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Abstract
To scale Gaussian processes (GPs) to large data
sets we introduce the robust Bayesian Com-
mittee Machine (rBCM), a practical and scal-
able product-of-experts model for large-scale
distributed GP regression. Unlike state-of-the-
art sparse GP approximations, the rBCM is con-
ceptually simple and does not rely on inducing
or variational parameters. The key idea is to
recursively distribute computations to indepen-
dent computational units and, subsequently, re-
combine them to form an overall result. Efficient
closed-form inference allows for straightforward
parallelisation and distributed computations with
a small memory footprint. The rBCM is in-
dependent of the computational graph and can
be used on heterogeneous computing infrastruc-
tures, ranging from laptops to clusters. With suf-
ficient computing resources our distributed GP
model can handle arbitrarily large data sets.

1. Introduction
Gaussian processes (GPs) (Rasmussen & Williams, 2006)
are the method of choice for probabilistic nonlinear re-
gression: Their non-parametric nature allows for flexi-
ble modelling without specifying low-level assumptions
(e.g., the degree of a polynomial) in advance. Inference
can be performed in a principled way simply by apply-
ing Bayes’ theorem. GPs have had substantial impact in
geostatistics (Cressie, 1993), optimisation (Jones et al.,
1998; Brochu et al., 2009), data visualisation (Lawrence,
2005), robotics and reinforcement learning (Deisenroth
et al., 2015), spatio-temporal modelling (Luttinen & Ilin,
2012), and active learning (Krause et al., 2008). A strength
of GPs is that they are a fairly reliable black-box func-
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tion approximator, i.e., they produce reasonable predictions
without manual parameter tuning. However, their inher-
ent weakness is that they scale poorly with the size N of
the data set: Training and predicting scale in O(N3) and
O(N2), respectively, which practically limits GPs to data
sets of size O(104).

For large data sets (e.g., N > 104) sparse approxima-
tions are often used (Williams & Seeger, 2001; Quiñonero-
Candela & Rasmussen, 2005; Hensman et al., 2013; Tit-
sias, 2009; Lázaro-Gredilla et al., 2010; Shen et al., 2006;
Gal et al., 2014). Typically, they lower the computational
burden by implicitly (or explicitly) using a subset of the
data, which scales (sparse) GPs to training set sizes N ∈
O(106). Recently, Gal et al. (2014) proposed an approach
that scales variational sparse GPs (Titsias, 2009) further by
exploiting distributed computations. In particular, they de-
rive an exact re-parameterisation of the variational sparse
GP by Titsias (2009) to update the variational parameters
independently on different computing nodes. However,
even with sparse approximations it is inconceivable to ap-
ply GPs to training set sizes of N ≥ O(107).

An alternative to sparse approximations is to distribute the
computations by using independent local “expert” models,
which operate on subsets of the data. These local mod-
els typically require stationary kernels for a notion of “dis-
tance” and “locality”. Shen et al. (2006) used KD-trees to
recursively partition the data space into a multi-resolution
tree data structure, which scale GPs to O(104) training
points. However, no solutions for variance predictions are
provided, and the approach is limited to stationary kernels.
Along the lines of exploiting locality, mixture-of-experts
(MoE) models (Jacobs et al., 1991) have been applied to
GP regression (Rasmussen & Ghahramani, 2002; Meeds
& Osindero, 2006; Yuan & Neubauer, 2009). However,
these models have not primarily been used to speed up
GP regression, but rather to increase the expressiveness of
the model, i.e., allowing for heteroscedasticity and non-
stationarity. Each local model possesses its own set of
hyper-parameters to be optimised. Predictions are made
by collecting the predictions of all local expert models, and
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weighting them using the responsibilities assigned by the
gating network. Closed-form inference in these models is
intractable, and approximations typically require MCMC.
Nguyen & Bonilla (2014) sidestep MCMC inference and
speed the GP-MoE model up by (i) fixing the number of
GP experts, (ii) combining it with the pseudo-input sparse
approximation by Snelson & Ghahramani (2006). This ap-
proach assigns data points to expert probabilistically using
proximity information provided by stationary kernels and
scales GPs to O(105) data points.

Product-of-GP-experts models (PoEs) sidestep the weight
assignment problem of mixture models: Since PoEs multi-
ply predictions made by independent GP experts, the over-
all prediction naturally weights the contribution of each ex-
pert. However, the model tends to be overconfident (Ng
& Deisenroth, 2014). Cao and Fleet (Cao & Fleet, 2014)
recently proposed a generalised PoE-GP model in which
the contribution of an expert in the overall prediction can
weighted individually. This model is often too conser-
vative, i.e., it over-estimates variances. Tresp’s Bayesian
Committee Machine (BCM) (Tresp, 2000) can be consid-
ered a PoE-GP model, which provides a consistent frame-
work for combining independent estimators within the
Bayesian framework, but it suffers from weak experts.

