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Abstract 

This contribution presents the development of a general discretization scheme for the solution of 

Reynolds equation with a mass-conserving cavitation model and its application for the numerical 

simulation of lubricated contacts to be discretized using irregular grids.  Such scheme is based on a 

hybrid-type formulation, here named as Element-Based Finite Volume Method (EbFVM), that combines 

the flexibility of the FEM to deal with unstructured grids, while preserves the local and global fluid-flow 

conservation aspect of the FVM throughout the discretized domain. The accuracy and robustness of the 

method is successfully tested using several benchmark cases proposed in the recent literature. 

Simulations of fully or partially textured sliding bearings are finally employed to show the advantages 

of being able to adopt irregular meshes both in terms of flexibility for the discretization of complex 

surface features and computational speed. 

Keywords: Lubrication, Reynolds Equation, Mass-Conserving Cavitation Model, Numerical 

Simulations, Finite Volume Method 

 

  



1. Introduction 

The exact close-form solution of the Reynolds lubrication equation exists only for very particular 

problems involving simple contact geometries, boundaries conditions and isothermal flows. Examples 

of such peculiar applications include short and long journal bearing components, as well as special 

formulations conceived for sliding and pure-squeeze bearings.  However, when the evaluation of more 

complicated, realistic lubrication systems is desired, approximate solutions based on numerical 

techniques have to be considered. The numerical solution of Reynolds equation is traditionally performed 

by adopting the Finite Difference Method (FDM). The predominance of such discretization scheme is 

due to its relative simplicity in terms of formulation, along with the geometrically uncomplicated 

domains usually found in conventional lubrication systems, which may well be discretized using 

structured meshes. In this method, the partial derivatives of the equation are approximated by finite 

difference formulas obtained from the truncation of the high-order terms of Taylor expansions. 

In contrast, in applications involving more complex geometries, when unstructured and/or irregular grids 

are necessary to accurately discretize the solution domain, the FDM has limited applicability. In the 

presence of irregular geometries and meshes, the Finite Element Method (FEM) is the most widespread 

method employed for the numerical solution of the Reynolds equation [1-7], especially due to its great 

flexibility to deal with distorted elements (interpolation and shape functions).  However, when mass 

conservation is contemplated in the fluid-film cavitation modelling by the imposition of the so-called 

JFO (Jakobsson, Floberg and Olsson) conditions [8-10], the solution of the modified diffusion-

convection Reynolds equation (see e.g. the 𝑝 − 𝜃 Elrod-Adams model [11-12]) is not straightforwardly 

accomplished with the FEM formulation. Essentially, the main difficulties arise in the discretization of 

the convective term of the modified equation, as well as in the enforcement of the flow conservation on 

the cavitation boundaries throughout the lubricated contact. Recently, a new FEM formulation based on 

the mathematical derivation of a linear complementary problem (LCP) has been proposed for solving the 

fluid-film lubrication with mass-conserving cavitation model [13-14]. Moreover, [15] have developed an 

efficient algorithm for fluid pressure calculation defined according to a reformulation of the 

complementary constraints imposed by the JFO conditions. 

Alternatively, the finite volume method (FVM), widely utilized in Computational Fluid Dynamic (CFD) 

simulations, has been proven to be very effective for solving lubrication problem, especially in 

thermohydrodynamic analysis [16-17], lubrication with discontinuous domains [18, 19] and textured 

surfaces [20], as well as in piston-ring applications [21]. The main advantage of the FVM is its 

conservative characteristic, which in turn enables to impose local and global flow conservation in the 

discrete formulation. Such intrinsic conservative feature automatically enforces the complementary JFO 

conditions and allows a straightforward upwind-based treatment for the convective term of the modified 

Reynolds equation, hence facilitating the entire discretization procedure. The only disadvantage of 

conventional FVM schemes is the absence of a standardized strategy for the discretization of unstructured 

meshes, which is a prerogative of the FEM. 

In this context, the main objective of the present contribution is to propose a new discretization scheme 

for solving Reynolds equation with the 𝑝 − 𝜃 Elrod-Adams cavitation model on irregular meshes.  

Furthermore, a generalization of the cavitation algorithm proposed by Ausas [20] was proposed for 

application to unstructured meshes. The new scheme is based on a hybrid-type formulation, hereafter 

named as the Element-Based Finite Volume Method (EbFVM), which combines the geometric flexibility 

of the FEM to deal with unstructured grids while preserving the local and global fluid-flow conservation 

aspect of the FVM throughout the discretized domain [22-23]. Essentially, the EbFVM is a FVM scheme 

that employs the concept of elements and their interpolation and shape functions adopted in the FEM. 

However, differently from the classical FEM methodologies, local and global conservation of the 

transport properties are exactly enforced in the EbFVM, since the construction of the discretized 



equations follows the FVM principles; this eliminates the potential issues arising from the use of the 

FEM mathematical foundation to derive the weak form of the formulation. In other words, in the EbFVM 

the discretized equations represent the physical balances over control volumes that are built as dual 

entities around all vertices of the primal grid, with contributions of neighboring elements. The motivation 

for the use of the EbFVM in lubrication applications is based on its flexibility, generality and suitability 

for computational implementations. 

The reminder of the article is organized as follows. The mathematical formulation of the fluid-film 

lubrication problem (Reynolds equation) with the chosen mass-conserving cavitation model is presented 

in Section 2. The fundamentals of the EbFVM and their applications to the modified Reynolds equation 

is described in details in Section 3, where the procedure employed for the iterative solution of the discrete 

system of linear equations is also explained.  Finally, in Section 4, a number of test cases based on 

classical examples taken from the recent literature are presented for validation purposes; the capabilities 

of the proposed formulation are then illustrated by simulating a textured sliding bearing to show the 

versatility and robustness of the proposed method to solve lubrication problems characterized by thin 

fluids films in the presence of cavitation, particularly when non-structured meshes are involved. 

2. Mathematical Formulations 

In this section, the mathematical formulations that describes the fluid-film lubrication problem is 

presented in details. For completeness, the most general form of the Equation of the Mechanics of 

Viscous Thin Films is considered [24-25], as well as its modified version obtained after the consideration 

of the mass-conserving Elrod-Adams cavitation (𝑝 − 𝜃) model. 

2.1 Lubrication Theory (Reynolds equation) 

The general Equation of the Mechanics of Viscous Thin Films (hereafter simply referred to as Reynolds 

equation) for isothermal, transient lubrication systems, in which the lubricant rheological properties (i.e. 

dynamic viscosity and density) are assumed constant across the film thickness, can be expressed in 

Cartesian coordinates as follows: 
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(1) 

where 𝑝 is the hydrodynamic pressure, (𝐻1, 𝐻2) the geometric descriptions of the contact surfaces and 𝜇 

and 𝜌 the lubricant dynamic viscosity and density, respectively. The velocities of the two mating surfaces 

in the 𝑥 and 𝑧 coordinate directions are designated as (𝑈1, 𝑈2) and (𝑊1,𝑊2) respectively; the subscripts 

1 and 2 denote bottom and top surfaces according to the reference definitions in Fig. 1. 

It should be noticed at this point that in Eq. 1 the normal-squeeze velocities can only be produced by 

(local) temporal changes in the lubricant film thickness, i.e. (𝑉2 − 𝑉1) ≡
𝜕(𝐻2−𝐻1)

𝜕𝑡
. This assumption is 

generally valid for sliding and thrust bearings, but not necessarily for rotating-type systems as journal or 



rolling bearings. For the latter components, some modifications have to be taken into account in this 

equation, essentially by handling both the translation and normal squeeze terms in order to deal with the 

particular kinematic features of the systems. Such changes, however, by no means compromise the 

correctness and the applicability of the numerical scheme proposed in this work. 

 

Figure 1 – Left: General schematic illustration with the coordinate system and kinematic variables 

defined for the derivation of the Equation of the Mechanics of Viscous Thin Films. Right: Detailed 

cross section view showing the local definition of fluid-film geometry. 

2.2 Mass-Conserving Cavitation Model 

The cavitation (or fluid-film rupture) phenomenon plays an important role in the performance of 

lubrication systems and so must be included in the mathematical modelling of the problem. In order to 

address such cavitation effects, the mass-conserving formulation proposed by JFO (Jakobsson, Floberg 

and Olsson) [8-10] is here adopted. This cavitation formulation imposes proper complementary boundary 

conditions that ensure the mass-conservation principle throughout the lubricated domain. The Elrod-

Adams [11-12] 𝑝 − 𝜃 model for cavitation is utilized to automatically satisfy the JFO’s conditions. In 

this fashion, the so-called lubricant film fraction parameter 𝜃 is introduced into the right-hand side of Eq. 

1, providing the following modified 𝑝 − 𝜃 version of the Mechanics of Viscous Thin Films: 
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(2) 

The film fraction field 𝜃 can be interpreted as an auxiliary variable associated to the proportion of liquid 

(lubricant) everywhere within the domain. The magnitude of 𝜃 varies in the interval [0,1], with 𝜃 = 1 in 

the pressured regions where 𝑝 ≥ 𝑝𝑐𝑎𝑣, i.e. where the lubricant film is fully developed.  However, in the 

cavitated zones, i.e. where 0 ≤ 𝜃 < 1, the lubricant film is broken (film rupture) and the medium is filled 



with a biphasic mixture of liquid and gases/vapors; the fluid pressure within these cavitation zones is 

assumed constant and equal to limit cavitation pressure 𝑝𝑐𝑎𝑣. 

