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Abstract

The objective of this thesis is to propose a new model for particle dispersion and clus-
tering for use within an (unsteady)-Reynolds Averaged Navier-Stokes ((u)RANS) compu-
tational framework. The need for an improved model stems from industrial requirements
to address certain limitations of the currently used models. Namely, low predicted particle
entrance into recirculation zones for particles with large Stokes numbers and unrealistically
spatial and temporal uniform predicted particle concentrations.

The literature review presented within this thesis examines the various computational
tools available for modeling the Lagrangian phase and identifies Kinematic Simulations (KS)
as potentially capable of reproducing accurate Lagrangian statistics and particle clustering
across a range of physical scales while at the same time requiring a modest increase of
computational resources relative to the presently used methods.

The thesis proposes a combination of (u)RANS and KS in a coupled Eulerian-Lagrangian
framework.The (u)RANS calculations will be responsible for modeling the large coherent
motions while the KS will be employed to model the effects of all the other scales, that are
represented statistically in the (u)RANS context, on particle motion. In other words, the
representation of the velocity field within the ‘eddies’ will be simulated by tracking a particle
through an isotropic turbulent field constructed with the aid of KS. The extent of scales and
the energy content of the isotropic field modeled by KS at every instance is determined by
the local properties of the under-resolved ‘eddy’ as determined by the Eulerian framework.

The proposed model is evaluated on an axisymmetric sudden expansion test case through
comparisons with experimental results, LES calculations as well as RANS simulations em-
ploying the current industry standard dispersion model. Improved overall performance was
observed with significant differences between the particle trajectories computed with the
proposed model and those with a model widely used in industry. This last point is of partic-
ular significance as one of the limitations of the currently used models was the high degree

of spatial uniformity in the predicted particle distribution.
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"Believe me, my young friend, there is nothing —absolute nothing— half so much worth doing as

simply messing about in boats."

said the Water Rat to the Mole
The Wind in the Willows
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1 Introduction

Turbulent multiphase flows are present many engineering and environmental flows. At their
heart lie the interactions between the dispersed phase and the carrier flow, whether one is
talking about either particles or droplets in a gas stream or bubbles in a liquid. The original
impetus for investigations into the subject a century ago, at the peak of the steam age, was coal
combustion. The problems being addressed at the time were to increase efficiency in the burner
and boiler as well as looking into the exhaust plume and the effects that pollution had on the
surrounding inhabitants.

More than a century later two-phase flow is still just as relevant, whether the focus is on
designing a better gas-turbine combustor with a uniform fuel droplet distribution in order to in-
crease energy efficiency, reduced pollutant formation and avoid premature wear and tear through
hot-spot induced combustor liner damage or whether one is investigating the optimal positioning
of a flue-stack to minimize pollution to surrounding inhabitants. The applications though are
not limited to man made interference, the same physics govern the evolution and the coloniza-
tion of coral reefs as well as the formation of cloud structures through the successive interactions
of smaller water droplets. Computational modeling techniques can play a central role in im-
proving existing energy systems and in our understanding of environmental flows. They can aid
in identifying revolutionary energy conversion strategies replacing Edisonian design approaches
with simulation based optimization. Similarly, modeling can provide insight to meteorologists
and oceanographers about weather phenomena. They can explain to marine biologists how a
particular coral species is found unexpectedly 5000 miles away on the other side of an ocean,
where it had never been noticed before, and they can aid the engineer in positioning a sewage
outlet for minimal environmental impact.

The purpose of this study is to develop a novel droplet and particle dispersion model within
the framework of Reynolds Averaged Navier Stokes (RANS) simulations capable of predicting
the spatial and temporal distributions of dispersed particles and droplets in engineering flows
with a greater accuracy than is currently feasible with RANS but without the computational
cost associated with Large Eddy Simulations (LES). The currently available dispersion models
leave room for improvement and the main reason for this is that they contain very little phys-
ical information regarding the turbulent eddies of the flow and their effects on particles. The
novelty of the proposed model is to improve the present dispersion models through
the introduction of Kinematic Simulations (KS) for the tracking of the Lagrangian
phase through the scales of the Eulerian phase that have been time-averaged and
represented only in a statistical sense in the (u)RANS context.

The proposed phenomenological dispersion model is based on KS; these have recently been
shown capable of reproducing particle preferential concentration phenomena. The underlying
idea is to better approximate the structures and physics of eddies of the RANS simulations by
creating a KS turbulent flow for the particle to interact with. The developed model will be
integrated within openFOAM, an open-source Computational Fluid Dynamics (CFD) software
package and will be compared to LES calculations (of the same test case). The test case selected
is an axisymmetric sudden expansion flow at high Reynolds numbers for which detailed experi-

mental measurements are available. After the LES is validated against the experimental results,
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it is proposed to probe the LES model to identify regions of variation in the discrete phase’s
spatial distribution and relate these to surrounding turbulent flow structures. Such insight might
prove useful for further development of the proposed phenomenological model.

This study proposes the adoption of an Eulerian approach for the continuous phase and a
Lagrangian one for the dispersed phase. The study of dispersion phenomena can be done in
either Kulerian or Lagrangian frameworks. In the former case, the frame of reference is fixed
with respect to the fluid and the dispersed phase is treated like another continuum with its
own set of governing equations. In the Lagrangian case, the frame of reference is fixed to the
particle (or a group of particles’ center of mass) and is tracked in time. For the Lagrangian
particles that interact with inadequately resolved eddies of the RANS simulation, a KS will be
constructed to model an isotropic turbulent field in order to generate more realistic fluctuating
velocity components of the carrier phase for interaction with the particles. The CFD software
will be responsible for the book-keeping of the two phases and implementing the KS model
developed within the RANS framework.

A literature survey will be presented on turbulent particle dispersion, Lagrangian statistics
and models available for simulating particle dispersion in order to identify the advantages and
limitations of the reviewed methods. This is followed by a overview of spectral methods for tur-
bulent flows and of Kinematic Simulations. The final section of the literature survey will review
how the governing equations of fluid mechanics are discretized and solved in the subsequent
sections. This will be followed by a section describing the development of a coupled Eulerian-
Lagrangian solver and the introduction of the test case. Subsequently, a LES is performed on the
chosen test case to validate the developed solver and to establish a computational benchmark
for the subsequent calculations. Flow structures, that have important effects on the particle
trajectories within the LES, will be identified and the findings used to improve the developed
phenomenological model. The following section describes the implementation of the Kinematic
Simulation model within the openFOAM package. Afterward, the proposed model is validated
on the test case and compared to experimental measurements and the LES calculations. Finally,
the proposed model is tested on an industrial geometry of an aviation gas-turbine combustor

currently in flight.

1.1 Overview

The field of fluid mechanics has been revolutionized over the past decades through the use
of computers for the solution of the Navier-Stokes equations; the partial differential equations
that govern fluid flow. Although several approaches are possible, the most popular over the past
several decades has been to use the Finite Volume Method (FVM) to discretize the Navier-Stokes
equations. The FVM requires the decomposition of the flow domain into small volumes, small in
relation to the overall physical domain sizes but significantly larger than the microscopic level,
permitting the treatment of the flow as a continuum. Across these small volumes the principles
of conservation of momentum and mass may be applied, in a similar manner as that used to
derive the Navier-Stokes equations in the first place, and through the use of matrix algebra the
equations over all the small volumes may be solved simultaneously. What is immediately clear

is that the computational requirements must be proportional to the number of equations being
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solved and the number of finite volumes into which the domain has been discretized, and herein
lies the fundamental problem of CFD. In an ideal world without computational restrictions
the method could be applied to provide a solution, with a relatively small error, to the most
complicated fluid flow problems imaginable provided a fine enough grid is used. That is, given a
small enough size for each finite volume, the method can provide accurate descriptions of highly
turbulent fluid flow through very complicated geometries. Turbulence scaling arguments may
be used to provide an estimate for the size of the smallest scales, thus providing an indication
for the size of the finite volume required. Such an approach is employed by Direct Numerical
Simulations (DNS) where even the smallest turbulent scales are resolved.

Today after more than 50 years of use of CFD, the most expensive DNS can only be used
to describe isotropic turbulent flows with a Reynolds number of the order of less than 10% while
channel flows in the 10% have just recently been performed. Early on, it was realized that the
computational resources were not available, nor would they be there in the foreseeable future,
to allow DNS of engineering or environmental flows. If the field of CFD was to be of any use
to the engineer, a different approach would have to be adopted. The solution came, first, in the
form of the Reynolds Averaged Navier-Stokes (RANS) and later on with Large Eddy Simulations
(LES). In the case of the former, Reynolds Averaging is used to describe the mean components
of the turbulent flow and a statistical approach is adopted to treat the smaller fluctuating scales,
much in the same manner as that used by early researchers for investigations into the field of
turbulence. In a similar manner LES employs filtering of all the fluctuations smaller than a
certain size and approximates those through the use of a model while solving the Navier-Stokes
equations directly for all scales larger than the filter width. Computational requirements are
smaller for RANS simulations, increase substantially for LES and become prohibitively expensive
for DNS. LES are capable of describing many of the interesting features of turbulence associated
with the larger scales and might appear to be an ideal compromise but even today are sparingly
used in industry due to their cost. This is but a very brief introduction into the field of CFD in
order to set the stage for the remainder of this chapter and Chapter 2 will deal in greater detail
with the specifics of the FVM and the various options available to the researcher and engineer
for CFD modeling. In either case what is evident is that, despite the impressive improvements
in computational resources available today, RANS and LES modeling are still very relevant
and active fields of research, respectively, and there is a requirement for improved models for

turbulence, dispersion, atomization etc.

1.2 Multiphase flows in CFD

The treatment of multiple phases in the Finite Volume Method poses some difficulties. Not
because of lack of research, as it has been an active field of research for several decades, as Unverdi
and Tryggvason (1992) point out. The earliest methods, using front/surface tracking methods,
were inspired and developed from the earliest compressible flow methods of von Neumann and
Richtmyer (1950) where the prediction of the shock front was of paramount importance. Similar
schemes where employed to add artificial viscosity near the front/surface in order to avoid
numerical instabilities that arise across sharp interfaces. Because the shear number of different

methods proposed over the years does not make their review practical within the extent of this
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thesis, we will restrict the discussion to the two most commonly used today in the context of
multiphase flows; the level-set and the volume of fluid methods. For a review of earlier methods
used to treat multiphase flows the reader is directed to Floryan & Rasmussen (1989).

The simplest of the two is the Volume of Fluid (VoF) method, where the volumetric fraction
of each fluid phase is stored for every mesh cell. This is achieved through the introduction of an
additional transport equation for a scalar, a, bounded between 0 and 1'. Near the front /surface
the scalar value within the cell take on values between 0 and 1 (0<a<1) whilst far away from
the interface they are either 0 or 1 (a=0 or a=1) depending on which side of the surface they
lie on. It is important to note that the surface itself is not physically present and advected
with the flow, rather it must be implicitly reconstructed according to some algorithm. The
consequence of this approach is that the interface is rather diffuse since it depends on the
computational grid size. However, as Gueyffiers et al. (1999) show, with careful combination
of interface reconstruction algorithm (in this case the piecewise linear interface construction
(PLIC)) and grid size the method is capable of remarkably good agreement between experimental
and computational results on coarse grids albeit for fairly simple flows.

Level-Set methods are the other popular family of methods available, defined by Tanguy et al.
(2005) as those that rely on a continuous function, ¢, typically, a linear algebraic relation between
any grid point and the surface, to characterize the interface. A zero value describes the location
of the interface. An additional convection equation is needed for the function but care is needed
as low order discretization schemes tend to result in discontinuities. Level-Set methods typically
have a sharper interface compared to the VoF method for the same computational domains,
however they suffer from mass loss in the conservation equations. Tanguy & Berlemont (2005)
quantify the level of mass loss and for simple problems (droplet collision) this is of the order
of less than 1%. However, applying the method to more complicated flows requires caution.
Menard et al. (2007) describe how the VoF may be combined with the Level-Set method to
address this issue and show very promising results for a liquid jet breakup, as they achieve the
sharper interface of the latter with the mass conservation of the former.

The Eulerian approaches described above may be well suited to academic flows, such as
liquid film and jet breakup, single droplet impingement, droplet pair collisions but they are of
limited use for industrial applications. This is due to the extremely fine mesh sizes required to
resolve the physics along the interface in order to make accurate predictions. In order to predict
accurate film or jet breakup one must be able to resolve the small scales of turbulence that
give rise to the interfacial instabilities, whether these are Rayleigh-Taylor or Kelvin-Helmholtz.
Hence, the grid size must be several times smaller than the smallest instability wavelength
and amplitude predicted by the analytical solutions. Alternatively, if it is a droplet or bubble
transport problem, the mesh size will be dictated by the smallest sized droplet one wants to
resolve, since several cells are required to adequately reproduce the curvature of a sphere. This
results in meshes numbering hundreds of millions, even billions of cells. Requiring months of
computational time on thousands of computer nodes just to resolve problems at relatively low

Reynolds numbers of the order of a couple of hundred. Their application to industrial sized

'Tf there are three distinct fluids/phases yet another scalar, b, also bounded between 0 and 1, must be tracked
and so forth for every additional phase.
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problems and flow conditions is not expected to happen any time soon. Present day hardware
limitations seem to suggest that for industrial problems, an alternative approach is required. By
no means does this imply that the methods just described are of limited use to industry. On
the contrary, although, they cannot be used for modeling complete industrial geometries, they
provide invaluable information for the development of the individual sub-models. These sub-
models typically attempt to replicate the actual physical processes through a statistical model

or a phenomenological description.

1.3 [Eulerian-Lagrangian interaction & the need for dispersion models.

So far we have seen how the finite volume method may be used to discretize the Navier-Stokes
equations, that completely describe the continuous carrier phase in an Eulerian framework, and
how they may be solved simultaneously through the use of matrix algebra to provide a solution
to the partial differential equations. On the other hand, the solution of the Lagrangian phase is
somewhat more straightforward as the ordinary differential equations describing the motion of
the particles (or spheres) may be solved with a range of quick and easy to implement methods
such as multi-step linear, Runge-Kutta, Euler, etc. The issue that still remains to be covered is
how the two methods may be connected.

In a one-way coupled Eulerian-Lagrangian framework the presence of the dispersed phase
does not affect the carrier phase (i.e. there is no effect of mass loading nor is there, e.g., a force
acting on the continuous phase due to drag from the discrete phase), hence, it is should be used
when the Eulerian phase is steady and the evolution of the particle or dispersed phase trajectory
is mainly dependent on the particular geometry of the domain. It is to be kept in mind that
such an approach will be satisfactory only if the mass loading of the dispersed phase is small.

If, on the other hand, the mass loading is large or if the geometry and flow conditions are
such that instabilities arise causing oscillations in the defining flow structures, then a two-way
coupled approach should be adopted. In the first case, the implication of large mass loading
is that the momentum of the dispersed phase will have a significant effect on the development
of the surrounding flow field. If, on the other hand, the Eulerian phase is unsteady then, even
at low mass loadings the contribution of the dispersed phase may be important and should be
accounted for in the Eulerian phase. This is because even small changes in the nature of the
perturbation upstream can significantly change the shape of flow-field at a downstream location.
Mostafa (1992) mentions the experimental and computational observations of particle effects on
the turbulent structures making two-way coupling of paramount importance in flow fields where
said structures play a defining role in the shape of the field.

The way the interaction of the dispersed phase is accounted for on the carrier phase is
through the inclusion of additional source terms in the partial differential equations that describe
the Eulerian phase. The exact nature of the source terms will depend on the problem being
modeled and on the format in which the equations are cast. If one is solely interested in the
evolution of particle trajectories then it may be adequate to account for the particle’s momentum
as an additional contribution to the momentum of the Eulerian phase, evaluated across the
computational cell within which it lies. If, on the other hand, the case being investigated

involves reacting or non-isothermal flows, an additional contribution from the dispersed phase
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is required in the scalar transport equation. Whether one chooses to model all contributions
or only a subset of them will depend on the accuracy desired and the computational resources
available. On the other hand there are instances where trying to describe all physical phenomena
accurately is meaningless as there are large uncertainties in the formulations themselves. For
example, the estimation of drag coefficients for small spheres is still an active field of research
with large discrepancies in the quoted values. It may be argued that there is little point in trying
to account for the contribution of the Basset forces, when estimating the forces on a solid sphere
in a gaseous continuous phase since their contribution is at least an order of magnitude smaller
than that of the drag force. In any case, the forces are evaluated and the particle trajectory
is updated by solving the equation of motion and adjusting or correcting the Eulerian field
through the addition or removal of momentum and energy or source terms. At the next time
step, the process is repeated for the updated particle position taking into account the updated
local parameters. The problem that arises, and is of particular interest, is how particle dispersion
is treated when the fluctuating components of the Eulerian field are not modeled. For a well
resolved LES or DNS Eulerian-Lagrangian calculation there is sufficient instantaneous velocity
information to ensure adequate dispersion of the Lagrangian particles with time. In both cases
a substantial range of length scales are modeled resulting in realistic turbulent flow-fields, which
in turn will ensure that two particles that start next to each other will eventually exhibit a
turbulent-like relative dispersion. The adjective ‘turbulent-like’ is needed because, in the case
of LES, the dissipative scales are modeled while even the latest DNS will not resolve the larger
energy containing scales (at least not at high Reynolds numbers).

However, in RANS simulations, the ‘raw’ fluctuating velocity components of the carrier phase
are not present and a mechanism or model is needed to represent turbulent dispersion. The early
work in this field, namely Locally Homogeneous Flow (LHF) models, assumed that the dispersed
phase was in dynamic and thermodynamic equilibrium with the carrier phase. This required
that the density of the dispersed matter be very close to that of the carrier phase as well as
the diameter of the dispersed matter be extremely small. When these two requirements are
taken to their limits, this results in gaseous flow with dispersed gaseous particles. Versions of
LHF models were constructed to include the effects of turbulent fluctuations. Nonetheless its
applicability was limited by the aforementioned limitations, namely density ratios and disregard
for relative velocity slip. Faeth (1983) points out that the LHF methods, when applied to
atomizers/injectors with sprays consisting of uniform and very small particles (10 wm) may
provided a good estimate for the extent of the spray boundaries.

Later on, Deterministic Direct Discrete Models (DDDM) focused on modeling evaporating
or combusting dilute sprays for several particle sizes and extending the result to the whole spray.
Unlike LHF models they address the relative velocity difference between particle and surrounding
fluid and are not limited to small density ratios between dispersed and carrier phases. DDDM
were primarily concerned with increasing the accuracy of droplet size evolution predictions or
species concentrations within the vapor cloud surrounding the particle, than with modeling the
dispersion due to turbulence. Faeth (1983) reviewed the various implementations of available
DDDM and their effectiveness however, Kuo & Acharya (2012) summarize their limitation as

requiring a high degree of calibration for each specific case in order to obtain reliable predictions.
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This, in turn, is possible only for flows where detailed experimental measurements have been
performed and even then the model, with its tuned parameters, is applicable only under very
similar operating conditions and geometries. To address the limitations of the previous models
Yuu et al. (1978) developed one of the first Stochastic Direct Discrete Models (SDDM) where
they prescribed fluctuating velocity components to the dispersed phase. The model simulated the
dispersion of dust particles in a round jet and was compared against experimental measurements.
The fluctuating velocity components of the particles were prescribed depending on their location
within the jet from the turbulence intensity measurements of Corrsin & Uberoi (1943,1949,1951),
Liepman & Laufer (1947) and Laurence (1956) quoted therein. For the mixing layer region, in

the axial and radial directions respectively:
(u.2) = 0.0217U2e(7200) & (0,2} = 0.010302(~777)

and for the main regions:
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where U, is the bulk velocity, 7 = /D, Z2 = 2/D, n =7/z n; = (1=05)/z .

