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Highlights 

 

 Certain frequencies are filtered in metamaterials made of locally resonant units.  

 Proportional anisotropy, K4 topology and attenuation-free plane waves are considered. 

 Floquet-Bloch’s principle is applied to irreducible Brillouin zone in k-space. 

 Parametric studies show the direction and degree of influence of each variable. 

 By tailoring mass, stiffness or aspect ratio desired frequencies are filtered. 
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Abstract 

 

An acoustic metamaterial is envisaged as a synthesised phononic material the mechanical behaviour 

of which is determined by its unit cell. The present study investigates one aspect of mechanical 

behaviour, namely the band structure, in two-dimensional (2D) anisotropic acoustic metamaterials 

encompassing locally resonant mass-in-mass units connected by massless springs in a K4 topology. 

The 2D lattice problem is formulated in the direct space (r-space) and the equations of motion are 

derived using the principle of least action (Hamilton’s principle). Only proportional anisotropy and 

attenuation-free shock wave propagation have been considered. Floquet-Bloch’s principle is applied, 

therefore a generic unit cell is studied. The unit cell can represent the entire lattice regardless of its 

position. It is transformed from the direct lattice in r-space onto its reciprocal lattice conjugate in 

Fourier space (k-space) and point symmetry operations are applied to Wigner-Seitz primitive cell to 

derive the first irreducible Brillouin Zone (BZ). The edges of the first irreducible Brillouin Zone in the 

k-space have then been traversed to generate the full band structure. It was found that the 

phenomenon of frequency filtering exists and the pass and stop bands are extracted. A follow-up 

parametric study appreciated the degree and direction of influence of each parameter on the band 

structure.  
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1. Introduction 

 

An acoustic metamaterial is a member of the class known as phononic or mechphononic 

metamaterials. A phononic metamaterial is generally regarded as a material with an artificial 

microstructure which offers certain beneficial effects when wave propagation is relevant. Unlike 

natural materials, the mechanical behaviour of an acoustic metamaterial is not determined by its 

atomic microstructure but by its unit cell. Ubiquitous in the realm of electromagnetism (see e.g. 

[1-4]), metamaterials have started to receive attention in the fields of acoustics and applied 

mechanics [5-10]. Acoustic and phononic metamaterials have been the subject of some 

contemporary research due to the properties which distinguish them from natural materials. One 

such property, particularly of interest in acoustic applications, is the possibility to achieve 

negative mass density and elastic modulus [6, 10, 11] simultaneously in the strict sense of the 

effective medium theory [12]. This is similar to the negative refractive index in photonic 

metamaterials [2, 12]. The existence of a phononic/photonic band gap, i.e. an interval of 

frequencies over which mechanical/electromagnetic waves cannot propagate, is a direct 

consequence of this property and is of interest to engineers designing phononic/photonic devices
†
. 

Practical applications of such phononic devices include mechanical filters, vibration isolators, and 

acoustic waveguides [13, 14].  

 

Many works of research have been conducted on phononic frequency pass and stop bands. To 

mention but a few, Kushwaha et al. [14] provided one of the earliest calculations of acoustic band 

gaps in a simple periodic composite. Nevertheless, their calculation was limited to the case of 

anti-plane shear. Zalipaev et al. [15]  also considered anti-plane shear and studied the transition 

from two-dimensional (2D) wave propagation through the square periodic structure in time-

harmonic case to a discrete parameter model of a 2D lattice with masses connected by springs. 

Martinsson [16] provided a simple method to calculate band gaps with special attention paid to 

the connection between microstructural geometry and the presence of band gaps. Lumped-mass 

method for the study of band structure in 2D phononic crystals was considered by Wang et al. 

[17]. They presented a lumped-mass model, based on the discretization of a continuous system, 

which works in the direct space (r-space) and allows computing the band structures of 2D 

phononic crystals. Li and Chan [11] studied doubly negative acoustic metamaterials in which both 

the effective density and bulk modulus are negative. Their double-negative acoustic system is an 

acoustic analogue of Veselago’s medium in electromagnetism [18], and shares with it many 

