2004) no significant association between PEFR and the daily indices for 

indoor NO2 were found. 

Jarvis (2005) observed significant decrease in percentage FEV1/FVC% and FEV1 predicted % 

associated with HONO but not with indoor NO2.  

Studies on FeNO 

Among the three studies that measured exhaled nitric oxide (FeNO), only one study (Sarnat, 

2012) found a positive significant association between raised FeNO and increasing indoor NO2 

levels. Sarnat (2012) measured FeNO every week for 16 consecutive weeks in 58 children with 

asthma. NO2 was measured over a 96-hour period inside and outside the 4 children schools. 

Significant associations were also found between FeNO and outdoor NO2. The study did not 

mention the presence of any gas appliances in the school (traffic being the source of NO2).  

Flamant-Hulin (2010) measured NO2 in children’s classrooms and did not find any significant 

difference in FeNO between the low and the high NO2 exposed groups (defined with respect to 
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the third quartile value of 5-days average concentrations) within the asthmatic and non-asthmatic 

children. In a sub-analysis within the non-asthmatic children stronger associations were found in 

children who were atopic (defined as being positive to at least one of the most common 

aeroallergens) but the sample size was quite small (n=17). No presence of gas sources in the 

classroom was reported.  

Matsui (2013) measured FeNO in 150 children aged 5-17 every three months over one-year 

period. Weekly average indoor NO2 and airborne endotoxins were sampled within 2 weeks of the 

clinic visit. The respiratory effect of exposure to household endotoxin was found to be modified 

by co-exposure to indoor NO2 (as well as indoor air nicotine) and airborne endotoxin being 

protective in home with high NO2 (≥38µg/m3). 

2.3.7 Studies that considered other air pollutants 

Twenty-two studies assessed the respiratory health effect of other indoor and outdoor air 

pollutants. The most common air pollutants to be assessed were outdoor NO2 (14 studies), 

indoor PM (8 studies) and indoor formaldehyde (6 studies) (see Table 2.3). Six studies adjusted 

their analyses for the confounding effects of other air pollutants (PM, outdoor NO2 or HONO).  

PM 

Four studies (Simoni, 2004; Hansel, 2008; Flamant-Hulin, 2010; Sarnat, 2011) found that both 

indoor NO2 and indoor PM were significantly associated with respiratory health. One study 

(Annesi-Maesano, 2012) found that levels of PM2.5 but not NO2 in children’ classrooms were 

significantly associated with children’s respiratory health. One study in smokers with a COPD 

diagnosis (Osman, 2007) found significant associations with COPD exacerbation and indoor 

PM2.5 but not indoor NO2. One study (Raaschou-Nielsen, 2010) did not find any significant 

association with respiratory symptoms and indoor NO2 as well as indoor PM2.5. 

Two studies adjusted the analysis for indoor particles.  

After adjusting for PM2.5 Hansel (2008) found the association between 3-days average indoor 

NO2 concentrations and asthma symptoms was not ‘meaningfully’ altered; the incidence rate 

ratio (IRR) for daytime wheezing, coughing or chest tightness changed from unadjusted estimate 

of 1.05 (95% CI 0.99, 1.12) to 1.03 (95% CI 0.96, 1.11) after adjusting for PM2.5 and several 
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other confounders (season of sampling, age, sex, race, mother’s educational level), which makes 

difficult to interpret the effect of adjusting for PM2.5.  

One study (Neas, 1991) adjusted for indoor PM10 but did not comment on the changes in the 

estimated effect before and after adjustment for particulate.  

Indoor PM10 was included in the stepwise regression procedure carried out by Matsui (2013) to 

identify the ‘best’ multi-variate model but it was excluded from the final model because no strong 

association was observed. 

Outdoor NO2 

Two studies (Mi, 2006; Sarnat, 2011) found a significant association with respiratory health and   

outdoor NO2 as well indoor NO2.  Three studies (Zhao, 2008; Gillespie-Bennett, 2011; Vieira 

2012) observed a significant association with indoor NO2 but not with outdoor NO2. Six studies 

(Quanckenboss, 1991; Braun-Farhlender, 1992; Shima, 2000; Emenius, 2003; Kim, 2011, 

Espluges, 2013) found that outdoor NO2 was significant associated with respiratory health but 

not indoor NO2. Two studies (Magnus, 1998; Jarvis, 2005) found no significant associations with 

indoor as well as outdoor NO2. 

One study adjusted for outdoor NO2 but did not comment on the changes before and after 

adjustment (Shima, 2000). One study (Gillispie-Bennett, 2011) found that the estimated effect 

size of indoor NO2 on symptoms and lung function was not significantly reduced after adjustment 

for outdoor NO2. 

HONO 

Two studies adjusted analyses for indoor HONO. After adjustment, one study (VanStrien, 2004) 

concluded that NO2 but not HONO was associated with reduced lung function in infants in 

disagreement with findings of the other study in adults (Jarvis, 2005) that HONO was significantly 

associated with decrement in lung function (FEV1 and FEV1 /FVC) but not indoor NO2. The study 

observed a strong correlation between measures of indoor NO2 and HONO (r = 0.77), likely to be 

explained by the fact that indoor HONO is formed by the reaction of NO2 with surface water. 
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2.3.8 Studies that reported stratified analyses and effect modifications 

Atopic status 

Eight studies stratified analysis by atopic status. A study (Hansel, 2008) in asthmatic children 

living in Baltimore (US) found that atopic children were more likely to experience nocturnal 

symptoms associated with indoor NO2 than non-atopic children. A Canadian study in a high-risk 

birth cohort of children (Carlesten) examined the combined effect of sensitisation to Can-f1 (an 

allergen associated with dog exposure) and indoor NO2 and found that children sensitised to 

Can-f1 had an increased risk of asthma when exposed to NO2 levels above 22µg/m3 relative to 

having neither of such exposures. A study (Nitschke, 1999) in asthmatic children living in 

Adelaide, Australia found that those sensitised to HDM had a higher risk of having asthma 

symptoms when exposed to indoor nitrogen dioxide but interaction was significant only for 

wheeze at night. 

A large cross-sectional study (Annesi-Maesano, 2012) that included children living in six French 

cities (The French Six Cities Study) and measured exposure to classroom NO2 found that the 

association of asthma in the previous year was stronger in atopic children than non-atopic 

children. In contrast to this finding, a significant negative association between FeNo levels and 

classroom NO2 was observed in non-atopic children (but not in atopic children) in a sub-sample 

of the same study (Flamant-Hulin, 2010). A stronger and significant association of asthma 

morbidity with indoor NO2 in non-atopic children than atopic children was also observed in the 

National Co-operative Inner-City Asthma Study (NCICAS) that included 8 inner-cities in US 

(Kattan, 2007).  

No significant difference in the risk of having asthma-related symptoms on exposure between 

atopic and non-atopic children was observed in an Australian study set in Victoria (Garrett, 

1998). No difference in risk of having wheeze between atopic and non-atopic children was also 

found in an English case-control study (Venn, 2003).  

Sex 

Stronger associations of respiratory symptoms with indoor NO2 were found in girls than in boys 

by Melia (1980, 1982 - respiratory illness), Shima (2000 - wheeze, bronchitis, and asthma) and 

Neas (1991 - annual cumulative incidence of lower respiratory symptoms). Florey (1979) 
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presented results for boys and girls separately but found no significant associations in boys or 

girls. Dijkstra (1990) found no consistent pattern in boys as well as girls for lung functions. 

Finally of note, in two studies participants were exclusively females. Triche (2005) found that 

women exposed to concentrations higher equal or higher than 150µg/m3 (top quartile) of indoor 

NO2 had higher risk of wheezing compared to women exposed to levels below 150µg/m3 and 

Fisher (1989) found an association with lung function and NO2 only in non-smoking women living 

in rural areas. 

Seasonality  

Some studies investigated whether the effect of indoor NO2 varied in the cold and warm season. 

Garrett found that the association with respiratory symptoms was stronger in the summer than in 

winter but Mukala (2000) and Simoni (2002) showed the opposite. Mukala observed that the risk 

of cough associated with high NO2 levels increased significantly in winter compared to summer. 

Simoni (2002) found that acute respiratory symptoms in adults living in a rural area were 

significantly associated with daily indices of NO2 (a combination of spatial and temporal 

exposures) in winter but not in summer. Kattan (2007) did not find any difference in asthma 

morbidity between winter and summer with the exception that peak flow was lower in winter than 

summer when NO2 levels were high (59.8µg/m3). Van Strien (2004) found that the association 

with wheeze was significant only in spring/summer while persistent cough and shortness of 

breath were significant in autumn/winter but not in summer. 

Smoking/ETS 

Only one study stratified results by smoking status (Fisher, 1989). Negative associations 

between pulmonary function and exposure to NO2 were observed in non-smoking women, 

particularly those living in rural areas but not in smoking women. 

Neas (1991) found that the NO2 effect on respiratory symptoms appeared to be stronger among 

children with current domestic exposure to passive cigarette smoke (OR 1.48, 95% CI 1.19 to 

1.84) compared to those in non-smoking homes (OR 1.22, 95% CI 0.89 to 1.66) – the implication 

being that there could be an interaction between smoking and NO2 or that there could another 

component in second-hand tobacco smoke that affects respiratory symptoms, for example 

particulate.  
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Emenius (2003) observed that the risk of having recurrent wheezing (OR 1.31, 95% CI 0.49 to 

3.47) in infants exposed to the highest quartile (>15.6 µg/m3) of indoor NO2 compared to those in 

the lowest quartile (<8.4µg/m3) increased when they were also exposed to ETS (OR 3.10. 95% 

CI 1.32 – 7.30). 

Of note, Osman (2007) found that indoor PM2.5 but not indoor NO2 levels were higher in smoking 

households compared to non-smoking households levels (four times higher). 

Other 

A study (Matsui, 2013) in children living in Baltimore, US found that the effect of indoor NO2 on 

asthma was modified by the level of household airborne endotoxin and vice versa, the effect of 

household airborne endotoxin on asthma was modified by the level of indoor NO2. It is not clear 

the direction of the modifying effects. 

Contrary to common knowledge that individuals with a family history of asthma are more at risk a 

birth-cohort study (Bellanger, 2003) with at least one sibling with asthma living in Massachusetts, 

US found that children were more likely to have persistent cough with increasing weekly average 

indoor NO2 but only if the mother did not have a history of asthma compared to those whose 

mother had a history of asthma. The authors suggested that specific gene-environment 

interactions might help to explain these differences.  

The asthmatic siblings of these children were later assessed for symptoms (Belanger, 2008); 

those who lived in multifamily housing had a significant higher risk of having wheeze and chest 

tightness than those who lived in single-family housing and being exposed at same levels of 

indoor NO2. The authors suggest as possible explanations that in single-family housing indoor 

NO2 levels tend to be lower, home size larger and children’s bedroom is more likely to be on a 

different floor than kitchen compared to multifamily housing homes. However, it cannot be ruled 

out that exposure to indoor NO2 is simply a marker for poor housing conditions and that any 

association between NO2 and respiratory symptoms indicates a risk from poor housing. 

2.3.9 Other studies of note mentioning but not included in this systematic review  

Three intervention trials (Pilotto, 2004; Howden-Chapman, 2008; Marks, 2010) were excluded 

from the systematic review as they did not meet the inclusion criteria (study must report a health 

effect estimate for indoor NO2 and respiratory health). However, they still deserve to be 
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mentioned because of their superior study design, i.e. randomised controlled trial of unflued gas 

heaters, the control which produces high levels of indoor NO2 against flued gas heaters, the 

intervention, which produces less NO2.  

One Australian study (Pilotto, 2004) and one New-Zealander study (Howden-Chapman, 2008) 

conducted heating intervention trials in children’s classrooms and children’s homes respectively. 

Both studies observed an improvement in respiratory symptoms in the intervention group but no 

differences in lung function or airways hyper responsiveness in children with asthma (Pilotto, 

2004). The groups were randomised but at baseline intervention homes had significantly lower 

concentrations of indoor NO2 (8.5µg/m3) than control homes (15.7µg/m3) (Howden-Chapman, 

2008). After intervention average indoor temperature was higher (0.57°C) in the intervention 

homes than in the control homes, likely to be explained by the fact that the unflued heaters are 

more efficient in warming up a home. A warmer indoor temperature may have also contributed to 

the health improvement. Another limitation of both studies was that they were not blinded since 

participants were aware which type of heater had been allocated to and significant improvements 

were observed for subjective outcomes (self-reported symptoms) but not for objective outcomes 

(lung function and airways hyper-responsiveness). The authors acknowledged that there could 

be an element of reporting bias (Howden-Chapman, 2008).  

To minimise the risk of reporting bias a double-blind cluster-randomised crossover study was 

conducted in 22 schools in New South Wales, Australia (Marks, 2010). Classrooms were fitted 

with both types of heaters. The existing flued heater was left in situ and the new low-NOx flued 

heater was surrounded with a screen (the blind component of the trial). During the study period 

either the flued or the unflued heaters were functioning (the cross-over component). Nitrogen 

dioxide concentrations were, on average, 1.8 times higher during exposure to unflued gas versus 

flued gas heaters. Results were similar to the previous two studies, that children exposed to 

unflued gas heaters were more likely to report respiratory symptoms (OR for wheeze reported in 

the morning 1.38; 95% CI, 1.04–1.83) but no difference in lung function was observed. Besides, 

results suggested that the association of wheeze with NO2 was greater in atopic children, defined 

as those children sensitised to any of the following: house dust mice, cockroach, cat, Alternaria , 

Aspergillus, rye grass and a grass mix. 
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2.4 Discussion 

This literature review identified 50 studies that reported some associations between respiratory 

health and indoor NO2 (measured). The most common outcome to be assessed was prevalence 

of wheeze. Studies in asthmatics tended to assess the health effect of indoor NO2 exposure as 

the daily frequency or duration of a symptom over a period of time rather than prevalence. Indoor 

NO2 was measured in the room where the participants spent most of their time, living area or 

bedroom. Some studies measured indoor NO2 in children’s classroom because it was considered 

the place where they spent most of their day. Monitoring was carried out with passive diffusion 

samplers and indoor NO2 was reported as an average (mainly weekly). As expected indoor NO2 

levels tended to be high in homes with a gas stove or unflued gas heater. Studies published 

before 2000 tended to report higher concentrations, mainly determined by the presence of water 

heating gas appliances (geyser), which were widespread in Dutch homes at that time and use of 

unflued gas or paraffin or kerosene appliances for heating.  

Nearly all studies reported positive associations between respiratory outcomes and indoor NO2, 

with over half of the studies reporting at least one significant estimate. Studies were very 

heterogeneous in design, exposure and outcome assessments and statistical methodology, 

making it difficult to combine the findings using meta-analysis. Only seventeen studies could be 

included in any meta-analysis. Results of the meta-analyses for 12 month period prevalence of 

wheeze (OR for random effect 1.06, 95% CI 1.02 to 1.12 per 10µg/m3 change of indoor NO2) 

confirmed the findings of Hasselblad’s meta-analysis (OR for random effect 1.08, 95% CI 1.01 to 

1.16 per 10µg/m3) conducted more than 20 years ago  

2.4.1 Meta-analysis of the effect of indoor nitrogen dioxide and gas cooking on 
asthma and wheeze in children published in 2013 

While this work was ongoing a systematic review and meta-analysis of the effect of indoor NO2 

and gas cooking on asthma and wheeze in children was published (Lin et al., 2013). The meta-

analysis included 41 studies in children that looked at the effect of indoor NO2 on current and 

lifetime asthma and wheeze. It included only studies on indoor NO2 generated from gas cooking 

or its surrogate (use of gas for cooking). Ten estimates from 7 studies were included in the meta-

analysis for current wheeze as only those studies that measured household levels of indoor NO2 

generated from gas cooking were considered. Studies that measured indoor NO2 in schools or at 
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selected times of the day when gas appliances were on or those that combined personal and 

indoor NO2 exposure were excluded.  

Results from the Lin meta-analysis were concordant with Hasselblad and my findings, i.e. indoor 

NO2 is associated with current (i.e. prevalent) wheeze in children (OR for random effect 1.05, 

95%CI 1.02 to 1.08 per 10µg/m3 change). In disagreement with my findings that there was 

evidence of some publication bias the authors did not find any. In agreement with the results of 

my meta-analysis for asthma prevalence the combined effect of indoor NO2 on current and 

lifetime asthma was not significant (OR for random effect 1.03, 95%CI 0.97 to 1.09), probably 

due to the small number (n=5) of estimates included in the meta-analysis. 

The meta-analysis of the effect of gas cooking included a larger number of studies. Results 

suggested that there is a significant association between the use of gas cooking and current 

wheeze (OR for random effect 1.05, 95%CI 1.01 to 1.10) and between gas cooking and current 

and lifetime asthma (OR for random effect 1.32, 95%CI 1.18 to 1.48).  

2.4.2 Publication bias and quality score 

Visual assessment of funnel plot and formal test for publication bias of the meta-analysis for 12-

months prevalence of wheeze suggested evidence of some publication bias, i.e. results from 

small studies were more likely to be positive than we would expect by chance. 

Publication bias is a widely recognised problem limiting and influencing the results of a meta-

analysis. It has been suggested that results from meta-analysis of observational studies should 

be considered cautiously (Egger et al., 1998). In observational studies confounding and precision 

of measurements may cause a relation between study size and effect estimates (Sterne et al., 

2011). For example, larger observational studies might use self-reported symptoms which are 

more error prone, while smaller studies may use more precise measuring instruments (e.g. lung 

functions measures). Sensitivity analyses that investigate the influence studies have on the 

meta-analysis results are recommended, particularly if any heterogeneity across the studies has 

been observed.  

In order to minimise bias induced by low quality of evidence it is a regular practice in the meta-

analysis of clinical trials to assign a quality score to each individual study. A weight, which is 

directly proportional to the quality score, is often assigned to each study and included in the 

  

 



113 

 

meta-analysis. Initially, while assessing the reviewed studies I developed a 6-point quality score 

derived from Newcastle-Ottawa Quality Assessment Scale (Wells GA), a quality scale to assess 

case-control and cohort studies. The scale needed to be modified to account for the 

characteristics of the studies I reviewed. It included an assessment on:  

1. Representativeness of cohort - Was the sample representative of the general 

population?  

2. Ascertainment of exposure – Were indoor NO2 measurements repeated across the year 

or at least, if only one measurement taken, were the analyses adjusted for seasonality? 

3. Ascertainment of outcome - Was respiratory health assessed with an objective 

measured (rather than self-reported)? 

4. Temporal assessment of exposure and outcome: Was the respiratory health assessed 

during or after indoor NO2 measurements were taken (rather than before)? 

5. Adjustment for confounders in the analysis - Were the analysis adjusted for main 

confounders: sex, smoking and/or ETS (if children) and age?  

6. Adjustment for confounders in the analysis - Were the analysis adjusted for other indoor 

exposures (e.g. mould, damp, allergen)? 

A positive answer to one of the questions above was equal to one point score. None of the 

studies reached score 6 (positive answer to all questions). The most common ‘disqualifying’ 

points for a study were: 1) not adjusting for the season when a single NO2 measurement was 

carrying out; 2) subjective assessment of outcome, i.e. self-reported (parental reporting in case 

of children). 

I eventually dropped the quality score system as scoring systems in observational studies lack 

demonstrated validity. One of the main issues with quality scores applied to observational 

studies is that there is no standard score for this type of studies and they need to be created ad 

hoc. Observational epidemiological studies are designed and conducted to observe ‘real’ life 

situations and this requires a flexible design. A large array of useful assessment tools has been 

developed but they lack agreement (Sanderson et al., 2007). The use of a score to assess the 

quality of a study is controversial; findings of a study may not be associated with quality and the 

assumption that there is a linear relationship between quality score and effect estimate is 

questionable. 

Rather than relying on a quality score MOOSE (Stroup et al., 2000) has recommended 

conducting sensitivity analysis to explore the characteristics of the studies and investigate 
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heterogeneity, if present. Unfortunately, because of the small number of studies included in the 

meta-analysis sensitivity analysis could not be carried out extensively and were limited to the 

meta-analysis on 12-month prevalence of wheeze.  

Sensitivity analysis suggested that outdoor NO2 may have an independent role from indoor NO2 

in the prevalence of symptoms, that non-asthmatic people are more susceptible to indoor NO2 

pollution and that analysis which do not adjust for environmental tobacco exposure tend to inflate 

the risk of having respiratory symptoms.  

2.4.3 Adults  

One striking feature among the identified studies is the paucity of research that has been 

conducted in adults. 

Findings from one study in adults with COPD suggest that elderly people may be particularly at 

risk to indoor NO2 exposure. Studies in adults where the association of respiratory health with the 

use of gas appliances has been examined have reported contradictory results. Eisner et al 

(Eisner et al., 2002; Eisner and Blanc, 2003) found no association with lung function and 

respiratory symptoms in a cross-sectional study of adult asthmatics living in California. Franklin 

et al (Franklin et al., 2012) examined daily symptoms and lung function in older people with 

asthma over a 12 week period and observed an increased risk in wheeze and dyspnoea and 

small reduction in PEF and FEV1 on the days when an unflued gas heater was used. Jarvis et al 

(Jarvis et al., 1996) found that gas cooking was positively associated with asthma symptoms and 

a lower lung function in women but not in men – but these findings varied between countries 

(Jarvis et al., 1998). It has been suggested that women could be at higher risk as they are more 

likely to spend more time cooking or perhaps because they are more susceptible to pollutants. 

Using ‘gas cooking’ a proxy measure for NO2 exposure has considerable utility (cheap, gas 

appliance use is a major determinant of indoor NO2) but does not allow to discern whether the 

pollutant driving the association is NO2 or a co-pollutant such as particulate matter. This is an 

important consideration – although in public health terms, if the use of gas for cooking or 

combustion is associated with poor health – measures would need to be taken to reduce 

exposure to emission irrespective of the causal pollutant. 
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2.4.4 Asthma and atopy  

Most of the studies that assessed asthma morbidity were in children and only one in adults 

(Smith, 2000). All studies observed some significant association between exposure to NO2 and 

asthma symptoms or some lung function measures or FeNO. Unfortunately, there were not 

enough studies of similar design to be able to carry out a separate meta-analysis in asthmatics 

and wherever possible the estimates from these studies were combined with the estimates 

derived from the general population. Studies on asthmatics tended to assess the frequency of 

symptoms (rather than the 12-month prevalence), which requires different statistical 

methodology. 

Findings suggested that atopic asthmatics are at higher risk of having asthma-related symptoms 

when exposed to indoor NO2 and some studies observed a synergistic effect between NO2 and 

allergens (Nitchske, 1999). Evidence was inconsistent as a couple of studies found that non-

atopic children were more likely to experience symptoms than atopic children when exposed to 

same level of NO2 (Kattan, 2007; Flamant-Hulin, 2010; Matsui, 2013). 

2.4.5 Other air pollutants 

In studies of respiratory health and ambient pollution there is concern that any observed health 

effects are confounded by exposure to other highly correlated and sometimes unmeasured 

pollutants. The few studies that did adjust for other pollutants did not provide strong evidence 

that this is the case. Several studies adjusted for the confounding effects of other indoor or 

outdoor pollutants but only a few commented on whether the relationship between asthma and 

indoor NO2 changed after adjustments. 

Indoor environment affects NO2 chemistry differently from outdoors. Because of the relative high 

humidity in kitchen and large surface areas NO2 generated from gas combustion will react 

quickly with surface water to produce HONO. It has been suggested that 17% of the measured 

indoor NO2 concentrations may correspond to HONO (Lee et al., 2002). There is limited 

evidence that HONO may cause lung inflammation but findings were inconsistent. 

Stronger respiratory health effect associated with outdoor NO2 than indoor NO2 were observed in 

several studies (Braun-Fahlender, 1992; Shima, 2000; Emenius, 2003; Mi, 2006; Sarnat, 2006; 

Espluges, 2011; Kim, 2011). Results from the sensitivity analysis that removed studies with no 

gas sources appliances suggest that indoor NO2 originating from outside is associated with 
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higher risk of having wheezing in children than indoor NO2 when originated from gas appliances. 

Possible explanations are: 

1. Indoor measures reflect high exposure to outdoor NO2; 

2. The effect of indoor NO2 differs from the effect of outdoor NO2 as they represent 

surrogates for different pollutants mixtures: gas combustion related pollutants in case of 

indoor NO2 and traffic related pollutants with a possible more harmful effect in the case of 

outdoor NO2. 

Finally, it should be mentioned that only one study (Smith, 2000) considered the confounding 

effect of temperature even though some did consider season. Temperature has been found to be 

associated with lung function in children with asthma (Pearce and Douwes, 2013) and is highly 

correlated with the use of heating and cooking appliances and socio-economic status. 

2.4.6 Limitations of systematic review and meta-analysis 

This systematic review and meta-analysis had some limitations. PRISMA guidelines recommend 

that abstracts obtained through literature searches are reviewed by more than one assessor. 

This was not done here although where I felt uncertainty about interpretations of abstracts or 

results I discussed these with my supervisor. 

The approach I adopted assumes a linear dose-response relationship between exposure to 

indoor NO2 and health effects without a threshold. This is generally believed to be the case for 

health effects of NO2 (World Health Organization, 2013) and none of the identified studies 

provided strong evidence to the contrary although a very recent study reported a dose-response 

effect above a certain threshold level (Belanger, 2013). 

All effect estimates were based on an average exposure that varied from a few days to several 

weeks. The meta-analysis assumed that these exposures are representative of average indoor 

NO2 levels. However, indoor levels do vary with season, and time spent indoors also varies with 

season thus the estimates may not be representative of effects had the assessment been carried 

out throughout the year (or in a different season).  

Participants in Belanger (2003) and Belanger (2006) were related (siblings). This means that 

they were not totally independent, an underlying assumption in meta-analysis as they lived in the 
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same household but they were included in the same meta-analysis. Removal of the latter study 

made little difference to the overall effects (results not shown). 

Sensitivity analyses are recommended in meta-analysis of observational studies to investigate 

heterogeneity and study’s influence on meta-analysis (Stroup, 2000) but the number of studies 

included in the meta-analysis was too small to be able to carry out extensive sensitivity analyses. 

2.5 Summary 

In conclusion this systematic review shows limited evidence of an association of respiratory 

symptoms in children with increasing levels of indoor NO2. There were very few studies on adults 

and few studies on people with asthma to draw any conclusion. However, concerns regarding the 

health effects of nitrogen dioxide exposure in both the outdoor and indoor air continue and further 

attempts to examine these effects in adult populations are indicated. I will address these gaps in 

the following chapter (Chapter 3) by examining the association between asthma severity and 

indoor NO2 in a multi-centre adult cohort.  
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3. Association of asthma severity with indoor NO2 

3.1 Introduction 

The systematic review has shown that exposure to indoor NO2 may increase the risk of having 

asthma-like respiratory symptoms. Of note the review showed: 

• There was an increased risk of symptoms of wheeze with increasing indoor NO2 

• Studies of almost exclusively conducted in children suggested that asthma severity 

increase amongst those with increased exposure 

• There were few studies in adults. 

This chapter will examine the effect of indoor NO2 on asthma severity in an epidemiological study 

in adults, the European Community Respiratory Health Survey (ECRHS).  

3.1.1 European Community Respiratory Health Survey 

The ECRHS is a multi-centre study carried out in response to the global increase in asthma 

prevalence in the 1980’s. It began in 1990 collecting data on the prevalence of asthma and 

allergic disease and their known or suspected risk factors in young adult populations. It was 

originally designed to cover most areas of the European Community but has also included other 

areas outside Europe. It was the first international large multi-centre study to assess the 

prevalence of asthma and allergic disease in young adults using standardised protocols for 

interviewer-led questionnaires, assessment of atopy through skin prick tests and serum specific 

IgE to common allergens, lung function measurements, tests of airway responsiveness, and 

blood and urine collection. 

Fifty six centres from 25 countries across Europe and other parts of the world took part in the first 

survey between 1991 and 1993 (ECRHS I). In 1999/2001 twenty-nine of the initial 56 study 

centres performed a follow-up investigation of individuals who took part in the baseline clinical 

investigations (ECRHS II), and this follow-up included measurements NO2 inside in the homes of 

a sub-sample of participants. A second follow-up known as ECRHS III, i.e. the third survey has 

recently been completed in 22 centres. 



120 

 

3.1.2 ECRHS methods 

ECRHS I 

Between 1991 and 1993 a community based random sample of young adults aged 20-44 was 

identified from available population based registers and invited to complete a short postal 

questionnaires (stage 1). A random sample of responders to this questionnaire was invited to 

attend a local clinical centre (stage 2) where they provided more detailed information on health 

status and suspected risk factors for asthma and allergic disease (family size, family history of 

disease, occupation, childhood and current exposure to pets, exposure to tobacco smoke, 

dampness, ventilation, use of soft furnishings and use of gas appliances). Blood samples were 

taken and serum tested for specific IgE to house dust mite, cat, grass and Cladosporium 

herbarum. Forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and 

bronchial reactivity to methacholine were measured. In addition, most centres enriched their 

random sample cohort with a symptomatic sample of individuals who reported symptoms 

suggestive of asthma (being woken by breathlessness or an asthma attack in the last 12 months) 

and/or current use of asthma medication – but who had not been selected as part of the random 

sample. Around 180,000 participants completed the questionnaire (stage 1) and around 26,000 

from 45 centres participated in the clinical stage (stage 2). 

ECRHS II 

Between 1998 and 2003 twenty-nine of the initial 56 study centres performed a follow-up 

investigation. All participants (both random and symptomatic) who took part in the clinical stage 

were asked to take part in ECRHS II and invited to the local clinical centre for a follow-up visit 

(clinical stage) where detailed information on health status, risk factors, lung functions tests and 

blood and urine samples were collected. Around 13,000 short screening questionnaires on 

asthma symptoms were collected and about 10,000 individuals were assessed in clinics. 

Fourteen centres from 6 European countries also agreed to measure indoor and outdoor NO2 at 

participants’ homes (n=1906) using passive diffusion samplers (Passam, AG, Switzerland). 

These measures comprise the exposure data that was used for the analysis in this chapter. 

ECRHS III 

Twenty-nine centres from 14 countries (mostly European) agreed to participate in a further 

follow-up survey (ECRHS III). Individuals who took part in the clinical stage of ECRHS I were 

sent a short screening questionnaire and in 27 centres those who responded, were invited to a 
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local fieldwork centre for detailed interview on symptoms and lifestyle and clinical assessment of 

lung function, FeNO, venepunctures for specific and total IgE testing. ECRHS III started in 2011 

and has recently been completed with over 6,000 participants from the original random sample 

and over 900 participants from the original symptomatic sample. 

The full research protocol can be found at http://www.ecrhs.org. 

  

 

Figure 3.1 Flow chart of participants at each ECRHS survey (n=1,139 are those participants who took part at 
ECRHS I and ECRHS III but not at ECRHS II)  

  

 

http://www.ecrhs.org/
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3.1.3 Hypothesis 

Asthma severity in adults is associated with exposure to indoor NO2. 

3.1.4 Objectives 

• To investigate the association between asthma severity and indoor NO2 exposure in a 

sub-sample of adults with current asthma who participated in ECRHS II.  

• To determine whether the observed associations are modified by:  

− Sex; 

− Smoking status;   

− Use of inhaled steroids; 

− Atopy. 

• To determine whether associations are also seen between asthma severity and a proxy 

measure for indoor NO2 ‘use of gas for cooking’. 

• To include ECRHS II results in the previous meta-analysis of 12-month prevalent 

wheeze. 

3.2 Method 

3.2.1 Study population 

The main analysis is based on data collected at ECRHS II between 1999 and 2001 in the 

following14 centres of 6 European countries: 

• Belgium:  Antwerp South, Antwerp City 

• Spain: Barcelona, Galdakao, Albacete, Oviedo, Huelva 

• Italy: Pavia, Turin, Verona 

• UK: Ipswich, Norwich 

• Sweden: Umea 

• Switzerland: Basel. 
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Indoor NO2 was monitored in the kitchen of 1906 participants, of whom 257 were current 

asthmatics (Figure 3.2).  

Participants who were part of the random sample and the symptomatic sample who fulfilled these 

definitions were included (n=136 and n=121 respectively). They were defined as current 

asthmatics if they had: 

• A diagnosis of asthma confirmed by a doctor AND 

• At least one of the following in the last 12 months: 

a. Any symptom associated with asthma (wheeze, nocturnal chest tightness, attack 

of breathlessness after exercise, attack of breathlessness at rest, attack of 

breathlessness at night or woken up by cough).   

b. An asthma attack.  

c. Used inhaled/oral medicines because of breathing problem.  

Information on respiratory symptoms in the last 12 months was provided by the participants 

during an interview led by a field worker at the clinic. At the clinic lung function tests and 

bronchial challenge were also performed. Blood samples were taken and total and specific IgE 

for house dust mite, cat, grass and Cladosporium was measured in a single laboratory using the 

Pharmacia CAP System. 
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Figure 3.2 Flow chart of ECRHS II participants with current and without current asthma in the 14 ECRHS 
centres that took part in indoor NO2 monitoring  

3.2.2 Indoor NO2 monitoring and gas use 

Indoor NO2 was sampled using passive diffusion samplers (Passam AG, Switzerland). Samplers 

were located in the kitchen away from a window on the opposite side to the cooking appliance 

(ideally 2-3 metres away from the stove) at 1.5-1.8 metres above ground. Samplers were set up 

by a trained fieldworker and after 14 days of exposure participants were reminded by 

fieldworkers to seal the samplers, complete forms detailing opening and closing times, and return 

them by post in a pre-addressed jiffy bag. 

Duplicate and blank samplers were also used to test quality of monitoring. One in 10 participants 

had two of each sampler installed in their homes (‘duplicate’). One in 10 (not the same 

participants with a duplicate sampler) had two samplers, of which one had the lid left on (‘blank’). 

Within the following 12 months monitoring was repeated in around 850 homes (‘replicate’).  
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Exposure to gas cooking was defined by response to the question ‘What kind of stove do you 

mostly use for cooking?’. Those responding ‘Gas from the mains’ or ‘Gas from the bottles or 

other non-mains sources’ were classified as being exposed to gas cooking. Those who answered 

“electric” were classified as the reference group. Exposure to unflued gas heating (UFGH) 

sources included open gas fire and portable gas heaters and were identified by participant’s reply 

to the question ‘Which of the following appliances do you use for heating or for hot water?’ 

In this chapter the term ‘indoor NO2‘will mean ‘two-week average kitchen NO2’ as passive 

diffusion samplers measure total exposure over  time exposed for, in this case two weeks. 

3.2.3 Asthma severity 

Asthma severity was assessed with the following four markers:  

• GINA score (range1-4) 
A four-class asthma severity score (intermittent, mild persistent, moderate persistent, 

severe persistent in the last 12 months) based on 2002 Global Initiative for Asthma 

(Global Initiative for Asthma, 2002). The score was developed within the ECRHS cohort 

by Cazzoletti and colleagues (Cazzoletti et al., 2010). Briefly, the four-class score 

combines a clinical score (4 classes) derived from frequency of night-time and daytime 

symptoms reported in the last 12 months and FEV1 % predicted, with reported daily 

medication use in the last 12 months (4 classes).  
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Figure 3.3  GINA severity score based on clinical severity and treatment classification where Step 1= no daily 
controller; Step 2=low-dose inhaled corticosteroid (ICS), leukotriene modifier, theophylline or 

cromones; Step 3=low/medium-dose ICS combined with long-acting β2-agonists (LABA), or 
medium dose ICS combined with leukotriene modifier or theophylline, or high-dose ICS alone; 
Step 4= high-dose ICS combined with LABA or with leukotriene modifier (from Cazzoletti 2010)  

• Asthma score 
A six-level score (from 0 to 5), first proposed by Sunyer and colleagues (Sunyer et al., 

2007) derived as a sum of affirmative questions asking about the presence of any of the 

following asthma-like symptoms over the previous 12 months: 

1. Wheeze 

2. Woken up by a feeling of tightness in the chest  

3. Attack of shortness of breath at rest 

4. Attack of shortness of breath following strenuous activity  

5. Woken by an attack of shortness of breath. 

• Bronchial responsiveness after methacholine challenge test as a continuous 
outcome (slope) 
Participants with FEV1 at least 70% of predicted, and more than 1.5 litres, underwent 

bronchial challenge. The challenge was performed by inhalation of increasing amounts of 

methacholine up to a cumulative dose of 1 mg, with the methacholine solution being 

administered via a Mefar dosimeter (Mefar, Bovezzo, Italy). Bronchial responsiveness 

  

 



127 

 

(BR) was defined by the slope of the dose-response curve obtained with the test and 

estimated as rate of change of FEV1 against methacholine dose. The slope was 

transformed to 100/(log-slope +10) to satisfy the assumption of normality thus a low slope 

indicates high BR (Chinn et al., 1997).  

