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Summary

The Aspergillus nidulans PacC transcription factor mediates gene regulation in response to alkaline
ambient pH which, signalled by the Pal pathway, results in the processing of PacC’? to PacC?’ via
PacC>. Here we investigate two levels at which the pH regulatory system is transcriptionally
moderated by pH and identify and characterize a new component of the pH regulatory machinery,
PacX. Transcript level analysis and over-expression studies demonstrate that repression of acid-
expressed palF, specifying the Pal pathway arrestin, probably by PacC?’ and/or PacC>, prevents an
escalating alkaline pH response. Transcript analyses using a reporter and constitutively expressed pacC
trans-alleles show that pacC preferential alkaline-expression results from derepression by depletion of
the acid-prevalent PacC’® form. We additionally show that pacC repression requires PacX. pacX
mutations suppress PacC processing recalcitrant mutations, in part, through derepressed PacC levels
resulting in traces of PacC?’ formed by pH-independent proteolysis. pacX was cloned by Impala
transposon mutagenesis. PacX, with homologues within the Leotiomyceta, has an unusual structure
with an amino-terminal coiled-coil and a carboxy-terminal zinc binuclear cluster. pacX mutations
indicate the importance of these regions. One mutation, an unprecedented finding in A. nidulans

genetics, resulted from an insertion of an endogenous Fot-1-like transposon.
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Introduction

Fungi, ubiquitous in nature, occupy niches of wide ranging and fluctuating pH values. This is enabled by
efficient pH homeostasis and a pH regulatory system which ensures the appropriate synthesis of
molecules with respect to environmental pH. The system mediating this response was first recognized
in Aspergillus nidulans (Caddick et al., 1986). Homologous systems occur throughout the ascomycetes
where they are known as the Pac/Pal system in the filamentous fungi (Caddick et al., 1986; Tilburn et
al., 1995) and as the Rim system in yeasts (Su and Mitchell, 19933, b; Lambert et al., 1997; Ramon et
al., 1999; Davis et al., 2000a, b). They also extend to the basidiomycetes (Aréchiga-Carvajal and Ruiz-

Herrera, 2005; O'Meara et al., 2010; Ost et al., 2015).

The fungal pH responsive regulatory domain encompasses a very large number of genes including
those involved in nutrient acquisition, ion homeostasis, alkali metal and pH tolerance, cell wall
metabolism, exported metabolite production, female development, sporulation, dimorphic shift, tissue
penetration and invasive growth (Lamb et al., 2001; Lamb and Mitchell, 2003a; Bensen et al., 2004;
Eisendle et al., 2004; Baek et al., 2006; Ruiz and Arifio, 2007; Nobile et al., 2008; Alkan et al., 2013;
Trushina et al., 2013; Bertuzzi et al., 2014; Chinnici et al., 2014; O'Meara et al., 2014). As many of these
activities or attributes are crucial in a host environment, pH regulation is an important virulence
determinant of fungal pathogenicity of animals, including humans, plants and fungi themselves (Davis,
2000a; Davis, 2003; Bignell et al., 2005; Moreno-Mateos et al., 2007; Nobile et al., 2008; Zou et al.,
2010; Alkan et al., 2013; Trushina et al., 2013; Bertuzzi et al., 2014; O'Meara et al., 2014) and reviewed

in (Pefialva et al., 2008; Davis, 2009; Selvig and Alspaugh, 2011; Cornet and Gaillardin, 2014).
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The mechanism of pH regulation has been studied largely in A. nidulans and Saccharomyces
cerevisiae with additional contributions particularly from work in Candida albicans and Yarrowia
lipolytica. The pH response is mediated by the three Cys2-His2 finger transcription factor, A. nidulans
PacC (Tilburn et al., 1995) or Rim101 in S. cerevisiae (Su and Mitchell, 1993b). Under acidic conditions
the A. nidulans PacC full length form, PacC72, is protease inaccessible due to intramolecular-
interactions involving the C-terminal moiety (Espeso et al., 2000). At neutral to alkaline ambient pH
PacC undergoes two-step proteolysis. The first step, which occurs in response to pH signalling, removes
approximately 180 C-terminal residues to yield PacC>? (Diez et al., 2002); the second, almost certainly
mediated by the proteasome, removes a further ~240 residues to give the PacC”’ processed form, and
is pH-independent (Hervas-Aguilar et al., 2007). PacC”’ predominates in the nucleus (Mingot et al.,
2001), where it activates alkaline expressed genes, such as ipnA (isopenicillin-N synthase) (Espeso and
Penalva, 1996) and represses acid expressed genes (Tilburn et al., 1995), such as gabA (GABA
permease) (Espeso and Arst, 2000). However, PacC’? and PacC>® can bind a PacC DNA target site (Diez
et al., 2002) and, as they are not excluded from the nucleus (Mingot et al., 2001; Davis, 2003;

Fernandez-Martinez, MAP, EAE, unpublished), might also participate in gene regulation.

pacC mutations which remove the PacC’? C-terminus or otherwise disrupt its intramolecular-
interactions result in an open, proteasome-accessible conformation leading to constitutive PacC
processing and alkalinity mimicry (Orejas et al., 1995; Tilburn et al., 1995; Espeso et al., 2000). Loss-of-
function mutations in the pal (pH signal transduction) genes or pacC result in acidity mimicry (Arst et
al., 1994; Tilburn et al., 1995; Fernandez-Martinez et al., 2003). It appears that traces of PacC?’ are
produced independently of pH signal transduction from a minor proportion of protease accessible

PacC’? which exists in equilibrium with the majority of protease inaccessible PacC’® (Pefialva and Arst
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et al., 2004; Pefias et al., 2007; Pefialva et al., 2008). This possibly explains the less extreme phenotype
of null pal compared to null pacC mutations, which result, additionally, in cryosensitivity and reduced

growth and conidiation (Tilburn et al., 1995; Fernandez-Martinez et al., 2003).

pH signalling occurs at the plasma membrane in A. nidulans (Galindo et al., 2012; Lucena-Agell et al.,
2015) and S. cerevisiae (Obara and Kihara, 2014) where it involves dedicated Pal (Arst et al., 1994) (or
Rim) pH signal transduction components and the participation of certain endosomal sorting complex
required for transport (ESCRT)-I, -1l, and -1l components (Xu et al., 2004; Calcagno-Pizarelli et al., 2011)
reviewed by (Pefalva et al., 2014). The plasma membrane sensor is PalH [Rim20 and Dgf16 in S.
cerevisiae and C. albicans (Barwell et al., 2005; Rothfels et al., 2005)]. PalH localization is assisted by
Pall (Calcagno-Pizarelli et al., 2007) and stabilized by strong interactions between the PalH cytoplasmic
tail and the arrestin PalF (Herranz et al., 2005) (Rim8). PalF becomes phosphorylated and ubiquitylated
in alkaline media (Herranz et al., 2005) and the importance of this ubiquitylation, in A. nidulans, is
demonstrated by the ability of genetically encoded ubiquitin attachment to PalF to signal constitutively
(Hervés-Aguilar et al., 2010). PalF recruits Vps23 of ESCRT-I (Herrador et al., 2010; Galindo et al., 2012),
which is thought to recruit ESCRTII components. Vps32 of ESCRT-III participates in the incorporation of
PalC (Galindo et al., 2007) [probably YGR122w in yeast and named YIRim23 in Y. lipolytica (Blanchin-
Roland, 2011)] which is required for inclusion of PalA (Galindo et al., 2012) (Rim20). PalA binds PacC’?
via two YPxL(l) motifs flanking the signalling protease (PalB) cleavage site (Vincent et al., 2003). Finally
the cysteine protease PalB (Denison et al., 1995) (Rim13) is recruited through interaction of its MIT
domain with Vps24 (Rodriguez-Galan et al., 2009; Lucena-Agell et al., 2015). The transient signalling

foci are dissociated by Vps4 (Galindo et al., 2012).
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Mutations in pacC which prevent PacC signalling proteolysis affect the signalling proteolysis site (Diez
et al., 2002; Pefias et al., 2007) or PalA binding sites (Vincent et al., 2003) and are phenotypically
identical to those in the pal signal transduction genes except that, unlike pal mutations which are

recessive, they are co-dominant with the wild-type allele in diploids (see below).

The Pac/Pal system mediates a rapid and effective response to alkalinization, switching genes on or
off as appropriate to ensure survival in these adverse conditions. However fungi also grow in acidic
environments and normally prefer to do so. A. nidulans can grow in media of pH values as low as pH 2
(Dijkema et al., 1986) and in a study of the influence of pH on the growth of toxigenic Aspergillus,
Penicillium and Fusarium species, the majority of the 61 isolates were able to grow around pH 3-3.5
and some as low as pH ~2 (Wheeler et al., 1991). To adapt to acidic conditions, fungi must be able to
control, even switch off, the alkaline ambient pH response. Here we describe, for A. nidulans, a

tripartite system whereby this is achieved which includes a new player in the pH response.
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Results
New insights into the pacC/pal pH regulatory response.
pacC autoregulation, revisited.

pacCis an alkaline expressed gene. In wild-type strains pacC transcript levels are low under acidic
conditions and relatively high under alkaline conditions (Tilburn et al., 1995). In addition, they are low
in acidity mimicking pal and certain pacC+/' partial loss-of-function strains and relatively high in pacC*
constitutive, alkalinity mimicking mutants, irrespective of the growth pH (Tilburn et al., 1995). This
strongly suggested that pacC is positively regulated by PacC?, in a similar manner to alkaline expressed

structural genes, such as ipnA (Orejas et al., 1995; Tilburn et al., 1995; Espeso and Pefialva, 1996).

However, the hypothesis of pacC positive autoregulation failed to explain a number of subsequently
observed phenomena. Firstly, in contrast to pal alleles which are recessive to the respective wild type
alleles in diploids, pacC processing recalcitrant alleles pacC” 20205, pacC* 207, pacC*"209 and pacC”
210 are co-dominant with the wild type allele in diploids, a feature which enabled the isolation of
pacC+/'207, pacC+/'209 and pacC+/'210 as suppressors for GABA utilization in a homozygous areA’
(unable to use nitrogen sources other than ammonium) diploid (Arst et al., 1994; Espeso and Arst,
2000; Diez et al., 2002; Fernandez-Martinez et al., 2003; Vincent et al., 2003). Secondly, and in
agreement, there are reduced levels of expression of pacC°700, a GFP tagged allele encoding PacC?, in
a diploid containing pacC+/'209 as compared with that of a pacC700 haploid strain or of pacC700 in a
diploid strain containing a pacC null allele, as detected by epifluorescence microscopy (Fig. S1A).
Thirdly, there exists an apparently paradoxical phenomenon whereby the hypostasis of a pal allele and

the epistasis of a pacC* allele can be inverted by ectopic over-expression of pacC" from a strong
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heterologous [alcA (alcohol dehydrogenase)] promoter in a pacC pal strain (Fig. S1B and JT, J Mingot,
M Orejas, T Suarez, EAE, MAP, HNA, unpublished). All of these observations indicate that there is a

negative function or activity associated with the PacC unprocessed form.

The testing of the original hypothesis directly was enabled by the isolation of the pacC 6309 null
allele, which differs from the wild type transcript in only three nucleotides and contains a chain
termination mutation in the physiological start codon, such that it can specify at most PacC residues 1
through 4 by using an alternative start codon (Fernandez-Martinez et al., 2003). The northern blots in
Fig. 1A show the results of pH shift experiments. In the wild-type strain pacC transcript levels are low
under acidic conditions and rapidly rise upon alkalinization to peak approximately 15 min after shifting,
falling to steady state levels after about 60 min. In contrast, in the pacC 6309 null strain, pacC
transcript levels are largely constant throughout and considerably elevated relative to those of the
wild-type strain under acidic conditions. As PacC’?is the almost exclusive PacC form in acidic media,

this strongly implicates PacC’? as a repressor of pacC.

To investigate the possibility of PacC’? repressor function further we used pacC6309 transcript as a
reporter for pacC expression in the presence and absence of different pacC alleles in trans, expressed
from a moderately strong constitutive promoter. Fig. 1B shows that pacC 6309 transcript levels (lane 2)
are unaffected by the expression of GFP::PacC5-251, which approximates PacC?, (lane 1, merodiploid)
but are undetectable in the presence of GFP::PacC5-678 under acidic conditions where PacC is almost
exclusively in the PacC’* form (lane 3). In the same strain, after 45 min of exposure to alkaline medium,
which results in very extensive processing of PacC’* (see Fig. 2), pacC6309 transcripts are restored to

appreciable levels (lane 4). These results give further compelling evidence that PacC’%is a repressor of
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pacC expression. Furthermore, PacC?’, originally hypothesized to be an activator of pacC expression

(Orejas et al., 1995; Tilburn et al., 1995), appears not to have an effect.

