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Abstract 

Synovial fluid lubrication is dependent on protective protein films that form between joint surfaces. 

Under static conditions surface film formation occurs through adsorption, whilst under dynamic 

conditions protein aggregation under shear and load becomes the dominant mechanism. This work 

examines how the protein content of six model synovial fluids affects film formation under static and 

rolling conditions and if the changes in properties can be correlated.  With an increase in the statically 

adsorbed mass and the rate of adsorption, the film thickness under rolling increased. These increases 

did not correlate with the total protein content of the fluid, but were dependent on the type of protein. 

An increase in pH, reduced the adsorbed mass, rate of adsorption and film thickness, but was of 

secondary importance to the type of protein. The rolling film thickness was also correlated with the 

viscoelastic properties of the films formed under static conditions. In this case thinner rolling films 

corresponded to the more hydrated, viscoelastic adsorbed films.  

The strong correlations found between the properties of the adsorbed films and those formed under 

rolling indicate that the same protein-protein and protein-surface interactions may govern both 

mechanisms of film formation despite the differences in the film structures. 

 

 

1. Introduction 

Total hip replacement is an extremely successful operation, with 82 % of implants lasting 10 years or 

more [1]. For younger patients which account for 8000 total hip replacements in the UK each year,  

this number drops to 72% [2]. Consequently there is a need to improve the current joint designs to 

meet the demands of some patients. Looking to the future, the number of joint replacements 

performed around the world increases year on year, a trend which is set to continue [3]. The growth in 

demand far outstrips the growth in healthcare budgets, and so it is inevitable that there will be a need 

for cheaper implants, which may well dictate the use of new materials, manufacturing processes and 

designs. The recent problems with the metal-on-metal systems, where excessive wear and 

tribocorrosion have led to recall of implants highlight the importance of understanding the tribology, 

and hence lubrication of new systems at the outset.   



A human hip joint can be represented by two surfaces rubbing against each other, separated by the 

natural lubricant which is synovial fluid (SF). This fluid is a complex mixture of macromolecules with a 

large concentration of plasma proteins which demonstrates non-Newtonian behaviour [4,5]. The 

properties of the fluid, including pH and protein content vary from patient to patient, and between 

healthy and diseased states [6,7]. As such the classic models for predicting film thickness developed 

for simple hydrocarbons, with consistent fluid properties cannot be used to estimate the lubricant 

thickness separating the rubbing joint surfaces [8]. This greatly limits our ability to design new 

improved, endurable implant systems. To tackle this shortcoming, the authors have conducted in-situ 

measurements of lubricating films, to provide insights on lubricating (or protective) film formation 

mechanisms on rubbing surfaces in fluids with high protein concentrations [5,8,9]. 

Visualisation of the tribological contact lubricated with model SF has highlighted a new mechanism of 

SF lubrication: Protein Aggregation Lubrication (PAL) [8,9]. This occurs in protein solutions at low 

speeds, where a local region of increased protein concentration occurs at the inlet to the contact. 

Proteins trapped at the inlet form large aggregates which are pulled into the contact, separating the 

surfaces. In previous studies the authors have shown in Saline and Tris-HCl solutions that this 

mechanism is influenced by the type of protein as well as the total concentration of protein in the fluid 

[10,11].  This work also demonstrated that bovine calf serum (BCS) solutions, which contain a mixture 

of the proteins albumin and gamma-globulin, form thinner films than solutions of only gamma-globulin. 

This implies that interactions among proteins in BCS impact on the formation of lubricating films. 

Subsequent studies by Vrbka et al. [12–14] have highlighted the role of the protein-surface interaction 

in the formation of PAL films. They found thicker films forming on CoCrMo surfaces compared to 

ceramic alumina surfaces [12], and that thinner films are formed on more hydrophilic surfaces [13]. 

Studies of protein adsorption can provide information about protein-surface interactions, and so will 

be useful in understanding the formation of lubricating films. 

Protein adsorption at surfaces, biolubrication aside, is also of importance in many scientific and 

technology areas for example food industry and bio-fouling and there is an extensive body of research 

literature on the subject. Adsorption of the proteins albumin and gamma-globulin, both independently 

and together have been investigated under static conditions using techniques such as quartz crystal 

microbalance (QCM) [15,16], fluorescence imaging [17], ellipsometry [18,19] and surface plasmon 

resonance spectroscopy [20]. These studies show that competition between the proteins for 

adsorption sites can affect the mass, thickness and viscoelastic properties of the adsorbed layers. 

These properties are dependent on relative protein concentrations and protein-surface interactions, 

which can be affected by pH and chemistry of model SFs.  Note many of the studies [15–19,21–24] 

have been carried out at relatively low protein concentrations, typically 0.01 – 1 mg ml
-1

. At the 

concentrations relevant to synovial fluid (7-18 mg ml
-1

 for albumin  and 0.5-2.9 for gamma globulin 

[25]) the impact of competitive adsorption among SF proteins on the adsorbed film properties is not 

known. Furthermore, the relationship between properties of adsorbed film and those of films formed 

through protein aggregation is not established. 