The agreement with experimental results was good, however the method is heavily depen-
dent on these empirical relationships for the fluctuating components. In the absence of detailed
experimental measurements for specific geometries —in order to generate such tailored empirical
relationships— the model breaks down. Although its application was limited, the model served to
establish the principle of prescribing a fluctuating velocity component to every particle, thereby
mimicking the interaction between a single eddy and a perturbed particle. The breakthrough,
however, in SDDM models came when Gosman & Toannides (1981) (hereafter G&I) established
a criterion for determining the eddy-particle interaction and prescribed fluctuating velocity com-
ponents that were Gaussian in nature. The latter came about as a result of the experimental
measurements of Hetsroni & Sokolov (1971) and Ribero & Whitelaw (1975) in turbulent round
jets. In the G&I model, the fluctuating velocity component of the eddy, U;,, is assumed to be
constant and is randomly sampled from a probability density function. The velocity is typi-
cally calculated by randomly sampling a Gaussian probability distribution of zero mean and a
standard deviation estimated from the local value of the turbulent kinetic energy, &, according
to:

Urms,i = V 2/3k7

where U, is the root mean square of the continuous phase fluctuating velocity components and
the above relationship with the specific turbulent kinetic energy is valid when these fluctuations
are isotropic. Each fluctuating velocity component is calculated independently of the others as
well as independently of the choices at the previous instance in time. In this model the particle
is agsumed to interact with an eddy for a time equal to the interaction time, which is also

sometimes referred to as the Turbulence Correlation Time (TCT), tinteraction- This is defined as
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the minimum of the eddy lifetime, ¢, or the particle transit time/crossing time, ¢.:

tinteraction = min(tev tc)

where ¢, is calculated from:
le

2k‘/3

and [, is the characteristic dimension of the eddy given by a dissipation length scale assuming
isotropic fluctuating velocities:
03/4]{3/2
e — —  _
€
where € is the dissipation rate of the turbulent kinetic energy. The term dissipation is a confusing
one although it is the one used in the literature. Because this estimate is not the dissipation
length scale but rather a quantity much closer to the integral length scale in size. It has retained
this name since in the RANS framework the energy is dissipated across all the scales unlike LES
where there is a clear distinction between resolved and unresolved scales. For the remainder
of this thesis, wherever there is a mention of particles interacting with ‘eddies’ in a

RANS context, it is this length scale, /. that is being referred to. The particle crossing

le
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where 7, is the particle relaxation time:

time? is defined as follows:

_ 4ppdy
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The purpose of selecting the smaller of the two quantities is to ensure that a particle interacts
with an eddy for as long as its displacement (along its computed trajectory) is smaller than the
characteristic dimension of the eddy, that is, for a time equal to t.. If t. is very large, the
implication is that the particle is moving slowly, with very little inertia and becomes ‘trapped’
within the eddy, so that the interaction time between the particle and eddy should again be at
most equal to the eddy lifetime, ¢..

The Gosman & loannides (1981) approach remains to date the most widely used method
although a few researchers (Shuen et al. (2003)) have proposed small improvements, calculating
slightly different values for the constants. Although a range of constants is available in the
literature, it should not be assumed that these are arbitrarily selected. Rather, through multiple
realizations of simulated particle dispersion, the turbulence statistics of the model are compared
to those of the experimental setup and the value of the constants are selected in order to improve
the agreement. However, it should be noted, that depending on the unique characteristics of
each test case there can be a need for a significant amount of adjustment to these constants.

Furthermore, Yeoh & Tu (2009) note that the Lagrangian and Eulerian autocorrelations are

2Note that sometimes the natural logarithm is omitted from the expression, in which case the definition bears

remarkable similarity to the minimum crossing time definition, t. = ‘IjlieU' This is done because the particle
£~ Up

—eddy relative velocity is not actually known and must be approximated by its value at the beginning of the
interaction as noted by Yeoh & Tu (2009).
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dependent on the choice of definition for the eddy lifetime and eddy size respectively. In these
simple SDDM the desired effect, that is a linear decrease, on the Lagrangian autocorrelation is
achieved implicitly through the repeated selection of random velocities. Thus the time correlation
is treated in a very simple manner and no endeavor is made to address the spatial correlations and
account for the anisotropy of the carrier phase. Accounting for anisotropy requires knowledge of
how fluid elements are evolving around the discrete particle and relating the two. This approach
was extended by Berlemont et al. (1990) and Burry & Bergeles (1993) with predicted particle
velocities and fluxes that agreed closer with the experimental measurements of Shuen et al.
(1983). However, it required construction of spatial and temporal correlations function tensors
which are computationally expensive to both construct and store. Most important though is
that, in order to construct these tensors, experimental measurements are required in order to
determine the constants for the correlation functions. In the absence of this information the
benefits of modeling the spatial anisotropy limit the applicability of the model to geometries

where detailed measurements have been made.

1.4 Review of Lagrangian Methods

The purpose of this section is to review the modeling approaches capable of predicting the relative
particle dispersion and to extensively discuss their limitations. This is a necessary exercise if a
novel approach is to be identified that will permit the development of a new dispersion model
for RANS with improved particle dispersion. The need for a new RANS model stems from
the inability of the currently used models, namely the G&I derived models, to predict accurate
levels of particle dispersion as well as particle preferential concentrations. The G&I models
were introduced earlier in this chapter and their shortcomings may be primarily attributed to
the limited description of turbulence, they employ for the dispersion of particles. The available
models will be reviewed in an effort to identify those capable of allowing us to introduce the
required physics (even in a phenomenological sense) in order to provide a means for predicting
more realistic particle dispersion as well as forming a basis for a model capable of predicting
particle preferential concentration.

The starting point in the development of an improved model for particle dispersion model
is a review of the theory of Lagrangian Dynamics. Since we are interested in turbulent flows,
covering the theory of one-particle diffusion and then two-particle diffusion is instructive. The
latter is especially interesting if a dispersion model is to be developed that is capable of predicting
particle preferential concentration; Apart from the immediate relevance to the problem at hand
(i.e. the development of a new dispersion model) the following review is also useful for the
literature review on spectral methods and KS. A substantial amount of the early work done in
an attempt to understand and characterize turbulence was done in a Lagrangian framework,
and as will be shown, several of the concepts introduced in these sections concerning the particle
diffusion are relevant and useful for the comprehension of concepts introduced later on during

the review of spectral methods.
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1.4.1 Lagrangian Overview

Turbulent transport is responsible for the large amount of mixing observed in real flows, which
is of both practical and theoretical importance and interest. Practical, as mentioned already,
because most real flows lie in the turbulent regime, whether we are dealing with combustion
processes or polyp transport in oceans resulting in new coral reef formations —as well as every-
thing in between—. Theoretical, because turbulence to this day remains one of the great unsolved
problems in physics.

As a turbulent flow evolves and moves through space it carries with it packets of fluid. This
packet or parcel of fluid is small compared to the Kolmogorov microscale but much larger than
the molecular scale, in order that it may still be treated as a continuum. Turbulent diffusion, is
this movement of fluid packets from one region of the flow into another, resulting in the transport
of momentum, kinetic energy and contaminants or passive tracers. For the majority of flows one
of the general attributes of turbulence and more specifically of the Reynolds Stress is its ability
to drive spatial inhomogeneities towards uniformity.

Despite recent advances in computational capabilities it is still not feasible to precisely model
the overwhelming majority of flows of engineering or practical importance, as will be discussed
in subsequent sections on current modeling practices and capabilities. The limitation arises
because the higher the Reynolds number of the flow in question the smaller the scale that
must be resolved. The smaller the scale, the greater the number of locations, for a given size
flow, where the partial differential equations must be solved, thus significantly increasing the

computational cost.

1.4.2 Lagrangian Dynamics

Historically, the distinction between an Eulerian and a Lagrangian frame of reference can be
made by analogy to trains passing through a station. In the Eulerian case, the passenger or
observer is standing on the platform observing the trains arriving and departing from the station
platform whereas, in the Lagrangian case, the observer would be aboard one of the carriages
observing the world move past him, occasionally coming to a stop in a station.

While the above statement definitely holds, Holmes et al. (1996) explain how in the realm of
Fluid Mechanics a further point should be made. This is closely related to the laboratory exper-
iments that were used (and still are) to study flows over the last century, namely channel flows
and wind tunnels. These have an inlet and an outlet, prescribed to be on the left and right sides,
respectively, in order to match our mental construct of the situation. These flows are typically
on average steady, but instantaneously unsteady. They tend to vary slowly in the flow direction
and suddenly in the spanwise directions®, with the use of simple dimensional arguments the
cross-sectional structures at different locations appear similar (the Eulerian viewpoint). How-
ever, one may also think of time as flowing from the left to the right due to western convention
of righting from left to right. That is, the initial state of the fluid parcel is taken to be the state
when it passed the inlet of the apparatus and its evolution is tracked -and drawn- from left to

right until it exits the domain. In other words parcels of fluid or material elements are found in

3For the remainder of this thesis, the spanwise direction will refer to the cross-stream direction, one that is
perpendicular to the streamwise direction, the principal direction of the flow.
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their youth next to the inlet, traced through their lifetime along the length of the channel /tunnel
until they pass the exit boundary in their old age (the Lagrangian viewpoint). The two points
of view are ultimately equivalent, as it is presumed that small statistical inhomogeneities are
dynamically irrelevant and so far this is supported by the literature.

The equations that govern viscous fluid flow are the Navier-Stokes Equation and the conti-

nuity equation, cast here in an Eulerian framework for an incompressible fluid:

aué?t)%—(u-V)uﬁLV;)+VV2u:f
V-u=0

where u (r,t) and p (r, t) are the Eulerian velocity and the pressure fields field respectively at
location r and time t, v is the kinematic viscosity of the fluid, and f are the sum of body forces
acting on the packet. Adopting a Lagrangian approach can be very beneficial as Lagrangian
Dynamics are well suited to studies of small scale phenomena or many point correlations func-
tions, like particle dispersion or coalescence. Eyink (2012) posits that Lagrangian Dynamics are
closely related to the mechanism of mixing while in the recent work of Lucci et al. (2013) the
authors identify that they are especially important in calculations of the turbulent kinetic en-
ergy spectrum of inertial particle laden flows where an Fulerian approach results in a corrupted

energy spectrum?. In the Lagrangian frame of reference the Navier-Stokes Equation is:

duL (I‘O, t)

7 + [Vp — 1/V2u]L (ro | t) =1L (ro | 1)

where the subscript L indicates Lagrangian properties and the terms in brackets imply that the

function is taken at r = r, (ro |t).

Fundamentals of Lagrangian Dynamics

Before reviewing one-particle and two-particle turbulent diffusion it necessary to start with
the fundamental concepts of Lagrangian Dynamics. The approach outlined here follows closely
that of Tennekes and Lumley (1972) and Eyink (2012). The central idea behind Lagrangian
dynamics is the notion of a Lagrangian flow which traces the location a of a particle at time #y
to its new location X (a) = x at a time ¢ after a short time interval dt. It should be noted
here that t<#y just as easily as t>fy. Lagrangian traces are one-to-one mappings®of the flow
domain and given the smooth nature of the flow field (u(x,t)) this means that they too in turn

are invertible, that is: a = (Xgo)f1 (x). The Lagrangian flow satisfies the following equation:

d t
it

A further property of Lagrangian mapping is that two successive mappings from time tg — ¢1

(a) =u (Xt (a),t) ng (a)=a

and t; — to are identical to a single mapping from t; — 5 : X:‘l) X:; = X:g and the trivial

*However, it should be noted that due to dependance of the Lagrangian kinetic Energy Spectrum %EL(t7 w)
on the flow history (time non-locality) this cannot be computed directly in a Lagrangian framework and the
authors adopted a quasi-Lagrangian framework and the derivation of Eulerian-Lagrangian bridges.

5Strictly speaking they are diffeomorphisms (isomorphisms of a smooth manifold); a space where one can
perform calculus and that locally resembles Euclidean space, Chicone (1999) & V.I.Arnold (1988)
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case of X! =1

The Jacobian determinant is unity: |0X{,(a)/aa|] = 1 for incompressible flows (solenoidal
velocity field, V - u= 0). Let us now define the inverse Lagrangian map which traces the location
x of the particle at time ¢ back to its label Af (x) = a at the initial time to: Af = (X%O)_lwhich
arises from the group property At 0 = Xﬁo resulting from the aforementioned property regarding
successive mappings. For an incompressible flow, we expect the Jacobian determinant to be

equal to unity:

=1

ox

OAt o (%)
Oa

- ’axa, (a)

Finally, the fact that the labels a are Lagrangian invariants and constant with respect to time
along their corresponding particle trajectories can be arrived at by employing the chain rule

whilst differentiating the following relation:
Al (Xt (a) =a

OtAtO (XEO (a)) +u (XEO (a) ,t) . VxAio (Xto (a)=0

or

DAL (x) = [0 + u (x,1) - Vi] AL (x) = 0

Lagrangian dynamics are intrinsically linked to the advection of an ideal passive scalar:
0i0(x,t) +u(x,t) - Vxb(x,t) =0
reducing to when solved using the method of characteristics:

0(x,t) = 0(Ag, (%), o)

H(sto (a),t0) = 0(a,to)

In the case that the scalar is non-ideal, diffusion must be included in the equation as well
resulting in:

0(x,t) +u(x,t) - Vib(x,t) = k 72 0(x, 1)

Solving this stochastic ordinary differential equation for an n-dimensional Brownian motion

(W (') = (Wit'), ... Wa(t))):"

dX¥ (x) = u(X¥ (x), ) + V2:dW (t')

Finally, setting ;‘;:EO(X) = i:o(x) one obtains : 0(x,t) = E [0(A (x),t0)] where E denotes
averaging over the successive Brownian motion realizations.
We can now use these concepts relating to an advecting velocity (u(x,t)) to formulate a

solution of the equations governing fluid mechanics, namely the Navier-Stokes equation. Here

®The subscript to is often omitted to simplify or de-clutter the functions Af, (x)&Xf,(a) to A(x,t)&X(a,t)
respectively.
"For details see Sawford (2001)
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it will be cast in terms of the Lagrangian flow map Xgo(a) and its derivatives:

9 Xt () = u (Xt (a), 1) = vi, (a)
2
LI, (@) = vk (a) = (D) (XE, (a), 1)

Employing the Navier-Stokes equation for the Eulerian field and using D; = 9; + u(x,t) - ,°

result in: )
47 4 t t
WX,:O (a)=—-Vp (Xto (a),t) +vAu (Xt0 (a),t)

Despite the basis for this equation being Newton’s 2"? law, the Laplacian operator introduces a

substantial degree of complexity.

Eyink (2012) points out an interesting result arising from Salmon (1988) in the inviscid case
where the equation reduces to Fuler’s equation and the Lagrangian equation of motion follows
from a least-action principle where the particle trajectories minimize the action S for every fluid
element a:* ,

. 2
St [x,a] = / UX(a, T’

to

— p(X(a, t))} dr

Several important results arise when the equations of motion are cast in such a manner. Perhaps
the most important one is the Cauchy Vorticity Equation or the Cauchy Form of the Vorticity

Equation which describes the rate of vortex stretching and rotation: '

w(x(a,t)) = Q(a) - VaX(a,t)

Durbin & Petterson-Reif (2001) relate the evolution of the vorticity to the infinitesimal de-
formation of a line element, da between two neighboring fluid particles a and a 4+ da. Two
neighboring particles will initially follow very similar paths but eventually the trajectories will

begin to deviate from each other.
0X(a,t) = X(a+ da,t) — X(a,t)) =da- VaX(a,t)

The physical interpretation of the Cauchy formula is that the evolution of the vorticity vector is
like an infinitesimal material line element. An important point to be made is that this elegant
relationship between the mean flow and the vorticity is applicable solely in the case of irrotational
mean flow (i.e. VXU = 0). P.G. Saffman (1992), in his classical monograph provides alternative
relationships for the cases of more complicated flows. The separation between two particles
formed the basis of the initial research into the field of turbulence at the beginning of the 20"
century by G.I Taylor (1921) and L.F. Richardson (1926) and the results are still relevant today

in that these provide not only a quantitative answer to the behavior of separation with time

8This is the definition of the total (material) derivative,P/pt = 8/a: + u -7 and is the relationship linking the
time derivatives in the Eulerian and Lagrangian frames; the unsteady time derivative at a fixed point in space,
9/a¢ and the material derivative, P/pt evaluated along the trajectory of the fluid particle, respectively.

9The action is a functional, defined as the integral of the Lagrangian between two times and uses the trajectory
or path as an argument and results in a Real number with units of Joule*Seconds.

0This is a direct result of the Cauchy invariant, Q = (w-Vx)A, D:Q =0& D:A =0

35



under some assumptions but also a framework for describing separation in the absence of these

assumptions.

One-particle diffusion & statistics

The prediction of transport phenomena in all but the simplest cases is nearly impossible and,
even when an analytical solution is possible as is the case of a stationary, zero mean flow with
homogeneous turbulence the physical validity of the solution is questionable!!.

One particle diffusion in turbulent flows was first studied by G.I. Taylor (1921). As Chronopou-
los (2005) explains, G.I Taylor’s reasoning was that the description of turbulent diffusion must
be similar to the statistical description of fluid element motion. Taylor was able to show that the
fluctuating components of successive fluid elements were correlated to the fluctuating velocity
components parallel to the same direction after some later time interval. The main focus of
interest is the mean square dispersion of particles: <\5X(a, to; t)|2> where the displacement of

the particle between times is:
0X(a,t) = X(a,to+t) — X(a, to)

and the averaging operation () may be spatial, temporal or both. One may even perform
ensemble averaging of velocities. When the mean square is independent of a and ¢y, i.e. the

flow is stationary and homogeneous, it may be reduced to'?:
¢
0X(a,t) =X(a,t) —a= /dsv(a7 s)
0

where v(a,s) denotes a Lagrangian velocity. In turn the mean square dispersion of particles will

become:
(|6X (a, to;t)]?) :/ds/ds’ (v(s')-v(s))
0 0

If the turbulence is stationary and homogeneous, then the Lagrangian velocity process is sta-

tionary in time and the statistics are independent of both space and time, resulting in:

(v(s") - v(s)) = (v(s' —s) - v(0))

which along with employing the following substitutions for the evaluation of the integrands:

1Bird et al. (1960)) explain on the following physical ground; first the energy being dissipated to the smaller
scales will eventually decay and die out in the absence of a mean velocity gradient so in turn this is no longer
a stationary flow; secondly and more important as Tennekes & Lumley (1972) point out, the characteristic time
scale of a fluid parcel is of the order of the decay time. The implication is that no real flow with decaying energy
can appear to be stationary to a wandering point.