These data strongly suggest that pacC is negatively autoregulated by PacC’?and is alkaline-expressed
due to derepression which occurs upon PacC’? processing in response to pH signalling. Thus, pacC
processing recalcitrant alleles are negatively trans-acting in diploids with wild type or constitutive
alleles because their gene product represses the heteroallelic promoter (Fig. S1A). In a similar way, in a
haploid, a pal allele becomes epistatic to a pacC allele when pacC' is ectopically over-expressed due

to large amounts of PacC’? switching off expression of the pal-independent pacC® allele (Fig. S1B).
Transcriptional regulation of palF prevents a run-away alkaline pH response.

Fig. 2 illustrates PacC processing. In response to alkalinization, PacC’%is processed via PacC>® to
PacC?’. The response is very swift with PacC>® appearing after 4 min (Panel A) and, in fact, as early as
2.5 min (data not shown). After 30 to 60 min PacC’? has disappeared yet between 90 and 150 min
PacC’? begins to accumulate again, indicating that PacC processing has become limited at the signalling
proteolysis step (Fig. 2B). Therefore, the possibility of pH regulation of transcription of the pH
regulatory pal genes and the consequences of their over-expression were explored. palA, -B, -C, -H and
-l were found to be expressed largely independently of pH and/or the mutational status of other pH
regulatory components, ie., pacC and palF (Denison et al., 1995; Negrete-Urtasun et al., 1997; Denison
et al., 1998; Negrete-Urtasun et al., 1999). However, palF was found to be an acid expressed gene (Fig.
3A and B). palF transcript levels are highest under acidic conditions and in acidity mimicking mutants
and relatively low under alkaline growth conditions and in alkalinity mimicking mutants (Fig. 3A).

Moreover, on shifting from acidity to alkalinity, palF transcript levels rapidly fall very low between 30
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and 120 min after transfer, being somewhat restored after 4 hours (Fig. 3B). This transcriptional
behaviour resembles the temporal pattern of PacC processing and suggests that expression of palF
might be rate-limiting in pH signal transduction. This is supported by over-expression studies (Fig. 3C
and D) which show that palF expression from the strong, inducible alcA (alcohol dehydrogenase)
promoter results in alkalinity mimicry, as indicated by reduced acid phosphatase expression on
ethanol-containing, low phosphate medium, whereas there were no such phenotypic consequences of
the over-expression of palA, -B, -C, -H or -/ (data not shown). In addition, palF over-expression is
sufficient to suppress the very leaky palB524 mutation (Pefias et al., 2007), for acid phosphatase
expression (Fig. 3D) and to rescue partially certain leaky mutations in pa/H and palC and pall32 (data
not shown). [pall32 is a null allele which, like all pall mutations, has a less extreme phenotype than
non-leaky mutations in the other pal signal transduction pathway genes (Denison et al., 1998)]. palF
over-expression from a modified gpdA (glyceraldehyde 3-phosphate dehydrogenase) promoter
(gpdA™™) (Pantazopoulou and Pefialva, 2009) also results in alkalinity mimicry as detected in petri dish
assays [Fig. 3F and (Hervés-Aguilar et al., 2010)]. Western blot analysis demonstrates that gpdA™™
driven palF over-expression results in elevated levels of PacC processing and largely overrides
attenuation of pH signalling as manifested by the much reduced levels of PacC’? detectable 60 min and
120 min after shifting (Fig. 3E). The appreciable levels of PacC®’ produced under acidic growth

conditions (Fig. 3E) are indicative of pH signalling and suggest that, in agreement with the alkalinity

mimicking phenotype, constitutive expression of PalF results in an inappropriate pH response.

These results suggest that the A. nidulans pH regulatory response is subject to negative feedback in a
fashion similar to that involving RIM8 of C. albicans and S. cerevisiae (Ramon et al., 1999; Porta et al.,

1999; Lamb and Mitchell, 2003). These results also support some recent mathematical modelling

10
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predictions which suggest the presence of a negative feedback loop in the PacC activation process (Ke

etal., 2013).
pacX: a new gene involved in the pH regulatory response.
Identification and genetic mapping of pacX.

The first identified pacX mutation, designated pacX1, was isolated, following UV mutagenesis of a
pacC+/'20205 (processing recalcitrant) strain, amongst numerous (largely intragenic) revertants
selected for their ability to grow at pH 8.0. pacX1 which segregated as a single trait, independently of
pacC, was localized further to chromosome VIII using parasexual genetics. In view of this localization
and the pacX1 phenotype, which includes the partial restoration of alkaline phosphatase biosynthesis,
it seemed possible that pacX1 is allelic to suAlpalB7, a mutation linked to the argC3 translocation
breakpoint on chromosome VIII, isolated and characterized by Dorn (1965), during his studies of the
phosphatases of A. nidulans. Guided by these results, and those of Clutterbuck, (1993), pacX1 was
mapped 8.3 and 16 map units respectively between the argC3 translocation breakpoint and hisC38.

Allelism with suA1palB7 and suD2palA1, also isolated by Dorn (http://fgsc.net/Archive/nid.html), was

confirmed by further genetic analysis (data not shown) and determination of mutant sequence

changes (see below).
Characterization of the pacX mutant phenotype: by-passing pH signal transduction

pacX1 was found to suppress loss-of-function mutations in each of the pal pH signal transduction
genes, specifically, palAl, palB7, palC4, palF15, palH17 and pall30. Phenotype testing of the pacX1

palA™, -B,-C, -F,-H and -/, pacX1 pacC+/'20205 (Fig. 4), pacX1 pacC+/'207, pacX1 pacC+/'209 and pacx1

11
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pacC+/’210 (data not shown) double mutants showed that, in addition to partial restoration of growth
at pH 8.0 and alkaline phosphatase biosynthesis, pacX1 reduces the derepressed levels of acid
phosphatase to levels intermediate between those of the pafl, pacC+/'20205, pacC+/'207, pacC+/'209
and pacC+/'210 strains and those of wild type strains and pacX1 not only abolishes molybdate
sensitivity, it results in moderate molybdate resistance relative to wild type strains and similar to that
observed in pacC* constitutive strains. pacX1 single mutants are alkalinity mimicking, molybdate
resistant and have somewhat elevated levels of alkaline phosphatase and reduced levels of acid
phosphatase (hence the pac designation) (Fig 4). In addition, they have slightly reduced conidiation, at
pH 6.5 and they are resistant to lithium toxicity. Thus, in Petri dish tests, pacX1 single mutants

resemble weak pacC* constitutive mutants.
The range of pacC alleles phenotypically modified by pacX mutations.

Numerous pacX mutations have been selected as suppressors of pal or pacC‘L/’ processing recalcitrant
mutations (Table 1). All extant pacX mutations have the same phenotype and pacX mutant sequence
changes clearly show that these are loss-of-function (see, for example, pacX3503 and pacX20, Table 1).
The range of pacC alleles affected by pacX mutations was further explored by phenotype testing of a
variety of pacC alleles in combination with pacX mutations. The results (Table 2) demonstrate that
pacX mutations are unable to suppress pacC null mutations and severe pacC truncation alleles.
However, pacX mutations enhance the toxicity of the over-expressed alcA’::PacC5-252 allele, which
approximates the PacC processed form. In addition, pacX1 is additive with the weak constitutive
mutations pacC234, pacC 39 and pacC20042; that is, the pacC® pacX1 double mutants are more

alkalinity mimicking than the pacC* single mutants (Table 2 and data not shown). The epistasis of pacC

12
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alleles to pacX alleles strongly suggests that PacC acts downstream of, or is more directly involved than

PacX in the pH regulatory response.

Whilst it appears that a pacX phenotypic manifestation requires the PacC processed form to be
largely functional, not all conforming alleles are affected. For example, the alkalinity mimicry of pacCC/'
20000 (5-251 + 5) is enhanced, with respect to morphology, by pacX’, but pacCC/'20601 (5-260) (Mingot
et al., 1999), which contains the intact processed form and has a similar phenotype, appears to be
unaffected. pacC'69 (L340S) and pacC 50 (5-266) (Tilburn et al., 1995; Mingot et al., 1999; Espeso et al.,
2000) do not appear to be phenotypically enhanced by pacX1, possibly because increased alkalinity
mimicry in these strong constitutive backgrounds requires sensitivity beyond that of Petri dish tests.
Lack of suppression of acidity mimicking mutants pacC+/'230 (PacC5-238fs) and pacC+/'206 (PacC5-
310fs) (Mingot et al., 1999) which are both suppressed by mutations affecting the proteasomal
degradative pathway (JT and HNA, unpublished) suggests that the effects of pacX1 are insufficient to
offset this process. Possibly for similar reasons, pacC+/'7601 (5-379fs) (Tilburn et al., 1995), which
contains a long frame-shifted tail, is also unaffected. pacC504 (pacC5) M5I (5-523) (Tilburn et al., 1995),
is a muted pacC's allele due to mutation removing the preferred translation start site and lack of
additivity (data not shown) suggests that pacX1 is insufficient to compensate for this. Hypostasis (data
not shown) of pacX3 to pacC700 pacC+/’70001 which prevents PacC?’ nuclear import (Fernandez-

Martinez et al., 2003) implies that suppression by pacX3 requires appropriate localization of PacC?’.
Molecular effects of pacX” mutations.

pacX mutations result in derepression of pacC expression. Northern blots in Fig. 5A demonstrate that,

after growth in neutral media, pacX1, pacC+/'20205 pacX1 and palB7 pacX1 strains all have elevated

13
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pacC transcript levels, relative to the respective pacX” strains, similar to those in the pacC14 strain. In a
pH shift experiment (Fig. 5B), the pacX20 strain has constant pacC transcript levels, independent of
growth pH and similar to those obtained in the wild-type strain in response to alkalinization. Thus pacX
mutants resemble pacC null (Fig. 1A) and pacC® (Fig. 5A and data not shown) mutations in having

derepressed pacC transcript levels.

The effects of pacX1 on pacC transcript levels are reflected in PacC DNA binding activity detected in
EMSAs where there are considerably increased amounts of the lower mobility complex containing
PacC’? and/or PacC™ from protein extracts of a pacX1 strain relative to those from a wild type strain
from neutral grown mycelia (Fig. S2). The relatively modest increase in the amount of the higher
mobility complex, containing PacC?’, from the pacX1 strain indicates that pacX1 does not override the
palF transcriptional negative feedback loop (Fig. S2A). In pal or pacC+/'20205 pacX1 double mutants,
which are phenotypically pH independent, there are increased amounts of both the lower and higher

mobility complexes relative to those in the pal or pacC+/'20205 single mutants (Fig. S2B and C).

Western blot analyses of shift experiments in Fig. 5C, where all three PacC forms can be
distinguished, confirm that the increased amounts of complexes detected in EMSAs from the pacX
strains are due to increased amounts of protein, rather than improved binding efficiencies. In addition
they demonstrate that prior to the 120 minute time point all PacC forms, where present, are
considerably elevated in the pacX20 strain relative to those in the wild type. After 120 min PacC levels
in the pacX20 strain have fallen and both the relative proportions and the amounts of the three PacC

forms are very similar in both strains.

14
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PacC’? levels are also highly elevated in the pa/B38 pacX20 strain relative to those in the (null) pa/lB38
single mutant and similar to those obtained in the pacX20 single mutant under acidic conditions (Fig.
5C). On shifting to alkalinity, levels of PacC’? remain fairly constant in both palB38 strains and
appreciable amounts of PacC?’ and partial degradation products in the pal/B38 pacX20 strain are
detectable throughout. These bands are attributable to C-terminal, processive, Pal-independent
proteolysis of the minor proportion of PacC’? having an ‘open’, and proteasome accessible,
conformation which exists in equilibrium with the much more numerous PacC’* molecules which are
‘closed’ and proteasome resistant (Espeso et al., 2000; Diez et al., 2002; Hervas-Aguilar et al., 2007;

Penas et al., 2007; Pefialva et al., 2008).
Cloning the pacX gene by transposon mediated mutagenesis.