2.3 Conservative Form of the Equation of the Mechanics of Viscous Thin Films 

For the development of the EbFVM discretization scheme, it is convenient to re-write Eq. 2 in its 

conservative vector form, as follows: 

∇ ⋅ (𝜞𝒑∇𝑝) = ∇ ⋅ (𝜃𝜞𝒄�⃗⃗� ) + 𝜃(𝑆𝑇𝑆 + 𝑆𝑁𝑆) + 𝑆𝑇
𝜕𝜃

𝜕𝑡
 (3a) 

𝐶𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛:  

(𝑝 − 𝑝𝑐𝑎𝑣)(1 − 𝜃) = 0  →   {
𝑝 > 𝑝𝑐𝑎𝑣   →   𝜃 = 1        
𝑝 = 𝑝𝑐𝑎𝑣   →   0 ≤ 𝜃 < 1

 
(3b) 

where 𝜞𝒑 and 𝜞𝒄 are the diffusivity and convective matrices. Moreover, the scalars 𝑆𝑇𝑆, 𝑆𝑁𝑆, and 𝑆𝑇 

designate the translation squeeze, normal squeeze and temporal expansion source terms. Such quantities 

are defined as follows: 
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(4a) 

𝑆𝑇𝑆 = �⃗⃗� ⋅ ∇𝐻1 + �⃗⃗� ⋅ ∇𝐻2   ,   𝑆𝑁𝑆 = 𝜌
𝜕(𝐻2−𝐻1)

𝜕𝑡
   ,   𝑆𝑇 = 𝜌(𝐻2 − 𝐻1) (4b) 

�⃗⃗� = 𝜌[𝑈1 𝑊1]𝑇   ,   �⃗⃗� = −𝜌[𝑈2 𝑊2]𝑇  (4c) 

Notice that the conservative form of Eq. 3 is general, in the sense that particular geometric and kinematic 

characteristics of different lubrication systems, as well as possible anisotropic effects on the roughness 

scale in mixed-lubrication applications, may be included in the formulation by easily modifying the 

definitions of the matrix and scalar terms of the equation. 

2.4 Lubricant Rheology 

The lubricant rheological properties, i.e. density and dynamic viscosity, are strongly affected by the 

temperature, pressure and shear-rate conditions.  Since thermal effects have been neglected in the present 

contribution, only the isothermal density-pressure (Dowson-Higginson equation), viscosity-pressure 

(e.g. Barus and/or Rhoelands equation) and viscosity-shear-thinning (Eyring equation) effects will be 

considered for the corrections of the lubricant properties [26-27]. 

  



3. Fundamentals of the Element-Based Finite Volume Method (EbFVM)   

Similarly to any numerical method used to approximate the solution of partial differential equations, the 

initial step of the EbFVM consists in the geometric discretization of the continuum domain in smaller, 

simple-shaped sub-regions denominated elements (𝑒), which are inter-connected by nodes (𝑃) that 

coincide with the vertices of the elements. The collection of these geometric entities is here denominated 

geometric grid and for the discretization of the Reynolds equation, it is composed by either triangular or 

quadrangular elements. In Fig. 2 a schematic illustration of the domain discretization and the geometric 

entities involved is shown. 

 

 

Figure 2 – Geometric entities of the Element-Based Finite Volume Method (EbFVM). 

In contrast to the classical finite volume method commonly used for structured grids, where elements 

and control volumes are coincident (“cell-center” formulation) and the transport equations are integrated 

directly using the geometric grid, in the EbFVM scheme the elements are used as an auxiliary entity from 

which the control volumes are constructed (“cell-vertex” formulation). In this case, the control volumes 

constitute a secondary or computational grid, where the local conservation of the physical fluxes balances 

are effectively enforced. As depicted in Fig. 2, a control volume (𝐶𝑉) is associated to a given node (𝑃) 
of the geometric grid and is composed by portions of the neighboring elements. Those portions are 

designated as sub-control volumes (𝑆𝐶𝑉) and result from a subdivision of the elements. For a barycentric 

subdivision (or “median rule”), the division lines are obtained by joining the centroid of the element to 

the midpoints of the element edges. Those lines are denoted faces (𝑓) and are the basic geometric entity 

from which the fluxes are locally evaluated in the discretized equations. Particularly, by assuming the 

“midpoint rule” to approximate the fluxes over the 𝐶𝑉 faces, the midpoint of each face (where the fluxes 

are effectively calculated) and its respective normal vector are defined, respectively, as integration point 
(𝑝𝐼) and normal vector (�⃗⃗� ).  Following this strategy, each control volume associated to a given node 𝑃 

may be seen as a sum of the nearest sub-control volumes of the elements that share 𝑃, and the fluxes at 

one specific integration point can be calculated using data from the element in which the integration point 

is placed [28-29]. 

As already stated, due to the “cell-vertex” nature of the EbFVM, the unknowns of the problem are 

approximated at the nodes of the geometric grid. Furthermore, in order to deal with the distorted elements 

of irregular grids, as well as local variations in the flow and transport properties, pre-defined families of 



interpolation and shape functions can be employed. These functions are based on the definition of 

parametric elements that are described with respect to a local (transformed) coordinate system. Thus, all 

the required calculations previously undertaken in the physical domain can be performed more easily in 

the transformed domain. The reader should refer to Appendix 1 for details about the coordinate 

transformation and the associated shape functions of triangular and quadrangular elements.  

Once the integration points are identified within each element, the fluxes of the transport properties 

through the faces of the sub-control volumes can be calculated according to the geometric and general 

parameters associated with the element nodes. This procedure allows elements, and so the geometric 

grid, to be treated as the major entity over which all the calculations are performed independently. 

Subsequently, the conservation equation for every control volume can be determined from the fluxes 

contributions coming from its respective communal surrounding sub-control volumes. Thus, after an 

element-by-element assembly of the global system of equations (analogous to the assembly procedure in 

the FEM), the total physical balance of the conservation equation are automatically satisfied by the 

inherent connectivity of the elements. 

In the next sections, the temporal and spatial discretization of each term of the modified Reynolds 

equation (Eq. 3a) will be presented in details. Further explanations concerning the EbFVM scheme for a 

generic conservation equation can be found in [22-23, 28]. 

3.1 Temporal Discretization 

The temporal approximation of Eq. 3a can be established by integrating all terms of the equation in a 

time interval Δ𝑡, as follows: 
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(5) 

Assuming an implicit first-order time discretization scheme (backward Euler method), the integrands of 

Eq. 5 can be approximated to their values at the end of the time interval. The advantage of such 

formulation is its unconditional stability, so that the numerical accuracy of the solution is mainly 

controlled by the size of the time step Δ𝑡.  Thus, by performing the temporal discretization using 𝑡 =
𝑛Δ𝑡, where 𝑛 is the n-th time instant, Eq. 5 can be rewritten as: 

[∇ ⋅ (𝜞𝒑∇𝑝)]𝑛 = [∇ ⋅ (𝜃𝜞𝒄�⃗⃗� )]𝑛 + [𝜃(𝑆𝑇𝑆 + 𝑆𝑁𝑆)]
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) (6) 

3.2 Spatial Discretization 

For the spatial discretization of Eq. 6 at each time instant 𝑡 = 𝑛Δ𝑡, it is convenient to consider its integral 

formulation (or weak formulation), which may be obtained by adopting the Weighted Residual Method 

(WRM). The reason for using such integral approach is to ensure, mathematically, the minimization of 

the approximation errors throughout the solution domain [30]. In this case, Eq. 6 is expressed as follows: 
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where 𝒲 corresponds to the weighting function that weights the discretization errors over the entire 

integration domain (𝒟∗), and the superscript ‘~’ denotes the approximated solutions of the transport 

properties and unknown variables. Particularly for finite volume methods, 𝒲 is assumed unitary within 

every control volume and null outside (sub-domain method) [31]. Thus, Eq. 7 can be restated for each 

control volume as: 
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where 𝒟 is the sub-domain enclosed by each control volume centered at every node 𝑃. 

By applying the divergence (or Gauss-Ostrogradsky’s) theorem to the first two integrals of Eq. 8, one 

obtains: 
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where 𝒞 is the boundary that delimits each control volume and �⃗⃗�  the unit vector normal to that boundary 

(see Fig. 2). 

Finally, recalling that the fluxes over the 𝐶𝑉 faces are approximated by the “midpoint rule” and by 

assuming a second-order approximation scheme for the area integrals (in which the integral is evaluated 

as the product between the integrant function at the 𝐶𝑉 center and the 𝐶𝑉 area [32]), Eq. 9 can be 

expressed in its discretized form as follows: 
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𝑃

𝑛

∑[Δ𝒟𝑠
𝑒]

𝑒∈ℰ𝑃⏟      
Δ𝒟𝑃

− [�̃�𝑛−1 (
�̃�𝑇
Δ𝑡
)

𝑛

]
𝑃

∑[Δ𝒟𝑠
𝑒]

𝑒∈ℰ𝑃⏟      
Δ𝒟𝑃

 

(10) 

where �⃗⃗� ∗𝑓
𝑒
= �⃗⃗� 𝒇

𝒆Δ𝒞𝑓
𝑒 is the normal face vector that retains, simultaneously, the normal orientation (�⃗⃗� 𝒇

𝒆) 

and the length (Δ𝒞𝑓
𝑒) of each delimiting face associated to a given control volume; Δ𝒟𝑠

𝑒 is the area of 



the s-th 𝑆𝐶𝑉 that compound the control volume and Δ𝒟𝑃 is the full area of the respective 𝐶𝑉 (see 

Appendix 1 for details about the computation of �⃗⃗� ∗𝑓
𝑒
 for triangular and quadrangular elements). 

Moreover, in Eq. 10 ℰ𝑃 denotes the set of elements that contribute to the formation of the 𝐶𝑉 around 

node 𝑃 and ℱ𝑃
𝑒  the set of faces inside the corresponding element 𝑒 that encloses 𝑃. 

The above discrete equation is valid for every control volume constructed surrounding each node 𝑃 of 

the geometry grid. The inner summations in the first two terms of the equation correspond, respectively, 

to the diffusive and convective fluxes through each sub-control volume, while the outer summations 

represent the entire flux balances over the associated 𝐶𝑉. The last two components of the equation are 

the source terms evaluated explicitly at node 𝑃. 

As already pointed out, the assembly of the global system of equations is performed in an element-by-

element fashion, similar to the procedure employed in the FEM. Furthermore, all local computations are 

carried out at element level using the transformed domain approach (parametric elements); this allows 

the elements to be treated independently, no matter how distorted they are with respect to the global 

coordinate system. Such procedure renders the definition of element matrices and vectors constituting 

each term of Eq. 10 straightforward, analogously to the stiffness and mass matrices and load vectors used 

in FEM formulations. In the following, those definitions will be exposed in details by adopting the index 

notation for compactness. 