12For the sake of simplicity to = 0 in the equations with no loss of universality.
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=5 —5& T =12(s+s), results in : 13

(16X (1)) = 2/dT (t = ) (v(r) - v(0)
0

As the time, ¢, approaches infinity, the following result is obtained:

tgg@mﬁW>=2/dmwwv»vw»e1mKMX®P>:D

t—o0 2t
0

where

D= /dT (v(1)-v(0)) <400
0

Provided the stated condition (stationary & homogeneous turbulence) remains true particle

dispersion in the limit is diffusive:
{(|6X(t)|*) < 2tD

This is the main result at which G.I. Taylor arrived at in 1921'*. An implication of the afore-
mentioned conditional statement is that the time-correlations of the Lagrangian velocity (v(a,t))

must decay rapidly, resulting in the relevant characteristic time:

1 o0
n‘uwmm!Q“”“m“‘qwmm

This result is known as the Lagrangian integral time-scale and 6X(t) operates diffusively whilst
t > Tr, known as the Markov limit. Following, Tennekes’ & Lumley’s (1972) dimensional
reasoning, the Lagrangian time scale Ty, must be of the same order as the ratio of the integral

length scale to the fluctuating velocity:
Tr ~u

A similar result may be arrived at by using a mixing length approach; the eddy viscosity or
turbulent viscosity must be of the order of the product of the square of the RMS velocity and
the characteristic time-scale:

vp ~ uQTL

Hence one may think of D as an effective turbulent viscosity in the flow, vp, since :

Tr, ~ l/u ~ VT/u2

!3Where use has been made of (v(7) - v(0)) = (v(0) - v(—7)) and that the Jacobian of the transformation is

B(TvT>/8(s,s/) =1

!4 The resultant equation is quite similar to that governing Brownian motion and one could cast this in a more

e 2
general form for d-dimensional Brownian motion, W (¢): lim._,o % =W(t)
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This is, quite similar to the way CFD closure models introduce an effective viscosity for the
modeling of the unresolved scales. Durbin & Petterson-Reif (2001) call this an eddy diffusivity,
defined as one-half of the rate of the mean square dispersion of trajectories, originating from
a common point. However, the eddy diffusivity should not be interpreted as an instantaneous
metric of dispersion rather as the averaged effect of the turbulence. More formally, while the
Markov limit still holds, eddy diffusion should be thought of as a Markovian approximation
for the random trajectory of fluid elements. Conversely, when ¢ < 17, according to Taylor
(1921), the standard deviation of the particle from its initial position will be proportional to
t. Which is to say that no substantial change in velocity is expected along the path/trajectory
during the very short time span. At this point may be necessary to introduce the statistical
representations that are pertinent to the matter at hand and to point out that, for single point
statistics, Eulerian u(x,t) are identical to the Lagrangian velocity statistics v(a,t) provided the

flow is incompressible and homogeneous in the direction of interest!s:

(IV(O)1) = ([u(0)]*) = u7ys

The next paragraph will aim to summarize the single-point Lagrangian statistics. The one-
particle probability distribution, Pt(l), with the aid of the Dirac delta function provides a more

elegant representation of one-particle diffusion than the mean dispersion:
1
B (xfa)= (5 (X (a, t) — x))

For homogeneous flows and the corresponding statistics the conditional statement is redundant

and may be omitted:
PY(x —a) = PW(x — al0)

And as time approaches infinity (¢ — oo) this becomes:

—|x—al?/4pt

(47rDt)d/2 )

Pt(l)(x —a) x exp(

This result is of interest when evaluating mean scalar evolution: 0 (x,t) = (f (x,t)), where the
instantaneous scalar is defined as a function of the initial value of the scalar, 6y, and the initial

position as follows:

0 (x,1) = 0o (A (x,1)) = / Pabo(a)s (A (x,1) — a)

'5In the non-homogeneous case, the variance of the Lagrangian velocity will receive one contribution from
the Eulerian velocity variance and another one from the square of the difference between the bulk velocity and
Eulerian mean velocity. In other words, a Lagrangian point’s velocity will fluctuate due to both the fluctuating
velocity at the Eulerian point and also because of the difference between the mean Eulerian velocity at that point
and the bulk velocity of the flow.
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with the aid of the Dirac delta function and incompressibility this becomes'6:

0 (x,t) = /ddaeo(a)é (X (a,t) —x)

For an initial scalar field that is statistically independent of the velocity, applying the averaging

operation reduces the equation to:

H(X,t):/dda<00(a)(5(X(a,t)—x)>:/dda<90(a)) (0(X (a,1) — x)) =

_ / daby (a) PV (x[a)

Hence, the mean concentration at a point is the concentration carried by the particle multiplied
by the probability of the particle being at the point, integrated over the total population of parti-
cles that may be found there. As Tennekes & Lumley (1972) point out, the profound implication
of this result is that the probability density may be measured by inserting a contaminant at some
initial location and measuring the mean concentration field at a later instant. It should now be
clear how and why non-diffusive contaminants or minute-sized particles may be used to mark the
evolution of Lagrangian points. However, these results are only true for stationary flows. Batch-
elor (1957) describes the process of treating non-stationary flows by transforming the particle
velocity into a suitable random function, with the provision that the particles/elements do not
move from the turbulent shear layers into regions of laminar flow!”. This was achieved through
the adjustment, at downstream locations, of the length and velocity scales as functions of the
distance from the originating point raised to some positive and negative exponent respectively.
Meanwhile the corresponding variation of the timescale was raised to an exponent equal to the
sum of the velocity and length scale exponents. This was achieved through the formulation of
a similarity hypothesis in the Lagrangian frame, in a similar manner to the Eulerian similarity

hypothesis.

Two-particle relative diffusion & statistics

The following section will address two-particle turbulent diffusion. Two-particle statistics are
paramount to describing the evolution of particle clouds and clusters as the same equations pre-
sented may be applied between a particle and every other particle within the cloud to completely
describe its evolution. The problem was first tackled by Richardson (1926) in an effort to derive
an equation to describe the phenomenon with an equation similar to Fick’s law but capable of
accounting for the significant eddying motion present in the atmosphere. This was accomplished
whilst observing various dispersion problems, ranging from volcanic ash plumes and primitive
anemometer data to balloon pairs drifting in the atmosphere. Here we outline the results in a

similar manner to the one-particle diffusion and we will arrive at Richardson results once a prob-

16The implication of incompressibility is |?A/ox| = 1, the Dirac delta is:

0 (X (a,t) —x)

0 (A(x,t)—a) = 05 o]

=6(X(a,t) —x)

and d%a refers to d-dimensional space
"Observed experimentally three years earlier by Corrsin & Kistler (1954)
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abilistic approach is adopted. Similar to the previous section, we are interested in the distance

A®) (t) separating two particles at some instant in time, ¢, which were initially separated by a

distance A(()Q) = |Aag|, that is: A®) () = |X (a’,t) — X (a,t) | where a’ = a+ Aag. The starting

point is to make the switch into the Hoelder space'® with an exponent of yet unknown value A,
lu(x,t) —u(x,t)| < A —x["

and through the use of the triangle inequality':

d/ar|X (a’,t) — X (a,t) | < |d/ar [X (', 1) — X (a, )] |

Resulting in,
AP (t) < Ju (X (1) ,t) —u(X(a,t),1) |

since 4/dt (X (a,t) = u(X(a,t),t). Again through the Hoelder continuity we obtain:
YA () < AIX (/1) — X (a,1) | = A [A@) (t)}h
The integration of this inequality is now straightforward yielding:
A® (1) < [Agl—“ (11— hA(t — to)] B

It is now necessary to distinguish between the case where the Hoelder exponent, Ao — 1 and

0 < h < 1. In the first case where the exponent tends to unity we obtain:

AP(t) < A

PUETTER

0

and taking the limit, (14 2/n)™ = €” resulting in:

lim

n—oo
A2 (t) < AOeA(t_tO)

Meanwhile if the exponent is bounded between 0 and 1 the following result is obtained:

AP(E) < [(1— h) Alt — ko)) 7

It is also possible to cast the original Hoelder inequality into an approximate equality, that
is: Ju(x/,t) —u(x,t)| = A|x’ — x|" which will respectively yield as the time limit approaches

infinity:

AgeAt=to) whileh - 1&t — o0

A (1) = 1
[(1—h)A(t —to)]T" while0 <h<1&t— o0

!8The assumption that the advecting velocity field is Holder continuous is quite logical given the parabolic-
elliptical nature of incompressible-viscous flow, see Tannhill et al. (1997)
19Here we are using the reverse triangle inequality to provide an estimate for the lower bound, ||z|—|y|| < |z—v|
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The interesting result is that in the first case the initial separation, A is never forgotten while
in the latter case it is lost as time tends to infinity. From “K41 theory” ( Kolmogorov (1941)) the
exponent A is determined to be equal to 1/3 for the inertial range, n < A®(t) < L (between
the Kolmogorov and the Integral length scales):

A@ (1) oc A(t — t9)?

Casting this in the correct dimensional format yields:

[A(z)(t)r o (&) (t — to)?3

Compared to the rate of growth of the diffusive case, here we notice that the separation distance
grows much faster oc #3 and this exponential dependence is attributed to the fact that, as the two
particles separate, they will start experiencing progressively greater relative velocities??. This is
the famous result to which Richardson (1926) arrived at by considering the two-particle sepa-
ration statistics: <[A(2) (t)]2> o go (€) (t — tg)® where gg is known as the Richardson constant.
We will derive this in a similar fashion shortly. Later on, Batchelor (1950) used dimensional
arguments to validate the use of the similarity hypothesis for the derivation of a relationship
relating the time derivative of the mean square separation distance (<A2>) between two particles
to their initial separation distance (Ag), for a limited range of separations lying in the inertial
sub-range region.

The two-particle probability distribution is :
PP (x,¥'|a,a’) = (§ (X (a,t) —x)§ (X (a,t) —x'))
which for a spatially homogeneous field may be rewritten as?':
Pt(2) (x,x'|a,a") = Pt(z) (x,x + Ax|a,a + Aa) = Pt(z) (x—a,x —a+ Ax]|0, Aa)
The probability density function in turn becomes:
p? (Ax|Aa) = /ddet(Z) (x,x + Ax|0, Aa)
and since knowledge of Aa is lost as t > tg we may write

5% (Ax|Aa) = lim 2% (Ax|Aa)
Aa—0

Meanwhile the probability density function will depend solely on |Ax]|, for an isotropic velocity
field, or perhaps more accurately a field whose velocity statistics are isotropic, as knowledge of
the magnitude and orientation of |Aa| is lost. Setting |Ax| = [ and in turn B (Ax) = 5 (1)

20This is evident in the Hoelder eq. above, i.e. [u(x',t) —u(x,t)| o |x' — x|"?
gince x' =x+ Ax & a' =a+ Aa
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permits comparison to the results of Richardson (1926):

95@ gy 1 9 |4
gt 0=y [l KD

op,® (1)
ol

where K (I) 2 k <€>1/ #1*3 is the scale dependent eddy diffusivity?2. An analytical solution exists,
initially derived by Richardson, but here we give the more elegant formulation of Eyink (2012):

. Al 91°/°
P () = TR P [—w]
(10 17°0) e

where the constant A is independent of the initial concentration and the elapsed time?3 for the
initial condition: P_o (I) = 6 (1) , which corresponds the initial condition of all neighbors
being indefinitely close. The importance of the analytical solution is evident once higher order

moments are derived, specifically for the variance, the 3 dependance is obtained:

([a20]") = ) = m e

where the Richardson constant mentioned earlier is: gy = 1144k3/s1 . However the absolute
values of this constant constitute an active field of research and a source of much debate to this
present day and will be discussed in following sections. Perhaps the most astonishing result of
Richardson’s work though, was the inference of the scale dependent eddy-diffusivity, K o 1'%,
Monin & Yaglom (1971) elucidate that the effective eddy diffusivity for the admixture cloud
is proportional to the effective cloud radius raised to the power 4/3 emphasizing that we now
understand this scaling as a direct consequence of the second Kolmogorov similarity hypothesis
(Kolmogorov (1941)); however, Richardson managed to deduce this result 15 years earlier than
Kolmogorov and more than 2 decades before K41 was widely known and accepted in occidental
Europe. As mentioned already, Batchelor (1950) and (1952) re-derives the Probability Density
Functions and Richardson’s scaling laws and Batchelor & Townsend (1956) & Batchelor (1957)
extend this analysis into free shear flows. An interesting result is the note of quasi-asymptotic
motion for particles pairs whose initial separation distance, or conversely time release, is smaller
than the corresponding Kolmogorov scales. Monin & Yaglom (1971) acknowledge that Obukhov
and Landau derived similar results independent of the Cambridge school as published in an early
Russian version of the classic textbook Landau & Lifshitz (1963).

Perhaps one of the most insightful remarks that Monin & Yaglom(1971) make is the fact that
identical results may be obtained without employing the similarity hypothesis or dimensional

arguments. Citing the work of Corrsin (1962), Lin (1960) and Lin & Reid (1963) they show how

22

For molecular diffusion K = 0.17¢m?s™* and Richardson estimated values of K ranging from 3.2 x 103¢m?s™

to 10 em?s ™! for [ ranging from 1.5 x 103cm to 108¢m, respectively, through observation of atmospheric phenom-
ena ranging from closely spaced anemometer readings to atmospheric cyclone diffusion measurements. Where
the estimates were obtained through evaluation of the standard deviation from the mean of the thickness of the
lamina, according to o> = v/2Kt and t is the time ellapsed since indefinite thinness. Meanwhile the product
k (€)/*was found to be 0.2.

Zfor the sake of completion A

1

G
= T/
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the only assumptions necessary are that the state of the fluid particle be governed by a Markov
process and that the correlation function for the acceleration be independent and decreases

sufficiently rapidly at infinity.

1.4.3 The added complexity of inertial particles

Up until this point we have treated particles and parcels as if they were continua of finiteless
dimensions and effectively we were investigating fluid element evolution. Accounting for the
effect of different densities and finite dimensions of droplets and real particles, whether traces or
larger contaminants, is by no means a trivial task. The earliest work in the field may be traced
back to the middle of the 19th century when Stokes (1850), the namesake of the dimensionless
number that will be introduced shortly, investigated the effects of drag on a ball pendulum.
The latter, was a field of research which had found a new lease of life after the mathematical
developments of Coulomb, Maxwell and Lord Kelvin as mentioned by Stokes (1850). Later,
Oseen (1927) improved Stokes solution; which had accounted solely for the drag in a creeping
flow, attributing a third to the pressure distribution and the other two-thirds to the existence of
shear, through the inclusion of the effects of the inertial terms of the Navier-Stokes equations.
The form widely accepted today (Fan & Zhu (1998)) is the Basset-Boussinesq-Oseen equation
(often abbreviated to BBO), named after the early researchers Basset (1888), Boussinesq (1903)
and Oseen (1927). For spherical particles heavier than the carrier phase?*, the elegant form
derived by Tchen (1947); achieved by casting the velocities in a relative sense (U — U)) and

then bestowing the whole system with the far field carrier velocity, is as follows:

7Td3p dU nd3 7Td3/0 d
, p7p B _ "% p fi —
6 ar —omudy (Up = Up) = ==Vp+ —5= 0 (Up —Up) + ..
3} /mng /t (U =Up) S,
2 to Vt—1 i

Here the subscripts p & f indicate the particle and the undisturbed far-field carrier phase prop-
erties, respectively. This is an expanded version of Newton’s equation of motion; the left hand
side of the equation is the volume of the particle multiplied by its density and its acceleration,
while on the right hand side the first term is the force due to Stokesian drag, the second term is
the pressure gradient force, the third is the force due to inertia of the added mass ( sometimes
called virtual mass), the fourth is the viscous drag due to unsteady relative accelerations, known
as the Basset history term and finally the summation is there to account for body forces arising
from gravitational and electromagnetic fields or even inter-particle forces. Corrsin & Lumley
(1956) proposed that the static pressure gradient term be replaced with the full Navier-Stokes

equation:

DU
—Vp = thf — uVQUf

Combining the two, leads to an expression for the acceleration of a solid particle:

24The buoyancy force, (2nd term on RHS) has been replaced by the pressure gradient force
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This equation is valid in the small particle limit, that is for small particle Reynolds numbers,
small shear numbers?® and when the particle diameter is smaller than, or comparable to, the
Kolmogorov scale, n, measured at the far field. Another way of determining whether the particles
will closely follow the carrier phase is by comparing the Stokes number, which is the name given
to the ratio of the particle relaxation time, 7, = rpd3/18, to the characteristic time scale of the
flow:

St = T/r.

where the subscript, ¢, indicates the relevant characteristic scale. For laminar flow the latter
will be the ratio of the characteristic dimension (integral length) over the bulk velocity while
for turbulent flows one may cast the comparison between Stokes number and either the inertial,
or Taylor, or Kolmogorov timescales to determine to what extent the particles will follow the
smaller eddies. Additionally, it is important to take into account the effects of gravity on an
inertial particle. This is usually characterized by a dimensionless drift velocity, «y, defined as the
ratio of the particle terminal velocity to the RMS velocity of the flow:
T
=2
Chronopoulos (2005) states that particles with high drift velocity tend to pass through structures
relatively unaffected, dispersing by a smaller amount than their lower drift velocity counterparts.

Whilst reviewing the work of Csanady(1963) on the atmospheric dispersion of particles, he
notes that it was determined that the inertia of the particles did not play a substantial role
in dispersion. Rather, it was the particle’s terminal velocity that contributed significantly to
dispersion. The dispersion in the direction normal to the drift was found to be half as much as
that parallel to the direction of drift.

Voth (2000) shows how the equation is still valid for near neutrally buoyant particles that
have Stokes numbers, based on Kolmogorov timescales, greater than unity and this equation is
the basis for comparing the measured trajectories in experiments with the computed ones, that
will be discussed in the following section. However, once the ratio is much greater than unity it
is necessary to amend this equation, this is usually achieved through the inclusion of coefficients
in front of the terms to make them applicable to much greater range. The form given here is
from Fan & Zhu (1998) who in turn attribute it to Hansell et al. (1992):

dU, 3psCp

= U,-0,)|U;,—-U
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25R6p = (Uf*Up)dp/u <L1& Res = di/m—n <1
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These coefficients Cp, C7& Cp are the drag, the virtual mass and the Basset coefficient, re-
spectively, which are functions of the particle Reynolds number and the particle acceleration

numberZ6

. For the drag coefficient alone, there are several possible expressions each covering
a limited range and flow condition, one has only to look at the sinuous form of a drag curve
to appreciate the complexities involved in deriving a universal expression and this is before one
takes into account further forces that become important such as induced lift on the particle from
the spatial velocity gradients or rotation, the Saffman and the Magnus effects, respectively. For
further details the reader should consult the seminal monograph by Schlichting (1968). Boffetta
et al. (2004) summarize the behavior of particles based on their Stokes number as follows, as
St — 0 the inertial particle will tend to completely recover the motion of the carrier fluid while
as St — oo the particles tend to respond reluctantly to the spatial and temporal gradients of the
carrier phase. However, several interesting phenomena are observed at the intermediate values

and these will be discussed in the following sections.

1.4.4 Dispersion Experiments

The previous section mentioned in passing the difficulty in estimating Richardson’s constant and
the discrepancies amongst the measurements. At the same time it touched upon how the various
pioneers in the field tackled the theoretical side of the problem and despite often starting from
different assumptions or following varied approaches were able to arrive at very similar results.
The question however still remains as to which of all the derivations is the most rigorous and
whose estimate of measured quantities or constants is the most exact.

The problem is not an easy one to answer and despite the theoretical progress in the field over
the last century the experimental investigations have not always been as convincing. One reason
behind this has been that the theoretical analysis is usually cast in an idealized homogeneous
and isotropic framework that is quite hard to achieve in the laboratory, giving rise for the need
for experimental computational investigations. Another, is the difficulty of extrapolating results
from two dimensional flows to three dimensional ones; accounting for factors of dimensions in
the determination of constants to the problem of the inverse energy cascade arising close to
walls in planar flows. Another complexity is added by the experimental tools available, most of
the early experimental validation work was performed through the observation of plumes or the
analysis of anemometer data and some work even extended to astronomical observations like
those of Tatarski (1960). But it is only very recently that progress of experimental apparatus
has permitted direct measurements of Lagrangian dynamics with high fidelity.

Voth (2000) pioneered the use of silicon strip detectors, borrowed from the high energy

particle physics community, for the measurement of particles in high Taylor micro-scale Reynolds

. d(U,-U It . . .
26 An, = %d,} & typical expressions for the coefficients are:
f=+p

Cr=2.1—01324n3 /1 402 & Cp = 0.48 — 0-524n5 /(14 an,,)?
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number?” flow between two counter rotating discs. The experimental findings comprise the first
validation that at high Reynolds number the Lagrangian accelerations can be described by K41
scaling. However this was done without providing conclusive remarks regarding intermittency
corrections to Kolmogorov scaling. Meanwhile, Virant & Dracos (1997) and Ott & Mann (2000)
used Particle Tracking Velocimetry to investigate Lagrangian dynamics in flows of Re ~ 100.
The latter studied a two-grid generated turbulent flow and observed a good agreement with the
Richardson-Obukhov law for particle separations up to the integral length scale. The former
examine an open channel flow and their results show better agreement with Batchelor’s law?®,
however the initial separation of particles in their case is greater than the integral length scale
and perhaps the findings cannot be extrapolated within the inertial-sub range. In both cases
though, the Kraichnan models (for details on the Kraichnan model see the following section) do
not provide good agreement, but perhaps that is to be expected since the nature of the model
is not diffusion specific but rather an all-encompassing description of turbulence. Meanwhile,
Chronopoulos (2005) performed an experimental investigation of the relative dispersion between
two particles in a vertical tube flow at high Re (O ~ 15 — 20 - 103), where the effect of gravity
on the particle separation, <A2>, was found to be significant and varied with time in a range
between, t96 — t975 depending on the initial separation, A3.

Sawford (2001) discusses the difficulty in making reliable dispersion measurements under
conditions where isotropy applies for an adequate range of scales and even more so when mea-
surements of Richardson constant are being performed due to the requirement to simultaneously
measure the dissipation rate of turbulent energy. The difficulties inherent in performing satis-
factory experimental measurements are the impetus behind the development of many of the

Lagrangian models and these will be introduced in the following section.