• Bronchial responsiveness after methacholine challenge test as a binary outcome 
(PD20) 
BR was also assessed as a binary outcome. Participants who had a fall in FEV1 of more 

than 20% after inhalation of 1 mg of methacholine we considered have bronchial 

response compared to those whose FEV1 change less than 20% after inhalation of 1 mg 

of methacholine.  

3.2.4 Statistical method 

Non-response bias 

Characteristics of participants who took part in the monitoring campaign and those who did not 

were compared using chi-square tests for categorical variables and Kruskal-Wallis tests for 

continuous variables. 

Participants’ characteristics included sex, age, age left education, age at onset of asthma, 

smoking status (never, ever or current), smoking at home, socio-economic status (a simplified 

version of the International Standard Classification of Occupations (ISCO) classification, which 

includes 6 social classes groups, based on the longest held job during the follow-up period 

between ECRHS I and ECRHS II) and ever exposed to vapour, gas, dust or fumes (VGDF); 

sensitization (defined as having a IgE for a specific allergen above 0.35kU/L) to house dust mite 

(HDM), Cladosporium, any common indoor allergen (defined as any specific IgE for HDM or 

Cladosporium, cats and grass above 0.35kU/L), total IgE level, type of cooking and heating 

appliances, presence of damp and mould at home, asthma severity and asthma symptoms score 

in the last 12 months, use of inhaled steroids in the last 12 months and BR (methacholine 

challenge test). 

Measures of indoor NO2 

Limits of agreement between duplicate and replicate measures of indoor NO2 were tested using 

the Bland-Altman method (Bland and Altman, 1986). Blank readings were checked for accuracy 
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of the measurements. Analyses were based on indoor NO2 levels measured on the first sampling 

only.  

Asthma severity 

The following clinical characteristics of participants were first examined: GINA severity score, 

asthma symptoms score, inhaled corticosteroids, BR and atopic status. 

Because of the relatively small size of the sample the four categories for GINA score were 

reduced to two categories: intermittent (i.e. GINA score= 1; 51.5% of participants with NO2 data) 

versus persistent (GINA score = 2, 3 and 4; 48.5% of participants with NO2 data), which included 

mild persistent, moderate persistent and severe persistent as classified in the original GINA 

classification. This categorisation divided the sample into two broadly equally sized groups. The 

association between indoor NO2 and GINA score was examined using logistic regression 

comparing current asthmatics with intermittent asthma severity (baseline) against current 

asthmatics with persistent (mild, moderate or severe persistence) asthma severity. 

As the asthma score was an ordered score without zero inflation, its association with indoor NO2 

was examined using an ordered logistic model (also known as proportional odds model) as in 

previous literature (Rage et al., 2009) .The crude association between asthma score and indoor 

NO2 was tested for proportionality of odds and if proportionality did not hold, a multinomial 

regression model was then adopted. Odds ratios were given for one class difference in the score. 

The BR slope was examined using linear regression; a lower slope is indicative of bronchial 

hyper-responsiveness. The binary outcome (PD20) was examined with logistic regression as in 

previous literature (Chinn, 1997).  

The effect of NO2 was explored on a continuous scale standardised to 10µg/m3 increase and as 

a binary variable with a cut-off point of 40µg/m3 (the maximum value for annual average 

exposure recommended by WHO).  

In the first instance univariate analyses were conducted, and then multivariate analyses adjusted 

for the effects of main confounders (main model) selected a priori: 

• Age 

• Sex 
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• Smoking status  

• Country where the study centre was located.  

To explore variation of effect between countries, analyses were also conducted within country 

and effect estimates combined using meta-analysis (DerSimonian and Laird, 1986). 

Heterogeneity between countries was tested using the I2 statistic (Higgins, 2003) which 

describes the percentage of total variation across studies that is due to heterogeneity rather than 

chance. For some analyses the sample size was too small for this approach. 

In addition to the main a priori confounders, a larger number of suspected confounders 

associated with asthma and indoor NO2 were included in secondary analyses (secondary 

multivariate model). These were: 

• Anybody smoking at home (y/n), which comprises both participants smoking at home as 

well as family members (as reported in the questionnaire) 

• Lifetime exposure to VGDF (y/n), which was merged into 2 categories (no and 

sometimes/often) 

• Presence of mould in the house (y/n) 

• Presence of damp in the house (y/n), which was merged into 2 categories (no/don’t know 

and yes) 

• Season of when NO2 monitoring took place: spring, summer, autumn and winter. 

Throughout statistical significance was defined as having a P value < 0.05 while interaction terms 

(effect modifiers) were considered significant at 10% level (P value <0.1). 

Statistical analyses were conducted using Stata 12.1.  

Effect modifications 

The following effect modifications were tested by inclusion of an interaction term in the analyses 

adjusted for the main confounders (sex, age, smoking status): 

 

• Sex  

• Smoking status (never, ever) at ECRHS II 

• Atopy, defined as present if an individual had serum specific IgE at ECRHS I less than 

0.35kU/L to at least an allergen to the following: HDM, timothy grass, cat or 

Cladosporium 
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• Use of inhaled steroids in the last 12 months (but not on GINA score as the score 

includes information on inhaled steroid use). 

Association of asthma severity with use of gas for cooking 

Further analyses were conducted on those participants (n=1571) who had current asthma at 

ECRHS II and reported the main type of fuel used for cooking was gas or electricity (baseline). 

3.2.5 Derivation of estimate for inclusion in meta-analysis of Chapter 2  

Finally, a logistic regression model was carried out to assess the association of wheeze in the 

last 12 months and indoor NO2 in all ECRHS participants (irrespective of their asthmatic status) 

from the random sample with NO2 measurements adjusted for sex, age, smoking status (y/n) 

with random effect by country. The effect estimate was then incorporated in the meta-analysis of 

12-month prevalent wheeze conducted in the previous Chapter 2. 

3.3 Results 

3.3.1 Participants characteristics  

Among the 5021 participants in the 14 centres that took part in the indoor NO2 measurement 

protocol, 684 (13.6%) were current asthmatics. Of these, 37.6% (n=257) had indoor NO2 

measures. 

Compared to those participants with current asthma and without NO2 monitoring data those with 

measures of indoor NO2 tended to be older (median age: 42.6 vs 41.0 years), more likely to be 

ex-smokers (30% vs 22%) and more likely to have a gas fired boiler (55% vs 43%) (Table 3.1). 
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Table 3.1 Characteristics in current asthmatics with and without NO2 measurements in ECRHS 14 centres in 
which NO2 was measured 

  
Without NO2 sampling  
(n=427) 

With NO2 sampling 
(n=257) 

P value for 
difference

* 

Age in years median (IQR) 41.0 ( 34.7-47.1) 42.6 ( 37.6-48.8) 0.0024^ 

Age left education in years  (median, IQR) 19 (16-23)  18 (16-22) 0.15^ 

Age of asthma onset in years (median, IQR) 18 (6-28)  18 (7-29) 0.62^ 

  n % n %   

Female 256  60.0 145 56.4 0.36 

Smoking status 0.033  

 Never 206 48.5 111 44.1  
 Ex 96 22.6 77 30.6   

 Smoker 123 28.9 64 25.4   

Exposure to smoking at home  172 40.4 90 35.0 0.16 

Occupation 0.40 

 Managers and professionals 93 21.8 56 21.8  
 Technicians & associate professionals 65 15.2 38 14.8  
 Other non-manual 111 26.0 79 30.7  
 Skilled manual 30 7.0 23 9.0  
 Semi-skilled or unskilled manual 58 13.6 32 12.5  
 Unclassifiable or unknown# 70 16.4 29 11.3  
Cooking appliance      0.57 

 Gas (mains/bottled) 183 44.5  123 48.1  
 Electricity  222 54.05 128 50   

 Other 6 1.5 5 2.0   

(Sources of heating) 

Open gas fire or portable gas heater 102 23.89 60 23.35 0.872 

Solid fuel (Open coal, coke, wood fires) 59 16.62 32 13.97 0.39 

Paraffin heater 16 4.51 4 1.75 0.073 

Gas fired boiler 153 43.22 125 54.59 0.007 

Presence of damp 93 22.91 61 23.92 0.76  

Presence of mold 115 27.98 86 33.46 0.13  

Country <0.001 

 Belgium 10 3.9 44 10.3  

 Spain 93 36.2 121 28.3  

 Italy 27 10.5 21 4.9  

 UK 62 24.1 99 23.2  

 Sweden 37 14.4 85 19.9  

 Switzerland 28 10.9 57 13.4  

 *χ2test unless stated; ^ Kruskal-Wallis test for continuous variables 
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Clinical characteristics  

Clinical characteristics at ECRHS II of current asthmatics with indoor NO2 measures are reported 

in Table 3.2. Around half of the current asthmatics were classified as having intermittent asthma 

according to the GINA score classification (GINA score=1); half of them had one or two asthma-

related symptoms (asthma score=1/2) in the previous 12 months; a small percentage (7.8%) 

reported they did not have symptoms used in the asthma score over the 12 months and 11.7% 

had 5 different types of symptoms (asthma score=5) in the last 12 months. Around 40% of 

individuals used inhaled steroids. Nearly half of them were sensitised to HDM and 68.0% were 

sensitised to at least one of the most common allergens. Clinical differences between current 

asthmatics with and without NO2 measures were tested for significance; there was no difference 

in markers of asthma severity except in the use of inhaled steroids (P=0.044) as current 

asthmatics without NO2 measures were more likely to use inhaled steroids (48.7%) than those 

with NO2 measures (40.7%) (Results not shown). 

Table 3.2 Table showing clinical characteristics at ECRHS II of current asthmatics with indoor NO2 measures  

Clinical characteristics 
% of current asthmatics with NO2 

measures  
(n=257) 

GINA 1 51.46 

GINA 2 14.23 

GINA 3 12.55 

GINA 4  21.76 

Asthma score 0 7.78 

Asthma score 1 25.29 

Asthma score 2 24.12 

Asthma score 3 15.18 

Asthma score 4 15.95 

Asthma score 5 11.67 

IgE for HDM allergen >0.35kU/L 47.6 

IgE for Cladosporium allergen >0.35kU/L  6.6 
 IgE >0.35kU/L  for any allergens (HDM, cats, grass 
or Cladosporium)  68.0 

Using inhaled steroids in the last 12 months 40.71 

PD20<1mg (data available for n=163) 50.9 

Bronchial responsiveness slope, mean (SD)*  5.4 (2.3) 

*data available for n=163 
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3.3.2 NO2 measurements 

The determinants of indoor NO2 in the ECRHS sampling programme are examined in greater 

depth in the next chapter (Chapter 4). However the main patterns of exposure are described here 

to improve understanding of the analyses presented in this chapter. 

Indoor NO2 was monitored continuously for two weeks between 1999 and 2001. Figure 3.4 

shows the distribution of indoor NO2 (first sampling), skewed to the right with median value of 

29.3µg/m3 (IQR 15.8µg/m3 to 50.5µg/m3). Two homes had NO2 levels above 200µg/m3.  

 

Figure 3.4 Histogram showing distribution of indoor NO2 measured in homes of current asthmatics at the 
first sampling    

Levels of NO2 tended to be low (median 19.9µg/m3, IQR 8.9-34.4µg/m3) during the summer 

months (July, August, September) and high (40.1µg/m3) during the spring months (March, April 

and June) and winter (median 38.5µg/m3) months (January, February and March) (Figure 3.5). 
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Figure 3.5 Box plots showing indoor NO2 levels measured in homes of current asthmatics by season of 
sampling 

The level of indoor NO2 varied across countries. Spain and Italy tended to have the highest 

levels with a median of 44.5 µg/m3 (IQR 32.0-74.8µg/m3) and 45.3 µg/m3 (IQR 34.3-79.9µg/m3) 

respectively. Sweden had the lowest concentration of indoor NO2 (median 4.2 µg/m3 IQR 2.8-

7.6µg/m3) (Figure 3.6). 

 

Figure 3.6 Box plot showing indoor NO2 measured in homes of current asthmatics by country 
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NO2 concentrations tended to be higher in those countries with higher proportion of participants 

who used gas for cooking or UFG for heating (only Spain and UK). None of the Swedish current 

asthmatics reported using gas for cooking and only one Italian current asthmatic reported using 

an electric stove for cooking (Table 3.3). 

Table 3.3 Distribution of indoor NO2 (µg/m3) and use of gas for coking by country    

COUNTRY 
Use of gas for 

cooking 
% 

Use of UFGH* 
% 

Indoor NO2 (µg/m3) 

Min 25th 
centile 

50th 
centile 75th centile Max 

Sweden (n=37) 0.0 0.0 1.1 2.8 4.2 7.6 15 

Belgium  (n=10) 20.0 0.0 14.5 18.3 20.9 29.7 54.4 

Switzerland (n=28) 21.4 0.0 8.7 15.45 21.7 24.95 120.7 

Spain (n=93) 55.9 40.9 13.9 32 44.5 74.8 312.2^ 

UK (n=37) 61.3 35.5 5.4 14.5 22.3 46.3 109.9 

Italy (n=27) 96.2 0.0 21.2 34.3 45.3 57.3 79.9 

*UFGH= unflued gas heaters: include open gas fire and portable gas heater; ^ in Barcelona. 

 

Overall, homes that mostly used a gas stove for cooking tended to have higher NO2 levels 

(median 49.3 µg/m3 IQR 34.4-71.4 µg/m3) compared to homes that mostly used an electric stove 

(median 16.85 µg/m3 IQR 8.15-27.1 µg/m3) (P for Kruskal-Wallis test = 0.0001). 

 

Figure 3.7 Box plot showing indoor NO2 measured in homes of current asthmatics by gas and electric 
appliances 
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Duplicate, blank and replicate measurements 

Duplicate and blank measurements were carried out in 33 and 27 homes of current asthmatics 

respectively. Monitoring was repeated in 125 homes within the following 12 months (Table 3.4). 

Table 3.4 Distribution of indoor NO2 (µg/m3) with duplicate, replicate and blank samplings 

 Indoor NO2 (µg/m3) 

 Min 25th centile Median 75th centile Max 

First sampling (n=257) 1.1 15.8 29.3 50.5 312.2 

 Duplicates (n=33) 3.8 15.3 27.3 56.5 141.8 

 Replicates (n=125) 1.3 8.8 22.0 37.7 131.5 

 Blanks (n=27) -1.0 -0.3 -0.1 0 12 

 

 

Figure3.8 Bland-Altman plot comparing indoor NO2 measurements against duplicate measurements 
(Average = average between first + duplicate measurement; Difference = difference between 

first - duplicate measurement) 

Table 3.5 Results of the Bland-Altman test comparing first NO2 measurements against duplicate and 
replicate measurements  

 
Median (range) difference with 

first sampling)  
95% limits of agreement for 

difference  
Duplicate (n=33) 0.50 (0.10, 1.20) -9.98 to 12.20 

Replicate (n=125) -0.10 (-4.70, 4.20) -35.2 to 34.3 
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The Bland-Altman test (Figure3.8) suggested a good agreement between the first and duplicate 

samplings with limits of agreement ranging from -10.0 to 12.2. The limits of agreement for 

difference between first and replicate show large limits (-35.2 to 34.3); replicate measurements 

were carried out at different time of the year and the large difference is indicative that indoor NO2 

levels is affected by seasonal variations. Because of the limited availability of data replicate 

measures were not considered in the analysis. 

3.3.3 Association of asthma severity with indoor NO2   

Associations of GINA score with indoor NO2 

Table 3.6 shows the odds of having persistent asthma (GINA score = 2/3/4) rather than having 

intermittent asthma (GINA score = 1) per 10µg/m3 increase in two-week average indoor NO2 

before and after adjustment for relevant confounders. There was no evidence of an association 

between severity of GINA score and indoor NO2 whether NO2 was considered as linear or binary 

exposure (with the annual WHO guidelines of 40µg/m3 as the cut-off point). There was 

insufficient data to carry out separate analysis by country. 

Table 3.6 Unadjusted and adjusted odds ratios for having ’persistent’ rather than ‘intermittent’ GINA score  
per 10µg/m3 increase in indoor NO2 and when exposed to indoor NO2 concentrations above 

40µg/m3 compared to when exposed to 40µg/m3 or less   

Analysis Intermittent asthma 
(n=123) 

Persistent asthma 
(n=116) 

per 10µg/m3 NO2 OR OR (95% CI) 

unadjusted 1.00 0.97 (0.90, 1.04) 

multivariate adj ^ 1.00 0.98 (0.90, 1.07) 

multivariate adj ^^ 1.00 0.95 (0.85, 1.06) 

>40µg/m3 NO2   
unadjusted 1.00 1.10 (0.65, 1.85) 

multivariate adj ^ 1.00 1.35 (0.72, 2.56) 

multivariate adj ^^ 1.00 1.16 (0.58, 2.35) 
^Main model: Adjusted for sex, age at interview, smoking status (never, ever) and country; ^^ 
Adjusted as above and for smoking at home, presence of damp at home, presence of mould at 
home, age left education, ever exposed to VGDF, season of NO2 sampling. 

  

Associations of asthma score with indoor NO2 

Table 3.7 shows the association of asthma score (three steps) and exposure to two-week mean 

indoor NO2 before and after adjustment for relevant confounders. The assumption of 
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proportionality of odds across response categories was not violated (P=0.59 for unadjusted 

model) and an ordinal logistic model was carried out. There was no evidence suggesting that 

asthma score increased as exposure to indoor NO2 increased (adjusted OR 1.04, 95%CI 0.95 to 

1.12 per 10µg/m3 NO2 increase). Adjustment for confounders did not change the size of the 

effect estimate. 

Table 3.7 Unadjusted and adjusted odds ratio of having one higher class difference in the asthma symptoms 
score per 10µg/m3 increase in indoor NO2 

Analysis OR (95% CI) * 

per 10µg/m3 NO2  

unadjusted 1.04 (0.97, 1.11) 

multivariate adj ^ 1.04 (0.97, 1.14) 

multivariate adj ^^ 1.05 (0.97, 1.15) 

>40µg/m3 NO2  

unadjusted 1.26 (0.81-1.97) 

multivariate ad ^ 1.30 (0.76-2.21) 

multivariate adj^^ 1.16 (0.67-2.03) 
*Odds ratios for the increase in one point of asthma score; ^Adjusted for sex, age at interview, 
smoking status (never, ever) and country; ^^Adjusted as above and for smoking at home, 
presence of damp at home, presence of mold at home, age left education, ever exposed to 
VGDF, season of NO2 sampling. 

 

The association was further investigated by considering a random effect by country. First, 

separate ordered logistic regression analyses adjusted for sex, age and smoking status were 

separately carried out for each country and then a combined effect calculated. After taking into 

account the random effect of country the odds ratio increased to 1.12 (95% CI 0.92 to 1.3 per 

10µg/m3 NO2 increase) but did not reach statistical significance (Figure 3.9). There was some 

evidence of moderate heterogeneity between countries (I2=40.9%, P=0.13). The estimate for 

Spain had considerable weight in the meta-analysis while the estimate for Sweden had very wide 

confidence intervals. 
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Figure 3.9 Forest plot showing odds ratios of having one higher class difference in the asthma symptoms 
score per 10µg/m3 increase of indoor NO2 in current asthmatics at ECRHS II by country adjusted 

for sex, age and smoking status  

Associations of BR with indoor NO2 

One hundred sixty-three people with current asthma and indoor NO2 measures also had BR to 

methacholine assessed; of these 50.9% had a PD20 less than 1mg. In two centers in Belgium no 

BR testing was conducted and 10 people with asthma living in the Belgian centers were excluded 

from this analysis. 

There was no evidence that increasing BR (as shown by a decreasing slope) was associated 

with indoor NO2 exposure (Table 3.8). BR slope tended to increase with increasing exposure 

(beta 0.06, 95% -0.07 to 0.19 per 10µg/m3 increase in indoor NO2). The association with PD20 

was in the opposite direction (adjusted OR 0.94, 95% CI 0.84 to 1.07 per 10µg/m3 increase in 

indoor NO2) suggesting that indoor NO2 is protective but failed to reach conventional levels of 

statistical significance. There was no evidence of heterogeneity between countries (I2=0.0%, 

P=0.43 for slope and I2=2.8% P=0.39 for PD20). 
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1.24 (0.98, 1.58)
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Table 3.8 Unadjusted and adjusted estimates of having higher bronchial responsiveness per 10µg/m3 
increase in indoor NO2 

 BR slope PD20 

Analysis β (95% CI) OR# (95% CI) 

Unadjusted (n=162) 0.04 (-0.07, 0.14) 0.95 (0.86, 1.04) 

multivariate adj ^  (n=161) 0.06 (-0.07, 0.19) 0.94 (0.84, 1.07) 

multivariate adj  ^^ (n=154) 0.08 (-0.06, 0.22) 0.93 (0.82, 1.06) 
# odds ratios compare participants who experienced more than 20% fall in FEV1 after inhalation of 1 
mg of methacholine (as an indication of bronchial hyper-responsiveness with those who did not; 
^Adjusted for country and sex, age at interview, smoking status (ever, never); ^^ Adjusted as above 
and for smoking at home, presence of damp at home, presence of mold at home, age left education, 
ever exposed to VGDF, season of NO2 sampling. 
 

 

3.3.4 Effect modifications by sex, smoking status, use of inhaled steroids and 
atopic status  

Effect modification by sex, smoking status in the last 12 months and atopic status with exposure 

to indoor NO2 on GINA score, asthma score and bronchial responsiveness (BR slope and PD20) 

were tested for significance with the Wald test. Effect modification by use of inhaled steroids in 

the last 12 months was also tested on asthma score and bronchial responsiveness - but not on 

GINA score as the score includes information on inhaled steroid use. The Wald test was used to 

assess the effect modifications for significance. Table 3.9 shows the results of the test for each 

effect modifier. None of the effect modifications reached significance (Pinteraction >0.10) except for 

smoking status and asthma score (Pinteraction=0.0078). Stratified analysis by smoking status 

suggested current asthmatics who were current smokers at ECRHS II had a significant increased 

risk of having one higher class difference in the asthma symptoms score (adjusted OR for sex, 

age and country: 1.20, 95% CI 1.06 to 1.36) per 10µg/m3 increase in indoor NO2. In current 

asthmatics who never smoked there was no association (adjusted OR 0.95, 95% CI 0.86 to 1.04 

per 10µg/m3 increase in indoor NO2). 
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Table 3.9 Results of significance test for effect modification by sex, smoking, use of inhaled steroids and 
atopic status with indoor NO2 on GINA score, asthma score and bronchial responsiveness   

 P value for significance test for effect modification*   

Outcome Sex Smoking status Inhaled steroids Atopic status^ 

GINA   0.76 0.45 n/a^^ 0.23 

Asthma score    0.49 0.0078 0.97 0.98 

BR slope 1.00 0.32 0.26 0.90 

PD20 0.27 0.62 0.31 0.26 
*Wald test; ^ defined as having any specific IgE for HDM, Cladosporium,  cat or grass allergens above 0.35kU/L;^^ GINA 
score includes use of inhaled steroids 
 

3.3.5 Association of asthma severity with gas cooking within the whole ECRHS II 
cohort 

The association of the use of gas for cooking with asthma severity was examined in the complete 

group of participants with current asthma (n=1556) within the 29 centres from 11 European 

(Iceland, Norway, Sweden Estonia, UK, Belgium, Germany, Switzerland, France, Italy and Spain) 

and 2 non-European (Australia and US) countries that took part in ECRHS II. No information on 

use of gas for cooking or for heating was available for participants in The Netherlands. 

Overall, gas appliances (from mains or from gas bottles) for cooking were used by 40% of 

current asthmatics at ECRHS II, while UFGH (which included open gas fires and portable gas 

heaters) were used only by 14.6 % of this population. In some countries the use of gas for 

cooking was common (81.0% in Australia, 65.5% in France, 59.4% in UK, 59.6% in Spain and 

52.2% in Belgium) or overwhelmingly predominant (95.7% in Italy). People living in the Nordic 

countries tended to use electric cooking appliances (100% in Norway, 97.1% Sweden and 93.8% 

in Iceland). The use of UFGH was quite low across the countries (14.6%) with the exception of 

Spain (45.3%), Australia (33.9%), Estonia (30.8%) and UK (26.6%) where open gas fire were 

used for heating or hot water. 

  

 



142 

 

Table 3.10 Frequency of gas use for cooking and heating in current asthmatics within ECRHS II by country 

 

Table 3.11 shows the associations of persistent asthma (compared with intermittent asthma), 

asthma score, bronchial responsiveness (slope and PD20) with exposure to gas cooking 

compared with electric cooking after adjustment for main confounders (sex, age, smoking status) 

in the group of current asthmatics with indoor NO2 measurement and in the whole sub-set of 

current asthmatics within ECRHS II. There is a consistent direction of effect suggesting that 

cooking with gas may be associated with an increase in asthma severity although none of the 

associations are significant. In some countries the use of gas for cooking (Italy) or the use of 

electricity (Sweden) was universal and this prevented comparison of the effect of cooking with 

gas versus the effect of cooking with electricity within these countries (no comparison group); in 

technical terms this is called lack of exposure contrast. As a consequence heterogeneity 

between countries could not be assessed. 

 

 

Country 
Current 

asthmatics  
(n) 

Use of electric 
appliance for 

cooking  
(%) 

Use of gas appliance 
for cooking 

 (%) 

Use of UFGH* 
(%) 

All 1556 58.1 40.2 14.6 

Iceland 81 93.8 6.2 1.2 

Norway 64 100.0 0.0 0.0 

Sweden 350 97.1 1.7 0.3 

Estonia 13 46.2 46.2 30.8 

UK 229 38.7 59.4 26.6  

Belgium 54 45.7 52.2 1.9 

Germany 48 81.3 18.8 0.0 

Switzerland 85 78.6 21.4 0.0 

France 160 30.0 65.6 1.3 

Italy 48 2.1 95.7 4.2 

Spain 214 38.0 59.6 45.3  

Australia** 174 17.2 81.0 33.9  
US 36 66.7 30.6 5.6 
*UFGH=unflued gas heaters, includes open gas fire and portable gas heater; **no information available on GINA 
score 
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Table 3.11 Adjusted odds ratios and beta coefficient for markers of asthma severity when cooking mostly 
with gas compared with cooking mostly with electricity in current asthmatics at ECRHS II 

  Current asthmatics with NO2 measurements 
(n=257) 

All current asthmatics  
(n=1556) 

GINA score OR (95% CI) 1.23 (0.65, 2.36) 1.13 (0.82, 1.57) 

Asthma score OR (95% CI) 1.65 (0.94, 2.89) 1.10 (0.86, 1.41) 

BR slope β (95% CI) -0.61 (-1.47, 0.25) -0.19 (-0.64, 0.25) 

PD20 OR (95% CI) 0.53 (0.25, 1.12) 0.95 (0.65, 1.40)^^ 
^ Odds ratios adjusted for sex, age at interview, smoking status (ever, never) and country; ^^number of current asthmatics 
with bronchial responsiveness data= 799 
 

3.3.6 Association of wheeze with indoor NO2 within the whole ECRHS II cohort  

Finally, the association between 12-month prevalence of wheeze at ECRHS II and indoor NO2 

was assessed in the random sample who had indoor NO2 measurements at ECRHS II (n=1527). 

The logistic regression model was adjusted for sex, age at ECRHS II, smoking status (never, 

ever) and month (October as a baseline) when NO2 measurement was carried out with random 

effect by country. Figure 3.10 shows the effect estimate by country and the combined random 

effect. There was some evidence of significant association between wheeze and indoor NO2 in 

the general population (OR 1.05, 95% CI 1.01 to 1.09 per 10µg/m3 increase of indoor NO2, I2= 

0.0%, Pheterogeneity=0.75). 

A sensitivity analysis was carried out by adjusting for two-week average outdoor NO2 exposure at 

address level (as well as for the usual confounders). Outdoor NO2 was measured outside 

participants’ homes at the same time as indoor NO2. The random effect did not change (OR 1.05, 

95%CI 1.00 to 1.09 per 10µg/m3 increase of indoor NO2. There was no heterogeneity across 

country (I2=0.0%, Pheterogeneity=0.81). 
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Figure 3.10 Forest plot showing the odds ratios of having wheeze in the last 12 months per 10µg/m3 increase 
in indoor NO2 by country at ECRHS II in the random sample adjusted for sex, age, smoking status 

(never, ever) and month when indoor NO2 measurement was carried out 

Incorporation of ECRHS II estimate into meta-analysis of 12-month prevalent wheeze and 
indoor NO2 presented in Chapter 2 

Inclusion of the effect estimate of ECRHS II into the meta-analysis  for the association of 12-

month prevalent wheeze and indoor NO2 presented in the previous Chapter 2 decreased the size 

of the overall effect estimate from 1.06 (95% CI 1.02 to 1.12) 1.05 (95% 1.02 to 1.08) per 

10µg/m3 increase of indoor NO2. The forest plot with the updated results is presented in Figure 

3.11. 

The ECRHS estimate had a considerable weight in the meta-analysis (59.4%) but this did not 

affect the heterogeneity between studies (I2=0.0%, P=0.88). There was some weak evidence of 

publication bias (Egger’s test P value=0.105, Begg’s test P value=0.062). 
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Figure 3.11 Forest plot and meta-analysis of estimates for 12-month period prevalence of wheeze and 
indoor NO2 (per 10µg/m3) stratified by type of study population and updated with the effect 

estimate of the ECRHS II cohort  
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Figure 3.12 Funnel plot of the estimates for 12-month period prevalence of wheeze and indoor NO2 (per 
10µg/m3) updated with the effect estimate of the ECRHS II cohort (indicated with a hollow 

circle)  

3.4 Discussion  

Within a multi-centre, international study (the ECRHS) there was no evidence that a range of 

markers of asthma severity increased with increasing two-week average kitchen NO2.  Similarly, 

there was no evidence that asthma severity increased with reported exposure to gas for cooking 

(electric cooking as a baseline). The direction of effect of the various associations tended to 

suggest there may be an effect – although associations with bronchial responsiveness were not 

consistent with this. Cross-sectional analysis of the association of wheeze with indoor NO2 within 

the ECRHS II cohort suggested that there is an effect and incorporation of the estimate into 

meta-analysis of 12-month prevalent wheeze and indoor NO2 presented in Chapter 2 did not 

affect the overall combined effect. 

In this study asthma severity was determined by the presence of asthma-related symptoms 

(asthma score) and medication regime in the previous 12 months. This did not take into account 

the frequency or the duration of each symptom over the 12 months period, which may be more 

informative. To my knowledge there is only study (Smith, 2000) on the health effects of indoor 

NO2 exposure in asthmatic adults (and children). The study investigated the association with 

asthma by asking participants to keep a daily diary of their asthma- related symptoms for 6 
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weeks. No significant associations between respiratory symptoms and NO2 from gas appliances 

were found in asthmatic adults except for cough in participants age 35-49. 

The population of the study presented in this chapter was an asthmatic sub-set of a large 

multicentre international study. Previous analyses of the association between respiratory 

symptoms and use of gas for cooking in all participants at ECRHS I observed some variations in 

the health effects between countries (Jarvis, 1998). In my analysis of the association of asthma 

score with indoor NO2 I also observed some mild heterogeneity between countries. The score is 

based on several self-reported symptoms; it is a relatively novel approach that defines asthma 

phenotypes on an ordinal scale rather than as a dichotomous entity. However, the score is based 

on self-reporting of symptoms, which may be influenced by cultural attitudes towards illnesses 

and differences in health service provision (Burney et al., 1991). Of note, no heterogeneity 

between countries was seen for bronchial responsiveness, an objective marker of asthma 

severity. The effect of indoor NO2 may also differ between countries as gas appliances and 

cooking style may vary leading to different patterns in NO2 peak exposures or different pattern of 

co-pollutants.  

I repeated my analyses by replacing indoor NO2 with the use of gas for cooking. It has been 

hypothesised that the health effects of combustion products such as NO2 from gas appliances 

may depend on repeated exposure to peaks thus individuals who cook with gas are particularly 

at risk since they are regularly exposed to these peaks. Use of gas for cooking was not 

associated with asthma severity in agreement with findings from a US based cross-sectional 

study, the NHSE III  (Eisner and Blanc, 2003) where no association with prevalence of wheeze 

and other respiratory symptoms in the previous 12 months or FEV1 were observed in a 

population of over 400 adult asthmatics. Contradictory findings were observed in two US panel 

studies that followed adult asthmatics over a certain period of time. Increased morbidity in 

individuals who cooked with gas was observed in a panel of 164 adults with moderate to severe 

asthma who were followed for 3 months (Ostro et al., 1994). In another panel of 349 non-

smoking adults no associations were observed between asthma severity (defined as the 

frequency of current asthma symptoms (daytime or nocturnal), use of systemic corticosteroids, 

use of other asthma medications (besides systemic corticosteroids), and history of 

hospitalisations and intubations and gas stove use (Eisner and Blanc, 2003). In sub-sample of a 

large UK cohort (Moran et al., 1999) a decrement in FEV1 was observed in current asthmatics 

who used gas for cooking compared to those who used electricity but no association were found 

when considering the frequency of asthma attacks or reporting of sleep disturbed by wheezing in 

the previous year. 
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The modifying effects of sex, atopy and smoking status and use of inhaled steroid were tested 

but none was significant with the exception of smoking suggesting that asthmatics who smoke 

were at a greater risk of having a worse asthma if exposed to indoor NO2, in agreement with 

findings of a Dutch study that found an association of decline in lung function with indoor NO2 in 

smoking women but not in non-smoking women who lived in rural1 areas (Fischer, 1989). No 

significant association was observed in non-smokers. Further adjustments for pack-years of 

smoking or current intensity of smoking were not considered because of the time constraint of 

this thesis. However, the effect of some residual confounding by amount smoked should not be 

ruled out.  

Effect modification of genotype has also been considered in a recent study (Amaral et al., 2014). 

Findings suggested that increased bronchial responsiveness was associated with gas cooking 

among individuals with the GSTM1 null genotype, which may reflect the oxidant effects on the 

bronchi of exposure to NO2. In my study I considered stratified analyses by genotype but I 

decided a priori that the small sample size restricted the power of statistical calculations. Of note, 

the test for interaction of GSTM1 and indoor NO2 on asthma score in the asthmatic group 

suggested some evidence P=0.07 but not for BR or GINA severity) (results not shown). 

In this investigation the strength of the ECRHS was the large breadth of the study. Standardised 

questionnaires and standardised monitoring protocols were applied across all ECRHS centres 

and analysis could be carried out in over 250 current asthmatics with indoor NO2 measurements. 

Unfortunately, the sample size of participants with current asthma was relatively small and 

influenced the precision of the results. A larger sample size may have increased precision 

although calculating the ‘observer’ statistical power is rather pointless. It has been claimed that 

calculation of power after a study is inappropriate (Goodman and Berlin, 1994) and 

fundamentally flawed (Hoenig and Heisey, 2001). 

However, increasing the sample size by using a proxy measure for indoor NO2 would give the 

opportunity of assessing the health effects over a larger population sample. The use of gas 

cooking as a proxy measures can be useful when no other information is available but can be 

imprecise in assessing the health effect as cooking and ventilation which affect the dispersion 

rate of combustion gases may vary by individual and household. The ECRHS has information on 

the presence of gas appliances and some relevant household characteristics – but only a 

subsample of participants had direct measures of indoor NO2.  

1 There was no difference between smoker and non-smoker women who lived in urban areas 
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One of the main limitations of this study was the assumption that a two-week measurement of 

indoor NO2 is representative of long-term exposure to indoor NO2 ignoring that indoor NO2 levels 

may fluctuate between summer and winter. An adjustment for season of monitoring was included 

in the secondary analyses and this did not alter the results. A further limitation of the two-week 

monitoring was that it does not provide any information on peaks exposure (Franklin, 2006). Gas 

cooking combustion can generate short-term peaks of NO2 as high as 1880µg/m3 (Dennekamp, 

2001). Although some studies have shown that average and peak exposures may be correlated 

(Ross, 1996) exposure to indoor NO2 peaks may affect respiratory health. Asthmatics may be 

particularly at risk as findings from chamber studies have suggested. In the next chapter I will 

assess the feasibility of conducting a panel study that examined the association of respiratory 

health with exposure to indoor NO2 peaks generated from gas combustion. 

3.5 Summary 

Within a multi-centre international study (ECRHS) there was no evidence that a range of markers 

of asthma severity increased with increasing two-week average kitchen NO2 or with the reported 

use of gas for cooking (electric cooking as a baseline).  Cross-sectional analysis of the 

association of wheeze with indoor NO2 within the whole random sample of participants at 

ECRHS II suggested that there is an effect. The incorporation of the estimate into meta-analysis 

of 12-month prevalent wheeze and indoor NO2 presented in Chapter 2 did not affect the overall 

combined effect. 
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4. A pilot study on asthma and exposure to indoor NO2 
peaks 

4.1 Introduction 

Evidence from clinical studies suggests that asthmatics could be at higher risk when exposed to 

short-term high concentrations of NO2, which do normally occur while cooking with gas. In this 

chapter I am going to describe a pilot study I designed and conducted to assess the feasibility of 

conducting a panel study that examined the association of respiratory health in asthmatic people 

with exposure to indoor NO2 peaks generated from gas combustion.  