                                                           
†
 The phenomenon of filtering in phononic devices could also be due to Bragg diffraction. The study of such 

cases falls beyond the scope of the present study. 
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principal features, such as negative refractive index, as a consequence of its microstructural 

composition. This implies the well-known analogy between mechanical and electrical systems 

known for almost two centuries [19]. Huang and Sun [20] studied the wave attenuation 

mechanisms in acoustic metamaterials of negative effective mass density. The metamaterial under 

consideration consists of locally resonant mass-in-mass units which, when homogenized, would 

have negative effective density.  Any such homogenization theory allows for obtaining coarse-

scale variation of field variables associated with a heterogeneous medium when the scale ratio, 

i.e. the ratio between fine and coarse scales, tends to zero while essential features are restored and 

represented faithfully. Locally resonant sonic materials were also studied by Liu et al. [8]. They 

fabricated sonic crystals, based on the idea of localized resonant structures, which exhibited 

spectral gaps with a lattice constant two orders of magnitude smaller than the relevant 

wavelength. Lattice constants refer to the directional distances between primitive/unit cells 

defined for a lattice material i.e. a material of reticulated structure obtained by tessellating the 

primitive cell along a finite number of fixed predefined directions. 

 

Besides the studies conducted on wave propagation behaviour of lattices in the direct space (r-

space), the reciprocal lattice formulation (formulation in k-space) is employed extensively by 

researchers. There are several advantages in employing the k-space formulation. To mention an 

example, in Truesdell continuum mechanics Helmholtz decomposition allows for lamellar and 

solenoidal parts of a vector field to be considered separately. The curl and divergence operators in 

r-space simply turn into cross and dot products in k-space, respectively.  Kittel [21] and Brillouin 

[22] contain the details of the formulation of a wave problem in k-space.  In a rather recent study, 

Phani et al. [23] investigated plane wave propagation in infinite 2D periodic lattices using 

Floquet-Bloch’s principles. They formulated the exact finite element model of the problem based 

on the Timoshenko beam elements thus extracted frequency band gaps and examined spatial 

filtering phenomena in four representative planar lattice topologies viz. hexagonal honeycomb, 

Kagomé lattice, triangular honeycomb, and the square honeycomb. The plane-wave expansion 

method was used and the admissible plane wave solution was assumed attenuation-free which 

rendered Bloch’s theorem applicable. This method was used by Yang et al. [24] to formulate the 

frequency filtering phenomenon in a heterogeneous metal-composite joint (a lattice problem) and 

using a plane stress super-element. They showed the band structure in a model of this sort and the 

benefit that filtering effects provide for such a system. 

 

When an acoustic metamaterial is of the form of an infinite lattice with lumped masses and spring 

stiffness elements the band structure characteristics can be obtained using such a method. An 

interesting feature of such phononic metamaterials would then be the possibility to tailor the band 

structure by altering the inertial and stiffness properties of the primitive cell.   
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The objective of the present study is to investigate the band structure for anisotropic 2D acoustic 

metamaterials comprising locally resonant mass-in-mass units connected by spring stiffness 

elements in the simple topology of a complete graph on four vertices (K4)
‡
. The topology is 

selected in such a way that adequate redundancy requirement for quasi-static loading is also 

satisfied. Section 2 deals with the formulation of the representative anisotropic 2D acoustic 

metamaterial as an infinite lattice with lumped masses and discrete stiffness elements of different 

directional characteristics (thus the term “anisotropic”). The situation is similar to (but not exactly 

the same as) that of a locally resonant unit embedded in a matrix of a different material with 

vertical and horizontal distances of the units being different (source of anisotropy). In section 3 

Floquet-Bloch’s principle is applied to study the band structure of the 2D lattice. As the wave 

vector is assumed to be attenuation-free, the position of the primitive cell in the lattice is 

irrelevant to the change in the complex wave amplitude across the unit cell when a mechanical 

wave propagates in the lattice. The results obtained show the existence and the extent of the 

phenomenon of frequency filtering in this class of structures. This section is followed by section 4 

which is a parametric study on mass and stiffness ratios. Only these ratios (rather than 

dimensional values) are important and physically meaningful. Thus, for the sake of the present 

study non-dimensional parameters are extracted and utilised using Buckingham’s Pi-theorem. 

Only the case of “proportional” or “resembling” anisotropy is considered and the dependence of 

band structure on non-dimensional parameters observed is discussed. It has been shown that there 

is an optimal point at which the widest band gap of lower frequencies is achieved.  The study is 

concluded in section 5. 