3.2.1 Diffusivity Matrix (Poiseuille Term) 

The total diffusive flux (first term of Eq. 10) across the sub-control volumes of a given element 𝑒 can be 

represented as: 

�⃗⃗� 𝑒
𝑛 = 𝑷𝑒

𝑛(�⃗⃗̃� )
𝑒

𝑛
 (11) 

where the components of the vector �⃗⃗� 𝑒
𝑛 correspond to the diffusive fluxes through each sub-control 

volume, (�⃗⃗̃� )
𝑒

𝑛
 is the vector of the nodal pressures and 𝑷𝑒

𝑛 is the diffusivity matrix of the element. See 

Appendix 2 for details about the derivation of 𝑷𝑒
𝑛. 

3.2.2 Convective Matrix (Couette Term) 

Similar to the diffusion term, the total convective flux (second term of Eq. 10) flowing through the sub-

control volumes of a given element 𝑒 can be expressed as: 

�⃗� 𝑒
𝑛 = 𝑪𝑒

𝑛 (�⃗⃗̃� )
𝑒

𝑛

 (12) 

where the entries of the vector �⃗� 𝑒
𝑛 are the convective fluxes through each sub-control volume, (�⃗⃗̃� )

𝑒

𝑛

 the 

vector of the nodal lubricant film fraction and 𝑪𝑒
𝑛 is the convective matrix of the element. See Appendix 

3 for details about the derivation of 𝑪𝑒
𝑛. 

3.2.3 Source Term Vectors 

The source terms (third and fourth terms of Eq. 10) associated to the sub-control volumes of a given 

element 𝑒 can be written as follows: 



(�⃗� 𝟏)𝑒
𝑛
= (�⃗⃗� 𝟏)𝑒

𝑛
⋅ (�⃗⃗̃� )

𝑒

𝑛

 (13a) 

(�⃗� 𝟐)𝑒
𝑛
= (�⃗⃗� 𝟐)𝑒

𝑛
⋅ (�⃗⃗̃� )

𝑒

𝑛−1

 (13b) 

where the members of the vectors (�⃗� 𝟏)𝑒
𝑛

 and (�⃗� 𝟐)𝑒
𝑛

 are the source terms of each element node, while 

(�⃗⃗� 𝟏)𝑒
𝑛

 and (�⃗⃗� 𝟐)𝑒
𝑛

 are auxiliaries element vectors (see Appendix 4 for more details about their 

derivations). Additionally, (�⃗⃗̃� )
𝑒

𝑛

 and (�⃗⃗̃� )
𝑒

𝑛−1

 are the vectors of the nodal lubricant film fraction at the 

time instants 𝑛 and (𝑛 − 1), respectively. In the above equations, the operator " ⋅ " denotes scalar product. 

3.3 Assembly of the Global Linear System of Equations 

Subsequently to the calculation of the diffusivity and convective matrices, as well as the source term 

vectors for all elements of the geometric grid, the discrete equation associated with every control volume 

are assembled in a global system of linear equations.  The rows of the resulting linear system correspond 

to the entire flux balance over each control volume constructed around every node 𝑃 of the grid. This 

can be mathematically represented as: 

(𝑎𝑃
𝑛)�̃�𝑃

𝑛 +∑[(𝑎𝑁𝐵
𝑛 )�̃�𝑁𝐵

𝑛 ]

𝑁𝐵

= (𝑏𝑃
𝑛)�̃�𝑃

𝑛 +∑[(𝑏𝑁𝐵
𝑛 )�̃�𝑁𝐵

𝑛 ]

𝑁𝐵

+ 𝐵𝑃
𝑛 (14) 

where 𝑁𝐵 denotes the neighboring nodes around 𝑃 and the coefficients 𝑎𝑖
𝑛 and 𝑏𝑖

𝑛 are the entries of the 

linear system of equations computed during the assembly operation. 

3.4 Solution of the Linear System of Equations 

For each time instant 𝑛, the global system of equations defined in the previous section (Eq. 14), embraces 

two unknown variables, namely the hydrodynamic pressure (�̃�), and the lubricant film fraction (�̃�) fields. 

Thus, a specific numerical procedure has to be considered for the simultaneous solution of �̃� and �̃�. In 

the present contribution, such simultaneous calculations are accomplished by adopting a generalization 

of the cavitation algorithm proposed by [20], which was originally conceived for applications with 

structured grids. In this sense, the generalization here devised consists in an extension of the original 

algorithm for lubrication problems to be discretized by irregular meshes. 

The main idea of the algorithm is based on the iterative solution of linear system of equations according 

to the well-known Gauss-Seidel method with Successive Over-Relaxation (SOR). In this case, by 

assuming that 𝑎𝑖
𝑛, 𝑏𝑖

𝑛 and 𝐵𝑖
𝑛 are known a priori, the nodal values of �̃�𝑃

𝑛 and �̃�𝑃
𝑛 can be computed 

iteratively, as follows: 

(�̃�𝑃
𝑛 , �̃�𝑃

𝑛) = lim
𝑟→∞

(�̃�𝑃
𝑛,𝑟 , �̃�𝑃

𝑛,𝑟)      𝑤𝑖𝑡ℎ     (�̃�𝑃
𝑛,0, �̃�𝑃

𝑛,0) = (�̃�𝑃
𝑛−1, �̃�𝑃

𝑛−1) (15a) 

�̃�𝑃
𝑛,𝑟 = 𝜔𝑝�̃�𝑃

𝑛,𝑟 + (1 − 𝜔𝑝)�̃�𝑃
𝑛,𝑟−1

 (15b) 

�̃�𝑃
𝑛,𝑟 = 𝜔𝜃Θ̃𝑃

𝑛,𝑟 + (1 − 𝜔𝜃)�̃�𝑃
𝑛,𝑟−1

 (15c) 



where 𝑟 is the r-th iteration of the SOR method, 𝜔𝑝 and 𝜔𝜃  the respective relaxation factors, and �̃�𝑃
𝑛,𝑟

 

and Θ̃𝑃
𝑛,𝑟

 the intermediate nodal values of �̃� and �̃�. 

The intermediate quantities �̃�𝑃
𝑛,𝑟

 and Θ̃𝑃
𝑛,𝑟

 are approximated from Eq. 14 by isolating the respective nodal 

values and admitting the others fixed to the values calculated in the previous iteration, which 

mathematically corresponds to: 

�̃�𝑃
𝑛,𝑟 =

1

𝑎𝑃
𝑛 {−∑ [(𝑎𝑁𝐵

𝑛 )�̃�𝑁𝐵
𝑛,𝑟−1]𝑁𝐵 + (𝑏𝑃

𝑛)�̃�𝑃
𝑛,𝑟−1 +∑ [(𝑏𝑁𝐵

𝑛 )�̃�𝑁𝐵
𝑛,𝑟−1]𝑁𝐵 + 𝐵𝑃

𝑛}, (16a) 

Θ̃𝑃
𝑛,𝑟 =

1

𝑏𝑃
𝑛 {(𝑎𝑃

𝑛)�̃�𝑃
𝑛,𝑟−1 + ∑ [(𝑎𝑁𝐵

𝑛 )�̃�𝑁𝐵
𝑛,𝑟−1]𝑁𝐵 −∑ [(𝑏𝑁𝐵

𝑛 )�̃�𝑁𝐵
𝑛,𝑟−1]𝑁𝐵 − 𝐵𝑃

𝑛}. (16b) 

Furthermore, the complementary conditions related to the 𝑝 − 𝜃 cavitation model displayed in Eq. 3b 

must be satisfied during the iterative procedure. In the discrete domain this reads: 

{
�̃�𝑃
𝑛,𝑟 > 𝑝𝑐𝑎𝑣   

0 ≤ �̃�𝑃
𝑛,𝑟 ≤ 1

    ⟹      {
�̃�𝑃
𝑛,𝑟 ≥ 𝑝𝑐𝑎𝑣   →   �̃�𝑃

𝑛,𝑟 = 1        

�̃�𝑃
𝑛,𝑟 < 1        →   �̃�𝑃

𝑛,𝑟 = 𝑝𝑐𝑎𝑣   
. (17) 

The discrete complementary conditions of Eq. 17 enforce the cavitation regions and boundaries to be 

positioned always at the nodes of the geometric grid. Moreover, as the discretization method is inherently 

conservative in the discrete domain (finite volume method), the local conservation of the lubricant flow 

is ensured locally for all grid nodes (control volumes), including those laying on the cavitation 

boundaries; this automatically satisfies the mass-conservation conditions imposed by the JFO cavitation 

model. The extended SOR algorithm proposed in this contribution is shown as a pseudo-code in 

Appendix 5. 

  



4. Results and Discussion 

In this section, the results of several simulations cases performed using the EbFVM discretization scheme 

and the iterative algorithm described above are presented. Initially, examples from the literature have 

been considered for validation purposes, followed by simulations of a textured sliding bearing with 

different dimples’ distribution aimed to illustrate the flexibility of the method for dealing with irregular 

meshes. 

4.1 Validation Cases 

The example cases considered in this section have been chosen to test the correctness and accuracy of 

the proposed formulation and algorithmic implementation by comparison with other solution 

methodologies published in the recent literature, including both alternative mass-conserving Reynolds’ 

solvers and full CFD simulations. Each considered example has been selected to demonstrate the various 

features considered in the newly developed computational framework. It should be emphasized here that 

the main focus of the work presented by the authors is the validation of the newly developed 

discretization scheme rather than the direct comparison of performance between different algorithms 

proposed in the literature. 

o Single and double parabolic slider with density-pressure correction 

This first example has been chosen to evaluate the effectiveness of the proposed EbFVM 

formulation in comparison with different methodologies for solving lubrication problems 

involving compressible fluids. To do so, two simulation cases characterized by single and double 

parabolic sliders similar to those tested in [33] have been analyzed. However, as proposed in [14], 

the lubricant film geometry has been modified with respect to that used in [33] in order to 

highlight the effects of the fluid compressibility. The main geometric and operational parameters 

of each parabolic slider are summarized in Table 1. The results for the single parabolic slider are 

examined against those calculated using the formulations proposed in [33], the linear 

complementary problem (LCP) solution in [14] and the incompressible case. Figure 3a confirms 

the agreement of the current EbFVM formulation with those obtained with the algorithms 

proposed by Sahlin et al. [33] and Bertocchi et al. [14], both in terms of hydrodynamic pressures 

(maximum difference in peak pressure of 0.76%) and location of the cavitation boundary 

separating the pressured and cavitated zones. 

