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Lean premixed combustion chambers are susceptible to combustion instabilities arising from
the coupling between the heat release rate perturbations and the acoustic disturbances. These
instabilities are generally harmful. A second heat source equipped downstream of the unsteady
flame can be used to interrupt the coupling between the acoustic waves and unsteady heat release
and prevent or suppress instability. A low order model of a Rijke tube with weak mean flows
is developed comprising a linear acoustic network and simple flame transfer functions. The sta-
bilities of the system without controller are investigated by varying the time delay and gain of
flame model, the flame locations and the temperature jump ratio across the flame. The changes
of eigenvalue trajectories due to the presence of the second heater are also discussed by changing
the location and flame model of the second heater. It is shown that the second heater can be used
to reduce the growth rate of the system and suppress the instabilities.

1. Introduction

Combustion instabilities arise due to the coupling between the unstable combustion process and
acoustic disturbances within the combustion chamber [1]. The mechanism can be briefly described
as: acoustic noise with a broad frequency bandwidth is produced during the combustion process [2].
These sound waves propagate inside the combustion chamber, interact with the boundaries and return
back to the combustion zone with a time delay that depends on the size of the combustion chamber,
disturbances of speed of sound and impedances at the boundaries of the combustion chamber. These
pressure oscillations generate in turn perturbations of the flow field by modifying the local flowrate,
reactant composition or thermodynamic properties in the flame region, producing heat release rate
disturbances [1]. When these disturbances are synchronised, they amplify leading to an increase of
acoustic energy in the system and a resonance is generally observed at specific tones. These self-
sustained instabilities are more likely to happen in lean premixed combustion systems, which offer
the potential for reducing NOx emissions in modern gas turbine design [3].

A second heat source equipped downstream of the unsteady flame can be used to suppress the
instabilities of the system. The objective of this paper is to show the effects of parameters of flame
model and the location of the second heater on the stabilities of the system. The rest of the paper
is organized as follows. The acoustic network without controller and the linear flame model are
presented in Section 2. A governing equation is derived to link the linear acoustic response of the
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Rijke tube with the flame model. The stabilities of the system without controller are investigated by
varying the time delay and gain of flame model, the flame locations and the temperature jump ratio
across the flame. The changes of eigenvalue trajectories due to the presence of the second heater are
also discussed by changing the location and flame model of the second heater, which are shown in
Section 3. The simulation can also be implemented using our open source [8] (OSCILOS) which is
freely available (see http://www.oscilos.com/ ). Conclusions are drawn in the final section.

2. Model of combustor without controller

Analysis is carried out on a simple model combustion chamber which consists of a cylindrical
Rijke tube with both ends open to the atmosphere. Denoting the distance along the tube axis by
the vector x, the inlet and outlet of the tube are at x = 0 and x = l respectively. The combustor
consists N modules. The inlet and outlet of module k, 1 ≤ k ≤ N , are located at x = xk−1 and
x = xk, respectively. In the analysis, the following assumptions are implemented: (1) The envisaged
frequencies are assumed sufficiently small to consider the combustion zone to be “compact” compared
to the acoustic wavelength and to only take into account the longitudinal waves. (2) The fluids within
the combustor are assumed to be perfect gases. (3) The dissipation of acoustic waves throughout
the tube is negligible and acoustic damping only happens at the ends of the tube. (4) There is no
noise produced by the entropy waves formed during the unstable combustion process — these waves
are assumed to leave the tube without interaction with the flow at the end of tube. (5) The flame is
assumed to be always stabilised at the burner outlet. Flame intrinsic instabilities [4] and irregular
response to strong disturbances [5], which may cause that the final state of the unstable system is not
a limit cycle [6], have not been accounted for in this work. (6) The specific heat capacity ratio is
considered as a constant γ = 1.4 and does not change with temperature and compositions of gases.
(7) The mean flow is weak and negligible, which enables the simplification of the jump equations
across the interface connecting two modules, e.g., the jump equations across the flame for a Rijke
tube can be written as [7]:

(1) p̃2(xf1, s) = p̃1(xf1, s)

(2) ũ2(xf1, s) = ũ1(xf1, s) +
γ − 1

ρ̄c̄2
˜̇q1(s)

where p, u, ρ, c and q̇1 denotes the pressure, velocity, speed of sound and heat release rate per surface
area, respectively. xf1 specifies the location of the flame. The superscripts ·̄ and ·̃ indicate the mean
value and the Laplace transform, respectively. s = σ + i2πf represents the Laplace variable, σ is the
growth rate and f denotes the frequency. For weak flows, the mean pressures in every module are the
same. ρ̄1c̄

2
1 = ρ̄2c̄

2
2 = · · · = γp̄.