In this paper, we exploit the fact that the computations of
PoE models can be distributed amongst individual com-
puting units and propose the robust BCM (rBMC), a new
family of hierarchical PoE-GP models that (i) includes the
BCM (Tresp, 2000) and to some degree the generalised
PoE-GP (Cao & Fleet, 2014) as special cases, (ii) provides
consistent approximations of a full GP, (iii) scales to ar-
bitrarily large data sets by parallelisation. Unlike sparse
GPs our rBCM operates on the full data set but distributes
the computational and memory load amongst a large set of
independent computational units. The rBCM recursively
recombines these independent computations to form an ef-
ficient distributed GP inference/training framework.

A key advantage of the rBCM is that all computations can
be performed analytically, i.e., no sampling is required.
With sufficient computing power our model can handle ar-
bitrarily large data sets. We demonstrate that the rBCM
can be applied to data sets of size O(107), which exceeds
the typical data set sizes sparse GPs deal with by orders
of magnitude. However, even with limited resources, our
model is practical: A GP with a million data points can be
trained in less than half an hour on a laptop.

2. Problem Set-up and Objective
We consider a regression problem y = f(x) + ε ∈ R,
where x ∈ RD. The Gaussian likelihood p(y|f(x)) =
N (f(x), σ2

ε ) accounts for the i.i.d. measurement noise

ε ∼ N (0, σ2
ε ). The objective is to infer the latent function

f from a training data set X = {xi}Ni=1,y = {yi}Ni=1.
For small data set sizes N , a Gaussian process (GP) is a
method of choice for probabilistic non-parametric regres-
sion. A GP is defined as a collection of random variables,
any finite number of which is Gaussian distributed. A GP
is fully specified by a mean function m and a covariance
function k (kernel) with hyper-parameters ψ. Without loss
of generality, we assume that the prior mean function is 0.

A GP is typically trained by finding hyper-parameters θ =
{ψ, σε} that maximise the log-marginal likelihood

log p(y|X,θ)
.
= − 1

2

(
yT (K + σ2

εI)
−1y + log |K + σ2

εI|
)
, (1)

whereK = k(X,X) ∈ RN×N is the kernel matrix.

For a given set of hyper-parameters θ, a training set X,y
and a test input x∗ ∈ RD, the GP posterior predictive dis-
tribution of the corresponding function value f∗ = f(x∗)
is Gaussian with mean and variance given by

E[f∗] = m(x∗) = k
T
∗ (K + σ2

εI)
−1y , (2)

var[f∗] = σ2(x∗) = k∗∗ − kT∗ (K + σ2
εI)
−1k∗ , (3)

respectively, where k∗ = k(X,x∗) and k∗∗ = k(x∗,x∗).

Training requires the inversion and the determinant of
K + σ2

εI in (1), both of which scale in O(N3) with
a standard implementation. For predictions, we cache
(K + σ2

εI)
−1, such that the mean and variance in (2)

and (3) require O(N) and O(N2) computations, respec-
tively. For N > 10, 000 training and predicting be-
come time-consuming procedures, which additionally re-
quire O(N2 +ND) memory.

Throughout this paper, we assume that a standard GP is a
good model for the latent function f . However, due to the
data set size N the full GP is not applicable.

To scale GPs to large data sets with N � O(104), we ad-
dress both the computational and the memory issues of full
GPs by distributing the computational and memory loads
to many independent computational units that only operate
on subsets of the data. For this purpose, we devise a robust
and scalable hierarchical product-of-GP-experts model.

3. Distributed Product-of-GP-Experts Models
Product-of-experts models (PoEs) are generally promising
for parallelisation and distributed computing. In a PoE
model, an overall computation is the product of many inde-
pendent (smaller) computations, performed by “experts”.
In our case, every expert is a GP that accesses only a subset
of the training data. In this paper, we consider a GP with
a training data set D = {X,y}. We partition the training
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(a) 1-layer model.

µ, σ
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(b) 2-layer model.
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(c) 3-layer model.

Figure 1. Computational graphs of hierarchical PoE models. Main computations are at the leaf nodes (GP experts, black). All other
nodes recombine computations from their direct children. The top node (blue) computes the overall prediction.

data into M sets D(k) = {X(k),y(k)}, k = 1, . . . ,M , and
use a GP on each of them as a (local) expert1. Each GP
expert performs computations (e.g., mean/variance predic-
tions) conditioned on their respective training data D(k).
These (local) predictions are recombined by a parent node
(see Fig. 1(a)), which subsequently may play the role of an
expert at the next level of the model architecture. Recur-
sive application of these recombinations results in a multi-
layered tree-structured computational graph, see Fig. 1(c).