Additionally, the double parabolic slider case also proposed by [33] is used to assess the capability 

of the EbFVM for predicting the fluid-film reformation boundary. The results are compared both 

with respect to a CFD analysis based on the full solution of the Navier-Stokes equations 

developed using the OpenFOAM code [34], as well as with the same methods employed by Sahlin 

et al. [33] and Bertocchi et al. [14]. The consideration of CFD solutions as a comparative basis is 

aimed to (1) ensure the validity of Reynold equation for flow problems which satisfy the 

fundamental lubrication hypotheses, and further (2) to demonstrate that in common lubrication 

applications the intricate flow behaviour of the liquid-vapour/gases mixture within the cavitation 

zones is in general meaningless for the overall predictions of the system performance. Figure 3b 

illustrates an excellent agreement between the results calculated with the current EbFVM scheme 

compared to those obtained from the CFD simulations and using the methodologies by Sahlin et 

al. [33] and Bertocchi et al. [14]; the maximum deviation for the hydrodynamic peak pressure is 

≤0.5% and the rupture and reformation cavitation boundaries are practically identical. 

  



Table 1 – General simulation parameters for the single and double parabolic slider cases with density-

pressure correction. 

Single slider 

 
𝑎 76.2 mm 𝐶1 2.22 GPa 

ℎ𝑚𝑎𝑥 8 μm 𝐶2 1.66 

ℎ𝑚𝑖𝑛  4 μm 𝑝0 3.36414 kPa 

𝑢 4.57 m/s 𝑝𝑎 0 Pa 

𝜇0 39 mmPa.s 𝑝𝑐𝑎𝑣  0 Pa 

𝜌0 580 kg/m3 Mesh 301x13 nodes (regular) 
 

Double slider 

 
𝑎 76.2 mm 𝐶1 2.22 GPa 

ℎ𝑚𝑎𝑥 50.8 μm 𝐶2 1.66 

ℎ𝑚𝑖𝑛  25.4 μm 𝑝0 3.36414 kPa  
𝑢 4.57 m/s 𝑝𝑎 0 Pa 

𝜇0 39 mmPa.s 𝑝𝑐𝑎𝑣  0 Pa 

𝜌0 580 kg/m3 Mesh 401x13 nodes (regular) 
 

 

  
(a) (b) 

Figure 3 – Comparative results for the single (a) and double (b) parabolic slider cases with density-

pressure correction. 

 

o Long journal bearing with viscosity-pressure correction 

In this second example, the capability of the proposed EbFVM formulation for solving problems 

with piezoviscous lubricants is tested. Particularly, the simulation case of an infinitely long 

journal bearing solved in [14] based on the LCP approach for an incompressible piezoviscous 

lubricant flow is considered. The main problem parameters are listed in Table 2. Two different 

operational conditions represented by the fixed eccentricity ratios of 𝜀 = 0.93 and 𝜀 = 0.95 are 

investigated. The Barus equation is adopted for the piezo-viscosity correction. Figure 4 compares 

the hydrodynamic pressure profiles along the bearing circumferential directions computed with 

the current EbFVM formulation against the results obtaining using the LCP method [14] for the 

two eccentricity ratios considered. Again, the results are in good agreement in both cases, with a 

maximum peak pressure difference of 0.9%. Excellent agreement is observed for the cavitation 

boundaries as well. 

  



Table 2 – General simulation parameters for the infinitely long journal bearing case with pressure-

viscosity correction. 

𝑅 31.29 mm 

𝐿 625.8 mm 

𝑐 40.0 μm 

𝜔 250 rad/s 

𝜀 0.93 and 0.95 

𝜇0 5.7 mmPa.s 

𝜌0 850 kg/m3 

𝛼 11.2 GPa-1 

𝑝0 0 Pa  
𝑝𝑐𝑎𝑣 -100 kPa 

Mesh 601x13 nodes (regular) 

 

  
(a) (b) 

Figure 4 – Comparative results for the infinitely long journal bearing case with pressure-viscosity 

correction. (a) 𝜀 = 0.93 and (b) 𝜀 = 0.95. 

 

o Pure squeeze motion between circular plates 

In this example case, the validation of the proposed EbFVM scheme is assessed for a two-

dimensional domain under time dependent conditions. The classical lubrication problem of two 

circular plates with finite radius and under pure (sinusoidal) squeeze motion is considered. 

Moreover, any viscosity and density corrections are ignored. The results are compared with those 

obtained from the analytical solution developed by [3] and the linear complementary method of 

[14]. The main system parameters are displayed in Table 3. For the numerical simulation, an 

irregular grid with 2913 nodes has been used, and 3 oscillating periods with 576 times steps per 

cycle are adopted for the time solution. Figure 5 depicts the time variation of the extension of the 

cavitation zone calculated from the above-described methodologies chosen for comparison; 

notice that the internal “annulus-like” surface plots correspond to the simulated film fraction 

fields at 3 different times, which illustrate the progressive variation of the cavitation zone (in 

blue). Once again, the agreement of the results is excellent. 

 

 

 



Table 3 – General simulation parameters for the pure squeeze motion case between circular plates. 

𝑟 5 mm (circular) 𝜔 99.74 rad/s 

ℎ(𝑡) ℎ𝑚𝑖𝑛 + ℎ𝑎(1 − 𝑐𝑜𝑠𝜔𝑡) 𝑇 0.063 s 

ℎ𝑚𝑖𝑛 9.14 mm 𝜇0 5 mmPa.s 

ℎ𝑎 320.8 μm 𝜌0 850 kg/m3 

𝑡𝑚𝑎𝑥 0.1890 s (3 cycles) 𝑝0 100 kPa 

𝑛𝑡 576 (per cycle) Mesh 2913 nodes (irregular) 

 

 

Figure 5 – Comparative results for the pure squeeze motion case between circular plates. 

 

o Sliding pocket bearing with viscosity-pressure, viscosity-shear-thinning and density-pressure 

correction 

This second two-dimensional example deals with a sliding pocket bearing lubricated with a 

compressible, piezoviscous and shear-thinning fluid. Two geometric configurations 

characterizing a finite and an infinitely long bearing are investigated. All the geometric and 

operational parameters are listed in Table 4. Figure 6 compares the pressure profiles along the 

bearing mid-section 𝜋 calculated with the current EbFVM scheme and with the LCP formulation 

by Bertocchi et al. [14]. As can be observed, the results computed with the new finite volume 

scheme match very well those obtained with LCP technique for both bearing geometries, 

including the analytical solution for the infinitely long bearing case. 

 

 

 

 

 

 



Table 4 – General simulation parameters for the sliding bearing case with viscosity-pressure, viscosity-

shear-thinning and density-pressure correction. 

  
𝑎 20 mm 𝜇0 10.0 mmPa.s 

𝑏 10 mm, 300 mm 𝜌0 850 kg/m3 

𝑤 7 mm, 210 mm 𝛼 12 GPa-1 

𝑐 4 mm 𝜏0 5 MPa 

𝐿 6 mm 𝐶1 2.22 GPa 

ℎ𝑚𝑎𝑥  1.1 μm 𝐶2 1.66 

ℎ𝑚𝑖𝑛  1.0 μm 𝑝0 
100 kPa 

(side pressure) 

𝐻𝑃 0.4 μm 𝑝𝑐𝑎𝑣  0 Pa 

𝑈 1.0 m/s Mesh 126x29 nodes (regular) 
 

 

 

Figure 6 – Comparative results for the sliding bearing case with viscosity-pressure, viscosity-shear-

thinning and density-pressure correction. 

4.2 Textured Sliding Bearing Simulation 

In order to illustrate the robustness and flexibility of the EbFVM to tackle irregular and dense meshes, a 

set of simulations for a parallel and flat textured sliding bearing have been undertaken for the geometric 

and operational parameters listed in Table 5. Full and partial texturing are considered by varying the 

number of dimples’ cells added onto the stationary bearing surface from 10x2 to 10x10 cells; the dimples 

are spherical in shape and cover approximately 20% of each texture cell (see details of the dimples’ 

dimensions in Table 5). Moreover, the lubricant density and viscosity are assumed constant as well.  

  



Table 5 – Geometric and operational parameters for the textured sliding bearing simulations. 

 

Bearing Length (𝑎) 20 mm 

Bearing Width (𝑏) 20 mm 

ℎ0 4.0 μm 

𝑈 10 m/s 

𝜇0 10 mmPa.s 

𝜌0 850 kg/m3 

𝑝0 100 kPa  
𝑝𝑐𝑎𝑣  90 kPa 

  

𝑑𝐷 1000 μm 

ℎ𝐷 10 μm 
 

 

   

   

   

Regular Meshes Irregular Meshes Hydro Pressure (MPa) 

Figure 7 – Representative texture variants for the sliding bearing simulations and the associated 

hydrodynamic pressure results. 



The lubricated domains are discretized using both regular and irregular grids; in particular, the latter grid 

type are used for allowing mesh refinements in the neighborhoods of the texture features, where the 

pressure gradients are more pronounced. Such meshing control may well be used to reduce the number 

of nodes, and so the computational cost of simulations, needed to discretize the same textured pad when 

compared to structured grids. Figure 7 illustrates both the regular and irregular meshes of 3 representative 

texture variants with 10x10, 10x6 and 10x2 dimples cells, as well as the associated hydrodynamic 

pressure fields calculated; notice the considerable decrease in the number of nodes for the unstructured 

meshes.  

