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Abstract. There exist a large literature on the application of q-statistics to the out-

of-equilibrium non-ergodic systems in which some degree of strong correlations exists.

Here we study the distribution of first return times to zero, PR(0, t), of a random walk

on the set of integers {0, 1, 2, ..., L} with a position dependent transition probability

given by |n/L|a. We find that for all values of a ∈ [0, 2] PR(0, t) can be fitted by

q-exponentials, but only for a = 1 is PR(0, t) given exactly by a q-exponential in the

limit L → ∞. This is a remarkable result since the exact analytical solution of the

corresponding continuum model represents PR(0, t) as a sum of Bessel functions with

a smooth dependence on a from which we are unable to identify a = 1 as of special

significance. However, from the high precision numerical iteration of the discrete

Master Equation, we do verify that only for a = 1 is PR(0, t) exactly a q-exponential

and that a tiny departure from this parameter value makes the distribution deviate

from q-exponential. Further research is certainly required to identify the reason for

this result and also the applicability of q-statistics and its domain.
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1. Introduction

It is well know that Boltzmann-Gibbs statistics is related to the exponential and

Gaussian functions because these functions are the distributions corresponding to

maximising the Boltzmann-Gibbs entropy. On the other hand, in cases where ergodicity

is broken say due to strong correlations or long range interaction exist Boltzmann-

Gibbs statistics can break down. It has been suggested that for a very wide class of

such situations including experimental [1, 2, 3, 4], observational [5, 6, 7] and examples of

model systems [8, 9, 10, 11, 12], the so-called q-statistics is the appropriate generalization

of Boltzmann-Gibbs statistics [13, 14]. In this case ordinary exponential and Gaussian

functions are replaced by q-exponentials and q-Gaussians, defined respectively as,

expq u =

{
[1 + (1− q)u]1/(1−q) , 1 + (1− q)u ≥ 0

0 , else
(1)

and

P (u) ∝ expq(−Bu2) (2)

which maximise Tsallis entropy Sq ≡ k (1−
∑

i p
q
i ) / (q − 1) under appropriate

conditions [13, 14]. Much of the evidence for this suggestion comes from often very good

quality fitting of the q-functions to simulated or observed data combined with the appeal

of the idea that the q-functions are the maximum distributions an appropriate entropy

of presumably very broad applicability. This view point suggests that when dealing with

systems that takes us beyond the realm of Boltzmann-Gibbs, the q-functions should be

the generic distribution functions. Accordingly we would expect q-functions describe

the system whenever the choice of systems parameters leads to non-Boltzmann-Gibbs

behavior. Given this, one would furthermore expect that even if we are not a priori

able to determine the specific value of the q parameter in Eqns. (1) and (2) we should

be able to obtain the relevant value of q by fitting since if q-statistics is the generic

generalisation of Boltzmann-Gibbs statistics the family of q-functions should exhaust

the functional forms distributions will assume. In order to understand better to which

extend this attractive picture apply in reality, two of the authors together with C. Tsallis

investigated a little while ago a one-dimensional Restricted Random Walk (RRW) model

[15]. The model consists of a random walker with a reflecting boundary condition on

the set of integers {0, 1, 2, ..., L}, where the probability to make a move is given by

g(n) = |n/L|a. The Master Equation for the model is straight forward to derive and

to solve numerically by iteration to any desired numerical precision. We studied the

sum of the positions of the walk after T steps. From very high precision numerics we

concluded that in the limit L→∞ and for a certain scaling of T and L the distribution

of this sum does not converge to the usual Gaussian given by the ordinary central limit

theorem, but rather the limit distribution is a q-Gaussian. Surprisingly the q-Gaussian

is only obtained for a = 1. For a 6= 1 neither a Gaussian nor a q-Gaussian appears to

describe the limit distribution of the sum of positions. It is not immediately clear why

the value a = 1 for the exponent of the transition probabilities is a special case.
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In order investigate how a = 1 can be a singular value, we here investigate the

distribution of first return times of the RRW. We solve the Master Equation for the

probability to find the walker at position n at time step t analytically exactly in the

continuum approximation and also solve numerically exactly the discrete version of

the walker. From the analytic expression, which gives the distribution in terms of a

Fourier-Bessel series, we are unable to identify anything singular about the value a = 1.