The assumption of independent GP experts leads to a
block-diagonal approximation of the kernel matrix, which
(i) allows for efficient training and predicting (ii) can be
computed efficiently (time and memory) by parallelisation.

3.1. Training

Due to the independence assumption, the marginal likeli-
hood p(y|X,θ) in a PoE model factorises into the product
of M individual terms, such that

p(y|X,θ) ≈
∏M

k=1
pk(y

(k)|X(k),θ) , (4)

where each factor pk is determined by the kth GP expert.
For training the PoE model, we seek GP hyper-parameters
θ that maximise the corresponding log-marginal likelihood

log p(y|X,θ) ≈
∑M

k=1
log pk(y

(k)|X(k),θ) (5)

where M is the number of GP experts. The terms in (5) are
independently computed and given by

log p(y(k)|X(k),θ) = − 1
2y

(k)(K
(k)
ψ + σ2

εI)
−1y(k)

− 1
2 log |K

(k)
ψ + σ2

εI|+ const ,
(6)

where K(k)
ψ = k(X(k),X(k)) is an nk × nk matrix, and

nk � N is the size of the data set associated with the kth
GP expert. Since we assume that a standard GP is sufficient
to model the latent function, all GP experts at the leaves
of the tree-structured model are trained jointly and share a
single set of hyper-parameters θ = {ψ, σε}. Computing
the log-marginal likelihood terms in (6) requires the inver-
sion and determinant of K(k)

ψ + σ2
εI . These computations

1The notion of “locality” is misleading as our model does not
require similarity measures induced by stationary kernels.

require O(n3k) time with a standard implementation. The
memory consumption isO(n2k+nkD) for each GP expert.

In (5), the number of parameters θ to be optimised is rela-
tively small since we do not consider additional variational
parameters or inducing inputs that we optimise. Training
(i) allows for straightforward parallelisation, (ii) provides
a significant speed-up compared to training a full GP, (iii)
requires solving low-dimensionalO(D) optimisation prob-
lem unlike sparse GPs, which additionally optimise induc-
ing inputs or variational parameters.

3.2. Predictions

In the following, we assume that a set of M GP experts has
been trained according to Section 3.1 and detail how the
PoE (Ng & Deisenroth, 2014), the generalised PoE (Cao &
Fleet, 2014) and the Bayesian Committee Machine (Tresp,
2000) combine predictions of the GP experts to form an
overall prediction. Furthermore, we highlight strengths and
weaknesses of these models, which motivates our robust
Bayesian Committee Machine (rBCM). The rBCM unifies
many other models while providing additional flexibility,
which can address the shortcomings of the PoE, gPoE and
the BCM. For illustration purposes, we focus on the model
in Fig. 1(a), but many models generalise to an arbitrarily
deep computational graph (see Section 4).

3.2.1. PRODUCT OF GP EXPERTS

The product-of-GP-experts model predicts a function value
f∗ at a corresponding test input x∗ according to

p(f∗|x∗,D) =
∏M

k=1
pk(f∗|x∗,D(k)) , (7)

whereM GP experts operate on different training data sub-
sets D(k). The M GP experts predict means µk(x∗) and
variances σ2

k(x∗), k = 1, . . . ,M , independently. The joint
prediction p(f∗|x∗,D) is obtained by the product of all ex-
perts’ predictions. The product of these Gaussian predic-
tions is proportional to a Gaussian with mean and precision

µpoe
∗ = (σpoe

∗ )2
∑

k
σ−2k (x∗)µk(x∗) , (8)

(σpoe
∗ )−2 =

∑
k
σ−2k (x∗) , (9)
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Figure 2. Predictions with four different product-of-experts models. The full GP to be approximated is shown by the shaded area,
representing 95% of the GP confidence intervals. Training data is shown as black circles. Each GP expert was assigned two data points.
(a): The standard PoE model does not fall back to the prior when leaving the training data. (b): The generalised PoE model falls back
to the prior, but over-estimates the variances in the regime of the training data. (c): The BCM is close to the full GP in the range of
the training data, but the predictive mean can suffer. (d): The rBCM is more robust to weak experts than the (g)PoE and the BCM and
produces reasonable predictions.

respectively. For k = 1, this model is identical to the full
GP we wish to approximate.