Extensive attempts to rescue the pacX1 mutant phenotype by co-transformation of an argB2 pacX1
palA1 strain with plasmid plLJ16 carrying argB* (Johnstone et al., 1985) and chromosome VIII allocated
Lorist or pWE15 derived cosmids (Brody et al., 1991) selecting for argB" and testing for the palA1l
alkaline sensitivity phenotype on pH 8.0 medium were unsuccessful. A subsequent PCR analysis
suggested that pacX may be absent from these libraries. Transposon mediated mutagenesis was
chosen as an alternative cloning strategy because of the ease with which a pacX mutation could be
selected. This took advantage of available strains carrying the modified Impala transposon from
Fusarium oxysporum tagged with the yA gene, required for green pigmentation of conidia, inserted in
the promoter of the niaD gene thus resulting in the inability to utilize nitrate (Li Destri Nicosia et al.,
2001). A yAA::Ncpyrd, pabaAl, niaD::impala::yA®, pacC+/'20205 strain was constructed and

transposition was found to occur at a frequency of ~107. Conidia of this strain were spread on pH 7.5

15
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medium with nitrate as sole nitrogen source to select simultaneously for pacX” mutations and
restoration of the niaD" genotype by excision of the Impala transposon. Out of an estimated 600,000
transposition events one colony was obtained. The mutant (BG2) was found, by diploid analysis, to
contain the insertion on linkage group VIII. This location and the phenotype of BG2 strongly suggested
that the insertion had occurred in pacX, as subsequently confirmed (see below). pacX genomic and

cDNAs sequences were determined as described in Experimental Procedures.

PacX sequence

The pacX sequence specifies a 661 residue protein. A zinc binuclear cluster DNA binding motif is
located towards the carboxy-terminus between residues 445 and 472 and a region predicted to form a
coiled-coil structure occurs in the region of residues 178 to 224 (Fig. 6 and Fig. S3). In BLAST searches
of the databases the region containing the putative DNA binding domain and the amino-terminus
extending to residue 228 are the most highly conserved (see below), indicating their functional
importance (Fig. 6, Fig. S3 and Fig. S4). Different algorithms all predict a nuclear localization for PacX;
ngLOC (17.6 % nuclear 14.5% cytoplasmic), PSORT Il (73.9% nuclear) with cNLS mapper predicting
highly probable monopartite (TPGKRPRSDSGEF, residues 10 to 22, score 6.5) or bipartite
(ETPGKRPRSDSGEFPPIASKVPKT, 9 to 32, score 9.0) NLSs. An NES (nuclear export sequence) is predicted

with high probability by NetNES between residues 179 and 191 (Fig. 6).

The coiled-coil prediction for A. nidulans PacX is 1 and therefore very strong (Fig. S3). The distancing
of the coiled-coil region from the zinc binuclear cluster is somewhat conserved amongst PacX
homologues (Fig. 6 and Fig. S3). Coiled-coils are putative oligomerization domains and the role of the

coiled-coil is supported by the partial dominance of pacX1 vis a vis pacX (Fig. S5). pacX1 results in a
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frame-shift after residue 301 (Table 2), thus conserving the coiled-coil element but deleting the Zn
cluster. A number of point mutations map within the putative coiled-coil element (Fig. S3, S4 and

Tablel).

The PacX putative DNA binding domain (Fig. 6) conforms to the consensus sequence of zinc binuclear
cluster motifs (Todd and Andrianopoulos, 1997; MacPherson et al., 2006) characteristic of, even if not
completely exclusive to, fungi (Scazzocchio, 2015). Zinc binuclear cluster DNA binding motifs are almost
universally at the amino-terminus of cognate transcription factors (MacPherson et al., 2006); however
that of PacX is towards the carboxy-terminus, which resembles S. cerevisiae Ume6p (Strich et al., 1994)
and C. albicans Czflp [(Whiteway et al., 1992) reviewed by (MacPherson et al., 2006)]. Infrequent but
not unique to PacX and its orthologues are the two Pro residues N terminal to the first Cys, and the
absence of a Pro residue one or two residues N-terminal to the fourth cysteine (Fig. S4). The
dimerization element is usually in Zn-cluster proteins a few residues C-terminal to the DNA binding
motif, and it is typically shorter than the one seen in PacX, such as 15 residues for Gal4, 19 residues for
Pprl (Marmorstein et al., 1992; Marmorstein and Harrison, 1994) with the maximal length predicted
for such a C-terminal coiled-coil dimerization domain being 25 residues (Schjerling and Holmberg,
1996). This contrasts with the 46 residue-long putative coiled-coil, 221 residues amino-terminal to the
first Cys of the Zn cluster extant in PacX. It could be proposed that while the function of the standard
dimerization domain found in Zn binuclear clusters is to permit the recognition of DNA inverted,
everted or direct repeats separated by a few base pairs [e.g. 11 in Gal4, 6 in Pprl and UaY
(Marmorstein et al., 1992; Marmorstein and Harrison, 1994; Suarez et al., 1995)], the probable

dimerization of PacX may serve an altogether different function.
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Phylogenetic analysis

Searching with blastp using the PacX protein sequence as in silico probe of the 431 fungal genomes
available in the Joint Genetics Institute database on the 30th of January 2015 showed PacX homlogues
to be present in the Pezizomycotina and not in any other fungal taxon, but being absent from the two
sequenced genomes of the Orbiliomycetes and the seven sequenced genomes of the Pezizomycetes,
basal classes of the Pezizomycotina. Absence from these and other ascomycete taxons
(Saccharomycotina and Taphrynnopmycotina) was confirmed with a tblastn search. Searching the NCBI
protein data base, excluding the Pezizomycotina failed to reveal any homologues with either blastp or
tblastn. Although within the Eurotiomycetes the sequence is very conserved, the phylogenetic tree
(Fig. S6) and the alignment (Fig. 6 and Fig. S4) demonstrate that there is much divergence within the
Pezizomycotina. Within the Sordariales the sequence even within the zinc binuclear cluster is
divergent, as shown by the Neurospora crassa sequence in the alignment (Fig. 6). Within the
Dothidiomycetes the sequences diverge even more and form two clusters roughly corresponding to
the Pleosporales and Capnodiales with one outgroup (see legend to Fig. S6 for details), secondary loss
has occurred in several species, mainly within the Sordariales, including Magnaporthe grisea and

Podospora anserina (confirmed by tblastn).

Mutant sequence changes

44 mutant sequence changes confirm the identity of the gene (Table 1). Clustering of missense
mutations exclusively to within the amino-terminus and the predicted coiled coil region itself and the
zinc binuclear cluster or immediately adjacent to it underscores the functional importance of these

regions (Fig. S4). The results of comparing PacX to the consensus derived from an alignment of 177
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PacX homologues using the ConSurf algorithms (http://consurf.tau.ac.il/) for the identification of

functional regions in a protein are presented in Fig. S4, and the predictions for mutated residues are
summarized in Table 1. All of the missense mutations affect conserved residues or residues which
occur in conserved regions (Fig. S4). Three out of four mutations in the coiled-coil pacX3505(R209P),,
pacX22(R216P) and pacX9(R221P) are basic to non polar. Theses are changes of Arg to Pro, a residue

which breaks a-helices. However the coils/pcoils algorithm (http://toolkit.tuebingen.mpg.de/pcoils)

only revealed in each case minor changes for the probability or length of the predicted coiled-coil. All
mutations within this region [which includes pacX11(A223G)] change conserved residues which are
predicted to be exposed and functional and may affect a specific interaction of PacX. The majority of
truncating mutations remove conserved regions of the protein. Even more extreme truncations,
pacX3503 and pacX20, terminate the protein at residues 12 and 44, respectively, thus removing almost
all of the protein, confirming that these classically obtained pacX alleles are complete loss-of-function
(Table 1). The absence of mutations and poor conservation in the C-terminus suggested that this region
might be dispensable. This was confirmed with an engineered allele expressing PacX residues 1 to 499
from the alcA promoter (alcA®::PacX1-499) and integrated at pyroA, which was found to be as
functional as the full length protein expressed from the same promoter (alcA®::PacX1-661) at the same
integration site. pacX3507 which terminates the protein after Ser506 and therefore retains the
functional region has a long (41 residue) out-of-frame tail which might destabilize the protein or

interfere with its activity and thus cause the loss-of-function phenotype.

pacX mutations also include the intergenic duplication in pacX24 and the Impala transposition into
the pacX promoter of pacX12. In addition, pacX18 was found to be an insertion identical to the Fot1-

like transposon in chromosome VIII defined by AN0826 (encoding the transposase). Surprisingly, sizing
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of the region of AN0826 amplified using external primers shows the transposon to be retained at its

resident locus in the mutant strain (see Supplementary Data).

PacX nuclear localization

The PacX sequence, which contains putative nuclear localization signals and a putative zinc binuclear
cluster DNA binding domain, strongly suggested that PacX functions in the nucleus. PacX localization
was investigated by live epifluorescence microscopy of a strain expressing PacX::GFP and
HhoA::mCherry (histone 1). Fig. 7 shows that PacX::GFP is localized within the nuclei where it forms
one strongly fluorescent, discrete spot per nucleus. Shifting from acidity to alkalinity for one hour had
no effect on PacX::GFP localization which therefore appears to be pH independent (Fig. 7). PacX
localization resembles that of the proline degradation pathway-specific zinc binuclear cluster
transcription factor PrnA which has proline-independent, sub-nuclear localization (Pokorska et al.,

2000).
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Discussion

PacX is a protein of unusual domain structure, with a conspicuous coiled-coil helix amino-terminal to a
typical carboxy-terminal fungal Zn cluster. The pH signalling pathway, including the central
transcription factor PacC/Rim101 is conserved throughout the ascomycetes and, to a certain extent, in
the basidiomycetes and has been studied in ascomycetous yeasts and basidiomycetes (Penalva et al.,
2008; Penalva et al., 2014; Davis, 2009; Selvig and Alspough, 2011; Blanchin-Roland, 2013; Cornet and
Gaillardin, 2014; Obara and Kihara, 2014; Herrador et al., 2015; Ost et al., 2015, and references
therein) (in addition to A. nidulans and other filamentous ascomycetes). However, the additional
putative transcription factor PacX is an evolutionary novelty. It occurs only in the pezizomycotina and
within the limits of the paucity of sequences available, particularly in the orbiliomycetes, it seems to
have appeared after the divergence of the other classes of the Pezizomycotina (Leotiomyceta) from
the Pezizomycetes and the Orbiliomycetes. Recent studies, including those combining fossil and
molecular, data differ as to whether the Pezizomycetes or the Orbiliomycetes constitute the most
basal group of the Pezizomycotina (Schoch et al., 2009; Prieto and Wedin, 2013; Beimforde et al.,
2014). However these studies agree that the Leotiomyceta have diverged from the other two classes
most probably in the Silurian era (~430 Mya). Thus the appearance of PacX correlates with a major
phylogenetic split, which may coincide with the establishment of biotic interactions with vascular

plants (Prieto and Wedin, 2013).

The characterization of mutations in pacX has pin-pointed the crucial functional regions, which
correlate with those conserved throughout the Leotiomyceta. One mutation however is quite unique:

In more than 60 years of A. nidulans genetics, this is the first and only reported mutation resulting from
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an insertion of an endogenous transposon. What is even more surprising, is that the Fot-1 like element
defined by AN0826 did not transpose by a mechanism of cut and paste, characteristic of the
transposons of this class, including the heterologous transposition of the Fusarium oxysporum Fot1
transposon in A. nidulans [(Li Destri Nicosia et al., 2001) and refs therein]. but rather by a copy and

paste mechanism (see Supplementary Data).

Proposed role(s) of PacX together with negative autoregulation of pacC and the negative feedback
acting on palF are incorporated in a model for the control of the alkaline pH response, which is shown
in Fig. 8. PacC’? exists predominantly in a closed proteasome inaccessible conformation in equilibrium
with a small fraction of molecules assuming a less favourable open, proteasome-accessible
conformation, thus providing a substrate for the Pal independent bypass. In the absence of pH signal
transduction, PacC’? is largely unprocessed (Figs. 2 and 5C) and, with the participation of PacX,
represses its own transcription, as demonstrated by the increased pacC transcript levels obtained in
pacC null or pacX null strains (Figs. 1A and 5B). This would reduce substrate-driven flux through the Pal
independent pathway. However, over-expression of pacC by itself produces no detectable phenotype
and over-expressing pacC alleles expressed from the alcA or gpdAmini promoter are hypostatic to pal
mutations [Fig. 9 and Mingot et al.(2001) and JT, América Hervds-Aguilar, HNA and MAP, unpublished)].
In contrast, pacX mutations result in alkalinity mimicry, and they are able to suppress pal” and
processing recalcitrant pacC‘L/’ mutations. Moreover they are able to suppress pal’ mutations even
when pacC is expressed from the heterologous alcA (Fig. 9) and gpdA™" (data not shown) promoters,
i.e. independent of pacC derepression. In addition, pacX” mutations augment aspects of the

phenotypes of alcAP::PacC5-250 and pacC‘/’ZOOOO (PacC5-251), alleles which specify truncated proteins

that approximate PacC?’ and do not require further processing (Table 2). These effects strongly suggest
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that PacX inhibits PacC?’ activities in a manner separate from and in addition to its negative effects on
pacC transcription. PacX mediated inhibition of PacC?’ activities also potentially explains why the very
small amounts of PacC?’ present in pacX pal strains (Fig. 5C) are able to suppress the pal phenotype
to such an appreciable extent (Fig. 4). The alkalinity mimicking phenotype of pacX mutations which
result in elevated alkaline phosphatase (palD) and reduced acid phosphatase (pacA) levels
demonstrates that PacX affects both activator and repressor functions of PacC®’ and that it is required

for normal responses to acidity and neutrality.