4.1.1 Background 

It has been shown that cooking on a four-ring gas hob can produce 5 minute peaks of about 

1,880µg/m3 NO2 (Dennekamp, 2001). These peaks may be associated with adverse respiratory 

health effects although the evidence has been inconsistent. 

Controlled human exposure studies have observed that 30 minutes exposure to 500µg/m3 of 

NO2 can cause alterations in bronchial reactivity and increase sensitivity to inhaled allergens in 

asthmatics (Tunnicliffe, 1994; Strand, 1997). Orhek et al (1976) observed an increase in 

bronchial sensitivity to bronco-constrictors agents when people with asthma were exposed at 

concentrations as low as 188 µg/m3 for one hour. Bylin et al (1985) exposed asthmatics at higher 

concentration (910µg/m3) for a shorter period of time (20 minutes) and also noted an increase in 

bronchial reactivity. Bauer (1986) observed changes in forced expiratory flow rate after exercise 

in asthmatics who were exposed at 564µg/m3 for 30 minutes.  

In contrast, no changes in lung function were observed in asthmatic adolescents when exposed 

at 226µg/m3 and 338µg/m3 for an hour with intermittent exercises (Koenig, 1987). Similarly, more 

recent studies have observed no decrease in lung function after NO2 exposure but at same time 

they have noticed an activation of eosinophils in lung fluid and sputum and an increase in allergic 

and inflammatory responses (Barck et al., 2002). A recent double-blind crossover study (Ezratty 

et al., 2014) has found that peak exposure to NO2 (376µg/m3, 1128µg/m3) for 30 minutes 
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repeated on two consecutive days performed without allergen exposure were associated with 

airway eosinophilic inflammation in asthmatic in a dose-related manner. 

Current WHO guidelines (World Health Organization, 2006) recommend that 1-hour exposure 

should not exceed an average of 200µg/m3. The original guidelines were set in 1997 (Graham, 

1997) based on findings of a meta-analysis of 20 clinical studies in asthmatics (Folinsbee, 1992). 

Although no individual studies had shown clearly significant effects on airway responsiveness at 

190µg/ m3 for 60 minutes the meta-analysis suggested that increased airway responsiveness 

may occur at concentrations as low as 200µg/m3 of NO2 (Graham, 1997). Inconsistencies in 

findings may be explained by studies testing participants with different degrees of asthma 

severity, variations in the exposure protocol (oral or oral-nasal exposure, participant is sitting or 

standing) and different outcomes (airway hyper-responsiveness, changes in lung function). 

Evidence from epidemiological studies on the health effects associated with high peaks exposure 

to indoor NO2 is scarce. Few epidemiological studies have attempted to measure indoor NO2 

peaks, mainly because the monitors (chemiluminescence analysers) are expensive, bulky and 

impractical for the purpose of larger scale epidemiological studies. Some studies have tried to 

mimic real life exposure by measuring associations when indoor NO2 is generated from gas 

combustion. Goldstein (Goldstein et al., 1988) measured spirometric lung function in 11 people 

with and without asthma, before, during and after cooking with gas and found that FVC in people 

with asthma dropped when exposed at levels above 564µg/m3 of NO2 (measured with a 

chemiluminescence analyser) for at least 5 minutes. Ng (2001) measured peak flow in 16 

asthmatic women before and after cooking with gas and found that PEFR fell (3.4%) significantly 

immediately after an episode of gas cooking, which generated on average 121µg/m3 (range: 0 

µg/m3 - 491µg/m3) of NO2.  

Most of the epidemiological studies on respiratory health and indoor NO2 have traditionally 

measured NO2 with passive diffusion samplers. These provide average concentrations thus 

underestimating peak levels (Franklin, 2006). Some studies have attempted to measure short-

term exposure to NO2 generated from gas combustion by keeping the passive diffusion samplers 

open only when the gas appliance is on (Pilotto, 1997; Smith, 2000). Pilotto (1997) found that 

exposure to NO2 at hourly levels of the order to 150µg/m3 compared with background levels of 

38µg/m3 was associated with a significant increase in sore throat, colds and absences from 

school in Australian school children. Another Australian study (Smith, 2000) examined daily 

respiratory symptoms (wheeze, breathlessness, chest tightness, cough, breathlessness on 

exertion, daytime asthma attacks and night time asthma attacks) on the same day (lag 0) and 

following day (lag 1) of exposure to short-term gas generated NO2 (median range 7- 276µg/m3) 
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in people of any age living in 125 homes; significant associations were observed only in the 

young age group (≤14 years) and in the 35-49 age group for cough (lag 1).  

Many panel studies have traditionally relied on proxy measures to assess the health effects of 

short-term exposure to NO2 such as the daily use of gas cooking (Ostro, 1994) or the daily use of 

unflued gas heater (Franklin, 2012). Ostro (1994) investigated the occurrence of several 

respiratory symptoms (cough, wheeze, shortness of breath, chest tightness and sputum 

production), nocturnal asthma, medication use and restriction in activity following the daily 

exposure to gas and wood stoves and fireplaces in a panel of 164 adult asthmatics. Among the 

indoor sources gas stove use was found to be most strongly associated with moderate or severe 

cough and moderate or severe shortness of breath. Franklin (2012) investigated daily lung 

function (PEF, FEV1) and respiratory symptoms (wheeze, cough, dyspnoea) in a panel of 71 

asthmatic patients above the age of 55 and the daily use of their primary source of heating, an 

unflued gas heater (UFGH). Same and previous day exposure to UFGH was associated with 

significantly increased odds ratios for wheeze and dyspnoea compared with days when no 

heating was used, and significant increases in the average odds of reported wheeze and 

dyspnoea per hour of UFGH heater use. 

It has been suggested that peaks in exposure to NO2 of indoor origin is associated with acute 

asthmatic responses to NO2 and that these peaks may be more closely associated with acute 

asthmatic responses to NO2 than weekly average exposure in susceptible individuals but there is 

little conclusive evidence from clinical studies and few epidemiological studies have been 

conducted. There is a need to conduct new studies that can objectively assess the short term 

health effect of exposure to indoor NO2 peaks from gas combustion. Women, who in many 

families may do most of the cooking, could be particularly at risk from exposure to NO2 peaks. 

In this chapter I am going to describe a pilot study I have designed and conducted. The purpose 

of the pilot study was to assess the feasibility of conducting a panel study that examined the 

association of respiratory health in people with exposure to indoor NO2 peaks generated from 

gas combustion. The study could not be completed because of recruitment problems. This 

chapter will cover details of the study design and its evaluation. 

4.1.2 Nitrogen dioxide monitors 

This pilot study used a new-to-market portable, low-cost monitor that could measure short-term 

exposure to indoor NO2, the Aeroqual Series 500 (http://www.aeroqual.com/indoor-air-

quality/portable-monitors). Short-term measurements of NO2 are normally carried out with a 
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chemiluminescence analyser, the ‘gold standard’ for NO2 monitoring but they are bulky and 

expensive to use and impractical for the purpose of an epidemiological study. In the recent years 

new NO2 monitors that can measure short-term exposure have become available on the market 

and one of the main objectives of this pilot study was to assess whether these instruments were 

suitable for large scale epidemiological investigations. 

The following two short-term exposure monitors with a fast uptake rate, suitable for detecting 

NO2 peaks were initially considered for this project: 

1. Gradko (http://www.gradko.com) Rapid Air Monitor (RAM), a passive diffusion sampler 

but with a quick diffusion rate that allows short period of monitoring 

2. AeroqualTM Series 500 electro-chemical gas sensor. 

In addition, the study measured weekly average exposure and the following traditional passive 

diffusion samplers were also considered:  

1. Ogawa passive diffusion sampler (badge design) 

2. Gradko long-term passive diffusion sampler (tube design) 

3. Passam long-term passive diffusion sampler (tube design). 

Table 4.1 (adapted from Yu, 2008) describes the various features of the five monitors listed 

above. The estimated costs are given per 10 participants each followed for 8 week (costs are as 

on June 2013). 
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Table 4.1 Evaluation of NO2 monitors considered in the pilot study (adapted from Yu 2006)  

  
Known or 
potential 

interferents 

Temperature 
influence 

Relative 
humidity 
influence 

Dimension  Sampling 
rate(a)  

Duration of 
sampling 

Working 
concentration Detection limit Uncertainty 

Cost  per 
10 person 
x 8 week 

(b) 
 

Short-term monitors          
Gradko 
RAM (Rapid Air 
Monitor) –
badge(c) 

nitrous acid, 
peroxy 
acetyl 
nitrate 

operable from 
-5°C to 30°C 

operable 
from 20% to 

70% 

44mm   
x18mm   
X28 mm  

28.6 
ml/min 

from 1hour 
to 7 days n/a(d) 

<0.2ug/m3 over 1 
week exposure 

period 

±13.0% uncertainty 
at 40 µg/m3 £2,8180(e) 

Aeroqual GSE 
(Sensitive 
Electrochemical) 
(f) 

chlorine, 
ozone 

 

operable from 
0° to 40°C 

operable 
from10% to 

90% 

195 x 122 x 
54 mm n/a 

can log up 
to 4,300 

data 
point(g) 

0-1,880 µg/m3 9.4 µg/m3 

<±37.6 µg/m3 

between 0- 376 
µg/m3; 

 < ±10% between 
376-1810 µg/m3(h) 

£1,528 

Long-term monitors          

Gradko  
long-term 
passive –tube 

ozone, nitrous 
acid, peroxy 
acetyl nitrate 

<10% 
operable  

 from 2°C to 
30°C 

<10% from  
20% to  80% 

7.1 cm x 
 0.95 cm2 

1.2 
cm3/min 2-4 weeks 1.9-18,800 

µg/m3 

<2 µg/m3 over 4 
week exposure 

period 

<30% uncertainty 
above 19.2 µg/m3 ; 

<5% precision  
 £476  

Passam  
long-term 
passive –tube 

oxidants 
No influence 
from 5°C to  

40°C 

operable 
from 20% to 

80% 

7.4cm x 
 0.75 cm2 

0.85 
cm3/min 1-4 weeks 0.9-199 µg/m3 

0.36 µg/m3 for 
weekly; 

 0.72 µg/m3 for 
fortnight 

23.4% uncertainty 
between 19.9-38.0 

µg/m3 

 
 £1,008  

Ogawa sampler 
–badge n/a(d) 

operable 
between   

from -10°C  to 
40°C 

operable 
from 50% to 

80% 

0.6cm x  
0.79 cm2 

12.1 cm3/ 
min 

24- 168 
hours 

0-47,000 µg/m3 
for 24h; 

0-6,768 µg/m3 
for 168h 

4.2 µg/m3 for 24h;  
0.54 µg/m3 for 

168h 
<±10%  £1,856 

(a)manufacturer’s specifications; (b)as on June 2013; (c) manufacturer’s specifications http://www.gradko.com/environmental/products/no2-rapid-air-monitor.shtml; (d)not reported in 
manufacturer’s specification or from HoYu (2006);  (e) samplers need to be replaced every day for short-term exposure measurements, the cost is for 8 samplers replaced daily per 10 
persons; (f) manufacturer’s specifications http://www.aeroqual.com/wp-content/uploads/Series-500-Brochure.pdf ; (g) one point is equivalent to 1 or 5 minute average exposure  depending 
on manual settings; (h)  data refers to  accuracy of calibration. 

http://www.gradko.com/environmental/products/no2-rapid-air-monitor.shtml
http://www.aeroqual.com/wp-content/uploads/Series-500-Brochure.pdf
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All monitors shared similar characteristics in terms of uncertainty (10% or less), detection limit 

being proportional to exposure period (except for Aeroqual) and sensitivity to oxidant species, 

such as ozone, temperature above 30° C (40°C for Aeroqual) and relative humidity above 80% 

(70% for Gradko RAM). 

The small size and easy-to-use features made Gradko RAM (Rapid Air Monitor) an attractive 

monitor to use in participants’ homes but it was quite expensive when considering that the 

sampler had to be replaced daily to monitor short-term exposure. Aeroqual (Figure 4.1 on the 

left) had a finer monitoring resolution than Gradko RAM, could be used repeatedly for multiple 

sequential participants and measurements were carried out in real-time. 

Among the three long-term passive diffusion samplers, Passam (Figure 4.1 on the right) was 

chosen because it could measure one-week average rather than two-week average (e.g. Gradko 

long-term sampler) and was cheaper than Ogawa badges. Both monitors had been used in large 

scale studies in the past. 

 

Figure 4.1 NO2 monitors for the pilot study: Aeroqual Series 500 with NO2 gas sensor (left) and Passam tube 
(right) 

Aeroqual NO2 monitor 

The Aeroqual Series 500 is an electro-chemical gas sensor. It comprises of a monitor with a 

display window and a battery case and interchangeable gas (in this case NO2) sensor head. It 

has an internal fan that pulls air across the sensor at a specified flow rate for accurate gas 

detection. A stream of air is pulled inside the sensor every 60 seconds providing a new reading 

of NO2 level and resulting in a 60 second response time (manufacturer’s specification). Nitrogen 

dioxide values can be logged (up to 4,300 data points) and easily downloaded and converted into 

an Excel file. The sensor head uses Gas Sensitive Electrochemical (GSE) technology to detect 

NO2 from 0- 1,880µg/m3 with 1.88µg/m3 resolution and <±37.6µg/m3 accuracy (in concentrations 
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from 0-37.6µg/m3) or <± 10% accuracy (in concentrations from 376- 1,880µg/m3) (see Table 4.2 

for list of manufacturer’s specifications).  

Table 4.2 Aeroqual Series 500 with NO2 sensor head manufacturer’s specifications*  

Features Specifications 

Manufacturer Aeroqual 

Gas Nitrogen Dioxide (NO2) 

Sensor Type GSE (Gas Sensitive Electrochemical) 

Range 0-1ppm (0-1880µg/m3) 

Maximum Exposure 2 ppm (3,760 µg/m3) 

Minimum Detection Limit 0.005 ppm (9.4 µg/m3) 

Accuracy < +/- 0.02 ppm (37.6µg/m3) from 0-0.2 ppm (0- 376µg/m3); < +/- 10% from 0.2-1 ppm 
(376-1880µg/m3) 

Resolution 0.001ppm (18.8µg/m3) 

Response Time <60 seconds 

Sampling Method Fan 

Operational Temperature Range 0 to 40°C 

Operational Relative Humidity 
Range 

10% to 90% 

*specifications for NO2 are usually given in ppm or ppb as these metrics are not affected by atmospheric pressure or 
temperature; I have calculated the  conversions from ppb to µg/m3 using the  WHO conversion factor of 1.88 that assumes  
temperature is 25°C and pressure 1013mb. 

 

As Aeroqual is an electro-chemical gas sensor it operates quite differently from a passive 

diffusion sampler. Briefly, an electrochemical gas sensor comprises of three electrodes (a 

working electrode, a counter electrode and a reference electrode) separated by a thin layer of 

electrolyte and enclosed in plastic housing. Air that comes in contact with the sensor first passes 

through a smaller capillary-type opening and then diffuses through a hydrophobic barrier (gas 

permeable membrane), eventually reaching the electrode surface. The gas is allowed to react at 

the sensing electrode to produce a sufficient electrical signal while preventing the electrolyte from 

leaking out of the sensor. The current generated is proportional to the concentration of gas 

present outside the sensor, which gives a direct measure of the gas (NO2) present. This current 

is limited by the rate of diffusion of the gas which in turn is proportional to the concentration 

gradient across the cell (Fine et al., 2010). 
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Figure 4.2 Schematic of an electrochemical cell (from http://electronicdesign.com/components/sensible-
sensors-it-s-control-thing  

The choice of the components materials and their arrangement will affect their performance of a 

gas sensor. Aeroqual manufacturers use Tungsten (VI) oxide (WO3) as the oxide material of the 

electrodes. WO3 is very sensitive to NO2 gas and shows large resistance-increase signals in 

response to traces of the oxidizing gases (Williams et al., 2009).  

The selection of the correct capillary pore size is also important; it must allow the proper amount 

of gas molecules to enter the electrolyte area but at same time must be able to prevent 

electrolytes from leaking out or drying out the sensor too quickly. Some cross-sensitivity with 

other gases may occur, which interfere with the monitoring. A ‘scrubber’ filter is commonly 

installed in the sensor to filter out unwanted gases. Ozone is the main gas that interferes with 

NO2 monitoring and Aeroqual manufacturers use a thermal scrubber that maximises the removal 

of the ozone interference (Williams, 2009). 

Overall, electrochemical sensors are commonly sensitive to temperature and need to be 

internally temperature-compensated. 

Evaluation of the monitor response against gas cooking records  

A very recent work carried out by Delgado-Saborit (Delgado-Saborit, 2012) suggested that the 

high resolution of the Aeroqual monitor would allow identification of short-term peak exposures.  
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I tested the Aeroqual response to detect NO2 peaks in my kitchen for 8 days. The kitchen had a 

cooker connected to the gas mains (four gas hobs, gas oven and gas grill). Any time the cooker 

was on it I recorded it in a diary. I also kept record of the type of appliance used (hob, number of 

hobs, oven, grill). Aeroqual was place 0.5 meter away from the cooker and 2 meters high. Data 

were logged into Aeroqual every 5 minutes (one data point is the average of five 1-minute 

measurements). The time of the peak occurrence logged by Aeroqual was checked against the 

time of cooking recorded in the diary.  

The 8-day average exposure to indoor NO2 that Aeroqual measured was 19µg/m3 (IQR 11-

32µg/m3) but during this period high levels lasting for a short time were recorded by Aeroqual any 

time the gas appliances were on. The highest level was recorded when the gas oven was on. 

Table 4.4 shows the number and frequency of peaks and their concentrations recorded by 

Aeroqual. During the 8 days there were 7 peaks above 600µg/m3; six lasting for 5 minutes and 

one for 20 minutes.  

Table 4.3 NO2 levels (5-minutes average) measured in the author’s kitchen when gas appliances were on 
using the Aeroqual monitor  

 median (IQR) min - max 

 (µg/m3) (µg/m3) 

over 8 days (any time) 19 (11-32) 0-998 

when only 1 gas hob is on 197 (129-290) 13-485 

when only 1 small gas hob is on  117(85-130) 38-164 

when only 1 large gas hob is on  303(198-414) 17-485 

when only gas oven is on 644(363-948) 28-998 

when only gas grill is on 478(203-632) 88-684 
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Table 4.4  Length and frequency of NO2 peaks (µg/m3) measured in the author’s kitchen for 8 days using the 
Aeroqual monitor 

Peaks Lasting for no. events* Max level reached 
(µg/m3) 

>=200 µg/m3 5 min 15 667 

 10 min 7 684 

 15 min 1 335 

 20 min 1 758 

 25 min 1 541 

 65 min 1 998 

>=600 µg/m3 5 min 6 790 

 20 min 1 998 

* One event = 5 minutes. 
 

Figure 4.3 and Figure 4.4 show the level of NO2 measured by Aeroqual from 07/07/2013 to 

15/07/2013 and as an example, the peaks which were generated in the afternoon of 10/07/2013 

when the gas oven was on. This was the only occasion when NO2 level exceeded 200µg/m3 for 

longer than one hour (i.e. the current WHO guidelines for 1-hour daily maximum exposure to 

NO2). This small ‘in-house’ evaluation suggested the Aeroqual sensor could detect NO2 peak 

generated from cooking with gas as shown by the extensive work by Delgado-Saborit.  

 

Figure 4.3 Graph showing 5-minutes average concentrations of NO2 measured in a kitchen with a gas cooker 
for 8 days (from 07/07/2013 to 15/07/2013) 
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Figure 4.4 Graph showing NO2 peaks when gas hob and gas oven were on  

4.1.3 Aim 

The aim of this pilot study was to assess the feasibility of a panel study to assess the association 

of respiratory health with exposure to indoor NO2 peaks from gas combustion. 

4.1.4 Objectives 

The pilot study intended to assess the feasibility of a panel study by evaluating the following 

study features: 

• Recruitment rates 

• Participants compliance to study procedures 

• Outcomes assessment 

• Use of diary and problems arising from 

• Data collection 

• Instrument monitoring and in particular, problems arising from NO2 sensor use. 

Ultimately, the main objectives of the panel study were: 

• To assess the association of daily morning and evening peak flows and daily changes in 

respiratory symptom severity score with short-term exposure to indoor NO2 peaks 
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• To compare the associations of morning and evening peak flows and daily changes in 

respiratory symptoms severity score with peak indoor NO2 with those observed for 

weekly average exposure. 

4.2  Design of the pilot study 

4.2.1 Overview 

The pilot study intended to recruit 20 women with asthma who cook with gas for a period of 8 

weeks during which their respiratory health and NO2 kitchen levels were assessed (Figure 4.5). 

During the study period weekly average exposure to indoor NO2 was measured (for 8 weeks) in 

the participant’s kitchen using passive diffusion samplers and NO2 peaks monitored (for 8 

consecutive days) using the Aeroqual monitor. Concomitantly, participants recorded their 

morning and evening PEF, daytime and night-time asthma symptoms and timing of cooking 

(Figure 4.6 and Figure 4.7). 

In the next sections I will explain in more detail participants’ selection criteria, recruitment 

strategy, exposure and outcome assessments and proposed statistical methodology to analyse 

collected data. 
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Figure 4.5 Flow chart of study from recruitment to home visit  

 



 

Figure 4.6  Exposure assessment during the 8-week study period  

Figure 4.7  Outcome assessment during the 8-week study period 

2

week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8
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4.2.2 Selection criteria 

The pilot study aimed to recruit 20 women with current asthma aged 20-65 who lived in London 

and cooked at home on at least four occasions (lunch or dinner) a week. Women were defined 

as current asthmatics if they had been diagnosed by a doctor as having asthma and had used β-

agonists for the treatment of asthma in the last 12 months. The study aimed to recruit 75% of 

women who cooked with gas and 25% who cooked with electricity. 

Women who were current smokers, pregnant, been diagnosed with a heart condition (congestive 

cardiac failure, angina, myocardial infarction, hear attack), with any other long-term limiting 

illness that required hospitalisation in the last year or had planned to go on holiday for more than 

4 consecutive days during the 8 weeks of observation period were excluded. 

4.2.3 Recruitment 

Several recruitment strategies were attempted through different agencies: 

• Asthma UK (http://www.asthma.org.uk/), a leading UK asthma charity and patients’ 

organisation 

• South East London Community Air Pollution, a network of individuals and community-

based organisations who are interested or involved in improving outdoor air pollution in 

London   

• Imperial College 

• GP practices (directly contacted) 

• GP practices (contacted via the National Institute for Health Research Clinical Research 

Network (NIHR-CRN) for North West London. The NIHR-CRN 

(http://www.crn.nihr.ac.uk/north-west-london/) is one of the 15 networks across England 

working with NHS Trusts to fund and deliver clinical research studies. 

The following advertising strategies were attempted in the following order: 

1. On the newsletter of Research and Policy volunteers of Asthma UK   

2. On Asthma UK Facebook 

3. On the newsletter of South East London Community Air Pollution group 

4. On the staff noticeboard of Imperial College web site 

5. By sending an invitation letter to patients with asthma in collaboration with a GP practice, 

which had been contacted by NIHR-CRN for North West London.  

 

http://www.asthma.org.uk/
http://www.crn.nihr.ac.uk/north-west-london/
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Women who were interested in the study were asked to complete a short questionnaire for 

eligibility assessment (Figure 4.8). If eligible women were invited to participate in the study and 

provided with a Participant Information Sheet and an Informed Consent Form (see Appendix of 

Chapter 4 for more details). Potential participants were given the choice on how to communicate 

with the researcher (email, post, face to face or phone). All women preferred communicating by 

email. 

4.2.4 Home visit  

Once the invitation to take part in the study was accepted, the participant was visited at home. 

She was asked to sign the informed consent form and complete a questionnaire about herself 

(e.g. age, occupation), her asthma symptoms and her kitchen (See Appendix of Chapter 4 for 

more details). She received instructions on how to handle the Passam tubes, measure her own 

peak flow, score her asthma symptoms and keep a health and cooking diary for 8 consecutive 

weeks. Home visits were carried out to install the Aeroqual and again, after 8 days, to remove it. 

4.2.5 Assessment of exposure to NO2   

Exposure to NO2 peaks was continuously monitored with the Aeroqual Series 500 for 8 

consecutive days during the study period. Five-minute average exposure was used for analysis.  

NO2 was also measured weekly for the full study period (8 consecutive weeks) using Passam 

tubes. Participants were asked to replace the tube every week and send it back to me. Duplicate 

sampling was carried out three times and a blank testing twice. Aeroqual monitor and Passam 

tubes were both placed in the kitchen between 1.5m and 2m high and at least 0.5m away from 

cooker and 1m away from window. 

As part of the exposure assessment participants were also asked to keep a diary about their 

cooking activities in a weekly diary (Figure 4.9). 

 

 



Figure 4.8 The screening questionnaire 
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Figure 4.9 The cooking diary for Monday 

4.2.6 Assessment of respiratory health   

Respiratory health was assessed by examining daily variations in peak flow and respiratory 

symptoms. 

Participants were asked to take three peak flows in the morning and three in the evening. The 

highest peak flow was chosen for analysis. The peak flow was measured using a digital peak 

flow meter (http://www.clement-clarke.com/). This PEF meter has the advantage of being small 

(95mmx40mmx45 mm), light (43 grams), with a resolution of 5L/min and accuracy of 5% (or 

10L/min). Readings and timing of reading could be saved in the memory (as many as 240 tests) 

to be downloaded later on. It has a 6-month battery life. The eMiniWright had only recently been 

introduced on the market and the pilot study intended to test its use and reliability. 
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Figure 4.10 The health diary 

Participants were also asked to record and score (on a 0-3 scale) the quality of their daytime and 

night-time respiratory symptoms in a weekly diary (Figure 4.10). The symptoms included: 

• Wheezing and or/SOB 

• Chest tightness 

• Attack of SOB at rest 

• Attack of SOB after exercise 

• Being woken by attack of SOB 

• (Use of asthma reliever) 

At the end of each week participants were reminded by email to send the completed diary (on 

health and cooking) and the passive diffusion tube back to the researcher. 
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4.2.7 Statistical methodology 

The primary outcome of the panel study was the daily difference between morning and evening 

peak flow, as a percentage, over the study period mean of the daily difference  within the same 

individual (after Franklin, 2012) as follows 

�𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝐏𝐏𝐏𝐏𝐏𝐏 – 𝐏𝐏𝐄𝐄𝐄𝐄𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝐏𝐏𝐏𝐏𝐏𝐏�
𝐦𝐦𝐄𝐄𝐦𝐦𝐌𝐌𝐰𝐰𝐌𝐌𝐰𝐰𝐰𝐰𝐌𝐌𝐌𝐌 𝐌𝐌𝐌𝐌𝐢𝐢𝐌𝐌𝐄𝐄𝐌𝐌𝐢𝐢𝐢𝐢𝐦𝐦𝐢𝐢 �𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝐏𝐏𝐏𝐏𝐏𝐏 – 𝐏𝐏𝐄𝐄𝐄𝐄𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝐏𝐏𝐏𝐏𝐏𝐏�

%   (Equation 4.1) 

Secondary outcomes were: 

• Severity score as the sum of the score of five symptoms (wheeze, chest tightness, SOB 

at rest, SOB after exercise, woken up by SOB), adapted from Ostro (1994) 

• Use of asthma reliever medication. 

The focus of the primary analysis was: 

• To assess the association of the primary outcome (see Equation 4.1) with same day 

exposure (lag 0) and previous day (lag 1) to NO2 peaks (Franklin, 2012). 

A peak was defined as a 15-minute average NO2 concentration equal or above 600µg/m3. Due to 

the inherent variation of peak flows within each participant statistical analysis considered a mixed 

model with the fixed part of the model reflecting NO2 exposure and the random part of the model 

reflecting the variations within individual. 

The study was powered at 90% with α at 0.05 to detect 5% reduction in geometric mean PEF 

within the same individual assuming that an individual will be exposed to an indoor NO2 peak at 

least on 2 of the 8 days of continuous NO2 monitoring. The power calculation was complex 

because of repeated measures within same individuals and I received advice from the Medical 

Statistics Lecturer in my department, Roger Newson (personal correspondence, 14 December 

2012) (see Appendix of Chapter 4 for details of calculation). 

The study was approved by the Imperial College Research Ethics Committee (ICREC_13_2_10) 

and NHS REC (13/SC/0560). The Principle Investigator of the study was the PhD supervisor, 

Prof Debbie Jarvis. 
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4.3  Evaluation of the pilot study 

This section discusses the issues arising from the study design in detail as follows: 

• Recruitment 

• Participants compliance to study procedures 

• Outcomes assessment 

• Use of diary and problems arising from 

• Data collection  

• Instrument monitoring and problems arising from the use of NO2 sensor. 

4.3.1 Recruitment  

Recruiting participants proved to be very difficult and different strategies to advertise the study 

were implemented throughout the period the pilot study was conducted. The pilot study was 

planned to last for 12 months, the first 4 months spent on recruitment and the remaining months 

on following the participants. However, recruitment proved challenging and the period dedicated 

to this was extended to the whole 12 months. Table 4.5 summarises the history of recruitment 

strategies and response. Overall only two participants were recruited. 
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Table 4.5 Table showing history of recruitment strategies and response 

Agencies through recruitment was attempted Response Reply rate1  Recruitment 
rate2 

Asthma UK 

Policy and Research Volunteering group (120 
members) newsletter  - June 2013) 
 

1 person interested but did not leave in London. 1/1203  

Facebook (around 17, 000 friends)  - July 2013 

22 people commented (see Appendix of Chapter 4)  
5 persons interested in study  but were not recruited because they did not live 
in London;  
2 people did not reply back and reasons were not given.   

7/17,0004 0/7 

South East 
London 
Community Air 
Pollution group 

Newsletter to members (include individuals and 
organisations, see below) – July 2013 
 

Three organisations further advertised study in their own newsletter (see 
below); 
1 individual interested in study and recruited. 

1/1005  

Sustrans (number of members unknown) – July 2013 Study advertised in the newsletter (19/08/ 2013) ; 
1 person interested. 

1/3500 6 (in 
UK)  

London Sustainability Exchange (number of member 
unknown) – July 2013 

Study advertised in the newsletter (01/07/ 2013) ; 
2 people interested.  

2/possibly 
1,0007  

CleanAir London (9, 000 followers) Interested in advertise study in Twitter account but because study does not 
have a web link they eventually refused to do so because of Internet security. n/a  

Imperial College 
online staff board From November 2013 to May 2014 2 people interested, 1 recruited. 2/~10,000 8 1/2 

NHS GP practices 8 Chelsea and Battersea GP Practices  - January 2013 
10 South London GP practices – August 2013 

Wrote to  GP practices asking if they are interested in helping   by sending 
invitation letter to their patients ; 
3 GP replied, 1 interested in displaying a poster at reception. 

3/189 0 

NIHR-CRN North 
West London10#  

Advertise study to their GP members – February 2014 
4 GP surgeries interested, 1 agreed to send invitation letters to patients (see 
below) 
 

4/?10 0 

Gladstone GP – May 2014 Invitation letters sent  to their 122 eligible patients  
1 replied asking for information irrelevant to the study  1/12211 0/1 

1no. people who replied to advert/ estimated population target number ;  2no. people recruited/no. people replied to advert ;  3personal communication with Asthma UK; 4 number of Facebook 
friends;  5 includes organisation and individuals ( personal communication with group manager); 6 http://www.charitycommission.gov.uk; 7 as estimated target number as figure not available 
http://www.charitycommission.gov.uk;  8 http://www3.imperial.ac.uk/communications/resources/factsandfigures,  includes IC staff and post-graduate students who both have access to 
noticeboard, figure for 2011;; 9 number of GP surgeries; 10 number of GP surgeries and patients not available; from their web site between 2013 and 2014    1,685 patients were recruited in any 
study; 11 personal communication with GP surgery. 

http://www.charitycommission.gov.uk/
http://www.charitycommission.gov.uk/
http://www3.imperial.ac.uk/communications/resources/factsandfigures
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Advertising for recruitment was carried out through the following agencies: 

Asthma UK 

Initially, it was thought that it would be sufficient to advertise the study through Asthma UK 

Asthma UK agreed to advertise the study to a special group of members, the Policy and 

Research Volunteering group. This group comprises of around 120 women and men living in the 

UK, who are active within the charity and are willing to consider whether to take part in studies on 

asthma. One person replied to the advert but lived in Berkshire rather than London and cooked 

with an electric stove. 

The study was subsequently posted on Asthma UK Facebook, which is mainly followed by 

asthmatic adults or parents of asthmatic children. Twenty-five people liked the post and 27 

people commented on it on the same or following day it went ‘live’. No further comments or 

request for participating in the study have been received since then. Some people were 

interested in the study and would like to participate because they believed their asthma was 

affected by indoor air quality; some people instead accused the study of being ‘sexist’ as men 

were not recruited claiming that many men cooked too. Comments suggested that nobody was 

aware that exposure to gas cooking may affect asthma symptoms.  

South East London Community Air Pollution group 

The study was advertised in the group newsletter. Two women showed an interest in the study 

but were not asthmatic. Representatives of two organisations saw the advert and agreed to 

advertise the study in their own newsletter. A further organisation, CleanAir London, offered to 

advertise the study on Twitter as long as the study had a web page to which Twitter users could 

be directed to. There was not study web page so this was not possible. One person was 

eventually recruited via South East London Community Air Pollution newsletter. 

Imperial College staff noticeboard  

The study was advertised on the staff noticeboard website in November 2013 and stayed on the 

website until May 2014. Two people expressed an interest: the first could not commit herself to 

participate as she spent a considerable amount of time outside London for work; the second filled 

the eligibility criteria and agreed to participate in the study. 

  



174 

 

GP surgeries  

Eighteen GP surgeries in South-West London were initially contacted by post enquiring whether 

the surgery would be interested in helping with the study. The location (South-West London) was 

chosen because of being easily accessible. Most of the GP surgeries (n=15) did not reply. Those 

who did reply (n=3) apologised for not being able to advertise the study because of their current 

workload. 

The National Institute for Health Research (NIHR) Clinical Research Network (CRN) for 
North West London  

The network asked surgeries in North West London whether they were interested in advertising 

the study to women with asthma registered with their practice (see Appendix of Chapter 4 for 

copy of letter). A few surgeries replied to the call but were too busy to help or asked for financial 

compensation. One surgery offered to send an email to their patients as long as the study had a 

web site (which it did not). Finally, one surgery agreed to participate and posted an invitation 

letter to their patients (n=122) who met most of the eligibility criteria (non-smoker, age 20-65, 

female, current asthmatic, no other long-term illnesses). One response was received. 

4.3.2 Reasons for low recruitment rates 

Recruitments rates were affected by: 

Personal reasons 

Inclusion criteria were very stringent. Women had to live in London (London was chosen 

because of easy accessibility to participants’ home), cook at least 4 times a week (in the same 

house where the monitoring occurred) and not go away for more than 4 consecutive days during 

the 8-week study period. However, women who expressed an interest in participating in the study 

tended to be mobile as they travelled for work or holidays, spend the night outside London and 

often cooked in their partner’s home. 

Advertising coverage (type of media, the length and frequency of advertising, population target) 

The highest response came from the post on Asthma UK Facebook (7 people but none 

recruited). The lack of a web page for this study prevented some social media and GP surgeries 

from advertising the study as they needed a web link to do so (Table 4.6). Although the number 

of respondents was relatively low, the most successful strategies for recruitment were those 
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which targeted a selective population somehow related to academic research, i.e. Imperial 

College staff noticeboard and South East London Community Air Pollution group. 

Table 4.6 Reasons for not recruiting 

Reasons for not participating in the study   

Personal  

 Living outside London 6 persons 

 Not asthmatic 2 persons 

 Spend 3 days/week with boyfriend 1 person 

 Partner cooks 1 person 

 Work commitment outside London 2 persons  

 Personal reasons 1 persons 

 Other interests (wanted  reference for participating in the study) 1 person 

 Staying away from London home during the study period 4 persons 

Advertising coverage  

 Could not advertise in Twitter because web site of study needed for link 1 organisation 

 GP practice  asking for financial compensation 1 surgery 

 GP practice too busy  4 surgeries 

 GP willing to send a text to patients but web site needed for link 1 surgery 

4.3.3 Ethical approval for conducting the study 

Any time there was a change in recruitment strategy an amendment to the relevant ethics 

committee had to be requested. The first request for ethical approval was to the Imperial College 

Research Ethical Committee in March 2013. Approval was received in May 2013. Because of 

delay the advertising deadline for expression of interest in the study was no longer appropriate 

and Asthma UK requested an ethical amendment. Further amendments had to be requested as 

the study progressed to relax the eligibility criteria (upper age limit extended from 50 to 65) and 

to permit advertisement of the study on social networking media (Facebook, Twitter, other 

newsletters groups). 