1.4.5 The closure problem

The famous closure problem of turbulence arises while attempting to solve the averaged con-
servation equations as it contains two unknown terms, namely the scalar concentration and a
second-moment term, the turbulent flux density. As Brodkey (1967) explains any number of
equations may be generated however there will always be one more unknown than there are
equations. That is, the non-linear nature of the equations implies that second order moments
will give rise to third order terms and third order moments will give rise to fourth order terms
and so forth. The solution is to either parametrize the turbulent flux covariance in the form

of a diffusion process or try solving additional second moment rate equations for the Reynolds

*"Rey ~ [140 — 900] where the Taylor micro-scale Reynolds number is given by Rey = and the Taylor

A2
151/2’02 )
33\ 1

2\ V2 /s .
micro-scale is give by A = (%) .= ("—) &y = (g)l/zare the Kolmogorov length and timescales

respectively and the variance of one component’s velocity is given by: 30° = [ E(k)dk where E(k) = agPR™?
is the von Karman energy spectrum, & is the wavenumber and « is the spectral Kolmogorov constant (from Hinze

(1975) and Monin & Yaglom (1971))
28The distance-neighbor function for both cases is given as : ¢(I,t) = Weaﬁp [—H(l/ <12>1/2)]. Richars-
don’ i i — _ 35 (2m\3/2 12872 | /?
on’s expression behaves like e with a pronounced cusp at I=0: N = 32 (2%)"" & H(p) = (T) .

Batchelor’s is smoothly Gaussian: N = (%”)3/2 & H(p) = # whilst Kraichnan’s is very similar to Richardson’s

4/:
for small separations but the tails behave more like eI /j.
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stresses, the turbulent kinetic energy or the turbulent flux covariance again. Such an approach
does not result in the desired universal description of turbulence along with an equally ecu-
menical applicability. Baldocchi (1992) notes that first order Eulerian closure schemes fail in
flows where counter-gradient transport is present whilst higher-order moment models will in-
turn rely on gradient transfer schemes to obtain closure. As explained by Deardoff (1978) this is
a result of the inherent dependence of gradient transfer schemes on time-independent turbulent
diffusivities.

The assumption of time-independence, however, is far from accurate in regions of far and near
field diffusion, such as sinks and sources. Kraichnan (1965) provides an explanation as follows:
The Eulerian velocity covariance cannot discriminate between the small-scale time dependence
measured at a fixed point, that arise, from internal distortion, and the time dependence of small
scale features being swept along by the larger scales, nearly undistorted. In the former case,
the measured time fluctuations are pertinent to the calculation of the energy transfer between
scales, whereas in the later they are not. In a Lagrangian framework it is straightforward to
distinguish between the two circumstances as one can cast the equations in such a way that a
quasi-Lagrangian velocity, ur,(Ax) is used for the second particle located at a position Ax that

is moving in a frame of reference fixed to the first particle with velocity ur(0,?):

%AX = ur(Ax) = u(Ax,t) — u(0,t)

1.4.6 Models for Relative Dispersion

Many Lagrangian models have been proposed over the last half-century. The following descrip-
tion will attempt to adhere to the structure of the review paper of Sawford (2001). We will aim
to review the Lagrangian Stochastic Models, which were first historically, followed by spectral
and two-point closure models, then Direct Numerical Simulations (in the Lagrangian context)

and finally introduce Kinematic Simulations.

Lagrangian Stochastic Models

In the previous sections it was mentioned how one could arrive at the equations for the
probability density function through the assumption that the position and velocity of a fluid
particle is a Markovian process®?, this assumption forms the starting point for most stochastic
models. Sawford (2001), explains how a continuous Markov process may be expressed either as
a stochastic differential equation or as a diffusion equation in phase space, i.e. with the Fokker-
Planck equation (citing Gardiner (1983)). The two representations are analogous. In the first

case differential equations for velocity and position are respectively:
dU; = a; (U, X, t) dt + b;; (U, X, t) dW; (t) & dX; = Usdt

where dW (t) is the incremental Wiener function 3°. The above equation can be used to repre-

sent, without loss of generality, particle pair motions by doubling the length of the vectors U

2Durbin (1980) notes that if ¢ >> Ty the ‘velocity memory’ of the particle diminishes to the point where it
may be assumed that the motion of the particle is through a series of uncorrelated jumps .
30with a corresponding correlation dW;(t)dW;(t + 7) = 8;;6(T)dtd(t + T)
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and X, the first three components corresponding to the first particle and the last three to the
second particle. The equivalent diffusion equation for the joint velocity-displacement probability

density function py, (u, x,t;v,y,s)3! is:

opr, n uipr, _ daipr, n 9*Bijpr
ot axz 8uz 8u16‘uj

& Bij = %bikbkj

The second formulation provided the starting point for the very first models, along with the ad-
ditional requirements of incompressibility and that the equation be Galilean invariant, as Monin
& Yaglom (1971) mention citing Obukhov (1959)). These requirement simplify the equation,
since a; = 0 & B;j = Bd;; resulting in: ‘%L + ui% = 8221_1521_.

Sawford (2001) notes that within the inertial sub-range, as a direct result of Kolmogorov’s
2" hypothesis (Kolmogorov (1941)) B = 0.5Co& and the diffusion equation yields for the one-
particle one-time velocity covariance (also known as the Lagrangian Velocity Structure function),
(U?) = 3Cy (¢) t and for the two-time velocity covariance: (X2) = Cp (¢) t*. These results should

not come as a surprise given the fact that Taylor (1921) started from similar assumptions and

employed similarity arguments to arrive at his equations. It is usually of greatest interest to
study the relative motion between particle pairs.

Another model was introduced by Novikov (1963), as explained by Monin & Yaglom (1975),
where linearized versions of the Markovian equation (effectively Langevin equations) were em-
ployed. The relative velocity of the two particles was determined by the difference of the Langevin
equation for each particle. Though, in doing so, he neglected the correlation between the two
particle accelerations resulting in an explicit connection between the one particle dispersion and
two-particle relative dispersion.

One of the first models to attempt to tackle this last issue was proposed by Durbin (1980)
where again Langevin equations are employed along with a non trivial correlation between
particle pair velocities and in turn a non trivial correlation for the accelerations®?. Sawford
(2001) explains that this is achieved through the inclusion of a Uhlenbeck & Ornstein (1930)
process®3, ( (t), relating the rate of each Cartesian component of the particle-pair separation,
A, to the corresponding Eulerian velocity structure function, R'/? (A,):

dA, d (w(l) — x(2))

_ _ P2
= S S R (A)C)

where R (A;) = [Ai/(A§,+A2)]l/3and A is proportional to the integral length scale. The model
was successful in reproducing the Richardson 3 law for the mean-square separation, however
it did so at the cost of modeling accuracy within the dissipative scales since the inertial scales
extend to arbitrarily small scales. The implication is that, for all but the smallest time and
space scales, the particle displacement statistics for high Re flows will be identical to those for
high Peclet number, Pe.

31Where the subscript L is for Lagrangian statistics. The need for distinguishing will become apparent when
the “well mixed” hypothesis is introduced

32Discretizing the Markov equations with a time increment AT — 0 the equations describing the acceleration
of the particle become continuous Langevin equations (Durbin (1980)).

33 A stochastic process that is simultaneously Stationary, Gaussian and Markovian and mean-reverting.
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Sawford (1983) proposed an improvement to Durbin’s model by relating the particle-pair

separation to the RMS separation:

dA,
dt

=’ (827) ¢

The resulting model obtained Richardson’ s law but predicted a probability density function for
particle separation that was more Gaussian. Chronopoulos (2005) points out that this resulted
in diminished relative fluctuations at larger times and in turn ‘smoother’ structures for the
plumes. The main issue regarding this model, as Baldocchi (1992) points out, citing Thompson
(1987), is the violation of the well-mixed constraint. This is the thermodynamically imposed
constraint that an initially uniform distribution of material remains so. In other words we do
not expect turbulence give rise to mean concentrations gradients in what was initially a uniform
field.

Thompson (1987) & (1990) set out to develop a model that did not violate the the well-mixed
constraint. This was achieved by not constraining the diffusion equation (Fick’s first law) to be
incompressible and invariant under Galilean transformations. The implication is that a; # 034
and the diffusion term equal to Bj; = 1/2Cq (¢) ¢ for compliance with Kolmogorov’s similarity
theory for times smaller than ty = (A3/ (e))l/ ® which is the time for which the initial separation
is important®®. These modifications had the desired effect of reproducing the classic inertial
sub-range behavior for isotropic turbulence; roughly Gaussian separation probability density
functions for large times but non-Gaussian for small initial separations and small times.

Ermak & Nasstrom (2000) proposed a stochastic model that would employ higher order mo-
ments, by taking into account the skewness of the particle position distribution. This approach
was shown to have very good agreement with the analytical solution for a case where the eddy
diffusivity is inhomogeneous and varied as a function of position (in this a case a linear variation
with distance from a boundary). The problem with these types of models, as Borgas & Sawford
(1994) identify, is the selection of a different expression for a; in the diffusion equation, that may
well still satisfy the well-mixed condition, but will result in entirely different Lagrangian statis-
tics. Meanwhile, their attempts to impose additional constraints on the diffusion equation did
not have the desired results of increasing the reproducibility of the statistics. These drawbacks
along with the increase in required computational resources paved the way for the DNS models
that will be introduced in the following section.

This introduction to early Lagrangian models would be incomplete if we did not mention
the Lagrangian-History Direct-Interaction (LHDI) model proposed by Kraichnan (1966). We
have already mentioned how Kraichnan (1965) identified the problem that arises in an Eulerian

framework with the sweeping of the small scale from the larger ones and the resulting bias of

3 Thompson (1987) states that in its simplest form this is of the following form: a; = fC;O(f?AijUj +
-1 -1
%/\l]- azitl U + %)\lj%[]j U, where o2 & 02/\;].1 are the velocity variance and the six-dimensional velocity corre-

lation tensor respectively.
35This is important within the inertial sub-range where two particle statistics show a dual nature i.e:

<UZT)> - 6Co <8>t tTI Lt K g
¢ (600—401) <€>t oKt tr

which is consistent with Batchelor’s (1950) results discussed earlier.
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Eulerian statistics. The implication of this is that the Eulerian moments are not sufficient to
correctly represent the energy transfer of the smaller scales as these are being convected by the
larger ones. In mathematical terms this means that invariance under Galilean transformations
is not preserved. Kraichnan’s solution was to preserve the existing formulation for the moments
but to measure the relaxation distances and/or times in a coordinate systems that was being
convected with the flow. According to the author, the conversion to the Lagrangian framework
was heuristic in an effort to find a way of preserving the invariance. However there is no arbitrary
use or introduction of constants, functions and cut-offs in his model. The only caveat was that
the Lagrangian equations, unlike the Eulerian ones do not preclude negative spectra.

The success of the early LHDI model was in producing identical results to Taylor’s for
dispersion in flow with homogeneous turbulence whilst also reproducing Richardson’s law for
particle pair separation within the Kolmogorov inertial sub-range. Kraichnan (1965) argued
that LHDI consistency with K41 is a logical outcome, since it shares the approach of treating
the dynamics of shearing flows and energy transfer between scales in a mobile coordinate system.
Furthermore, in Kraichnan (1966b), a case is made for further consistency due to the localness
of energy transfer between the neighboring wavenumbers®, much in the same way that K41
explains energy transfer between the adjacent spatial scales. However, for the purpose of this
study Kraichnan’s work is of particular significance since he was one of the first (Kraichnan
1970) to use Fourier series to represent velocity fields for his numerical experiments which will

form the basis of Kinematic Simulations.

Direct Numerical Simulations

Direct Numerical Simulations (DNS) attempt to solve the Navier-Stokes equations explicitly
for all spatial scales. In doing so, uncertainties introduced through the application of modeling
or filtering operations are avoided entirely. The fluid parcel’s Lagrangian velocity is determined
by the instantaneous value of the Eulerian velocity field at that specific location. The main
disadvantage of such an approach is the computational cost associated with solving the equations
and the massive storage requirement. For the former, the implication is that most simulations
of isotropic turbulence must be limited to small Re numbers, initially these were in the order
of a few double digits to perhaps a hundred and more recently several hundred, which in turn
means that the calculations were performed on cubical computational domains ranging from
128-512 grid points in each direction. The latter limitation implies that it is very costly to
do ‘backwards dispersion’ investigations, where individual parcel pathlines are compared to
identified pairs that originated close to one another. Yeung (2002) notes one more implications
arising from the limited number of grid points available, that is the introduction of numerical
noise from the differentiation of the interpolated Eulerian field when computing Lagrangian
accelerations. The solution is to employ higher order schemes (circa 4* order and higher) that
are computationally expensive. Yet one more limitation, is the need to have a sufficient number
of statistically independent samples.

In DNS the cost is such that it typically precludes the repetition of the simulation several

36In LHDI neighboring wavenumbers are not necessarily those that lie adjacent in wavespace rather those that
satisfy the following vector addition: k = p + q where k, p & q are three wavenumbers. For a succinct review of
Kraichnan’s early work, see Brodkey (1967).
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times. Rather the usual method is to track several particles through the domain whilst ensuring
the initial separation is such that it would imply that the initial velocities were uncorrelated.
These limitations have been mentioned, not in order to reduce the importance nor the contribu-
tion of the DNS results, but rather that they should always be interpreted bearing this in mind.
Provided there exists sufficient simulation time to ensure statistical independence, DNS provide
valuable insight to a range of flow conditions that would otherwise be very hard to achieve under
laboratory conditions.

One of the earliest studies in this field, was performed by Yeung (1994) where he investigated
two-particle relative dispersion for stationary isotropic non-decaying flow. It should be noted
here, that the stationary attribute applies to the Eulerian field as the inter-particle distances on
average will tend to increase due to the accelerating nature of diffusion. The energy was supplied
through forcing of the larger scales and several initial separations were examined ranging from:
Aofn = 1/4 — 64. The mean-square relative displacement, <A2 (t)> — A2, was found to increase
with 2 for the short times investigated. The absence of the ¢3 in this investigation is attributed,
by Sawford (2001), to the low Taylor scale Re ~ 90. Another interesting result that arises
from the analysis is that the correlation coefficient for the particle-pair velocity components
falls much more abruptly than the correlation coefficient for the particle-pair displacement; the
author attributes this to the fact that the displacement, being the integral of the velocity, carries
a longer memory.

In subsequent work on homogeneous turbulent shear flow, Shen & Yeung (1997) increased
the range of Taylor scale Reynolds number being investigated to Re ~ 140 and this time the
domain was instead of cubic was rather twice as large in the direction of mean shear. They
continued the investigation started by Yeung (1994) and again do not observe > behavior. They
noticed a marked difference in the behavior of the separation vector orientation, with the particle
pair velocity correlation coefficient decreasing faster when the initial vector orientation is aligned
with the direction of the mean shear.

Meanwhile, Borgas & Yeung (1998) extended the investigations to yet higher Taylor scale
Reynolds number (Re ~ 240) and even though part of the inertial range3” was now being modeled
it is not recommended that their findings be extrapolated to larger Re pertinent to engineering
or atmospheric flows. Their work is more applicable to the development of stochastic models as
they investigated the importance of evaluating higher order moments for the Eulerian phase in
order to introduce better closure approximations for the stochastic modeling.

Yeung (2002), briefly reviews the ongoing work in DNS calculations of stratified flows in
the work of Kimura & Herring (1996) and Yeung & Zhou (1998), pointing out the two main
observations; reduced energy transfer from the larger to the smaller scales and significantly
reduced single particle displacement and particle-pair separation between the strata for both
planar stratification and in rotating turbulence, respectively. Boffetta & Sokolov (2002), in a
two dimensional investigation of isotropic and homogeneous turbulence at Reynolds numbers
of a couple of hundred, were able to reproduce Richardson’s law for the most part with some

deviation towards the tail ends, attributed to crossover effects produced by the limited Reynolds

37Recall that an alternative formulation for the Reynolds number is through the ratio of the integral to dissi-
pative scale, or outer to inner scale as they are called in such cases: Re = (Louter/Linner)”* = (1/n)"/?
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number in the calculations. In addition they estimate a value for the persistence parameter, Ps.
A measure of whether the dispersion is diffusive or ballistic, Ps < 1 & Ps > 1, respectively.
Whilst also noting that the behavior is also relatively ballistic for values of Ps ~ 1.

A difficulty arises, as the calculations shift to progressively greater Reynolds numbers, from
the intermittency of the energy transfer between scales. Biferale et al. (2005), in their study
of 3D isotropic and homogeneous turbulence, investigated the effects effects of intermittency
further. They provide a method for quantitatively correcting for these for the relative particle-
pair separation but were unable to do so for the velocity correlations. They do however observe
that the Lagrangian higher order velocity moments scale in a similar manner to the Eulerian
one’s.

Both Sawford (1985) and Yeung (2002) make it clear that the available models capable of
predicting pollutant transport in the atmosphere, whose closest laboratory equivalent would
be a boundary layer flow over a flat plate, are relatively simple, still largely untested with a
striking scarcity of data available in literature for establishing meaningful comparisons. Once
atmospheric Reynolds numbers (of the order of at least several hundred to a few thousands) can
be achieved, DNS calculations will be very useful in this field as this will allow the comparison
of the stochastic models with the DNS data. It would then be relatively straightforward to
investigate the effects of introducing particle pairs or plumes at various locations (both from
the leading edge and height from the plate) on the subsequent dispersion in the inner & outer
boundary layers.

Perhaps one of the most important investigations of particle preferential concentrations are
the DNS particle laden calculations of Squire & Eaton (1991) as they were the first to identify
that particles accumulate in regions of low vorticity3® and high strain and dispelled the common
perception, believed up until that point, that turbulence enhances mixing . Zones were identified
where the particle number density was 25 times greater than the mean value. Subsequent work
has mainly been focused on confirming these results and increasing the grid refinement of the
numerical simulations in order to extend the findings to large Re and an exhaustive list is
provided by Mashayek & Pandya (2003). That DNS are capable of modeling such complex
phenomena should come as no surprise since all the physical information required is present in
the calculation. In a similar fashion to DNS, so too must LES be capable of predicting particle
preferential concentration at least at the larger scales. As all the physics are modeled only for
the scales greater than the filter width, any preferential concentration extant on scales smaller
than the filter width cannot possibly be predicted. The implication is that even an LES would
require a dispersion model, similar to the sub-grid-scale models used for the Fulerian phases, if

additional dispersion and preferential concentrations prediction is desirable.

Kinematic Simulations

Kinematic Simulations (KS) is the name given to a Lagrangian model of turbulent dispersion
constructed on a gridless flow field from spectral methods. Rather than relying on a dynamical
equation to develop a random field, this is generated according to a prescribed formula. Ac-

cording to Sawford (2001) and Fung et al. (1992), its origins may be traced back to the early

38The definition of a vortical region therein is that of a region of strong rotational motions and low pressures.
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work of Lumley & Corrsin (1959) and Kraichnan (1970). Lumley and Corrsin were the first to
propose a random walk based on Markov processes rather than the more traditional Brownian
motion in an effort to determine relationships between the Fulerian and Lagrangian statistics.
They constructed an Eulerian lattice for space and time where for every given point of time and
space the temporal and spatial instructions respectively follow a simple Markov chain. These
sets of rules determine the Eulerian statistics while the Lagrangian statistics were obtained by
allowing a particle to ‘walk’ along the lattice. Davidson ef al. (2011) mention how the set of
instructions was later made more complex by Patterson & Corrsin (1966) but that they were
unable to determine a single Eulerian two-point correlation function that could approximate sat-
isfactorily the corresponding Lagrangian one. However, it was Kraichnan (1970) who extended
the method to three dimensions made it gridless, casting the velocity field in wave-space as a
combination of random Fourier components/modes whose spectrum conformed to a prescribed
value and synthesizing only the computed particle trajectories in physical space.

Fung et al. (2002) performed the first combined study of inertial particle movement within
KS fields and confirmed some interesting results predicted from theory. First and foremost they
observe the correct response of inertial particles within the constructed turbulent-like random
flow fields. Ballistic trajectories are noted for larger Stokes numbers while at the smaller Stokes
numbers particles follow closely the fluid element trajectories. An interesting result the authors
note is that even at the smaller end of the Stokes number range the inertial particle trajectories
and fluid element trajectories eventually differentiate. An investigation is carried out wherein
the higher wavenumber range of the KS field is systematically filtered out to remove the effects
of progressively smaller scales and they note that the change in diffusivity between the two
trajectories is attributed to the compounding effect of many small scale differences.