The two key questions addressed in the work were: 



1. What are the effects of the protein content and pH of model synovial fluids on adsorption 

and PAL film formation on silica and chromium surfaces? 

2. Can static adsorption results be used to predict the properties of lubricating films formed 

through PAL? 

In this study, the relationship between statically adsorbed protein films and lubricating film formed 

when rubbing surfaces are in relative motion was investigated for films formed in a range of model 

synovial fluids. Although this is not a direct simulation of a hip joint, the model fluids, test surfaces, 

speeds and contact pressures were chosen to be similar to a metal on metal (CoCrMo) joint system.  

Model synovial fluids were prepared using bovine serum albumin (BSA), bovine gamma-globulin 

(BGG), and a mixture of these proteins at either pH 7.4 or pH 8.1 to represent changes between 

healthy and diseased fluids. A quartz crystal microbalance (QCM) and a ball-on-flat device were used 

to examine properties of statically adsorbed films and lubricating films (see sections 2.2 and 2.3). For 

QCM quartz crystal with either a silica or chromium coating were used, whilst under rolling a flat silica 

surface and a CoCrMo ball were used. The silica surface was required to conduct optical 

measurements, but is similar to the ceramic alumina (Al2O3) used for hip prosthesis in that both 

surfaces have a low surface roughness < 10 nm [26], are hydrophilic and are charged [12]. There is 

however, a significant difference in that silica and alumina negatively and positively charged 

respectively in the relevant pH range [27]. A chromium coated crystal was used in QCM to represent 

the CoCrMo alloy used in rolling tests. This crystal has a surface layer of hydrophilic chromium oxide 

Cr2O3, which correspond to the primary oxide found on the surface of CoCrMo implants [28,29].  

2. Materials and Methods 

Using a QCM the adsorption of BSA and BGG on silica and chromium surfaces was examined at pH 

7.4 and 8.1. The effect of protein content on lubricant film thickness was then examined for a 

silica/CoCrMo interface using optical interferometry under a pure rolling condition.  

2.1. Solutions  

The composition of all test solutions is given in Table 1.  Tris Saline buffer was used to prepare all 

solutions so that changes in buffer chemistry did not impact the results [5]. Tris saline was prepared at 

a concentration of 10 mM 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris) (SigmaAldrich, T-87602) 

in ultrapure Milli-Q water (resistance > 18 MΩ cm), with the addition of sodium chloride (NaCl) 

(analytical grade, VWR, 27810) to reach a physiological ionic strength of 154 mM. The pH was 

adjusted using sodium hydroxide (NaOH) (VWR, 28244.262) or hydrogen chloride (HCl) (VWR, 

20252.335) as necessary to either pH 7.4 or 8.1 representing healthy or diseased synovial fluid 

respectively [6].   

 

BSA (Sigma Aldrich, A7906, ≥98% agarose gel electrophoresis, lyophilized powder) and BGG (Sigma 

Aldrich, G5009, ≥99% agarose gel electrophoresis), were used without further purification. The 

concentrations of BSA and BGG were fixed at 10 mg ml
-1

 and 2.4 mg ml
-1

  which is within the 

physiological range for these proteins in healthy synovial fluid [30].   



 

2.2. Adsorption measurements with quartz crystal microbalance (QCM) 

The dynamics of protein adsorption and the nature of the adsorbed film were investigated by QCM. A 

QCM uses a quartz crystal that is electrically stimulated to oscillate at its resonant frequency. The 

adsorption of proteins increases the mass of the crystal and so changes its resonant frequency 

(frequency shift, 𝛥𝑓). Adsorbed protein films are known to contain water and ions and as a 

consequence it may not be a perfectly rigid film and can demonstrate significant viscoelasticity [31]. 

This creates a further frequency shift due to energy dissipation in the protein film which is termed 

‘viscous loading’ of the crystal. 

 

2.2.1  QCM theory 

 

The total measured frequency shift, 𝛥𝑓 is a linear combination of the frequency shift due to the mass 

loading, 𝛥𝑓𝑚𝑎𝑠𝑠 and the viscous loading 𝛥𝑓𝑣𝑖𝑠𝑐𝑜𝑢𝑠 [32,33] such that: 

 

∆𝑓 = ∆𝑓𝑚𝑎𝑠𝑠 + ∆𝑓𝑣𝑖𝑠𝑐𝑜𝑢𝑠 (1) 

If only 𝛥𝑓 is measured the relative contributions of the mass loading and viscous loading to the total 

frequency shift cannot be separated [32].  To separate the mass and viscous (dissipative) effects, the 

change in motional resistance, ∆𝑅, of the crystal is monitored. ∆𝑅 is independent of mass loading but 

dependent on viscous loading [33] such that: 