The number of outer iterations of the extended SOR algorithm (see Appendix 5), the computational time 

for convergence and the hydrodynamic load capacity are employed for comparing the results calculated 

on the regular and irregular meshes. The optimum relaxation factors of the SOR method for pressure 

(𝜔𝑝) have been found empirically by numerical experimentation. The optimum values for each texture 

pattern and mesh topology are displayed in Table 6; the relaxation value for the lubricant film fraction 

(cavitation) is assumed fixed as 𝜔𝜃 = 1. All the simulations were carried out in MATLAB in a computer 

with 8 GB RAM and Intel Core i7-3630 CPU 2.40 GHz; the algorithm reported in Appendix 5 is 

implemented as a MATLAB MEX-File that calls a compiled C function for performance improvement. 

 

Table 6 – Performance of the EbFVM for different texture patterns and mesh topologies 

Dimples 
Regular Mesh 

 

Irregular Mesh 

DOFs 𝜔𝑝 Iterations Time (s) 𝑊 (N) DOFs 𝜔𝑝 Iterations Time (s) 𝑊 (N) 

10x10 368,449 

1.98 

906 11.27 38.91 140,935 1.86 954 4.58 38.91 

10x8 307,142 990 10.23 41.57 115,061 1.88 1572 6.18 41.60 

10x6 245,835 1268 9.87 44.84 88,982 1.91 1867 5.74 44.91 

10x4 183,921 1534 8.71 47.06 62,794 1.85 2579 5.05 47.15 

10x2 122,614 1638 6.48 48.24 36,607 1.91 2092 2.14 48.35 

 

As can be verified in Table 6, the variation on the mesh topology hardly changed the overall load carrying 

capacity for all texture cases examined, but led to a significant speed-up in the simulation time, yielded 

essentially by the decrease in the number of degrees of freedom (DOFs) for the irregular grids. Such 

occurrence demonstrates the enhancements that can be achieved by using the current finite volume 

method; this is a result of the newly acquired capability of deploying non-structured meshes to simulate 

lubricated contact, which in turn can contribute either to reduce the number of DOFs in problems with 

complex geometries or to improve, by mesh refinements, the solution accuracy near regions characterized 

by special surface features in the contact domain. Although the absolute computational efficiency of the 

method is not the main concern at this point, since the idea of this numerical experiment is to illustrate 

how irregular meshes can be used to minimize the simulation time of lubrication problem with textured 

surfaces, the current formulation yields simulations times comparable to those reported for similar 

textured bearings in a recent publication [15]. 

We believe that performing a thorough and rigorous quantitative comparison between different solvers 

and methods in term of computational cost is a very important task.  However, given the complexity of 

such task for extracting and quantifying the individual contribution to efficiency provided by cavitation 

algorithms, discretization schemes, hardware and code optimization methodologies followed by different 

researchers, this is deemed outside the scope of the present work and is the subject of the authors’ current 

and future research efforts. At this stage it may be worth mentioning that the most efficient solvers can 

potentially be obtained combining reliable discretization schemes, such as the one proposed here for 

unstructured grids, and efficient solution methods (see e.g. [15]). 



Finally, Figure 8 depicts a detailed view of the hydrodynamic pressure distributions calculated in on the 

regular and irregular meshes for the same texture variant. As expected, no noticeable difference is 

observed between the pressure fields. 

 

  
Regular Mesh Irregular Mesh 

Figure 8 – Detailed view of the hydrodynamic pressure distributions calculated in the regular and 

irregular meshes for the same texture variant 

It is important to remark that the results displayed in Table 6, particularly the number of iterations, do 

not follow a monotonic pattern as the number of DOFs is reduced; this is somewhat counter-intuitive but 

is solely due to the fact that each dimple variant used to generate the results reproduced in Figure 7 

corresponds to a different geometric domain. In fact, the monotonic pattern is expected be observed if 

the contact geometry (number of dimples rows) is kept constant and only the mesh topology is allowed 

to change. This has been here evaluated through a set of simulations for the 10x6 texture variant and 

regular meshes. In this case, each dimple cell was discretized locally by different grid densities, i.e. 

20x20, 30x30, 40x40, 50x50, 60x60. The overall results are summarized in the Table 7. As can be seen, 

as the total number of mesh nodes increases, the amount of interaction required for convergence also 

increases accordingly. 

 

Table 7– Performance of the EbFVM for the 10x6 texture variant discretized locally with different grid 

densities. 

Nodes per 

Dimple Cell 

Total 

DOFs 
𝝎𝒑 Iterations Time (s) 

20x20 34155 

1.98 

249 0.26 

30x30 69075 443 0.98 

40x40 115995 672 2.43 

50x50 174915 925 5.66 

60x60 245835 1268 9.87 



5. Conclusion 

This paper introduces Element-Based Finite Volume Method as a new paradigm in the simulation of 

lubrication problems characterized by thin fluid films in the presence of cavitation. The EbFVM 

algorithm developed to solve the conservative form of the equation of the mechanics of viscous thin films 

has been tested and successfully validated by comparison with existing alternative algorithms and full 

CFD simulations. The test cases presented have been used to demonstrate that the numerical approach 

proposed is robust and versatile and can incorporate compressibility, piezoviscosity and shear-thinning 

of the lubricant, while being applicable to any transient hydrodynamic lubrication problem in the 

presence of cavitation.  By successfully combining the flexibility of the FEM to deal with irregular 

geometries and the inherent conservative nature of the FVM, one of the main features of the EbFVM is 

that it allows the use of irregular meshes to discretize geometrically complex domain. This is shown to 

confer enormous flexibility to the method and enables a significant reduction in the computational 

requirements for solving lubrication problems in the presence of textured surfaces. Thus, the proposed 

method offers a new promising route for the improvement and design optimization of tribological 

surfaces. 
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Appendix 1 – Elements for EbFVM Discretization  

In the following, all the geometric and tensor properties of triangular and quadrangular elements are 

presented for the completeness of the EbFVM derivation. The properties are shown with respect to the 

standard transformed domain (parametric elements). 

A1.1 – Linear Triangular Element 

 

Figure A1.1.1 – Coordinate transformation for linear triangular elements. 

 Coordinates of the element nodes 

𝑃1 = (0,0)     𝑃2 = (1,0)     𝑃3 = (0,1)  (A1.1.1) 

 Coordinates of the edges’ midpoints 

𝑚1 = (
1

2
, 0)     𝑚2 = (

1

2
,
1

2
)     𝑚3 = (0,

1

2
)  (A1.1.2) 

 Coordinates of the integration points 

𝑝𝐼1 = (
5

12
,
1

6
)     𝑝𝐼2 = (

5

12
,
5

12
)     𝑝𝐼3 = (

1

6
,
5

12
)  (A1.1.3) 

 Coordinates of the SVC’s centroids 

𝐺1 = (
5

24
,
5

24
)     𝐺2 = (

7

12
,
5

24
)     𝐺3 = (

5

24
,
7

12
)  (A1.1.4) 

 Areas of the SVCs 

𝐴𝑆𝑉𝐶1 =
1

6
𝑑𝑒𝑡[𝑱(𝐺1)]     𝐴𝑆𝑉𝐶2 =

1

6
𝑑𝑒𝑡[𝑱(𝐺2)]     𝐴𝑆𝑉𝐶3 =

1

6
𝑑𝑒𝑡[𝑱(𝐺3)]  (A1.1.5) 

 Coordinates of the normal vectors (transformed domain) 

�⃗⃗� 𝟏 = (
1

6
, −

1

3
)     �⃗⃗� 𝟐 = (

1

6
,
1

6
)     �⃗⃗� 𝟑 = (−

1

3
,
1

6
)  (A1.1.6) 

 Coordinates of the normal vectors (physical domain) 

�⃗⃗� 1
∗ = 𝑹𝑱(𝑝𝐼1)�⃗⃗� 𝟏     �⃗⃗� 2

∗ = 𝑹𝑱(𝑝𝐼2)�⃗⃗� 𝟐     �⃗⃗� 3
∗ = 𝑹𝑱(𝑝𝐼3)�⃗⃗� 𝟑  (A1.1.7a) 



where the auxiliary matrix 𝑹 is defined as: 

𝑹 = [
0 −1
1 0

]  (A1.1.7b) 

 Interpolation and shape functions 

𝑁1(𝑠, 𝑡) = (1 − 𝑠 − 𝑡)     𝑁2(𝑠, 𝑡) = 𝑠     𝑁3(𝑠, 𝑡) = 𝑡  (A1.1.8) 

 Matrix for gradients interpolation 

𝑩(𝑠, 𝑡) =

[
 
 
 
 
𝜕𝑁1(𝑠,𝑡)

𝜕𝑠

𝜕𝑁1(𝑠,𝑡)

𝜕𝑡
𝜕𝑁2(𝑠,𝑡)

𝜕𝑠

𝜕𝑁2(𝑠,𝑡)

𝜕𝑡
𝜕𝑁3(𝑠,𝑡)

𝜕𝑠

𝜕𝑁3(𝑠,𝑡)

𝜕𝑡 ]
 
 
 
 

= [
−1 −1
1 0
0 1

]  (A1.1.9) 

 Jacobian matrix 

𝑱(𝑠, 𝑡) = 𝒁𝒆𝑩(𝑠, 𝑡)  (A1.1.10a) 

where 𝒁𝒆 is the matrix with the global coordinates of the element nodes: 

𝒁𝒆 = [
𝑥1 𝑥2 𝑥3
𝑦1 𝑦2 𝑦3

]  (A1.1.10b) 

 Tensor for gradients’ interpolation 

𝐺𝑗𝑘(𝑠, 𝑡)   ⟹   𝑮(𝑠, 𝑡) = 𝑩(𝑠, 𝑡)𝑱(𝑠, 𝑡)−1  (A1.1.11) 

 Tensor for diffusion calculation 

𝐵𝑚𝑗𝑘𝑖𝑠   ⟹   {

𝐵𝑚𝑗𝑘𝑖1 = 𝐻𝑚𝑗𝑘𝑖(𝑝𝐼1) − 𝐻𝑚𝑗𝑘𝑖(𝑝𝐼3)    →    𝑆𝑉𝐶1
𝐵𝑚𝑗𝑘𝑖2 = 𝐻𝑚𝑗𝑘𝑖(𝑝𝐼2) − 𝐻𝑚𝑗𝑘𝑖(𝑝𝐼1)    →    𝑆𝑉𝐶2
𝐵𝑚𝑗𝑘𝑖3 = 𝐻𝑚𝑗𝑘𝑖(𝑝𝐼3) − 𝐻𝑚𝑗𝑘𝑖(𝑝𝐼2)    →    𝑆𝑉𝐶3