In a similar manner Goto & Vassilicos (2006) study inertial particle preferential concentration
in isotropic turbulence. The authors arrive at two especially noteworthy results. First, they

extend the Stokes number criterion for particle fluid interaction to a scale dependent one:

Tp l

7 (1) re ()~ /B,

and for an isotropic turbulent field with an energy spectrum, E(k) ~ €3k "3 the constant
of proportionality was found to be 7. (I) = 0.11e /31%3. As before, if St (I) < 1 the particles

follow the fluid flow of [-sized eddies so closely that no clustering is observed. Similarly when

~ € 33

St(l) =

St (1) > 1 no clustering is observed since particles traverse the [-sized eddies ballistically without
responding to the surrounding eddies. By investigating different spatial distributions of particles
across turbulent fields of different Kolmogorov Stokes numbers, St,, = 7o/, (i.e. where the
timescale in the denominator is the Kolmogorov timescale), they were able to observe particle
clustering across a range of different scales and to confirm the self-similar nature of particle
clustering across those scales. From this observation the authors propose that particle clustering
is actually determined by a resonance between [-sized eddies and the relaxation timescale of the
particles. The criterion proposed is that particles exhibit clustering between o < St (1) < 8

where o and 3 are constants determined to be approximately 0.6 and 6 respectively, resulting
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in a resonant eddy band within the inertial range responsible for particle clustering:
lmin = 573/2‘5%7777 & lmaz = aig/QStﬂn

The implication of this lead the authors to note their second significant result, that vortical
regions are not convenient for the identification of clusters. Instead they propose that zero-
acceleration points within the flow domain should be identified since their location seems to
correlate with particle cluster regions much better. The misconception until now regarding
particle clustering about vortical regions is attributed to the limited Re investigated by others
researchers which limited the extent of large eddies sweeping the smaller ones.

Readers unfamiliar with the mathematical underpinnings of spectral methods and their suit-
ability for investigating turbulence in a statistical sense will find Appendix A constructive. Those

familiar with the material should proceed directly to the next section.

1.5 Review of Kinematic Simulations

The impetus for Kraichnan’s (1970) work was the evaluation of the direct-interaction approx-
imations; which are statistical models for describing Lagrangian velocity covariance, effective
eddy diffusivity and dispersion amongst others and comparison against computational experi-
ments. The computations were performed with Kinematic Simulations (KS) and are included
here as this early form of KS formed the foundation for further investigations with this method.
The simulations in general agreed with G.I.Taylor’s description of fluid element diffusion for
long times compared to the eddy-turnover period except for the cases where the fluid elements
were evolved through a two dimensional frozen velocity field as in this case there were instances
where the elements could be ‘trapped’ within certain recirculation regions resulting in the rela-
tive dispersion tending to finite values despite the time approaching infinite. However the author
stated that this was to be expected in two dimensional random fields as there should exist several
locations where the streamlines are closed.

Kraichnan adopted a gridless approach for the computations, choosing instead to store the
wavenumber vectors and reconstructing the physical field solely along the particle pathline or
trajectory. The fluid element’s starting position was placed at the origin of the Cartesian and
temporal coordinates (x = 0, ¢ = 0) and the pathline at any given instant in time was determined

by integrating:
dy(t)
dt
While the velocity field was realized in the following form:

—v(t), v(t) = uly.1), y(0) = 0

N
u(x,t) = Z [v(ky) cos (kyn-x + wpt) + w(ky,) sin (k,x + wyt)]

n=1

where

v(kn) = G Aoy & w(kn) = &, Ak

— =
in order to satisfy incompressibility. Vectors (, & &, were chosen independently from 2 or 3

dimensional Gaussian distributions. Meanwhile w,, was also chosen at random from a Gaussian
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distribution with a standard deviation of wy prescribed from the time correlation function:
D(t—t) = e~ Y/23(t=1)* The selection of wo is a somewhat arbitrary process, with the reciprocal
of the eddy turnover time being a good estimate, defined as wp ~ wo/i. An important part of
this analysis was the investigation of whether the statistical models remain valid when the field
is frozen which required setting wo = 0. Finally, the wavenumber vectors k,, were picked from a
statistically isotropic distribution such that the prescribed energy spectrum E(k) was satisfied
as the number of modes, N, approached infinity. The implication is that k, is isotropically
distributed on the surface of a sphere of radius kg or each component of k,, is picked from a

Gaussian distribution of standard deviation *o/\/3 for the respective energy spectrum
E(k) = 3/2u6(k — ko)

and
E(k) = 16(2/7")1/2ng4k()_56_%’“2/k3

ko is the wavenumber at the peak of the energy spectrum. The author reported that most of
the calculations were performed with N = 100 however the statistics were shown to remain
unchanged for half the number of modes.

The pathline was reconstructed by integrating the equation of motion forward in time and
evaluating the fluid element velocity at each updated location. A Newton-Rhapson method
was employed for determination of the starting values for the first three time steps while the
remaining locations of the pathline were determined with the use of a Hamming predictor-
corrector scheme.

In its present form, KS are the result of the work of Fung et al. (1992), who extended
the model, to include the inertial-sub-range, and were the first to study relative diffusion of
fluid element pairs using KS. At the time, it was the only simulation capable of investigating
turbulence within the inertial range as the computational resources were not excessive in contrast
to the alternative computational methods. The success of the study was determined through

confirmation of the form of the Eulerian frequency spectrum,
of; = O 7

where C' was calculated to be 0.82 which is very close to the measured value of 0.78. In addition

the form of the Lagrangian spectrum was found to be,
(ZS{Il = 050.}_2

with the constant found to be equal to 0.8 which coincides with atmospheric measurements.
A further success of the study was the measurement of the relative mean square separation
of particle pairs over several decades of the energy spectrum. This was found to conform to
Richardson’s and Obukhov’s form,

(A?) = Gpet®

and the constant Gawas estimated to be 0.1 in close agreement with Tatarski’s (1960) mea-
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surement of 0.06. The stationary (over a time period T) velocity field which was represented
through the sum of Fourier series as N, P,, — oo over a bounded region of space |z;| < X; was

realized according to:

N, Pu
ll(X7 t) = Z Z Snipe[i(k7lixi+wpt>] fori= (]_7 273)

ny=—Ngp=—PF,

where

kni = Qﬂni/Xi , Wp = 27rp/T

and with the random vector Fourier coefficients S,,,,. This form is the universal velocity field
definition and may be simplified and cast into the more familiar form by replacing the Cartesian
wavenumber coordinates with a spherical coordinate system. Where there are N shells and the
modulus of the wavenumber vector, k = |k| and the angle My define each mode. The implication

t t

is that any variable dependent on n!* mode must now be cast as an mn'"* mode. The vector

Fourier coefficients S,,,, may now be re-written as
Snip = Smnp A Emn

where

Rmn = Fmn/|kmn| for all m and Smnp = 1/2 (amnp £ ibppp) foralln

and a,,np &b,y are random vectors uniformly distributed over all directions and are statistically

independent such that:

(@mynipi@manops) = 0 for my # ma, ny # noorpy # po

Finally, if the number of frequency modes p are limited for each spatial mode n, that is w, =

fn(kn|), wp may be rewritten as wy,y, resulting in:

My Ni P,

u(x, ) = > 3 Y [(@mnp A fmn) €08 (Fmn - X + wrpt) + (Branp A femn) SI0 (R - X + wpt)]
m=I1ln=1p=1

When compared to Kraichnan’s (1970) equation this is a slightly more complicated form of
the velocity equation as wp, and A, are not strictly defined. The rational behind this, as
the authors explain, is that the nonlinear interactions between different modes and the non-
uniform advection of the vorticity field by the larger scales are what actually determine the time
dependence of turbulence. This could be investigated through their careful selection.

Based on this equation for the velocity field and through the introduction of a cut-off
wavenumber, k., for the separation of the larger scales from the smaller ones, two separate
models were created. The Kinematic Simulation Sweeping Model (KSSM) and the Kinematic
Simulation Inertial Model (KSIM). In the first case the integral scales are included as part of the
simulation while the second, as the name suggests, is limited to the inertial part of the spectrum
and relative motion at smaller scales. KSSM is, effectively, a KS nested within another KS,

where, with the appropriate selection of the wavenumber range and the energy spectrum expo-
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nent the large scale KS sweeps the smaller KS along. The following problems arise in KSSM:
first a discontinuity is created right at the cutoff wavenumber while, more importantly, the con-
tinuity equation is not explicitly satisfied because of the sweeping motion (the error though was
quantified by Fung (1990) and the effect on the second order statistics found to be about 10%).
The cut-off frequency was determined to be of the order of a decade or less and the exponent
of the energy spectrum for the large scales and inertial scales was set to be equal to 4 and
-5/3, respectively. The largest wavenumber was varied from several decades to several hundred
decades of the wavespace. However as the time-step of the KS should be equal to the inverse
of the largest wavenumber, caution is needed as to not increase the computational requirements
without reason. These two models were capable of reproducing many of the experimentally
measured turbulence statistics, however they fell short in reproducing the high-order turbulence
statistics which in turn are known to depend on the intermittency of turbulence which cannot
be modeled by KS due to their dynamic nature.

Perkins et al. (1993), in a similar manner, created the Cloud Dispersion Model, but now
rather than reconstructing the trajectory of a single fluid element, a whole cloud is evolved
through the turbulent field with a further KS evolving the boundary of the cloud as it is advected
through the field. The model was used to estimate the transport of a plume of contaminant in
the deep ocean as well as in a tidal region. The CDM was compared to a standard steady state

gradient-diffusion model3®

and the agreement was found to be good except for locations near
the source of contaminant and at the plumes tip. However the gradient diffusion model is not
really applicable at those two locations due to the magnitude of the gradient and the lack of
stationarity respectively. The main problem however remains (and is common to most spectral
methods) one is limited to very simple square or spherical geometries for the simulation’s domain.
Meanwhile it is only recently that a spectral method has been performed with a blunt obstacle
in the middle of the domain as the mathematics required for the generation of the Fourier modes
are very complicated.

More recently, Mallik & Vassilicos (1999) investigated two-particle dispersion statistics with
KS in an isotropic turbulent flow with a Re ~ 91 and were able to obtain higher order statistics,
namely skewness and kurtosis, that compared remarkably, with those that Yeung (1994) calcu-
lated with a DNS. This close agreement is contrasted with other stochastic models where the
relative particle velocities are generated from Langevin equations. The difference is attributed
to the latter’s dependence on Wiener processes resulting in a very gradual separation between
the particles. On the other hand, in KS the particle pair might spend a long time traveling very
close to each other until it encounters what the authors call a ‘violent event’, that is some strong
straining region in the flow, where the separation distance will then increase dramatically. To
summarize, in Wiener processes particle separation is by slow continuous motion whereas in KS
it is by sudden bursts.

The particle trajectories were obtained by integrating the equation of motion, similarly to

Kraichnan (1970) mentioned earlier:
dy(t)
dt

39The reader is directed to Hunt (1985) for further details on diffusion models

=v(t), v(t) = u(y,t), y(0) =0
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However, there are some differences in the definitions of some of the constants in the equation
for constructing the velocity field which will be detailed here as this is the version of KS that is

used for the remainder of this thesis:

Ng
u(x,t) = Z [(An X Rn) cos (ky, - X + wpt) + (Bn X 1A<n> sin (ky, - X + wpt)
n=1
Here, Nj, is the number of modes, ranging between 50 ~ 250; k,, the random unit vector
l;n = k,,/k,, and the orientations of A,, and B,, are chosen randomly with the sole constraint
that they be orthogonal*® to k,, and the choice is independent for each wave mode. Their

magnitude is determined according to:
. . 2
A, Nk, &B, ANk, & A2 = B2 = gE(k:n)Ak:n

where
(k2—k1)/2 forn=1

Akp =  (knt1—=kn-1)/2  forl <n < Ny
(ka—ka,l)/2 forn = Ny

The unsteadiness of the KS field was chosen to be proportional to the eddy-turnover time of
each wave mode:

wn = Mk E (k)

where A is a dimensionless constant of the order of unity. Setting A ~ 0 would result in a frozen
field whereas values much larger than 1 correspond to the field flapping too fast for the turbulent
structures to have meaningful contribution on the particle trajectory. In their investigation the
authors tested a variety of different energy spectra. For this thesis we will adopt a energy

spectrum with a —5/3 slope within the inertial range, prescribed according to:
E(k) ~ Pk

Finally, the minimum and maximum wavenumbers are determined from the prescribed spectrum

=1 and

and those in between are generated from a geometric distribution according to k, = k1a
a may be determined from a = (kn/k1)"/Ve=1),

The main advantages of Kinematic Simulations are twofold. First, by construction they
require significantly fewer computational resources compared to DNS. Fung et al. (2002) have
determined empirically that in KS the required computational power scales with Re”* whereas
in DNS the scaling is Re”*. The scaling factor of less than unity seems implausible and further
investigations are probably required to validate this. However, the mathematical underpinnings
of spectral methods suggest that the computational requirements for the investigation of higher
Re flows should require the wavespace extent, kpin & kmaz, to increase but that is not associated
with an increase in computational cost. Rather, it is the associated increase in the number

of modes, ky, into which the wavespace will be decomposed that will incur greater computa-

A, ANkn & By Ak,
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tional resources. This in turn means that the more interesting phenomena that occur at higher
Reynolds numbers may be studied with the currently available hardware if KS is employed. Sec-
ondly, despite this marked difference in computational costs, KS are still capable of representing
the major kinematic features of the flow. As Fung et al. (1991) explain, many interesting con-
cepts of turbulence may be investigated with KS models despite lacking the accuracy of DNS as
most of these concepts are subject to dimensional scaling arguments which are equally applicable
to sums of Fourier modes as they are to non-linear physical flow-fields.

Being constructed by random superposition of Fourier modes, there will be regions within the
domain where two waves of different frequency but similar direction will interfere constructively
and result in high local energy, whereas two waves that are orthogonal will form a vortex, with
its associated spiraling streamlines and helical motion. The instantaneous streamlines of a KS
velocity field have well defined regions of eddying, straining and streaming flow structures which,
as Mallik & Vassilicos (1999) point out, are partially responsible for the good agreement of the
statistics predicted by KS with those of DNS. The importance of being able to capture and
model such features may be understood when studying chemical reactions, particle trajectories
or particle and bubble concentrations, as noted by Fung et al. (1992) citing the work of Broadwell
& Breidenthal (1982), Maxey (1987) and Hunt et al. (1988), respectively.

A statistical approach cannot always provide the insight required for many phenomena. The
non-linear nature of combustion means that using averaged quantities for the stoichiometry
significantly under predicts local pollutant emissions and temperatures. Similarly, for droplets,
particles or bubbles the use of averaged trajectories may result in component designs that will
eventually suffer from premature wear from pitting or cavitation, respectively, to name just a
few. Therefore even though KS is not entirely successful in predicting the dynamical evolution
of vortex tubes and horseshoes, it does permit the investigation of various interesting structures
inherent in turbulent fields, such as zero-acceleration and zero-strain points and, at least on an
instantaneous level vortex tubes which in turn are paramount to the accurate calculations of

Lagrangian statistics.

1.6 The need for a new Dispersion Model - Present Contribution

The finite volume method may be used to discretize the continuous carrier phase and in turn the
Navier-Stokes equations that completely characterize the Eulerian phase may be solved simul-
taneously through the use of matrix algebra. On the other hand the solution of the Lagrangian
phase is somewhat more straightforward as the ordinary differential equations describing the mo-
tion of the particles may be solved with a range of easy to implement methods such as multi-step
linear, Runge-Kutta, Fuler, etc.

The problem that still remains to be treated is how the two methods are connected. In one
way coupled Fulerian-Lagrangian frameworks, the dispersed phase does not have feedback on
the carrier phase, hence it should be used when the Eulerian phase is steady and the evolution
of the particle/dispersed phase trajectory is mainly dependent on the particular geometry of
the domain. Such an approach will be satisfactory if the mass loading of the dispersed phase
is small. If the mass loadings are large or if the geometry and/or flow conditions are such that

instabilities arise causing variations in the defining characteristic structures of the flow, then a
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two-way coupled approach should be adopted. In the first case, the implication of large mass
loading is that the momentum of dispersed phase will have a significant contribution on the
shape of the surrounding flow field. If however, the Fulerian phase is unsteady then, even at low
mass loadings the contribution of the dispersed phase is important and should be accounted for
in the Eulerian phase since even small changes in the nature of the perturbation upstream can
significantly change the flow field downstream.

Mostafa (1992) mentions the experimental and computational observations of particle effects
on turbulent structures, making two-way coupling of paramount importance in flow fields where
the said structures play a defining role. The way the interaction of the dispersed phase is
accounted for on the carrier phase is through the inclusion of additional source terms in the
partial differential equations describing the Eulerian phase. The exact nature of the source
terms will depend on the problem being modeled and on the format in which the equations are
cast.

If one is interested in the evolution solely of particle trajectories, then it is enough to include
the derivative of the particle’s momentum as a force on the computational cell in which it lies.
If on the other hand, the case is investigating non-isothermal flows an additional contribution
from the dispersed phase is required in the scalar transport equation. Whether one chooses to
model all contributions or only a subset of them will depend on the accuracy desired and the
computational resources available. However, there are instances where trying to describe all
physical phenomena accurately is meaningless, since there are large uncertainties in some of the
formulations. For example, the estimation of drag coefficients for small spheres is still an active
field of research with large discrepancies in the quoted values. It may be argued that there is
little point in trying to account for the contribution of the Basset force when estimating the
forces on a sphere since its contribution is at least an order of magnitude smaller than that of
the drag forces.

In any case, the forces are evaluated and the particle trajectory is updated by solving the
equation of motion and correcting the Fulerian field through the addition or removal of momen-
tum and energy source or sink terms. At the next time step, the process is repeated for the
updated particle location taking into account the updated local parameters.

The problem that arises, and is of particular interest, is how particle dispersion is treated
when the fluctuating components of the Eulerian field are not modeled. For a well-resolved LES
or DNS Eulerian-Lagrangian calculation, there is sufficient instantaneous velocity information
to ensure adequate dispersion of the Lagrangian particles with time. In both cases, a substantial
range of length scales are modeled resulting in realistic turbulent flow-fields, which in turn will
ensure that two particles that start next to each other will eventually exhibit a turbulent-like
relative dispersion. The adjective, turbulent-like, is needed because in the case of LES the
dissipative scales are modeled. However, in Reynolds Averaged Navier-Stokes simulations, the
fluctuating velocity components of the carrier phase are not present and a mechanism is needed
to account for the lack of turbulent dispersion. The purpose of the presented model is to propose
an alternative dispersion model that simulates the effect of those scales of the turbulent energy

spectrum that contribute to particle dispersion with a spectral method.
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Within the context of the Fuel Injector Research for Sustainable Transport (FIRST) project®!,
the source of funding for the present work, the investigation of the temporal and spatial clus-
tering of sprays is of particular importance. In such a context clustering manifests itself as a
non-homogeneous distribution of the air-fuel mixture within a combustor that leads to locally
leaner or richer pockets of mixture. Once combustion takes place, these hot-spots become areas
of increased NOx and soot emissions reducing the effectiveness of the lean burn injectors as well
as having detrimental effects on the combustor liner life expectancy due to increased thermal
fatigue.

The most important operational goal, though, is the ability to ensure that the next generation
of combustors operating in the lean regime are capable of in-flight re-light under all operating
conditions. Even if it were possible to design, simulate and build the most effective of atomizers,
it would not be sufficient. Without an improved representation of the underlying physics behind
droplet clustering even a perfectly uniform spatial distribution of droplets emanating from an
atomizer would eventually form clusters downstream. Hence, the need for further research in the
field in order to understand the phenomenon and be able to design taking it into consideration.

At the same time it is important to recall that the industrial community requires improved
modeling tools that can make use of the presently available computational hardware rather than
what is thought will be widely available in the coming years. It is this very requirement that
motivates this research project and will be presented in the following chapters. The FIRST
consortium comprised the major European manufacturers and several research centers and the
primary goal was to develop novel computational methods for improving the design of the next
generation of aviation gas-turbine fuel injectors and combustors.

Within the FIRST consortium the task of describing the physics of primary and secondary
atomization, where an Euler-Euler approach is necessary to capture the originating interfacial
instabilities, lay with other project partners. The present contribution was tasked with dealing
with the downstream temporal and spatial evolution of the spray from the fuel injector, further
justifying the choice of an Eulerian-Lagrangian framework. The spray emanating from aero fuel
injector results in highly uniform droplet size distributions thanks to the very high Reynolds
numbers and Momentum ratios. This means that resources can be focused on characterizing
the carrier flow field and trying to identify those features that have the largest effect on the
evolution of the Lagrangian particles rather than focusing on how the individuals came to have

their current size.