 

2. The discrete parameter anisotropic 2D metamaterial 

 

2.1. Formulation. Consider an infinite 2D medium comprising a countably infinite (of cardinality   ) 

number of locally resonant mass-in-mass units as shown in figure 1 placed periodically at distances a 

and b in directions x and y, respectively, and connected by axial springs in the topology of a complete 

graph on four vertices (K4) as depicted in figure 2a.The resulting metamaterial, shown in figure 2b, 

forms a repetitive structure i.e. a heterogeneous acoustic latticed system which forbids elastic wave 

propagation within its frequency band gap. If the model’s material is linear elastic and geometric 

nonlinearity is disregarded the deformation of and interaction between the horizontal and vertical 

springs is assumed to have a negligible effect on the stiffness of springs i.e. the deformation of one 

spring does not affect the stiffness of either spring and the stiffness parameters of springs can be 

deduced independently and independent of the level of deformation. The stiffness and inertial 

                                                           
‡
 A complete graph on four vertices (K4) is obtained by placing four nodes (vertices or points) on a plane and 

connecting every pair of nodes by an edge (member or arc).  
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parameters of the mass-in-mass unit, along with the degrees of freedom, are shown in figure 1 and the 

geometric parameters are depicted in figure 2b where D is the diameter of the outer mass, a denotes the 

horizontal distance between the mass-in-mass units and b the vertical distance. The approximation in 

the calculations to be followed is based on the assumption that D is of a smaller order of magnitude 

compared to a and b i.e. D/min(a,b)<<1. This renders both masses to be dealt with as particles (point 

masses) and rotatory inertia negligible. The length of the inclined spring is shown by L= (a
2
+b

2
)

1/2 
. 

 

                                    

                      (a)                                                    (b)                                                   (c)           

 

Figure 1: (a) Schematic of a locally resonant mass-in-mass unit (the building block of the anisotropic 

metamaterial) (b) the degrees of freedom of the internal mass particle (c) the degrees of freedom of 

the centre of mass of the external mass 

 

 

 

 

(a) 

 

Figure 2: (a) the complete graph on four vertices (K4) (black circles denote the vertices (comprising 

both masses) and lines connecting them denote the edges), (b) the lumped mass-spring model 

 of an acoustic metamaterial 
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(b) 

Figure 2: Cont’d 

 

As mentioned before it is postulated that the rotatory inertia of outer masses is negligible thus each 

mass-in-mass unit can be regarded as two distinct particles interacting through the two internal 

springs only. There is further interaction between the outer masses of distinct units through outer 

springs.  The connectivity of the 2D system requires each inner mass to be connected to the relevant 

outer mass through two springs in linearly independent (e.g. orthogonal) directions possessing not 

necessarily the same stiffness. The connectivity of units can be of several different forms but as stated 

before a simple K4 topology is assumed here. This can be regarded as a local (in contradistinction to 

nonlocal) interaction as the radius of interaction horizon is kept at minimum (L). The two internal 

orthogonal springs adopted here account for all possible interactions between the inner and outer 

masses.  

 

A primitive cell of the lattice has been defined here the tessellating of which a units of length along 

horizontal (x) and b units of length along vertical (y) directions creates the entire metamaterial. Figure 

3 shows a unit cell and its connectivity as well as the indices used for inner and outer masses of the 

unit cell at the p-th row and the q-th column of the lattice.  
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Figure 3: The unit cell and the superscript labels for degrees of freedom  

 

As an assembly procedure is required to arrange the primitive cells into the lattice it must be noted 

that in the calculations of this study the masses in primitive cells are taken as quarter of the physical 

masses of the related mass-in-mass unit and the stiffness of the originally vertical and horizontal 

members in the primitive cell are half of those of the members in the lattice. It is evident that initially 

inclined members’ stiffness is preserved. In the sequel we shall derive the equations of motion for a 

representative mass-in-mass unit using Lagrange’s equations. We shall denote, as is customary, 

differentiation with respect to the time by an over-dot.   

 

2.2. Equations of motion. The mass-in-mass unit placed on the p-th row and q-th column is 

labelled (p,q)  (figure 3). The kinetic (T) and strain (U) energies which are additive integrals 

of the motion for a primitive cell of the acoustic metamaterial can be thus expressed by 

equations (1a)-(1f). 
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Where    and    signify the elongation/contraction of the inclined members and are obtained as 

follows: 

     
         

       
     

       
         

       
     

                

     
       

       
       

       
       

       
       

                 

Where as shown in figures 1b and 1c the displacement components u and v lie in directions x and y, 

and the indices i and e refer to internal (inner) and external (outer) masses, respectively. The stiffness 

of the inclined elements is depicted by   . The governing ODE’s for the primitive cell can now be 

obtained by using the principle of least action (Hamilton’s principle) as follows:   

 

                                                                                                                     
  

  

     

 

                                                                                                                                       

 

                                  
  

   
 

 

  
 
  

    
                                                                                        

 

Where S, in equation (3a), is the action integral and L the Lagrangian of the system defined by 

equation (3b). Equation (3c) is an equation of motion for a generic degree of freedom and for cell 

arbitrarily placed in the lattice. wi’s are generalised coordinates which, in this case, are the same as 

physical components of the displacement vector due to the choice of the Cartesian coordinate system. 