The onset of PacC processing occurs less than 4 minutes after exposure to alkalinity (Fig. 2A) and this
rapid response would be facilitated by the pool of PalF accumulated under acidic conditions, due to
palF being acid expressed (Fig. 3A and B). After approximately 1.5 to 2 hours steady state conditions
are established and PacC’? begins to accumulate again (Fig. 2B), indicating that the signalling
proteolysis has become limiting and that the signal has become attenuated. Work presented here,
wherein over-expression of palF from a heterologous promoter largely prevents accumulation of
PacC’? in alkaline media strongly suggests that repression of palF transcription, directly or indirectly, by
PacC>® or PacC”’ plays a major role in this attenuation. It appears that there is a relatively modest fall in
PalF protein levels as compared with the fall in palF transcript levels, in response to alkalinization. This
suggests that attenuation is not a function of absolute PalF amounts but rather that of the rate of de
novo PalF synthesis. Low rates of PalF synthesis might inhibit Pal signalling, for example, by limiting the
rate of the crucial PalF ubiquitylation. Other modifications might be affected. In addition to
ubiquitylation, A. nidulans PalF is phosphorylated in an alkaline pH dependent fashion (Herranz et al.,
2005). Interestingly CK1-mediated phosphorylation of S. cerevisiae Rim8 has recently been reported to

prevent Rim signalling (Herrador et al., 2015). Thus attenuation might be achieved by limiting the rate
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of de novo, unphosphorylated, pathway-activating PalF. An even more tempting scenario would be
that the degree of signalling is a balance between the levels of ubiquitylated and phosphorylated PalF.
In this situation the effects of small changes in de novo synthesized PalF would be additive and could

well account for the quite profound effects observed on over-expression of PalF (Fig. 3E and F).

Thus control of the alkaline pH response ensures that both the response to alkalinization is Pal signal
transduction dependent and an escalating alkaline pH response is prevented by attenuation of pH
signalling by negative feedback via repression of palF transcription by PacC>® and/or PacC?. It is
tempting to speculate that the absence of PacX in yeasts correlates with the absence of pH signal
independent activation of the pH responsive transcription factor. In S. cerevisiae Rim101 processing
occurs in one step and is entirely Rim signal transduction dependent (Li and Mitchell, 1997; Lamb et al.,
2001; Xu and Mitchell, 2001). In C. albicans, although Rim signal dependent Rim101 C-terminal
processing occurs in both acidic and alkaline media to different extents, it is thought that the alkaline
active 74-kDa form is the product of a single Rim13-mediated proteolysis (Li et al., 2004; Xu et al.,
2004). However, in Y. lipolytica it has been suggested that Rim101 might be processed similarly to A.

nidulans PacC (Lambert et al., 1997; Blanchin-Roland, 2013).

pH regulation of the palF homologues RIM8 in S. cerevisiae and C. albicans, which are also
preferentially expressed in acidic media, has been reported (Ramon et al., 1999; Porta et al., 1999a;
Lamb and Mitchell, 2003b), suggesting that negative feedback limiting the arrestin component of the
pathway might be a general feature of the pH response. However, in contrast to PalF, where
ubiquitylation is strictly pH- and PalH-dependent and pivotal in the response, S. cerevisiae Rim8

ubiquitylation appears to be pH independent and takes place in a double rim20A dfg16A mutant
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background, lacking both PalH homologues. However, the role of Rim8 ubiquitylation in Rim signalling
becomes clear if the Vps23-Rim8 interaction is debilitated by mutation of a SPX motif in the latter
(Herrador et al., 2010). C. albicans Rim8 undergoes hyperphosphorylation, instead of ubiquitylation, in

a manner linked to Rim101 processing (Gomez-Raja and Davis, 2012).

Many pacC/RIM101 homologues, like A. nidulans pacC [(Tilburn et al., 1995) and Figs. 1 and 5B], are
preferentially expressed under neutral to alkaline conditions. These include those of: Beauveria
bassiana (Zhou et al., 2014) C. albicans (Bensen et al., 2004), Fusarium oxysporum (Caracuel et al.,
2003), Magnaporthe oryzae (Landraud et al., 2013), Metarhizium robertsii (Huang et al.,
2015),Trichoderma harzianum (Moreno-Mateos et al., 2007), Trichoderma virens (Trushina et al.,
2013), Wangiella (Exophial) dermatitidis (Wang and Szaniszlo, 2009) Y. lipolytica (Lambert et al., 1997)
but not, curiously, S. cerevisiae (Lamb et al., 2001; Serrano et al., 2002; Lamb and Mitchell, 2003b;
Viladevall et al., 2004). This suggests that autoregulation might be a common feature but the absence

of reporter studies precludes determining whether this would be positive or negative.

The mechanism(s) of PacX action is/are not clear but what appears to be dual functionality could be
achieved by a single mechanism. For instance, if PacC’? and PacC*’ were to compete for nuclear import
and/or DNA binding, PacX antagonism of PacC?’ could fulfil both functions. This might involve protein-
protein interactions between PacX and PacC, possibly via the PacX coiled-coil domain and/or direct
DNA binding of PacX through the zinc binuclear cluster. PacX localization, which is almost exclusively

nuclear, supports a mechanism occurring within the nucleus.

Investigations into pacC and palF promoter occupancy, the possibility of PacC and PacX interaction,

PacX sub-nuclear localization and post-transcriptional regulation of PalF are topics for future research.
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Experimental Procedures
A. nidulans strains, phenotype analysis, genetic techniques and growth media

A. nidulans strains carried previously described markers, in general use; standard media, phenotype
testing and genetic techniques were used (Caddick et al., 1986; Clutterbuck, 1993; Arst et al., 1994;
Tilburn et al., 1995), and references therein). LiCl and Mo0,> plates were prepared by the addition of
lithium chloride or sodium molybdate solution to appropriately supplemented minimal medium (Cove,
1966) containing 1% D-glucose and 5 mM ammonium tartrate, to the desired concentration (100 - 500
mM LiCl and 25 mM Mo0O4). Neomycin containing plates were prepared by the addition of neomycin
sulphate powder to 1 or 0.5 mg ml™* to molten minimal medium minus glucose, containing 1% D-
glucose or 1% ethanol (added after autoclaving), respectively and 5 mM ammonium tartrate. pH 8.0
medium followed (Cove, 1976). Dropout media were prepared from fully supplemented yeast Dropout
medium (Clontech) containing additional supplements appropriate for the auxotrophies of the strains,
5 or 10 mM urea as nitrogen source and 1% D-glucose, added after autoclaving. Acidic dropout
medium and MFA (Penas et al., 2007), which contained 5 mM ammonium tartrate as nitrogen source,
were was buffered with 50 mM citrate to give pH 4.3 and alkaline dropout medium and MFA were
buffered with 100 mM HEPES to give ~pH 8.3. MFA was also buffered to give pH 5.6 with 100mM
NaH,PO4 (plus 100 mM NacCl); pH 6.8 with 50 mM NaH,P0O4 and 50 mM Na,HPO4 (plus 50 mM NaCl)
and pH 7.9 with 100 mM Na,HPO,. To obtain conidiospores for transposon mutagenesis strain 2431A
(see below Transposon mutagenesis) was grown on minimal media (see above) with 10 mM NaNO, as
sole nitrogen source, buffered to pH 6.5 with 50 mM MES. To select simultaneously for growth on

nitrate as sole nitrogen source and for loss-of-function in pacX we used pH 7.5 medium, minimal
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medium (see above, (Cove, 1966) buffered to pH 7.5 by addition of 50 mM phosphate buffer (made
from stock solutions 500 mM Na,HPQO,4 and 500 mM NaH,PQ,), containing 10 mM NaNOs as sole

nitrogen source and 10 x PABA (40 pg. ml™. 4-aminobenzoic acid).

Construction of strains

Plasmid pALC-argB (Bglll) (Mingot et al., 1999) was used for the construction of pacC and pal over-
expression cassettes containing cDNA of pacC and one of each of the pal signal transduction genes
(Denison et al., 1995; Tilburn et al., 1995; Maccheroni et al., 1997; Negrete-Urtasun et al., 1997
Denison et al., 1998; Negrete-Urtasun et al., 1999) under alcA® (alcohol dehydrogenase promoter)
control. This plasmid contains a functional alcA®, containing a transcription start site, separated from
the trpC terminator by a polylinker, and a mutant argB gene to direct integration to argB by repair of
the argB2 allele. pal over-expressing strains were constructed by DNA mediated transformation
(Tilburn et al., 1995) of double mutants, argB2 and appropriately pal for the corresponding over-
expressed gene, with selection for argB* transformants, screening for the pal” phenotype and Southern
blot analysis to identify appropriate single copy integrants. Appropriate pal® transformants were
subsequently crossed to obtain pal over-expressing strains in otherwise pal® genetic backgrounds. alcA
driven PacC5-678 over-expressing strains were obtained by transformation of strain MAD397 yA2
argB2 palA1 pacCA::Ncpyrd pantoB100 with p[alcAP::PacC5-678], as described by Mingot et al. (1999),
to give transformant yA2 palA1 argB:: alcAP::PacC5-678 pacCA::Ncpyr4 pantoB100 (MAD0415) which
was crossed to HB85 pabaAl (yA2 or yAA::Ncpyrd) argB2 pacX20 to give strains (9-1) (yA2 or

yAANcpyrd) (pyrG89?) argB::alcAP::PacC5-678 palAl pacCANcpyrd, (9-21) pabaAl (yA2 or yAA::Ncpyr4)
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(pyrG89?) argB::alcAP::PacC5-678 palAl pacCA::Ncpyrd pacX20 and (9-17) pabaAl (yA2 or

yAQ::Ncpyrd) (pyrG89?) alcA®::PacC5-678 pacCA::Ncpyrd pantoB100 (Fig. 9).

The pacX gene was 3' tagged with GFP and S-tag using spacer-GFP/S-tag-AfpyrG cassettes (Yang et al.,
2004) and introduced by gene replacement into a nkuAA::bar recipient strain (KUG4). KUG4
pyrG89 pyroA4 niiA4 nkuAA::bar was constructed by crossing to a strain nkuAA::bar niiA4 biAl pyroA4
(kindly provided by Prof Michael Hynes). The S-tagged pacX allele was denoted pacX35. Strain ALO2
pacX::GFP::AfpyrG (pyrG89?) pyroA4 HhoA::mCherry niiA4 nkuA::bar was obtained by crossing
transformant Al pyrG89 pyroA4 niiAd nkuAA::bar pacX::GFP::AfpyrG with strain LO1421 containing

HhoA::mCherry (kindly provided by Prof Berl Oakley).

Strains pabaAl yA2 gpdA™™::GFP-PacC(5-678)::pyroA pacCA::Ncpyrd (MAD1713) and pabaAl yA2
gpdA™™::GFP-PacC(5-251)::pyroA pacCA::Ncpyrd (MAD1710) were obtained by transformation of a
pabaAl yA2 pacCA::Ncpyrd pyroA4 recipient strain with plasmids p1673 and p1666, respectively, and
identification of transformed clones carrying single-copy integration events at pyroA by Southern
blotting. p1673 and p1666 encode GFP-PacC(5-678) and GFP-PacC(5-251) fusion proteins, respectively.
Coding regions were obtained as Hindlll-EcoRI fragments by PCR, using templates described in (Mingot
et al., 1999), and introduced into the multiple cloning site of pgpd003 (Pantazopoulou and Pefialva,
2009), downstream of the gpdA™" promoter. Strains 12422 yA2 gpdA™"::GFP::PacC5-678::pyroA* pacC
6309 (pacC63) pantoB100 and J2427 gpdA™™::GFP::PacC5-251::pyroA* pacC6309 (pacC63) were
derived by crossing MAD1713 and 1710 respectively to J2384 areA'S pyroA4 pacC 6309 (pacC63)
pantoB100 and the pacC6309 allele was detected amongst the progeny by PCR. TM280 pabaAl

gpdAmi”i::PaIF::GFP::pyroA palF15 was obtained by transformation of recipient strain TM261 pabaAl
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pyroA4 palF15 with pTM9015. pTM9015 was derived from p1673 by QuikChange mutagenesis (Agilent
Technologies Inc.) using primers p1673-EcoRI-Fw and p1673-EcoRI-Rv (Table S1) to introduce an EcoR1

site into which palF cDNA was inserted in place of pacC.