1.7 Scope of this work

The discussion up to this point had served to identify the requirement for a new dispersion
model. The literature review showed that there exist computational tools to accurately describe
particle dispersion and preferential concentrations. However the cost associated with such cal-
culations remains prohibitively expensive. The implication is that there is a need within the
community, especially the industrial one, for a model that is capable of producing improved
particle dispersion characteristics without the costs associated with the more expensive meth-

ods. The proposed model will not aspire to describe all the physics accurately, rather it will

Uhttp:/ /www.first-fp7project.eu
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introduce in a phenomenological sense some of the characteristics of the more costly methods in
an effort to allow industrial codes to predict spatial and temporal non-uniformities of particle
concentrations and realistic dispersion properties.

What is proposed within this thesis is the combination of the well established and inexpensive
RANS, and unsteady-RANS, methods with Kinematic Simulations for more realistic modeling
of the dispersed phase. The RANS approach will be responsible for the modeling of the larger
features and the mean velocity component of the flow of the continuous phase, while KS will
be introduced to improve the representation of the dispersion of particles by an improved repre-
sentation of smaller ‘unresolved’ scales of the continuous phase. In a sense, the modeling of the
Lagrangian turbulent spectrum will be done in two parts, the integral range along with a portion
of the inertial scales will be modeled through RANS while KS will be tasked with modeling the
near isotropic part of the spectrum that corresponds to the bulk of the inertial ranges and the

dissipative scales information and behavior which is typically absent in RANS modeling.

1.8 Outline of this thesis

The premise for this thesis has been set, the remaining sections will introduce and validate the
proposed model. This will be done in several steps, first Chapter 2 will introduce basic concepts
of CFD, the openFOAM modeling package that is used for almost all of the calculations within
this thesis, along with necessary modification required to the standard Eulerian-Lagrangian
solvers included within that distribution. Chapter 3 will introduce the axisymmetric sudden
expansion test case and the validation of the Eulerian-Lagrangian solver against experimental
measurements. These LES results will serve as a computational benchmark for the presently
available RANS dispersion model (i.e. the G&I dispersion model) as well as the model proposed
in this thesis. It is important to note that the LES results presented are provided to establish a
benchmark and to obtain an understanding of the detailed features available in such calculations
but are absent in RANS. Due to their increased computational cost it is beyond the scope of
this thesis to provide an exhaustive analysis of LES on the chosen test case.

Chapter 4 will describe the combination of KS with the openFOAM package and provide
a qualitative representation of the two RANS dispersion models. The proposed model will be
validated in Chapter 5 against the currently used dispersion model, the LES results of Chapter 3
and experimental measurements for the sudden expansion test case. Additionally, a few results
will be shown in the Appendix of the proposed model implemented within an industrial code
and tested on an aviation gas turbine combustor of the type currently in flight. Finally, Chapter

6 will summarize the conclusions of this thesis and recommend future work.
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2 CFD Basics and Eulerian-Lagrangian Solver Development

The following chapter will introduce the fundamentals of the Finite Volume Method (FVM) as
well as provided an introduction for the options available for turbulence modeling in CFD. It
serves as a reminder for terminology introduced at later stages in this thesis and sets the scope
for coding modifications that will be described and carried out. This is followed by a section
explaining the chosen approach and concludes with a section describing the current capabilities
and limitations of the openFOAM software package. Finally, the required modifications to the

software program are stated in order to develop the custom Eulerian-Lagrangian solver.

2.1 Computational methods for fluid dynamics

According to Ferziger (1977), the origins of turbulence are instabilities that develop in laminar
flows, the precise nature or mechanism in which they arise is still a matter of deliberation
after more than a century of extensive research. Luckily, the purpose of this thesis is not to
develop an all encompassing theory or explanation of the origins of turbulence rather to develop
a phenomenological model for dispersion of passive scalars/particles in high Reynolds number
incompressible flows, so we will limit the discussion to those details of turbulence necessary
for the subsequent sections of this study. The main characteristics of turbulence according to
Durbin & Petterson-Reif (2001) is its ability to stir and mix a fluid and dissipate kinetic energy
at rates much greater than possible by molecular diffusion alone and does so over a continuous
range of scales.

This last feature, namely, of energy being transferred over successively smaller scales, is called
the energy cascade. Small perturbations somewhere in the domain/flow create instabilities
in the mean flow leading to turbulent fluctuations which propagate and maintain themselves
through further extraction of energy from the mean flow. These processes are the production and
transport stages of turbulence. Through shear, the large eddies give rise to successively smaller
eddies, as the eddies decrease in size the velocity gradients become larger in turn, increasing
the effects of viscosity until eventually the size of the eddies is so small that energy is quickly
dissipated through viscosity alone.

The prerequisite of turbulence is shear and under the right conditions inertial forces overcome
the effects of viscosity, that is transition to turbulence occurs when the molecular viscosity can
no longer dampen the perturbations. It should also be noted here, that although the concept of
an eddy as a small round vortex is a useful one for understanding certain concepts of turbulence
it is far from the truth. The continuous range of scales and the fact that turbulence is a a three-
dimensional feature means that ‘eddies’ assume many shapes, ranging from connected vortices,
known as cat-eyes, to long horseshoes or hairpins and from toroidal rings to spanwise rolls that
are constantly evolving in time. We will return to study these features in Chapter 3.

Durbin & Petterson-Reif (2001), while explaining how small scale vorticity is maintained,
elucidate the direct relationship of evolving turbulent structures and the work done by Richard-
son on particle dispersion. They link the growing separation distance of a particle-pair in a

turbulent flow to a vortex tube that is stretching*?.

2 Also supported by Taylor (1935)
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2.1.1 Direct Numerical Simulations

Lesieur (2008) conveys one more important characteristic of turbulence; the chaotic nature of
the velocity field. That is, a small initial perturbation is amplified as it develops downstream
quickly reaching a point a short time later where it is completely uncorrelated to the initial
field. The implication is that adopting a deterministic approach to the study and prediction
of turbulence is not practical. This is not to say that such an approach is not possible, on the
contrary, this is the field of Direct Numerical Simulations (DNS) but even with the presently
available computational resources it is still not practical.

DNS attempt to solve the Navier-Stokes equations on a fine enough grid in space and in time
in order to resolve the turbulent fluctuations directly. Early pioneers in the field of CFD, Launder
& Spalding (1973), recognized the impracticality of trying to discretize temporally and spatially
the computational domain to the extent dictated by the smallest energy containing scales. Back
then they were limited by the number of computational nodes available. They proposed instead
a turbulence model that comprised of a set of differential and algebraic equations that along
with some experimental constants and the averaged Navier-Stokes equations would be capable
of closely simulating real turbulent flows.

Let us not overlook the contribution of DNS, although they are of little use for real engineer-
ing flows where high Reynolds numbers and complex geometries would require nano-second or
smaller time steps and micron sized computational cells, when investigating multiphase prob-
lems. Today DNS can be of great use in academic flows providing valuable and detailed informa-
tion on flow quantities than are not realizable through laboratory measurements. Hence, they
are invaluable resources when evaluating other CFD methods that rely on models. Ferziger &

Peric (1997) provide a list where DNS has been instrumental:

— Understanding the mechanism of turbulence production, energy transfer and dissipation

in turbulent flows;
— Simulation of the production of aerodynamic induced noise
— Understanding the effects of compressibility on turbulence
— Understanding the interaction of combustion and turbulence

— Controlling and reducing drag on a solid surface

2.1.2 Large Eddy Simulations

Large Eddy Simulations (LES) came about in an era when it was clear that computational
capabilities were increasing at an exponential rate and much faster then previously thought,
primarily driven by a desire of the meteorological community to model the global atmosphere.
LES attempt to capitalize on the fact that firstly, the large scale motions in a turbulent flow are
significantly more energetic than the smaller ones and their size and intensity means that they
are responsible for the bulk transportation of the conserved properties and secondly, as noted
by Ferziger (1977) the large structures are so different between different flows that it is unlikely

that one turbulence model could be universally applicable.
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Tennekes & Lumley (1972) make the point that the smaller scales of turbulence are usually
independent of any orientation effects resulting from the mean-flow, their averages unchanged
after being rotated or reflected, implying that this end of the continuous range of scales is
isotropic. Given that the smaller scales/structures share a lot of similarities between different
flows, it would seem to make sense to model the part of the flow that appears to be homogeneous
and isotropic*3.

What exactly constitutes a small eddy or a large one is open to discussion. Given the
existence of a continuous range of scales it is of little importance provided that, the small scales
—so determined from the arbitrary cut off scale- behave in the physically sensible manner as
determined from the chosen closure model. Any flow variable f may be decomposed into a large

and small scale component, f & f’ respectively:
f=F+f

The distinction between large and small eddies is achieved through the application of a filter;

the filtering function is of the following form:

m = /G(a:,a:’)f(x')da:’

G(z,z’) is called the filter kernel (whether this is Gaussian, box or cut-off filter is of little
importance at this stage) associated with a filter width, A. Scales larger than the filter width
will be resolved while all scales smaller are called sub-grid scales (SGS) and are modeled *4. The

kernel is a function that must satisfy the following condition®3:

/G(w,x’)d:r’ =1

As the spatial resolution of a LES increases, the size of the small eddies being modeled decreases,
in the limit (or at least once the filter width is significantly smaller than the Kolmogorov scale)
this implies that an LES eventually reduces/collapses to a DNS. Applying the filtering function
to the velocity field yields:

ui(z) = /G(a:,a:’)ui(a;')da:’

and similarly the filtered versions of the incompressible Navier-Stokes equations may be ob-
tained:46

V-u=0

g‘tl+v-(1m)——?+V~u(Vu+vuT)

This filtered version of the equations bears a striking similarity to the Reynolds- Averaged version

“3Later sections will show that this is not universally true and an SGS model that accurately reproduces
shearing flows is not that good at wall bounded flows as noted by de Villiers (2007)

1t is worth pointing out here that the term grid refers to the size of the filter, A, and not the computational
grid/mesh, although the filter width cannot be smaller than the cell dimensions

%51t is a localized function; i.e the function is large only when z and z’ are not far apart

*The last term is a—il [u (gz + g?)}
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that will appear in the next section and, just as in that case, the inequality tu # u u holds.
This is known as one of the Reynolds conditions and the reader is directed to the classical text
by Monin & Yaglom (1971) for details that arise when specific periods are chosen for the mean
and fluctuating fields*”. For the present purposes it suffices to note that the difference on either
side of the inequality is known as the sub-grid scale stress, 7:

T=uu—uu

The tensor will be shown to be very similar to the Reynolds stress in the following section:
however it represents a significantly smaller part of the turbulent energy spectrum implying
that the accuracy of the SGS model is less important than in the case of RANS. Applying the

filtering decomposition introduced earlier, the Reynolds conditions lead to:

r=(@u-uu) + (W - va) + v’

De Villiers (2007) provides an explanation of the individual terms as follows:

— The first term is known as the Leonard term and can be computed from the resolved scales,

it represents the interaction of the resolved eddies on the sub-grid scale turbulence.

— The second term, known as the cross-term represents the interaction of the resolved and
unresolved eddies and the transfer of energy between them. Although this is usually in

the direction of decreasing eddy size, it could also flow in the opposite direction.

— The last term, known as the SGS-Reynolds stress, represents the effect of small eddies

interacting amongst themselves.

There are significant difficulties in trying to model these terms individually. Vreman et al. (1994)
discuss the peculiarities of the individual terms and the specific kernel functions that must be
used to model them without the large errors that usually arise from the correlations used. It is
far more typical to try to model the effect of the SGS stress as a whole as Pesmatzoglou (2014)
notes that the first two terms are considered to be negligible compared to the third one, or at
the least may be evaluated from the specific filtering function applied. The SGS is labeled a
stress because of the way it is treated; physically, it may be thought of as the momentum flux
of the larger scales induced by the smaller-unresolved scales (Ferziger & Peric (1997)).
Historically, the first successful SGS model is attributed to Smagorinsky (1963) and is named
in his honor. The starting point is the Boussinesq approximation (Boussinesq (1877)) that
linearly relates the turbulent stresses to the mean velocity gradients through an eddy viscosity

which, for incompressible flows is:

=1y (Va+Vva') + %tr(T)I =1 (2S) + %tr(T)I

or in index notation:

i = 8xj 81‘1 3Tkk K

4"The additional terms in the momentum equation are spatial derivatives of the turbulent stress tensor
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where we have used tr(7) to denote the trace of the SGS stress, that is the contribution from

the deviatoric terms/isotropic conditions:

Tek = 1/2 (Ugty + Uyly + Uy ;)

ou;  0u; )

81Uj + al‘Z

S=1/2(Va+va') =5 =1/ (

is the large-scale or resolved-scale strain rate tensor. By assuming that the resolved and modeled
scales are in equilibrium, and that the latter dissipate instantaneously all the energy they receive,

a simple algebraic relationship may be derived of the form:
v = (CsasA)* S|

where Csgs ~ 0.2 for isotropic flows, known as the Smagorinsky constant, which is a model

parameter and |S| is the modulus of the strain rate tensor,

S| = 1/5i;Sij

Although successful and widely used, the Smagorinsky model suffers from certain limitations.
The constant is found to require adjustment for flows with large shear layers present such
as channel flows and stratified geophysical flows. De Villiers (2007) attributes this, based on
Prandtl & Wieghardts (1945) findings, to the fact that the deviatoric components of the SGS
stress, tr(7), do not necessarily align with those of the resolved strain rate, S, as seen from
the small correlation of the two. This does not mean that the model is without its merits, as
adjustment of the constant’s values will yield reasonable results. However, even for flows where
the overall performance of the model is deemed to be satisfactory, it has been found that near
the surfaces/walls the Smagorinsky constant requires further adjustment in proportion to the
distance from the wall. This led to the adoption of van Driest damping for these regions with

the constant varying according to:
Csas = Csasy (1 — ent/a)?

where Csgg, is the original constant, A ~ 25, nt = nur/y is the normalized distance from the
surface and u, = \/m is the friction velocity based on the shear stress at the wall, o,,. The
breakdown near the wall occurs because the assumption of isotropy no longer holds.

Bardina et al. (1983) proposed a way to address the issue of equilibrium /anisotropy of
the scales with their scale stmilarity model. They postulate that the eddies that lie on either
side /bilateral/ of the cut-off should bear significant similarities. Rather than suddenly applying a
cut-off point where isotropy is expected to hold, they apply a second filtering operation resulting
in a model that now correlates well with measured SGS Reynolds stresses. The double filtering

operation is as follows:

\l
I
=]
=]
|
=]l
gl
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or
Tij = Ui Uj — U; U

The implication of the scale similarity model is that it transfers energy from the smaller to the

larger scales, which is desirable for boundary flows but results in diminished overall dissipation

of energy which is addressed by combining the model with the original Smagorinsky model.

The second filtering operation is common to the dynamic SGS models as well, the first of
which was developed by Germano et al. (1991). Although called models they are actually
procedures which involve filtering the field a second time with a broader filter. Subtraction
of the single filtered field from the double filtered one results in an expression for the Leonard
stress term. Then, in conjunction with two expressions for the effective SGS viscosities of the two
fields, the error between the two sides of the subtraction may be minimized and the Smagorinsky
constant estimated. Lilly (1992) describes this procedure in detail and later Piomelli (1999)
extended it to various mixed models. The dynamic model offers a significant improvement
over the early SGS models, with a Smagorinsky constant that changes in space and in time,
now capable of dealing with those flows that proved troublesome when solved with the original
model. In addition to the increased computational overhead required, there is the troubling fact
that the SGS viscosity frequently takes on very negative values, as a result of the wide range of
Smagorinsky constants, which may lead to numerical instabilities. Piomelli (1991) explains how
this effect might be minimized by appropriate spatial and temporal averaging.

In any case this is far from an exhaustive list of SGS models as this is still a very active field
of research and beyond the scope of the present contribution. Rather, hopefully it served as an
adequate introduction to the subject and provided the required information for later sections of
this thesis.

2.1.3 Reynolds Averaged Navier Stokes

Finally, the last and by far the most common approach to modeling turbulence is to adopt a
statistical approach. This method adopts Osborne Reynolds, approach to decomposing the local
value of the variable into a mean component and a fluctuating component about that mean. The
most common approach is to perform ensemble averaging over a series of identical experiments.
Alternatively, in the case of homogeneous turbulence, one can perform spatial averaging for a
fixed moment in time. For stationary turbulence one could perform averaging in time for a fixed
point in space.

Reynolds averaging for any flow variable, f, is performed by splitting the component into a

mean value, f and a fluctuating component, f’ and is performed as follows*®:

f(X7 t) - ?(X7 t) + f/(X, t)

_ 1 X
f(X,t) = J\}gnooNz;fl(X’ t)

“For compressible flows it is typical to perform density-weighted Favre averaging: for more details see Favre
(1965)
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Applying Reynolds averaging to the Navier-Stokes equations results in what are now known as
the Reynolds Averaged Navier Stokes (RANS) equations:

V-u=0

(?;+v-(m1):—vf+v-uwu)—v.w
The last term is known as the Reynolds stress tensor, so named because the turbulent motion
may be interpreted as a source that gives rise to stresses in the mean flow. The Reynolds stress
tensor is a symmetric tensor, with the diagonal terms resulting from normal stresses which
are known quantities. The off-diagonal terms are unknown and hard to estimate resulting in
what is known as the closure problem of turbulence (i.e. there are more unknowns than there
are equations). At this point, several researchers tried to derive equations for the higher order
correlations but in turn quickly arrived at a point where models are required to approximate
some of those quantities as Ferziger & Peric (1997), Jasak (1996) point out.

A far more common approach it to adopt an eddy-viscosity model, similar to the method
employed in the previous section on SGS. Savill (1987) mentions how most of these rely on the

Boussinesq approximation and a relationship for the eddy viscosity:
I T 2
uu =iy (Vu—i— Vu ) + gk,‘]

where k represents the turbulent kinetic energy:

k= W2 = 1o (i, + it + )

Zero equation models
In the simplest case Prandtl’s mixing length hypothesis is invoked yielding an expression for
the eddy viscosity:
vy = CuqL

where the mixing length, L, may be prescribed for simple flows and ¢ = v2k. However, estimat-
ing the mixing length is only possible for simple wall bounded flows and it is riddled with errors
when applied to separated or complicated 3D flows, resulting in the need for a more universal

model®.

Two equation models

Two equation models came about as a direct result of Kolmogorov’s 1941 seminal paper (Kol-
mogorov (1941)). where focus was shifted to examining velocity differences and a ‘multi-step’
energy cascade was identified eventually restricting Taylor’s hypothesis of global homogeneity
to the near wall region only and established the concept of local homogeneity and isotropy.

Although Kolmogorov’s 4/5 law is one of the best-known results in turbulence, Obukhov’s si-

“Davidson et al. (2011) quoting Prandtl (1927b) and Tollmien (1926) point out that Prandtl’s original
formulation was slightly different defining v+ = gL and g = L%' The model was even shown to predict free shear
flows accurately but was later dismissed by the original author.
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multaneous work was just as important. Using spectral methods, he derived the 5/3 law for the
turbulent energy spectrum °°.

All of the two-equation models introduce, as the name implies two more equations that must
be solved. There are often small differences in the exact formulations but the fundamental idea
is to introduce an equation for the dissipation rate of turbulent kinetic energy, €, which along
with the turbulent kinetic energy allows the effective eddy viscosity to be evaluated from:

k2
Vg = CM?

and
€= V<‘Vu"2>

Another very interesting result that arises from the equilibrium of the rate of production and
destruction of turbulence relates the length scale, L, to the rate of turbulent energy dissipation
and turbulent kinetic energy.
K

KRS —
The two-equation models solve two additional transport equations —one for £ and one for e— and
for further details the reader is directed to one of the original papers in the field by Launder
& Spalding (1973) for detailed derivations of the equations and the empirical constants. For
the present discussion it is sufficient to know that the k — & model although hugely influential
and widely used, is not the turbulence panacea, because it lacks the universality desired. A
significant amount of work has been done to adjust the model for particular flows and regimes
(for examples see Jones & Launder (1972 & 1973), Shih et al. (1995)).

To address some of the limitations of the k-¢ model, namely poor prediction capabilities
in boundary layers with adverse pressure gradients. Wilcox (1988) proposed a different two
equation model, the k—w model. He introduced a relationship for the specific rate of dissipation,
w:

w=—
4

Through the definition used to relate the turbulent viscosity, v+ to the dissipation rate in the
k — e model, we see that, rather more conveniently, the specific dissipation rate, w, may be
interpreted as the ratio ¥/e, the rate of dissipation of turbulence per unit energy. The model’s
success was superior in predicting the adverse-pressure gradient boundary layers which exhibited
good agreement with the experimental measurements. For constant-gradient boundary layers
the predictions were similar to the £ — e model. This improvement is attributed to the ability
to specify, perhaps rather arbitrarily, the value of w on the wall boundaries rather than being
limited to von Neuman conditions for . The model was limited however by its sensitivity to
the boundary conditions specified for the k — w at the domain inlet.