A flame transfer function T1 can be used to describe the response of heat released from the un-
steady flame to oncoming weak perturbed flows, which can be mathematically expressed as:

(3)
˜̇q
¯̇q

= T1
ũ1
ū1

Theoretical models have been devised to analytically describe the transfer function [8]. For example,
the G-equation model obtains the flame shape by using a kinematic model for the flame position
response to oncoming velocity perturbations, and has been studied for various flame shapes: conical,
V-shape, M-shape and matrix flames, with their detailed derivations collected in Lieuwen’s book [9].
Assuming the mean heat release rate per unit surface area to be ¯̇q = ρ̄1ū1Cp(T 2−T 1) [7, 8] and Cp to
be constant for the temperature band envisaged in this paper, it is thus possible to substitute the flame
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model into Eq. 2 to give:

(4) ũ2(xf1, s) =

(
1 +

(T 2

T 1

− 1
)
T1

)
ũ1(xf1, s)

The acoustic field within the combstor can be described as the summation of forward and backward
propagating plane waves. According to the linear acoustic theory, all flow and thermodynamic vari-
ables can be decomposed into a mean value and an acoustic perturbation, which is assumed to be
small compared to the corresponding mean value. Considering acoustic waves propagating in both
directions, the pressure and velocity perturbations in module k can be expressed as:

(5) p̃k(x, s) = Ã+
k (s) exp(−τks) + Ã−

k (s) exp(τks)

(6) ũk(x, s) =
1

ρ̄kc̄k

(
Ã+

k (s) exp(−τks)− Ã−
k (s) exp(τks)

)
where Ã+

k (s) and Ã−
k (s) denote the amplitude of the downstream and upstream propagating acoustic

waves respectively. τk = xk/c̄k represents the propagation time of sound in module k. By substituting
Eqs. 5 and 6 into Eqs. 1 and 4, one can get the governing equations linking the acoustic waves at the
two sides of the flame:

(7) Ã+
2 (s) + Ã−

2 (s) = Ã+
1 (s) exp(−τ1s) + Ã−

1 (s) exp(τ1s)

(8) Ã+
2 (s)− Ã−

2 (s) =
c̄1
c̄2

(
1 +

(T 2

T 1

− 1
)
T1

)(
Ã+

1 (s) exp(−τ1s)− Ã−
1 (s) exp(τ1s)

)
The link between the outward and inward propagating waves at the end of the combustor can be
described by the reflection coefficients. When the indirect noise induced by the entropy waves can be
neglected, the pressure reflection coefficients at the inlet and outlet are characterized by R1 and R2

respectively:

(9) Ã+
1 (s) = R1Ã

−
1 (s)

(10) Ã−
N(s) = R2Ã

+
N(s) exp(−2τNs)

By substituting the above boundary conditions into Eqs. 7 and 8, one is left with:

(11) R1R2 − exp
(

2(τ1 + τ2)s
)

+
α1 − 1

α1 + 1

(
R1 exp(2τ2s)−R2 exp(2τ1s)

)
= 0

where,

(12) α1 =
c̄1
c̄2

(
1 +

(T 2

T 1

− 1
)
T1

)

The eigenvalues can be obtained by solving Eq. 11. When there is no heat addition, α1 = 1, the third
component of Eq. 11 equals to zero and Eq. 11 is simplified to:

(13) R1R2 − exp
(

2(τ1 + τ2)s
)

= 0
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Table 1: Parameters used in the analysis. They are fixed unless otherwise stated. T 1 always equals to
300 K.

γ [-] Rg [J kg−1 K−1] T 1 [K] T 2 [K] l [m] R1 [-] R2 [-]

1.4 287 300 600 1 -1 -1
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(b) xf1/l = 0.6

Figure 1: Evolutions of eigenfrequency of first mode with corresponding growth rate for different
time delay τf1 and different flame location xf1. The time delay τf1 ranges from 0 to 1/f ?

1 . f ?
1 =

1/(2(τ1 + τ2)). The blue solid lines indicate the approximated ellipses of the trajectories.

The growth rate of the eigenvalue equals to:

(14) σ = ln |R1R2|

The growth rate is always no-positive because the absolute value of the pressure reflection coefficient
cannot be larger than unit. The acoustic energy does not increase without any external acoustic source
at the boundary. The presence of the heat addition that enables the system to be unstable.