Later, NIHR-CRN for North West London agreed to help with the recruitment of GP surgeries and 

a new application, this time through IRAS (Integrated Research Application System), which 
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approves any study conducted within the NHS had to be filed. Overall, applying for ethical 

approval proved lengthy and slowed down the recruitment process. 

During the application process issues related to field worker safety were raised by Imperial 

College Health and Safety. New protocols to ensure fieldworker (i.e. me) safety were requested 

and had to be dealt by ensuring that safety procedures were carried out any time I visited a 

participant at home. (This included informing other Imperial College staff about home visit and 

not travelling in the evening alone in secluded areas.) 

4.3.4 Participants compliance to study procedures 

 Questionnaires 

Women who were interested in participating in the study received a screening questionnaire 

which assessed their eligibility. Fifteen screening questionnaires were sent out accompanied by 

a Participants Information Sheet (PIS). Four were returned. There is a possibility that the 

questionnaire was too long (11 questions) which must have stopped some women from 

completing it. One woman found the question on oral steroid confusing as she assumed that the 

question was on inhaled steroid. ‘Oral’ should have been underline or put in bold to make it more 

noticeable. (N.B. Women on oral steroids were excluded) 

Outcome assessment: peak flow meters 

Participants monitored their own peak flow with a downloadable eMini-Wright. They quickly 

learned how to use the digital peak flow meter and enjoyed it. One meter stopped working the 

day after the study had started. The battery went dead even though the meter had never been 

used before. The participant contacted me for a replacement but only a manual one was 

available (Mini-Wright Peak Flow Meter, Clement Clarke). The peak flow meters complied with 

European regulations on peak flow standardised measurements (EN 13286). 

Participants were asked to measure their peak flow three times every morning and evening for 8 

weeks and record the measurement in a diary which had been handed in at the beginning of the 

study so that data downloaded from the digital peak flow meter could be tested for reliability. 

One participant had some unusually high peak flow readings (above 700 mL), which were not 

entered in the diary but recorded by the digital meter. These high readings are typical for a young 

male adult. The time when PEF measurements were taken and recorded by the digital meter did 
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not coincide with the self-completed diary, even though digital meter time settings were checked 

before handing it to the participant. A likely explanation is that another person (i.e. a young adult 

male) had used the digital meter but we cannot exclude the fact that the digital meter may not be 

reliable. Unfortunately, it was not clearly explained to the participants that data of the digital 

meter was downloadable and the pilot study meant to test its reliability. 

Exposure assessment: NO2 weekly monitoring   

Participants were asked to replace the Passam tube every week and send it back to me. They 

were given clear instructions when and how to do it. It is difficult to confirm whether participants 

complied with the procedures on how to use the Passam tubes, e.g. keeping them in the fridge 

when not being used, recording the time when the tubes were open and closed. The tubes I 

received back appeared to have been handled with care and the dates and timing of opening and 

closing had been recorded in the diary. The laboratory results confirm that the blank tubes were 

kept closed. 

Participants attitude towards monitors 

Although the Aeroqual monitor came with a battery it needed to be powered by electricity as the 

battery lasts for 15 hours only. In one household the cable was not long enough and I had to use 

an extension cable. There was some buzzing from the gas monitor but none of the participants 

reported being annoyed by this. 

Feedback from participants 

The feedback from one participant was quite positive. She enjoyed the study and did not find it 

too long. She asked to be informed about the results at the end of the study. The other 

participant did not complete the 8-week study period (she participated in it up to week 7) and did 

not provide any reason for stopping. However, the digital peak meter was returned at the end of 

the study and PEF readings were regularly taken until the end of week 8. She never gave any 

feedback and/or reasons for not completing the study. When asked, participants preferred 

communicating with the researcher by email rather than telephone.  

4.3.5 Participants use of the diaries   

Participants were asked to fill in a daily diary regarding their asthma symptoms, recording their 

PEF and time of cooking. One week diary consisted in 9 pages and needed to be completed by 

hand.  
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One participant found the health diary confusing as night symptoms were on the same row as 

morning PEF. She asked for clarification about the question: ‘Did you have any attack of SOB 

after exercise today?’. Since the participant did not take any exercise that day she did not know 

how to answer. This needs to be modified to take into account that people may not exercise (in 

some cases because they are limited by their asthmatic symptoms).   

The cooking diary consisted of a table of 30 minutes slots (from 7 to 7:30, from 7:30 to 8:00 and 

so on). If the participant cooked during that time she was asked to tick the relevant slot. Although 

this design aimed to minimise the time participant completes the diary the use of the slots is not 

very precise (e.g. somebody may start cooking at 7:15 and finish at 8:15). The cooking diary was 

created to examine whether NO2 peaks were correlated with gas cooking but the slot design is 

not the most appropriate solution. 

Some NO2 peaks occurred when participant had not recorded having cooked. The participant 

explained that her partner did some of the cooking but she did not record it in the diary as she 

understood the diary was about her cooking activities. For a future panel study we need to clarify 

whether a cooking diary should consider any cooking or only cooking by the participant. 

4.3.6 Instrument monitoring 

Aeroqual was delivered with a certificate that calibration and validation had already been carried 

out by the manufacturer. According to the manufacturer’s specifications the accuracy of the 

calibration is around ±10%. However, while the pilot study was ongoing a paper was published 

suggesting that the monitor needs independent re-calibration by complex laboratory methods 

(Mead et al., 2013). The Environmental Research Group (ERG) at King’s College London offered 

use of their laboratories and access to their air monitoring station data to evaluate potential 

problems.  
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Briefly, the following steps to evaluate the monitor were carried out: 

• Co-location testing against a chemiluminescence analyser (the ‘gold standard’) at an air 

monitoring station in London managed by ERG ;  

• Calibration and validation against a chemiluminescence analyser under laboratory 

conditions using ERG facilities at King’s College. 

Co-location testing 

Method 

The co-location testing with a chemiluminescence analyser of an air monitoring station was 

conducted outdoors on the kerbside of a busy road, Putney High St, London during rush hours 

on 15/08/2013 from 8:45am to 10:15am. Aeroqual was placed as close as possible to the 

chemiluminescence analyser on top of the cabin that encloses the analyser ( 

Figure 4.11). The location and timing were chosen as NO2 peaks as high as 150ppb (282µg/m3) 

for 15 minutes or longer during rush hour. These peaks are similar to the peaks produced during 

gas cooking. The day was chosen because there were no rain and wind. The 

chemiluminescence analyser records outdoor NO2 concentrations every 1 minute thus the 

Aeroqual monitor was set to log data every one minute too.  

Data from the air station monitoring were supplied by King’s College as an Excel file and then 

compared with the Aeroqual logged data using Stata 12.1. Data were visually compared with the 

Bland-Altman plot and by regressing the Aeroqual logged data against the chemiluminescence 

logged data. 
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Figure 4.11 Putney High St air monitoring station with Aeroqual positioned on top of station cabin near the 
inlet of the chemiluminescence analyser (north wind view)  

Results 

During the 90 minutes of testing both monitors detected very high peaks of NO2 reaching nearly 

600µg/m3 but peaks were detected at different time and lasted for different lengths of time 

(Figure 4.12).  

The agreement between the two instruments was very poor (Figure 4.13). The limits of 

agreement ranged between -171ppb (-321.5µg/m3) to 106ppb (193.6µg/m3) and the mean 

difference was -32ppb (equal to 60.2µg/m3 with CI -88.4µg/m3 to -33.8µg/m3). In other words, the 

mean difference between all pairs of measurements from the two monitors was around 60µg/m3 

and there were large variations with the Aeroqual monitor more likely to underestimate NO2 

concentrations (compared to chemiluminescence analyser). 

The scatter plot with regression line comparing the two instruments is shown next (Figure 4.14) 

only for the purpose of illustrations. This method is regularly used in analytical chemistry and has 

been used to examine Aeroqual against other monitors performance. (For epidemiological 

research the Bland-Altman method is the most appropriate method).  

Aeroqual

Air monitoring 
station
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Figure 4.12 One-minute NO2 concentrations (µg/m3) measured concomitantly with Aeroqual and 
chemiluminescence analyser in Putney High St on 15/08/2013  
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Figure 4.13 Bland-Altmann plot showing difference against the average in measurements (ppb) carried out 
with Aeroqual and chemiluminescence analyser of the air monitoring station at Putney High St 

on 15/08/2013   

 
 
 

Figure 4.14 Scatter plot of measurements carried out with Aeroqual against the measurement carried out 
with the chemiluminescence analyser of the air monitoring station at Putney High St on 

15/08/2013 

Validation  

Method 

Validation of the Aeroqual at low and high exposures had already been carried out in the 

manufacturer’s laboratory and a further validation was conducted under laboratory settings 

following a method proposed by Delgado-Saborit, University of Birmingham, who had previously 

tested the Aeroqual (Delgado-Saborit, 2012). The monitor was placed in an enclosed cabinet and 

exposed to known levels of NO2 generated by an NO2 cylinder of 500ppb and pure air both 

connected to mass flow meters. 

 Technical issues arising from calibration 

During the validation procedures the Aeroqual monitor stopped working and NO2 readings stayed 

at 0ppb while NO2 concentrations were at 500ppb. Laboratory and technical staff at King’s 

College were unable to fix the Aeroqual and the sensor head was returned to the manufacturer. 

They found no fault and re-calibrated it in their own laboratory. The sensor head was returned 
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and since then has been ‘working’. No further attempts at the above procedures were made and 

the scientist who developed this method was not available (maternity leave) for further guidance.  

4.4 Some results 

In this section I am going to present some of the results collected from the participants (ID2 and 

ID16) just for the purpose of illustration.Figure 4.15 and Figure 4.16 show the NO2 

measurements recorded with Aeroqual in the kitchens of both participants. No occurrence 

exceeded a peak of 600µg/m3 lasting for 15 minutes. Indoor NO2 exceeded 200µg/m3 in 12 

occurrences lasting 30 minutes or less in the kitchen of participant ID2 and 14 occurrences in the 

kitchen of ID16.   

The study was powered to detect a reduction in PEF within the same individual assuming that an 

individual will be exposed to an indoor NO2 peak at least on 2 days of the 8 days of continuous 

NO2 monitoring. A peak was defined as a 15-minute average NO2 concentration equal or above 

600µg/m3 but within this limited data exposure to this concentration never happened. 

 

Figure 4.15 Graph showing 5-minutes average concentrations of NO2 and weekly average concentration 
measured with Passam tube measured in the kitchen of participant ID2 (from 03/09/2013 to 

11/09/2013) 
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Figure 4.16 Graph showing 5-minutes average concentrations of NO2 and weekly average concentration 
measured with Passam tube measured in the kitchen of participant ID 16 (from 29/04/2014 to 

07/04/2014) 

 

4.5 Discussion 

4.5.1 Recruitment issues 

This pilot study was designed to test the feasibility of a panel study to assess the effect of 

exposure to NO2 peaks generated from gas cooking on asthma morbidity. It aimed to recruit 20 

women with asthma but succeeded in recruiting only 2 participants. 

Several strategies were used for advertising recruitment in the study. The highest recruitment 

rate came from advertising the study with those organisations that have close links with 

academic research (Imperial College and South East London Community Air Pollution group) or 

are involved with campaigning for better air quality in London (South East London Community Air 

Pollution, London Sustainability Exchange). These organisations reflect a selective group of 

women, employed, educated, involved with work within the local community. It has been shown 

that this particular group of people are more likely to participate in epidemiological studies as 
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they tend to put greater trust in scientific research and have greater rates of volunteerism (Galea 

and Tracy, 2007). They are not representative of the general population although it has recently 

been argued that non-representative populations produce only weak bias in exposure-disease 

associations (Ebrahim and Smith, 2013). 

Social media such as Facebook proved to be a place for ephemeral comments lasting the day 

when the post went alive but not a place to develop an enduring commitment to an 8-week study. 

Twitter was not tested, although I wonder whether the response would be similar to the one 

received from Facebook’s users. The advert on the Imperial College web site was in place for 7 

months; only two people responded but one of them became a participant. Posting an advert in 

sites people are familiar with and perceive them as reliable (i.e. staff noticeboard) and leaving it 

for several months may be a better option than Facebook.  

The study did not have its own web site or a link to the host academic department. Having a 

study website may legitimise the study and give confidence to potential participants that the 

study is genuine and valid.  

Recruitment through GP practices did not prove successful. Only one person out of the 120 who 

were invited to the study replied asking for something unrelated (whether she could get a job 

reference if she participated in the study). It is possible that people do not like receiving 

unsolicited mail from the GP practice and may perceive it as an intrusion to their medical records. 

An invitation letter to a study could be perceived as an unsolicited ‘telemarketing’ practice 

(Groves, 1992; Galea and Tracy, 2007).  

In addition to this, our invitation letter came with a screening questionnaires and a Participant 

Information Sheet, which due to ethical stipulation altogether made up to 5 A-4 sized pages. The 

amount and complexity of papers with inappropriate lengthy language to disclaim study 

insurance and liability (as requested by the various Ethical Committees) may have discouraged 

participation and contributed to the low recruitment rate. 

Another underlying reason for poor recruitment may be that people do not like home visits by 

strangers (the researcher) to have some ‘unusual’ equipment installed in the house. Ideally, there 

should be an opportunity for the researcher to familiarise with the potential participant. It may be 

easier to recruit people personally by approaching them individually face-to-face in the out-

patients asthma clinic of a local hospital or at a GP asthma clinic. Possibly the asthma clinic staff 

may act as an informal guarantor to the researcher and the study. Other work suggests face-to-
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face recruitment has higher participation rates in contrast with studies that rely on less personal 

forms of contact between study recruiter and potential participant (Galea and Tracy, 2007).  

A financial reward may increase the recruitment rate. Sexton (Sexton, 2005) reported on three 

major exposure-monitoring projects, the School Health Initiative: Environment, Learning, Disease 

(SHIELD), the Minnesota Children’s Pesticide Exposure Study (MNCPES) and the National 

Cooperative Inner-City Asthma Study (NCICAS). The latter study measured indoor NO2 in more 

than 600 homes of asthmatic children for 7 days (Kattan, 2007). These studies managed to 

achieve high recruitment (between 40% and 64%) and retention rates (between 85% and 95%) 

by using financial incentives. Financial incentives were between $5 and $50 for completing a 

questionnaire, $20 for a urine sample, between $20 and $30 for a blood sample, $20 for end-of-

study completion, and so on. Full participation to the study and follow-up could result to a total of 

$130 and $195. However, financial incentives did not work with the collection of peak flow data. 

All three studies targeted US inner-cities children, mainly from poor minority communities. It is 

reasonable to wonder whether a financial incentive would work in less poor groups. 

Since both participants were interested in the new digital peak flow meter a future study should 

consider whether give the digital meter to participants as a reward at the end of the study. 

4.5.2 Instrument monitoring and use of gas sensors 

Finally, there were a few concerns about the performance of the Aeroqual. The monitor could 

detect NO2 peaks generated from gas cooking combustion; it was calibrated and validated by the 

manufacturer but recent published work recommended that calibration and validation should be 

carried out independently.  

Lin and colleagues (Lin et al., 2015) tested the Aeroqual Series 500 at an urban background site 

in central Edinburgh. The gas sensor measurements were very poorly correlated with the 

reference chemiluminescence analyser but concluded that calibration against the reference 

analyser would improve performance. Similarly, Mead and colleagues (Popoola, 2012) tested an 

NO2 electrochemical sensor manufactured by Alphasense (Saffell and Dawson, 2004; Saffell et 

al., 2010) and concluded that the sensor needs to be corrected for temperature. Both tests were 

carried out outdoors  

My co-location testing was also carried out outdoors on a busy road (Putney High Street, 

London). However, outdoor NO2 sources and environmental conditions are different from those 

that we normally encounter indoors. Ozone, which is involved with the oxidation of NOx and also 
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interferes with NO2 monitoring, tends to be higher outdoors (especially in the summer when the 

test was carried out) than indoors (where it is virtually non-existent). The principle sources of 

outdoor NO2 in an urban environment are mobile (lots of travelling vehicles) while indoors the 

main source of NO2 is fixed (a gas stove). During the co-location testing cars were constantly 

accelerating and decelerating at traffic lights next to the air monitoring station leading to very 

quick changes in NO2 levels. This can be a problem with instruments such as Aeroqual as they 

tend to have a slow sensor response, which means that rapid changes in the atmosphere is not 

tracked by the Aeroqual as fast as the chemiluminescence analyser (Williams, 2009). On the 

other hand combustion gases generated from gas cooking are released at a constant rate from a 

fixed hob.  

While an electrochemical sensor may not be recommended for outdoor monitoring we cannot 

rule out that it performs well indoors. So far all the published work on testing has been carried out 

outdoors. Unfortunately, because of the lack of department laboratory infrastructures (my 

department is medical oriented) I did not have many opportunities to test the gas sensor with a 

chemiluminescence analyser under laboratory conditions, ideally close to a Bunsen burner flame.  

In this study there has been emphasis of one product of gas combustion, i.e. NO2. However, 

there is evidence that some of the health effects observed with gas cooking may be related to 

particles, another product of gas combustion. Particles are grouped in size and special attention 

has recently been given to ultrafine particles (UFP), which have a diameter less 100nm. High 

level of UFP have been observed while cooking with gas at high temperature (Dennekamp, 

2001; Zhang et al., 2010). Real time monitoring of particles has already been tested out for 

several years and a large range of reliable and portable instruments is available on the market. 

Any future panel study that aims to assess the health effects of gas cooking should calibrate any 

electro-chemical NO2 sensor and carry out continuous NO2 and particles simultaneously. 

4.5.3 Recommendation for a future panel study   

After evaluating the results of the pilot study the recommendations for conducting a panel study 

are given in Table 4.7 with related estimated costs listed in Table 4.8.  
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Table 4.7 Recommendations for conducting a panel study 

Study features Recommendations 

Participants’ 
characteristics 
 

20 men and women,  
18-65 years old; 
with current asthma; 
cook with gas (75%) or electricity (25%) at least four times a week; 
live in London or South-East England. 
 

Length of study 18 months: 
3 months for ethical approval, 3 months for recruitment, 6 months of monitoring participants, 
6 months for analysis. 
 

Recruitment strategies (1) through NIHR-CRN as tested in the pilot study; they will advertise recruitments to the GPs 
clinics linked to the network and their asthmatic patients living in London and South-East 
England; this will be done electronically (i.e. by sending an email and/or text to patients and 
advertising on  GP practices web site and electronic information(board) and by displaying 
poster in GP practices;  
(2) at outpatient asthma clinic at Brompton Hospital, London: field worker to advertise study 
and recruit patients at face to face level; 
(3) social media of community–based groups; 
(4) financial incentives. 
 

Aeroqual Two monitors and 4 NO2 sensor heads so that they can be used at the same time in more 
than one participants house;  
Calibration: to be carried out independently from manufacturer in an accredited laboratory 
which may possibly collaborate in the study. 
 

Passam samplers As in the pilot study, to be replaced weekly and sent to Passam laboratory for analysis. 
e-mini Wrights 
download  

25 e-Mini Wrights (20 for the participants and 5 spare ones to be used for demonstration by 
field workers);  
Ensure that participant knows that peak flow data are stored in the digital meter and will be 
downloaded for analysis; 
Leave the digital meter with  participant as a reward for participating in the study. 
 

Field workers  Two field workers are needed to visit participants’ home together because of Health and 
Safety requirements.  
 

Travel  To be prepared to extend the area of recruitment outside London 
 

Use of electronic 
resources 
 

To use social media and electronic resources to full extent; 
To create electronic versions of diaries and questionnaires and apps to be installed on phones 
for diaries, questionnaires, etc. 
To consider use of  Quartix software (freely available at Imperial College) to create, distribute, 
store and manage survey, questionnaire and diaries data 

Researcher A researcher is needed to manage data 
 

Postage Participant needs to send  Passam tubes by post back to Imperial College after sampling 
 

NIHR-CRN London and 
South-East England 

at moment the network provides free support to academic health-related researcher and it is 
expected that they would contact GPs and their patients for free 
 

Web page, online 
questionnaire Freely available through Imperial College web site 

Calibration Collaboration with an academic department specialised in environmental monitoring is 
recommended but calibration may involve some laboratory and staff cost 
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Table 4.8 Estimated cost for a panel study aimed to recruit 20 participants and lasting for 18 months 

  Estimated cost Quantity Total  estimated 
cost 

Aeroqual    
 Monitor £996.00 2 £1992.00 

 Sensor head £355.00 2 £710.00 

 Spare sensor heads £177.00 2 £354.00 

 Delivery £35.00  £70.00 

Passam  samplers    
 Samplers + Delivery + Laboratory analysis 

(including postage)  8x20 £1,600.00 

Laboratory cost for calibration £500  £500 

Real-time portable PM monitor/counter (Casella) £1,500.00 2 £3,000.00 

e-mini Wrights download £14.00 20+5 spare £350 

Field workers to deal with recruitment and carry out 
home visit    

 FT 0.5*12month £25,000 2 (for safety) £50,000.000 

Travel costs for home  visits £20 20participants x3visits 
x2field workers £2,400 

Researcher/study co-ordinator/database manager    

 FT0.4*18month £40,000 1 £40,000 
Postage for participants to send back Passam tubes to 
department     
 jiffy bags  8x20 £32.00 

 stamps  8x20 £160.00 

Email to patients free service[TBC  
Web page free[TBC]  
Online questionnaires free[TBC]  
NIHR-CRN free patients database searching[TBC]  
Miscellaneous £300  £300 

Total estimated cost   £101,468.000 
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4.6 Summary 

This pilot study aimed to assess the feasibility of conducting a panel study that examined the 

association of respiratory health with exposure to indoor NO2 peaks generated from gas 

combustion. The study piloted a new-to-market portable, low-cost monitor that could measure 

short-term exposure to indoor NO2 but studies published while this work was ongoing 

recommended that independent calibration should be carried out. Several strategies for 

recruitments were attempted: asthma patients associations, GP practices, local communities and 

staff noticeboard at the academic institution where I am based but the study could not be 

completed because of poor recruitment. A future study should consider laboratory cost for 

calibration and validation of the NO2 monitors and face-to-face people recruitment, for example, 

in an asthma outpatient clinic. Financial incentive should also be considered.   

Monitoring indoor exposure is quite often a difficult task in any epidemiological study because of 

the cost and time consuming that monitoring involves. Besides, some people do not like being 

visited at home by some ‘stranger’ and having ‘unusual’ instrument installed. Some studies have 

relied on the use of proxy measures, such as the use of gas cooking but this can be imprecise. 

Predicting indoor NO2 average exposure based on questionnaire information has been 

previously attempted. The ECRHS has information on the presence of gas appliances and some 

relevant household characteristics, which may determine indoor NO2 levels. In the next chapter 

(Chapter 5) I will assess whether such exposure modelling can be applied to the ECRHS data 

and be used for respiratory health assessment of indoor NO2.  
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5. Modelling indoor  

5.1 Introduction 

Monitoring indoor exposure is a demanding task in any large epidemiological study because of 

the cost and time consuming. It is common for such studies to be based on relatively small 

numbers of household measurements. For example, of the 50 studies included in the systematic 

review of Chapter 2, 22 studies were based on fewer than 200 households. The small sample 

size can affect the statistical power to conduct health assessment analyses and studies often rely 

on the use of proxy measures, such as the use of gas cooking. However, this can be imprecise. 

Modelling the exposure by regressing available information on determinants of exposure on a 

much larger sample of people may provide an affordable alternative to exposure monitoring.  

In this chapter I will develop a model suitable for the estimation of two week average indoor 

concentration of NO2 using questionnaire based information available for all participants in 

ECRHS.  

5.1.1 Background 

It has long been recognised that gas cooking is the major determinant of indoor NO2 in homes 

where gas is used for cooking. One of the earliest studies (Dockery et al., 1981) measured 

indoor NO2 in nine families living in Kansas (US) to determine the variability of indoor 

concentrations. The study found that homes where gas was used for cooking had twice the 

indoor NO2 levels than homes where electricity was used and three times the outdoor level. 

Another early study (Sexton et al., 1983) identified gas stove and outdoor NO2 as the main 

determinants of indoor NO2 but air-exchange rates and strength of indoor sources also 

contributed to some of the variability of the concentrations. Unvented gas heaters and gas stoves 

with a constant burning pilot light were also identified as strong predictors of indoor NO2 by other 

early studies (Spengler, 1983; Ryan et al., 1988; Quackenboss et al., 1986; Wilson et al., 1986; 

Ryan, 1988). 

One of the most extensive exposure assessment of indoor NO2 was carried out by Spengler and 

colleagues (Spengler et al., 1996) as part of a large study on the health effect of indoor NO2 

(Samet et al., 1987). Indoor NO2 was monitored in 1,400 houses in Albuquerque, New Mexico, 
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on multiple occasions throughout the year and information on household characteristics 

collected. Several determinants of indoor NO2 were identified by regressing indoor NO2 against 

the following: building characteristics (e.g. age, size, attached garage); type of cooking stove 

(e.g. with burning pilot light, electric, gas); presence of gas or kerosene space heaters, fireplace, 

humidifier; use of cooking stove (e.g. time spent cooking and whether stove was used for space 

heating); meteorological factors (season, temperature, rainfall). Findings from this study 

(Spengler, 1996) showed that elevated levels of NO2 were associated with the presence of gas 

cooking appliances with continuously burning pilot lights, use of gas stove or burners. 

Smaller house size (measured in squared feet, although how this was measured is not 

specified),        decreasing outdoor temperature and increasing daily rainfall were also found to 

be associated with elevated indoor NO2 levels. It was suggested that the house size affects the 

level of indoor NO2 because as the volume of a house increases the degree by which NO2 

dilutes indoors increases too and that during cold and wet days people are more likely to 

increase the use of heating and cooking appliances and less likely to open doors and windows 

thus minimising the exchange of indoor air with outdoor air. 

Further monitoring was carried out in a sub-set of households for up to 36 months to assess 

year-to-year variability. Findings suggested that the indoor NO2 levels were affected by seasonal 

and annual variations. 

5.1.2 Characteristics of studies on indoor NO2 models 

A large array of studies on indoor NO2 modelling has been published since then. Studies have 

relied on indoor NO2 measurements, information on household characteristics and data on 

outdoor environmental factors to develop the models. Predictors have been assessed with the 

use of univariate or multivariate regression analyses and kept in the model if they are statistically 

significant. Statistical significance has been assessed by the size of P value (P< 0.05) and model 

performance by the proportion of variability the model explains in terms of R2. 

Measurements of indoor NO2 have mainly been conducted over 7 to 14 days but occasionally 

only a couple of days (Lai et al., 2006; Baxter et al., 2007). Some studies have measured indoor 

NO2 in more than one season (Lee et al., 1998; Baxter, 2007; Lawson et al., 2011). Household 

characteristics have normally been collected with the use of questionnaires.  

The most common significant predictors of indoor NO2 to be identified are: having a gas stove 

(for example by Lee et al., 1998; Cyrys et al., 2000; Algar et al., 2004: Esplugues et al., 2013; 
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Lawson et al., 2011; Heroux et al., 2010; Valero et al., 2009; Monn et al., 1998); a gas fire (Algar, 

2004); an unflued gas heater (Sakai et al., 2004); having a gas appliance with a constant burning 

pilot light (Lee et al., 1998); outdoor NO2 (for example by Lee et al., 1998 Zota et al., 2005; 

Heroux, 2010; Valero, 2009; Monn, 1998); proximity to road (Roorda-Knape et al., 1998; Lawson 

et al.,  2011). 

Indoor smoking has also been identified by some studies (Monn, 1998; Algar, 2004; Lai, 2006, 

Heroux, 2010; Levy, 1998) but the presence of tobacco smoke may have only a small impact on 

indoor NO2 levels and only significant in the absence of other indoor NO2 sources (Leaderer et 

al., 1986). Some other minor sources of indoor NO2 that have been identified are candle burning 

(Sorensen et al., 2005) and if an attached garage is present, moving a car in and out of the 

garage (Yang, et al. 2004). The number of people living in the household (occupancy) and 

occupant density have also been often considered as indicative of indoor NO2-producing 

activities such as cooking, heating and smoking (Baxter, 2007). 

As ventilation influences the rate at which indoor NO2 disperses and/or escapes outdoors and 

the rate at which outdoor NO2 penetrates inside, some studies have attempted to include 

ventilation in their model but defining ventilation has proven difficult. Some authors have 

measured air exchange rates using perfluorocarbon (PFC) tracer techniques1 (Lee, 1998; Zota et 

al, 2005; Gilbert et al., 2006). Others have used proxy measures, for example: open windows 

(Heroux, 2010); home size (Spengler, 1996) or whether the household is a flat or a house. It has 

also been suggested that large homes may also provide more surface area onto which NO2 may 

be absorbed thus providing a ‘sink’ into which NO2 is converted to nitrous acid in the presence of 

water (Spicer et al., 1993). Of note, US literature uses the term ‘multi-family’ or ‘multi’-unit’ 

building and ‘single-family’ or ‘single-unit’ building instead of the terms ‘flat’ and ‘house’. 

Seasonal variations 

Meteorological factors have also been found to influence levels of indoor NO2 such as outdoor 

temperature and rainfall (Spengler, 1996), wind (Roorda-Knape, 1998) and seasonality.  

As part of the Infancia And Media Ambiente (INMA) study indoor and outdoor NO2 levels were 

measured in 352 Spanish homes. The study found that season was a significant determinant 

(along with type of cooking stove and water heater and outdoor NO2) and that the relative 

1 The PFC technique is based on a continual release of a non-toxic tracer gas (perfluoromethyl cyclohexane) and 

its uptake by diffusion samplers (capillary absorption tubes or CATs). 
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contribution of outdoor NO2 to indoor NO2 levels was higher in summer than winter (Esplugues, 

2013). Some studies have developed separate models by season. For example, Gilbert (2006) 

considered a model only for the cold months (January to April), a time of the year when people in 

Quebec City, the location where the study was carried out, usually keep their windows closed. 

One-week average NO2, relative humidity and temperature were measured in the living room of 

97 homes. PFC trace techniques were used to measure infiltration rate; air change rates were 

calculated by including house volumes and number of occupants to infiltration rates. Air change 

rate together with the presence of a gas stove and gas-powered main heating system explained 

nearly half of the variance of indoor NO2 during the cold months (January to April). In another 

Canadian study (Heroux, 2010) a multivariate model was developed for the summer months 

only. The strongest predictors were gas stove, smoking inside (yes/no), keeping windows open 

and outdoor NO2.  

A study in Boston, US (Zota, 2005) observed a strong collinearity between season and AER and 

because of this, season was not included in the model. Indoor NO2 measurements were carried 

out in the kitchen, living room and outdoors for three sampling sessions in 77 flats. Air exchange 

rate (AER) was measured using a PFC tracer technique. Several predictors were initially 

considered but only outdoor NO2 and AER remained significant in the multivariate models. All 77 

flats had a gas stove, making it impossible to quantify the contribution of gas stove to indoor 

NO2.   

Assessment of predictors of indoor nitrogen dioxide levels in multicentre studies   

Some models have included more than one geographical location and observed a degree of 

‘unexplained’ variability in exposure across cities or countries.  

Cyrys (Cyrys, 2000) assessed the contribution of indoor sources and outdoor sources (traffic 

exhaust emissions) to indoor weekly average NO2 in 385 living rooms in Erfurt (former East-

Germany) and Hamburg (former West-Germany) by running a linear regression model that 

included place of residence as well as determinants of indoor NO2. Outdoor NO2 contributed 

more to indoor NO2 concentrations in Hamburg (where outdoor NO2 levels were higher) than 

Erfurt. 

Algar (2004) examined weekly or bi-weekly indoor NO2 average exposures in 1421 homes in 

Ashford (UK) and Menorca Island and Barcelona (Spain). The contribution of the main 

determinants (gas cooker, gas fire, parental cigarette smoking and season of measurements)   to 

indoor NO2 differed across locations. 
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Lai (2006) modelled indoor NO2 for 4 European cities as part of the EXPOLIS study. Models 

were developed at city-level by including an interaction term for city. As a result the contribution 

and significance of the predictors varied between cities and sometimes the effect had opposite 

directions. For example, wind speed was negatively associated in Basel and Prague but 

positively associated in Oxford.  

5.1.3 Personal exposure 

This overview of major studies on indoor NO2 modelling highlights the major findings contributing 

to the field. Studies that model personal exposure to NO2 have not been included although many 

studies of personal exposure agree that residential indoor concentrations are better predictors of 

personal exposure than are residential outdoor concentrations (Levy, 1998; Monn, 1998; Levy et 

al., 2010). Breysse et al (2005) and others (Rotko et al. 2001; Lai 2004) found that the presence 

of gas stove at home was significantly associated with personal NO2 exposure. Levy et al (1998) 

calculated that the use of a gas stove in the home was associated with 67% increase in mean 

personal NO2 exposure. 

5.1.4 Predictors of indoor NO2 

In the next page Figure 5.1 displays the predictors that have been identified by previous studies 

on monitoring and modelling and their direct and indirect relationship with indoor NO2.  

 

 



Figure 5.1 Potential predictors of indoor NO2 levels  
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To summarise, elevated indoor NO2 levels can be affected by: 

• The presence of  generating NO2 indoor sources  

• The amount generated from the source  

• The degree by which a building retains NO2  

• Outdoor NO2 penetrating inside the building. 

The main sources of indoor NO2 are:  

• Gas appliances: hobs, oven, unflued gas heaters (UFGH). 

Minor sources include indoor smoking and candle burning.  Combustion from other fossil fuels 

(e.g. coal, coke, wood) can also generate NO2 but have not been considered in this project.  

The amount of NO2 generated by a gas appliance is influenced by several factors, some of them 

difficult to quantify: 

• Type of gas appliances (gas ovens generate more NO2 than gas hobs, (Dennekamp, 

2001), unflued gas heaters generate more indoor NO2 than externally flued gas heaters 

(Gillespie-Bennett et al., 2008).  

• Type of gas – the gases butane and propane are used in gas bottles and tend to produce 

more NO2 than methane, the main component of natural gas from the mains. It has been 

estimated that 1 kg of propane or butane emits 2.3 g of NOx during combustion while 1 kg 

of natural gas (methane) emit 1.0g of NOx but application temperatures and air/fuel ratios 

may vary these emissions. In general higher air/fuel ratios increase NOx emission 

(http://www.engineeringtoolbox.com/nox-emission-combustion-fuels-d_1086.html). 

• The frequency and duration of gas appliance use (the longer an appliance is on the more 

NO2 is generated). 

• Style of cooking - e.g. frying generates more NO2 than boiling water, four gas rings on 

generate more NO2 than one ring on (Dennekamp, 2001). 

• The number of people living in a house as high occupancy is more likely to be associated 

with a heavier use of heating and cooking appliances and if occupants smoke, higher 

levels of indoor tobacco smoking. 

• Time of the year as the use of heating and cooking appliances tend to be heavier during 

the cold season. 

 

The degree by which a building retains NO2 that is emitted indoors is affected by: 
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• Size of the house as large houses have more indoor air in which indoor NO2 can 

disperse and  provide more surface area onto which NO2 may be absorbed and 

converted to nitrous acid in presence of water. Thus flats with a gas cooker will tend to 

have higher indoor NO2 than a house with a gas cooker. 

• Building ventilation such as the presence of ducted fans or ducted hoods above gas 

stoves to let cooking fumes out and window and doors that open to the outside to let 

indoor air out. 

• Human activity affecting the degree of ventilation (e.g. frequency and duration of keeping 

a window to the outside open). 

• Time of the year as people are more likely to keep windows and doors open during the 

warm season. 

The amount of outdoor NO2 that penetrates inside is affected by: 

• The residential level of outdoor NO2, which in turn depends on other factors such as 

proximity to road, traffic intensity and landscape characteristics. 

• Building ventilation such as the presence of windows and doors that open to the outside 

and allow outdoor NO2 to penetrate in. 

• Time of the year as people are more likely to keep windows and doors open during the 

warm season. 

The above characteristics may be influenced by differences between countries. For example, 

emissions from gas appliances may vary because of different cooking styles (Zhang, 2010), gas 

appliances design or chemical mixture used to add smell to the gas (Jarvis, 1998). Ventilation 

may vary because of housing characteristics, outdoor temperature and proximity to busy roads. 