The last limitation was addressed by construction of a mixed model by Menter (1993 & 1994),
the SST-k — w model, which employed the & — ¢ model for the bulk of the flow and switched to

the k — w near the wall boundaries. The modification successfully addressed the k£ — w model

50Tt was later established that Prandtl, independently, derived very similar results in 1945
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limitations but still produced excessive levels of turbulence in regions of large normal strain
such as stagnation points and large accelerations zones. These are by no means the only closure

models available however, they are the ones relevant to present thesis.

Computational Methodology for the Finite Volume Method

The partial differential equations that govern fluid flow through a continuum must be dis-
cretized in order to be solvable by a computer. Whether, this is done through the use of the
Finite Element Method, Finite Difference Method or as is employed here, the Finite Volume
Method (FVM) is usually more a matter of tradition rather than one of absolute scientific need.
This stems from a culture where each research group has traditionally been employing a code
developed in house. However, with the widespread use of CFD in the past couple of decades
and the proliferation of commercial CFD codes, this is now changing.

A particular interesting feature and advantage of the FVM is that the integral formulation
ensures that the conservation laws are satisfied exactly. In the following sections a brief overview
of the Finite Volume Method will be given along with details on the most commonly used
discretization schemes. The momentum and energy conservation equations will be cast in the
appropriate framework along with a quick review of the scheme/algorithm to couple the pressure
and velocity equations. The approach closely follows that of the standard textbooks on CFD
of Ferziger & Peric (1997), Versteeg & Malalasekera (1996) and the papers of Jasak (1996),
de Villiers (2004) and Weller et al. (1998) who were instrumental in the development of the
openFOAM code, used throughout this thesis.

The economic benefits associated with a free code are substantial as the modeler is no longer
restricted by a number of licenses but rather by hardware constraints. Perhaps openFOAM’s
greatest advantage is its open-source nature. For the scientist, the benefit of the open source
code is primarily in its transparency and freedom of modification. No longer are solver routines
and algorithm obscured by proprietary code, rather one can dive into and freely modify, add

solvers, routines and models at will.

2.1.4 Governing Equations

The objective of the following sections is to derive a set of discretized equations that describe
the governing equations over a control volume. For an arbitrary scalar ¢ = f(z,v, 2,t), flowing
through a steady domain (fixed control volume), V, which is part of the real space with bounding

surfaces denoted by S one can write the following transport equation:

/&pdV—i-/ugo-dS—l—/CgodV:/quo-dS—i-/QdV
v ot S v S v

or

/&OdV—&-/V-(ucp)-dV+/CcpdV—/V-(FVgo)-dV—i—/QdV
v ot v v v v

where u is the advecting velocity field, C' is some reactive constant, I' is the diffusivity of ¢ and
() represents some source term within the domain. Here, the first term on the LHS represents

the variation of the scalar ¢ with time, the second term denotes the advective flux through the
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domain boundaries and the third the production/destruction due to an internal reaction. On
the RHS, the first term represents the flux due to diffusion and the last some source or sink
within the domain. Grouping all the surface terms together on one side and the volume terms
on the other demonstrates how any imbalance in ¢ within the domain V is due to the fluxes

across its boundary:

N as— [ (9% _
/S(ugo vV) - dS /V<at+04p Q) dV

The equation is now in an appropriate form to be discretized into an arbitrary number, n, of

smaller domains:

n

Z[/S(WP—VVSO)-CZS—/V(%erCgo—Q)czv] =0

i=1
Regarding the volume integrals, all this states is that the sum of imbalances of ¢ within each
discrete volume is equal to the total imbalance in the domain. For the boundary integrals, it is
interesting to see how the conservative nature of the overall equation is preserved when dealing

with the discretized version, as the fluxes through shared internal faces cancel each other out.

2.1.5 Discretization

In general the value of scalar ¢ is known only at certain locations of the domain and very quickly
the need arises to be able to estimate the value of scalar ¢ at some other location x, a known
distance Ax away or at a time At later on. In the finite volume method the location where
this information is usually known is the centroid (¢p ) but we are often interested at the value
on the boundary. To obtain a linear variation in space one must take a Taylor series expansion

resulting in:
1 1
p(x) = pp + Ax - (V) p + 5 (A%)° - (VV@)p + 57 (M%) (VV V) p + ..

ot 1 (Ax)" - (V..V¢)p

n!
And truncating the expression after the second term on the RHS results in an expression accurate
to the 2" order:

p(x) = op +Ax- (Vo) p

Similarly, for temporal discretization the equation in time becomes:

dp

t
(,Dt—FAt ——gpt—FAt —_—
( ) <8t>

where the superscripts do not denote an exponent but the value of scalar ¢ at time ¢.
Upwind & Central differencing

So far the task has been to approximate each term in the partial differential equation with a
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relation that is easier to solve, namely a finite difference approximation ®!:

<390> i 9@+ AT) — (@)

ox  Az—0 Az

Note how this is just the first two terms of the expression derived for the Taylor series expansion
with the degrees of freedom reduced to 1. The influence of the definition of a derivative is
visible when setting up a finite difference scheme or equation. Any such finite difference requires
knowledge of the value at some other location. In CFD the initial values usually lie on the
boundaries of the whole domain. A value may be prescribed on the boundary node or the
derivative itself may be known, the Dirichlet and von Neumann conditions respectively. The
discretized equation should asymptotically approach the partial differential equations as the grid
spacing and time step decrease in magnitude.

Very often the grid spacing is not constant and a weighting factor must be introduced for
the estimate of ¢; that lies between x;11 and x;_;. The weighting or interpolation factor, is
defined as the ratio of the distances : f = %::" and ¢; = foz+1 + (1 — f)pz—1. Consider,
the constantly varying function ¢(x) at some point ¢; to solve the finite difference equation one
can use information stored at location i+, i-I or both and this is then known as, forward,
backward or central differencing respectively.

Which is better suited to a specific application will depend on the behavior of the contin-
uous function. Another approach, is to consider the direction of propagation of information.
Whenever there is a significant amount of convection present and the scheme chosen favors the
upstream node, i.e. an upwind scheme, this improves stability and the boundedness®?of the
solution. However, the truncation errors will often manifest themselves as diffusion and signifi-
cantly affect the results as outlined in Warming & Beam (1976), which is especially true in the
case of LES .

2.1.6 Convective and diffusive operators

Before expressions for the divergence and gradient operators can be derived, some of Gauss’s

theorems need to be invoked in order to be able to freely switch between volume and area
/(V-B)dV:/dS.B
1% S

/V (Vi) dV = /S S

/V (VB)dV = /S dSB

S!'Regarding the naming of the neighboring nodes. We have not used the P identifier because the variable must
be evaluated independently. Thus the approximation could just as easily be used to calculate a value somewhere
on the boundary/face. In general it is quite common to switch between 4, j, k and E, N, W, S (compass notation).

%2Here boundedness refers to the solution at a certain a point being bounded by some physical limits. A volume-
fraction or concentration must be between 0-100% globally. In a diffusion dominated problem the concentration at
some point cannot be greater than at the source. Also, certain properties like turbulent kinetic energy or density
must always be positive. Ferziger & Peric (1997) show that only 1st order schemes can guarantee boundedness.

integrals:
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These are Gauss theorems for the gradient and divergence of vectors and scalars respectively.
Here dS represents an infinitesimal surface element associated with a normal unit vector pointing
outwards of the control volume. Another equation needed to simplify the integral expressions

of the previous section results from the definition of the centroid:

Vpo:/deH/de—Xp/dV:/(x—xp)dV:OH/AXdV:O
v v 1% 1% v

where Vp indicates the volume of the domain surrounding the centroid’s location (i.e. the
volume of the cell). Using this last result along with the truncated expression for the Taylor

series results in:

/ p(x)dV = 90p+Ax'(V<p)PdV:/ opdV + Ax - (Vy)pdV
Vp Vp Vp Vp

But the second integral on the RHS must reduce to zero since P resides at the centroid and

AX =X —Xp :

/ gopdVJr/ (XXp)dV-(V(p)P:gpp/ dV 4+0=ppVp
Vp Vp Vp

A similar expression may be derived for the surface integrals:
/ (V) dV = / ngo/ B-dS :BFC/ ds +/ ABdS - (VB) - = Brc - Src
v S Sj S; Sj

where Byrc denotes a vector, the subscript FC the value at the face/planar centroid and S the
area vector of the face j. Using these two results one can derive expressions for differential

operations. The gradient operator becomes:

1
VdV = / pdS <+ Vo =—2> prcSrc
Vp S VPZ].:

And the divergence operator becomes:

/VP(V~B)dV—/SdS.BH(V-B)V}7—zj:(/SjBFC-dSFC>

< V-B= lezjj(BFc-sFC)
where we have also invoked the assumption that ¢ varies linearly across the face and hence the
face-centroid value can be used.

Finally, using the above relations (namely the linear variation of ¢ across a face, the diver-
gence operator and the expression for the surface integral expression) a discretized version of
Gauss theorem may be obtained (Jasak 1996): V,, (V- B) = >_S - Bpc This result may now be

f

used to obtain a discretized version of the convection term:

V- (up)dV = ZSFC (up)pc = ZFSDFC

VP J J
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where F' = Spoupe is the specific flux through the cell face. An important property of the
discretized convection equation is that it preserves the boundedness of the initial distribution of

. A similar procedure is followed to derive an expression for the diffusion term:

V- (F‘V(,O) dV = ZSFC (F'VSO)FC = FZSFCv(pFC

Vp J J

For the simple case of an orthogonal grid, the face gradient of ¢ is easily evaluated as SpcVprc =

Pi+l1—Pi—1

Xii1o% 1 while for non-orthogonal grids the process is slightly more complicated, requiring

Src
the face gradient to be decomposed into orthogonal and non-orthogonal components and evalu-
ated independently. The remaining terms in the general transport equation may be treated as
source terms which will be first linearized into two components Q,& @, ,which may depend on

v, and discretized accordingly:

Q(@) = Qu + QP(‘P>& /V Q(‘P>dv = Qu‘/;) + vap@p

The two relations for the volume and the surface integrals may be used to simplify the final
expression of the previous section and from now on the reaction and source terms may be

grouped into one variable @) for the sake of simplicity, since their treatment is identical:

n

Z[/S(USO—FVCP)'dS—/V<%§+C¢—Q>dv} -0

i=1

n m 8
@) (USO—FV@)'SF0—<8(§+C<P—Q>VP¢ =0
=1

i=1 |j
where the second summation within the bracket indicates a summation over each face, j, of each

control volume 1.

2.1.7 Boundary-Conditions Discretization

At the edges of the domain the cell/volume faces will coincide with the boundary of the whole
computational domain. The information at these boundaries is a prerequisite for the solution of
the algebraic system of equations being assembled. As such it is necessary to make a distinction
between physical and numerical boundary conditions. Physical interpretation of the Boundary
Conditions(BC) guides the correct formulation of the numerical boundary condition that should
be assigned. Numerical boundary conditions are identified as von Neumann or Dirichlet, where

a fixed gradient is prescribed or a fixed value respectively.

Numerical /Programming Boundary Conditions

— Dirichlet: The value of ¢y, is prescribed along the cell faces (denoted by subscript b) that lie
on the boundary of the domain. Although this should be a straightforward implementation
it is necessary to consider that following complication. Even on structured and orthogonal
grids there is a high probability that the overall domain boundaries are curved hence the

need arises to decompose the face area vector Spc into orthogonal and non orthogonal
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components, Spc, and Spcy» respectively. If the value prescribed is constant along the
length of a cell face then the orthogonal component will be of equal magnitude to Sgc
but no longer acting on the cell face centroid/center. Therefore the need arises to define
two more vectors, first d which connects the cell center to the face center and dn which
is normal to the face, defined as : dn = SES9SFC  For the convection term from the

ISkc|?
previous section, the boundary face contribution reduces to:

V- (up)dV = ZSFC (up)pe = ZFQ@FC
Ve j j

= (Forc)j—p, = Fypp
where Fj, = Spcupc denotes the specific flux through the boundary face.

Similarly, for the diffusion term the component of the summation corresponding to the

boundary becomes:

V- (T-Vg)dV =) Spc (T-Ve)pe =T> SrcVerc

Ve J J

= (SrcVerc),—, = [Src| %

53

— von Neumann: The value of the normal gradient, g3, is prescribed to be constant along

the cell boundary face:

8@ SFC
anb b ( )b ‘SFC| ( )b

9

For convection terms the face value is calculated from the prescribed gradient and the

value at the centroid, pp:
ey = op+dn - (V), =pp + |dn] g0

= (Forc) = = Fypp = Fy (pp + |dn| g)

From the definition of g, which is the inner product between the face center area vector
and the prescribed gradient, we know that Sgc- (V), = |Src|gr and substituting into

the discretized version of the diffusion term for the cell boundary face results in:
= (SrcVerc);—, = I'v [Src| g

Physical Boundary Conditions

— Inlet boundaries: According to Hirsch (1991) at the inlet to the computational domain

usually the values of the velocity fields are fixed and the pressure gradient may be zero or

53n0ting that dn || Src, that is they are parallel to each other
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extrapolated from the field. Alternatively, the value of the pressure could be fixed and the

velocity gradient be set to zero.

Outlet boundaries: In the absence of recirculating flows near the exit, the velocity field
could be prescribed after scaling from the neighboring cells. However, the presence of even
minute inflows from the outlet leads to loss of solution stability and for this reason it is
better to set the velocity gradient along the outlet to zero and prescribe a fixed value for

the pressure field.

Wall boundaries: The no-slip condition applies here hence a fixed value is prescribed
setting the values of velocity to that of the wall and, since they are typically impermeable
the pressure gradients are assigned to be equal to zero as well. In the case of turbulent
flows a further complication arises in RANS (and wall modeled LES) as specific boundary

conditions need to be prescribed according to the turbulence model being employed

Symmetry planes: These are often used to reduce the size of the computational domain
by taking advantage of known symmetrical patterns in the flow. The normal gradients to
the boundary are set to zero while those that are parallel to it obtain the value of the first

cells inside the domain after scaling.

Periodic Boundaries: These are used to model infinitely long domains and are achieved by
linking directly the pair of boundaries; when solving the algebraic system of equations the
cells/entries of the matrix corresponding to these boundaries are placed adjacent to each
other. It can effectively be thought of as a mapping of the values from one boundary to

the other creating an infinite domain.

2.1.8 Temporal Discretization

So far the general transport equation has been discretized for the spatial variables but for

unsteady flows, or whenever %—f = 0, the need arises to discretize in time as well. For a single

steady (no variation of size in time) continuum volume this becomes:

Oy -
/S(uw—FV@)-dS—/V<at+Q¢—Q>dv} dt =0

t+At
/t

t+AE | ™ 890
[ | we-rve) e (57 4 Qo @) v | a0
t -

Jj=1

The process is clearer if the terms in the equation are not factorized and are converted to volume

integrals:

/tHAt [aat /chdV + /VV - (up)dV — /VV -(I'Vy) dV} dt = /tHAt [/v Q(ap)dV] dt
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At | g t+At
/t ot /V pdV + EJ: Foj; — ; I'Syc - Vpj| dt = /t [qup + QPV})SOP} dt

It should be noted here, that there is no requirement for the temporal discretization of the
unsteady term to be of the same order as the other terms in the equation. The overall accuracy
of the discretization though will depend on the accuracy of each individual term, that is, to
achieve second-order accuracy all terms must be discretized to at least second-order. Patankar
(1980) mentions that often the temporal variation at the faces may be neglected, leading to a

simplified version

A — b .
BV, + ) Fej =) TSre - Vej = QuVy + Qg
J J

The need to evaluate ¢ & Vi after some interval At leads to methods very similar to those
applied to initial value problems for Ordinary Differential Equations (ODE) and are called
two level methods. The manner in which the cell centered and face values may be evaluated
yields several different approaches, summarized in the following subsections. These are derived
by considering the following ODE and an initial value problem and integrating between times
t—t+ At

delt) _ fnt,o(t); o) = ¢
dt
t+At t+A¢
/t %fdt = At = /t fn(t, o(t))dt

Explicit or Forward Method
The explicit method is obtained when the integral on the RHS is evaluated using the value of
the integrand at:

P = o+ f(t, ot At

Recalling the weighting factor, f, to accommodate asymmetric control volumes and the dis-

cretization treatment of the boundary cells from the earlier sections, the face values become:

0; = fob + (1 — f)¢ly and Sgc - (V)= [Src]

54 resulting in:

At
P = gh+ =5 | S Fel = Y TSk Vel + QuVy + Qi
p j i

34The expressions apply for orthogonal grids, alternatively the non orthogonal contribution has to be included
in the latter of the two: +dno - (V¢); where Spc = do + dno
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The subscript ‘N’ refers to some neighboring point to the cell center P. The greatest benefit of
this first-order method is that the value at the new time can be estimated solely from quantities
that are already known (all the terms on the RHS) and hence there is no need for inner time-step
iterations. The disadvantage though is that there is a limit to stability as defined by Courant
et al. (1967) and the dimensionless quantity named in his honor, the Courant number, defined
as follows:

Co = UmeanflOlU-At/Ax

must be smaller than unity. In practice the requirement is usually much stricter, requiring the

ratio to be in the region of [0.2-0.5] in order to ensure stability.

Implicit or Backward Euler
If, on the other hand, the integrand at point ¢ + At is used, the implicit method is recovered:

gOtJrAt _ SOt + fn(t + At, (pt+At)At

In practice this means that the cell values are expressed as functions of the cell centeredAvalues
t+At t+At

at the new time step: ¢; = fo'i 2 + (1 — f)eF?! and Spc - (Vy);=|Src]| %. As
outlined by Hirsch (1991) this approach is not limited by the Courant number limitation and
is stable and bounded. However, it does require an iterative approach as it results in a coupled
system of equations.

A very commonly used scheme, as outlined by Jasak (1996), is the backward differencing

method, where the face value temporal variations are still neglected but the temporal derivatives

2nd 2nd

are discretized with order schemes resulting in a scheme that is overall order accurate.
The starting points for such a scheme are Taylor series expansions about ¢(t + At) = 'A% and

p(t — At) = =8

Oy 10%p
t — t — t+At . 7At 77At2 At 3
pt)=¢" = 5¢ DU+ 5 gz A+ O(AY)

and

_ Op 0%
t— At) = 72 — )t 9T T AL 4 97 T A2 At)?
o( )= © 5 D+ 250 + O(At)

respectively. Combining these, leads to the truncation error dropping out and yields an expres-

sion for the discretized version of the temporal derivative:

8@ B 3/2¢t _ 280th15 + 1/280t72At
ot At

At

B/Q@t _ 2<pt—At _|_ 1/280t_2At — V
p

Y Pl = TSpc - Ve + QuVp + Qe
; 7

Resulting in a system of algebraic equation that now requires the knowledge of ¢ at two prior

time-steps. The requirement to evaluate pp & ¢; at various times necessitates the use of inner-
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iterations during each time step, increasing the computational requirements both in terms of
memory and solution time. It does result, however, in a scheme that is unconditionally stable

but slightly oscillatory in nature often being combined with a first order Euler implicit scheme.

Crank-Nicholson
If one uses a straight line approximation between final and initial points one arrives at a

trapezoidal method, the most popular one is known as the Crank-Nicholson scheme:
1
P =t o [fnt, @) + St + At o] At

Recalling the Taylor Series expansions that result in first order accuracy: 53

0\ _ oo —wp
ot At
and

t+AL ¢ -1
/ o(t)dt = %At
t

Which leads to the fully discretized version of the general transport equation for a single domain:

t t—1

t t—1
¢p— 1 1 3 3
%% + 3 E Fo; — E I'Src-Ve;| — 5 Fo; — I'Sgc - V; =
J J J J

1 1 _
=5 [QuVo + QpVopl' — 5 [QuYs + QY]

This scheme is second-order accurate and unconditionally stable according to Hirsch (1991) but
not necessarily bounded and potentially giving rise to problems especially when used in LES,
as mentioned by de Villiers (2007), hence the need for another scheme; namely the backward
difference scheme introduced earlier. Ferziger & Peric (1997) note that, although the memory

2nd

requirements of the Crank-Nicholson scheme are the same as those of the order backward

differencing scheme, its truncation error is four times smaller.