However, the numerical solution indicates that indeed for a = 1 the return distribution

is given by a q-exponential in the limit L → ∞, whereas for a 6= 1 the distribution is

close but not exactly equal to any q-exponential.

In the remainder of the paper we present firstly the analytic solution to the Master

Equation for the RRW model and investigate the first return distribution. We use

the analytic solution presented here to investigate the nature of the dependence of the

distributions on a, and we then assess the relevance of the q-statistics by numerically

approaching the same problem. We close with a discussion of our results and their

implications for how q-functions may relate to non-Boltzmann-Gibbs statistics.

2. The Restricted Random Walker

We consider a one-dimensional RRW model. We let n be the position of this model on

the set {0, 1, 2, ..., L}, and s be the discrete time variable. The walker is confined to the

integers between 0 and L, and therefore n ∈ {0, 1, 2..., L}. The motion of the walker is

controlled by the following process:

ns+1 =


ns + 1 with probability g(n)/2

ns − 1 with probability g(n)/2

ns with probability 1− g(n)

 (3)

where

g(n) =
∣∣∣n
L

∣∣∣a , a ∈ (0, 2) (4)

Noting that the process for a normal random walker requires that g(n) = 1 so that the

walker moves to the left or right with a probability of 1/2 at each time-step.

3. The discrete Master Equation for the distribution

The Master Equation for the distribution is given by

Pn(n, s+1) = Pn(n, s)+
1

2
g(n−1)Pn(n−1, s)+

1

2
g(n+1)Pn(n+1, s)−g(n)Pn(n, s).(5)

We note that the Master Equation given in Eq. (5) is valid for the bulk sites. At n = L

we have a reflective boundary condition, while at n = 0 we have an absorbing boundary

condition. The probability of the return for the RRW at n = 0, is therefore as follows:

PRD
(0, s+ 1) = Pn(0, s+ 1)− Pn(0, s) (6)



Restricted random walker and q-distributions 4

4. The continuous equation for the distribution

4.1. The Master Equation in continuous form

In order to obtain the continuous form of the Master Equation we introduce ∆x = 1
L

,

i.e., x = n∆x ∈
{

0, 1
L
, 2
L
, ..., 1

}
. Similarly we scale time and choose a time increment

∆t = 1
L

or t = s
L

. This ensures that the continuum approximation becomes exact in the

limit L→∞. Finally we replace g(n) by g(x), where g(x) = |x|a.
As L→∞, the Master Equation takes the form of the following continuum diffusion

equation

∂P (x, t)

∂t
=

1

2L

∂2

∂x2
[xa P (x, t)] (7)

A similar problem was studied in [16]. Using the separation of variables the solution for

P (x, t) can be found as

P (x, t) =
∑
λ

Aλ Pλ(x) exp

(
− λ

2

8L
t

)
. (8)

Assuming Qλ(x) = xa Pλ(x), the differential equation in space becomes

d2

dx2
Qλ(x) +

λ2

4xa
Qλ(x) = 0. (9)

The general solution of this equation can be written in terms of Bessel and Neumann

functions [17]

Qλ(x) = A
√
x J1/(2-a)

(
λx1−a/2

2− a

)
+B
√
xY1/(2-a)

(
λx1−a/2

2− a

)
. (10)

The boundary conditions are the following: At x = 0 given that Pλ(x) is finite,

Qλ(x = 0) is zero. At x = 1 we have a reflective boundary, therefore the current J , at

x = 1 is zero i.e. J(x, t) |x=1= 0. Further we know that ∂P
∂t

= −∂J
∂x

. Using this fact

together with Eq. (7) we can conclude that J(x, t) = − 1
2L

∂
∂x

[xa P (x, t)]. We know that

if d
dx
Qλ(x) |x=1= 0, this condition is satisfied.