Strengths of the PoE model are (a) the overall prediction
p(f∗|x∗,D) is straightforward to compute, (b) there are
no free weight parameters to be assigned to each predic-
tion (unlike in MoE models). A shortcoming of this model
is that with an increasing number of GP experts the pre-
dictive variances vanish (the precisions add up, see (9)),
which leads to overconfident predictions, especially in re-
gions without data. Thus, the PoE model is inconsistent in
the sense that it does not fall back to the prior, see Fig. 2(a).

3.2.2. GENERALISED PRODUCT OF GP EXPERTS

The generalised product-of-experts model (gPoE) by Cao
& Fleet (2014) adds the flexibility of increasing/reducing
the importance of experts. The predictive distribution is

p(f∗|x∗,D) =
∏M

k=1
pβk

k (f∗|x∗,D(k)) , (10)

where the βk weight the contributions of the experts. The
predictive mean and precision are, therefore,

µgpoe
∗ = (σgpoe

∗ )2
∑

k
βkσ

−2
k (x∗)µk(x∗) , (11)

(σgpoe
∗ )−2 =

∑
k
βkσ

−2
k (x∗) , (12)

respectively. A strength of the gPoE is that with
∑
k βk =

1 the model falls back to the prior outside the range of the
data (and corresponds to a log-opinion-pool model (Hes-
kes, 1998)). A weakness of the gPoE is that in the range of
the data, it over-estimates the variances, i.e., the predictions
are generally too conservative, especially with an increas-
ing number of GP experts. Fig. 2(b) illustrates these two
properties.

Cao & Fleet (2014) suggest to set βk to the difference in the
differential entropy between the prior and the posterior to

determine the importance. In this paper, we do not consider
this setting for the gPoE for two reasons: (i)

∑
k βk 6= 1

leads to unreasonable error bars; (ii) Even with a normal-
isation, this setting does not allow for deep computational
graphs. In fact, it only allows for a single-layer computa-
tional graph, such as Fig. 1(a). To allow for a general com-
putational graph, we require an a-priori setting of the βk.
Thus, we set βk = 1/M , where M is the number of GP
experts. In this case, the predicted means in (8) and (11)
are identical, but the precisions differ, see also Fig. 2(a)
and 2(b) for a comparison.

3.2.3. BAYESIAN COMMITTEE MACHINE

A third model that falls in the category of PoE models is the
Bayesian Committee Machine (BCM) proposed by Tresp
(2000). Unlike the (g)PoE, the BCM explicitly incorpo-
rates the GP prior p(f) when combining predictions (and
not only at the leaves).

For two experts j, k and corresponding training data sets
D(j),D(k), the predictive distribution is generally given by

p(f∗|D(j),D(k)) ∝ p(D(j),D(k)|f∗)p(f∗) , (13)

where p(f∗) is the GP prior over functions. The
BCM makes the conditional independence assumption that
D(j) ⊥⊥ D(k)|f∗. With (13) this yields

p(f∗|D(j),D(k))
BCM∝ p(D(k)|f∗)p(D(j)|f∗)p(f∗) (14)

=
p(D(k), f∗)p(D(j), f∗)

p(f∗)
(15)

∝ pk(f∗|D(k))pj(f∗|D(j))

p(f∗)
, (16)

which is the PoE model in (7) divided by the GP prior. For
M training data setsD(k), k = 1, . . . ,M , the BCM applies
the above approximation repeatedly, leading to the BCM’s
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posterior predictive distribution

p(f∗|x∗,D) =
∏M
k=1 pk(f∗|x∗,D(k))

pM−1(f∗|x∗)
. (17)

The (M − 1)-fold division by the prior is the decisive dif-
ference between the BCM and the PoE model in (7) and
leads to the BCM’s predictive mean and precision

µbcm
∗ = (σbcm

∗ )2
∑M

k=1
σ−2k (x∗)µk(x∗) (18)

(σbcm
∗ )−2 =

∑M

k=1
σ−2k (x∗) + (1−M)σ−2∗∗ , (19)

respectively, where σ−2∗∗ is the prior precision of p(f∗).

The repeated application of Bayes’s theorem leads to an
(M − 1)-fold division by the prior in (17), which plays the
role of a “correction” term in (19) that ensures a consistent
model that falls back to the prior.2 The error bars of the
BCM within the range of the data are usually good, but it
is possible to “break” the BCM when only few data points
are assigned to each GP expert. In Fig. 2(c), we see that the
posterior mean suffers from weak experts when leaving the
data (around x = 0).3

3.2.4. ROBUST BAYESIAN COMMITTEE MACHINE

In this section, we propose the robust Bayesian Commit-
tee Machine (rBCM), a unified model that (a) includes the
gPoE and BCM as special cases, (b) yields consistent pre-
dictions, (c) can be implemented on a distributed comput-
ing architecture.