5.1.5 Regression model for predicting NO2 exposure 

Systematic approaches to predict individual exposures in cohort studies have been developed for 

assessment of health impact associated with variability in outdoor air pollution. Regression 

mapping or, as later became known as Land Use Regression (LUR) was introduced by Briggs 

(Briggs et al., 1997) in the Small Area Variations In Air quality and Health (SAVIAH) study. It 

combines monitoring of air pollution at a relatively small number of locations and development of 

stochastic models using predictor variables usually obtained through geographic information 

systems (GIS).The model is then applied to a large number of unsampled locations (e.g. 
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addresses) in the study area. After the successful pioneering work in SAVIAH LUR methods 

have been increasingly used in outdoor air pollution epidemiological studies over the past 

decade.  

In recent years the European Study of Cohorts for Air Pollution Effects (ESCAPE, 

http://www.escapeproject.eu) has developed a flexible methodology for assessment of long-term 

population exposure to air pollutants using the LUR methodology in order to apply the exposure 

assessment methodology on existing cohort of mortality and chronic diseases studies in Europe  

(ESCAPE, 2010). This manual has been used as a guide to develop the model for indoor NO2 

exposure assessment described in this chapter. 

To date no standardised approach to model indoor NO2 has been proposed. 

5.1.6 Aims 

To explain variability in indoor concentration of NO2 using variables likely to be available for all 

participants taking part in a large cohort study (ECRHS). 

5.1.7 Objectives 

1. To develop a model that explains the variation of two-week average indoor NO2 

using data collected in a sub-sample of ECRHS participants with indoor NO2 

measurements. 

2. To evaluate whether the model is suitable to estimate indoor NO2 levels in ECRHS 

homes. 

3. To predict two-week indoor NO2 average exposure in people who participated in ECRHS 

II and ECRHS III. 
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5.2 Methods 

5.2.1 Indoor NO2 measurements 

Two-weekly average monitoring data of indoor NO2 from 1,906 homes and related information on 

household characteristics (i.e. type of cooking and heating appliances and ventilation) were 

collected using a standardised questionnaire within the ECRHS II survey in 14 ECRHS centres of 

6 European countries (Belgium, Italy, Spain, Sweden, Switzerland and UK) between July 2000 

and June 2002 at different times of the year. 

For details of the measurement protocol see Chapter 3, section 3.2.2.  

5.2.2 Predictors included in the development of the model 

Participants provided information on housing characteristics and use of gas appliances at 

ECRHS II during a standardised interviewer administered questionnaire.  

Data on annual average outdoor NO2 at their residential address was generated in work 

conducted during the ESCAPE project, a European project that modelled outdoor air pollutant 

exposure of ECRHS and other European study cohorts using LUR. Briefly, a standardised 

protocol was applied in the cohort study areas between 2008 and 2011. Outdoor NO2 (and other 

traffic pollutants) measurements were carried out for a 14-day period during each of three 

season (cold, warm and intermediate) and annual average concentrations for each monitoring 

site were computed by averaging the three measurements and combining them with 

measurements collected from a central reference site to adjust for seasonal variability. An annual 

average estimated NO2 concentration was allocated to each cohort participant’s place of 

residence. This model will use the predicted exposure for the year 2010 and back-extrapolated 

exposure for the year 2002 (http: //www.escapeproject.eu/ manuals/ 

Procedure_for_extrapolation_back_in_time.pdf).  

Meteorological data were provided from the ECRHS meteorological database (ECRHS meteo) 

and Weather Underground website (http://www.wunderground.com/). ECRHS meteo provided 

monthly average temperature and relative humidity at city level for all ECRHS centres except UK. 

Weather Underground provided historical meteorological data for the UK (Norwich and Ipswich). 

As no weather data were available for Ipswich Wattisham was chosen because it was the closest 

location to Ipswich (16 miles away). Daily average temperatures and relative humidity data of the 

 

http://www.wunderground.com/


201 

 

two UK locations (Norwich and Wattisham) for the year 2000 and 2001 were downloaded as an 

Excel file and then transferred to Stata 12.1 for data manipulation. Average monthly temperature 

for each location was calculated from the mean daily temperature for the period 2000-2001. 

Table 5.1 lists the potential predictors available from the ECRHS main questionnaire and their 

expected direction of effect, defined a priori, which were considered in the development of the 

model. Because of missing or incomplete data for some predictors only some of the predictors in 

Figure 5.1 could be included in the development of the model.  

The following indoor sources of indoor NO2 were included in the model and treated as binary 

variable (‘yes’ for if present and ‘no’ if not present) as follows:  

• Gas hob (including hobs connected to the mains and those connected to bottled gas). 

• Gas oven (including ovens connected to the mains and those connected to bottled gas). 

• Use of bottled gas. 

• Open gas fire or portable gas heater or paraffin heaters (considered as one category of 

unflued gas heaters – UFGH - because of the relatively small number of each type of 

appliance, which could cause overfitting1  in the model development). 

• Indoor smoking if participants reported that at least one person smoked inside the home. 

The following variables were included to describe ventilation and housing characteristics which 

affect the degree by which indoor NO2 disperses:  

• The presence (y/n) of a kitchen ducted fan (‘vent that takes fumes out’) based on the 

answer to the question: ‘If you have an extractor fan over the cooker, does the fan take 

the fumes outside the house?’. 

• Keeping a window or door open while cooking (y/n) (‘kitchen door or window that opens 

to the outside’) based on the answer to the question ‘Over the last four weeks when you 

were cooking did you have a door or window to the outside air open?’. A response of 

’always’ or ‘most of the time’ was considered ‘yes’ and a response of  ‘some time’, ‘never’ 

or ‘there are no windows or doors to the open air in the kitchen’ as ‘no’. The direction of 

the effect of keeping the window open was not assumed ‘a priori’ as the direction of effect 

may vary depending on indoor/outdoor (I/O) exchange rate. 

1 Overfitting generally occurs when a model has too many parameters relative to the number of observations. A 
model that has been overfit can exaggerate minor fluctuations in the data leading to poor  predictive 
performance, as it. 
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• Flat, i.e. smaller home (yes) versus house, i.e. larger home (no) – ‘flat’ included any 

housing unit that was part of a larger building made up of more than one unit and ‘house’ 

included detached, semi-detached or terraced houses. (Of note, in US the terms ‘multi-

unit dwellings’ or ‘multi-family housing’ are used instead of  the term ‘flat’). 

• Reported age of building in years. Older buildings are more likely to have bad ventilation 

and ‘unflued’ cooking and heating appliances. 

Further variables that may affect the amount of NO2 generated indoors were included:  

• The ‘average time (in minutes) spent cooking per day’ in the month previous to the 

questionnaire was included in the model to quantify the use of gas cooking appliances.  

• The absence of central heating at home (‘no central heating’) was treated as a proxy for 

recurrent use of heating appliances as people are more likely to use UFGH or an oven to 

warm up the kitchen if no central heating is present. 

Outdoor NO2 sources and other environmental variables that may affect ventilation, cooking and 

heating habits were included: 

• Annual average outdoor NO2 (from ESCAPE model) 

• Outdoor monthly average temperature 

• Outdoor monthly average relative humidity. 
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Table 5.1 Predictor variables extracted from the available datasets and applied in the regression model 

Predictors 
expected 

direction of 
effect 

Specification / Impact Information available in dataset 

 Gas hob (Y/N) + Indoor NO2 source; high ECRHS II main questionnaire 
 Gas oven (Y/N) + Indoor NO2 source; high ECRHS II main questionnaire 
Gas bottle    (Y/N) + Indoor NO2 source; high ECRHS II main questionnaire 
UFGH (open gas fire, portable gas heater, paraffin 
heater)  (Y/N) + Indoor  NO2  source; high ECRHS II main questionnaire 

Indoor smoking  (Y/N) + Indoor NO2 source; impact is related to the amount of smoking indoors but 
information not available from questionnaire. ECRHS II main questionnaire 

Vent that takes fumes outside (Y/N) - A well-functioning ducted fan lower levels of indoor NO2 as cooking fumes are 
fanned outside  ECRHS II main questionnaire 

Keeping a window/door open  in the kitchen   
while cooking (yes=most of the time or 
sometimes, no=rarely or there is no 
window/door) (Y/N) 

+/- 
Indoor NO2 decreases because it escapes from the building. On the other hand, 
outdoor NO2 may penetrate inside the building.  Ozone and UV light can also 
penetrate indoors and react with NO2 

ECRHS II main questionnaire 

Flat as a type of building  (against houses) (Y/N) + May indicate smaller home and kitchen size hence NO2 is less diluted in the air ECRHS II main questionnaire 

Absence of central heating (Y/N)  The absence of central heating is a proxy measure to indicate a more frequent use of 
unflued heating  appliances  ECRHS II main questionnaire 

Age of building (years) + Older buildings tend to have worse ventilation and heating *– ECRHS II main questionnaire 
Daily average spent on cooking the last 4 weeks 
(self- reported in min/day) + Longer  cooking period more NO2 produced ECRHS II main questionnaire 

Annual average modelled  outdoor NO2 at 
address level (measured in µg/m3)  + Outdoor NO2 , the most common source being fumes exhaust from vehicles ; it  can 

penetrate inside the house and increase indoor NO2 concentrations   ESCAPE 

Monthly average temperature (measured in 
Celsius) 

-  
 

Affects the rate people open windows (during warm weather people are more likely 
to keep window open) and time of cooking (during cold weather people are more 
likely to spend more time indoors cooking); also NO2 decays faster at higher 
temperatures   

Weather Underground (for UK 
dataset) ECRHS_meteo dataset 

(for the other countries) 

Monthly average relative humidity (measured in 
%) 

-  
 

Affects the rate   people keep windows open;  at higher relative humidity NO2 is 
more reactive 

Weather Underground (for UK 
dataset)  and ECRHS_meteo 

dataset  
Country (Belgium, Spain, Italy, UK, Sweden) unknown The effect of country is unknown, probably higher if gas appliances used ECRHS II main questionnaire 
* However, Sakai 2004 found that older Japanese houses have lower indoor NO2 compared to more recent build houses, the main reasons being that new houses tend to be built with 
concrete rather than wood which increases insulation and retention of NO2. 
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5.2.3 Development of the regression mode 

Data required for the potential predictors listed in Table 5.1 were extracted from their original 

datasets (ECRHS II, ESCAPE and Weather Underground/ECRHS meteo) and transferred to 

Stata. Variables were created using standard data techniques and merged (e.g. use of open gas 

fire, portable gas heater and paraffin heater were merged together into ‘UFGH’), re-categorised 

(e.g. the 4-category variable ‘keeping the window/door open’ was transformed into a binary 

variable) or re-scaled (e.g. cooking time was rescaled from 1 minute to a 30-minute scale, 

outdoor NO2 from a scale per 1 µg/m3 increase to 10 µg/m3 increase) as necessary. Their 

relation with indoor NO2 was first investigated with simple cross-tabulation and scatter plots.  

In order to model indoor exposure using a standardised approach I adapted the protocol the 

ESCAPE project developed to model annual average exposure to outdoor air pollution. Briefly, 

the development of the model can be summarised into the following steps carried out using the 

training set: 

1. Univariate regression of predictors against indoor NO2. 

2. Stepwise regression to maximise adjusted R2 starting from predictor with highest R2. 

3. Removal of predictors from multivariate regression if adjusted R2 does not increase by 

1%. 

4. Inclusion of the variable country in the model. 

5. Removal of predictors with P>0.10 one by one starting with the predictor having the 

largest P value. 

 

Finally, the model was:  

• Tested for normality using standard regression diagnostic test. 

• Validated on the independent set (hold-out validation). 

• Cross-validated for sensitivity analysis. 

 

The dataset was divided at random into a training set (75% of the data) and a test set (the 

remaining 25% of data). The model was developed using the training set and then validated 

using the independent test set.  

 

Stata 12.1 was used for regression analyses, validation of model and plots. 



205 

 

Development of model using the training set 

The relation of each predictor with indoor NO2 was visually investigated with the use of scatter 

plots and box plots. Standard linear regression was carried out to develop a model that best 

predicts the measured concentrations, i.e. a model that maximizes the percentage explained 

variability (R2). The predictors were identified with a forward stepwise procedure as in ESCAPE. 

Each predictor variable was regressed against indoor NO2 and the computed R2 of each 

individual univariate regression was ranked in decreasing order. The univariate regression model 

with the highest R2 was regarded as the ‘start model’. To this ‘start model’ the remaining 

variables were added separately, and the effect on the adjusted R2 recorded. The predictor 

variable was maintained in the model if three criteria were satisfied (as in ESCAPE project):  

1. The increase in adjusted R2 is greater than 1%  

2. The coefficient conforms to the pre-specified direction 

3. The direction of effect for predictors already included in the model does not change. This 

ensures that models involving counter-intuitive associations be avoided, even if they give 

a stronger basis for prediction as indicated by adjusted R2
 value. 

Co-linearity in the multiple regressions was tested using the Variance Inflation Factor (VIF) that 

measures how much the variance of the estimated regression coefficient has increased because 

of co-linearity following subsequent variables being added to the model. It was defined that any 

variable with a VIF larger than 3 would be removed to avoid multicollinearity (Wang et al., 2012). 

At this stage ‘country’ was forced into the model and predictors with a P value larger than 0.10 

were removed starting with the predictor having the largest P value until all predictor variables 

had a P valued equal or smaller than 0.10. Each time a predictor was removed the P value of the 

remaining predictors was checked as the removal of one predictors may affect the P value of the 

predictors included in the model.  

In contrast to ESCAPE where each centre had its own model it was not possible to develop 

separate models by country because of the lack of variable contrast in Italy and Sweden (99% of 

households cooked on gas hobs in Italy and 0% in Sweden). As the study was multi-centre and 

there are likely to be unconsidered predictors correlated with country, the variable ‘country’ was 

forced into the model even if  VIF was higher than 3.  
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Testing for normality and influential observations 

Standard diagnostic tests for ordinary least squares regression were applied to the final model as 

follows: 

• Normality of the residuals were checked with the use of plots. 

• Influential observations, i.e. those that have a large influence on the parameter 

estimates were identified using Cooks’ D, a measure of the influence of an 

observation proportional to the sum of the squared differences between predictions 

made with all observations in the analysis and predictions made leaving out the 

observation in question. An observation with a value of Cook’s D over 4/N where N is 

sample size was considered to have excess influence. Cook's distance can be used 

to indicate data points that should be checked for validity and provides information on 

the effect of deleting a given observation. As far as possible no data was excluded. 

• Homogeneity of variance (heteroscedasticity). 

Hold-out validation 

To assess how accurately the predictive model performed in practice a validation assessment 

was carried in the independent set (test set). Validation was done by regressing the predicted 

concentrations against the observed concentrations. The observed and modelled values in the 

validation set were also visually assessed with the Bland-Altman plot (Bland and Altman, 1986), 

which examines the agreement between a pair of two different measurements by plotting the 

difference of paired variables versus their average. 

Sensitivity analyses 

The cross-validation test required division of the complete dataset (i.e. training and test datasets) 

at random into four sub-set of equal size (sub-set 1, sub-set 2, sub-set 3 and sub-set 4). A model 

was run using the data of three sub-sets to predict NO2 levels in the fourth set (the left-out set); 

predicted concentrations were then plotted against the observed NO2 levels to examine the 

performance of the model. This procedure was carried out four times so that all sub-sets were 

tested. 
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5.3 Results 

Of the 1906 households with indoor NO2 measures, 26 were excluded because the date of 

sampling was missing. Thirteen households had NO2 concentrations above 200µg/m3 and were 

excluded as the values appear to be implausibly high and it was considered likely that closing 

times reported were incorrect (Jarvis, 2005). All participants from the ECRHS Swiss centre were 

excluded (n=132) as data were missing for ECRHS III because of ongoing work to complete data 

harmonisation (Basel used a different questionnaire). Households cooking with biomass, coal, 

coke (n=11) or paraffin (n=3) were excluded because of the small number of homes using these 

types of fuel. Thirteen more homes were excluded because the cooking fuel was unknown or 

‘other’. Fifteen participants reported cooking for more than 240 minutes a day and because the 

time seemed implausible, it was replaced with a missing value. 

The final dataset included 1,574 households in 13 centres in 5 countries with measurements on 

indoor NO2 and information on gas cooking and modelled annual average exposure to outdoor 

NO2 for the year 2002. 
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 Figure 5.2 Data removal procedures and the number of observations available for modelling 

  

5.3.1 Univariate associations of measured two week average indoor NO2 with 
housing characteristics as determined from questionnaire data 

First, the relationship of indoor NO2 and predictors was examined by cross-tabulating the 

distribution by each predictor and testing if the difference between categories within predictors 

was significant. The difference between categories was significant for all predictors except for 

‘time spent on cooking’ (Table 5.2). As expected households with gas appliances, without central 

heating, without a ducted fan over the cooker, where at least one person in the house smoked or 

where window or doors were rarely or never kept open while cooking, flats compared to houses 

and older buildings (more than 28 years, i.e. the median value) had higher indoor NO2 levels. 

Households in Spain and Italy tended to have the highest concentrations of indoor NO2 and 

those in Sweden had the lowest. 
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Table 5.2 Distribution of indoor NO2 concentrations by predictors  

  Median (IQR) Median (IQR) 

Test for 
difference** 

  µg/m3 

 
µg/m3 

 
Predictors  %* YES NO 

 Gas hob 56.7% 52.7 (36.7-71.9) 20.6 (8.8-32.7) <0.001 

 Gas oven 19.1% 57.3 (42.1-79.3) 32.2 (17.9-53.0) <0.001 

Bottle gas for cooking 12.5 62.8 (43.4-91.7) 34.2 (18.9-54.5) <0.001 

UFGH 27.6% 48.6 (30.3-72.1) 33.8 (17.6-54.4) <0.001 

No central heating  29.9% 33.9 (17.9-54.0) 46.8 (27.5-72.2) <0.001 

Keeping a window/door open  
in the kitchen   while cooking 68.9% 42.3 (25.5-63.6) 21.1 (5.75-39.2) <0.001 

Flat (as a type of building) 59.5% 47.1 (29.9-67.6) 22.7 (8.8-40.6) <0.001 

Smoking indoors 40.2% 44.9 (27.7-63.9) 32.2 (15.8-54.0) <0.001 

Vent that takes fumes out 66.8% 36.3 (19.4-59.2) 39.5 (24.1-59.7) 0.0044 
Age of building (less or  28 
years and more than 28 years) 50% 23.0 (19.6-53.3)+ 41.4 (22.1-64.1)++ <0.001 

Time spent cooking (less or 30 
minutes, more than30 
minutes)# 

50% 36.4 (20.3-57.3) 38.3 (21.3-59.7) 0.20 

Belgium (n=157) 9.2% 29.7 (20.7-39.8) - - 

Spain (n=796) 46.6% 46.4 (21.3-69.5) - - 

Italy (n=309) 18.1% 50.8 (37.3-66.9) - - 

UK (n=248) 14.5% 23.6 (14.4-41.4) - - 

Sweden (n=198) 11.6% 4.8 (3.1-6.8)  - 
* percentage of households having the predictor; **Kwallis test; ***percentage refers to the proportion of households 
without central heating; + the median and IQR of indoor NO2 refers to the proportion of homes that were built 28 
years ago or less;  ++ the median and IQR of indoor NO2 refers to the proportion of homes that were built more than 28 
years ago; # 30 minutes is the median. 

 

Housing characteristics by country 

There was a large variation in the use of gas appliances and household characteristics by 

country (Table 5.3). The presence of a gas hob varied greatly from nearly 100% in Italy to 0.0% 

in Sweden. Around half of the households in Belgium, Spain and UK had a gas hob but the 

proportion of households with a gas oven was lower. The use of UFGH was relatively common in 

Spain and UK. Spain had also the largest proportion of households without central heating. The 

use of gas bottle was nearly exclusive to Spain. 

More than 80% of Swedish, Belgium and Spanish kitchens had a fan to extract fumes which was 

regularly used (according to participants’ self-reporting) while in Italy and UK the percentage was 
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less than 40%. In Spain, Italy, Belgium and UK over 60% of participants reported that they kept a 

door or window open to the outside always or most of the time while cooking while in Sweden 

only 14% of participants did this. Indoor smoking was the most common in Spain and Italy and 

the least common in Sweden. Frequency of gas appliances and housing characteristics by 

country 

Table 5.3 Frequency of gas appliances and housing characteristics by country 

 Belgium 
(n=157) 

Spain 
(n=796) 

Italy 
(n=309) 

UK 
(n=248) 

Sweden 
(n=198) 

P value of 
test for 
difference * Housing characteristics N (%) N (%) N (%) N (%) N (%) 

Gas hob (Yes) 78 (49.7) 449 (56.4) 306 (99.0) 135 (54.4) 0.0 (0) <0.001 

Gas oven (Yes) 32 (20.4 124 (15.6) 87 (28.2) 83 (33.5) 0.0 (0) <0.001 

Bottle gas (Yes) 0.0 (0) 211 (26.5) 1 (0.3) 1 (0.4) 0.0 (0) <0.001 

UFGH (Yes) 2 (1.3) 360 (45.2) 10 (3.2) 87 (35.1) 13 (6.6) <0.001 

No central heating in the 
house  24 (15.3) 412(51.8) 18 (5.8) 16 (6.5) 41 (20.7) <0.001 

Keeping a  window/door 
open  in the kitchen   
while cooking (Yes) 

88 (61.5) 523 (88.5) 223 (75.1) 154 (62.9) 27 (13.7) <0.001 

Flat(Yes) 30 (19.3) 691 (87.3) 247 (82.6) 6 (2.5) 29 (14.6) <0.001 

Smoking indoors (Yes) 42 (27.0) 437 (55.6) 121 (39.4) 46 (18.6) 36 (18.2) <0.001 
Vent that takes fumes out 
(Yes) 133 (84.7) 624 (80.0) 84 (30.6) 93 (37.7) 163 (89.1) <0.001 

Average time spent on 
cooking per day in 
minutes - median (IQR) 

40 (30-60) 30 (0-90) 30 (10-60) 30 (15-60) 30(20-60) 0.56^ 

Age of the building in 
years - median (IQR)   41 (23-71) 24(15-31) 31 (18-46) 46 (29-71) 26(21-41) <0.001^ 

*Chi-square test unless stated; ^Kruskal-Wallis test.  

 

 

Indoor NO2 and outdoor NO2 

Two-week average indoor NO2 was compared with: (1) the annual average outdoor NO2 at 

residential level predicted by ESCAPE; (2) two-week average outdoor NO2 measured outside 

participants’ home at the same time as indoor NO2 (Table 5.4) 
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The Italian centres had the highest levels of outdoor NO2 (both modelled and measured) and the 

highest levels of indoor NO2; Sweden had the lowest levels for both. Measured outdoor NO2 

tended to be higher than modelled outdoor NO2 excepting UK. Indoor NO2 levels tended to be 

lower than outdoor NO2 levels in Belgium, UK and Sweden while the reverse occurred in Italy 

and Spain.  

Table 5.4 Modelled annual average for outdoor NO2 and measured two-week average for outdoor NO2 and 
indoor NO2 by country 

 Belgium Spain Italy UK Sweden 

 Median (IQR) Median (IQR) Median (IQR) Median (IQR) Median (IQR) 

ESCAPE annual 
average outdoor NO2 
at address level 
(µg/m3) 

37.6 (34.5-41.4) 35.8 (25.8-47.3) 42.0 (15.9-62.0) 27.6 (25.0-30.0) 7.1 (6.3-9.2) 

Measured outdoor* 
NO2  (µg/m3) 38.8 (30.4-46.0) 43.1 (30.7-57.1) 56.1 (43.6-69.5) 27.0 (19.5-33.6) 5.7 (3.0-8.3) 

Measured indoor NO2  
(µg/m3) 29.7 (20.7-39.8) 46.4 (21.3-69.5) 50.8 (37.3-66.9) 23.6 (14.4-41.4) 4.8 (3.1-6.8) 

* Outdoor NO2 measured at same time as indoor NO2 outside participants’ home 

Figure 5.3 shows scatter plots for indoor NO2 against modelled annual average outdoor NO2 by 

country. Indoor NO2 concentrations tended to be positively correlated with outdoor NO2. The 

correlation was the strongest in Italy (r=0.32, P value<0.001) and the weakest in Belgium 

(r=0.08, P=0.41). Correlation between outdoor and indoor NO2 in the UK was comparatively 

strong (r=0.31, P value<0.001) but unexpectedly there was some evidence that these 

correlations were weaker in homes with fewer gas appliances (for example, the correlation 

decreased to 0.098 in households that cooked with an electric hob). There were no major 

differences in the other countries when data were divided by type of gas hob (results not shown). 
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Figure 5.3 Relationship of two-week average indoor NO2 and modelled annual average outdoor NO2 by 
country 

Indoor NO2 and outdoor temperature and relative humidity 

Over the period of monitoring, Sweden tended to have the highest monthly outdoor relative 

humidity and the lowest average monthly outdoor temperature. Correlation between temperature 

and indoor NO2 was negative suggesting that as outdoor temperature increases indoor NO2 

decreases (Figure 5.4). The correlation was relatively strong in all countries except for Sweden 

where the correlation was very weak and not significant. 
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Table 5.5 Monthly average outdoor temperature and relative humidity by country  

 Belgium Spain Italy UK Sweden 

 Median 
(IQR) 

Median 
(IQR) 

Median 
(IQR) 

Median 
(IQR) 

Median 
(IQR) 

Monthly average outdoor relative 
humidity  

75.8 
(68.1-81.2) 

73.6 
(67.2-78.5) 

75.2 
(68.4-88.1) 

83.9 
(78.7-86.7) 

84.5 
(76.2-89.7) 

Monthly average outdoor temperature 
(oC)    

15.4 
(9.9-16.7) 

13.6 
(9.5-17.1) 

10.2 
(7.1-15.0) 

10.4 
(6.5-14.3) 

1.78 
(0.9-6.9) 

Warm season temperature (oC)   17.8 
(16.7-19.3) 

21.0 
(18.1-25.0) 

21.9 
(20.8-21.9 

14.3 
(14.3-17.1) 

12.6 
(9.4-13.4) 

Cold season temperature (oC)  6.1 
(4.3-7.9) 

9.4 
(8.1-9.6) 

5.9 
(5.5-7.5) 

5.9 
(5.9-7.4) 

-3.8 
(-4.8-0.9) 

 

 

 

Figure 5.4 Relationship of indoor NO2 and monthly average temperature by country 

Indoor NO2 and seasonality 

The relationship of indoor NO2 and temperature was further explored by examining indoor NO2 

concentrations during the warm season (June to September) and cold season (November to 

February). Indoor NO2 levels were significantly higher in the cold season than the warm season 

in Spain and Italy. There was no significant difference between summer and winter levels 

measured in the Belgium, UK and Swedish centres. 
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Table 5.6 Indoor NO2 concentrations by warm and cold seasons and by country  

 Warm season (Jun-Sep)  Cold season (Nov-Feb) P value for 
Test for 

difference* 
Country N (%)* Indoor NO2 (µg/m3)  N (%) Indoor NO2 (µg/m3) 

  Median (IQR)   Median (IQR) 

Belgium 70 (44.6) 30.1 (22.7-42.1)  34 (21.7) 29.2(19.9-55.4) 0.85 

Spain 175 (22.0) 39.3 (27.6-55.3)  312 (39.2) 51.6 (29.6-74.4) 0.0002 

Italy 35 (11.3) 34.3 (27.0-50.3)  145 (46.9) 50.8(37.7-64.7) 0.0001 

UK 102 (41.1) 24.5(14.7-35.7)  60 (24.2) 22.9(11.5-46.7) 0.87 

Sweden 49 (24.7) 5.3 (3.5-7.1)  75(37.9) 4.3(2.8-7.1) 0.20 

Total 431 (25.2) 30.9 (18.6-46.3)  626 (36.7) 41.7 (21.7-64.6) 0.0001 

* Kwallis test; **percentage over the total number of measurements by country 
 

5.3.2 Development of the model using the training set 

Univariate regression 

Each predictor was individually regressed against monitored indoor NO2 concentrations using the 

training dataset. Results are listed in Table 5.7 and presented in decreasing order by the size of 

R2. 

All the predictors were significant (P<0.05) in the univariate models with the exception of ‘age of 

building’ (P=0.15). Having a gas hob was the strongest predictor of increasing indoor NO2 level 

(34.2µg/m3) and gave the highest R2 (0.28). In these univariate analyses outdoor NO2 and living 

in a flat were the next strongest predictors explaining 17% and 13% respectively. The remaining 

predictors explained less than 10% within their univariate models. 

Effect estimates were in the direction predicted a priori with the exception of temperature 

(coefficient = 0.81), most likely because of the lack of adjustment for country. The variable 

‘Keeping a window open while cooking’ predicted an increase of indoor NO2 of 21.1µg/m3 and 

explained 9% of the model variability. 
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Table 5.7 Univariate regression results of each predictor against indoor NO2 (µg/m3) and ranked by R2 using 
the training dataset (n=1281) 

Predictor Exposure 
unit 

Expected 
direction 
of effect 

β SE R2 RMSE P value 

Gas hob Y/N + 34.20 1.54 0.28 27.23 <0.001 

Annual average outdoor NO2 per 
10µg/m3 + 6.72 0.44 0.17 29.41 <0.001 

Flat Y/N + 23.84 3.06 0.13 29.95 <0.001 

Keeping a window/door open  in 
the kitchen   while cooking Y/N ? 21.09 2.00 0.09 30.86 <0.001 

Bottled gas used for hob+/-oven Y/N + 28.94 2.58 0.09 30.58 <0.001 

Gas oven Y/N + 23.07 2.17 0.08 30.72 <0.001 
Monthly average outdoor relative 
humidity per 1% - -0.71 0.09 0.05 31.30 <0.001 

UFGH Y/N + 14.91 1.95 0.04 31.34 <0.001 

No central heating Y/N + 13.08 1.93 0.04 31.48 <0.001 

Monthly average outdoor 
temperature 

per 
1Celsius - 0.81  

0.14 0.03 31.62 <0.001 

Smoking indoors Y/N + 10.24 1.82 0.02 31.74 <0.001 

Average time spent on cooking per 
day 30min + 1.90  

0.56 0.01 31.96 <0.001 

Vent that takes fumes out Y/N - -4.69 1.94 0.005 32.14 0.016 

Age of the building per 
10years - 0.36 0.25 0.002 32.13 0.15 

 

Stepwise regression using the training set 

First, the predictor with the highest R2, ‘gas hob’ was regressed against measured indoor NO2 

and then the remaining predictors were sequentially added in order of decreasing R2 and the 

adjusted R2 checked at each point. If the adjusted R2 increased by at least 1% the predictor was 

retained in the model. Inspection of the variance inverse factor (VIF) suggested that there was no 

strong multi-collinearity (defined VIF≥3) and no variables were excluded for this reason. The 

decisions made at each addition of each variable are shown below in Table 5.8. 
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The final result of the stepwise regression identified by the following nine predictors: 

1. Presence of a gas hob  

2. Annual average outdoor NO2 

3. Living in a flat   

4. Keeping a window/door open  in the kitchen while cooking  

5. Use of bottled gas 

6. Presence of a gas oven 

7. Presence of an unvented  gas appliance (UFGH)  

8. Monthly average outdoor temperature  

9. Age of building. 
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Table 5.8 Results of stepwise regression using the training set   

Predictors ( in 
decreasing order of R2) 

coefficient  
when 

predictor 
included in 

the stepwise 
regression 

VIF 

Adj R2 
when 

predictor 
included 

in the 
stepwise 

regression 

Adj R2-  
adj R2 of 
previous 
accepted 

regression 

% increase  
in adj R2 

from 
previous 
accepted 

regression 

Predictor accepted 
if % increase in adj 

R2 ≥1% 

Step 0  - univariate regression with highest R2     

Gas hob 34.2 1.00 0.2781 -   

Step 1 Gas hob + outdoor NO2     

Gas hob  29.77  1.12 
0.3518 0.3518-

0.2781 26.8 new predictor 
accepted ESCAPE outdoor NO2 4.25 1.12 

Step 2 -  Gas hob + outdoor NO2 + flat 

Gas hob  28.4 1.13 

0.3884 0.3884-
0.3518 10.2 new predictor 

accepted ESCAPE outdoor NO2 2.9 1.29 

Flat 14.1 1.21 

Step 3  -  gas hob + outdoor NO2 + flat+ Keeping a window/door open  in the kitchen while cooking 

Gas hob  26.8 1.18 

0.4043 0.4043-
0.3884 4.1 new predictor 

accepted 

ESCAPE outdoor NO2 2.8 1.41 

Flat 13.3 1.30 
Keeping a window/door 
open   5.58 1.18 

Step 4 -  gas hob + outdoor NO2 + flat+ Keeping a window/door + Bottled gas 

Gas hob  24.6 1.27 

0.4162 0.4162-
0.4043 2.9 new predictor 

accepted 

ESCAPE outdoor NO2 3.1 1.42 
Keeping a window/door 
open   11.9 1.26 

Flat 5.1 1.32 

Bottled gas  (hob+/-oven) 12.0 1.14 

Step 5 -  gas hob + outdoor NO2 + flat+ Keeping a window/door + Bottled gas  + Gas oven 

Gas hob  21.5 1.49 

0.4263 0.4263-
0.4162 2.4 new predictor 

accepted 

ESCAPE outdoor NO2 2.9 1.43 

Flat 12.8 1.34 
Keeping a window/door 
open   5.1 1.26 

Bottled gas  (hob+/-oven) 12.7 1.21 

Gas oven 9.3 1.14 

Step 6 – gas hob + outdoor NO2 + flat+ Keeping a window/door + Bottled gas  + Gas oven + humidity 

Gas hob  21.5 1.50 

0.4299 0.4299-
0.4263 0.8 new predictor 

dropped 

ESCAPE outdoor NO2 3.0 1.54 

Flat 13.4 1.42 
Keeping a window/door 
open   5.2 1.27 

Bottled gas  (hob+/-oven) 13.9 1.17 

Gas oven 9.2 1.21 

Monthly average 0.09 1.31 
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Predictors ( in 
decreasing order of R2) 

coefficient  
when 

predictor 
included in 

the stepwise 
regression 

VIF 

Adj R2 
when 

predictor 
included 

in the 
stepwise 

regression 

Adj R2-  
adj R2 of 
previous 
accepted 

regression 

% increase  
in adj R2 

from 
previous 
accepted 

regression 

Predictor accepted 
if % increase in adj 

R2 ≥1% 

outdoor relative 
humidity 
Step 7 – gas hob + outdoor NO2 + flat+ Keeping a window/door + Bottled gas  + Gas oven + UFGH 

Gas hob 21.7 1.49 

0.4306 0.4306-
0.4263 1.0 new predictor 

accepted 

ESCAPE outdoor NO2 2.8 1.43 

Flat 12.7 1.34 
Keeping a window/door 
open   4.6 1.27 

Bottled gas  (hob+/-oven) 10.9 1.21 

Gas oven 8.8 1.22 

UFGH  5.4 1.10 

Step 8 -  gas hob + outdoor NO2 + flat+ Keeping a window/door + Bottled gas  + Gas oven  + UFGH + No central heating 

Gas hob 22.4 1.52 

0.4335 0.4335-
0.4306 0.7 new predictor 

dropped 

ESCAPE outdoor NO2 2.8 1.43 

Flat 12.0 1.36 
Keeping a window/door 
open   4.4 1.28 

Bottled gas  (hob+/-oven) 9.3 1.29 

Gas oven 8.7 1.22 

UFGH  4.1 1.19 

+ No central heating 4.8 1.26 

Step 9 -  gas hob + outdoor NO2 + flat+ Keeping a window/door + Bottled gas  + Gas oven + UFGH + temperature 

Gas hob 21.8 1.49 

0.4364 0.4364-
0.4306 1.3 new predictor  

accepted 

ESCAPE outdoor NO2 2.9 1.45 

Flat 13.5 1.36 
Keeping a window/door 
open   5.6 1.32 

Bottled gas  (hob+/-oven) 11.9 1.20 

Gas oven 8.8 1.23 

UFGH 5.6 1.12 
Monthly average 
outdoor temperature -0.3 1.21 

Step 10 – gas hob + outdoor NO2 + flat+ Keeping a window/door + Bottled gas  + Gas oven + UFGH + temperature + 
smoking indoors 
Gas hob 21.9 1.49 

0.4386 0.4386-
0.4364 0.5 new predictor 

dropped 

ESCAPE outdoor NO2 2.9 1.45 

Flat 12.9 1.40 
Keeping a window/door 
open   5.2 1.33 

Bottled gas  (hob+/-oven) 11.7 1.22 

Gas oven 8.7 1.23 

UFGH  5.2 1.13 

Monthly average -0.3 1.21 
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Predictors ( in 
decreasing order of R2) 

coefficient  
when 

predictor 
included in 

the stepwise 
regression 

VIF 

Adj R2 
when 

predictor 
included 

in the 
stepwise 

regression 

Adj R2-  
adj R2 of 
previous 
accepted 

regression 

% increase  
in adj R2 

from 
previous 
accepted 

regression 

Predictor accepted 
if % increase in adj 

R2 ≥1% 

outdoor temperature 

Smoking indoors 3.5 1.09 
Step 11 – gas hob + outdoor NO2 + flat+ Keeping a window/door + Bottled gas  + Gas oven + UFGH + temperature +  time 
on cooking 
Gas hob 21.7 1.50 

0.4376 0.4376-
0.4364 0.2 new predictor 

dropped 

ESCAPE outdoor NO2 3.0 1.46 

Flat 13.3 1.37 
Keeping a window/door   
open   5.1 1.37 

Bottled gas  (hob+/-oven) 11.4 1.22 

Gas oven 8.9 1.23 

UFGH   5.3 1.14 
Monthly average 
outdoor     temperature -0.3 1.21 

Average time spent on 
cooking per day 0.8 1.12 

Step 12 – gas hob + outdoor NO2 + flat+ Keeping a window/door + Bottled gas  + Gas oven + UFGH + temperature  + vent 

Gas hob 21.2 1.56 

0.4357 0.4357-
0.4364 -0.1 new predictor 

dropped 

ESCAPE outdoor NO2 2.9 1.44 

Flat 14.4 1.39 
Keeping a window/door 
open   5.7 1.34 

Bottled gas  (hob+/-oven) 11.8 1.23 

Gas oven 9.9 1.24 

UFGH   5.3 1.12 
Monthly average 
outdoor temperature -0.3 1.22 

Vent that takes fumes 
out -0.03 1.07 

Step 13 – gas hob + outdoor NO2 + flat+ Keeping a window/door + Bottled gas  + Gas oven + UFGH + temperature   + age 
of building 
Gas hob 21.5 1.50 

0.4410 0.4410-
0.4364 1.1 new predictor 

accepted 

ESCAPE outdoor NO2 2.8 1.48 

Flat 14.4 1.42 
Keeping a window/door 
open   5.6 1.32 

Bottled gas  (hob+/-oven) 12.3 1.21 

Gas oven 8.9 1.24 

UFGH   5.8 1.12 
Monthly average 
outdoor temperature -0.3 1.21 

Age of the building 0.4 1.08 

*Variance Inflation Factor = 1/(1-R2) 
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Inclusion of country and exclusion of predictors with P value >0.10 

At this stage the predictor ‘country’ was forced into the model and the P value of the predictors 

was checked for significance (see Table 5.9) for results at each step. Inspection of VIF showed 

that there was some multi-collinearity when the variable ‘country’ was included in the model. 