It is obvious that due to this choice of co-ordinates kinetic energy is only a function of generalised 

velocities and strain energy only a function of generalised co-ordinates thus: 
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If a system of non-Cartesian generalised coordinates were adopted the form of strain energy would be 

preserved while the kinetic energy would be a function of generalised coordinates and generalised 

velocities. In any case the kinetic energy would be a quadratic function of generalised velocities. 

Using Lagrange’s equations (3c) the equations of motion for the unit cell in position (p,q) are then 

derived as follows: 
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The 16 equations of motion above concern the unit cell and are arranged to reflect the horizontal 

(equations (5) and (7)) and vertical (equations (6) and (8)) motion of the internal (equations (5) and 

(6)) and external (equations (7) and (8)) masses. It will be shown that for harmonic wave propagation 

in the 2D resonator mass-in-mass latticed system formulated as above, waves of certain frequencies 

will not be able to pass through the medium, irrespective of their amplitude.   

 

3. Frequency analysis  

 

3.1. Floquet-Bloch’s principle. This principle (also known as Bloch’s theorem) renders possible 

the consideration of a single primitive or unit cell for studying wave propagation in the entire 

lattice structure. If the radius vectors of lattice points in a primitive cell are denoted by rj and 

the arbitrary displacement component z of one such a point by z(rj), then for a harmonic plane 

wave solution the displacement component is of the form: 

 

         
                                                                                                                      

Where Zj is the amplitude, ω is the frequency, t represents time and k represents the wave vector of 

the plane wave. Any other lattice point can be identified by vector summation of    translations in 

directions    of the associated point in the reference primitive cell (   being an integer).  In the case of 
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a 2D lattice this will lead to the radius vector of an arbitrary point in the lattice being defined as 

follows: 

                                                                                                       

In the case of a plane wave the displacement at an arbitrary lattice point is obtained as follows with 

reference to a similarly placed point in the reference primitive cell: 

                                                      
                                                                           

The wave vector in general possesses complex components i.e.           where the real part is 

called the “attenuation constant” and the imaginary part is termed the “phase constant” [21-23]. In 

simple terms Floquet-Bloch’s principle states the fact that for a lattice structure the change in complex 

wave amplitude across a unit cell due to propagation of wave without attenuation (i.e.     ) is 

independent of the position of the unit cell. Hence, by studying wave propagation in a primitive cell 

the whole lattice will in fact be studied. 

Another important concept is that of a Brillouin Zone (BZ). It is convenient to define a reciprocal 

lattice in the Fourier space (k-space) the bases of which satisfy the following condition of 

orthogonality: 

                                                                         
                                                                     

Where     is the second order identity tensor i.e. Kronecker’s delta which also acts as a substitution 

operator. The first BZ [22] is then defined as a Wigner-Seitz primitive cell in the reciprocal lattice 

space [21] following a simple procedure as explained below: 

(1) Select any lattice point in the reciprocal lattice and connect it to its immediately adjacent 

points using straight lines. A rectilinear isomorphic of a star graph is constructed with the 

initially chosen lattice point as the origin. 

 

(2) Construct the normal bisectors of the straight segments (edges). The minimal region 

bounded inside the bisectors is a Wigner-Seitz primitive cell which for the reciprocal 

lattice signifies the first Brillouin Zone.  

The first irreducible BZ is studied. Hence, the study of wave propagation in this region will provide 

the band structure for the whole lattice. A parameter s is defined to represent the arc length along the 

edges of the first irreducible BZ. It can be shown that the extraction of the band gap in the whole 

lattice will have been complete if wave vectors are restricted to the edges of this region [21]. Figure 4 
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depicts the k-space locus which along with the coordinates of the points given in table 1 specifies the 

irreducible zone.  