The boundary condition at x = 0 implies that B = 0. The boundary condition at

x = 1 implies that λ
2−a has to be the zero root of the Bessel function of order

{
1

2−a − 1
}

.

Therefore λn
2−a = j1/(2-a) -1 ,n, where j1/(2-a) -1 ,n is the nth zero root of the Bessel function

of order
{

1
2−a − 1

}
.

So we arrive at the following solution for P (x, t)

P (x, t) =
∞∑
n=1

An
J1/(2-a)(j1/(2-a) -1 ,n x

1−a/2)

xa−1/2
exp

(
−

(2− a)2 j21/(2-a) -1 ,n

8L
t

)
. (11)

For the special case of a = 1, it turns out that

P (x, t) =
∞∑
n=1

An
J1(j0,n

√
x)√

x
exp

(
−
j20,n
8L

t
)
. (12)
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4.2. The solution of the coefficient An

Our initial condition for the problem is that at t = 0, all walkers are placed at n = 1.

We attempt to solve coefficient An for this initial condition. At t = 0 the distribution

is as follows:

P (x, 0) =
∞∑
n=1

An
J1/(2-a)(j1/(2-a) -1 ,n x

1−a/2)

xa−1/2
. (13)

To solve coefficients An we refer to the Fourier-Bessel series [18]. We note that we

have a slightly different problem here. We therefore present a modified version of the

Fourier-Bessel series below.

We note that Eq. (9) is a standard Sturn-Liouville equation [19], and as a result

its eigenfunctions are orthogonal. Therefore if a and b are different zeros of the Bessel

function of order ν − 1, then
∫
Jν(ax) Jν(bx)x dx = 0. If a → b the solution to this

integral is J2
ν (a)/2 [20]. Hence one can easily write∫ 1

0

Jν(jν−1,m x) Jν(jν−1,n x)x dx =
δm,n

2

[
J2
ν (jν−1,m)

]
(14)

where δm,n is the Dirac delta function.

Using the above result, we obtain

An =
2(1− a/2)

J2
1/(2-a)(j1/(2-a) -1 ,n)

√
L
J1/(2-a)

(
j1/(2-a) −1,n
L1−a/2

)
. (15)

For the special case of a = 1, this result reads

An =
1

J2
1 (j0,n)

√
L
J1

(
j0,n√
L

)
. (16)

We now consider the asymptotic behaviour for large t. Using the asymptotic

expansion for Jν(z) [18], as n→∞, An is asymptotically equal to

An ∼
√

2π j1/(2-a) −1,n

(
1− a

2

)
L−a/4 cos

(
j1/(2-a) −1,n
L1−a/2 − π

2(2− a)
− π

4

)
. (17)

This implies that as long as t
L

is not too small, the higher terms in the sum in Eq. (11)

can be ignored and P (x, t) will decay exponentially for t > L or in terms of the discrete

time step variable s > L2.

5. Analytic solution for the probability of return

Since the boundary at x = 0 is absorbing the first return time probability is given by

the current J(x, t) = − 1
2L

∂
∂x

[xa P (x, t)] evaluated at x = 1/L and we find

PR(0, t) '
√
L

2

∞∑
n=1

An J1/(2-a)

(
j1/(2-a) -1 ,n

1

L

1−a/2)
exp

(
−

(2− a)2 j21/(2-a) -1 ,n

8L
t

)
. (18)
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Figure 1. The comparison between the discrete Master Equation (Eq. (5)) and the

continuous analytic solution (Eq. (18)) for the first return time (as function of discrete

time)for (a) a = 0.75, (b) a = 1 and (c) a = 1.25.