Spain and Italy had VIF≥3.0 but were kept in the model because of a priori rule that all countries 

would be kept in the model.  

After including ‘country’ in the model the explained variability increased to 47% and the 

coefficient size of most predictors decreased. In particular, the coefficient ‘gas hob’ decreased 

from 21.5 to 17.7, ‘living in a flat’ from 14.4 to 4.20 and ‘keeping a window/door open’ from 5.6 to 

1.4 suggesting an influence of country on these variables. ‘Living in a flat’ and ‘keeping a 

window/door open’ had a P value above 0.10 and were sequentially removed from the model.  
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Table 5.9 Results of regression model before and after country adjustment, after removing predictors with P value>0.10 and final model 

 Step 13 (model without country) Step 14 (model with country) Step 15 Step 16 and final model 

Predictors β se P value VIF β se P value VIF β se P value VIF β se P value VIF 

Gas hob 21.47 1.91 <0.001 1.50 17.74 2.21 <0.001 2.10 18.93 2.00 <0.001 2.00 18.83 1.98 <0.001 2.00 
ESCAPE outdoor NO2  per 
10 µg/m3 2.83 0.49 <0.001 1.48 2.04 0.50 <0.001 1.68 1.88 0.45 <0.001 1.59 2.03 0.44 <0.001 1.52 

Living in a flat 14.38 1.90 <0.001 1.42 4.20 2.58 0.1038 2.87 3.48 2.32 0.1330 2.62 - - - - 
Keeping a window/door 
open  in the kitchen   while 
cooking 

5.59 1.95 0.0042 1.32 1.37 2.01 0.4973 1.52 - - -  - - - - 

Bottle gas  (hob+/-oven) 12.29 2.67 <0.001 1.21 9.68 2.86 <0.001 1.45 9.39 2.54 <0.001 1.44 8.89 2.51 <0.001 1.43 

Gas oven 8.89 2.17 <0.001 1.24 10.00 2.14 <0.001 1.25 9.46 1.99 <0.001 1.24 9.53 1.97 <0.001 1.24 

UFGH 5.82 1.84 0.0016 1.12 5.15 1.94 0.0081 1.31 5.76 1.76 <0.001 1.28 5.94 1.75 <0.001 1.28 

Outdoor temperature -0.30 0.13 0.0205 1.21 -0.62 0.14 <0.001 1.50 -0.59 0.13 <0.001 1.48 -0.57 0.13 <0.001 1.47 
Age of building (per 10 
years) 0.43 0.23 0.066 1.08 0.67 0.23 0.0042 1.11 0.71 0.22 <0.001 1.11 0.68 0.22 0.002 1.11 

Sweden - - -  0 - - - 0 - - - 0 - - - 

Belgium - - -  15.08 4.43 <0.001 1.89 15.80 4.10 <0.001 1.88 14.97 4.05 <0.001 1.87 

Spain - - -  29.04 3.95 <0.001 6.66 30.20 3.46 <0.001 6.08 32.28 3.12 <0.001 5.03 

Italy - - -  25.39 4.18 <0.001 4.99 26.04 3.83 <0.001 4.43 27.84 3.53 <0.001 3.91 

UK - - -  10.68 3.40 0.0018 2.84 10.63 3.17 <0.001 2.55 9.81 3.12 0.0017 2.54 

constant 5.59 2.08 0.007  2.14 2.19 0.33  2.21 2.15 0.304  2.51 2.13 0.238  

RMSE 24.45    23.82    23.76    23.69    

Adj R2 0.44    0.47    0.46    0.46    

* n=1163 as  some of the variables had missing data.   
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The final model included 7 predictors (gas hob, outdoor NO2, bottle gas, gas oven, UFGH, 

outdoor temperature and age of building) and country (Belgium, Spain, Italy, UK and Sweden) 

explaining 46% of the variability. 

The model predicts that on average having a gas hob increases the indoor NO2 levels by 

18.8µg/m3, having a gas oven by 9.5µg/m3, using bottled gas by 8.9µg/m3 and having an open 

gas fire or portable gas heater or a paraffin heater by 5.9µg/m3. Each 10µg/m3 increase in 

outdoor NO2 corresponds to a 2.0µg/m3 increase in indoor NO2. Compared to Sweden, a 

household in Belgium has an additional 15.0µg/m3 of indoor NO2, Spain an additional 27.8µg/m3, 

Italy an additional 27.8µg/m3 and UK an additional 9.8µg/m3. 

For example, let us predict the two-week average concentration of indoor NO2 of a Swedish 

household in Umea, 30 years old, with no gas appliances (no gas hob, no gas oven, no UFGH) 

and an annual average outdoor NO2 of 9µg/m3 in October when the average monthly outdoor 

temperature is 6° Celsius. The predicted two-week indoor NO2 concentration in the month of 

October will be 2.98µg/m3, that is: 

2.03µg/m3 * 0.9µg/m3 outdoor NO2*10  - 0.57µg/m3 *6 °C outdoor monthly temperature 

(October) + 0.68µg/m3 *3.0 age of building (per 10 years) + 0 µg/m3*Sweden + 2.51 

µg/m3(constant) = 2.98µg/m3 

Let’s take an example of an UK household in East Anglia at the same month of the year, 

October. A 15-years old home with a gas hob and gas oven, an annual average outdoor NO2 of 

40µg/m3 and a monthly average outdoor temperature of 13° Celsius will have a predicted two-

week average concentration in the month of October of 42.45µg/m3 , that is: 

18.83µg/m3 *gas hob (yes=1, no=0)  + 2.03µg/m3 * 4 µg/m3 outdoor NO2* 10 +  9.53µg/m3 * 

gas oven (yes=1, no=0) +  -0.57µg/m3 *13 °C outdoor monthly temperature (October) + 

0.68µg/m3 *1.5 age of building (per 10 years) + 9.81µg/m3 *UK + 2.51µg/m3 (constant) = 

42.45µg/m3 
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5.3.3 Testing the assumptions of normality  

For each household of the training set (n=1,301) a predicted level of NO2 was determined and 

compared with the observed levels. Residuals were standardised and visually assessed for 

normal distribution (see Figure 5.5). The histogram of the distribution of residuals is slightly 

skewed to the left. However, as in ESCAPE (ESCAPE, 2010, pg. 30) concentrations were not 

transformed into log because they are more readily interpretable. 

 

Figure 5.5 Histograms showing distribution of standardised residuals of the final model using the test 
dataset 

Twenty-five outliers were identified as having a standardised residual greater than 3 or smaller 

than -3. These homes had very high indoor NO2 levels (between 111µg/m3 and 199µg/m3) – and 

the model as built is unable to explain the reason for this. Removal of these outliers increased 

the adjusted R2 from 0.47 to 0.56. There was little change in the size and precision of the 

coefficients except for Spain and Italy, possibly due to the fact that most of the outliers were from 

these two countries (15 observations from Spain and 8 from Italy). By default all outliers were 

kept in the model. 
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Table 5.10 Model after removing outliers * (n=1138) 

Predictor β Se P value 

Gas hob 18.58 1.59 <0.001 
ESCAPE outdoor NO2 per 10 
µg/m3 2.31 0.35 <0.001 

Bottle gas (hob+/-oven) 7.81 2.02 <0.001 
Gas oven 10.60 1.58 <0.001 
UFGH 5.96 1.40 <0.001 
Outdoor temperature -0.50 0.10 <0.001 
Age of building (per 10 years) 0.55 0.18 0.0020 
Sweden 0 - - 
Belgium 12.05 3.23 <0.001 
Spain 28.00 2.49 <0.001 
Italy 22.73 2.83 <0.001 
UK 8.17 2.48 0.0010 
constant 2.58 1.69 0.13 
Adj R2 0.56   
RMSE 18.71   
*Outliers defined as having a standardised residual bigger than 3 or smaller than 
-3 (n=25); ** P value for country as a variable with 5 categories. 
 

 

The formal test for homogeneity of variance (Cook, 1977; Breusch and Pagan, 1979) as well as 

the scatter plot showing the distribution of residual variance (see Figure 5.6) suggests that 

variance is not constant (P<0.001) and that it tends to increase as indoor NO2 values increase in 

size. 

 The Cooks test identified 71 (5%) influential observations. Fifty-eight of these influential 

observations had a predicted NO2 lower than the observed value; all of them but one had had 

high levels of indoor NO2 measurements (median 124.3 (IQR 117-139) µg/m3), tended to be 

homes with a gas hob (81%) and were mainly in Spain (63.8%) and Italy (25.9%). All 

observations (n=13) with a predicted value higher than the observed value had a gas hob and 

were mainly in Spain (84.6%). 
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Figure 5.6 Distribution of residual variance 

 

 

Figure 5.7 Scatter plot showing influential observations identified with D Cooks (above line) 

5.3.4 Validation of model  

The model was validated by first predicting the values of indoor NO2 in the test set and then 

comparing the predicted values against the observed values with a regression plot (Figure 5.8). 

There were no changes in the explained variability (46% for the training set and 47% in the test 

set), intercept and slope suggesting that the model was quite ‘robust’ when applied to the test 
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dataset. The scatter plot suggests that the model tends to underestimate higher concentrations 

and overestimate lower concentrations. 

In the same way a visual inspection of the Bland-Altman plot (Figure 5.9) suggests that the 

model tends to underestimate the observed values, particularly at high concentrations. The 

higher average values tend to lie above the upper limit of agreement (limits of agreement ranged 

between -45.9µg/m3 to 46.5µg/m3). The mean difference was 0.28µg/m3 (CI -2.0 to 2.6). 

 

 

Figure 5.8 Predicted levels of indoor NO2 against the observed levels using the observations of the test set   
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Figure 5.9 Bland-Altman plot showing agreement between observed indoor NO2 and predicted indoor NO2 in 
the test set (average = average of the sum of observed value + predicted value; difference = 

observed value – predicted value) 

  

5.3.5 Sensitivity analyses 

Cross-validation 

A sensitivity analysis was conducted by carrying out a cross-validation test. The full dataset 

(training set and test set merged together) was divided into 4 sub-set at random. Table 5.11 

shows the results for each sub-set model. The size of the coefficients and their statistical 

significance, the adjusted R2 slightly changed any time the model was run in different sub-sets. 

There was little change in the proportion of explained variability, which varied between 46% and 

48%. There was a slightly variation in the coefficient size and P value, which stayed below 0.05 

for all predictors except for ‘age of building’. The coefficients for ‘age of building’ varied from 0.38 

to 0.82 (0.68 in the main model) and the coefficient for ‘bottled gas’ varied from 5.41 to 11.05 

(8.89 in the main model) suggesting that these two predictors may be unstable in the indoor NO2 

model. 
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Table 5.11 Table showing changes in coefficients size, adjusted R2 and RMSE in the cross-validation tests using the four sub-sets split at random 

 Main model Model using sub-set 2+3+4 and 
tested on sub-set 1 

Model using sub-set 1+3+4 
tested on sub-set 2 

Model using sub-set 1+2+4 
tested on sub-set 3 

Model using sub-set 1+2+3 
tested on sub-set 4 

Predictor β se P value β se P value β se P value β Se P value β se P value 

Gas hob 18.83 1.98 <0.001 17.90 1.95 <0.001 17.86 1.90 <0.001 17.55 1.96 <0.001 17.06 1.92 <0.001 

ESCAPE outdoor NO2 per 
10 µg/m3 2.03 0.44 <0.001 2.02 0.45 <0.001 1.91 0.43 <0.001 2.44 0.44 <0.001 2.43 0.43 <0.001 

Bottle gas (hob+/-oven) 8.89 2.51 <0.001 10.05 2.56 <0.001 5.41 2.51 0.031 8.14 2.56 0.0015 11.05 2.43 <0.001 

Gas oven 9.53 1.97 <0.001 10.43 2.04 <0.001 11.63 1.91 <0.001 12.43 1.97 <0.001 11.59 1.97 <0.001 

UFGH 5.94 1.75 <0.001 7.37 1.74 <0.001 6.23 1.66 <0.001 6.51 1.74 <0.001 6.34 1.69 <0.001 

Outdoor temperature -0.57 0.13 <0.001 -0.65 0.13 <0.001 -0.64 0.12 <0.001 -0.56 0.13 <0.001 -0.52 0.13 
<0.001 

Age of building (per 10 
years) 0.68 0.22 <0.001 0.53 0.21 0.013 0.38 0.20 0.057 0.57 0.22 0.0091 0.82 0.22 <0.001 

Sweden 0 - - 0 - - 0 - - 0 - - 0 - - 

Belgium 14.97 4.05 <0.001 15.79 3.91 <0.001 16.44 3.86 <0.001 15.00 3.98 <0.001 11.33 3.97 0.0044 

Spain 32.28 3.12 <0.001 33.57 3.05 <0.001 32.81 2.95 <0.001 31.49 3.06 <0.001 30.34 3.05 <0.001 

Italy 27.84 3.53 <0.001 29.02 3.50 <0.001 30.60 3.37 <0.001 28.54 3.55 <0.001 28.52 3.49 <0.001 

UK 9.81 3.12 0.0017 11.07 3.09 <0.001 11.01 2.97 <0.001 7.43 3.11 0.017 8.06 3.08 0.0089 

Constant 2.51 2.13 0.24 3.64 2.12 0.86 3.76 2.05 0.067 2.42 2.19 0.27 1.92 2.18 0.38 

Adj R2 0.46   0.46   0.46   0.46   0.48   

RMSE 23.69   23.80   22.74   23.76   23.37   
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Figure 5.10 shows the predicted values against the observed values in the left-out sub-set. On 

average the model explained 46.2% of variability and RMSE was 16.1. As previously noted the 

scatter plots suggest that the model tends to underestimate the highest observed concentrations 

and overestimated the lowest concentrations.   

 

 

Figure 5.10 Predicted indoor NO2 vs monitored indoor NO2 in the cross-validation using four sub-sets  

5.4 Application of model 

5.4.1  Results applied to ECRHS dataset  

Finally, the model was applied to predict two-week average indoor NO2 exposure for the month of 

October in ECRHS participants for whom the necessary information was available. Information 

on household characteristics (i.e. gas hob, gas oven, gas bottle, UFGH, age of building) collected 
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NO2 annual average at address level for year 2002 and 2010 were used to predict indoor NO2 at 

ECRHS II and ECRHS III respectively. Indoor NO2 levels at ECRHS III could not be predicted for 

Italian centres because information on gas appliances was not collected at ECRHS III. In order to 

predict indoor NO2 exposure the following assumptions were made: 

• The amount of indoor NO2 emitted from a gas appliance (gas hob, gas oven, UFGH) or 

from bottled gas did not change over the 10-year period between ECRHS II and ECRHS 

III. 

• The annual average exposure to outdoor NO2 modelled by ESCAPE for the year 2010 

was the same as for the year 2010-2013 when ECRHS III was conducted and the annual 

average exposure to outdoor NO2 modelled (back-extrapolated) by ESCAPE for the year 

2002 was the same as for the year 2000-2002 when indoor NO2 was measured in the 

houses of ECRHS participants. 

• Monthly average temperature at ECRHS II was the same as at ECRHS III. 

Since the predicted concentrations varied according to monthly average temperature a two-week 

average for the month of October was predicted. October is a month of less extreme temperature 

in all 5 countries included in this model. 

The predicted October concentrations at ECRHS II and ECRHS III by country and annual 

outdoor NO2 concentrations are shown in Table 5.12. Modelled indoor NO2 tended to be higher 

than outdoor NO2 in Spain, Italy and UK at ECRHS II and ECRHS III. The reverse was seen in 

Belgium and Sweden where outdoor NO2 concentrations tended to be higher than indoor NO2 

concentrations. 

Modelled indoor NO2 concentrations decreased from ECRHS II to ECRHS III in all 5 countries, 

likely to be affected by the fall in the annual average concentrations of outdoor NO2 and the use 

of gas for cooking appliances (see next Chapter 6). The decline was particularly strong in Spain 

where median concentrations for modelled indoor NO2 declined from 53.4 (IQR 36.4-64.6) µg/m3 

to 39.5 (IQR 36.7-46.80) µg/m3. In Sweden the decline of indoor NO2 was relatively small, likely 

to be influenced by the small decline in outdoor NO2.  

The model was also tested to predict two-week average concentrations at different time of the 

year, i.e. the month when the ECRHS interview was carried out. Under this scenario a proportion 

(13% at ECRHS II and 24% at ECRHS III) of predicted values for Sweden was negative if the 

interviews were carried out during the warmest months of the year (June, July and August). This 

is explained by the fact that the model predicts a fall in indoor NO2 concentrations as the 
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temperature increases but in the absence of gas appliances and in the presence of low levels of 

outdoor NO2 (both conditions apply to Sweden) the predicted value is bound to become negative.  

Table 5.12 Modelled two- week average indoor NO2 concentrations for the month of October at ECRHS II 
and ECRHS III  and annual average outdoor NO2 concentrations predicted by ESCAPE at ECRHS II 

and ECRHS III by country   

Country 

Average 
temperature 
in October* 

ECRHS II ECRHS III 

Modelled ** outdoor 
NO2 (µg/m3) 

Modelled indoor 
NO2 (µg/m3) 

Modelled** outdoor 
NO2 (µg/m3) 

Modelled indoor 
NO2 (µg/m3) 

°C Median (IQR) Median (IQR) Median (IQR) Median (IQR) 

Belgium 13.3 (0) 37.6 (34.5-41.4) 22.2 (19.3-38.8) 38.3 (33.1-45.7) 21.6 (18.9-37.0) 

Spain 16.5 (1.4) 35.8 (25.8-47.3) 53.4 (36.4-64.6) 28.4 (21.9-44.1) 39.5 (36.7-46.8) 

Italy*** 15.8 (0.7) 42.0 (15.9-62.0) 53.5 (46.4-59.7) 30.7 (19.1-52.1) - 

UK 12.6 (0.4) 27.6 (25.0-30.0) 33.1 (17.4-44.0) 24.9 (22.7-26.9) 30.1 (15.1-40.8) 

Sweden 6.0 (0) 7.1 (6.3-9.2) 3.2 (2.0-5.0) 4.3 (3.7-5.7) 3.1 (2.1-4.5) 

* mean (standard deviation) based on monthly average temperature at each centre; **annual; *** indoor NO2 could not be predicted at 
ECRHS III because Italian centres did not collect data on gas use. 
 

5.5 Discussion 

5.5.1 The main determinants of indoor NO2 

The study presented in this chapter has shown that it is possible using data available within 

ECRHS to develop a model that includes variables to predict indoor NO2 concentrations. Using a 

stepwise regression approach the model identified the presence of gas hob, gas oven, bottled 

gas, annual average exposure to outdoor NO2, presence of UFGH, age of building and monthly 

outdoor temperature as the determinants of indoor NO2. It was decided a priori to force the 

variable ‘Country’ into the model; the variable proved to have a strong influence in the model as 

each country contributed to an additional ‘background’ level of indoor NO2, which differed across 

countries. Different cooking and heating practices, housing characteristics, ventilation and indoor 

smoking habits may explain some of these differences but it proved difficult to qualify them. 
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The model predicts that a gas stove (hob and oven included) is associated with two-week 

average of about 28.3µg/m3 of indoor NO2 (gas hob=18.8µg/m3 + gas oven= 9.5µg/m3), a 

concentration very close to the estimation used in the Hasselblad meta-analysis (28.3µg/m3 for 

gas stove). This coefficient is slightly higher than the coefficients derived from previous studies, 

(Monn, 1998; Lee, 1998; Baxter, 2007; Valero, 2009; Levy, 2010) but in these reports it is not 

clear whether ‘gas stove’ includes both a gas hob and a gas oven. 

Outdoor NO2 was a main determinant in the model. The model predicts that for every 10µg/m3 of 

outdoor NO2 2.0µg/m3 are present indoors, a concentration lower than the one predicted by other 

studies (Valero, 2009). Other models have included outdoor NO2 but the choice of parameter 

and NO2 transformations make the predicted coefficients difficult to compare. Lee (1998) 

predicted that indoor NO2 was associated with 0.6*mean annual outdoor NO2 concentration, 

similar to Monn (1998) that predicted 0.5 times outdoor NO2 concentrations; Espluges (2013) 

that 1µg/m3 of outdoor NO2 determined an increase of 0.06 of the square root of indoor NO2, 

which varied by season and degree of urbanisation. Heroux (2010) predicted an increase of 

0.031 of the natural log of indoor NO2 per each ppb (1.88µg/m3) increase of outdoor NO2, Cyrys 

(2000) a 33% increase when associated with 17µg/m3 of outdoor NO2 and Garcia-Algar (2003) 

an 1.01 increase of the geometric mean ratio. These estimates demonstrate the difficulty of 

interpreting models based on log transformation of the indoor NO2 variable. 

5.5.2 The regression model 

The model explains 46% of variability. Compared to outdoor NO2 models which may reach as far 

as 90% of explained variability (Hoek et al., 2008), 46% of explained variability may appear quite 

a small proportion but is comparable to the highest proportions achieved by other NO2 indoor 

models. For example, the models developed by Heroux et al (2010), Lee et al (1998), Algar et al 

(2004) explained 44%, 52% and 52% respectively. Other indoor NO2 models have reached a 

lower proportion of explained variability, such as those developed by Clougherty et al (2011), 

Baxter et al (2007), Valero et al (2009), Loo et al (Loo et al., 2010) and Cyrys (2000), which 

explained 16%, 20%, 32%, 33% and 38% of variability respectively. On the other hand, Lai et al 

(2006) generated a model that explained 67% of the variability but this model included a log 

transformation of indoor NO2. Such log transformations tend to improve the explained variability 

of the model. A log transformation of the indoor NO2 variable of the model developed in this 

chapter would increase the explained variability from 46% to 75% but at the cost of not being 

able to predict exposures in absolute terms.  
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As with any regression model the predicted values tended to regress towards the average (Bland 

and Altman, 1994). As a consequence the model tended to over predict and under predict low 

and high exposures respectively. In particular, visual inspections of the scatter plot of the 

predicted values against the observed values and the Bland-Altman plot suggest that the model 

under-predicted observations with high levels of exposure.No predicted values exceeded 

100µg/m3; on the other hand, 77 observations of the training set (n=1,301) and 28 observations 

of the test set (n=434) were equal or above 100µg/m3; the highest observed exposure was equal 

to 198µg/m3. Even though a small percentage (around 6% of the complete dataset) of people are 

exposed to such high levels of indoor NO2 the model cannot predict their exposure. This may 

lead to exposure measurement error when conducting a health assessment.  

Some multi-collinearity was observed for Italy and Spain. Correlation between determinants is a 

major problem of stepwise regression, the approach adopted in this model to select potential 

predictors. Some predictor variables are highly correlated and once a variable has entered the 

equation in a step-up analysis, the other may not enter, even though it is related to the outcome 

and as a consequence, it will not appear in the final equation (Bland, 2000). The a priori decision 

to force the variable ‘country’ into the model ensured that Spain and Italy were included in the 

model in spite of having a VIF above 3 - but at a cost of results being driven by Italian and Spain. 

The Cook’s D test indicated that most of the influential observations were from Spain or Italy. 

Ideally, country-specific models should have been developed but this would have decreased the 

power of the model and led to imprecision due to the lack of contrast for the main predictor (gas 

hob) in Italy and Sweden (the use of gas hob was virtually universal in Italy and absent in 

Sweden). 

5.5.3 Ventilation 

Several predictors related to ventilation and consequently to housing characteristics (type of 

building, windows/door to the outside kept open while cooking, presence of a ducted fan in the 

kitchen, absence of central heating) were initially considered but only ‘age of building’ was 

retained in the final model. This predictor was sensitive to cross-validation. 

Ventilation is a main determinant of indoor NO2 levels. The most appropriate way of measuring 

ventilation is measuring AER and then including the parameter into the model. However, AER 

measurements tend to perform better in winter than summer and some models have included 

these data only for the winter season (Zota, 2005). No AER measurements were carried out in 

ECRHS participants’ homes and self-reported information was used as proxy indicators for 

ventilation instead. Self-reported information is generally affected by recall bias and random 
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error. For example, it has been found that people who rent their homes are less likely to know 

whether their kitchen vent extracts fumes (Seltenrich, 2014), a proxy indicator for ventilation. 

Besides, the model was based on information supplied by the household member participating in 

ECRHS (e.g. keeping window open, average time spent cooking) and did not take account of 

other household members who may also cook or keep a window open. 

Once the variable ‘country’ was included in the model ‘keeping the window open’ was no longer 

held in the model because its P value was above 0.10. This suggests that there may be some 

activity types that may determine NO2 and vary by country. Transferability of models to other 

locations could be problematic unless information on predictor variables was collected in a 

standardised way and locations were nearby (Hoek, 2008). In the model developed in this study, 

data on predictors were collected using the ECRHS standardised questionnaire but there was 

some considerable heterogeneity across centres.  

5.5.4 Limitations of the model  

The main limitations of this model were: 

• The model was not country-specific and Spain and Italy tended to drive the model. 

• Contribution of ventilation to indoor NO2 concentrations could not be quantified. Proxy 

indicators were used instead. They relied on self-reporting information, which tended to 

be correlated and lacked precision. 

• The model used the annual average exposure to outdoor NO2 to predict the indoor 

exposure for a specific month (October).  

5.5.5 Recommendations 

Future research on indoor NO2 modelling should consider: 

• To develop country-specific models 

• To consider whether to carry out air exchange rate (AER) measurements  

• To explore alternative methodologies to identify predictors in order to minimise problems 

related to stepwise regression. 

 



235 

 

5.6 Summary 

The model developed in this chapter has shown that it is possible to predict average indoor NO2 

exposure for a group of ECRHS participants for which the necessary information to develop the 

model was available. Predictors identified by the model included the presence of gas appliances, 

outdoor NO2, outdoor temperature, age of building and country. They explained 46% of the 

model variability, a proportion comparable to the highest achieved by other indoor NO2 models. 
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6. Long-term associations of respiratory symptoms with 
exposure to gas for cooking and modelled indoor NO2 

6.1 Introduction 

Previous work in the ECRHS showed an association of asthma and asthma-like symptoms with 

the use of gas for cooking in European adults (Jarvis, 1998). The ECRHS study is one of the 

very few adult cohorts that have prospectively collected information on symptoms and exposure 

to gas for cooking over a twenty year period. 

In this chapter I am going to use this prospective information to examine the association between 

long-term asthma-related symptoms and use of gas for cooking. I am also going to apply the 

modelled exposure to indoor NO2, which I developed in the previous chapter, to assess the 

association between long-term asthma-related symptoms and modelled indoor NO2. 

6.1.1 Background 

There are relatively few cohort studies that have examined the health effects of the use of indoor 

gas appliances or exposure to indoor NO2 over a prolonged period of time. A Dutch longitudinal 

study (Fischer, 1985) which followed women over 18 years found no association between lung 

function decline and exposure to current indoor NO2 levels associated with the use of gas water 

heating appliances in a sub-sample of non-smoking women (n=97). A longitudinal analysis of 

1449 young adults who participated in the British 1958 birth cohort (Moran, 1999) examined the 

evolution of respiratory symptoms from childhood to the age of 35 in relation to the reported use 

of gas for cooking at age 35 and, as recalled, at the age of 11. This showed that individuals who 

currently used gas for cooking had a significantly reduced FEV1 but being exposed to gas 

cooking in childhood or adulthood was not associated with incidence or prognosis of asthma and 

wheeze or severity of respiratory symptoms. A British retrospective cohort study examined all-

cause mortality patterns in those who had taken part in a housing survey in 1936 and were 

followed through the National Health Service Central Register from 1951 to 1989. In over 15,000 

adults there was no evidence that having a gas cooker was associated with increased mortality 

(Coggon et al., 1993).  
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A small number of studies have followed adult participants over much shorter periods of time. For 

example, Keller et al (1979b) followed over 400 families and observed mothers (and children) in 

homes that used gas for cooking had lower incidence of respiratory illness compared to those 

with electric cookers. No association of asthma severity with use of a gas stove was found in a 

panel study of 349 adults with asthma followed over a period of 18 months (Eisner, 2002). 

6.1.2 ECRHS methods 

The methodology of ECRHS has been described in Chapter 3. Briefly, in 1992/3, participating 

centres in ECRHS I recruited random population based samples of adults aged 20-44 years to 

answer a brief postal questionnaire on asthma and asthma-like symptoms. A random sub-sample 

of responders were invited for further assessments including an interviewer-administered 

questionnaire, lung function tests, venesection for blood sample (IgE) and skin prick tests. Serum 

specific IgE to house dust mite, Timothy grass, cat and Cladosporium was tested using the 

Pharmacia CAP system in a single laboratory in Uppsala, Sweden. In 2002 all those taking part 

in this clinical assessment were invited to undergo exactly the same investigations (ECRHS II) 

and this was repeated between 2011 and 2013 (ECRHS III). 

In 1992/3 the cohort was enriched with a further sample with symptoms highly suggestive of 

asthma (but who had not been recruited into the random sample). This sample is referred to as 

the ‘symptomatic’ sample. The analyses presented here have been conducted on information 

collected from the random sample only. 

6.1.3 Hypothesis   

Adults who cook with gas are at higher risk of having asthma-like symptoms than those who cook 

with electricity over 20-year period and the effect is modified by sex, smoking, atopy and asthma. 

6.1.4 Objectives  

• To determine whether prevalence of wheeze is more common in adults who cooked with 

gas compared to adults who cooked with electricity in a cohort followed up for 20 years.  

• To use the predictive model for indoor NO2 developed in Chapter 5 to determine whether 

prevalence of wheeze is associated with an increase in exposure to indoor NO2 

(modelled). 

• To determine whether the observed association is modified by: 
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− Sex  

− Smoking 

− Atopy  

− Asthma.  

• To determine whether in the same cohort a higher asthma score is associated with the 

use of gas cooking and/or an increase in exposure to indoor NO2 (modelled). 

6.2 Method 

6.2.1 Study population 

Study centres 

The main analysis of this chapter was restricted to centres in which information on type of fuel 

used for cooking was collected at all three surveys (ECRHS I, ECRHS II and ECRHS III) and 

where prevalence of use of gas for cooking was greater than 5% and less than 95% at baseline 

(ECRHS). The following 17 centres from 7 countries were included in the analyses:  

1. Antwerp South (Belgium) 

2. Antwerp City (Belgium) 

3. Erfurt (Germany) 

4. Hamburg (Germany) 

5. Bordeaux (France) 

6. Grenoble (France) 

7. Montpellier (France) 

8. Paris (France) 

9. Barcelona (Spain) 

10. Galdakao (Spain) 

11. Albacete (Spain)  

12. Oviedo (Spain) 

13. Huelva (Spain) 

14. Ipswich (UK)  

15. Norwich (UK) 

16. Tartu (Estonia) 
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17. Melbourne (Australia). 

The following centres were excluded: 

• Pavia, Turin and Verona (Italy) - They did not collect information on type of fuel used for 

cooking at ECRHS III and the prevalence of use of gas cooking was more than 95% at 

ECRHS I. 

• Reykjavik (Iceland), Bergen (Norway), Goteborg, Umea and Uppsala (Sweden) - 

Prevalence of use of gas cooking was less than 5% at ECRHS I. 

• Dublin (Ireland), Groningen, Bergen-op-zoom and Geleen (The Netherlands), Cambridge 

and Caerphilly (UK), Winnipeg, Vancouver, Hamilton, Montreal and Halifax (Canada), 

Prince Edward Island Wellington Christchurch and Hawkes-Bay (New Zealand), Mumbai 

(India) and Wroclaw (Poland) - They all participated at ECRHS I only. 

• Aarhus (Denmark) - It did not participate at ECRHS II.  

• Portland (Australia) - It did not participate at ECRHS III. 

• Basel (Switzerland) - Data for ECRHS III were missing because of ongoing work to 

complete data harmonisation (Basel used the SAPALDIA III questionnaire). 

Participants 

In the 17 centres included in the analysis a number of participants did not participate in all three 

surveys (Figure 6.1). To be included in the main analysis a participant must have had complete 

information on 12-month prevalence of wheeze and mode of cooking (gas/electric) at ECRHS I 

but not necessarily at ECRHS II or ECRHS III (‘all cases’). All participants must have cooked with 

gas or electricity. 

Over the 20-year period some participants were lost to follow-up, and some, even though they 

took part, provided incomplete or inconsistent questionnaire information. ‘Complete’ cases were 

those participants who had complete information on 12-month prevalence of wheeze and mode 

of cooking at ECRHS I, II and III. ‘Incomplete’ cases were those participants with information on 

12-month prevalence of wheeze and mode of cooking at ECRHS I but not at ECRHS II or/and 

ECRHS III. 
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Figure 6.1 Flow diagram of participants included in the analysis of the association of respiratory symptoms 
and gas use at each survey (n=595 are those participants who took part in ECRHS I and ECRHS III 

but not ECRS II) 

6.2.2 Use of gas for cooking and modelled indoor nitrogen dioxide 

At each survey participants were asked: ‘What kind of stove do you mostly use for cooking?’. At 

ECRHS I the options for response included ‘Gas’ , ‘Electricity’, ‘Paraffin’, ‘Coal, coke or wood’ or 

‘Other’. At ECRHS II participants were asked to state the source of the gas used for cooking i.e. 

‘Gas from mains’ or ‘Gas from bottles’. At ECRHS III options included ‘Gas from mains’ and ‘Gas 

from bottles or other non-main sources’. For this analysis reported gas (irrespective of source) 

was the exposure of interest, and electricity was the reference group. Those who reported they 

used other fuels for cooking were excluded.  

In Chapter 5 I developed a model to predict indoor NO2 levels in homes of participants in ECRHS 

II and ECRHS III. Briefly, a two-week average indoor NO2 for the month of October was modelled 

using ECRHS II and ECRHS III questionnaires based information, monthly average temperature 

and available annual average outdoor NO2 level supplied by the ESCAPE project for the year 

ECRHS I  n =  8,842

ECRHS II  n =  4,838

ECRHS III  n =  2,863

ECRHS III  n =  3,458

n = 743 refused
n =  49 temporary away
n = 302 moved away
n =  15 deceased
n = 2,895  unknown reasons

n =  595

Complete cases
n = 2,719

All cases

n = 69 refused
n =  2  temporary away
n = 180 moved away/address 
unknown
n =  51 deceased
n = 1,673  unknown reasons
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2002 and 2008. All predicted values were calculated for October, a month, which in all centres 

temperature tends to be mild lying in between the warm and cold seasons.  

6.2.3 Wheeze and asthma score 

At each survey participants were asked a series of questions relating to their respiratory health. 

For this analysis the primary outcome was the reporting of wheeze in the last 12 months.  