           

Γ P

QR

s

k-space 

locus

 

(a)                                                                           (b) 

Figure 4: (a) the Brillouin Zone (BZ) (b) the irreducible first Brillouin Zone 

 

 

 

 

 

Table 1: The coordinates of points of the first irreducible zone (k-space) 

 

3.2.  Band structure. The equations of motion derived in the previous section are used to study 

the band structure in the lattice, the primitive cell of which is given in figure 3, and 

consequently possesses the irreducible BZ of figure 4. By applying Bloch’s theorem to the 

first irreducible BZ in the k-space, equation (9) can be rewritten as  

                   
      with n being the band index, and TL a translation vector of the 

lattice in k-space.  The following relations among the k-space displacements can be obtained: 

                      
          

             
                                       

                      
          

             
                                           

Where un includes the horizontal components of the displacement vector for node i i.e.     
  

 

  
   . 

As an example the first equation in (13a) then represents:  
  

 

  
 
   

  
 

  
 
     

Γ P Q R 

(0, 0) (π/a, 0) (π/a,  π/b) (0, π/b) 
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vi is defined in a similar manner. The translation vector is TL=e2 for point 2, TL= e1+e2 for point 3 and 

TL=e1 for point 4.  Figure 5 depicts the dependent degrees of freedom which are associated with the 

nodes bounded in the dashed line. Equations (13) can be restated on a rearrangement of the degrees of 

freedom as equation (14) where the transformation matrix TB is defined by equation (15) (as in 

[23]):    

                                                                                                                         

 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
    

       
       

          
          

       
       
    
    
       
       

          
          

       
        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 (15), 

with        
   

      
   

      
   

      
   

      
   

       
   

      
   

      
   

            and  

       
   

        
   

     and where I is the 1x1 identity matrix i.e. I=1.The choice of this notation 

is preferable as a generalisation of the study to cases with more degrees of freedom or different 

topologies is rendered possible.   

1 4

2 3

 

Figure 5: The nodes bounded by dashed lines represent the dependent degrees of freedom,  

node 1 degrees of freedom represnt Bloch reduced coordinates 
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For the free vibration of the lattice the equations of motion (equations (5)-(8)) take the following 

conventional form: 

 

                                                                                                                                    

 

By applying Bloch’s theorem and considering plane wave solution of equation (9), equation (16) can 

be re-cast in the following form: 

 

                                                                                                                                            

 

Where      
      with   being the dynamic matrix defined as         and the superscript 

H denoting Hermitian transposition. Equation (17) then defines an algebraic eigenvalue problem as 

follows: 

 

                    
                                                                                                 

 

As it has been assumed that wave propagates with no attenuation in the 2D acoustic metamaterial, 

(i.e.        and       ), the associated eigenvalue problem only includes two components of the 

wave vector viz. the phase constants     and      which along with the frequency of the plane wave ω 

form the complete solution. 

 

As discussed earlier, due to the periodicity, the phase constants    and    can be specified to restrict 

the wave vector to the edges of the irreducible part of the 1
st
 Brillouin Zone. (i.e. k[-π, π]

d
 , where d 

is the dimension of the space (here 2)). Any other point k of the zone which is not in this rectangle can 

be rotated into a k-vector inside the rectangle by a symmetry operation that leaves the zone invariant. 

Based on these, dispersion surfaces can be computed by solving for the frequencies. The complete 

procedure for the derivation of the band diagrams as well as an example derivation is included in 

Appendix A. As a special case the 1D metamaterial of Huang and Sun [20] has been considered and 

its band diagrams have been extracted using the proposed method. These are then correlated with 

those obtained originally by Huang and Sun based on a different method. The two sets of results show 

the excellent correlation and confirm further the correctness of the results presented in this paper.  

The results for some cases are presented and discussed in the next section.  
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4. Parametric studies  

 

A set of non-dimensional parameters can be obtained based on the parameters defining the problem 

uniquely and by the application of Buckingham’s Pi-theorem. Let the number of dimensional 

parameters defining the model be   and the rank of the dimensionality matrix  , then the cardinality 

of the set of dimensionless parameters is    . These parameters along with   dimensional ones 

define necessarily the same problem, uniquely. The following dimensionless parameters are extracted 

for the problem under consideration for which     and    .                       

 

     
  

  
                                                                                                                                

     
   

   
                                                                                                                                

   
   

   
                                                                                                                                         

   
   

   
                                                                                                                                         

   
  

   
                                                                                                                                         

   
   

   
 
                                                                                                                                       

 

Where    is the response parameter (output), and all other parameters are inputs. As brevity is 

intended only a special case of anisotropy termed “proportional anisotropy” or “resembling 

anisotropy” is considered which assumes      . A total number of 27 models have been considered 

with the characteristics of each model being included in table 2 along with sizes of any full band gap. 