  (A1.1.12a) 

where auxiliary tensor 𝐻𝑚𝑗𝑘𝑖  is defined as: 

𝐻𝑚𝑗𝑘𝑖(𝑠, 𝑡) = 𝑁𝑚(𝑠, 𝑡)𝐺𝑗𝑘(𝑠, 𝑡)𝑛𝑖
∗(𝑠, 𝑡)  (A1.1.12b) 

 Matrices for the “flow weighted” upwind scheme 

𝑨𝒔 = [

0 (1 − 𝛼𝑝𝐼1) 𝛼𝑝𝐼1
𝛼𝑝𝐼2 0 (1 − 𝛼𝑝𝐼2)

(1 − 𝛼𝑝𝐼3) 𝛼𝑝𝐼3 0

]  (A1.1.13a) 

𝑩𝒔 = [

1 −(1 − 𝛼𝑝𝐼1)Λ𝑝𝐼1 −𝛼𝑝𝐼1Λ𝑝𝐼1
−𝛼𝑝𝐼2Λ𝑝𝐼2 1 −(1 − 𝛼𝑝𝐼2)Λ𝑝𝐼2

−(1 − 𝛼𝑝𝐼3)Λ𝑝𝐼3 −𝛼𝑝𝐼3Λ𝑝𝐼3 1

] (A1.1.13b) 

𝑪𝒔 = [

𝛼𝑝𝐼1(1 − Λ𝑝𝐼1) (1 − 𝛼𝑝𝐼1)(1 − Λ𝑝𝐼1) 0

0 𝛼𝑝𝐼2(1 − Λ𝑝𝐼2) (1 − 𝛼𝑝𝐼2)(1 − Λ𝑝𝐼2)

(1 − 𝛼𝑝𝐼3)(1 − Λ𝑝𝐼3) 0 𝛼𝑝𝐼3(1 − Λ𝑝𝐼3)

] (A1.1.13c) 

𝑫𝒔 = [
1 0 −1
−1 1 0
0 −1 1

] (A1.1.13d) 



where: 

𝛼𝑝𝐼𝑖 = {
1, 𝑖𝑓    𝑞𝑝𝐼𝑖 > 0

0, 𝑖𝑓    𝑞𝑝𝐼𝑖 ≤ 0
          �⃗⃗⃗� 𝒑𝑰 =

𝑨𝒔�⃗⃗� 𝒑𝑰

�⃗⃗� 𝒑𝑰
          �⃗⃗� 𝒑𝑰 = 𝑚𝑎𝑥[𝑚𝑖𝑛(�⃗⃗⃗� 𝒑𝑰, 1), 0]

  

(A1.1.13e) 

A1.2 – Bilinear Quadrangular Element 

 

Figure A1.2.1 – Coordinate transformation for bilinear quadrangular elements. 

 Coordinates of the element nodes 

𝑃1 = (−1, −1)     𝑃2 = (1,−1)     𝑃3 = (1,1)     𝑃4 = (−1,1) (A1.2.1) 

 Coordinates of the edge midpoints 

𝑚1 = (0, −1)     𝑚2 = (1,0)     𝑚3 = (0,1)     𝑚4 = (−1,0) (A1.2.2) 

 Coordinates of the integration points 

𝑝𝐼1 = (0,−
1

2
)     𝑝𝐼2 = (

1

2
, 0)     𝑝𝐼3 = (0,

1

2
)     𝑝𝐼4 = (−

1

2
, 0) (A1.2.3) 

 Coordinates of the SVC’s centroids 

𝐺1 = (−
1

2
, −

1

2
)     𝐺2 = (

1

2
, −

1

2
)     𝐺3 = (

1

2
,
1

2
)     𝐺4 = (−

1

2
,
1

2
) (A1.2.4) 

 Areas of the SVCs 

𝐴𝑆𝑉𝐶1 = 𝑑𝑒𝑡[𝑱(𝐺1)]     𝐴𝑆𝑉𝐶2 = 𝑑𝑒𝑡[𝑱(𝐺2)]     𝐴𝑆𝑉𝐶3 = 𝑑𝑒𝑡[𝑱(𝐺3)]     𝐴𝑆𝑉𝐶4 = 𝑑𝑒𝑡[𝑱(𝐺4)] (A1.2.5) 

 Coordinates of the normal vectors (transformed domain) 

�⃗⃗� 𝟏 = (0,−1)     �⃗⃗� 𝟐 = (1,0)     �⃗⃗� 𝟑 = (0,1)     �⃗⃗� 𝟒 = (−1,0) (A1.2.6) 

 Coordinates of the normal vectors (physical domain) 

�⃗⃗� 1
∗ = 𝑹𝑱(𝑝𝐼1)�⃗⃗� 𝟏     �⃗⃗� 2

∗ = 𝑹𝑱(𝑝𝐼2)�⃗⃗� 𝟐     �⃗⃗� 3
∗ = 𝑹𝑱(𝑝𝐼3)�⃗⃗� 𝟑     �⃗⃗� 4

∗ = 𝑹𝑱(𝑝𝐼4)�⃗⃗� 𝟒 (A1.2.7a) 



where the auxiliary matrix 𝑹 is defined as: 

𝑹 = [
0 −1
1 0

]  (A1.2.7b) 

 Interpolation and shape functions 

𝑁1(𝑠, 𝑡) =
1

4
(1 − 𝑠)(1 − 𝑡)      𝑁3(𝑠, 𝑡) =

1

4
(1 + 𝑠)(1 + 𝑡) 

𝑁2(𝑠, 𝑡) =
1

4
(1 + 𝑠)(1 − 𝑡)      𝑁4(𝑠, 𝑡) =

1

4
(1 − 𝑠)(1 + 𝑡)  

(A1.2.8) 

 Matrix for gradients’ interpolation 

𝑩(𝑠, 𝑡) =

[
 
 
 
 
 
 
𝜕𝑁1(𝑠,𝑡)

𝜕𝑠

𝜕𝑁1(𝑠,𝑡)

𝜕𝑡
𝜕𝑁2(𝑠,𝑡)

𝜕𝑠

𝜕𝑁2(𝑠,𝑡)

𝜕𝑡

𝜕𝑁3(𝑠,𝑡)

𝜕𝑠

𝜕𝑁3(𝑠,𝑡)

𝜕𝑡
𝜕𝑁4(𝑠,𝑡)

𝜕𝑠

𝜕𝑁4(𝑠,𝑡)

𝜕𝑡 ]
 
 
 
 
 
 

=
1

4
[

(𝑡 − 1) (𝑠 − 1)
(1 − 𝑡) (−1 − 𝑡)
(1 + 𝑡) (1 + 𝑠)
(−1 − 𝑡) (1 − 𝑠)

]  (A1.2.9) 

 Jacobian matrix 

𝑱(𝑠, 𝑡) = 𝒁𝒆𝑩(𝑠, 𝑡)  (A1.2.10a) 

where 𝒁𝒆 is the matrix with the global coordinates of the element nodes: 

𝒁𝒆 = [
𝑥1 𝑥2 𝑥3 𝑥4
𝑦1 𝑦2 𝑦3 𝑦4

]  (A1.2.10b) 

 Tensor for gradients interpolation 

𝐺𝑗𝑘(𝑠, 𝑡)   ⟹   𝑮(𝑠, 𝑡) = 𝑩(𝑠, 𝑡)𝑱(𝑠, 𝑡)−1  (A1.2.11) 

 Tensor for diffusion calculation 

𝐵𝑚𝑗𝑘𝑖𝑠   ⟹   

{
 
 

 
 
𝐵𝑚𝑗𝑘𝑖1 = 𝐻𝑚𝑗𝑘𝑖(𝑝𝐼1) − 𝐻𝑚𝑗𝑘𝑖(𝑝𝐼4)    →    𝑆𝑉𝐶1
𝐵𝑚𝑗𝑘𝑖2 = 𝐻𝑚𝑗𝑘𝑖(𝑝𝐼2) − 𝐻𝑚𝑗𝑘𝑖(𝑝𝐼1)    →    𝑆𝑉𝐶2
𝐵𝑚𝑗𝑘𝑖3 = 𝐻𝑚𝑗𝑘𝑖(𝑝𝐼3) − 𝐻𝑚𝑗𝑘𝑖(𝑝𝐼2)    →    𝑆𝑉𝐶3
𝐵𝑚𝑗𝑘𝑖4 = 𝐻𝑚𝑗𝑘𝑖(𝑝𝐼4) − 𝐻𝑚𝑗𝑘𝑖(𝑝𝐼3)    →    𝑆𝑉𝐶4

 (A1.2.12a) 

where auxiliary tensor 𝐻𝑚𝑗𝑘𝑖  is defined as: 

𝐻𝑚𝑗𝑘𝑖(𝑠, 𝑡) = 𝑁𝑚(𝑠, 𝑡)𝐺𝑗𝑘(𝑠, 𝑡)𝑛𝑖
∗(𝑠, 𝑡) 

(A1.2.12b) 

 Matrices for the “flow weighted” upwind scheme 

𝑨𝒔 =

[
 
 
 
 

0 (1 − 𝛼𝑝𝐼1) 0 𝛼𝑝𝐼1
𝛼𝑝𝐼2 0 (1 − 𝛼𝑝𝐼2) 0

0 𝛼𝑝𝐼3 0 (1 − 𝛼𝑝𝐼3)

(1 − 𝛼𝑝𝐼4) 0 𝛼𝑝𝐼4 0 ]
 
 
 
 

 (A1.2.13a) 



𝑩𝒔 =

[
 
 
 
 