The construction of endogenously expressed MYC3-tagged PacC (allele name pacC900) is described
by Penas et al. (2007) and endogenously HA3-tagged PalF (allele name palF500) or HA3-tagged PalF
expressed from gpdA™" promoter are described by Hervas-Aguilar et al. (2010). Strain MAD2352, wA4
pyroA4 inoB2 palF::HA3::pyrGfum pyrG89 nkuAA::bar pacC900 was obtained by transformation of
MAD1732 (Hervas-Aguilar et al., 2010). MAD4500, yA2 pabaAl pantoB100 pyroA4::[pyroA*-
gpdA™™::palF::HAs] pacC900 nkuA* was derived by crossing MAD3319 yA2 pabaAl pantoB100 and
MAD3007 pantoB100::[pantoB*::gpdA™"::palH::myc3] pyroAa::[pyroA*::gpdA™"::palF::HA3] pacC900

AnkuA::bar?).
Northern Blots

Growth conditions for Northern blot analyses are given in the appropriate Figure legends. RNA was
extracted as described by Tilburn et al. (1995) or by a modified Drosophila procedure

http://www.koko.gov.my/CocoaBioTech/RNA%20Isolation23.html#procedure, as follows. Lyophilized

mycelium was ground in a 2 ml tube with a glass rod and mixed with 800 ul of GHCI solution (5 mM
DTT, 7.5 M guanidium hydrochloride (Sigma), 25 mM sodium acetate, pH 7.0, 0.5% N-lauryl
sarcosinate) and shaken vigorously with an equal volume of phenol:chloroform:isoamylalcohol
(25:24:1) or acidic (pH 4.5) phenol:chloroform:isoamylalcohol (125:24:1). After centrifugation the RNA
was precipitated from 400 ul of the aqueous phase with 16 ul of 1M acetic acid and 400 ul of ethanol

with incubation at -80°C for 1 - 2 hours. The RNA was pelleted by centrifugation and resuspended in
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400 pl of GHClI solution and precipitated as before. The RNA was washed with 100% ethanol, then 75%
ethanol, air dried and resuspended in RNAase free water and stored at -80°C. Northern blotting
followed Tilburn et al. (1995). Heat or UV fixed membranes were stained with methylene blue
(Sambrook et al., 1989) and probed with appropriate radiolabelled (*’P) or digoxygenin (DIG) labelled
(Roche) DNA fragments. pacC specific probes were prepared from PCR fragments obtained with
primers (Table S1) TILREV and 1217FF or BIGFF (3P labeled) or 850U and 1217FF (DIG labeled, Fig. 1B).
Loading controls were established using a 32p |abelled ~650 bp Ncol-Ncol fragment from the A. nidulans

actin gene (Fidel et al., 1988) or methylene blue stained 18S rRNA, as indicated.
Western Blots

Mycelia were cultured and sampled essentially as described by Galindo et al ( 2012) except that 5 mM
ammonium tartrate was used as nitrogen source and alkaline medium was buffered to pH 8.0 with 100
mM HEPES. Lyophilised mycelia were homogenised, using a 5 mM ceramic bead, following Hervas-
Aguilar et al. (2010). Cell lysis followed a method adapted from an S. cerevisiae protocol (Stimpson et
al., 2006). 6 mg samples of powdered biomass were weighed and transferred to 2 ml microcentrifuge
tubes. Proteins were solubilised in 1 ml tube™ lysis solution (0.2 M NaOH, 0.2% (v/v) B-
mercaptoethanol with vigorous vortexing. Proteins were precipitated with 7.5% trichloroacetic acid
(TCA) and pelleted by centrifugation at 14,000 x g for 5 min at 4°C. Pellets were solubilized in 100 pl
Tris base, mixed with 200 pl of Laemmli buffer (Laemmli, 1970) and incubated at 100°C for 2 min.
Proteins (5 to 10 pl of each sample were resolved in 8% SDS-polyacrylamide gel, transferred to
nitrocellulose membranes. For MYCs::PacC and actin blots were reacted with either mouse

monoclonal anti-c-myc (at 1/2,000 dilution) (Clone 9E10, Sigma-Aldrich) or mouse anti-actin
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monoclonal antibody (1/4,000) (Clone 4, MP Biomedicals, LLC). Peroxidase conjugated goat anti-mouse
IgG immunoglobulin (Jackson) at 1/5,000 and 1/8,000 respectively were used. PalF::HA3 blots were
reacted and developed as described by Hervas-Aguilar et al. (2010). Peroxidase activity was detected

with Amersham Biosciences ECL.
Transposon mutagenesis

pacX was cloned by tagging it with the impala transposon form Fusarium oxysporum in a manner
similar to that employed to tag the azgA (Cecchetto et al., 2004) and rrmA (Olszewska et al., 2007).
Starting from strain CS2778 (Li Destri Nicosia et al., 2001) which contains an impala yA* tagged element
interrupting the niaD promoter we obtained strain 2431A, yAA::Ncpyr4, pabaA1l, niaD"::impala::yA*
pacC/+20205 by crossing. The impala excision frequency in strain 2431A was determined to be of the
order of 10, similar to that reported for strain C52778 (Li Destri Nicosia et al., 2001). Strain 2431A is
unable to grow on nitrate by virtue of the impala element inserted in the niaD promoter and it is
unable to grow at pH 7.5 due to the presence of the pacC'/+20205 mutations. Thus, a strain able to
grow on nitrate at pH 7.5 should result from simultaneous excision of the impala element and its
insertion in pacX, which would suppress the phenotype of pacC/+20205. Conidiospores of strain 2431A
were obtained on minimal media with NaNO, as sole nitrogen source and plated by top layering on the
appropriate selective media (NaNOs as sole nitrogen source, pH 7.5, see above). One putative strain
(BG2) carrying a transposon insertion in pacX was selected as able to grow in this medium. Based on
the excision frequency of strain 2431A and the number of viable conidiospores plated we calculated
that ~600,000 niaD" colonies were generated in the experiment that yielded the putative pacX

insertion.
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Determining DNA sequence flanking the Impala insertion site.

Genomic DNA of strain BG2 was isolated and used as template to obtain DNA sequence flanking the
impala insertion site by PCR using a single primer yAl and cycling conditions as described by Karlyshev
et al. (2000). The major fragment of ~0.9 kbp was gel purified and sequenced using oligo yA2. The
fragment was re-amplified using primer yA1l, digested with BamHI (to obtain fragments having a single
yAl sequence), and the gel-purified major fragment of ~650 bp was sequenced using primer yAl.
These sequencing reactions combined gave 708 bp of sequence flanking the insertion site. Primer

sequences are given in Table S2.

Determining the pacX genomic and cDNA sequences and pacX mutant sequence changes

BLAST search of the (then unfinished) A. fumigatus genome database (Nierman et al., 2005) suggested
a possible A. fumigatus homologous gene having a C-terminal zinc binuclear cluster. A larger A.nidulans
pacX fragment was PCR amplified using the pacX-specific primer XF2 and a degenerate primer ZNF2
based on the sequence of the zinc binuclear cluster of the putative A. fumigatus homologue. In the first
3 cycles an annealing temperature of 45°C was employed, followed by 30 cycles at 55°C; 20 pmoles of
XF2 and 200 pmoles of ZNF2 were used per reaction. The resulting ~1.6 kbp fragment was gel purified
and sequenced. A DNA fragment made by PCR using primers XF5 and XR5 was used to isolate pacX
clones from a A gt10 cDNA library (Osmani et al., 1988). Two cDNA clones contained the entire pacX
coding sequence and sequencing confirmed the presence of one intron. Nucleotide sequence of the 5’
region of the pacX gene (upstream of the impala insertion and cDNA sequence) was obtained following
an ‘inverse’ PCR strategy. Essentially, DNA of BAC clone 28C10 obtained from an A. nidulans BAC library

prepared by Ralph Dean and obtained from
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https://www.genome.clemson.edu/online orders?&page=productGroup&service=bacrc&productGrou

p=96 was digested with various restriction enzymes, purified and treated with T4 DNA ligase to
circularize fragments. The DNA was PCR amplified using two (“outward-facing’) primers expected to
give no product on linear DNA, XR6 and XF2, which resulted in~1.8 and ~2.8 kbp DNAs when BAC
28C10 DNA had been digested with Sacll and Xhol, respectively. The PCR fragments were sequenced

using XR1 and additional primers.

Genomic DNA of pacX mutants was PCR amplified using pacX-specific primers (e.g., XF2 and XR8) and
the fragments were sequenced using additional gene specific primers. Mutations were, in most cases,

confirmed on the opposite strand of a different PCR fragment.

Primer sequences are given in Table S1.

In silico analyses

PacX orthologues were searched in the JGI (http://genome.jgi-psf.org/programs/fungi/index.jsf) and

NCBI databases (http://blast.ncbi.nlm.nih.gov/Blast.cgi). A. nidulans Fot1-like elements were searched

in http://www.aspgd.org/ (Cerqueira et al., 2014). Alignments were carried out with MAFFT version 7

5, http://mafft.cbrc.jp/alignment/server/ (Katoh and Standley, 2013), refinement with BMGE,

http://mobyle.pasteur.fr/cgi-bin/portal.py#forms::BMGE (Criscuolo and Gribaldo, 2010), Maximum

Likelihood Phylogeny with PhyMI, http://phylogeny.lirmm.fr/phylo cgi/alacarte.cgi, (Dereeper et al.,

2008; Guindon et al., 2010) calculating also approximate likelihood ratio tests (Anisimova and Gascuel,

2006). Tree drawing was done with Figtree (http://tree.bio.ed.ac.uk/software/figtree/). Coiled-coil

prediction was carried out with http://toolkit.tuebingen.mpg.de/pcoils (Parry, 1982; Lupas et al., 1991;
Lupas, 1996). Conservation and putative functionality of individual PacX residues was calculated with
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ConSurf, http://consurf.tau.ac.il/ (Ashkenazy et al., 2010; Celniker et al., 2013). Nuclear localization

signals were searched with ngLCO http://genome.unmc.edu/ngLOC/index.html, (King and Guda, 2007)

PSORT I, http://psort.hgc.jp/form2.html, (Nakao and Nakai, 2002), cNLS Mapper, http://nls-

mapper.iab.keio.ac.jp/cgi-bin/NLS Mapper form.cgi, (Kosugi et al., 2009) NetNes,

http://www.cbs.dtu.dk/services/NetNES/ (La Cour et al., 2004).

Microscopy and imaging techniques.

For PacX localization studies, the PacX::GFP HhoA::mCherry strain ALO2 was cultured at 28°C in
LabTek chambers (Rochester NY) containing WMM [watch minimal medium (Pefialva, 2005)], adjusted
to acid or alkaline pH as described (Galindo et al., 2007). Epifluorescence images were acquired with a
Leica DMI6000 inverted optics microscope coupled to a Hamamatsu ORCA ERII camera, using
Metamorph software (Molecular Devices) and SemrockBrightlinefilter sets for red and green
fluorescence emission, essentially as described (Pantazopoulou and Pefalva, 2009; Pantazopoulou and
Penalva, 2011). Z-stacks of images were processed using the Metamorph 'unsharp' filter and, when

needed, used to construct maximal intensity projections. Images were exported to Corel as TIFF maps.
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ALLELE NUCLEOTIDE PROTEIN MUTAGEN SELECTION REFERENCE
CHANGE CHANGE
LARGE INSERTIONS OR DUPLICATION
pacxX12®  T-516inslmpala PPI none growth at pH 7.5 This work
pacx18® T667insFotl-like PSD none growth at pH 8.0 This work
transposon
pacX24b T-297ins(C-296-T878) N275fs, PPI none growth at pH 8.0 This work
TRUNCATING MUTATIONS
pc/cX3503i A35insG25-A37 G12fs none growth at pH 8.0 This work
pacx20? C133T R44stop none growth at pH 8.0 This work
pacx28® C180GG P60fs none growth at pH 7.5 This work
pacxs® AC190 163fs uv growth at pH 8.0 This work
pacx13® AG(241-243) G81fs none growth at pH 8.0 This work
pacx26° G314-316insG R105fs none growth at pH 8.0 This work
pacx34° G331T H110stop none growth at pH 8.0 This work
pc/cX19b (T359-G364)A W199fs none growth at pH 8.0 This work
pacx33® A379-A385insA K127fs none growth at pH 7.5 This work
pacX3501i AA445-A449 Y148fs none growth at pH 8.0 This work
pacX3502i AC505 M168fs none growth at pH 8.0 This work
pacx27° G554T D181stop none growth at pH 7.5 This work
pacx31® C687T R211stop none growth at pH 7.5 This work
pc/cX4d (C942-944)insC P297fs NQO growth at pH 8.0 Denison and Arst,
unpublished
pacx2® AG945 G299fs none alkaline phosphatase (Dorn, 1965)
(suAlpalB7)
pacx15s® (G945-951)insG G299fs none growth at pH 8.0 This work
pacx3511' (G945-951)insG G299fs none growth at pH 8.0 This work
pacX3506i A951insGGAGAAG G299GKfs none growth at pH 8.0 This work
pacX1® AC957, AC958 A301fs uv growth at pH 8.0 This work
pc/cX3512i AT(108 -1090) F345fs none growth at pH 8.0 This work
pc/cX3513i G1128insC1121-G1128 Y347fs none growth at pH 8.0 This work
pacXSd AG1250 A399fs NQO growth at pH 8.0 Denison and Arst,
unpublished
pacX6d ACG (1340,- 1345) A430fs NQO growth at pH 8.0 Denison and Arst,
unpublished
pacx25® AT1391 D246fs none growth at pH 8.0 This work
pacx14® AG1393 R447fs none growth at pH 8.0 This work
pacx32° AC(1526-1529) P492fs none growth at pH 7.5 This work
pc/cX3508i AC(1526-1529) P492fs none growth at pH 8.0 This work
pacX3509i G1530insA P4925Sfs none growth at pH 8.0 This work
pacX3507i AC1571, AA1572 S506fs none growth at pH 8.0 This work
MISSENSE MUTATIONS
pc/cXSf C130T R44W (ef) none alkaline phosphatase Dorn*
(suD2palAl)
pacxX16®  T248C L83P (bs) none growth at pH 8.0 This work
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pacx21®
pacx23®
pacx17®
pacX3505i
pacx22®
pacx9®

pCICXllh
pacX7®

pacx30°
pacx29®
pachOh

C310A
G357T
AG458-G460

G679C
G700C
G715C

C721G

C1384T
G1396T
G1468T
P1470C

P104T (ef)
W119C (bs)
(R153, (ef)
V154L)(bs)
R209P (ef)
R216P (ef)
R221P (ef)