Where multiple band gaps were present, the sizes were ordered in this table from lower to higher 

frequencies. It may be more convenient, as well as geometrically more meaningful, to choose a 

different dimensionless parameter (       , instead of    , for the sake of the parametric studies in 

this section. Similarly, in the special case of anisotropy considered            . As mentioned 

previously, 3x3x3=27 models are considered for the sake of parametric studies of this section. Figure 

6 depicts a typical frequency band diagram and explains what is meant by full and partial band gaps. 

While certain frequencies are filtered when wave vector is in particular direction for the case of a 

partial band gap, a full (complete) band gap filters out a range of frequencies irrespective of wave 

direction. The frequency intervals other than band gaps (stop bands) are known as pass bands. Figures 
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7(1)-7(3) (example cases 2, 15 and 25) show some of the results of the parametric studies conducted 

while Appendix B includes the results for all 27 models concerned. In each such diagram the abscissa 

shows the edge arc length parameter (s) introduced in figure 4 and the ordinate is the non-dimensional 

frequency normalised with respect to the natural frequency of the internal mass in the horizontal 

direction (    
  

    
   as the reference frequency. The choice of this response parameter is 

physically more meaningful.  

 

 
α = 0.1 α = 1 α = 10 

β = 0.1 

γ = 0.50 Case 1,  Gap = 0.000 Case 4, Gap = 0.002 Case 7, Gap = 0.216 

γ = 0.75 Case 2,  Gap = 0.000 Case 5, Gap = 0.037 Case 8, Gap = 0.299 

γ = 1.00 Case 3,  Gap = 0.009 Case 6, Gap = 0.067 Case 9, Gap = 0.370 

β = 1 

γ = 0.50 
Case 10, Gaps = 0.017 

& 0.036 
Case 13, Gap = 0.017 Case 16, Gap = 0.229 

γ = 0.75 
Case 11, Gaps = 0.034 

& 0.011 
Case 14, Gap = 0.050 Case 17, Gap = 0.310 

γ = 1.00 Case 12, Gap = 0.048 Case 15, Gap = 0.078 Case 18, Gap = 0.379 

β = 10 

γ = 0.50 
Case 19, Gaps = 0.085 

& 0.048 

Case 22, Gaps = 0.087 

& 0.044 

Case 25, Gaps = 0.285 

& 0.022 

γ = 0.75 
Case 20, Gaps = 0.107 

& 0.022 

Case 23, Gaps = 0.116 

& 0.008 
Case 26, Gap = 0.363 

γ = 1.00 Case 21, Gap = 0.127 Case 24, Gap = 0.140 Case 27, Gap = 0.428 

 

Table 2: Models specifications and band gap sizes  

 

 

 

Figure 6: Band structure with Full band (forbidden) gap and Partial band gap     

 

Partial band gap 

Full band gap 



17 
 

A comparison of each case (i) with cases (i+1) and (i+2), (i=3k+1, k=0,1,…) shows the effect of 

parameter (γ=a/b). As γ, the aspect ratio of the primitive cell, increases a wider range of lower 

frequencies are filtered out while higher frequency components of response are no longer absent. This 

shows the beneficial effect of anisotropy in filtering higher frequency components of the response 

provided wave direction is known a priori. These results are consistent and are observed in all cases 

irrespective of mass and stiffness ratios. The cases γ=1 i.e. i=3k correspond to isotropic 2D 

metamaterials. In this situation the first irreducible BZ turns into a right triangle the sides of which are 

half the sides and half the diagonal of the square. Due to resembling anisotropy this implies complete 

lattice isotropy. The band structure in any such case must be symmetric about point Q on the k-space 

locus. This is observed in all such cases. In any case, the effect of this parameter on the band gap is 

less pronounced than that of the other two parameters involved i.e.   and  . 

 

Comparison of each case (i) with cases (i+3) and (i+6), (i=3k+1, k=0,3,…) depicts the effect of mass 

ratio on band structure. Mass ratio ( ), as defined by equation (19a), has a similar effect as aspect 

ratio i.e. by increasing this ratio; lower frequencies are filtered more efficiently while the situation is 

aggravated if filtering higher frequencies is of interest.  The effect of mass ratio on wave propagation 

can be perceived as the similar case of a simple tune mass damper (TMD) (the electrical analogue of 

which is an LCR circuit). This ratio can be tuned to provide the desired band structure. A TMD can 

filter out one frequency and an infinite reticulated structure such as a lattice or a metamaterial can 

filter out a range of frequencies. 