 ∆𝑅 = 𝐾1(𝜌𝑙𝜂𝑙)
1/2 (2) 

and  

 ∆𝑓𝑣𝑖𝑠𝑐𝑜𝑢𝑠 = 𝐾2∆𝑅 (3) 

where 𝐾1 and 𝐾2 are constants dependent on the quartz crystal properties, 𝜌𝑙  is the density of the 

liquid and 𝜂𝑙  is the viscosity of the liquid. For a 5 MHz crystal the value of 𝐾2 is -2 Hz Ω
-1 

[33]. This can 

be applied to give a real-time correction for the viscous loading [33] with the change in frequency due 

to mass alone calculated as: 

 

 ∆𝑓𝑚𝑎𝑠𝑠 = ∆𝑓 − 𝐾2∆𝑅  (6) 

The relative importance of adsorbed mass over viscous effects is indicated by the absolute value of 

the ratio 𝛥𝑅/𝛥𝑓, with a smaller ratio indicating a dominance of the elastic mass effect [34]. Details of 

the above analysis can be found in [5]. 

2.2.2 Protein Adsorption under static conditions 

Prior to each experiment the crystals and flow cell were cleaned separately. The flow cell was 

sonicated for 15 mins in 2% detergent solution (Decon 90, VWR), followed by Milli-Q water, then 



isopropanol and then dried with nitrogen.  Just before use crystals were treated for 10 minutes in air 

plasma. 

5 MHz Quartz crystals (Testbourne Ltd, UK) were mounted in a liquid flow cell, as shown in Figure 1. 

The flow rate was controlled at 60 µl min
-1

 using a MilliGAT Pump (Global FIA, USA).  Measurements 

of adsorption from protein solutions were taken for 30 minutes, before the flow cell was rinsed with 

buffer. Measurements were taken at room temperature (20 °C). The lower than body temperature 

condition will slow slightly the rate of adsorption, with no expected change to the final adsorbed 

amount [29]. The variations of frequency (𝛥𝑓) and resistance (𝛥𝑅) of the crystal were monitored as a 

function of time, during the sequential addition of buffer (baseline), protein solution and buffer again 

(rinsing), to the liquid flow cell.   

2.3 Film thickness measurements in a rolling contact 

Film thickness measurements of protein solutions in a rolling contact were made with thin film optical 

interferometry using a ball-on-flat device and a spectrometer (Ultra-Thin Film EHL, PCS instruments 

UK). Further details of the technique are provided in [35]. The CoCrMo ball had a diameter of 19 mm 

and an average surface roughness of 10 nm as measured by optical interferometry. The test 

conditions used for film thickness measurements are given in Table 2. The mean contact pressure 

was 200 MPa, which corresponds to the higher than average contact pressures seen in misaligned or 

edge loaded metal on metal joints [36,37]. A pure rolling condition was chosen here although this is 

not representative of motion in hip joints which is pure sliding. Rolling was chosen to reduce the 

surface wear that occurs in sliding and so the effects of wear and film formation could be decoupled. 

Sliding wear also damages surfaces making optical interferometry measurements more difficult. 

Under rolling conditions, the surface films and lubricating fluid still experience shear stresses and 

loading, which have been highlighted as important factors in protein lubrication [21]. The test 

temperature was 20 
o
C to be consistent with QCM measurements. This reduces evaporation of the 

lubricant during testing.  

A schematic of the test rig is shown in Figure 2. The well was filled with test solution so that the ball 

was more than half submerged in the test fluid throughout the test. Extra fluid was then introduced 

into the contact using a syringe to form a meniscus around the contact area which was maintained 

throughout the test. This method has been used in several published works [5,9,11] and is not 

expected to affect film thickness results.  

The two contact surfaces were initially separated and the test fluid added, allowing static adsorption to 

proceed as in the QCM experiments. After 1200 seconds, the contact was loaded to 5 N and the 

adsorbed thickness for the static contact ht=0 measured.  

Following static adsorption the ball and disc were both rotated at 10 mm/s to generate pure rolling in 

the contact. This speed is within the range of speeds experienced during a gait cycle [33], and 

ensures boundary lubrication occurs. The film thickness was recorded as a function of time during 

rolling, for a total of 1200 seconds. At t = 1200 seconds, the thickness of the film is labelled as ht=1200. 



At the end of rolling, the contact was unloaded and separated, and immediately reloaded to 5 N, the 

residual film in the statically loaded contact was measured giving hfinal. Following the test both 

surfaces were lightly rinsed with water and examined dry with an optical microscope. 

For visualisation of the rolling contact, a CCD camera was used in place of the spectrometer. For 

each rotation an image was taken at approximately the same point on the disc so that a set of images 

corresponding to a set of film thickness measurements is recorded.  

3. Results and Discussion 

3.1 Protein absorption under static conditions 

The change in resonance frequency of the silica and chromium coated quartz crystals due to the 

mass of protein absorbed on their surfaces, 𝛥𝑓𝑚𝑎𝑠𝑠, is presented in Figure 3 for all protein solutions. 