Fig. 1 show a comparison between the exact numerical solution to the Master

Equation in Eq. (5) and the analytic solution in Eq. (18). The number of terms is fixed

to N = 1000 which ensures that the plotted analytic result is correct within an accuracy

smaller than the width of the plotted graph.

Unfortunately we have not been able to reduce the series in Eq. (18) to a simple

compact expression. In particular we were unable to relate analytically PR(0, t) to the

q-exponential forms given in Eq. (1). Since the Bessel functions in the series for PR(0, t)

are smooth functions of the index 1/(2− a) and 1/(2− a)− 1 one will not expect that

the description in terms of q-exponentials would be more appropriate for certain values

of the exponent a in Eq.(3) than for others. However, as we’ll see in the next section

high precision numerical analysis suggests otherwise.

6. Numerical analysis using q-exponentials

Next we solve by numerical iteration the discrete Master equation Eq. (5) to obtain

numerically exact results for the return time distribution in Eq. (6). These results are

exact within the numerical precision of the computer.
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L normalization

20000 0.9899

50000 0.9899

100000 0.9899

200000 0.9900

Table 1. For various values of L with a = 1, the normalizations attained from

simulations are given.

Using the definition of q-exponentials in Eq. (1), one can easily write the normalized

first return distributions as

PRD
(0, s) = PRD

(0, 0) expq (−βqs) (19)

where βq > 0 is the only free parameter to be fitted since the value of q can be obtained

from the asymptotic behaviour of the slope, which must be equal to 1/(q − 1). The

comparison between the discrete analytic results (Eq. (5)) and q-exponential (Eq. (19))

is given in Fig. 2.

Because the numerical study is limited to finite time the normalization will not be

exact, since we lack some contribution to the return distribution from the tail of very

large times. We therefore check (see Table 1) the extend to which the normalization is

fulfilled for the return times we are able to handle.

A very good agreement can easily be seen from the figure, but at this point we

make one more step to quantify this agreement better. To achieve this, we define a

quantity ∆, which is the area between the curve of the exact discrete result and related

q-exponential function. We know that for finite L the return time distribution cuts off

exponential for (discrete) time larger than L2. This means that the q-exponential form

will only be valid for all times in the limit L → ∞. If the distribution, in this limit, is

exactly a q-exponential, then ∆ must approach zero as the system size tends to infinity.

We plot in Fig. 3 this quantity as a function of system size for a = 1 case and also

for two very tiny departures from this case. We note that for a = 1 the limit L→∞ is

indeed consistent with a q-exponential. For a 6= 1 by just very small amount we obtain

limL→∞∆ > 0 and therefore strictly speaking the return distribution is not equal to a

q-exponential for a 6= 1.

7. Discussion and Conclusion

We have analytically and numerically analysed a simple random walk with a position

dependent transition rate with the aim to better understand when and why q-functional

forms describe the statistical properties of non-conventional systems. We focus on the

first return time distribution.

The analytic solution suggests that the return distributions are smoothly dependent

on the a parameter, which determines the transition probabilities of the RRW model.
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Figure 2. The comparison between the discrete Master Equation (Eq. (5)) and

q-exponential functions for the normalized first return distributions (as function of

discrete time) for the cases (a) a = 0.75, (b) a = 1 and (c) a = 1.25. In the inset of

each figure, we also plot the same data in q-log versus linear axis.

But despite of being unable analytically to relate the return time distribution to q-

exponentials, we found numerically that, in the limit of large systems sizes, the q-

exponential fits remarkably well the numerical exact result. And indeed for a special

value a = 1 the numerical analysis demonstrate that the return distribution becomes

equal to the q-exponential with q = 3/2 when the system size is taken to infinity.

The question then is what is so special about a = 1 that for this value of a the

q-exponential is equal to the considered distribution and not just a very good fit?