The secondary outcome was a six-level asthma score (Sunyer, 2007), which has already been 

presented in Chapter 3. Briefly, the score is derived as a sum of affirmative questions asking 

about the presence of any of the following asthma-like symptoms over the previous 12 months:  

(1) wheeze; (2) woken up by a feeling of tightness in the chest; (3) attack of shortness of breath 

at rest; (4) attack of shortness of breath following strenuous activity; (5) woken by an attack of 

shortness of breath. 

6.2.4 Statistical method  

Non-response bias 

Characteristics of participants with full data at all three surveys (‘complete’ cases) and those with 

incomplete data (‘incomplete’ cases) were compared. The following characteristics were 

considered: age (categorical), sex, smoking status at ECRHS I, presence of wheeze at ECRHS I, 

age left full time education, main fuel used for cooking at baseline and centre Differences in 

these characteristics at baseline (i.e. ECRHS I) between ‘complete’ cases and ‘incomplete’ cases 

(see 6.2.1 for definition) were compared. A multi-variate logistic regression adjusted for all these 

characteristics was carried out to find the odds ratio of being a complete case rather than an 

incomplete case. 

Association of wheeze with the use of gas for cooking across the three surveys  

A population-averaged generalised estimating equation (GEE) approach (Zeger and Liang, 1986) 

with exchangeable correlation matrix was used to estimate the odds ratio of having wheeze when 

cooking with gas compared with electricity over the three ECRHS surveys. This provides a 

marginal model for the probability of having symptoms and applies a working exchangeable 

correlation between observations (i.e. within an individual any two observations are equally 

correlated). Robust standard errors were used to correct for model misspecification. 
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To account for the variation in effects between centres analyses were conducted within centres 

and the effect estimates combined using random effect meta-analysis (DerSimonian and Laird, 

1986). Heterogeneity between centres was assessed using the I2 statistic (Higgins, 2003), which 

describes the percentage of total variation across studies that is due to heterogeneity rather than 

chance. Cross-sectional analyses of the association of wheeze and gas cooking at each survey 

were conducted to assist interpretation of the GEE estimate. 

To account for the missingness of data a sensitivity analysis was carried out by using the Inverse 

Probability Weight (IPW) (Hernán and Robins, 2006). Briefly, an inverse weight for factors 

associated with response (cooking with gas, wheezing, age, age left education, sex, centre) was 

assigned to the ‘complete’ cases. This weight relates to the probability of having a datum being 

observed if a participant has one or many of the factors associated with response.  

Association of wheeze with modelled indoor NO2 across two surveys   

Analyses for the associations of wheeze and asthma score with modelled indoor NO2 across 

ECRHS II and ECRHS III (modelled data were available only for these two surveys) were 

repeated using the same approach as above. To assist interpretation of the GEE estimate the 

association of wheeze with modelled indoor NO2 at each surveys was further examined by 

conducting cross-sectional analyses at each surveys. All results are reported per 10µg/m3 

increase in exposure to modelled indoor NO2. 

Association of asthma score with the use of gas for cooking across the three surveys  

Analyses that examined the associations of asthma score with use of gas cooking and indoor 

NO2 (modelled for the month of October) were carried out using the same methodological 

approach as above. A GEE approach with robust standard error that took into account the 

correlation of observations within same individual was used to estimate: (1) the association with 

asthma score and gas cooking over the three surveys; (2) the association with asthma score and 

modelled indoor NO2 over ECRHS II and III. Heterogeneity between centres was assessed using 

the I2 statistic. Random effect meta-analyses were carried out to take into account the variations 

of effect between centres.  

Since in the general population asthma score shows a distribution with a majority of zeroes, a 

negative binominal regression model (with ‘loglink’) that allows for extra-Poisson variation was 

applied within the GEE. Results are expressed as the geometric mean ratio (GMR) of the asthma 

scores. This equates to the percentage increase of the geometric mean score in people who use 

gas for cooking compared to those who use electricity. 
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To further investigate the association between asthma score and gas cooking the association of 

other asthma-related symptoms and gas cooking was examined using the same approach (GEE 

and random effect). For certain outcomes the sample size in some centres was too small to 

conduct a meta-analysis with random effect by centre and analyses were only adjusted for 

centre. 

Adjustment for confounders 

All analyses were adjusted for the following confounders selected a priori: 

• Sex 

• Age at time of survey, included in the analysis as a time- dependent variable 

• Smoking status at time of survey, included in the analysis as a time-dependent variable 

and defined as: 

− Never; if a negative response was given to the question: ‘Have you ever smoked 

for as long as a year? ‘ 

− Ex: if a positive response was given to the question ‘Have you ever smoked for 

as long as a year?’ and negative response to ‘Do you now smoke (as of one 

month ago)?’ 

− Current: if positive responses were given to both questions ‘Have you ever 

smoked for as long as a year?’ and ‘Do you now smoke (as of one month ago)?’ 

• Age left full-time education, which was self-reported at ECRHS I (as an indicator of 

social-economic status). If in full time education at ECRHS I, the age was based on the 

answer given to the same question at ECRHS II. The variable was classified into four 

groups based on quartiles of the distribution (<17 years, 17-18, 19-22 and ≥ 23). 

As all participants with modelled indoor NO2 had their exposure predicted for the same month of 

the year (October) analyses of the health effects of indoor NO2 were not adjusted for seasonality. 

Effect modifications 

Effect modifications were included in the GEE analyses on wheeze and gas cooking and on 

wheeze and modelled indoor NO2 and tested for significance. The following effect modifiers were 

considered: 

• Sex 

• Smoking status (never, ex, current) at ECRHS I (for the analysis on gas) and at ECRHS 

II (for the analysis on indoor NO2) 
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• Atopy, defined to be present if an individual has serum specific IgE > than 0.35kU/L to at 

least one allergen to house dust mite, timothy grass, cat or Cladosporium at ECRHS I 

 

Effect modification by asthmatic status was tested on the association of asthma score with gas 

cooking and modelled indoor NO2. An asthmatic individual was identified as previously defined in 

Chapter 3: 

a) Participant must have a diagnosis of asthma confirmed by a doctor  and 

b) At least one of the following in the last 12 months: 

− Any symptom associated with asthma (wheeze, nocturnal chest tightness, attack 

of breathlessness after exercise, attack of breathlessness at rest, attack of 

breathlessness at night or woken up by cough)  

− An asthma attack  

− Used inhaled/oral medicines because of breathing problem. 

The Wald test was used to assess the statistical significance of the interactions. A P value 

threshold of 0.10 (equal or smaller) was used to provide suggestive evidence of an interaction. 

As the asthma score in the asthmatic group was an ordered score without zero inflation, its 

association with gas cooking was examined using an ordered logistic model and the effect 

estimate is expressed as an odds ratio. Ordinal data models cannot be fitted by GEE in Stata 

(Stata 12.1) and a model with a robust variance estimator that considers the cluster effect of 

repeated observation within the same participant was instead applied. 

(http://www.stata.com/statalist/archive/2009-04/msg00369.html last visited on 14/01/2015). 

Ad hoc sensitivity analyses 

Ad hoc sensitivity analyses were carried out to explore the difference in results between: 

• The association of wheeze with modelled indoor NO2 vs the association of wheeze with 

gas cooking 

• The association of wheeze with modelled indoor NO2 vs the association of wheeze with 

measured indoor NO2. 

All analyses were carried out in Stata 12.1. 

 

http://www.stata.com/statalist/archive/2009-04/msg00369.html%20last%20visited%20on%2014/01/2015
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6.3 Results 

6.3.1 Participants response 

From the original random sample of 9,160 participants living in the selected 17 ECRHS centres 

and for whom there was information on wheeze at ECRHS I the following participants were 

excluded: 

• 8 who did not provide information on type of fuels used for cooking  

• 168 who cooked with a fuel other than gas or electricity at ECRHS I 

• 103 who reported cooking with a fuel other than gas or electricity at ECRHS II 

• 39 who reported cooking with a fuel other than gas or electricity at ECRHS III.  

This left a total of 8,842 individuals who met the following criteria: 

a. At ECRHS I answered the question on ‘Have you had wheeze at any time in the last 12 

months?’ 

b. At ECRHS I provided information showing they cooked with gas or electricity 

c. If they had taken part in further follow-ups, reported that they cooked with either 

electricity or gas.   

Of these participants 4,838 (54.7%) took part in ECRHS II and 3,458 (39.1%) in ECRHS III 

(Figure 6.1); 2,719 participants had information at all three surveys (i.e. were ‘complete cases’); 

595 took part in ECRHS I and III but not in ECRHS II.  

At ECRHS II 15 people who took part in ECRHS I were known to have died, some had moved 

out of the area (n=302), some refused (n=743) and 2,895 did not participate at ECRHS II for 

reasons that remain unknown. At ECRHS III 51 further people who took part in ECRHS II were 

known to have died, 69 refused, some moved away to unknown address (n= 180) and 1,673 did 

not participate at ECRHS III for unknown reasons.  

The characteristics of ‘complete cases’ were compared with the characteristics of those who had 

incomplete data (Table 6.1). At ECRHS I (baseline), complete cases were more likely to be older, 

less likely to be current smokers and more likely to have left full time education at an older age 

when compared to incomplete cases. 
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Table 6.1 Characteristics at ECRHS I of complete and incomplete cases  

Risk factors at ECRHS I Incomplete cases 
n  = 6,123 

Complete cases  
n  = 2,719 P value* 

Adjusted** OR for 
being a complete 

case 
 % %   

Female 52.5 52.0 0.62 0.97 (0.88; 1.07) 

Age   at ECRHS I   <0.001  

 median(IQR) years 32.9 (27.0-39.4)  35.2 (28.9 -40.8) <0.001^  

 <30 years 38.0 29.9  1.00 

 30<40 years 38.6 41.1  1.44 (1.29;1.62) 

 >=40years 23.4 29.0  1.69 (1.48; 1.93) 

Smoking status  at ECRHS I   <0.001  

 Never 38.7 43.4  1.00 

 Ex 20.7 22.1  0.90 (0.79; 1.03) 

 Current 40.6 34.6  0.74 (0.67; 0.83) 

Wheezing at ECRHS I    22.3 20.2 0.023 1.01 (0.89; 1.14) 
Cooking mostly with gas  at 
ECRHS I 59.4 66.0 <0.001 0.92 (0.82; 1.03) 

Age left education   <0.001  

 <17 years 21.6 20.7  1.00 

 17<19 years 24.9 20.1  1.15 (0.98; 1.34) 

 19<23 years 32.2 33.8  1.60 (1.38; 1.86) 

 ≥ 23 years 21.3 25.4  1.75 (1.49; 2.06) 

Nasal allergy (hay fever)  26.8  26.7 0.87 1.03 (0.92; 1.15) 
*P value for Chi-square; ** odds ratios adjusted for the risk factors listed in the table and for centre; ^P value for 
Kruskal-Wallis rank test 
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6.3.2 Prevalence of use of gas cooking and wheeze across ECRHS surveys 

 
Figure 6.2 Prevalence of use of gas cooking by centres and survey 

 

 
Figure 6.3 Prevalence of wheeze in the previous 12 months by centres and survey  
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Over the three surveys the use of gas for cooking fell in most ECRHS centres (Figure 6.2). The 

largest fall occurred in Huelva and Oviedo, Spain and in Erfurt, former East Germany. In Huelva 

the percentage of participants cooking with gas fell from 83.2 % at ECRHS I to 24.8% at ECRHS 

II and 11.0% at ECRHS III; in Oviedo it fell from 84.6% to 48.7 at ECRHS II and to 14.2% at 

ECRHS III; in Erfurt from 49.9% to 13.7% at ECRHS II and to 4.3% at ECRHS III. These figures 

changed little if only complete cases were considered and if participants who used fuels other 

than electricity and gas were included in the denominator (data not shown). Overall the 

prevalence (unadjusted) of wheeze tended to decrease (Figure 6.3). On average across all 

centres prevalence of wheeze at ECRHS I was 21.7% and at ECRHS III was 19.8%. The 

changes in prevalence of wheeze varied across centres and ranged from 9.3% in Erfurt to 35.4% 

in Melbourne. At ECRHS III prevalence of wheeze ranged from 11.9% (Antwerp South) to 32.4% 

(Huelva). 

6.3.3 Associations of wheeze with gas cooking across ECRHS surveys 

The forest plot of Figure 6.4 shows the GEE estimated effect of cooking with gas on 12-month 

prevalence of wheeze by centre and the combined random effect estimate (D+L Overall). Over 

20 years across the three ECRHS surveys there was no evidence of an association between 

wheeze and gas cooking (OR 1.05, 95% CI 0.96 to 1.15) and no evidence of heterogeneity 

(I2=0.0%, Pheterogeneity=0.75).  
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Figure 6.4 Forest plot showing GEE odds ratio of having wheeze when cooking with gas (versus electricity) by 
centre overall the three surveys and adjusted for sex, age, smoking status and age left 

education  

Results of the cross-sectional analyses for the prevalence of wheeze and gas cooking at each 

survey (Table 6.2) show a positive significant association at ECRHS II (OR 1.22 95% CI 1.00, 

1.47 I2=16.1%, Pheterogeneity=0.26). There was some heterogeneity between centres at ECRHS I 

and II. See Appendix of Chapter 6 for cross-sectional results by centre at each survey. 

Table 6.2 Adjusted odds ratio of having wheeze when cooking with gas (versus electricity) with random 
effect by centre at each surveys and overall (GEE) 

 OR* (95% CI) I2 (P value)** 

ECRHS I (n=8,842) 1.09 (0.94, 1.26) 16.1% (0.26) 

ECRHS II (n=4,840) 1.22 (1.00, 1.47) 15.9% (0.27) 

ECRHS III (n=3,458) 1.12 (0.89, 1.41) 0.0% (0.78) 

ECRHS I, II and III (GEE) 1.05 (0.96, 1.15) 0.0% (0.75) 
*Adjusted for sex, age at survey, smoking status at survey, age left education with random effect by 
centre;  ** I2  and P value for  heterogeneity test  
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Sensitivity analyses with Inverse Probability Weighting 

An Inverse Probability Weighting (IPW) was assigned to complete cases and analyses for 

wheeze were repeated as above (i.e. GEE with random effect by centre). After adjusting for IPW 

there was little change in the effect estimate of the association between wheeze and gas cooking 

(OR 1.02, 95% CI 0.93 to 1.12)  (Table 6.3).  

Table 6.3 IPW adjusted odds ratio of having wheeze when cooking with gas (versus electricity) with random 
effect by centre overall the three surveys (GEE) 

Wheeze OR* (95% CI) I2  (P value) ** 

Adjusted for IPW  1.02 (0.93, 1.12) 0.0% (0.79) 

Not adjusted for IPW 1.05 (0.96, 1.15) 0.0% (0.75) 
*GEE odds ratios adjusted for sex, age at survey, smoking status at survey, age left education and IPW  and with 
random effect by centre;  ** I2  and P value for  heterogeneity between centres 

 

Associations in complete cases versus all cases 

 
Figure 6.5 GEE odds ratios in all cases and complete cases of having wheeze when cooking with gas (versus 

electricity) at each survey and on average at each surveys Modelled indoor NO2 at ECRHS II and 
ECRHS III 

The association of wheeze with gas cooking at each survey in ‘complete’ cases and ‘all’ cases 

were also visually compared (Figure 6.5). Estimates arising from ‘complete’ cases are similar to 

the estimates arising from ‘all’ cases but tend to have larger confidence intervals reflecting the 

smaller sample size.  
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6.3.4 Associations of asthma score with gas cooking across ECRHS surveys 

GEE analysis with random effect by centre (Figure 6.6) did show no evidence of an association 

between asthma score and gas cooking across the three surveys (OR 1.02, 95%CI 0.96 to 1.09). 

There was some evidence of heterogeneity between centres (I2=33.2%, Pheterogeneity=0.090); 

asthma score was positively associated with use of gas cooking in Norwich (OR 1.29, 95%CI 

1.05 to 1.60) and negatively associated in Oviedo (OR 0.73, 95%CI 0.56 to 0.95). 

 

Figure 6.6 Forest plot showing GEE geometric mean ratio of having a higher asthma score when cooking with 
gas (versus electricity) by centre overall the three surveys and adjusted for sex, age, smoking 

status and age left education  

Cross-sectional analyses for the association of asthma score with gas cooking at each surveys 

(Table 6.4) showed a significant association at ECRHS II. There was some heterogeneity across 

centres, particularly at ECRHS III (I2 40.3%, Pheterogeneity=0.044). See Appendix of Chapter 6 for 

cross-sectional results by centre at each survey. 
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Table 6.4 Adjusted geometric mean ratio of having a higher asthma score when cooking with gas (versus 
electricity) with random effect by centre at each surveys and overall (GEE) 

 GMR* (95% CI) I2 (P value)** 

ECRHS I (n=8,842) 1.07 (0.96, 1.20) 7.1% (0.37) 
ECRHS II (n=4,840) 1.13 (1.00, 1.27) 29.9% (0.12) 
ECRHS III (n=3,458) 1.13 (0.96, 1.32) 40.3% (0.044) 
ECRHS I, II and III (GEE) 1.02 (0.96, 1.09) 33.2% (0.090) 
*Geometric mean ratio adjusted for sex, age at survey, smoking status at survey, age left 
education with random effect by centre; ** I2  and P value for  heterogeneity between centres. 
 

 

Associations of other asthma-related symptoms with gas cooking 

There was no evidence of an association of any asthma-related symptoms with gas cooking 

across the three surveys (Table 6.5). There was some evidence of heterogeneity across centres 

for the symptom ‘Woken up with chest tightness’. Having an asthma attack or taking asthma 

medication was negatively associated with the use of gas cooking but the association was not 

significant and there was not enough data to carry out analysis by centre (nobody who cooked 

with electricity had an asthma attack or took asthma medication in Barcelona).  

Table 6.5 Adjusted odds ratio of having asthma-related symptoms when cooking with gas (versus electricity) 
with random effect by centre overall the three surveys (GEE) 

Asthma-related symptoms^ OR* (95% CI) I2  (P value) ** 

Wheeze 1.05 (0.96, 1.15) 0.0% (0.75) 

 Wheeze with SOB 1.08 (0.97-1.21) n/a~  

 Wheeze with no cough 1.07 (0.95-1.21) 5.0% (0.40) 

Woken up with chest tightness 1.05 (0.91-1.20) 24.6% (0.077) 

Woken up by cough 1.03 (0.94-1.13) 15.5% (0.27) 

Woken up by SOB 1.00 (0.86-1.56) 0.0% (0.95) 

Asthma attack 0.98 (0.80-1.20) n/a~  

Taking asthma medication 0.87 (0.72-1.05) n/a~  

^In the past 12 months; *GEE odds ratio adjusted for sex, age at survey, smoking status at survey 
and age left education with random effect by centre (unless stated); ~adjusted by centre. 

6.3.5 Association of wheeze with modelled indoor NO2 across ECRHS surveys 

Using the model developed in Chapter 5 indoor NO2 exposure at ECRHS II for the month of 

October was predicted for 2,849 individuals living in 12 centres in Belgium (Antwerp South), 

Spain (Barcelona, Galdakao, Albacete, Oviedo and Huelva), Italy (Pavia, Turin and Verona), UK 
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(Ipswich and Norwich) and Sweden (Umea); modelled exposure at ECRHS III was predicted for 

1,313 individuals (9 centres). Italian centres did not collect data on gas cooking at ECRHS III and 

exposure at ECRHS III could not be predicted (Table 6.6). 

Table 6.6 Two-week average modelled indoor NO2 concentrations and temperature for the month of 
October by centre at ECRHS II and ECRHS III  

Country Centre  

ECRHS II 
 (n=2,849) 

ECRHS III 
 (n=1,313) 

median (IQR) µg/m3 median (IQR) µg/m3 

Belgium Antwerp South   22.2 (19.2-39.0) 21.6 (18.9-37.0) 

Spain Barcelona  62.5 (57.8-69.2) 62.2 (53.2-67.6) 

 Galdakao 34.9 (31.8-58.4) 37.9 (35.4-40.3) 

 Albacete  60.6 (42.5-69.3) 39.3 (37.2-47.8) 

 Oviedo  43.0 (35.8-60.2) 41.6 (38.7-44.2) 

 Huelva 38.8 (36.9-42.5) 36.3 (34.9-38.1) 

Italy Pavia  45.2 (43.8-53.3) n/a 

 Turin  60.9 (55.4-66.0) n/a 

 Verona 52.1 (48.5-57.0) n/a 

UK Ipswich  34.7 (18.5-44.1) 28.8 (14.6-40.3) 

 Norwich  31.9 (14.9-43.5) 32.6 ( 16.7-43.3) 

Sweden Umea 3.1 (2.0-4.9) 3.2 (2.1-4.4) 

 

GEE analysis with random effect by centre was conducted to examine the association of wheeze 

with modelled indoor NO2 across ECRHS II and ECRHS III (Figure 6.7). There was evidence of 

an association of wheeze with modelled indoor NO2 (OR 1.10, 95%CI 1.03 to 1.18 per 10 µg/m3 

increase of modelled indoor NO2) and no evidence of heterogeneity between centres (I2 0.0% 

Pheterogeneity= 0.70)  
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Figure 6.7 Forest plot showing GEE odds ratio of having wheeze per 10µg/m3 increase in modelled indoor 
NO2 by centre overall ECRHS II and III and adjusted for sex, age, smoking status and age left 

education (Italian centres excluded) 

Cross-sectional analyses at each survey (Table 6.7) showed that the association of wheeze with 

modelled indoor NO2 was significant at both surveys. There was no heterogeneity between 

centres. See Appendix of Chapter 6 for cross-sectional results by centre at each survey. 

Table 6.7 Adjusted odds ratios of having wheeze per 10µg/m3 increase of modelled indoor NO2 with random 
effect by centre at each surveys and overall (GEE) 

 OR* (95% CI) I2 (P value)** 

ECRHS II (n=2,849)) 1.17 (1.08, 1.27) 0.0% (0.81) 

ECRHS III (n=1,313) 1.18 (1.01, 1.38) 1.3% (0.42) 

ECRHS  II and III (GEE)^ 1.10 (1.03, 1.18) 0.0% (0.70) 
*adjusted for sex, age at survey, smoking status at survey, age left education with random effect by 
centre; ** I2  and P value for  heterogeneity between centres; ^ n=2,376 because Italian centres were 
not included in the GEE analysis. 
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6.3.6 Association of asthma score with modelled indoor NO2 across ECRHS 
surveys 

GEE results for association of asthma score with modelled indoor NO2 by centre are shown in 

Figure 6.8. The combined GEE result suggests that there was an association between asthma 

score and modelled indoor NO2 (GMR 1.06, 95%CI 1.01, 1.11 per 10µg/m3 of modelled indoor 

NO2). Cross-sectional analyses at each survey (Table 6.8) showed that the association of 

asthma score with modelled indoor NO2 was significant at ECRHS II. There was some 

heterogeneity between centres, particularly at ECRHS II (I2 54.8% Pheterogeneity=0.011). See 

Appendix of Chapter 6 for cross-sectional results by centre at each survey. 

 

Figure 6.8 Forest plot showing GEE geometric mean ratio of having a higher asthma score per 10µg/m3 
increase in modelled indoor NO2 by centre overall ECRHS II and III and adjusted for sex, age, 

smoking status and age left education (Italian centres excluded) 
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Table 6.8 Adjusted geometric mean ratio of having a higher asthma score per 10µg/m3 increase of modelled 
indoor NO2 with random effect by centre at each surveys and overall (GEE) 

 GMR* (95% CI) I2 (P value)** 

ECRHS II 1.09 (1.01, 1.17) 54.8% (0.011) 

ECRHS III 1.07 (0.97, 1.18) 29.6% (0.18) 

ECRHS II and III (GEE) 1.06 (1.01, 1.11) 31.7% (0.16) 
*Geometric mean ratio adjusted for sex, age at survey, smoking status at survey, age left education with 
random effect by centre per 10µg/m3 increase in modelled indoor NO2; ** I2  and P value for  
heterogeneity between centres 

6.3.7 Ad hoc sensitivity analyses 

Association of wheeze with modelled indoor NO2 vs association of wheeze with gas 
cooking 

The analysis of the association of wheeze with gas cooking showed no evidence of an effect. 

Contrarily, the analysis of the association of wheeze with modelled indoor NO2 suggested some 

evidence. In order to understand this inconsistency an ad hoc sensitivity analysis was carried 

out. The analysis was limited to those participants for whom indoor NO2 could be modelled. As 

previously the analysis used a GEE approach and took into account the random effect of centre.  

Within this sub-set of participants with modelled indoor NO2 gas cooking (versus electric cooking) 

was also significantly associated with wheeze (OR 1.20, 95% CI 1.00 to 1.46).  

Table 6.9 Sensitivity analysis of the effect of gas cooking on wheeze within the sub-set of participants for 
which indoor NO2 was modelled  

GEE analysis across ECRHS  II and III for the 
long-term association of wheeze with OR* (95% CI) I2 (P value)** 

Use of gas for cooking (n=2,361)^ 1.20 (1.00, 1.46) 0.0% (0.84) 

Modelled indoor NO2 (per 10 µg/m3)  1.10 (1.03, 1.18) 0.0% (0.71) 
*GEE (ECRHS II and III) estimate adjusted for sex, age at survey, smoking status at survey, age left education 
with random effect by centre; ** I2  and P value for heterogeneity between centres; ^ Italian centres 
excluded. 
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Association of wheeze with modelled indoor NO2 vs association of wheeze with measured 
indoor NO2 

Results for the association of wheeze with modelled indoor NO2 were compared with those for 

wheeze and measured indoor NO2 in sub-set of participants whose exposure to indoor NO2 had 

both being measured and modelled.  

Indoor NO2 monitoring was only carried out at ECRHS II and at different time of the year. To be 

able to make a proper comparison sensitivity analyses were based on: 

- Cross-sectional analysis at ECRHS II  

- Analysis were adjusted for seasonality (i.e. month of the year when measurements were 

carried out) as well as the usual confounder (age, sex, smoking, age left education) 

- Indoor NO2 was also modelled for the same month indoor NO2 measurement was carried 

out (rather than October). 

Results presented in Table 6.10 show that the health effect estimated using the modelled 

exposure tend to be higher than the health effect estimated using the measured exposure and 

that the size of the health is affected by adjustment for season. 

Table 6.10 Sensitivity analysis for the association of wheeze with indoor NO2 using a modelled exposure (all 
estimate for NO2 are per 10µg/m3) at ECRHS II (n=1271) 

Cross-sectional analysis at ECRHS II for the association of wheeze with: OR* (95% CI) I2 (P value)** 
Measured indoor NO2  
(+ adjusted for month of monitoring) 
 

1.14 (1.05, 1.24) 0.0%(0.63) 

Modelled indoor NO2 for the month of measurement 
 (+ adjusted for month of monitoring) 
 

1.21 (1.02, 1.43) 12.5% (0.32) 

Modelled indoor NO2 for the month of monitoring 
 (not adjusted for month of monitoring) 
 

1.15 (1.00, 1.33) 13.2% (0.32) 

Modelled indoor NO2 for the month of October 
 (as main analysis) 1.20 (1.05, 1.37) 0.0% (0.59) 

* adjusted for sex, age at survey, smoking status at survey, age left education with random effect by centre; ** I2  and P 
value for heterogeneity between centres . 
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6.3.8 Effect modifications on the association of symptoms with gas cooking and 
modelled indoor NO2 by sex, smoking, atopy and asthmatic status 

Effect modifications were tested by inclusion of an interaction term in the GEE analyses for 

wheeze (adjusted for sex, age at survey, smoking status at survey, age left education and 

centre) (Table 6.11). 

There was some evidence of an effect modification by smoking on wheeze and gas cooking as 

well as on wheeze and indoor NO2 but the effect was inconsistent. Never smokers had a higher 

risk of having wheeze when cooking with gas than when cooking with electricity (OR 1.17, 95% 

CI 0.99 to 1.40) compared to current smokers (OR 0.99, 95% CI 0.90 to 1.08). Contrarily, current 

smokers were at higher risk of having wheeze (OR 1.16, 95%CI 1.04 to1.29) compared to never 

smokers (OR 1.10, 95%CI 0.98 to1.24) per same increase in modelled indoor NO2 (10 µg/m3). 

There was some evidence of effect modification by atopy on the association of wheeze 

(P=0.020) and modelled indoor NO2. Non-atopic individuals had a higher risk of wheeze per 10 

µg/m3 increase of modelled indoor NO2 (OR 1.13, 95%CI 1.02 to 1.25) compared to atopic 

individuals (OR for wheeze 1.03, 95% CI 0.91 to1.17).   

People who cooked with gas or were exposed to higher levels of indoor NO2 were more likely to 

have a higher asthma score if they had asthma rather than if they had not but results were not 

significant.  

Table 6.11 P value for significance test for effect modification across ECRHS surveys by sex, smoking, atopy 
and asthma with use of gas cooking and modelled indoor NO2 on wheeze and asthma score 

(asthmatic status only) 

  P value*  for effect modification by 
  Sex Smoking  Atopy^^ Asthma# 
      

Effect modification of gas cooking across 
ECRHS I, II and III~ 

On wheeze   0.28 0.011 0.69 - 
On asthma score - - - <0.001 

      
      

Effect modification of modelled indoor 
NO2 across ECRHS II and III~~ 

On wheeze  0.14 0.070 0.020 - 

On asthma score 
 

- - - 0.095 

*Wald test ; ^non-smokers vs current smokers at ECRHS I; ^^ defined as having any specific IgE for HDM, 
Cladosporium, cat or grass allergens above 0.35kU/L at ECRHS I;~ GEE analysis for ECRHS I, II and III; ~~ GEE analysis 
for ECRHS II and III. 

   

 



259 

 

6.4 Discussion 

6.4.1 Main findings   

In this chapter I have assessed the association of asthma symptoms with the use of gas cooking, 

in which both symptoms and exposure have been prospectively ascertained in an adult 

population sample of 17 ECRHS centres over a 20-year period. There was no evidence that gas 

cooking compared to electric cooking had a long-term association with asthma-related symptoms 

(wheeze and asthma score). There was some heterogeneity across centres in the association 

with asthma score and none in the association with wheeze.  

Secondly, I have shown some evidence that asthma-related symptoms were associated with 

indoor NO2 (modelled). As for the analyses examining the associations of symptoms with the use 

of gas, there was little variation in these associations across centres when examining the effect 

of NO2 on wheeze, but some variation on asthma score. Due to missing information on key 

predictors of NO2 the analysis could only be conducted in 9 of the ECRHS centres for the 10-

year period between ECRHS II and ECRHS III.  

Previous work in the ECRHS has suggested associations of symptoms with use of gas for 

cooking may be modified by host factors. However I found no evidence of a modifying effect of 

sex (as previously observed), and limited evidence that effects were modified by atopy and 

smoking. Unexpectedly, non-atopic individuals were at higher risk of having asthma-related 

symptoms than atopic individuals when exposed to the same level of indoor NO2. 

People with asthma tended to have more symptoms (as shown by asthma score) when exposed 

to gas cooking compared to people without asthma - but the effect was not significant, possibly 

due to the small sample size. Even though modelling NO2 exposure should provide opportunities 

to conduct analyses on larger samples, this was not possible due to lower than expected 

response rates at ECRHS III. 

6.4.2 Limitations  

The study has some limitations. More than 50% of individuals who participated at ECRHS I did 

not respond to the invitation to participate at the following surveys. This group of people tended 

to be different from those who continued to participate at the following surveys; they were 

younger, more likely to be current or ex-smokers and less educated. A sensitivity analysis that 
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included an Inverse Probability Weighting to adjust for this response bias suggested that this did 

not alter the results. More complex, systematic strategies for dealing with non-response have 

recently been suggested (Sterne et al.) and may be of value to consider or future work. 

Results showed no variations across centres when examining the exposures (gas cooking and 

modelled indoor NO2) effects on wheeze but some when examining the effects on asthma score 

suggesting that the effect of gas cooking and modelled indoor NO2 on some asthma-related 

symptoms vary across centres. 

The main findings of this study suggest that there is an association of wheeze and asthma score 

with modelled indoor NO2 but not with the use of gas for cooking. There is some difficulty in 

interpreting this and it is further complicated by the observation that in the subset of centres 

(n=7) with modelled indoor NO2 data, the use of gas for cooking was also associated with 

respiratory symptoms. There are some possible interpretations for this: 

1. The associations of symptoms with the use of gas are inconsistent between centres (i.e. 

effects can only be seen in the centres included in the modelled NO2 work) as analyses 

on asthma score suggested (i.e. heterogeneity in the analyses on asthma score). 

However, there was no evidence of heterogeneity in the analysis on wheeze when all 17 

centres were included. This may suggest that had we been able to model NO2 for a larger 

number of centres no association of wheeze with NO2 would have been observed. 

2. ‘Gas cooking’ and ‘modelled indoor NO2 are not the same exposure. Gas cooking is more 

likely to suffer from misclassification, which biases the effect estimate towards the null 

value. Modelled indoor NO2 is more precise as it includes other sources of indoor NO2 

(UFGH, gas oven). This suggests that had we been able to model NO2 for a larger 

number of centres we would expect different findings and possibly significant (but 

perhaps not). 

As previously discussed the NO2 model developed in Chapter 5 has some limitations. It tends to 

under predict and over predict high and low indoor NO2 concentrations respectively, which 

biased the estimated health effects.  

Finally, these analyses have used self-reported symptoms, and it is possible that all associations 

would be different if an objective marker of respiratory health had been used. 
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6.4.3 Recommendations 

There is some evidence that exposure to indoor NO2 is associated with an increased risk of 

wheeze in adults. Available data was biased towards some selected centres, in which there was 

also a significant association of symptoms with gas cooking. It is recommended that future 

research should: 

• Consider a much larger single centre study in non-smokers to control for large 

differences and unknown levels of confounding by centre levels characteristics and 

smoking. 

• Investigate the association between modelled indoor NO2 and respiratory health by 

assessing the associations with some objective measures, i.e. lung functions (FEV1, 

FEV1/FVC), FeNO, airway responsiveness  

• Consider a more complex, systematic strategy for dealing with complex non-response as 

suggested by Sterne et al (2009). 

• Consider some methodologies for evaluating the exposure model in the context of health 

assessment estimation. 

6.5 Summary 

This study shows no evidence of an effect of gas cooking on asthma-related symptoms over a 

20-year period. There was some evidence that exposure to indoor NO2 (modelled) was 

associated with an increased risk of having wheeze in adults over a 10 year period, but analyses 

were only conducted in some of the centres (and in these centres gas cooking was also 

associated with wheeze). There was limited evidence that tobacco smoking, asthmatic status 

and atopy modify these associations. 
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7. Final discussion and conclusion 

7.1 Compendium  

In order to examine whether indoor NO2 exerts an effect on human health at levels associated 

with gas cooking I began (Chapter 2) by systematically reviewing epidemiological studies that 

measured indoor NO2 and assessed its association with respiratory health. The literature review 

identified 50 studies, most of them in children published up to December 2013. Nearly all studies 

reported positive associations between respiratory outcomes and indoor NO2 with over half of the 

studies reporting at least one significant estimate. Studies were very heterogeneous in design, 

exposure and outcome assessments and in statistical methodology making it difficult to combine 

the effect estimates. Eight studies that examined the association of 12-month period prevalence 

of wheeze and indoor NO2 could be included in a meta-analysis. The combined estimate 

suggested that a 10µg/m3 increase of indoor NO2 is associated with approximately a 6% 

increase in wheeze. This confirmed a previous meta-analysis (Hasselblad, 1992) conducted 

more than 30 years ago and which has formed the basis for setting WHO air quality guidelines 

on annual average exposure to outdoor and indoor NO2 (40µg/m3). Visual assessments of funnel 

plots and formal tests for publication bias of the meta-analysis suggested some evidence of 

publication bias. A few studies adjusted for other pollutants such as particles, but did not provide 

strong evidence that any observed health effect was confounded by exposure to other highly 

correlated indoor or outdoor pollutants. Studies, mainly in children, suggested that asthma 

severity may increase with increasing exposure. Very few studies were in adults with asthma. 

This led me to Chapter 3. 

In Chapter 3 I examined the effects of indoor NO2 on asthma severity in a sub-group of adults 

with asthma who participated in a multi-centre adult study (the European Community Respiratory 

Health Survey - ECRHS) between 1999 and 2001. These participants had indoor NO2 sampled 

in their kitchen for two weeks. Asthma severity was determined by several measures, such as 

asthma score, GINA score and bronchial responsiveness after methacholine challenge. There 

was no evidence that asthma severity was associated with elevated kitchen NO2 or use of gas 

for cooking (electric cooking as a baseline), or that effects were modified by sex, atopy, or use of 

inhaled steroids. There was limited evidence that asthmatics who smoke were at a greater risk of 

having more severe asthma when exposed to indoor NO2 than asthmatics who do not smoke. 