The maximum rate of mass adsorption, final adsorbed mass and 𝛥𝑅/𝛥𝑓 (after rinsing) in each solution 

are given in Table 3.   

3.1.1 Protein layer formed in single protein, BSA solutions and BGG solutions 

While the concentration of BGG and BSA in single protein solutions is 2.4 mg/ml and 10 mg/ml 

respectively (see Table 1), more BGG is adsorbed in all cases (see Table 3). The adsorbed mass for 

both proteins is consistent with an adsorbed monolayer [15,38,39]. Based on a protein density of 1.15 

g cm
-3

 [15] , the thickness of the layers on silica at pH 7.4 would be 16.8 nm for BGG and 5.1 nm for 

BSA which is consistent with the protein dimensions if proteins adsorbed with an end-on orientation 

[15,38]. BGG adsorption occurs at a higher rate than BSA adsorption. The adsorbed BGG layer is 

also more rigid in all cases shown by the lower value of 𝛥𝑅/𝛥𝑓 (see Table 3). 

The effect of increasing pH on formation of adsorbed films can be beneficial, giving rise to a thicker 

film as in the case of chromium surface, or detrimental, as for silica surface. Focusing on final 

adsorbed mass, this pH effect is most apparent for BGG films on silica, and less apparent on 

chromium surfaces. An increase of pH from 7.4 to 8.1 results in a 10% and 39% reduction in 

adsorbed mass for BSA and BGG protein respectively on silica. The maximum adsorption rate is also 

much reduced as pH increases (see Table 3). The observations with BSA agree with previous results 

[5] and a more prominent pH effect is observed for BGG. In the case of chromium surface, an 

increase in pH leads to a small increase in adsorbed mass for both BSA (15 %) and BGG (9 %) films. 

The maximum adsorption rates are also raised by 23 % and 64 % for BSA and BGG films 

respectively.  

While an increase in pH gives rise to a more viscoelastic BSA films on silica, the viscoelasticity of 

adsorbed films in all other test cases remains unaffected. This suggests that the nature of BGG film is 

unaffected by pH. A comparison of the viscoelastic properties of the adsorbed proteins shows BGG 

forms a more rigid layer than BSA on both silica and chromium surfaces (see Table 3). This is in 

contrast to Benesch et al. [15] that found BSA adsorbed more rigidly on hydrophilic surfaces. Their 

finding was at the lower concentration of 1 mg/ml, which may change the orientation and packing of 



proteins [40], and hence the viscoelastic properties of the adsorbed layer. This highlights the 

importance of conducting adsorption experiments that match the unique conditions of model synovial 

fluids. 

Thicker films have previously been shown to reduce friction, and stiction which can lead to wear [41], 

Based on the discussion above, BGG films are thicker, can be replenished more quickly (due to high 

adsorption rate) and are more rigid than BSA films in all test conditions, suggests that a BGG film may 

provide better protection to rubbing surfaces than BSA films. This may be due to BGG having a higher 

isoelectric point, hence less negatively charged, than BSA at both pH 7.4 and 8.1 [42,43]. As a result, 

the repulsion between BGG and the negatively charged silica and chromium surfaces is lower, giving 

rise to higher adsorption rate and final adsorbed mass.  

It is also shown here that the effect of pH on protein films formation is surface dependent. At a healthy 

pH of 7.4, the mass of protein adsorbed and the rate of adsorption on silica was highest, suggesting 

that the silica surface may have more wear protection from proteins. The protein films were also more 

hydrated on silica at lower pH which has been linked to a lower modulus and lower friction [44]. An 

opposite and lesser effect is however observed when chromium is used. Hence the thickness of the 

protein layers and the rate at which they can replenish themselves are reduced (increased) by the 

increase in pH suggests that proteins on silica (chromium) will be less (more) effective as a boundary 

lubricants at the higher pH [41].  

As the rolling tests are conducted between a silica and CoCrMo surface, the impact of pH may be 

over emphasized when compared with a metal-on-metal joint as silica is closer to a ceramic surface. 

However if alumina, which like silica, is charged and hydrophilic also experiences a large reduction in 

adsorbed protein film thickness, this coupled with alumina’s increased dissolution and wear at pH 8.5 

in aqueous solutions [45] suggests ceramic-on-ceramic joint performance may be very dependent on 

a patient’s SF pH. 