We now consider the situation with mean heat addition and heat fluctuations. For sake of simplic-
ity, the famous n− τ model is used as the flame transfer function, which can be expressed as:

(15) T1(s) = n1 exp(−τf1s)

where, n1 and τf1 denotes the gain and time delay of the transfer function. The gain, specifying the
amplification effect of the flame on the incident acoustic flow perturbations, features the shape of
low-pass filter and is cut-off at a certain frequency related to the shape of the steady flame and other
properties. The time delay, also represented as the time lag of heat release perturbations with respect
to oncoming flow perturbations, in particular for premixed flames, is considered to be proportional to
the length of steady flame. For example, the time delay τf1 of the laminar conical premixed flame
is equal to H

/
3ū1 for lower frequency band and increases with frequency, while the V-shape flame

features a constant time delay of 2H
/

3ū1, where H specifies the height of the flame.
We first consider a Rijke tube with its major geometry parameters and thermal properties described

in Table 1. By keeping the gain of flame model constant, it is possible to examine the evolution of
eigenvalues with increasing the time delay. Figure 1 shows the trajectories of the first mode of Rijke
tube with time delay τf1 ranging from 0 to 1/f ?

1 , for different gain of flame model and different flame
locations. We can find that the trajectory features a periodic motion and f ?

1 = 1/(2(τ1 + τ2)) can be
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used as an estimation of the time period. For a small gain n1, the trajectory features a shape of ellipse
and can be approximately expressed as:

(16)

(
f − f 0

1

)2
(f 1

1 )2
+

(
σ − σ0

1

)2
(σ1

1)2
= 1

where the point [f 0
1 , σ0

1] denotes the center of the ellipse. f 1
1 and σ1

1 represent the amplitudes of
frequency change and growth rate change, respectively. The value σ1

1 can also be used to evaluate
the stability of the system. If σ1

1 has a larger value, the system may become very unstable for a time
delay range. It is more difficult to control the combustion instabilities for these situations. While for
a smaller σ1

1 , a simple attached damping device is sufficient to ensure the stability of the system. It
is interesting to examine the change of the ellipse with the flame location, by successively varying
the flame position ratio xf1/l, e.g., the results are shown in figures 2 and 3. When the flame position
ratio xf1/l is increased, more cold gases occupy the Rijke tube and the mean eigenfrequency f1,0
decreases. The mean eigenfrequency can also be evaluated by the solution of the simplified equation:

(17) R1R2 − exp
(

2(τ1 + τ2)s
)
− c̄2 − c̄1
c̄2 + c̄1

(
R1 exp(2τ2s)−R2 exp(2τ1s)

)
= 0

This equation can be further simplified when R1 = R2 = −1, which is written as:

(18) sin
(

2π(τ1 + τ2)f
)
− c̄2 − c̄1
c̄2 + c̄1

sin
(

2π(τ2 − τ1)f
)

= 0

Fig. 2(a) shows the evolutions of f 0
1 (markers) and their predictions from Eq. 18 (cyan solid lines).

The two results match well for the envisaged cases. One may also roughly predict the mean eigen-
frequency using the simple equation f ?

1 = 1/(2(τ1 + τ2)), which is for example represented by the
dashed green lines in Fig. 2(a). The variation of eigenfrequency is evaluated by f1,1, e.g., the results
are shown in Fig. 2(b). The value of f1,1 equals to zero at the two boundaries. When the flame is
placed at the position where τ1 ≈ τ2, the variations of eigenfrequency f1,1 and growth rate σ1,1 al-
ways equal to zero. The unsteady flame has no effect on the stability of the system at this position.
One denotes this position as x?f1. From Fig. 3(a), we also find that the mean growth rate σ1,0 ap-
proaches ln |R1R2| for weak gain of flame transfer function. When R1 = R2 = −1, σ1,0 approaches
zero. We may also find that when the flame position is at the left side of x?f1, the growth rate of the
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Figure 2: Evolution of f 0
1 and f 1

1 with the flame location for different temperature ratio T 2/T 1 and
gain of flame transfer function n1. Markers 5: T 2/T 1 = 2 and n1 = 0.1. Markers �: T 2/T 1 = 2
and n1 = 0.2. Markers ◦: T 2/T 1 = 4 and n1 = 0.1. Yellow Stars: τ1 = τ2. Dashed green line: f ?
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Figure 3: Evolution of σ0
1 and σ1

1 with the flame location for different temperature ratio T 2/T 1 and
gain of flame transfer function n1. Markers 5: T 2/T 1 = 2 and n1 = 0.1. Markers �: T 2/T 1 = 2
and n1 = 0.2. Markers ◦: T 2/T 1 = 4 and n1 = 0.1. Yellow Stars: τ1 = τ2.

first mode increases to positive when τf1 is increased from zero to 1/(2f ?
1 ) and the flame is unstable.