 

When case (i) is compared to cases (i+9) and (i+18), (i=3k+1, k=0,1,…) the effect of stiffness ratio on 

band structure is clarified. Stiffness ratio i.e.         plays a similar role as mass ratio in the 

sense that lower frequencies are more pronouncedly filtered out when this ratio increases, however; 

there is a difference here. As the stiffness ratio increases the frequency curves flatten which implies 

the wider range of frequency filtering for lower frequencies while preserving some higher frequency 

filtering. In the extreme case when      the two masses are connected by a rigid link. This implies 

no local resonance and the metamaterial behaves as an ordinary 2D lattice. Dispersion curves for this 

case can apparently be regenerated ignoring that the two particles are distinct and with the total mass 

of the two being condensed in the centre of mass as a single particle and connected to each other by 

external springs.  

 

The frequency band structures included can be looked into from other angles as well since 

dimensionless parameters can be rearranged. The degree and direction of influence of dimensionless 

parameters on band structure evidently allow for tailoring capabilities to be achieved for 

metamaterials comprising locally resonant mass-in-mass units. Furthermore; the anisotropy of the 

lattice adds a new dimension in the sense that an optimal point can always be found in the space of 
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alternatives for which an intermediate frequency is filtered. For harmonic and periodic pulses the 

meaning is obvious. The important task would thus be converting a transient pulse (in t-domain) to 

amplitude vs. frequency curve in Fourier space (ω-domain) and find out the damaging frequencies 

with highest amplitudes. Then tailoring the metamaterial would render these components impossible 

to propagate.    

 

(a) 

 

(b) 

 

(c) 

Figure 7: Band structure for three selected cases (2, 15 and 25) 
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The results above, as well as those of Appendix B, are auto-scaled to suit dispersion curves showing 

the dimensionless frequency normalised with respect to the local resonance frequency of internal 

mass. 

 

5. Conclusions 

 

The present study deals with extraction of band structure and the associated frequency filtering 

phenomenon in 2D anisotropic metamaterials composed of locally resonant mass-in-mass units 

connected by massless springs of a dissimilar material in a simple but from a redundancy viewpoint 

adequate topology i.e. the complete graph on four vertices (K4). The problem is formulated in the 

most general form and the equations of motion are derived by the application of Hamilton’s principle. 

The metamaterial under consideration forms a direct lattice, a primitive cell of which is defined in r-

space. Although the formulation is general, due to relatively large number of parameters involved 

only a special case of anisotropy has been considered which is termed “proportional” or “resembling”. 

Shock propagation without attenuation is assumed and Floquet-Bloch’s principle is applied. When all 

point symmetry operations are taken into account the irreducible Brillouin zone of primitive cell’s k-

space locus is obtained. The study of this zone suffices to extract band diagrams. The phenomenon of 

frequency filtering is observed and the band structure is extracted. A parametric study is conducted 

with 27 cases involved and the degree and direction of influence of each dimensionless parameter on 

the band structure is appreciated and expounded. It is shown that by tailoring the mass ratio, aspect 

ratio and stiffness ratio at a time both lower and higher frequencies can be filtered. The task would 

thus be to determine the damaging frequency contents of an external pulse load. As anisotropy 

introduces a new factor, the model proposed is more sophisticated and more capable of being tailored 

than its isotropic counterpart. Tuning can also be achieved by not restricting oneself to proportional 

anisotropy. One final remark regarding the dispersion curves presented here is in order. In the present 

study only phononic band gaps are studied as pass and stop bands are related to tuning in an acoustic 

medium. Phenomena as Bragg diffraction or Umklapp processes are not considered. Acoustic 

metamaterials are understood to be those with resonant units whose resonance frequency is well 

below the wavelength established by Bragg's criterion and possess such features as negative group 

velocity. While Bragg’s diffraction and associated phenomena are interesting in nature, the study of 

such cases are deemed irrelevant and fall beyond the scope of the present work. 
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Appendix A: 

 

a. Derivation of pass and stop bands for the 2D anisotropic phononic metamaterial:  

 

This section of appendix A presents and implements the algorithm used to derive the band 

diagram for the 2D anisotropic metamaterial under consideration. As a first step the harmonic 

plane wave solution of equations (A.1)-(A.3) is substituted into the equations of motion 

(equations (5)-(9)). For the horizontal displacement component, for instance, the 

displacement, velocity and acceleration are shown by equations (A.4)-(A.6).  The substitution 

in the first equation of motion (A.7) i.e. the horizontal motion of the internal mass results in 

equation (A.8). Other equations concerning vertical motion of the internal mass and 

horizontal and vertical motions of the outer mass are obtained in a similar fashion. These 

equations are generally very lengthy and need to be put into the matrix form. When the 

periodic boundary conditions are applied these equations are reduced to (A.9) where the 

reduced mass and stiffness matrices are introduced in (A.10) and (A.11). 