1 −(1 − 𝛼𝑝𝐼1)Λ𝑝𝐼1 0 −𝛼𝑝𝐼1Λ𝑝𝐼1
−𝛼𝑝𝐼2Λ𝑝𝐼2 1 −(1 − 𝛼𝑝𝐼2)Λ𝑝𝐼2 0

0 −𝛼𝑝𝐼3Λ𝑝𝐼3 1 −(1 − 𝛼𝑝𝐼3)Λ𝑝𝐼3
−(1 − 𝛼𝑝𝐼4)Λ𝑝𝐼4 0 −𝛼𝑝𝐼4Λ𝑝𝐼4 1 ]

 
 
 
 

 (A1.2.13b) 

𝑪𝒔 =

[
 
 
 
 

𝛼𝑝𝐼1(1 − Λ𝑝𝐼1) (1 − 𝛼𝑝𝐼1)(1− Λ𝑝𝐼1) 0 0

0 𝛼𝑝𝐼2(1 − Λ𝑝𝐼2) (1 − 𝛼𝑝𝐼2)(1 − Λ𝑝𝐼2) 0

0 0 𝛼𝑝𝐼3(1− Λ𝑝𝐼3) (1 − 𝛼𝑝𝐼3)(1− Λ𝑝𝐼3)

(1 − 𝛼𝑝𝐼4)(1− Λ𝑝𝐼4) 0 0 𝛼𝑝𝐼4(1 − Λ𝑝𝐼4) ]
 
 
 
 

 (A1.2.13c) 

𝑫𝒔 = [

1 0 0 −1
−1 1 0 0
0 −1 1 0
0 0 −1 1

] (A1.2.13d) 

where: 

𝛼𝑝𝐼𝑖 = {
1, 𝑖𝑓    𝑞𝑐𝑝𝐼𝑖

> 0

0, 𝑖𝑓    𝑞𝑐𝑝𝐼𝑖
≤ 0

          �⃗⃗⃗� 𝒑𝑰 =
𝑨𝒔�⃗⃗� 𝒄𝒑𝑰

�⃗⃗� 𝒄𝒑𝑰
          �⃗⃗� 𝒑𝑰 = 𝑚𝑎𝑥[𝑚𝑖𝑛(�⃗⃗⃗� 𝒑𝑰, 1), 0]  (A1.2.13e) 

Appendix 2 – Discretization of the Diffusion Term  

According to Eq. 10, it is possible to express the diffusive flux across each integration point (𝑝𝐼) of a 

given element (𝑒) as: 

𝑑𝑒
𝑛(𝑝𝐼) = [�̃�𝒑(𝑝𝐼)∇�̃�(𝑝𝐼)]

𝑒

𝑛
⋅ �⃗⃗� ∗𝑒(𝑝𝐼) (A2.1) 

where 𝑝𝐼 = (𝑠𝑝𝐼 , 𝑡𝑝𝐼) denotes the coordinates of the integration points in the transformed domain. In the 

following deductions, the scripts 𝑛 and 𝑒 will be suppressed for shortness. 

 Approximation of the Diffusivity Matrix at the Integration Points 

The diffusion matrix �̃�𝒑(𝑝𝐼) may be written in tensor notation as: 

�̃�𝒑(𝑝𝐼)    ⟹    �̃�𝑖𝑗
𝑝(𝑝𝐼)               𝑖, 𝑗 = 1,2 (A2.2) 

Assuming that each component of the diffusivity matrix is approximated according to the same 

family of interpolation functions, then: 

�̃�𝑖𝑗
𝑝(𝑝𝐼) ≈ 𝑁𝑚(𝑝𝐼)�̃�𝑖𝑗𝑚

𝑝
               𝑚 = 1,2… ,𝑀 (A2.3) 

where �̃�𝑖𝑗𝑚
𝑝

 are the nodal values of �̃�𝑖𝑗
𝑝
, 𝑀 the number of nodes of the element and 𝑁𝑚 the 

respective interpolation functions (see Appendix 1). 

 Approximation of the Pressure Gradients at the Integration Points 

The pressure gradients ∇�̃�(𝑝𝐼) may also be written in tensor notation as: 



∇�̃�(𝑝𝐼)    ⟹    �̃�𝑗(𝑝𝐼) =
𝜕�̃�(𝑝𝐼)

𝜕𝑥𝑗
               𝑗 = 1,2 (A2.4) 

Assuming the elliptic characteristic of the diffusion term, the approximation of the pressure 

gradients can be accomplished by adopting linear interpolation based on the shape functions, 

yielding to the following tensor expression: 

�̃�𝑗(𝑝𝐼) ≈ 𝐺𝑗𝑘(𝑝𝐼)�̃�𝑘               𝑘 = 1,2… ,𝑀 (A2.5) 

where �̃�𝑘  are the nodal pressures and 𝐺𝑗𝑘  the interpolation tensor that correlates both pressure 

gradients approximations and element distortions (see Appendix 1). 

Substituting Eq. A2.3 and Eq. A2.5 into Eq. A2.1, one obtains: 

𝑑(𝑝𝐼) = 𝐻𝑚𝑗𝑘𝑖(𝑝𝐼)(�̃�𝑖𝑗𝑚
𝑝
�̃�𝑘)  ,   𝐻𝑚𝑗𝑘𝑖(𝑝𝐼) = 𝑁𝑚(𝑝𝐼)𝐺𝑗𝑘(𝑝𝐼)𝑛𝑖

∗(𝑝𝐼) (A2.6) 

Since only geometric features are involved in 𝐻𝑚𝑗𝑘𝑖(𝑝𝐼), its value is constant for a fixed grid (non-

adaptive mesh) and so can be calculated once in advance in a pre-processing step of the problem solution 

(see Appendix 1). 

The total diffusive flux across every 𝑆𝐶𝑉 (𝑠) that compound a given element is the sum of the respective 

fluxes computed for each of the two integration points located on its faces. Mathematically, it can be 

expressed as: 

𝑑𝑠 = 𝑃𝑘𝑠�̃�𝑘   ,   𝑃𝑘𝑠 = 𝐵𝑚𝑗𝑘𝑖𝑠�̃�𝑖𝑗𝑚
𝑝
               𝑠, 𝑘 = 1,2… ,𝑀 (A2.7) 

where 𝑃𝑘𝑠 is defined as the diffusivity matrix and 𝐵𝑚𝑗𝑘𝑖𝑠  the geometric diffusion tensor of the element 

(see Appendix 1). Similarly to the 𝐻𝑚𝑗𝑘𝑖(𝑝𝐼) tensor, 𝐵𝑚𝑗𝑘𝑖𝑠  is also constant for fixed meshes and so can 

be calculated only once in a pre-processing procedure. 

Finally, Eq. A2.7 can be written in matrix notation as: 

�⃗⃗� 𝑒
𝑛 = 𝑷𝑒

𝑛(�⃗⃗̃� )
𝑒

𝑛
 (A2.8) 

where the components of the vector �⃗⃗� 𝑒
𝑛 correspond to the diffusive fluxes through each sub-control 

volume, (�⃗⃗̃� )
𝑒

𝑛
 is the vector of the nodal pressures and 𝑷𝑒

𝑛 is the diffusivity matrix of the element. 

Appendix 3 – Discretization of the Convective Term  

Analogously to the discretization of the diffusion term, the convective flux of Eq. 10 across each 

integration point (𝑝𝐼) of a given element (𝑒) can be expressed as: 

𝑐𝑒
𝑛(𝑝𝐼) = [�̃�(𝑝𝐼)�̃�(𝑝𝐼)]

𝑒

𝑛
   ,   �̃�(𝑝𝐼)𝑒

𝑛 = [�̃�𝒄(𝑝𝐼)�⃗⃗� ̃(𝑝𝐼)]
𝑒

𝑛
⋅ �⃗⃗� ∗𝑒(𝑝𝐼) (A3.1) 



where �̃�(𝑝𝐼) is the local convective flux through the integration points 𝑝𝐼 = (𝑠𝑝𝐼 , 𝑡𝑝𝐼). In the following 

derivations, the scripts 𝑛 and 𝑒 will be suppressed for shortness. 

 Approximation of the Local Convective Flux at the Integration Points 

The local convective flux �̃�(𝑝𝐼) may be written in tensor notation as: 

�̃�(𝑝𝐼) = �̃�𝑖(𝑝𝐼)𝑛𝑖
∗(𝑝𝐼)   ,   �̃�𝑖(𝑝𝐼) = �̃�𝑖𝑗

𝑐(𝑝𝐼)𝑣𝑗(𝑝𝐼)               𝑖, 𝑗 = 1,2 (A3.2) 

Assuming that each component of �̃�𝑖(𝑝𝐼) is approximated according to the same family of 

interpolation functions, then: 

�̃�𝑖(𝑝𝐼) ≈ 𝑁𝑚(𝑝𝐼)�̃�𝑖𝑚               𝑚 = 1,2… ,𝑀 (A3.3) 

where �̃�𝑖𝑚 are the nodal values of �̃�𝑖, 𝑀 the number of nodes of the element and 𝑁𝑚 the respective 

interpolation functions (see Appendix 1). 

Substituting Eq. A3.3 into Eq. A3.2, one obtains: 

�̃�(𝑝𝐼) = �̃�𝑚𝑖(𝑝𝐼)�̃�𝑖𝑚   ,   �̃�𝑖𝑚 = (�̃�𝑖𝑗
𝑐𝑣𝑗)𝑚

   ,   �̃�𝑚𝑖(𝑝𝐼) = 𝑁𝑚(𝑝𝐼)𝑛𝑖
∗(𝑝𝐼) (A3.4) 

where �̃�𝑚𝑖(𝑝𝐼) is constant for a fixed grid (non-adaptive mesh) since only geometric features are 

involved. 

 Approximation of the Film Fraction (Convective Variable) at the Integration Points 

The approximation of the lubricant film fraction variable (�̃�) is accomplished by using one of the 

most widespread advection scheme devised for EbFVM solutions, namely Flow Weighted 

Upwind Scheme (FWUS) [29,35]. This scheme is based on two important features: (1) the 

absolute preservation of the positivity of the coefficients of the discretized equations, which 

contributes for the stability of the numerical solution, and (2) the consideration of the local 

skewness of the flow, i.e. the local orientation of the fluid-flow. 