3.1.2 Protein layer formed in mixed protein solutions 

The effects of pH on the final mass and adsorption rate of mixed protein films are similar to what has 

been observed with BGG and BSA films. The strength of the pH effect differs between silica and 

chromium surface.  In a mixed protein solution, the mass of adsorbed proteins layers on both silica 

and chromium surfaces are in between that of BSA and BGG layers adsorbed from single protein 

solutions (see Table 3). This suggests that the adsorbed protein layers formed in mixed protein 

solutions consist of a mixture of BGG and BSA. Assuming that the degree of solvation and the 

conformation of BGG and BSA on the surface are unaffected by their coexistence, the amount of 

hydrated BSA in the mixed protein layers is estimated in Table 3. In all cases, hydrated BSA accounts 

for more than 60% of the mass of the mixed protein layers. The viscoelasticity of the mixed protein 

films depends on adsorbed surface and pH. On chromium, the 𝛥𝑅/𝛥𝑓 ratio of the mixed protein film is 

close to that of BSA films and is insensitive to pH (Table 3) ) and hence supports that the mixed 

protein films are largely made of BSA. This insensitivity to pH suggests that the nature of the mixed 

protein layer on chromium does not change in this pH range and is consistent with observations of 



BSA and BGG layers on chromium. On silica surface, however, the mixed protein film became more 

viscoelastic as pH increased. It is rather rigid when pH = 7.4 with 𝛥𝑅/𝛥𝑓 close to that of BGG, while 

𝛥𝑅/𝛥𝑓 increases and is between that of BGG and BSA films when pH is 8.1. This highlights that the 

interactions between proteins may change depends on experimental condition and cannot be 

overlooked.  

Both the adsorbed mass and rate of adsorption contribute to a reduced film thickness for mixed 

protein solutions (when compared with BGG solutions) despite the higher protein content. The 

potentially large amount of BSA in the mixed protein film may also seem contradictory to the 

observations that at pH 7.4 BGG adsorbs over 5 times (2.4 times) faster than BSA in terms of ng/cm
2
 

s (mol/cm
2
 s), whilst at pH 8.1 twice (1.03 times) as fast, as  shown in Table 3. Note that in a mixed 

protein solutions, BSA and BGG compete for surface adsorption sites. As listed in Table 1, the mixed 

protein solution consists of 10 (150) and 2.4 (16) mg/ml (nmol/ml) of BSA and BGG respectively. 

Hence more BSA is available for adsorption. Despite the small amount of BGG in the solutions and in 

mixed protein films, interactions between BSA and BGG  may dominate in some cases, as observed 

at pH 7.4, where the mixed protein film on silica was rigid.  

3.1.3 Viscoelasticity of protein layers as adsorption progresses 

The change in viscoelasticity of the adsorbed protein films as adsorption progresses can be 

monitored by correlating 𝛥𝑅/𝛥𝑓 with 𝛥𝑓, as shown in Figure 4. Note these results are before rinsing 

and so are different to the final value after rinsing given in table 3. The adsorbed BSA films (dash 

lines, Figure 4 (a)) and BGG film (dash lines, Figure 4 (b)) on silica were initially viscoelastic, and they 

became more rigid with further adsorption, i.e. 𝛥𝑅/𝛥𝑓 decreased with 𝛥𝑓 became more negative. On 

chromium, the BGG films were initially viscoelastic and their viscoelasticity increased slightly and 

quickly reached a plateau (solid lines, Figure 4 (b)). BSA on chromium, on the other hand, initially 

formed a rigid layer, which became viscoelastic at a critical surface coverage (solid lines, Figure 4 

(a)). This behaviour of viscoelasticity transition from rigid to viscoelastic has been observed with the 

adsorption of BSA on silica in water, but not in Tris saline solutions [5] . In this study, such transition 

occurs at a lower adsorbed mass on chromium, in particular at lower pH. In all cases examined in this 

study, the change in pH does not alter qualitatively the adsorption behaviour of protein films.  

For the mixed solutions, the 𝛥𝑅/𝛥𝑓 of adsorbed mixed protein films on silica at pH 8.1 (dark dash line, 

Figure 4 (c)) was higher at the initial stage of absorption and decreased slightly as absorption 

progressed.  For mixed protein films on silica at pH 7.4 (light dash line, Figure 4 (c)) and on chromium 

in both pH (solid lines, Figure 4 (c)), 𝛥𝑅/𝛥𝑓 increased with absorbed mass and eventually plateaued. 

3.2 Film Formation in Rolling Contacts 

The measured film thickness with time in a rolling contact formed by a CoCrMo ball against a silica 

disc is shown for all protein solutions in Figure 5. For BSA solutions the behaviour is dependent on 

the solution pH (see Figures 5 (a)). At pH 7.4 the measured film thickness fluctuated over time, 

between a maximum of 45 nm and a minimum of 5 nm.  At pH 8.1 a thin film was measured at the 



beginning of the test, with a thickness of approximately 8 nm. During rolling the film showed a drop in 

thickness with much fewer fluctuations observed at the lower pH.  

In contrast, the BGG solutions show similar behaviour at both pH 7.4 and 8.1 (Figure 5 (b)). The film 

thickness increases for the first 300-500 seconds of rolling. After this time a thick, but non-uniform film 

is formed in the rolling track (see also Figure 6 (l)) which reaches an average thickness of around 250 

nm. The measured film thickness fluctuates with time, which suggests disruption and replenishment of 

the film. 