Inspired by the gPoE in (10), the rBCM is a BCM with the
added flexibility of increasing/decreasing an expert’s im-
portance. The rBCM’s predictive distribution is

p(f∗|x∗,D) =
∏M
k=1 p

βk

k (f∗|x∗,D(k))

p−1+
∑

k βk(f∗|x∗)
, (20)

where the predictive mean and precision are given as

µrbcm
∗ = (σrbcm

∗ )2
∑

k
βkσ

−2
k (x∗)µk(x∗) (21)

(σrbcm
∗ )−2 =

∑M

k=1
βkσ

−2
k (x∗) + (1−

∑M

k=1
βk)σ

−2
∗∗ ,

(22)

respectively. The derivation of the rBCM in (20) is analo-
gous to the BCM’s derivation in (14)–(16).

The rBCM combines the flexibility of the generalised
PoE with the appropriate Bayesian treatment of the BCM,
which leads to the correction term (1 −

∑
k βk)σ

−2
∗∗ in the

the precision in (22). This correction term ensures that the

2The BCM predictions fall into the category of normalised
group odds (Bordley, 1982).

3Here, each expert was assigned only two data points.

predictive variance falls back to the prior when leaving the
data. Note that we no longer require

∑
k βk = 1 to en-

sure this (see also (Bordley, 1982)), which will facilitate
computational graphs with multiple layers. The gPoE from
Section 3.2.2 and the BCM from Section 3.2.3 are recov-
ered for βk = 1/M and βk = 1, respectively. For βk = 0,
the rBCM is identical to the GP prior, and for βk = 1 but
without the correction, the rBCM recovers the PoE from
Section 3.2.1

The parameters βk control not only the importance of the
individual experts, but they also control how strong the
influence of the prior is. Assuming each GP expert is a
good predictive model, we would set βk = 1 for all k,
such that we retain the BCM. If the quality of the GP
experts is weak, e.g., data is noisy and the experts’ data
sets D(k) are small, βk allows us to weaken the experts’
votes and to robustify the predictive model by putting (rel-
atively) more weight on the prior. Therefore, we follow the
suggestion by Cao & Fleet (2014) and choose βk accord-
ing to the predictive power of each expert at x∗. Specif-
ically, we use the difference in differential entropy be-
tween the prior p(f∗|x∗) and the posterior pk(f∗|x∗,D(k)).
This quantity can be computed efficiently and is given as
βk = 1

2 (log σ
2
∗∗− log σ2

k(x∗)), where σ2
∗∗ is the prior vari-

ance and σ2
k(x∗) is the predictive variance of the kth expert.

Fig. 2(d) shows that for this choice of βk the rBCM ex-
presses more uncertainty about the learned model than the
BCM: Due to the adaptive influence of the prior in (21)–
(22), the variances within the range of the data (black cir-
cles) are slightly larger, but the predictive mean no longer
suffers from the dominant “kink” at around x = 0 com-
pared to the BCM in Fig. 2(c). Overall, the rBCM provides
more reasonable predictions than any other model in Fig. 2.

4. Distributed Computations

GP Experts

gPoE

PoE

PoE

Prior

Figure 3. General
architecture for
the rBCM with
arbitrarily many
layers.

In the following, we show that for a
given number M of GP experts, the
rBCM can be implemented in differ-
ent computational graphs while pro-
viding identical predictions. For in-
stance, with 32 experts, we show that a
single-layer computational graph with
32 experts and one central node, see
Fig. 1(a), is equivalent to a two-layer
computational graph with 32 experts,
8 parent nodes (each of which is re-
sponsible for 4 GP experts), and one
central node. This property can be ex-
ploited in distributed systems or to balance the communi-
cation between computing units.

In a single-layer model as shown in Fig. 1(a) the rBCM
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predictions in (20) can be constructed by a gPoE (numer-
ator) combining predictions of GP experts, followed by a
correction via the prior (denominator). Let us consider
a two-layer model with M GP experts, L nodes at level
1 and one central node at level 2, see Fig. 1(b). Each
grey node at level 1 is responsible for Lk GP experts
(black nodes). All M GP experts ki, compute weighted
predictive distributions p

βki

ki
(f∗|D(ki)). These predictions

are then multiplied by the corresponding L parent nodes
(grey) to pβk

k (f∗|D(k)), where βk =
∑
i βki is the over-

all weight of the subtree following the kth node Lk and
D(k) =

⋃
iD(ki). The overall prediction at the top node

(blue in Fig. 1) is∏M
k=1 p

βk

k (f∗|D(k))

p
∑

k βk−1(f∗)
=

∏L
k=1

∏Lk

i=1 p
βki

ki
(f∗|D(ki))

p
∑

k βk−1(f∗)
(23)

where we accounted for the (
∑
k βk − 1)-fold correction

by the prior. This computation can be obtained by a gPoE
(black), followed by a PoE (red) and a prior correction
(blue) in (23). Hence, for a given number of GP experts,
the rBCM predictions can be equivalently realised in a sin-
gle and two-layer computational graph, see Fig. 1.