Overall, there was some evidence that wheezing was associated with indoor NO2 (OR 1.05, 
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95%CI 1.01 to 1.09 per 10µg/m3 increase) in the general population sample who participated in 

ECHRS II and had indoor NO2 measured (n=1527). The generalizability of these findings was 

limited by the relatively small number of participants with asthma and indoor NO2 measurements 

(n=257). Furthermore, indoor NO2 had been measured with passive diffusion samplers, which 

only provide information on average exposure and do not provide any information on exposure to 

short-term peaks generated during gas cooking/combustion. Clinical studies suggest that short-

term high exposure to NO2 may increase bronchial responsiveness in people with asthma but 

very few epidemiological studies have been conducted to examine associations of peak 

exposures with asthma exacerbations.    

One major reason for the lack of information on potential respiratory effects of peak exposures 

has been the lack of proper instrumentation. At the start of my doctoral training a portable, low-

cost, real-time monitor (Aeroqual S500) had just entered the market and offered an opportunity to 

conduct a panel study that could measure and assess whether indoor NO2 peaks generated from 

gas combustion are associated with adverse health effects. To assess the feasibility of 

conducting a panel study using this instrument for exposure assessment I designed and 

conducted a pilot study (Chapter 4). The study aimed to recruit 20 women (75% who cooked 

with gas) with asthma and follow them for 8 weeks during which indoor NO2 weekly average as 

well as NO2 peaks were monitored and daily changes in respiratory health (i.e. PEF and 

respiratory symptoms) assessed. The study could not be completed because of poor recruitment. 

Several strategies to identify potential participants were adopted: an organisation for people with 

asthma, GP practices, community-based voluntary organisations and staff notice-board at the 

academic institution where I am based. Only the latter two, led to recruitment of participants who 

cooked with gas. Furthermore, studies published while this work was ongoing recommended 

calibration and validation of the monitor independently from the manufacturer. This 

recommendation was based on observations that the electro-chemical gas sensor is sensitive to 

temperature and humidity and tends not to perform well when tested outdoors. Laboratory 

facilities beyond those available to me within the timeframe of my work are required to conduct 

such calibration. Recommendations have been made on how future large scale studies should 

be planned and conducted.  

Collecting exposure data at individual level has always been a major limitation in any air pollution 

epidemiological study because of time and related cost. An increasing number of epidemiological 

studies of outdoor air pollution have used modelled exposure data. So far no large scale 

epidemiological study of indoor air pollution has attempted the same. In Chapter 5 I developed a 

regression model to predict average indoor NO2 exposure for a sub-group of ECRHS participants 

in 5 European countries for which information on indoor NO2 potential predictors was available. 
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The model predicted that the main determinants of indoor NO2 are gas hob and gas oven, 

UFGH, bottled gas, outdoor NO2, ambient temperature, age of building and country. The model 

predicted that the presence of a gas stove (hob and oven included) was equivalent to an 

additional (from the background level) two-week average NO2 of about 28µg/m3 of indoor NO2 (a 

concentration very close to the estimation used in the Hasselblad meta-analysis over 30 years 

ago) and that 2µg/m3 of NO2 for every 10µg/m3 of outdoor NO2 (annual average) was present 

indoors. The model explained 46% of variability, similar to the explained variability achieved by 

other published indoor NO2 models. There was some substantial difference between countries, 

which could not be explained by the information available. As in any regression model values 

tended toward the average, leading to an underestimation of the highest exposures. Within its 

own limitations, I have shown that it is possible, using data available from ECRHS and ESCAPE 

(which supplied outdoor NO2 data) to develop a model which includes important variables 

enabling prediction of indoor NO2 concentrations. Two-weekly average exposure to indoor NO2 

for the month of October was modelled for a sub-group of participants at ECRHS II and ECRHS 

III, providing an opportunity to apply modelled exposure in health assessments within the 

ECRHS cohort, when participants were followed up ten years later. 

The ECRHS study is one of the few adult cohorts that have prospectively collected information 

on symptoms and exposure to gas for cooking over a twenty-year period (from 1990 to 2013). In 

Chapter 6, as data from the third phase (second follow-up) became available I examined 

whether long-term exposures to gas cooking and modelled indoor NO2 increase the risk of 

having asthma-like symptoms in adults using generalised estimating equation modelling. 

Analysis included 17 ECRHS centres. There was no evidence of an association of wheeze with 

cooking gas on average across the three ECRHS surveys and no evidence of heterogeneity to 

suggest that the effect may vary across centres. Analysis of the sub-set of participants of 7 

ECRHS centres with modelled indoor NO2 data showed some evidence that wheeze and asthma 

score were associated with indoor NO2 (modelled). Interpretation of these findings is difficult as 

in this sub-set of centres the use of gas for cooking was also associated with wheeze. We can 

argue that as there is no heterogeneity in this association of wheeze across the 17 centres, the 

observation of a ‘gas-cooking effect’ in the 7 centres may have occurred by chance. However, 

some heterogeneity across centres was observed in the analyses on asthma score. It is also 

possible that as ‘gas cooking’ and ‘modelled indoor NO2’ do not strictly describe the same 

exposure different health effects could be seen with each.  
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7.2 Does indoor NO2 cause asthma-related symptoms at levels 
associated with gas cooking?  

7.2.1 The Bradford Hill criteria 

In his essay ‘The Environment and Disease: Association or Causation” Bradford Hill (Bradford, 

1965) listed nine items to evaluate whether an association is causal or not. Bradford stated that 

‘none of the 9 viewpoints can bring indisputable evidence for or against the cause-and-effect 

hypothesis and none can be required a sine qua non’ (pg. 295). These ‘viewpoints’ have become 

known as the Bradford Hill Criteria and have long provided a background framework for the study 

of simple, direct causation. 

In the context of the evidence for a causal association of asthma-related symptoms and 

exposure to indoor NO2 which I have gathered in this thesis, I make the following comments:  

Strength 

‘First upon my list I would put the strength of the association.’  

Bradford Hill suggested that strong associations were indicative of a causal relationship.  

Findings from the meta-analysis of existing epidemiological studies and from cross-sectional and 

longitudinal analyses carried out in a large multi-centre adult cohort (ECRHS) suggest that the 

risk of having 12-month prevalence of wheeze is associated with indoor NO2 exposure and that 

this risk increases as exposure increases. The main findings are listed below:  

In children: 

• OR 1.06 (95%1.02, 1.12) per 10µg/m3 indoor NO2 for 12-month prevalence of wheeze - 

source: my meta-analysis of existing published evidence (Chapter 2) 

• OR 1.05 (95%1.02, 1.08) per 10µg/m3 indoor NO2 for 12-month prevalence of wheeze - 

source: meta-analysis published by Lin (2013)  

• OR 1.08 (95%1.01, 1.16) per 10µg/m3 indoor NO2 for ‘respiratory symptoms’ (not 

wheeze) – source: original meta-analysis published by Hasselblad (1992) 
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In adults: 

• OR 1.05 (95%1.01, 1.09) per 10µg/m3 indoor NO2 for 12-month prevalence of wheeze in 

adults: (n=1,527 in 14 ECRHS of 8 European countries) - source: cross-sectional 

analysis at ECHRS II (Chapter 3) 

 

In adults (long-term exposure): 

• OR 1.10 (95%1.03, 1.18) per 10µg/m3 modelled indoor NO2 for 12-month prevalence of 

wheeze in adults over a 10-year period: (n=2,376 in 7 ECRHS of 4 European countries) - 

source: longitudinal analysis across ECRHS II and ECRHS III using a GEE approach 

(Chapter 6). 

 

Using the most conservative figures I can estimate that as the annual average exposure to 

indoor NO2 increases by 10µg/m3 the risk of having wheeze in children and adults increases by 

5%. 

 

The strength of this risk estimate is far lower than those originally considered as indicative of 

causal associations by Bradford Hill (a 200-fold increase in mortality from scrotal cancer in 

chimney sweeps exposed to tar and mineral oil and a 20-fold increase in risk of lung cancer in 

smokers compared to non-smokers). Strong associations are not common in modern 

epidemiology which studies diseases with multiple risk factors and different causal pathways. 

Controlling for all the risk factors associated with the disease and the exposure is difficult. On the 

other hand, strong associations are less likely to be affected by uncontrolled residual 

confounding.   

Consistency 

‘Whether chance is the explanation of whether a true hazard has been revealed may sometimes 

be answered only by a repetition of the circumstances and observations’   

Overall, findings from studies of indoor NO2 were inconsistent. 

There was some evidence of publication bias in the meta-analyses I have conducted. This 

restricts my ability to comment on consistency since findings with positive results were more 

likely to be published. However, in the systematic review it was noted that significant 

associations were more frequently reported by studies carried out in children and older people 
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living in US inner cities and children attending schools in China and Korea. They were less 

frequently reported by studies in children living in Europe. It has been suggested that a possible 

explanation for the inconsistency of findings is the heterogeneity of study characteristics.  

Within ECRHS it was observed that significant associations of wheeze with indoor NO2 were 

more likely to be observed in the Spanish, Belgian and UK centres, but these inconsistencies 

were less than would be expected by chance. However, some heterogeneity across centres was 

observed when examining the association of asthma score and indoor NO2.  

 

Observational studies tend to vary in study design, selection of study population, assessment of 

exposure and outcome and statistical analysis and because of this are difficult to replicate. 

Residual confounding, in this case smoking, co-pollutants and SES may vary across countries 

and study population and lead to inconsistent effects. 

Specificity 

This criterion is generally considered to be one of the weakest. For example smoking is a proven 

cause of multiple disorders (i.e. lacks specificity). We look at the specificity of an association 

because if there is no association between indoor NO2 and other diseases (apart from asthma) 

then there is clearly a strong argument in favour of causation. However, “One-to-one 

relationships are not frequent”.  

Existing evidence suggests that indoor NO2 is only associated with respiratory health (although 

studies on outdoor NO2 have observed some associations with cardiopulmonary mortality). 

However, asthma lacks specificity as it is associated with a large array of risk factors. 

Temporality 

 ‘Which is the cart and which the horse?’ 

Longitudinal studies that follow people over a long period of time are better equipped to answer 

this question than cross-sectional studies. They observe the temporal order of events and 

answer this question by looking at the onset of a disease. This is particularly relevant with 

diseases of slow development but not with asthma, whose clinical manifestations are 

characterised by strong time variability. This variability is a key feature of asthma and makes it 

difficult to establish whether these changes simply reflect variation in a determined time course 

or are responses to variations in exposure to environmental triggers for the disease. An increase 
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in asthma incidence may represent added cases, old cases that had been in remission for a long 

time or sub-clinical cases brought forward in time by some environmental exposure. 

Biological gradient (or dose-response curve) 

In general effects of NO2 on respiratory health are considered with NO2 examined as a 

continuous variable, which implies a dose-response. These associations are frequently observed 

at levels below current WHO guidelines with little evidence of a threshold (WHO 2006; 2013).   

Plausibility 

‘Causation is biologically plausible’ 

The ‘free radical’ theory hypothesizes that NO2 as a free radical has the potential to induce 

oxidative stress in cells. In vitro studies and studies on animals have shown that this can lead to 

cell injury and airway inflammation. The accumulation of evidence from controlled animal and 

human toxicology studies is pointing towards the possibility of a causal role for NO2 (at least in 

part) at concentrations experienced while cooking with gas or in near traffic environments. 

Coherence 

‘The cause-and-effect interpretation of our data should not seriously conflict with the generally 

known facts of the natural history and biology of the disease’. 

Air pollution as a cause of asthma coheres with trends in developed countries of both increasing 

levels of air pollution and raising levels of asthma prevalence. 

Experiment  

‘Because of an observed association some preventive action is taken- does it in fact prevent? Is 

the frequency of the associated events affected? ‘ 

 As a sort of semi-experimental approach intervention may reveal ‘the strongest support for 
the causation hypothesis’.  

Within this thesis I have not assessed this criterion – which requires the conduct of randomised 

controlled trials. Others have made such attempts in Australia and New Zealand (Pilotto, 2004; 

Howden-Chapman 2008; Marks, 2010) and these studies have provided some support for 
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causation. Briefly, these trials showed that removal of unflued gas heaters (a major source of 

indoor NO2) from children’s homes or schools found improvements in their respiratory health. 

It is not possible to establish whether there is a relationship between exposure to indoor NO2 

and/or other air pollutants generated from gas combustion and respiratory symptoms since 

intervention studies are designed to answer a different question: ‘What is the relationship 

between a specific intervention and health’ rather than ‘What is the relationship between 

exposure to air pollutants and health outcome?’. This viewpoint is often under-emphasised by 

epidemiologists in spite of the fact that a simple intervention (e.g. replacement of UFGH with 

ducted gas heaters) may improve respiratory symptoms in children. As Galea (2013), the 

President of the Society for Epidemiological Research, commented “there is an overwhelming 

preoccupation with etiology and causal inference, and little emphasis on intervention”. 

Analogy 

In some circumstances it would be fair to make a judgment by analogy.  

The most recent reviews on outdoor NO2 (EPA, 2013) confirm that there is an effect of outdoor 

NO2 on respiratory health. This could be reason to infer that there is an effect of indoor NO2 on 

respiratory health. 

7.2.2 Conclusion 

In conclusion, the dose-response effect, the biological plausibility, the health improvement 

observed following intervention trials and the analogy with outdoor NO2 suggest that there is 

some evidence of a causal association of NO2 and asthma. The lack of evidence to suggest 

strength of the association, consistency, specificity, temporality and coherence of such 

association suggest that the observed evidence is not sufficient to imply causality.  

More recently some authors have commented that causality cannot in general be proven in 

human studies due to practical and ethical considerations and can only be induced from 

demonstrated associations between an exposure and a health outcome (Lucas and McMichael, 

2005). Epidemiological studies should instead strive to understand the links between 

environment and health and give full consideration to epidemiological noise – confounding, bias 

and chance – to provide support for evidence-based practice.  
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7.3 Assessment of major issues 

7.3.1 Exposure measurement error   

One of the major issues emerging from this thesis is that problems related to indoor NO2 

assessment (misclassification, exposure to peaks and NO2 modelling, errors in quantifying the 

exposure) can lead to error or bias in the health-effect regression model. 

Exposure measurement error is regarded as an unavoidable problem in air pollution 

epidemiological studies, where ambient exposure is usually based on a few observations 

(central-site monitoring) and then used to represent individual exposure for health-effect 

assessment. There are two types of errors:  

• Non-differential errors - when error is unbiased with a mean equal to zero. They are sub-

divided into two groups (Armstrong,  1998):  

- Random error (also known as misclassification) that is independent of the true 

exposure and the outcome. This biases the effect measure towards the null value 

- Berkson error - when part of the exposure variability is not captured because 

exposure is based on a few monitoring sites (particularly relevant to outdoor air 

pollution studies). This reduces the power of the study. 

 

• Differential errors tend to systematically underestimate or overestimate the true 

exposure. This causes bias in the effect measure downwards or upwards respectively. 

 

When ‘gas cooking’ is used as a proxy for NO2 exposure there is considerable risk of 

misclassification of exposure. This might explain some of the heterogeneity between studies. It 

may partly explain why some studies see no effect.   

Epidemiological studies on indoor NO2 are not affected by Berkson type error since indoor NO2 is 

measured in each participant’s home; for this reason they have more statistical power than 

traditional outdoor NO2 studies where exposure is based on central-site monitoring stations. 

However, a health-effect regression model that uses indoor NO2 measurements based on 

passive diffusion samplers is still likely to be affected by misclassification (random error). 

Measurements are conducted at one or a few points in time and then used to represent average 

exposure. Average exposure does not consider variations in occupant habits (e.g. time spent 

indoors) or variations that may occur during the day or year or from year to year.  
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This is particularly relevant in the context of short-term peaks generated during gas cooking 

which may cause an effect independent from long-term exposure (WHO, 2013) but the effect 

cannot be captured when using long-term average exposures. Time-series studies that examined 

short-term (24-h average and 1-h average) exposure to outdoor NO2 and emergency hospital 

admissions for asthma consistently report positive associations (EPA, 2008). This is supported 

by evidence from controlled exposure studies but the health effects of short-term exposure to 

indoor NO2 peaks generated while cooking with gas have rarely been assessed. There is a need 

to conduct studies that examine the health effects of repeated exposure to NO2 peaks. New 

portable, low-cost, real-time monitors that measure NO2 peaks exist but more work needs to be 

done to assess their reliability in large-scale field studies. 

Finally, the use of modelled exposure in a health-effect regression model may induce a complex 

form of measurement error leading to biased health effect estimates (Basagana, 2013; Cefalu 

and Dominici, 2014; Szpiro, 2014). This bias cannot be removed by simply improving the 

exposure prediction in terms of prediction error (Szpiro, 2011). Simulation studies (Cefalu, 2014) 

have shown that bias can be influenced by: 

• The exposure prediction model 

• The type of confounding adjustment used in the health-effects regression model 

• The relationship between these two. 

 

In chapter 6 the health effect estimated using modelled NO2 was larger than the effect estimated 

using measured NO2, suggesting a bias directing the effect measure upwards. There are several 

possible explanations for this. The exposure model tended to overestimate the lowest exposures, 

which biases the estimate upwards - but at the same time, the model underestimated the higher 

exposures and this would bias the effect downwards. The exposure model included four 

predictors that are also associated with the outcome (country, temperature, age of building and 

outdoor NO2). One of these predictors was also a modelled exposure (outdoor NO2). Complex 

causal pathways with structural equation modelling may overcome some of this.  

In conclusion, it is possible to use modelled exposure in a health-effect assessment but current 

literature treats confounding and exposure prediction as separate statistical issues and great 

care should be taken when interpreting the results. It has been recommended that exposure 

assessment should be evaluated in the context of health effect estimation (Sheppard, 2012) and 

that further methodological consideration should be given to confounding adjustment in the 

exposure and health-effect models (Cefalu, 2014). 
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7.3.2 Assessment of asthma 

Asthma is a complex chronic disease without a gold standard to define it. In this thesis, 

assessment of asthma was confined to the assessment of self-reported asthma-related 

symptoms in the last 12 months. Deficiencies in this approach include recall bias, inability to 

distinguish different phenotypes and inadequate quantification of the frequency and duration of 

episodes.  

The degree of symptoms’ severity was quantified using an asthma score, a composite measure 

of asthma-related symptoms in the last 12 months on a continuous scale. The associations of 

asthma score with indoor NO2 were inconsistent as there was evidence of heterogeneity 

between ECRHS centres. Misclassification of diseases and residual confounding by smoking 

may explain some of this inconsistency. 

As asthma score is a composite of symptoms it is more likely to be affected by misclassification 

of disease. Respiratory symptoms can be incorrectly classified. For example, some asthma-

related symptoms can be a feature of other diseases, such as COPD, heart failure, gastro-

oesophageal reflux and non-specific virus-induced wheeze (Marks, 2005). People with asthma 

who have been on CST for a prolonged period may not have symptoms at all. Reporting of 

symptoms may be influenced by other factors such as perception of symptoms and current 

environmental exposure. Asthma score may incorporate different phenotypes of asthma, such as 

non-asthmatic symptoms related to smoking (Sunyer, 2007). Analyses were adjusted for 

smoking status but did not take into account the intensity of smoking or the confounding effect of 

second-hand smoking. 

A much larger single centre study in non-smokers may be able to disentangle the effect of 

smoking from those associated with air pollution. For example, the Adventist Health Study 

(AHSMOG), a famous longitudinal study on the long-term exposure to ambient air pollutants 

included only non-smoking adults thus avoiding any modifying effects of active tobacco exposure 

(Abbey et al, 1993). 

Assessment of objective measures (i.e. lung function, BR) could give more information on the 

association of asthma with indoor NO2. Such measures have been conducted but at completion 

of this work were not available for analysis. 
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7.3.3 Co-pollutants 

There has long been a concern that other air pollutants may confound reported associations of 

respiratory health with both indoor and outdoor NO2. Indoor gas combustion sources emit 

particles, formaldehyde and water as well as NO2. This thesis focused only on the health effects 

of NO2 and did not consider the health effect associated with other emissions. Particulate matter 

is thought to be detrimental to respiratory health, formaldehyde respiratory effects are yet 

unknown (WHO, 2010) and damp may lead to elevated allergen levels (Sharpe, 2104).  

Furthermore, if indoor NO2 is coming from the outdoor air – it is likely to be part of a complex 

mixture of traffic-generated air pollutants, which have been found to be associated with 

respiratory health. Indoors air-borne particles differ from those found outdoors in terms of 

sources, composition and concentrations. This makes indoor air mixtures different from outdoor 

air mixture and as a consequence, concerns have been raised about whether the health effect of 

outdoor NO2 can be readily extrapolated from studies on indoor NO2. Results of the meta-

analyses showed that some of the largest significant effect estimates were reported by those 

studies that measured indoor NO2 inside schools where no gas or other fossil fuels appliances 

had been reported. This may suggest that: 

a. The strength of the association was due to the quality of study. Studies conducted in 

schools tend to be better controlled than those conducted at home. 

b. The strength of the association was due to the stronger confounding health effect of PM 

generated from outdoor sources.  

 

The observed differences between indoor and outdoor NO2 support a recent statement from a 

WHO technical report: ‘There is a case for WHO to revise its current guidelines and to consider a 

short-term guideline based on epidemiological studies and a long-term guideline based on the 

outdoor, as opposed to the indoor, epidemiology (pg. 194).’ (WHO, 2013) 

Two studies (Neas, 1991; Hansel, 2008) included in the systematic review took into account the 

confounding effect of indoor particles but they did not provide strong evidence that any observed 

health effect of indoor NO2 was confounded by exposure to indoor particles. 

Some studies prefer to examine the effect of personal exposure to NO2, usually assessed over 

24 hours. Personal NO2 exposure is measured by wearing passive diffusion samplers for 24 

hours or longer; this provides an average exposure. Assessing temporal variations in personal 

exposure to NO2 requires knowledge of indoor and outdoor sources, activity patterns and has 
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proven to be a complex task. Continuous monitoring that can identify exposure to NO2 peaks has 

been attempted but remains limited by the available technology. 

7.3.4 Public health 

In this thesis it has emerged that there are groups of people who are particularly affected by 

indoor NO2: those who are exposed to levels above WHO guidelines and those who are 

particularly vulnerable to NO2 because of age or respiratory conditions. 

People who continue to use unvented gas appliances, cook with poorly maintained gas cookers 

and/or live near busy roads are still likely to be exposed to levels of NO2 that exceed WHO 

guidelines. A recent simulation study (Logue et al, 2014) has estimated that 62% of people who 

use unvented gas cooking appliances are regularly exposed to levels that exceed 1-hour 

standards for NO2 (188µg/m3). People who live near busy roads are also exposed to higher 

levels of NO2 as outdoor NO2 penetrates indoors. This is of particular concern as outdoor NO2 

levels in UK have been in breach of EU limits for years to the extent that as I am currently writing 

The Supreme Court of the United Kingdom has ordered the UK government to make plans for 

tackling the air pollution problem (Harvey, 2015).  

Some people may be more susceptible to exposure to NO2 because they may be affected by 

lower levels of NO2 than the general population. They may also experience a greater effect than 

the general population with the same level of exposure. They include: 

• Children, as they breathe more air per kilogram of body weight than adults and their 

lungs are growing 

• Older people, as their ability to compensate for environmental insults tends to decline 

• People with asthma or COPD as they are more likely to experience health effects when 

exposed to short-term high peaks of NO2 that occur while cooking with gas (or on a busy 

road). 

 

These groups of people could be specifically targeted for interventions to reduce exposure. 

Housing interventions such as fitting fans/hoods over the gas stove, which remove combustion 

fumes to the outside, replacement of unflued gas heaters with flued gas heaters and/or central 

heating and control of outdoor NO2 levels within standards are some of the measures that could 

be taken to minimise the effect of NO2 exposure on susceptible and vulnerable people.  
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Although NO2 related health risks may appear to be small they may well be critical from an 

overall public health perspective due to the large number of persons in the potential risk groups. 

Certainly advice to the public should be: to use all appliances as per manufactures instructions, 

to use them in well ventilated rooms and ensure that they are well maintained. 

7.4 Recommendations 

• To conduct a panel study of people with asthma of any age to assess the effect of 

repeated exposure to short-term high concentration of indoor NO2 on asthma 

exacerbation, taking into account the confounding/modifying effects of indoor particles. 

This study would require a prolonged phase of assessment of the reliability of the 

monitoring device, and would require considerable investment. 

 

• To further investigate the long-term association of respiratory health with indoor NO2 by 

assessing the association using objective measures of respiratory health, i.e. lung 

function, FeNO, airway responsiveness within the ECRHS cohort. 

  

• To conduct a single-centre study on a homogeneous non-smoking population to examine 

the effect of exposure to indoor NO2 and indoor particles. This study would avoid the 

residual confounding and/or modifying effect effects of smoking. 

 

• To develop country-specific and season-specific models for indoor NO2 with specific 

reference to how predictor variables may act as confounders/cause of asthma 

 

7.5 Conclusions 

Indoor air quality is an important area for research and public health policy. There is some 

evidence for a link between indoor NO2 and asthma-related symptoms in children and adults but 

insufficient to imply causality. 

Many people cook with gas and/or live in areas where outdoor NO2 levels exceed WHO 

guidelines. Some groups of people may be particularly susceptible to NO2, namely children, older 
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people and people with asthma and other chronic respiratory conditions. Although NO2 related 

health risks are small they are applied to a substantial proportion of the population.  

Interventions such as removal of unflued gas heaters, fitting of fans/hoods over gas stoves, 

ventilating rooms by opening doors and windows when cooking and heating with gas, and 

ensuring that long-term and short-term outdoor NO2 levels are kept to a minimum are measures 

that may reduce exposure to indoor NO2. 
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Appendix Chapter 4 – Comments from Facebook 

 
 Asthma UK Facebook (alive on 16/07/13)  
Can you help us to understand how cooking/indoor air pollution affects asthma? Researchers at Imperial 
College London are collecting information from women with asthma to find out if their asthma symptoms get 
worse when they come into contact with certain air pollutants in kitchens – for example fumes from cooking. If 
you’re a woman with mild to moderate asthma and you cook regularly at home, you could participate in the 
study and help us to understand asthma symptoms in women. Due to the limited resources of the researchers, 
they’re currently recruiting only women who live in London. To find out more about the study and to 
participate, please contact the researcher Graziella Favarato by emailing: G.Favarato11@imperial.ac.uk Thank 
you for your help!  
22 people like it  
Asthma UK reply after comment (written with GF and DJ consent)  
Thanks for your comments everyone – you’ve raised some really interesting issues and the researchers have 
taken them on board. They wanted to let you know a bit about the background of the study. This is a pilot 
project which will gather initial information to feed into a larger project in the future. The reason they are 
looking at the effects of indoor pollution / cooking on women is because there is some evidence to suggest 
that women are affected more than men and have more severe symptoms. We don’t know why this happens, 
and this project might explain the differences between the effects on men and women. This study may be 
taken forward to a larger study which could involve a wider group of people, including men and people with 
severe asthma. We’re really grateful for everyone’s feedback so far, and we hope that some of you might be 
interested in taking part in this project.  
Comments  
1. I wonder why only women? Will try research men after for comparison?  
2. I agree. A little bit sexist, this. Men cook too. The best chefs in the world are men.  
3. I have bad reactions to flash bathroom spray  
4. My son is affected by change in air cooking does it ,any aerosols, barbecues ect also when were in hospital 
and we walked near a coffee shop that set him off so its not just females.  
5. Airfreshners, most cleaning products, anything with a floral fragrance especially roses, anything smoking ie 
the oven/rings if something has spilled, even hovering will trigger an attack..... I think I need a cleaner ha ha 
ha.  
6. I work in catering and steam sets me off.  
7. Def deodorants and bleach affect me and some foods especially flour related bread and cakes !  
8. Bleach, oven cleaner, some air freshners, heavy perfume. Sometimes steam can aggravate it. (Although I 
suppose steam should help not harm - not sure).  
a. Steam aggravates my asthma too  
b. Thanks Isabel  
9. Cooking hot spicy food affects me badly. Chilies, jalapenos sometimes even ground spices  
10. I get bad when its hot or cold weather it seems fine when it's just in between the both when my boys spray 
things it starts it off or bed time kills me when I lay flat I need loads of pillows but I am bad I am on a 
nebuliser at home feel sometimes like I am suffocating  
11. Spray on deodorants and hair spray affect me. Also air fresheners  
12. most air fresheners make me really bad, as do joss sticks and scented candles, also bleach and anything 
rose scented  
13. Some commercial air freshners & strong perfumes affect me and I am not Asthmatic, but occasionally get 
bronchitis  
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14. A lot of our customers have told us they're suffering more and more indoors - we suppose as air pollution 
gets worse outdoors it's creeping in more and more! We've sold out of air purifiers, expecting more stock soon, 
as we've got over 50 customers waiting, we've shared the post and are hoping one of our followers may be able 
to help!  
15. Deodorants, hairspray, several perfumes and laundry detergents affect me. Plug-in air fresheners are 
another bad one. I don't think general cooking smells really aggregate me, except if I burn something. I'm well 
up north as well though so can't take part in this study either  
16. Everytime I cook on the hob, my asthma starts and I cannot stop coughing. I am in Somerset so can't 
take part in the survey.  
17. such a shame I don't live in london I cook everyday as I'm a chef and sometimes do find it hard 
especially in heat and when I'm too hot in bed I need loads of pillows to feel like I'm sat up otherwise I 
feel like someone is strangling me because my chest and back tighten so bad x  
18. Thats a shame I m also in Yorkshire and would have been interested in getting involved  
19. for brittle asthmatic 17yr old daughter every thing others have said and its 24 /7 all yr round what ever the 
weather very often do i see her with out a nebuliser mask on i feel for you all  
20. welll I live in yorkshire but I have asthma and copd thats effected by diffrent food products and other 
things  
21. doesn't effect me at all  
22. air freshners effect me too and so do most cleaning products  
23. Cooking in late autumn to spring sets me and my daughter's asthma off regular .opening a window /back 
door doesnt help as it seems to happen more when the air is more damp which then makes it much worse  
24. Only cooking that bothers me is bbq, we don't do that ourselves but have to keep doors & windows shut 
when other people are having them. Luckily I don't burn things (usually!) So no smoke in kitchen  
25. I'm pretty sure that men are affected by this and not just women. I have to be very careful what cleaning 
products I use.  
26. What do you class as moderate asthma lol  
27. Also not in London but would be interested. I find chilli in particular and dry frying/toasting spices 
sets me off.  
 
This lady emailed me on the same day as the advert appeared on facebook (she does not say where 
she lives exactly – only north england)  
Hi Graziella, I noticed on Facebook that you are looking for female participants to help with your 
study on how cooking smells affect asthma. Unfortunately, I do not live in London but I am very 
interested in your study. I am female and have moderate asthma which is affected by cooking smells. 
I cook most days of the week but I have to adapt what I cook and how I cook a meal. For example, I 
can't cook anything that contains chilli especially if it is fried or baked. Grilling food can also be a 
problem at times and I always keep an inhaler in the kitchen just in case of having an attack. In 
general, I tend to slow cook food to reduce the chance of having an asthma attack. I am an 
undergraduate, mature student in my final year of study and I would like to help your study in any 
way that I can. Regards, xxx. 
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Appendix Chapter 6 – Forest plots of the associations of wheeze and gas by 
centre and survey 

 
Forest plot showing the odds ratio of having wheeze when cooking mostly with gas rather than electricity at 

ECRHS I by centre adjusted for sex, age, smoking status and age left education in all cases 

  

Forest plot showing the odds ratio of having wheeze when cooking mostly with gas rather than electricity at 
ECRHS II by centre adjusted for sex, age, smoking status and age left education in all cases 
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Forest plot showing the odds ratio of having wheeze when cooking mostly with gas rather than electricity at 

ECRHS III by centre adjusted for sex, age, smoking status and age left education in all cases 
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Appendix Chapter 6 – Forest plots of the associations of wheeze and modelled 
indoor NO2 by centre and survey 

 
Forest plot showing odds ratio of having wheeze per 10 µg/m3 increase of modelled indoor NO2 in the 

month of October at ECRHS II by centre adjusted for sex, age, smoking status and age left education with 
random effect by centre in all cases 

 

 
Forest plot showing the odds ratio of having wheeze per 10 µg/m3 increase of modelled indoor NO2 in the 
month of October at ECRHS III by centre adjusted for sex, age, smoking status and age left education with 

random effect by centre in all cases 

  

I-V Overall  (I-squared = 0.0%, p = 0.810)

Huelva

Centre

Galdakao

Norwich

Pavia

Barcelona

Turin

D+L Overall

Oviedo

Ipswich

Umea

Verona

Antwerp South

Albacete

1.17 (1.08, 1.27)

1.13 (0.85, 1.50)

OR (95% CI)

1.27 (1.05, 1.55)

1.10 (0.90, 1.35)

0.65 (0.28, 1.48)

1.21 (0.87, 1.68)

1.39 (0.55, 3.50)

1.17 (1.08, 1.27)

1.08 (0.85, 1.36)

1.15 (0.94, 1.41)

0.76 (0.37, 1.58)

1.14 (0.56, 2.33)

1.44 (1.05, 1.97)

1.21 (1.00, 1.48)

100.00

7.85

(I-V)

16.36

%

15.50

0.93

5.80

0.75

11.86

15.46

1.19

1.26

Weight

6.46

16.58

1.17 (1.08, 1.27)

1.13 (0.85, 1.50)

OR (95% CI)

1.27 (1.05, 1.55)

1.10 (0.90, 1.35)

0.65 (0.28, 1.48)

1.21 (0.87, 1.68)

1.39 (0.55, 3.50)

1.17 (1.08, 1.27)

1.08 (0.85, 1.36)

1.15 (0.94, 1.41)

0.76 (0.37, 1.58)

1.14 (0.56, 2.33)

1.44 (1.05, 1.97)

1.21 (1.00, 1.48)

100.00

7.85

(I-V)

16.36

%

15.50

0.93

5.80

0.75

11.86

15.46

1.19

1.26

Weight

6.46

16.58

ECRHS II

 per 10 ug/m3 indoor NO2  
11

I-V Overall  (I-squared = 1.3%, p = 0.423)

Ipswich

Barcelona

Norwich

Huelva

Centre

D+L Overall

Albacete

Galdakao

Umea

Oviedo

Antwerp South

1.18 (1.01, 1.38)

0.97 (0.69, 1.35)

1.16 (0.65, 2.08)

0.95 (0.67, 1.35)

2.21 (0.59, 8.22)

OR (95% CI)

1.18 (1.01, 1.38)

1.19 (0.79, 1.80)

1.58 (1.11, 2.27)

0.51 (0.10, 2.70)

1.26 (0.79, 2.01)

1.48 (0.90, 2.44)

100.00

Weight

%

20.24

6.79

19.17

1.34

(I-V)

13.76

18.00

0.84

10.57

9.29

1.18 (1.01, 1.38)

0.97 (0.69, 1.35)

1.16 (0.65, 2.08)

0.95 (0.67, 1.35)

2.21 (0.59, 8.22)

OR (95% CI)

1.18 (1.01, 1.38)

1.19 (0.79, 1.80)

1.58 (1.11, 2.27)

0.51 (0.10, 2.70)

1.26 (0.79, 2.01)

1.48 (0.90, 2.44)

100.00

Weight

%

20.24

6.79

19.17

1.34

(I-V)

13.76

18.00

0.84

10.57

9.29

 per 10 ug/m3 indoor NO2 
11

ECRHS III

 



323 

 

Appendix Chapter 6 – Forest plots of the associations of asthma score and 
gas by centre and survey 

 
Forest plot showing the geometric means ratio of  having a higher asthma score when cooking mostly with 
gas rather than electricity at ECRHS I by centre adjusted for sex, age, smoking status and age left education 

in all cases 

 

 
Forest plot showing the geometric means ratio of  having a higher asthma score when cooking mostly with 
gas rather than electricity at ECRHS II by centre adjusted for sex, age, smoking status and age left education 

in all cases 
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Forest plot showing the geometric means ratio of  having a higher asthma score when cooking mostly with 

gas rather than electricity at ECRHS III by centre adjusted for sex, age, smoking status and age left education 
in all cases 
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Appendix Chapter 6 – Forest plots of the associations of asthma score and 
modelled indoor NO2 by centre and survey 

 
Forest plot showing the geometric means ratio of  having a higher asthma score per 10 µg/m3 increase of 
modelled indoor NO2 in the month of October at ECRHS II by centre adjusted for sex, age, smoking status 

and age left education with random effect by centre in all cases 

 

 
Forest plot showing the geometric means ratio of  having a higher asthma score per 10 µg/m3 increase of 
modelled indoor NO2 in the month of October at ECRHS III by centre adjusted for sex, age, smoking status 

and age left education with random effect by centre in all cases 
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