A223G (ef)
P444L (ef)
CA48F (bs)
CA72F (bs)
S473P (ef)

Molecular Microbiology

none
none
none

none
none
NQO

none
none
none
none

growth at pH 8.0
growth at pH 8.0
growth at pH 8.0

growth at pH 8.0
growth at pH 8.0
growth at pH 8.0

none
molybdate resistance
growth at pH 7.5
growth at pH 7.5
molybdate resistance

This work
This work
This work

This work

This work

Denison and Arst,
unpublished

This work

This work

This work

This work

Akintade and Tilburn,
unpublished

Mutation isolated as suppressor of: pacC+/"20205, (Diez et al., 2002), b pacC+/' 207 (Vincent et al., 2003), © palF58 (Arst et
al., 1994), d pall30 (Denison et al., 1998c), ¢ palB7 (Dorn, 1965; Pefias et al., 2007),fpaIA1 (Dorn, 1965), & pall49 (Arst et al.,

1994; Denison et al., 1998b), h pacC209 (Diez et al., 2002), IpacC900

L498S

(Pefas et al., 2007). "mutations were isolated in

pacX35 which is an S-tagged pacX’ allele (PacX::4GA::S-tag, see Experimental Procedures). PPI, predicted promoter
insertion; PSD, predicted splicing defect. The ConSurf (http://consurf.tau.ac.il/) predictions for substituted residues are
given in parentheses: ef, exposed and functional; bs, buried and structural. See Experimental Procedures for media. pacX11
arose spontaneously in strain pacC+/'209 pantoB100 (L186) on storage. Dorn*, Dorn http://fgsc.net/Archive/nid.html

55




Molecular Microbiology

Page 56 of 73

Table 2. Modified and unmodified pacC allele phenotypes

pacC allele

Phenotype

PacC mutant protein
(unprocessed form)

Effect of pacXin
double mutant

MODIFIED PHENOTYPE

pacC+/’207 b acidity mimicry Y455N Suppression

pacC+/'209 b acidity mimicry L498S Suppression

pacC+/'210 b acidity mimicry LA98F Suppression

pacC+/'20205 b acidity mimicry 5-464 IDRPGSPL 541 - 678 Suppression

pacC39 b weak alkalinity L266F Additivity
mimicry

pacC234 b weak alkalinity L340F Additivity
mimicry

pacC20042 b weak alkalinity R579T Additivity
mimicry

pacC+/'20002 b acidity mimicry Q155K Enhanced loss-of

-function phenotype

pacC‘/'ZOOOO ¢ neutrality mimicry 5-251+5 Additivity

alcAP::PacC5-252 ° alkalinity mimicry 5 - 252 Increased toxicity

NO MODIFICATION OF

PHENOTYPE

pacCA::Ncpyr4 ® null

pacC6310 € null 5-163

pacC’"7604° acidity mimicry 5-173+9

pacC”’230°¢ acidity mimicry 5-238

pacC700 pacC’70001 ¢  acidity mimicry GFP::5-250 K159M

pacC’ 20601 ¢ neutrality mimicry 5 - 260

pacCs0 € alkalinity mimicry 5 - 266

pacC’206 ¢ acidity mimicry  5-310

pacC69 ® alkalinity mimicry  L340S

pacC”7601 © acidity mimicry 5-379

pacC 504, pacC5 b weak neutrality 1-523

mimicking

The pacX allele is indicated after the pacC allele number: ? pacX20, bpach, ‘pacX3.
"The pacC+/'20205 allele also includes pacC202.
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Legends

Fig. 1. pacC is an alkaline-expressed gene due to derepression resulting from depletion of PacC’® rather
than activation by PacC?’ upon alkalinization. (A and B) Northern blots of total RNA probed with P**-
(A)and DIG- (B) labelled pacC specific probes prepared with primers TILREV and 1217FF (A) and 850U
and 1217FF (B) and methylene blue stained rRNA as loading controls. The mycelia were grown
overnight in acidic medium and transferred to alkaline medium for the times indicated. ‘Drop out’
medium and MFA were used in (A) and (B), respectively. pacC6309 is a null allele which can specify
only residues 1-4 (Fernandez-Martinez et al., 2003). The wild type pacC allele used in (A) was pacC900
which encodes a 3 x MYC tag at the amino-terminus (Pefias et al., 2007), hence the reduced mobility
of the transcripts relative to those of pacC 6309, which differ from wild type in only a few nucleotides.
Comparing the 90 min time points for the two strains suggests that pacC6309 transcript levels are not
fully derepressed; however, this might be due to reduced transcript stability of pacC6309 mRNA, for
instance, through nonsense-mediated decay. (B) pacC 6309 transcript is used as a reporter of pacC
gene expression to observe the effects of PacC’? (gpdA™"::GFP::PacC5-678 in acidic medium (H*)) and
PacC?’ (gpdA™"::GFP::PacC5-251) on pacC gene expression. The gpdA™™::GFP::PacC strains contain the

mini

trans genes at pyroA. gpdA™"" is a moderate strength, constitutive promoter derived from the
glyceraldehyde 3-phosphate dehydrogenase (gpdA) promoter as described by Pantazopoulou and
Penalva (2009). Strains J2402 pabaA1l pyroA4 pacC 6309, 12422 and J2427 (Experimental Procedures)

were used.
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Fig. 2. Western blots illustrating PacC processing. (A) pH signalling proteolysis occurs rapidly after
alkalinization and, (B) becomes rate limiting in PacC processing after one and a half to two hours. (A)
and (B) Mycelia were grown in acidic media and transferred to alkaline media for the times shown. A
pacC900 [MYC3-PacC, (Penas et al., 2007)] strain MAD2352 wA4 pyroA4 inoB2 palF500 pyrG89
nkuAQ::bar pacC900 was used. [palF500 is palF::HA3::pyrGfum, a palF" tagged allele (Hervéas-Aguilar et

al., 2010)

Fig. 3. palF is an acid expressed gene and its over-expression results in alkalinity mimicry. (A and B)
Northern blots of total RNA probed with P*? labelled palF-specific probe. Methylene blue stained rRNA
is a loading control. Strains were grown in MFA derived media either in steady-state conditions at the
pH values shown (A) or shifted from pH 4.3 (H") to pH 8.3 (OH") for up to six hours (B). Northerns show
that palF is preferentially expressed under acidic growth conditions and in the acidity mimicking strains
carrying pacC6309, pa/B38 and pacC+/'209 as compared with in the wild type and the alkalinity
mimicking pacC14strains (A) and that palF transcript levels quickly fall on shifting from acidic to
alkaline growth conditions (B). In (C) progeny from a cross of an argB2 (arginine requiring) strain
carrying pacC900 [MYCs-tagged pacC’ (Pefias et al., 2007)] [pabaAl yA2 pyrG89 argB2 pacC900
(MP12)] and a strain carrying alcAP::palF::argB" containing the palF over-expressing cassette driven by
the alcohol-inducible alcohol dehydrogenase promoter and integrated at argB to restore arginine
prototrophy [alcAP::palF::argB* pantoB100 (JR110)] are shown. Position 21 argB2 pacC900 (MP12),
position 25 alcAP::palF::argB*(JR110), position 26 biA1l wildtype strain. (Ci) acid phosphatase stain (Acid
phos) on minus phosphate medium containing 1% glucose pH 6.5, (Cii) acid phosphatase stain on

minus phosphate medium containing 1% ethanol as carbon source pH 6.5 and (Ciii) synthetic complete
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glucose medium minus arginine. pacC‘14 and pacC50, which are strong and moderate pacC
constitutive alleles, respectively, are shown below the acid phosphatase plates. Comparison of panels ii
and iii demonstrates co-segregation of arginine prototrophy and reduced acid phosphatase levels
under alcA? inducing (palF over-expression) conditions. (D) Suppression of palB524 by palF over-
expression. Acid phosphatase stained colonies are shown after growth on minus phosphate medium
containing 1% glucose (G) or 1% ethanol (E). Repressed levels of acid phosphatase are restored in the
palB524 argB'::alcAP::palF progeny after growth on ethanol. palB524 is a leaky loss of function allele
described by Pefias et al,( 2007). The genotype of the palB524 argB*::alcAP::palF progeny was checked
by sequencing to confirm the palB524 mutation and southern blot analysis to confirm the presence of
the over-expression cassette. (E) Western blot comparing PalF levels and PacC processing in shifted

mini

strains containing endogenously or constitutively (gpdA™"") expressed palF shows that elevated PalF
levels correlate with increased PacC processing and that attenuation of the pH signal, manifest by
accumulation of PacC’? with time after shifting, is almost completely removed when palF is over-
expressed from the heterologous (gpdA™™) promoter. Strains MAD2352 and MAD4500 were used. (F)
Petri dish assays show the alkalinity mimicking phenotype of gpdA™"::GFP::PalF (TM280) as compared
to a wild-type (biA1) strain with respect to molybdate resistance and reduced acid phosphatase

staining. The pyroA4 palF15 recipient strain (TM261) is also shown. The full genotypes of the strains

are described in Experimental Procedures.

Fig. 4. Suppression of pal and pacC+/'20205 mutations by pacX1. Petri dish assays of typical strains

following 48 hours’ growth on synthetic complete medium containing 25 mM sodium molybdate
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(M00,7), 1 mg mI'* neomycin sulphate (Neomycin), pH 8.0 medium (pH 8.0) and phosphatase staining
following 24 hours’ growth on minus phosphate medium at the pH values shown, followed by staining

for alkaline or acid phosphatase (Alk phos or Acid phos), are shown.

Fig. 5. pacX mutations result in derepressed expression of pacC. (A and B) Northern blots of total RNA
are shown. (A) The pacC transcript was detected amongst RNA from a variety of strains grown at
neutral pH, pH ~6.5, using a >*P-labelled 1041 bp pacC specific fragment which had been generated by
PCR using the primers BIGFF and TILREV (Table S1). Mycelia were grown for 14 hours in shaken minimal
medium, containing 1% glucose as sole carbon source and 10 mM 2-(N-morpholino)ethanesulphonic
acid, at 309C. Loading controls were established using a 650 bp Ncol-Ncol fragment from the
Aspergillus nidulans actin gene (Fidel et al., 1988). (B) Strains were grown overnight (~14 h) at 37°C
with shaking in acidic MFA and transferred to alkaline MFA for the times shown. Methylene blue
stained 18S rRNAs are included as loading controls. pacX’, yA2 pabaAl pacC900 (J2153) and pacX20,
yA2 pabaA1l pacC900 pacX20 (X900A) strains were used. (C) Western blots of cell lysates. The 3 x MYC
tagged pacC’ allele (pacC900) was carried by all strains (Pefias et al., 2007). The strains were pre-grown
in acidic media and transferred to alkaline media for the times indicated. pacX®, pyroA4 pacC900

(MAD3877); pacX20, yA2 pabaAl pacX20 pacC900 (MAD1652); palB38, inoB2 palB38 pacC900 (MAD1362) and

palB38 pacX20, pacC900 pantoB100 pacX20 palB38 (MADA4777) strains were used.