This can be generalised further to an arbitrarily deep com-
putational graph, whose general implementation structure
is shown in Fig. 3. The GP experts at the leaves compute
their individual means, variances and confidence values
βi. The next layer consists of gPoE models, which com-
pute the weighted means and variances according to (8)
and (12), respectively (plus their overall weights βk =∑
i∈children βki , which are passed on to the next-higher

level). The gPoE is followed by an arbitrary number of
PoE models, which compute means and precisions accord-
ing to (8) and (9), respectively (plus their overall weights
βk =

∑
j∈children βkj , which are passed on to the next-

higher level). The top layer accounts for the prior (blue
term in (23)), which uses all the βk from the subtrees start-
ing at its children to compute the overall mean and preci-
sion according to (21) and (22), respectively.

Hence, for a given number of GP experts, there are many
equivalent computational graphs for the rBCM (and the
other distributed GPs discussed in Section 3). For instance,
all computational graphs in Fig. 1 return identical predic-
tive distributions. This allows us to choose the compu-
tational graph that works best with the computing infras-
tructure available: Shallow graphs minimise overall traf-
fic. However, they are more vulnerable to communication
bottlenecks at the central node since it has a large number
of connections. Deeper computational graphs cause more
overall communication, but the tree has a smaller branch-
ing factor. In practice, for a set of computational graphs
we took the time it requires to compute the gradient of the
marginal likelihood and chose the “fastest” architecture.
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Figure 4. Computation time for the log-marginal likelihood and
its gradient with respect to the kernel hyper-parameters as a func-
tion of the size of the training data. The distributed GPs (DGP),
i.e., (g)PoE and (r)BCM, scale favourably to large-scale data sets.

5. Experiments
We empirically assess three aspects of all distribute GP
models: (1) The required training time, (2) the approxima-
tion quality, (3) a comparison with state-of-the-art sparse
GP methods. In all experiments, we chose the standard
squared exponential kernel with automatic relevance de-
termination and a Gaussian likelihood. Moreover, we as-
signed training data to experts randomly for two reasons:
First, we demonstrate that our models do not need locality
information; second, random assignment is very fast com-
pared to clustering methods, e.g., KD-trees.

5.1. Training Time for Large Data Sets

To evaluate the training time for distributed GPs (DGP)4,
we measured the time required to compute the log-marginal
likelihood and its gradient with respect to the kernel hyper-
parameters. Since the model is trained using LBFGS, the
overall training time is proportional to the time it takes to
compute the log-marginal likelihood and its gradient. For
this evaluation, we chose a computer architecture of 64
nodes with four cores each. Furthermore, we chose a three-
layer computational graph with varying branching factors.
For data sets of≤ 220 data points each GP expert possessed
512 data points, for data set sizes of > 220, we chose the
number of data points per node to be 128.

Fig. 4 shows the time required for computing the,log-
marginal likelihood and its gradient with respect to the
hyper-parameters. The horizontal axis shows the size of the
training set (logarithmic scale), the left vertical axis shows
the computation time in seconds (logarithmic scale) for the
DGP (blue-dashed), a full GP (red-dashed) and a sparse
GP (FITC) with inducing inputs (Snelson & Ghahramani,
2006) (green-dashed). For the sparse GP model, we chose

4This comprises the (g)PoE and (r)BCM for which the training
time is identical.
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the number M of inducing inputs to be 10% of the size
of the training set, i.e., the computation time is of the or-
der of O(NM2) = O(N3/100), which offsets the curve
of the full GP. The right vertical axis shows the number
of GP experts (black-solid) amongst which we distribute
the computation. While the training time of the full GP
becomes impractical at data set sizes of about 20,000, the
sparse GP model can be reasonably trained up to 50,000
data points.5 The computational time required for the DGP
to compute the marginal likelihood and gradients is signifi-
cantly lower than that of the full GP, and we scaled it up to
224 ≈ 1.7× 107 training data points, which required about
the same amount of time (≈ 230 s) for training a full GP
with 214 ≈ 1.6×104 and a sparse GP with 215 ≈ 3.2×104
data points. The figure shows that for any problem size we
can find a computational graph that allows us to train the
model within a reasonable amount of time.