The film thickness measurement with mixed protein solution in rolling contact shows observations 

similar to those obtained with BSA solution. This is consistent with estimates in section 3.1.2 that the 

adsorbed mixed protein layers consist mainly of BSA. The mixed protein solutions give rise to films 

with thickness ranging 20 to 40 nm (Figure 5 (c)), which is slightly thicker than the film formed in BSA 

solution. The film thickness at pH 7.4 is larger and with greater fluctuations than films formed at pH 

8.1.  

Optical interferometry allows local film thickness to be observed as variations in colour (or grayscale). 

A region will homogenous thickness will be of one single colour; otherwise the region will compose of 

domains or strips of various colours. Images taken of the rolling contact show the protein films formed 

in the contact can be heterogeneities (Figure 6). At pH 7.4, films formed in BSA solutions are fairly 

homogeneous (light yellow in Figures 6 (a), (b) and (c)), the small increase in film thickness occurring 

with time visible as a slight darkening in colour. Occasionally, some thick, globular deposits form and 

are distributed randomly across the contact (Figure 6 (c)). The random fluctuations in the average film 

thickness (see Figure 5 (a)) are due to occasional sampling of these deposits. At pH 8.1 the BSA film 

was more uniform across the contact, indicating a thin and relatively stable film (see in Figures 6 (d), 

(e) and (f)).  

BGG solutions at pH 7.4 and 8.1 form thick, heterogeneous films across the contact area, as shown in 

Figures 6 (h), (i), (k) and (l). Variations in fringe colours across the contact show this film is not 

homogeneous. Thick bands of protein deposits can be seen across the central part of the images 

after approximately 5 minutes of rolling (highlighted in Figure 6 (l)). These deposits are on top of a 

relatively thick film (green in Figure 6 (h)). This band extends across and beyond the circular contact 

area and along the rolling track. This suggests that the protein aggregates, once formed, survive the 

rolling contact and adhere to the CoCrMo ball. 

In the mixed protein solutions, large protein deposits are found (Figures 6 (n), (o) and (q)) but these 

do not cover the whole contact as in BGG solution. As a result, large variations in film thickness within 

the contact are observed, with a thin protein film present in some regions (light yellow, Figures 6 (p)). 

The average thickness of mixed protein film is thicker than that of BSA films. There is some impact of 

pH with films formed at pH 8.1 being thinner than those at pH 7.4. 

For all solutions the average film thickness after static adsorption (ht=0), 1200 seconds rolling (ht=1200), 

and unloading and reloading (hfinal) are compared in Figure 7.  ht=0 is thickest for BGG films, reducing 

in order of BGG > mixed protein pH 7.4 > BSA > mixed protein at pH 8.1. The effect of pH on ht=0 in 



BSA and BGG solutions is weak and a slightly stronger effect is observed in mixed protein solutions. 

ht=1200 is greater at pH 7.4 than at pH 8.1 for all solutions. The average film thickness decreases in 

order of BGG (237-272 nm) > mixed (21-35 nm) > BSA solutions (3-11 nm), despite the total 

concentration of proteins being higher in the mixed protein solutions than the BGG solutions.  

 A residual deposited film (see hfinal in Figure 7) is left on the surface for all solutions, but this is again 

thickest for BGG solutions. This is confirmed by optical images of the ball surface after testing (Figure 

8). For hfinal, the change in pH does not give a statistically significant effect for any protein solution. It 

is of note that in BGG solution and mixed protein solutions, the film thickness after unloading and 

reloading hfinal, although thinner than the film after rolling for 1200 seconds ht=1200, is always thicker 

than film after static adsorption ht=0. This suggests that the films formed during rolling in these two 

solutions are mechanically stable and stayed in the contact. On the other hand, hfinal is of similar 

thickness to ht=0 in BSA solutions, implying that the BSA films deposited during roller can be removed 

or destroyed easily. 

After the test, the ball surface was lightly rinsed with water, dried and observed under a microscope. 

Typical images are shown in Figure 8. For BSA at pH 7.4 some irregular deposits were observed in 

the contact path (Figure 8 (a)). These deposits correspond to the deposits occasionally observed 

during the imaging tests (Figures 6 (b) and (c)). At pH 8.1, BSA forms thinner, sparse deposits 

(Figures 6 (d)). Much thicker BGG deposits were observed on the ball surface at both pH in the form 

of bands on the rolling track (Figures 8 (b) and (e)). These bands showed some variations with thicker 

clumps and thinner areas which accounts for the fluctuation in the film thickness measurements 

(Figure 5 (b)). A band of deposited film is also formed for mixed protein solutions.  The band is formed 

of thin pale areas and thicker, irregular globular deposits (Figure 8 (c)).  The thicker globular deposits 

are observed more often at pH 7.4, and would result in the increased fluctuations observed in the film 

thickness measurements at the lower pH (Figure 5 (c)).  