According to the FWUS scheme, the approximated value of the convective scalar variable at a 

given integration point depends only on the flow configuration in the immediate upstream sub-

control volume. Considering the local indexation of nodes and faces in an element, one has [29]: 

�̃�𝑝𝐼𝑖 = {
(1 − Λ𝑝𝐼𝑖)�̃�𝑃𝑖 + (Λ𝑝𝐼𝑖)�̃�𝑝𝐼𝑖+1 , 𝑖𝑓    �̃�𝑝𝐼𝑖 > 0

(1 − Λ𝑝𝐼𝑖)�̃�𝑃𝑖−1 + (Λ𝑝𝐼𝑖)�̃�𝑝𝐼𝑖−1 , 𝑖𝑓    �̃�𝑝𝐼𝑖 ≤ 0
 (A3.5) 

where the subscripts “𝑖” belong to the 4-cycle {1,2,3.4} and are associated to each integration 

point (𝑝𝐼) of the element. Thus, for instance, in a quadrangular element 𝑘 + 1 = 1 when 𝑘 = 4, 

whereas 𝑘 − 1 = 4 when 𝑘 = 1. In the above equation, Λ𝑝𝐼𝑖 is the interpolation weighting factor 

that depends on the local flow orientation evaluated in agreement with the local flow ratio 

parameter ω𝑝𝐼𝑖, which in turn is defined as the ratio between the convective flux across the 

upwind face and the flow thorough the face where the associated integration point is located. 

Mathematically: 



ω𝑝𝐼𝑖 =

{
 
 

 
 
�̃�𝑝𝐼𝑖+1
�̃�𝑝𝐼𝑖

, 𝑖𝑓 �̃�𝑝𝐼𝑖 > 0

�̃�𝑝𝐼𝑖−1
�̃�𝑝𝐼𝑖

, 𝑖𝑓 �̃�𝑝𝐼𝑖 ≤ 0

   ,   Λ𝑝𝐼𝑖 = 𝑚𝑎𝑥[𝑚𝑖𝑛(ω𝑝𝐼𝑖 , 1), 0] (A3.6) 

By assembling Eqs. A3.6 for all integration points of the element, it is possible to define the 

following matrix expression that correlates �̃�𝑖 to the nodal values �̃�𝑃𝑖: 

�⃗⃗̃� 𝒑𝑰 = (𝑩
𝒔−1𝑪𝒔)⏟      
𝑼

�⃗⃗̃� = 𝑼�⃗⃗̃�  (A3.7) 

where 𝑩𝒔 and 𝑪𝒔 are 𝑀𝑥𝑀 matrices calculated according to the local convective fluxes �̃�(𝑝𝐼) 
(see Appendix 1). 

Finally, by substituting Eq. A.3.4 and Eq. A.3.7 into Eq. A3.1, the total convective flux across every 𝑆𝐶𝑉 
(𝑠) that compound a given element can be expressed as: 

𝑐𝑠 = 𝐶𝑘𝑠�̃�𝑘   ,   𝑪 = 𝑫[𝑑𝑖𝑎𝑔(�⃗⃗̃� )]𝑼               𝑠, 𝑘 = 1,2… ,𝑀 (A3.8) 

where 𝑫 is a 𝑀𝑥𝑀 matrix that depends on the element type (see Appendix 1). 

For simplicity, Eq. A3.8 can be written in matrix notation as: 

�⃗� 𝒆
𝒏 = 𝑪𝑒

𝑛 (�⃗⃗̃� )
𝑒

𝑛

 (A3.9) 

where the components of the vector �⃗� 𝑒
𝑛 correspond to the diffusive fluxes through each sub-control 

volume, (�⃗⃗̃� )
𝑒

𝑛

 is the vector of the nodal pressures and 𝑪𝑒
𝑛 is the convective matrix of the element. 

Appendix 4 – Discretization of the Source Terms  

According to Eq. 10, it possible to define two source terms associated to each 𝑆𝐶𝑉 (𝑠) of a given element 
(𝑒): 

𝑓1𝑒,𝑠
𝑛 = [�̃� (�̃�𝑇𝑆 + �̃�𝑁𝑆 +

�̃�𝑇
Δ𝑡
)]
𝑃

𝑛

Δ𝒟𝑠
𝑒   ,   𝑓2𝑒,𝑠

𝑛 = −[�̃�𝑛−1 (
�̃�𝑇
Δ𝑡
)

𝑛

]
𝑃

Δ𝒟𝑠
𝑒               𝑠

= 1,2… ,𝑀 

(A4.1) 

where Δ𝒟𝑠
𝑒 is the physical area of the sub-control volume 𝑠. It is important to notice that both expressions 

in Eq. A4.1 are evaluated explicitly at the element nodes referred to the respective 𝑆𝐶𝑉. By re-arranging 

the terms of the equations in vector notation, one obtains: 

(�⃗� 𝟏)𝑒
𝑛
= (�⃗⃗� 𝟏)𝑒

𝑛
⋅ (�⃗⃗̃� )

𝑒

𝑛

   ,   (�⃗⃗� 𝟏)𝑒
𝑛
   ⟹    𝐹1𝑒,𝑠

𝑛 = [(�̃�𝑇𝑆 + �̃�𝑁𝑆 +
𝑆𝑇

Δ𝑡
)]
𝑃

𝑛

Δ𝒟𝑠
𝑒 

(A4.2a) 



(�⃗� 𝟐)𝑒
𝑛
= (�⃗⃗� 𝟐)𝑒

𝑛
⋅ (�⃗⃗̃� )

𝑒

𝑛−1

   ,   (�⃗⃗� 𝟐)𝑒
𝑛
   ⟹    𝐹2𝑒,𝑠

𝑛 = − [(
�̃�𝑇

Δ𝑡
)]
𝑃

𝑛

 Δ𝒟𝑠
𝑒 

(A4.2b) 

where the components of (�⃗� 𝟏)𝑒
𝑛

 and (�⃗� 𝟐)𝑒
𝑛

 are the source terms associated to each element node, while 

(�⃗⃗� 𝟏)𝑒
𝑛

 and (�⃗⃗� 𝟐)𝑒
𝑛

 are auxiliaries element vectors. Additionally, (�⃗⃗̃� )
𝑒

𝑛

 and (�⃗⃗̃� )
𝑒

𝑛−1

 are the vectors of the 

nodal lubricant film fraction at the time instants 𝑛 and (𝑛 − 1), respectively; the operator " ⋅ " denotes 

dot products. 

  



Appendix 5 – Full extended SOR algorithm for the solution of the modified 𝒑 − 𝜽 Reynolds 

equation  

 

Algorithm 1 – Extended Gauss-Seidel method with 

SOR for the solution of the modified 𝑝 − 𝜃 Reynolds 

equation 

1:   �⃗⃗̃� 𝑛−1, �⃗⃗̃� 𝑛−1, 𝒂𝑛 , 𝒃𝑛 , 𝑩𝑛 , 𝑝𝑐𝑎𝑣 , 𝜔𝜃, 𝜔𝑝, 𝜀𝑆𝑂𝑅 , 𝑟𝑀𝐴𝑋   

2:   �⃗⃗̃� 𝑛,0 ← �⃗⃗̃� 𝑛−1, �⃗⃗̃� 𝑛,0 ← �⃗⃗̃� 𝑛−1 
3:   𝑟 = 0, 𝜀 = 1 

4:   while  (𝜀 > 𝜀𝑆𝑂𝑅)  𝑎𝑛𝑑  (𝑟 ≤ 𝑟𝑀𝐴𝑋) 
5:         𝑟 = 𝑟 + 1 

6:         for  (𝑃 = 1,2, …𝑁𝑇) 
7:               Calculate hydrodynamic pressure 

8:               if  (�̃�𝑃
𝑛,𝑟 > 𝑝𝑐𝑎𝑣)  𝑜𝑟  (�̃�𝑃

𝑛,𝑟 ≥ 1) 

9:                        Calculate �̃�𝑃
𝑛,𝑟

, Eq. (16a) 

10:                      �̃�𝑃
𝑛,𝑟 ← 𝜔𝑝�̃�𝑃

𝑛,𝑟 + (1 − 𝜔𝑝)�̃�𝑃
𝑛,𝑟

 

11:                      if  (�̃�𝑃
𝑛,𝑟 ≥ 𝑝𝑐𝑎𝑣)   (cavitation check) 

12:                               �̃�𝑃
𝑛,𝑟 ← 1 

13:                      else 

14:                               �̃�𝑃
𝑛,𝑟 ← 𝑝𝑐𝑎𝑣 

15:                      end if 

16:             end if 

17:             Calculate film fraction 

18:             if  (�̃�𝑃
𝑛,𝑟 ≤ 𝑝𝑐𝑎𝑣)  𝑜𝑟  (�̃�𝑃

𝑛,𝑟 < 1) 

19:                      Calculate Θ̃𝑃
𝑛,𝑟

, Eq. (16b) 

20:                      �̃�𝑃
𝑛,𝑟 ← 𝜔𝜃Θ̃𝑃

𝑛,𝑟 + (1 − 𝜔𝜃)�̃�𝑃
𝑛,𝑟

 

21:                      if  (�̃�𝑃
𝑛,𝑟 < 1)   (cavitation check) 

22:                               �̃�𝑃
𝑛,𝑟 ← 𝑝𝑐𝑎𝑣 

23:                      else 

24:                               �̃�𝑃
𝑛,𝑟 ← 1 

25:                      end if 

26:       end for 

27:       Calculate relative error 

28:        𝜀 = (
‖�⃗⃗̃� 𝑛,𝑟−�⃗⃗̃� 𝑛,𝑟−1‖

2

‖�⃗⃗̃� 𝑛,𝑟‖
2

+
‖�⃗⃗̃� 𝑛,𝑟−�⃗⃗̃� 𝑛,𝑟−1‖

2

‖�⃗⃗̃� 𝑛,𝑟‖
2

) 

29:  end while 

30:  �⃗⃗̃� 𝑛 ← �⃗⃗̃� 𝑛,𝑟 , �⃗⃗̃� 𝑛 ← �⃗⃗̃� 𝑛,𝑟 

 