The variation of growth rate σ1,1 increases when the flame position xf1 is increased from zero to x?f1.
The growth rate reaches the maximum value when xf1 ≈ x?f1/2 and then decreases to zero when
xf1 = x?f1. When the flame is located after this key position x?f1, the growth rate decreases when τf1
is increased from zero to 1/(2f ?

1 ).

3. Model of combustor with controller

We now equip a second heat source downstream of the first one. The location of the heater
is x = xf2. The second heater may not produce enough mean heat release to change the mean
temperature, but can bring heat release rate perturbations. The mean temperatures before and after
the second heat source are considered the same. The heat release rate can be linked with the velocity
perturbations by the following model used in [10]:

(19) ˜̇q2(s) =

√
3

4
Kũ2(s) exp(−τf2s)

where K denotes the strength of the heater and τf2 indicates the time delay of the model. The jump
equations across this heater can thus be expressed as:

(20) p̃3(xf2, s) = p̃2(xf2, s)

(21) ũ3(xf2, s) = ũ2(xf2, s) +
γ − 1

ρ̄c̄2
˜̇q2(s) = (1 + α2)ũ2(xf2, s)

where α2 specifies the heat release rate model and can also be expressed as a gain n2 and a time delay
τf2:

(22) α2 = n2 exp(−τf2s) =
γ − 1

γp̄

√
3

4
K exp(−τf2s)

It is then possible to obtain the governing equation, which can be mathematically expressed as:(α1 − 1

α1 + 1
R1 − exp(2τ1s)

)(
exp(2τ3s) +

α2

α2 + 2
R2

)
exp(2τ2s)(23)

+
(
R1 −

α1 − 1

α1 + 1
exp(2τ1s)

)( α2

α2 + 2
exp(2τ3s) +R2

)
= 0
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Figure 4: Left figure: trajectories of eigenvalues for different τf2 when xf2/l = 0.6. Right figure:
trajectories of the center of ellipse with τf2 for two locations. xf1/2 = 0.2. n1 = 0.1 and n2 = 0.1.

We now consider an unstable case, where the location of the first heat source is xf1/l = 0.2 and
the gain is n1 = 0.1, e.g., the results are shown in figures 4 and 5. When the second heat source is
placed at the location xf2/l = 0.6, the trajectories of eigenvalues change with the time delay τf2. It
is interesting to find that the diameters of the trajectories are nearly constant for smaller n2, and the
center of the trajectory [f 0

1 , σ
0
1] also rotates on a ellipse path with increasing τf2. The trajectory of the

center can be approximately expressed as:

(24)

(
f 0
1 − f̂ 0

1

)2
(f̂ 1

1 )2
+

(
σ0
1 − σ̂0

1

)2
(σ̂1

1)2
= 1

where the point [f̂ 0
1 , σ̂0

1] denotes the center of the new ellipse. f̂ 1
1 and σ̂1

1 represent the amplitudes
of frequency change and growth rate change due to the presence of second heater, respectively. σ̂1

1

can also be used to evaluate the performance of the controller. When σ̂1
1 has a larger value, the entire

growth rate can be largely reduced by adjusting the time delay of the second heater τf2 to a suitable
value.
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Figure 5: Evolutions of σ̂0
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1 with the second flame location for different gain of flame transfer
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It is possible to examine the change of the new ellipse with the location of the second heat source.
Figure 5 shows the evolutions of σ̂0

1 and σ̂1
1 with xf2/l. The trajectories of σ̂1

1 has a similar shape of
σ1
1 (see Fig. 3(b)). To achieve a good control, it is better to place the second heater near the position

of xf2/l = (1 − x?f1/l)/2. The entire growth rate is reduced when 0 ≤ τf2f
?
1 ≤ 0.5. The control

performance can be enhanced by increasing the gain n2.

4. Conclusions

This article has presented a new control strategy of combustion instabilities, which employs a
second heat source downstream of the unsteady flame within the combustor. A low order model
of a Rijke tube with weak mean flows has been developed comprising a linear acoustic network
and simple flame transfer functions. The stabilities of the system without and with controller have
been investigated by varying the time delay and gain of flame model, the flame locations and the
temperature jump ratio across the flame. It was shown that the trajectory of the eigenvalues with time
delay of flame model features a shape of ellipse for a weak gain of flame model. The diameters of the
ellipse change with the gain and flame locations. Results showed that by using a proper second heater,
the growth rate of the system can be reduced and the instabilities can be suppressed and controlled.
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