3.3 Comparison of films formed statically and under rolling 

Both static adsorption results from QCM (section 3.1) and rolling test results (section 3.2) show that 

the average film thickness in protein solutions in order of thickest to thinnest is BGG > mixed > BSA 

solutions. This is consistent with results which showed BGG formed the thickest films and offered 

improved wear protection over both BSA [10,11] and BCS (which contains both BSA and BGG) [11] 

solutions in sliding tests. Note the protein content of test solutions in this study is 12.4 mg/ml, 10 

mg/ml and 2.4 mg/ml in the mixed, BSA and BGG solutions respectively. This highlights that the 

thickest lubricating film is not simply related to the protein content of the solution, but is dependent on 

the particular combination of proteins in the solution. In particular the addition of BSA to the BGG 

solution may inhibit the formation of thick BGG films through processes such as macromolecular 

crowding. In solution, macromolecular crowding has been shown to alter the rates of aggregation of 

large proteins [46] such as BGG. This result also supports the findings of Brandt et al. [47] who 

demonstrate that matching total protein content is not sufficient to replicate SF behaviour, and that the 

concentrations of individual proteins are important. This result also suggests that patients with 



synovial fluid with low amounts of gamma-globulin are likely to see increased wear of metal and 

ceramic hip prosthesis. 

Using the adsorbed mass from QCM, the protein film thickness on silica surface (hSi) and chromium 

surface (hCr) was calculated based on a protein density of 1.15 g/cm
3
 [15]. These were then used as 

an estimation of the film thickness in a static contact hstatic; i.e. hstatic = hSi + hCr. In Figure 9, hstatic is 

compared with ht=0, i.e. the film thickness measured by optical interferometry in a static contact after 

protein was allowed to adsorb on the surfaces. The same overall trend is observed for hstatic and ht=0. 

However the measured film thickness ht=0 is always less than hstatic by around 70 %. In addition the 

differences among ht=0 for different solutions are small compared to the differences in hstatic. This could 

be either a result of a combination of (1) the protein layers deforming under load, (2) squeezing water 

or proteins out of the contact, or (3) differences in protein adsorption on chromium and CoCrMo 

surfaces.   

The results presented in Figure 9 suggest that properties of films formed in static equilibrated 

conditions (as in QCM measurements), whilst different from films in a loaded tribological contact, may 

still be related. As the film formed under rolling is between both a silica and CoCrMo surface, ht=1200 

can be governed by the properties of adsorbed film on Cr, on silica, or both. To investigate this 

hypothesis, ht=1200 was plotted against QCM results for final adsorbed mass, maximum adsorption rate 

and final viscoelastic response on (1) silica, (2) chromium and (3) an average of the results for both 

surfaces. Note that QCM results demonstrated the properties of adsorbed films were different on 

silica and chromium surfaces. The goodness of fit, R
2
 values, as given in Table 4 shows that the film 

thickness during rolling is most closely correlated with the average properties of adsorbed films on 

silica and chromium surface, This demonstrates that the interaction of proteins with each of these 

surfaces influences the formation of the lubricating film. The correlation shown between properties of 

adsorbed films and lubricating films, as shown in Figure 10, suggests the adsorbed films may 

contribute to the agglomerated films in the contact inlet. Alternatively, the distribution of proteins on 

the surface may reflect how the proteins are distributed in the bulk solution. More explicitly, if the 

proteins are more closely packed on the surface, the repulsion between proteins is lower so that 

increased aggregation can occur in the bulk solution [47]. The correlation between viscoelastic 

properties and film thickness indicates that increased hydration results in thinner films, and can be 

related to a reduction in the compressive modulus [48]. Figure 10 demonstrates that whilst there is a 

strong correlation, further work with mixed solutions with different BSA:BGG ratios would improve 

understanding of this relationship.. 

4. Conclusion 

Films formed from protein solutions either statically or under rolling are dependent on the protein 

content and solution pH. Under rolling, protein layers are much thicker than statically adsorbed layers. 

These thick deposited layers are consistent with the previously reported protein aggregation 

lubrication mechanism [8,9].  Comparing the film thickness during rolling test, ht=1200, and after the 



test, hfinal shows the deposited films formed by BGG and mixed proteins during rolling are quite 

strongly bound, while for BSA films, it is only weakly bound.  

Of the two proteins BSA and BGG, BGG forms much thicker deposited layers. When the proteins are 

combined, the ability of BGG to form thick layers is reduced demonstrating that the interaction of the 

proteins changes the process of film formation and the lubricating film thickness does not correlate 

with protein concentration alone. This calls into question the use of BCS as a model synovial fluid, 

which is matched for total protein concentration, but not relative amounts of proteins such as BSA and 

BGG. 