One can identify a few ways in which a = 1 is special. The mean of the return time

can be calculated directly (see e.g.[21] and [22]) without the need of knowing the entire

return time distribution. The average of the number of discrete time steps for the first

return from position n = 1 to n = 0, which we denote by 〈sR〉, is to leading order in the

system size L given by

〈sR〉 =


L/(1− a) for 0 < a < 1

L lnL for a = 1

La/(a− 2) for 1 < a < 2.
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Figure 3. The quantity ∆ as a function of the system size.

This indicates one way in which a = 1 is marginal.

The q-exponential found for a = 1 has index q = 3/2 which corresponds to a

functional form f(x) = a/(1 + x)2. We want to mention that this form is also the

functional dependence of the distribution of extinction times for a critical birth-death

process in which the rate of death is equal to the rate of birth [23]. This result is likely

to be related to the RRW studied here when a = 1, since the birth-death process is

related to a critical branching process, which on the other hand can be related to a

random walk with a transition probability proportional to the position [24].

Given these remarks it is difficult to decide whether the success of the fit to q-

exponentials is caused by some fundamental underlying principle or is accidental in

origin.

Acknowlegment

HJJ is greatful for very helpful and insightful discussions with Gunnar Pruessner and

Grigoris A Pavliotis. This work has been supported by TUBITAK (Turkish Agency)

under the Research Project number 112T083. U.T. is a member of the Science Academy,

Istanbul, Turkey.

References

[1] Beck C, Lewis G S and Swinney H L 2001 Phys. Rev. E 63 035303R

[2] Douglas P, Bergamini S and Renzoni F 2006 Phys. Rev. Lett. 96 110601



Restricted random walker and q-distributions 10

[3] Lutz E and Renzoni F 2013 Nature Physics 9 615

[4] Wong C -Y and Wilk G 2013 Phys. Rev. D 87 114007

[5] Cardone V F, Leubner M P and del Popolo A 2011 Mon. Not. R. Astron. Soc. 414 2265

[6] Betzler A S and Borges E P 2012 Astronomy & Astrophysics 539 A158

[7] Betzler A S and Borges E P 2015 Mon. Not. R. Astron. Soc. 447 765

[8] Tirnakli U, Beck C and Tsallis C 2007 Phys. Rev. E 75 040106R

[9] Tirnakli U, Tsallis C and Beck C 2009 Phys. Rev. E 79 056209

[10] Afsar O and Tirnakli U 2013 EPL 101 20003

[11] Cirto L J L, Assis V R V and Tsallis C 2014 Physica A 393 286

[12] Christodoulidi H, Tsallis C and Bountis T 2014 Europhys. Lett. 108 40006

[13] Tsallis C 1988 J. Stat. Phys. 52 479

[14] Tsallis C 2009 Introduction to Nonextensive Statistical Mechanics — Approaching a Complex

World (New York: Springer Press)

[15] Tirnakli U, Jensen H J and Tsallis C 2011 EPL 96 40008

[16] ben-Abraham D, Considine D, Meakin P, Redner S and Takayasu H 1990 J. Phys. A: Math. Theor.

23 4297

[17] Abramowitz M and Stegun I A 1964 Handbook of Mathematical Functions (USA: U.S. Department

of Commerce) page 362

[18] G. N. Watson G N 1944 A treatise on the theory of Bessel functions (London: Cambridge University

Press)

[19] Morse P M and Feshbach H 1953 Methods of theoretical physics / Part 1 (London: McGraw-Hill)

[20] http://www.maplesoft.com/ Maple 17: The particular computation cited in the thesis is performed

using Maple 17. Waterloo, Ontario: Maplesoft, a division of Waterloo Maple Inc.

[21] Pavliotis G A 2014 Stochastic Processes and Applications Diffusion Processes, the Fokker-Planck

and Langevin Equations (London: Springer Press)

[22] Redner S 2001 A Guide to First-Passage Processes (Cambridge: Cambridge University Press)

[23] Private communication with Pruessner G.

[24] Pruessner G 2012 Self-organised Criticality: Theory, Models and Charaterisation (Cambridge:

Cambridge University Press, Sec. 8.1.4.1)