Even if a big computing infrastructure is not available our
model is useful in practice: We performed a full training
cycle of the DGP with 106 data points on a standard laptop
in about 20 minutes. This is also a clear indicator that the
memory consumption of the DGP is relatively small.

5.2. Empirical Approximation Errors

We evaluate the predictive quality of the DGP models in-
troduced in Section 3 on the Kin40K data set. The data set
represents the forward dynamics of an 8-link all-revolute
robot arm. The goal is to predict the distance of the end-
effector from a target, given the joint angles of the eight
links as features. The Kin40K data set consists of 10,000
training points and 30,000 test points. We use the same split
into training and test data as Seeger et al. (2003), Lázaro-
Gredilla et al. (2010), and Nguyen & Bonilla (2014).

We considered two baselines: a full (ground truth) GP and
the subset-of-data (SOD) approximation, which uses a ran-
dom subset of the full training data set to train a sparse GP.
Taking training time into account, Chalupka et al. (2013)
identified the SOD method as a good and robust sparse
GP approximation. All approximate models (PoE, gPoE,
BCM, rBCM, SOD) used the hyper-parameters from the
full GP to eliminate issues with local optima. For ev-
ery model, we took the time for computing the gradient
of the marginal likelihood (training is proportional to this
amount of time). We selected the number of data points
for SOD, such that the gradient computation time approxi-
mately matches the one of the DGPs.

Experiments were repeated 10 times to average out the ef-
fect of the random assignment of data points to experts and
the selection of the subset of training data for the SOD ap-

5We did not include any computational overhead for learning
the inducing inputs, which is often time consuming.
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Figure 5. Performance as a function of training time (lower hori-
zontal axes) and the number of data points per expert (upper hor-
izontal axes). (a) RMSE, (b) NLPD. Standard errors (not dis-
played) are smaller than 10−2.

proximation. For this experiment, we used a Virtual Ma-
chine with 16 3 GHz cores and 8 GB RAM.

Fig. 5 shows the average performance (RMSE and nega-
tive log predictive density (NLPD) per data point) of all
models as a function of (a) the time to compute the gra-
dient of the marginal likelihood and (b) the number of
training data points per GP expert. The full GP (black,
dashed) shows the ground-truth performance, but requires
1162 seconds for the gradient computation. The perfor-
mances of the (r)BCM and the (g)POE have been eval-
uated using 256, 64, 16, 4, and 1 expert with 39, 156,
625, 2500 and 10000 data points per expert, respectively.
In Fig. 5(a), the rBCM consistently outperforms all other
methods, where SOD is substantially worse than all DGPs.
The NLPD in Fig. 5(b) allows us to make some more con-
clusive statements: While the rBCM again outperforms all
other methods, the BCM and the PoE’s performances suf-
fer when only a small number of data points is assigned
to the GP experts. The PoE suffers from variance under-
estimation (see Fig. 2(a)) whereas the BCM suffers from
“weak” experts (see Fig. 2(c)). SOD does not work well,
even with 2500 data points. Overall, the rBCM provides an
enormous training speed-up compared to a full GP, with a
significantly better predictive performance than SOD.

5.3. Airline Delays (US Flight Data)

We assess the performance of the distributed GPs (PoE,
gPoE, BCM and rBCM) on a large-scale non-stationary
data set reporting flight arrival and departure times for
every commercial fight in the US from January to April
20086. This data set contains information about almost 6
million flights. We followed the procedure described by
Hensman et al. (2013)7 to predict the flight delay (in min-
utes) at arrival: We selected the first P data points to train
the model and the following 100,000 to test it. We chose the
same eight input variables x as Hensman et al. (2013): age
of the aircraft, distance that needs to be covered, airtime,

6http://stat-computing.org/dataexpo/2009/
7Thanks to J Hensman for the pre-processing script.

http://stat-computing.org/dataexpo/2009/
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Table 1. US Flight Data Set. SVIGP and Dist-VGP results are
reported from the respective papers. Results with + are the best
solution found. Good and bad performances are highlighted in
blue and red, respectively.

700K/100K 2M/100K 5M/100K
RMSE NLPD RMSE NLPD RMSE NLPD

SVIGP 33.0 — — — — —
Dist-VGP+ 33.0 — 35.3 — — —
rBCM 27.1 9.1 34.4 8.4 35.5 8.8
BCM 33.5 14.7 55.8 17.0 55.3 19.5
gPoE 28.7 8.1 35.5 8.6 37.3 8.7
PoE 28.7 14.1 35.5 26.3 37.3 17.7
SOD > 103 22.6 > 103 17.2 > 103 16.4

departure and arrival times, day of the week and month,
month. This data set has been evaluated by Hensman et al.
(2013) and Gal et al. (2014), who use either Stochastic
Variational Inference GP (SVIGP) or Distributed Varia-
tional GPs (Dist-VGP) to deal with this training set size.