Although the final structure of statically adsorbed films and those formed under rolling are very 

different, the properties of films formed in the two test conditions can be correlated. This may allow 

adsorption results to be used to predict lubricating film thickness, which is known to indicate wear 

performance [11].  
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Tables 

Table 1 Test solution composition 

Protein Buffer pH 

10 mg/ml BSA 

Tris Saline 

 

7.4 

8.1 

2.4 mg/ml BGG 7.4 

8.1 

10 mg/ml BSA 

2.4 mg/ml BGG 

7.4 

8.1 

 

Table 2. Film thickness test conditions 

Load (Mean contact pressure) 

Rolling Speed 

Temperature 

5 N (200 MPa) 

10 mm/s 

22-25 
o
C 

Test Specimens 19.8 mm diameter CoCrMo ball 

100 mm diameter glass disc with Cr/Silica coating 

 

 



 

Table 3. Changes in mass and viscoelastic response for BSA, BGG and mixed protein solutions on silica and chromium surfaces 

    

Final 𝜟𝒇𝒎𝒂𝒔𝒔  

(Hz) 

Final adsorbed Mass  

(ng / cm
2
) 

Maximum adsorption rate  

(ng / cm
2
 s) 

Final 𝜟𝑹 /𝜟𝒇  

(Ω / Hz) 

% of BSA 

layer 

  

pH Silica Cr Silica 

% Change 

with 

increased 

pH 

Cr 

% Change  

with 

increased 

pH 

Silica 

% Change  

with 

increased 

pH 

Cr 

% Change  

with 

increased 

pH 

Silica Cr Silica Cr 

BSA 

7.4 
- 33.3 ± 

4.9 

-21.8 ± 

1.2 

589 ± 

87 
 

386 

±22 
 

1.77 ± 

1.24 
 

3.89 ± 

0.708 
 

0.14 ± 

0.02 

0.12 ± 

0.01 
  

8.1 
- 30.0 ± 

0.9 

-25.0 ± 

0.7 

531 ± 

16 
-10 

443 

± 12 
15 

1.06± 

0.71 
-40 

4.78 ± 

2.12 
23 

0.20 ± 

0.01 

0.10 ± 

0.02 
  

BGG 

7.4 
-109.0 ± 

2.2 

-68.6 ± 

1.7 

1929 

± 39 
 

1214 

± 29 
 

9.74 ± 

0.71 
 

7.79 ± 

1.06 
 

0.07 ± 

0.02 

0.04 ± 

0.01 
  

8.1 
-66.2 ± 

2.4 

- 74.5 ± 

7.5 

1172 

± 42 
-39 

1319 

± 

131 

9 
2.48 

±0.35 
-75 

12.74 

±4.42 
64 

0.08 ± 

0.01 

0.04 ± 

0.01 
  

Mixtur

e 

7.4 
-50.9 ± 

1.2 

-39.0 ± 

2.9 

902 ± 

21 
 

690 

± 51 
 

4.96 ± 

1.41 
 

2.66 ± 

1.77 
 

0.08 ± 

0.05 

0.11 ± 

0.04 
76 63 

8.1 
-43.8 ± 

6.2 

-40.6 ± 

3.2 

776 ± 

110 
-14 

719 

± 56 
4 

1.95 ± 

2.66 
-60 

2.66 ± 

1.95 
0 

0.13 ± 

0.03 

0.12 ± 

0.03 
62 68 



Table 4. R
2
 value for correlation between measured QCM parameters and optical interferometry film 

thickness 

 QCM Surfaces 

Silica Chromium Average 

Adsorbed mass (ng/cm
2
) 0.82 0.89 0.93 

Rate (ng / cm
2
 s) 0.45 0.69 0.97 

𝛥𝑅/𝛥𝑓 (Ω/Hz) 0.54 0.94 0.87 

 

  



Figures 

 

 

Figure 1. Schematic of QCM with flow cell  

 

 

Figure 2. Schematic of rolling setup with optical interferometry  
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Figure 3 Changes in Δfmass with time for (a) BSA (b) BGG and (c) mixed protein solutions at pH 7.4 

and 8.1 on Silica and Chromium surfaces 
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Figure 4 Changes in the ratio ΔR/Δf plotted against changes in frequency for (a) BSA (b) BGG and 

(c) mixed protein at pH 7.4 and 8.1 on silica and chromium surfaces 
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Figure 5 Film thickness results for three tests (different symbols) for (a) BSA (b) BGG and (c) Mixed 

protein solutions in a rolling contact (10 mm/s) at pH 7.4 and 8.1 
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Figure 6 Images taken during rolling at 10x magnification for different protein solutions illustrating the 

different morphologies of the lubricating films (time t is in seconds). 
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Figure 7 Average measured film thickness for all protein solutions at pH 7.4 and 8.1 
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Figure 8 Surface deposits on the ball at the end of the test, for all protein solutions. Specimens lightly 

rinsed with water and air dried. 
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Figure 9 Statically adsorbed film thickness as measured by QCM and optical interferometry for all 

protein solutions 
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Figure 10 Correlation between the average measured properties from one silica and one chromium 

surface using QCM and measured film thickness using optical interferometry for BSA (■), BGG (▲) 

and mixed protein solutions (x)  

 