 

The harmonic plane wave solution: 

      
                                                           

     
                                                           

     
                                                               

Horizontal displacement/velocity/acceleration for the phonon in row p and column q:  

                
   

                                                                 

                                           
   

                                             

                    
   

                                                           

The first equation of motion: 
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Recast equation (A.7) using the harmonic plane wave solution of equations (A.4)-(A.6): 

   
   

       
   

      
   

     
   

                                

                                                                

 

   

         
         
         

         

                                                

 

                         

             
               

               

               

                                                                     

 

The entries being defined as: 

        

        

             
              

                    

And  

             
               

Where 

                                                       

                                                     

                      

                       

 

Once the problem has been formulated and the k-space locus established the following 

procedure will be followed to extract the band diagram: 

Initialisation: 

1. Define the irreducible Brillouin Zone relevant to the system being modelled. In all cases 

where    this is a rectangle in the k-space locus. In the case of    it is a right 

triangle. 

2. Set up as constants as many parameters as the rank of the dimensionality matrix (e.g. 

             ).  

3. Set up values defining the current plot (   ). 
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4. Calculate the remaining parameters using the current values of      i.e.      and spring 

stiffnesses. 

5. Set up the mass matrix.  

 

Main body calculations: 

 

1. Loop pointing to each of the four sides (or three sides in the case of    ) of the BZ in 

turn. 

2. Loop defining discrete points on the current side of BZ. 

3. Calculate the components of the wave vector for the current point on the BZ. The current 

values of   and   represent the abscissa for the dispersion plot through the arc length 

parameter s. 

4. Set up the modified stiffness matrix for the current   and   . 

5. Calculate the eigenvalues of the dynamic matrix        and solve equation (18). 

6. Sort the eigenvalues    in the ascending order. The   values are the ordinates of the 

dispersion plot. They can be used as absolute values or non-dimensionalised using a 

parameter of the same dimension. 

7. Store the values of the ordered triple           or the ordered pair      to be plotted. 

 

The procedure above was programmed into a Python script which produced the band 

structure. As a benchmark problem a 1D case from the literature was adopted and the results 

of the method were corroborated with those of the literature obtained using a different 

method. The following section encompasses the results. 

 

b. An example of correlation of the formulation with a 1D phononic metamaterial (Huang and 

Sun [20]) 

 

A Python script was used to generate the dispersion plots presented here, in order to validate 

this script we chose to replicate the 1D infinite latticed metamaterial and corresponding 

dispersion plot that Huang and Sun [20] give in figure (A.2).  The lattice is indicated in figure 

(A.1) some comments on how the 2D Python script is used to model this 1D lattice are given 

below: 
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Figure A1: the infinite 1D metamaterial (based on Huang and Sun [20]) 

 The stiffness values used in the script for    ,     and    are much smaller than the values for 

    and    .  Thus the modal frequencies for the two vertical modes are much lower than the 

frequencies for the horizontal modes and therefore have little influence on the band gap 

shown in the dispersion plot.  On close inspection of the dispersion plot in figure (A.2) it can 

be seen that the two curves for the vertical modes are shown as a green line on the horizontal 

axis. 

 The vertical component of the wave vector,   , remains zero at all times.  Referring to figure 

4 the relevant portions of the irreducible Brillouin zone are Γ-P & Q-R, i.e.   
      

 
    and     . 

 Following the normalisation method of Huang and Sun [20] the dispersion plot in figure (A.2) 

shows the frequency normalized with respect to the local resonant frequency of the internal 

mass,     
   

  
.  
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Figure A2: Validation of the dispersion plot matching that given by Huang and Sun [20] 

 

 

 

 

 

 

 

Appendix B: 
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 (a) 

Figure B1: Comparison of frequency pass and stop bands for (a)      , (b)       and (c)      
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Figure B1 (b) 
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Figure B1(c) 

 