Using a workstation with 12 3.5 GHz cores and 32 GB
RAM, we conducted 10 experiments with P = 7 × 105,
P = 2× 106 and P = 5× 106 where we chose 4096, 8192
and 32768 experts corresponding to 170, 244 and 152 train-
ing data points per expert, respectively. The computation of
the marginal likelihoods required 13, 39, and 90 seconds,
respectively.8 The computational graphs were (16-16-16),
(8192), and (32-32-32), respectively, where each number
denotes the branching factor at the corresponding level in
the tree. After normalising the data every single experiment
consisted of an independent full training/test cycle, with
random assignments of data points to GP experts. Training
the DGPs normally required 30–100 line searches to con-
verge. Table 1 reports the performance (RMSE and NLPD)
of various large-scale GP methods for the flight data set.
The results for SVIGP and Dist-VGP are taken from Hens-
man et al. (2013) and Gal et al. (2014), respectively. Since
SVIGP and Dist-VGP are difficult to optimise due to the
large number of variational parameters, Gal et al. (2014)
report only their best results, whereas we report an average
of all experiments conducted.

The standard errors (not shown in Table 1) of the rBCM and
gPoE are consistently below 0.3, whereas the BCM and the
PoE suffered from a few outliers, which is also indicated by
the relatively large NLPD values. Compared to the Dist-
VGP and SVIGP on the 700K data set, the rBCM, gPoE
and PoE perform significantly better in RMSE. The table
highlights the weaknesses of the PoE (under-estimation of
the variance) and the BCM (problems with weak experts)
very clearly. The property of the gPoE (too conservative)
is a bit hidden: Although the RMSE of the gPoE is consis-
tently worse than that of the rBCM, its NLPD tends to be a
bit lower. The NLPD values of the rBCM and the gPoE are

8All experiments can be conducted on a MacBook Air (2012)
with 8 GB RAM.

fairly consistent across all three experiments.

The data set exhibits the property that the 700K/100K data
set is more stationary than the 2M/100K and 5M/100K data
sets. Therefore, we observe a decreasing performance al-
though we include more training data. This effect has al-
ready been reported by Gal et al. (2014).

6. Discussion and Conclusion
The distributed GP models discussed in this paper exhibit
the appealing property that they are conceptually simple:
They split the data set into small pieces, train GP experts
jointly, and subsequently combine individual predictions
to an overall computation. Compared to sparse GP mod-
els, which are based on inducing or variational parame-
ters, the distributed GPs possess only the normal GP hyper-
parameters, i.e., it is less likely to end up in local optima.

In this paper, all experts share the same hyper-parameters,
which leads to automatic regularisation: The overall gradi-
ent is an average of the experts’ marginal likelihood gradi-
ents, i.e., overfitting of individual experts is not favoured.

We believe that distributed computations are promising to
scale GPs to truly large data sets. Sparse methods using in-
ducing inputs are naturally limited by the number of induc-
ing variables. In practice, we see O(102) many inducing
variables (optimisation is hard), although their theoretical
limit might be atO(104), if we assume that this is the limit
up to which we can train a full GP. If we assume that a sin-
gle inducing variable summarises 100 data points, the prac-
tical limit of sparse methods are data sets of size O(106).
This can be extended by either a higher compression rate
or parallelisation (Hensman et al., 2013; Gal et al., 2014).

We introduced the robust Bayesian Committee Machine
(rBCM), a conceptually straightforward, but effective,
product-of-GP-experts model that scales GPs to (in princi-
ple) arbitrarily large data sets. The rBCM distributes com-
putations amongst independent computing units, allowing
for straightforward parallelisation. Recursive and closed-
form recombinations of these independent computations
yield a practical model that is both computationally and
memory efficient. The rBCM addresses shortcomings of
other distributed models by appropriately incorporating the
GP prior when combining predictions. The rBCM is inde-
pendent of the computational graph and can be equivalently
used on heterogeneous computing infrastructures, ranging
from laptops to large clusters. Training an rBCM with a
million data points takes less than 30 minutes on a laptop.
With more computing power training the rBCM with 107

data points can be done in a few hours. Compared to state-
of-the-art sparse GPs, our model is conceptually simple,
performs well, learns fast, requires little memory and does
not require high-dimensional optimisation.
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