Fig. 6. Features of PacX and its homologues. A. A scheme illustrates features of A. nidulans PacX.

Portions of an alignment containing the coiled-coil and zinc binuclear cluster regions are shown. The
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alignment features selected homologues with different degrees of divergence from A. nidulans PacX,
Aspergillus fumigatus, Cochliobolus heterostrophus, Mycosphaerella graminicola (now designated
Zymoseptoria tritici), Botrytis cinerea and Neurospora crassa. The accession numbers are shown in Fig.
S6. Arrows indicate the positions of the coiled-coil regions above the alignment for A. nidulans and
below the alignment for N. crassa. The line indicates a putative nuclear export signal (NES) in the A.
nidulans PacX. NLS indicates a bipartite nuclear localization signal, which contains a shorter
monopartite NLS. A putative NES is indicated within the coiled-coil in white. Putative zinc chelating
residues of the zinc binuclear cluster are indicated with boxes. B. Fungal phyla which contain PacX

homologues are indicated with black lettering: those which apparently do not are indicated in grey.

Fig. 7. Sub-nuclear localization of PacX. (A) Image of a hyphal tip cell co-expressing PacX-GFP and
HhoA::mCherry (histone 1) to label chromatin. DIC, Nomarski optics. (B) Top, individual planes of a z-
stack of images, acquired with the indicated Z-distance. Bottom, maximal intensity projection (MIP) of
the above stack and orthogonal [(X, Z) and (Y, Z)] views across the indicated lines. All images were
captured from cells cultured in acidic medium. Exposure to alkaline media for 60 min did not alter this

PacX sub-nuclear localization pattern.

Fig. 8. Model summarising currently available data on regulation of the pH response. The fine lines
indicate that it is a minor proportion of PacC’? that exists in an open conformation and is therefore

susceptible to Pal independent processing. The dotted lines indicate that it is unclear whether
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transcriptional repression of palF is mediated by PacC> or PacC?’ and whether such repression is direct

or indirect.

Fig. 9. pacX20 suppresses palAl when pacC is expressed from a heterologous promoter. The trans gene
expressing PacC residues 5 to 678, corresponding to the wild type allele, from the ethanol-inducible
alcohol dehydrogenase promoter, alcAP::PacC5-678 is integrated at argB in a pacCANcpyr4

background (Mingot et al., 1999). Strains are wild type HB81 pantoB100, alcAP::PacC5-678 palAl pacCA
(9-1), alcAP::PacC5-678 palAl pacX20 pacCA (9-21), alcAP::PacC5-678 pacCA (9-17) and full geneotypes
of the trans gene strains are given in Experimental Procedures. Lithium chloride was added to 300

mM.
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The Aspergillus nidulans pH response, mediated by PacC which is proteolytically activated in response to
Pal mediated alkaline pH signalling, moderates itself. pacC is negatively autoregulated by the acid
prevalent form PacC’” and a runaway pH response is prevented by negative feedback at signalling gene
palF. PacX, a zinc binuclear cluster protein with unusual architecture and restricted taxonomic
distribution, tempers PacC activity and is required to tether the pH response to the ambient pH signal.
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Table S1. List of primers used in this work

Primer name
850U

1217FF
ANO826F
ANO0826R

BIGFF
p1673-EcoRI-Fw
p1673-EcoRI-Rv
TILREV

XF2
XF5
XR1
XR5
XR6

XR8

yAl
yA2

ZNF2

primer sequence (5’ to 3’)
GTCGCTCCTGTAGCTGTG
GTTCGTGCTCTTTCGGCCA
CATGGTTTGCAGCCGCCA
GAAACTCAGATGCGGCCT
GCCGTTAAAACAGGCAGG
CGAGCTGTACAAGGAATTCCCCATGGCCGAAG
CTTCGGCCATGGGGAATTCCTTGTACAGCTCG
CATTTCTCGTCCGCTCAT

CCGGGGGATTCAAGAAC

CAAAACAGAGTCGCGTGGAGAT

AAGGAGCAGAAAAGAGTCATGG

GTTCACCTCGCTGCAGTTC

CCAATGCGGGTTTAGATTCGG

GCGGAGTAGGATGTTGATTG

GGGAACCTGTCAACGCAAATC

GCCATACCCAGATCCCTTGAC

GGGGTACCKRCANCKRTCRCANGG
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Fig. S1 (A). Epifluorescence microscopy of preferentially nuclear localized GFP-tagged PacC”’ reveals that
PacC” levels are greatly reduced when co-expressed with PacC’ in a diploid strain. The pacC“700 GFP
tagged pacC constitutive allele (GFP::PacC5-250) corresponding to PacC?’ is integrated at the pacC
resident locus and expressed from the pacC promoter. The pacC 6309 null mutation [specifying PacC(1-
4)] reduced the fluorescence intensity of GFP::PacC5-250 to ~50% (ia or b, iiia and iv), which would be
the expected dilution effect. The pacC+/'209 processing recalcitrant mutation (specifying PacC’?) had a
greater effect resulting in a reduction of fluorescence intensity to less than 25% of that found in the
diploid pacC 700 strain (la or b, iia and iv) or a haploid pacC700 strain (results not shown). These results
are consistent with our proposal that PacC’? is a repressor of pacC expression. Enhanced images for
diploids pacC<700/pacC” 209 and pacC700/pacC 6309 (iib and iiib, respectively) were obtained by
modifying brightness and contrast to improve visualisation of the GFP::PacC5-250 protein to a level
comparable to that in the pacC700 homozygous diploid (unenhanced, ia and b). Fluorescence images of
haploid and diploid pacC700 cells (Fig. S1A) were taken using a DMI6000b microscope equipped with a
63x objective 1.4 N.A. and an Orca-ERIl camera. Strains were cultivated in WMM [watch minimal
medium (Pefialva, 2005)], containing the required supplements and glucose 1% and 5 mM ammonium
tartrate as carbon and nitrogen sources, respectively. Cells were grown at 25°C for 18 hours before
epifluorescence analyses. To compare nuclear fluorescence intensities, all images were obtained in the
same conditions with an exposure time of 2 seconds. Nuclear fluorescence intensities were estimated
using Metamorph 6.3r software by measuring selected areas of 80 pixels into 10 nuclei per strain. The
mean of accumulative pixel intensities for areas of 80 pixels are shown in the chart (n=10 nuclei). The
diploid strains are pacC“700/pacC 700, pabaAl yA2 glrAl pacC 700 / lysA2 pacC 700 (J2000);
pacC<700/pacC’209, lysA2 pacC700 / biAl sB3 pacC” 209 (11977) and pacC-700/pacC 6309, pabaAl

yA2 glrA1 pacC700 / pacC6309 (pacC63) pantoB100 (11999).



(B). Reversal of epistasis relationships by over-expression of alcAp::PacC5-678 in a pacC‘14 palAl strain.
Acid phosphatase staining after growth on minus phosphate medium pH 6.5 is shown. The pacC‘14 and
palA1 alleles were used. The alcAP::PacC5-678 cassette was integrated at the argB locus. In haploid
strains pacC® mutations are epistatic to pal mutations (Caddick et al., 1986; Denison et al., 1995; Orejas
et al., 1995), as shown by reduced acid phosphatase staining in positions 3 and 4. However, in a
merodiploid strain containing alcA®::PacC5-678 integrated in argB in addition to pacC‘14, palAl which is
hypostatic to pacC‘14 on glucose medium becomes epistatic to pacC‘14 when PacC5-678 is over
expressed under alcA® inducing conditions (1% ethanol) lane 5. The strains containing the transgene
were obtained by transformation (Tilburn et al., 1983) of a strain pabaAl yA2 argB2 pacC14 or yA2
argB2 palAl pacCA::Ncpyrd pantoB100 with plasmid p[alcA®::PacC5-678] (Mingot et al., 1999) and
crossing. Strains in lanes (1) wildtype biA1 (J734 or 2167A), (2) biAl palA1 (BXS), (3) pabaAl pacC14
(J542), (4) biA1 pabaA1l argB::alcAP::PacC5-678) pacC 14 (J601), (5) yA2 pabaAl palAl

argB::alcAP::PacC5-678 pacC14 pantoB100 (J776).
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Fig. S2

Electrophoretic Mobility Shift Assays (EMSAs) showing the effects of pacX1 on complexes formed by
PacC in pacC* (i), paf (i), pacC”20205 (iii), and pacC234 backgrounds. PacC was detected using a 3*P-
labelled oligonucleotide containing ipnA2 (Tilburn et al., 1995). The positions of the PacC forms are
indicated. Each binding reaction contained 5 pig of crude protein. Strains were grown from conidial
inocula of 1 - 2 x 10°mI™ in 200 ml of appropriately supplemented Aspergillus complete media (Cove,
1966), containing 3% (*/,) sucrose, 20 mM MES pH 6.5, at 37°C for 16 hours with shaking at 120 rev min’
! Mycelia were harvested on sterile Miracloth™ (Calbiochem) and samples of mycelia were cut into
small strips of approximately 300 mg and frozen in liquid nitrogen. Cell lysates were prepared essentially
as described by Pefias et al. (2007) except that the samples were centrifuged immediately after cell
disruption. Double stranded oligonucleotide probes were prepared and binding reactions and

electrophoresis were carried out following Perez-Esteban et al. (1993) and Espeso and Pefalva (1994).
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Fig. S3. Coiled-coil predictions for PacX and the consensus derived from a 177-membered alignment of
PacX homologues were obtained at http://toolkit.tuebingen.mpg.de/pcoils. The same alighment used to

generate the phylogeny shown in Fig.S6 was used to obtain the coiled-coil prediction.
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Fig. S4. ConSurf (http://consurf.tau.ac.il) results for PacX based on the 177-membered alignment used to

generate the phylogeny in Fig. S6. Residues where point mutations map are indicated with dark arrows

and residue changes are shown. The coiled-coil region and zinc binuclear cluster are outlined in green.


http://consurf.tau.ac.il/

Alk. Phos. pH 6.5
Acid phos. pH 6.5
Acid phos. pH 8.0

wild type/wild
type

pacX1/wild type
palAl/palAl

palAl/palAl pacX1

Fig. S5. Partial dominance of pacX1 to the wild type allele in a homozygous palA1l diploid.

Diploids of relevant partial genotype are indicated. Growth on 25 mM molybdate and pH 8.0 medium
are shown. Alkaline and acid phosphatase staining was carried out after growth on minus phosphate
medium, buffered at the pH values shown, for ~24h at 37°C.
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Fig. 6. Maximum likelihood phylogeny of 177 putative PacX orthologues. The tree is shown in a
cartoon, circular form. The name of each species is indicated, followed by the protein accession number
in the JGI data base. The classes and orders within the Pezizomycotina are colour coded as follows: Blue,
Dothideomycetes, Pleosporales; Light blue, Dothideomycetes, Capnodiales; Very light blue;
Dothideomycetes, Incerta sedis; Grey, Leotiomycetes; Green, Eurotiomycetes; Purple,
Xylonomycetes;Yellow, Leotiomycetes; Pink Sordariomycetes, Hypocreales, Red, Sordariomycetes, other
orders. Names in purple indicate species that map outside their taxonomic order (but within its class);
e.g. Acremonium alcalophilum does not map together with other Hypocreales, such as Acremonium
strictum, Trichodelitschia bisporula does not map with other Pleosporales. Species in red are those used
in Fig. 6. Alignment carried out with MAFFT E-INS-i, (recommended for sequences with multiple
conserved domains and long gaps) with a Blosum 30 matrix, alighment refinement carried out with
BMGE with a Blosum 30 similarity matrix. Tree generated with PhyML and re-drawn with Figtree.

Support values in the nodes are aLRT (approximate likelihood ratio tests, see Experimental Procedures).



Supplementary Data

Inactivation of the pacX gene by an endogenous Fot1-like transposon

PCR amplification of pacX18, using primers XF2 and XR8, showed this mutation to result from an
insertion of ~1.7 kb. Complete sequencing showed the insert to be 1860 bp (not including the
characteristic TA duplication) with an open reading frame identical to that of AN0826, which is
annotated in the http://www.aspergillusgenome.org data base as “Uncharacterised transposable
element gene”. The open reading frame of 1622 nt is bounded by 44 nt inverted repeats, the 5'
terminating 50 nt upstream of the ATG, the 3' initiating 57 nt downstream from a double ochre chain
termination signal. These features are identical to those flanking AN0826. The element is integrated in
an orientation opposite to that of the open reading frame of pacX between the T and A of the acceptor
site of the intron of pacX, and it generated a typical TA duplication. The open reading frame shows an
obvious similarity with that of transposons of the Fot1/pogo family (Supplementary Fig. S7) shows the
similarity of the peptidic sequences.

There are sixteen sequences in the A. nidulans genome which show high similarity with AN0826, with
complete or incomplete open reading frames, all bounded by identical (in one case incomplete, AN7516)
inverted repeats. These are namely, in order of similarity: AN4391, AN6559, AN3478, AN11091, AN4877,
AN5334, ANO669, AN7516, AN2732, ANO975, AN8788, AN11044, AN3047, AN2291, AN5863, AN9046
(Cerqueira et al., 2014). Even the most similar sequences show sufficient nucleotide differences with
ANO0826 to make the identification of the inserted element certain. Southern blots had already revealed
a minimum of eleven copies in the standard Glasgow laboratory strain (Li Destri Nicosia et al., 2001) The
most conserved open reading frames (AN0826 to AN3478, also AN11044) are not predicted to be
interrupted by introns. In other ORFS introns are predicted. While we have not checked manually all
putative ORFs, these introns are probably spurious, and are derived by automatic annotation from the

presence of chain termination codons inactivating some of the ORFs. The variability in the position of



the putative intron within the different ORFs supports this contention. The case of AN8788 is glaring, a
472 nt putative intron results in an overlap of the proposed ORF with convergently transcribed AN8789
and would place the putative C-terminal exon beyond the inverted repeat. In this case a -2 frame shift

has resulted in a truncated protein at residue 595, automated intron recognition process "fabricating",

in fact, two introns.

It is striking that among the hundreds of loss-of-function mutations obtained by classical genetics and
now sequenced, pacX18 is the first and only one due to the insertion of an endogenous transposon.
Attempts to select specifically such events were never successful in A. nidulans. This contrasts with the
ready mobility of heterologous Fot1, impala and Minos transposons inserted in the genome of A.

nidulans (Li Destri Nicosia et al., 2001; Carr et al., 2010; Evangelinos et al., 2015)

An explanation for the extreme rarity of endogenous transposition in A. nidulans may derive from the
absence of active transposase in the cell. Caddick and co-workers have carried out global RNAseq of the
A. nidulans transcriptome under 5 different conditions (Sibthorp et al., 2013). These data are accessible
on line (http://www.aspgd.org/, JBrowse). A search for each one of the paralogues indicated above
showed virtually (and in some cases absolutely) no transcripts. Some transcripts are seen for AN9604,
the most divergent of the homologues, which cannot encode an active transposase. In contrast with
this data, a signal for a transcript of the correct length was detected in early experiments by
conventional Northern blots (Li Destri Nicosia et al., 2001) in culture conditions similar to one of those
used by (Sibthorp et al., 2013). The probe used was derived from the only A. nidulans Fot-like element
known at the time, whose position within a sequenced cosmid, F2P08, (Kupfer et al., 1997) identifies it
unequivocally as AN0975. The high similarity between all Fot1-like paralogues implies that cumulative

transcription of all Fot-1 like elements in the genome were detected in this experiment.



The different homologues are spread throughout the genome, are not methylated (Li Destri Nicosia et
al., 2001), and active transcription of neighbouring genes show that they are not located in silent
regions of the genome. It would be interesting to know if the absence of transcripts derives from very
infrequent transcription or from selective degradation of the cognate RNAs though the dicer/argonaute
system (Hammond et al., 2008a and b). The strain in which pacX18 was isolated carries an autonomous
copy of an impala element from F. oxysporum, belonging to the Tc1/mariner family. While the cognate
transposase cannot mobilise a Fot1-like element, the possibility remains that its presence may affect the
regulation of its expression. In addition, possible effects of the pacC”'ZOZOS mutation and the stressful
alkaline growth conditions under which the pacX18 mutation was selected may ,have contributed to the

activation of the AN 0826 Fot-1-like element

Transposons of the Fot1/Pogo family operate through a mechanism of cut and paste, rather than the
copy and paste characteristic of retroposons, and among the eukaryotic DNA transposons, of helitrons.
We thus tested the presence of the resident copy of AN0826 in the strain where transposition to pacX
had occurred. Fig S7 shows clearly that AN0826 is conserved at its locus in the strain carrying the pacX18
mutation, thus demonstrating a copy/paste mechanism, however, the precise insertion of the inverted

repeats and the TA duplication implies that this event was catalysed by the specific transposase.

That copy and paste expansion of eukaryotic type Il transposons must occur is indicated by the
multiple copies of these elements in genomes where they are present (Daboussi and Capy, 2003;
Dufresne et al., 2011, specifically for Fot1 elements), and in the specific case of the Fot1-like transposons
of A. nidulans by their polymorphism in different strains of this species (Li Destri Nicosia et al., 2001). A
class Il "cut and paste" DNA transposon can replicate by transposing from a position behind a replication
fork to an un-replicated sequence or by double-stranded gap repair at the donor site by an intact sister

chromatid (Rubin and Levy, 1997; Bessereau, 2006; Wicker et al., 2007; Izsvak et al., 2009; Skipper et al.,



2013 and refs therein). Both mechanisms imply a temporal coupling of replicative transposition and the
S phase of the cell cycle. AN0826 and pacX are both on chromosome VIII at ~180 kb from each other,
which is not incompatible with these genes being within the same replicon. This proximity may have
facilitated a local transposition event [local hopping, (Tower et al., 1993; Timakov et al., 2002; Carlson
and Largaespada, 2005; Mufoz-Lopez and Garcia-Pérez, 2010)] and allowed us to detect this very rare

occurrence.



AN0826 1 EPRVRVS sEQECHEKEEEAARY OFKEK EFEFEF YR F NG B TEAR T T NFA E SEA - NGHEIAHE I EFEVAK
Tanl 1 ldpkasHPEK S o VRS TIBFNFY ol o bR 3P VNI VFID YA R Tig#0 Al38S[ERF AKNMTN - A RQISAS NN Ejofofs VK
Fotl 1 gV YEADDLE---------- EN4ADFKNIg - - VLK TEVAK K NEL P B ARG T(elA 0 SFOVENQ - EQLRMHT D QD DMER
Aftl 1 gksEK@E------- NEs YPRELCENA QA QKK P NS K I NI E el Y ARRBID VK K HiH PR LEWNK PVNRAMK G Y QifHla T
AN0826 CJONT L SLDMRGAAP TidALIVREMANSAL ARSR GERgRdebuv GloJK Wi Yi\pge]R H P ERIST. Iof]R LR OMD[&/0 R A K| EN[PISV I [oF:XW F Nj
Tanl 80 PR FININSIARFL D IRIDIENL I I SKIEYETVE bYWA YEIF VK R HEJEIST 1T R AR RIBSPO R AKINED PV I KW PR3
Fotl 68 MARQEIL[HNHMOFIT I VR S VIR H[EDH - - AP LIGREANT TEIRAYELEEA - - - MK AGIIITEW E[SIVNA T)A NRS4R LigD v
Aftl 74 MVCMRDENMP Vi§gK LLEFYENYQAMRRAGER - - REN]S KMUEFS S ERILIFAH L NG PAKQK I KE SKIJ I OLNARA GLL THJ YO
AN0826 157 HRATHEOHH. PR IEESAdL CRHQ KSBSEGRIAPVL QP GNREEWVTA T ERT S AEGWEILEPHL I FKGK{o M pacX* pacXis M
Tanl SR A ve¥:v 1/}l G PP DI YNFDET GFAMGI oA idY B\ RGO PGNREEWVTAIEC IFECHVLIFML I FKGK TR
Fotl 143 YETYD - - - Wi E R R}SVAPIIGLET ME[eloV N G LG EEPNAVPVKTATVR-TWTSIIECISAVGEVLHELVIFKEKT-
Aftl 152 LAGYVKK - DT|JARLVys\@ic(ego PleE ek S REYFSE- - - KeSKBIDHAE S ERIGEN T [N s:{e v AL\D[EfF O MD)W F i {EN G T

LDGHGSHLTPEFDQSCyDI:IN)ST P

AN0826 233 ¥YNQ BLJGRNIT. P PEIDWR F Ep{ SN GW THSNE I[HL RWL QK[SF I PHT Ej:s: G|Vl
Tanl PELIR:$ A% Wi G{oEFiP PREETW R F ENY SN G W TpoFA T €]l RWL QKIHF I PiMied $AYG)SY L. L\YL. DGHGSHL T PEF DQIECINANHV I P

Fotl 218 IQEQ[F- RREFMOKHL GOV T FEKINEENS N S pFNAE WAEISV)JLIZOA PAD PADARREAT Visleh:felh iAW E QiAMA Kol v LINTASY L

Aftl 228 FMESINES AN - - BT T IA TP SDELEWV QNSS F I NATNER T K KEE KT AT File):{efh i vidy L 0L o E BN AT

AN0826 308 METEFCEEEMNEEREEEA VIEEISHA SLD QKIRAY- I SEID A AFFJORNET s TEK LD THEN S GEFY X VELERE P 3Kb

Tanl kRS ICMPAHSSHLLQPLD VIBITY{G GM\YOK QN0 Y[e]- RNE{ID oA PIdAE{eYelA IEIKEIN IS G F R ARG L\YP 1AB]P o]} 2Kb

Fotl 297 MFLIZNICEEVIAGIAI, SIBYA AT LIYGEHT AT D S TRV GR4Q R|PAD FIYA RENEFAT GRI(VARSELWiE VN WiV T N

Aftl 306 FGFLPRITTEACIIANGK PIYL S YIQHFIIRMNNIHLSYWA - GEPVGEIS EJMHMI G P Vi3AKENGN O R Ip§JE A[JK D R[]I WigViy] - SIY 1.5Kb
1Kb

AN0826 387 K@SpQA-------------- CEFTPHG- - - - BRcEF2EHF c PHEFAN VD EPBI0A S LLRD FRK oK P E S HNAM

Tanl 390 RHR -------------- KPD ------- GSVLQH&KH H@KSVERRQATNST

Fotl 377 PMASRWVMVL------------- TKSALIE]--------- CELEFAIKRGGDVV)L- - - - - - - WFE2KEsEhSERA- - ST

Aftl 384 IADDHAHMLMAWEGIPDIYAPDLDKMEESEASOP PERP P SES 1phis PR THQAMKIINGIAK - - - - FFIHADLLEPKMORNE  0.5Kb

ANO0826 449 NEMIIIIOIFIMQOKG I LMEQIANRAMFNENA I [o)¥:34
Tanl 449 BIPALIMEIGELINI TN S IfRAAKIANA EIf¥NS HEK{o]L Q}:d

-FARTHRW- - - - TAHDNEHASVQEA- - - - TH- - LEFFAHJASF - QAIP
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CRiV\YD

Fotl 426 RIKAAAALDKVAIEMAMKDRIAIERIINOLEAAQP)Y- KI$IK IRMDPNECFIPLAQILAIFNSYIEPDQRVIQSQKGHL

Aftl 460 ERIFEHNRENNEHMANANETIGKITINAQAPLEERQYTI$JOVKP - - - - LS Q|G ML RDESMISHAS - - - - - - = - - - - - - - - -
AN0826 517 [EPCGEPAHGAQTHKARENAE- HRAEEEEINAM- - -BNK

Tanl 521 ----)JoFQYTETIY- siE\PlgR - IBNT GHRRNICIS P
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Aftl 520 ----- RKAKPAAAQERRMQM- - - QWEKVHGKPPPL - - - AFJT

acgtggttggtaagcgagctgcgecatgtaagcgagectgeocgecacce

tgcaccaaccattcgctcgacgecgtacattcgectecgacgegtgg



Fig. S7. Protein alignment: AN0826 ORF compared with known active fungal transposons of the
Fot1/Pogo family, Tan1 from A. niger (Nyyssonen et al., 1996), Aftl from A. fumigatus (Hey et al., 2008)
and Fot1 from Fusarium oxysporum (Daboussi et al., 1992). Alignment carried out with MAFT, G-INS-i,
visualised with Box-Shade (http://www.ch.embnet.org/software/BOX_form.html). Nucleotide
alignment: inverted repeat (without the TA duplication) of AN0826 at its genomic locus and within the
pacX gene in the pacX18 mutation. Inverted repeats detected with einverted:
(http://emboss.bioinformatics.nl/cgibin/emboss/einverted). Right panel, PCR amplification with primers
external to the AN0826 inverted repeats at its chromosomal location. M, molecular size markers. pacX”
is the parent strain XC34 (yAA::Ncpyrd pabaAl pacC 202 pacC+/'20205 pantoB100 niaDA::impala::yA”)
for the pacX18 derivative (strain A869). The expected size of the amplified sequence would be 2118 bp
in the pacX” strain and 456 bp if the pacX18 mutation resulted from a Cut and Paste mechanism. In the
event amplified bands in both strains are of identical size, showing a Copy and Paste mechanism to be

operating. Primers used for amplification, ANO826F and ANO826R.
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