2.1.9 Higher Order Schemes, Errors and Stability of Solution

Higher order schemes may be devised by including more points on either side, introducing
weighting factors or fitting higher order polynomials to approximate the derivative (the QUICK
scheme fits a parabola to the discretizing points) and many such schemes have been proposed
and developed for particular problems.

It should be stressed at this point, as Ferziger & Peric (1997) point out, that the order of the
error actually determines the rate at which the error tends to zero as the time step asymptotically
reduces to zero and not the size of the error itself. Although, a higher order scheme will produce
a smaller absolute error than a lower order one for the same size time-step, very often, methods
of similar order will result in absolute errors that differ grossly. Therein lies the problem, as

there is no way of knowing beforehand how small the required time-step must be for the desired

%5where the superscripts refer to the value of ¢ at the given time step t-n,..,t-2,t-1,t,t+,t+2,...,t+n
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error. One is required to perform several calculations with progressively smaller timesteps and
compare the errors in the end, much like a mesh sensitivity analysis is necessary to estimate the
required mesh resolution.

For further details on error estimation the reader is directed to Jasak (1996), where an
extensive investigation and comparison of the errors introduced by each method was made.
Although there is no deterministic method for relating the size of the error to the size of the
time step, there is a way of determining how small the time-step must be in order to ensure
stability of the solution. A method is deemed to be stable when it results in a solution that is
bounded for a differential equation that itself has a bounded solution. The requirement is as
follows:

’Atﬁfn(t’(p)‘ <B
dp

where B takes the value of 2 for the explicit Euler method and the value of 0 for all others
simple methods described here. When the inequality is satisfied the method is deemed to be
conditionally stable for the former and unconditionally stable for the latter. Such inequalities
serve to indicate the size of the largest time-step for the calculations. However, it is still nec-
essary to evaluate the range of timescales present in the problem in question and the temporal
resolution required. In stiff problems, which includes most complex/engineering flows where
there is typically a large range of scales, use of the inequality for determination of the time-step
might produce a stable solution but one that does not capture the faster changing phenomena.
In addition, stability in itself does not necessarily preclude oscillation of the solution.

It should be noted here that using higher order schemes has the tendency of filling a larger
part of the A matrix (detailed in the next section) reducing sparsity, because where the coefficient

274 order scheme, it now becomes

matrix would have been tri-diagonal, for a simple convective
penta-diagonal for a 3"¢ order scheme. This becomes especially cumbersome on an unstructured

grid where construction of a banded matrix is not possible.

2.1.10 Linear Algebra

The partial differential equation, that is the general transport equation can now be reformulated
as a finite difference approximation at each grid point. There is now an algebraic equation (not
necessarily a linear equation but one dealing with the non linearity is beyond the scope of this
work, suffice to say that there are methods available to treat such cases) for each node/point of

the grid/domain of the form:

neighbouring

Appp + Z Appr = ABC)

nodes

Where the summation is performed over the neighboring nodes (1D: -i,+i / E;W, 2D: -i,+1,-
7,+3 / E;WNJS, 3D: -4, +4,-5, +7,-k, +k / E,W N,S,T,B). Assembling these equations at every grid

point and then using matrix notation results in:

A-§ = ABC
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Where the vector 3 contains the variable values at all the grid nodes, the vector m contains
all the known information at those locations and the square matrix A is called the coefficient
matrix. Sensible numbering of the grid nodes (at least for a structured grid) will result in banded
entries in the square matrix (i.e. diagonal, tri-diagonal, penta-diagonal).

In the case of the general transport equation the matrix is rarely symmetric and various
linear equation solvers are employed depending on the specific circumstances. Contingent on
the exact nature of the A matrix (sparsity, symmetry, polydiagonal-ity, etc), it can be solved
through Gaussian elimination, Lower-Upper factorization or a variety of other methods specif-
ically designed for some specific cases of A matrices (Gerritsen (2008)). The most frequently
used are Preconditioned (Bi-)Conjugate Gradient, Diagonal Incomplete Cholesky, Geometric
Algebraic Multi-Grid, along with various smoothers (Gauss-Seidel, etc.) and pre-conditioners
which are used to expedite the solution. Which one will eventually be used depends on the
matrix and rarely will the same method be employed to solve the pressure equation and the

momentum equations as noted by Taccarino (2009).

2.1.11 Navier-Stokes and Pressure Equations Discretization

The schemes outlined in the previous sections may now be used to obtain discretized versions

of the Navier-Stokes and continuity equations which in tensor notation are:

Ou Vp
E%—V-(uu)—V-(uVu)——?
and

V-u=0

respectively. These are the incompressible versions for low-mach number flows or fluids of
constant density.

A difficulty arises as the pressure gradients drive the flow but there is no independent equation
for pressure. For compressible flows one may use the continuity equation to determine density in
the field, and through the equation of state, calculate the pressure®®. The way around this is to
arrive at an equation that describes the pressure field so that the resulting velocities satisfy the
continuity equation. One further complication is introduced by the non-linear term describing
convection of momentum, V- (uu). Discretizing this term would result in a quadratic expression
requiring non-linear solvers to be implemented in order to manipulate the matrix system. An

alternative approach is to linearize the term in the following manner:
/V <(uu)dV = ZSFC ‘uy - uy = ZFjuj
J J

Momentum
The implication of using a linear expression for momentum convection is that an existing

velocity field (i.e. one computed at a prior time-step) must be used to calculate the flux in the

%0n the other hand, in compressible flows one must pay attention to the absolute pressure, which is not the
case in incompressible flows where we are only interested in pressure differences or the gauge pressure
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discretized form, or the coefficient matrices when the equations are cast as a system of linear

equations. In this sense the flux used to calculate the term is lagging the current velocity field
57

Z Src - uj-uj = ZFjuj =~ Z (Spc-u)é_At uy = ZF;_Atuj = Apup + ZAkuk
J J k

For steady flows the linearization of the momentum convection term with the lagging velocity
field is insignificant. For unsteady or transient flows it will be necessary to introduce inner
iterations. Although this will increase computational cost, provided the time step is small, the

temporal behavior will be well resolved and the initial premise of lagging the non-linear term

well founded.

Pressure

The treatment for the pressure term outlined here follows closely the method of Rhie & Chow
(1982) where the pressure term remains undiscretized. A semi-discrete equation of the following
form is used for the momentum:

Apup :H—Vp

The coefficient matrix, A, contains the contributions of the coeflicient matrix from the mo-
mentum convection term as well as the contributions from the temporal scheme, denoted by
subscripts u and ¢ respectively.®®

Ap = Aup + Atp

On the other hand the vector H includes the contribution of all neighboring matrix coefficients
multiplied by their respective velocities as well as a contribution from the non-linear sources
(including the transient terms) apart from the pressure gradient contribution. It may be thought

of as the sum of advective and viscous terms:
H=> (Au), + Ay
k

An expression for u, may be obtained by dividing the initial expression of this subsection by

Ap, as well as one for the face value through interpolation, respectively:

_H Vp
UP_TP_TP (1)

v (), (),

5"Where k indicates summation over the neighboring cell centroids

%Two things should be noted here. First, that in the case of turbulent flows there will be one more contribution
from the effects of turbulent diffusion and second, that both sides of the equation have been divided by the cell
volume to permit face interpolations.
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Recalling the continuity equation which may be discretized in the following form:

V'UZZSFCfLIj:O
7 J

Equation 1 may now be substituted into the latter resulting in :
Vp H H
v [“El=v.(==) = S ——
<AP> (AP> Z;( FCAP>]~
This result may be used to obtain the final form of the discretized Navier-Stokes equations:

Apup =H - (Skcp);
j

1 H
E B = E == 2
: [SFC <APvp)} : [SFC <AP>} @
j J .
J
A discretized version of the face flux will also be useful for certain steps of the pressure-velocity

coupling described in the subsequent section:

F= e, =sre- | (41 ) - (4,%7)]

2.1.12 Coupling of Pressure and Momentum

The Navier-Stokes equations have now been reduced to a system of linear equations. There
are two options available at this point; the first is to try to solve the pressure and momentum
equations simultaneously over the whole domain while the other calls for a sequential approach
with special consideration required when coupling the pressure-velocity system. The approaches
that fall in the first category are only practical for very small systems as their computational
overheads are very high. Sequential methods are the industry norm today and most will resemble

to some extent the simple method outlined by Ferziger & Peric (1997) and presented below:

— Start solving the velocity field (at time t) based on an some initial value for the pressure,

this is assumed to be divergence free (if not this can be corrected)
— Compute H and its divergence
— Solve the Poisson equation for pressure at time ¢
— Compute the velocity field (this should now be divergence free) at the new time step ¢-+dt
— Repeat procedure

In the following sections the two methods most commonly used in industry and throughout
this thesis will be described. The first is the SIMPLE algorithm and the second is the PISO

algorithm:
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The SIMPLE algorithm
The SIMPLE algorithm was proposed by Caretto et al. (1972) and is suitable for steady-state
flows. As the time steps are typically large the effects of non-linearity become significant. On
the other hand because of the steady nature of the flow subsequent solutions of pressure-velocity

couplings vary little.

— The first step is to approximate the velocity field from the momentum equations with the
pressure gradient calculated either from a prior iteration or if this is the first time step
from a guess (p?"°** or p°¢ ). (The velocity is typically under-relaxed rf;; ~ 0.8). This

step is known as the momentum predictor step.

— The pressure field (p?) can now be computed using the pressure equation. This is known

as the pressure solution.

— The fluxes are computed with the updated pressure (pP). Two options are then available;
first to calculate the pressure once more before starting again or to simply under-relax the
pressure as follows: p"®" = p9“ess 4 rf(pP — p9"©**). This is possible due to the steady
state nature of the problem and the importance of the non-linear terms. As mentioned
already, it is sufficient to calculate the updated coefficients H from the new convective
fluxes for use in the first step of the next iteration. This last step is known as the velocity

correction.

The PISO algorithm
Issa (1986) developed the PISO algorithm for transient flows. The algorithm is very similar
to SIMPLE with differences found in the third step.

— Momentum predictor step
— Pressure solution step

— Convective fluxes are computed from the updated pressure field and eq.2 (similarly to
SIMPLE) and then the velocity field is corrected explicitly with eq.1. This is known as the
explicit velocity correction step. The explicit nature of the correction means that only the
first term (the contribution of pressure gradient term) on the RHS of eq.1 is considered
and as such it is necessary to account for the contribution of transported influences from
neighboring cells (the H/A, term). This is done by recalculating the coefficients of H,
obtaining a new pressure field, and explicitly correcting the velocity field as many times

as needed until the predetermined tolerance is met.??

Addition of Turbulence modeling equations
Regardless of the turbulence modeling approach chosen, the modifications required to the
solution algorithms of the previous section are similar. The momentum and pressure equations
are solved using the value of turbulent/eddy viscosity of the previous time-step or the initial

guess. Subsequently an updated evaluation of the discretized closure equations is performed and

59A combination of these two algorithms, PIMPLE, may also be constructed and the reader is directed to
Ferziger & Peric (2007) for further details.
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an improved estimate of the eddy viscosity may be obtained. This is then followed by a more
accurate (technically this is a more precise estimate but not in the sense of increased numerical
precision) solution of the momentum and pressure equations before the whole process is repeated

for the next time step.

2.2 Development of the Eulerian-Lagrangian solver

From the beginning of this thesis, the adoption of an Euler-Euler approach for the study of
multiphase phenomena was ruled out due to the immense computational requirements described.
The Euler-Lagrangian approach is warranted from a desire to develop a method to address some
of the current limitations of Lagrangian dispersion models, namely limited particle entrance into
the recirculation zones, as well as limited physical representation of the actual turbulence driving
the dispersion, thus hindering the observation of more complicated phenomena such as particle
preferential concentration. The carrier gas phase would be treated in an Eulerian framework and
a Lagrangian approach would be adopted to track the particle evolution. The choice is further
merited from the need to develop a tool for industrial purposes, that is one that can be used
with the presently available computational hardware rather than what is thought will be widely

available in the coming years.

2.2.1 Necessary modifications to openFOAM solvers

The openFOAM distributions (versions 1.6-2.2) lack a coupled incompressible Eulerian-Lagrangian
solver so the first step of the process was to develop one. For incompressible flows, the only
existing Eulerian-Lagrangian solver (“icoUncoupledKinematicParcelFoam”) is capable of evolv-
ing only Lagrangian particles through a steady Fulerian field accounting for their drag and as
such the two phases are uncoupled. This means that there can be no interaction imposed on
the Eulerian field from the presence of the Lagrangian particles.

Another limitation of the existing solver was that it is only a steady-state solver for the
Eulerian phase. As such this solver was unsuitable for the task at hand, where the mass loading
on the carrier phase from the Lagrangian particles would be significant. However, there exists a
two-way coupled compressible Eulerian-Solver (“rhoPimpleCoupledKinematicFoam”) within the
distributions, used primarily for automotive engine modeling. This was used as a template for
the simpler incompressible solver, simpler because, unlike the compressible case, this solver can
handle only non-reactive flows.

OpenFOAM is written in the C++ programming language and modification and creation
of new solvers is a straightforward process, taking advantage of the object-oriented structure of
the underlying code. Different classes can be combined to create a solver suitable to specific
needs. For the present application the modifications required the substitution of the incompress-
ible transient solver for the Eulerian phase (i.e. “pimpleFoam” in place of “rhoPimpleFoam”),
removal of the Poisson equation for calculation of the density across the field since this is an

incompressible solver\ ®and linking to the corresponding libraries for incompressible turbulence

80These are standard FVM solvers and as the names imply, capable of using either the SIMPLE or PISO
algorithms for solution with arbitrary selection of the number of inner, outer corrector steps and non-orthogonal
correctors.
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modeling. Regarding the discrete phase, several of the sub-models pertaining to reactive flows
(such as reactions, break-up & evaporation) were removed maintaining only those Lagrangian
classes relevant to the injection and dispersion of particles. Figure 1 depicts a flowchart of the
solver. It should be noted that these modifications were performed in order to have as simple
and transparent solver as possible. Once the proposed model is tested and validated the object-
oriented structure of openFOAM allows easy integration with any of the Euler-Lagrangian,
solvers available within the distribution or those that may be developed in the future based on

similar approaches.

2.3 Summary

The approach to the solver development proved to be well founded, since a similar procedure
was adopted by fellow openFFOAM users and the developed codes were extensively discussed
on the openFOAM online forum® and were evaluated in a simple lid driven cavity test case.
The developed solver was fully capable of using a wide range of Lagrangian sub-models present
within openFOAM such as collision, injection and dispersion models amongst others. It is this
flexibility and adaptability available within openFOAM that was the main reason for its selection

and use as a base to develop the phenomenological dispersion model described in later sections.

6! www.cfd-online.com, openFOAM forum
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At time t=0

|

— Start with the first particle

Evaluate if th? discrete phase  YES | |Start the Dispersion Model and return a
interacts with an “eddy’ NO fluctuating velocity for the particle

Evolve the particle through spacd Add the fluctuating velocity to the
mean component and then evolve

using only the mean component )
& ony P the particle through space

Repeat the process for all the particles in the ain

The momentum of the Lagrangian

Start the PISO loop for the Eulerian phase
l

— Momentum predictor step

Pressure solution

Continuity solution

Correct the momentum equation and repeat

process for X number of corrector loops
|

Turbulence Closure Equations

Repeat the process at a time t+At

Figure 1: Flow chart for the developed two-way coupled Eulerian-Lagrangian solver within
openFOAM. For details regarding the implementation of the KS dispersion model see Chapter
4 88



3 Large Eddy Simulations of an Axisymmetric Sudden Expan-
sion

The purpose of the work described in this chapter is twofold; first to establish the groundwork
on which the phenomenological model will be developed and secondly to create a detailed LES
data set for comparison with the experimental observations and the proposed model that will
be presented in the following chapter. The former entails the development of a suitable com-
putational solver for an Eulerian-Lagrangian framework within the openFOAM package while
the latter necessitates the selection of a suitable test case along with a review of the validity of
the selected methods before the generation of the data set. However, the usefulness of the LES
data set is not limited to establishing a benchmark for the RANS simulations since it also serves
an additional role, as it may be used to investigate certain characteristics of the Fulerian phase
that promote preferential concentration in the Lagrangian phase.

An important note to make is that the objective from this chapter of the thesis is not a
computer program or the actual code per se since the development of the solver is a relatively
straightforward process within the openFOAM environment, rather it is the LES data set that
is of primary interest here. The work performed in this chapter forms the foundation for the
subsequently presented phenomenological RANS model and hence details regarding the phe-
nomenological code, will be given in the corresponding section. Here the discussion will be
limited to the work that lead up to the initial formulation of the phenomenological code while
describing along the way the LES model was developed and how it is used to evaluate the per-
formance of the phenomenological model. Subsequently, the chosen test case will be introduced
and the reasoning behind its selection will be provided.

The first section of this chapter will provide details of the test case setup along with a
sensitivity analysis for the required mesh resolution. This will be followed by a comparison
between the computational and experimental results for the validation of the Eulerian phase.
The final section of this chapter will validate the predictions of the Lagrangian phase from the
developed solver. At this point it is necessary to remind the reader that the development of
a detailed LES dataset is itself no small endeavor. Due to their increased computational cost;
obtaining accurate statistics requires significant computational resources, which is precisely the
reason why uRANS models are still relevant for industrial purposes. Here, the LES results
are used to provide context and establish a base for comparison with the uRANS results of
the next chapters. It is understood that the simulation time calculated is not adequate to
provide statistically converged results at the far end of the experimental domain as will be seen
in subsequent sections. However the main purpose of these simulations is to provide insight
regarding the detailed structural information available in an LES calculation that is absent in a
uRANS one.

3.1 The sudden expansion test case

The groundwork has now been set and the developed solver may be evaluated within the LES
context. The particular test case selected is an axisymmetric sudden expansion particle laden

flow. This flow is particularly suited to this work for several reasons; Firstly, the presently used
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dispersion models were developed and tuned on very similar geometries (Gosman & Ioannides
(1981), Shue et al. (1983), Burry & Bergeles (1993).

Secondly, there is an inherent similarity between the axisymmetric sudden expansion, with
its corresponding three-dimensional recirculation zone, and the recirculation zones formed down-
stream of actual aviation air-blast atomizers. As the academic configuration bears some simi-
larity to the intended application —a section of an annular or can-annular combustor— with the
omission of the inner recirculation zone created by the swirler within the injector, they exhibit
similar traits, such as the high Re of the order of tens of thousands over a backwards facing
step. More precisely, a backward facing step creates external recirculation zones between the jet
exit and the cylinder walls. Furthermore, it is on such a geometry and within these recirculation
zones that the current dispersion models predict limited particle entry, contrary to experimental
observations.

Finally, Hardalupas et al. (1992) in their laboratory experiments investigated the dispersion
of different sizes of particles through an axisymmetric sudden expansion for a range of air flow
rates and for several different mass loadings for each particle size class. This particular set of
experimental data is interesting, because the measurements report both gas flow and particle
velocities for two different particle sizes with nominal diameters of 40 and 80 micrometers and
a range of gas velocities with high Reynolds number of the order of 10*. At the same time there
is a breadth of knowledge developed regarding computational flows over backward facing steps,

from which the modeling process will benefit.

3.2 Experimental Details - Operating Conditions

The computational domain for the particle laden axisymmetric sudden expansion test case was
modeled on the experimental setup of Hardalupas et al. (1992). The computational setup
follows that of the experiment closely, in term of overall dimensions, orientation and procedures.
The domain models the whole geometry, avoiding common practices of introducing planes of
symmetry in the azimuthal direction or using periodic boundary conditions, as such practices
tend to subdue some of the non-symmetric flow structures observed in three dimensional flows.
Deviating from these common practices results in an increase in computational costs for the
calculation but it ensures that no computational artifacts are introduced from the periodic
boundary conditions. In addition, compared to modeling only a section, modeling the whole
domain permits improved statistics to be obtained for those quantities that may be averaged in
the circumferential direction. This procedure will be explained in a subsequent section.

The computational domain, like the experimental one, constituted of the inlet tube diameter,
d, of 15mm and 500mm length exiting into the expansion chamber, another concentric tube of
75mm diameter, D, and a length of 600mm, resulting in a expansion ratio, D/d = 5. Figure
2 provides a schematic of the experimental setup with the direction of the flow being from the
bottom right hand corner towards the top left hand corner. Furthermore, the orientation of the
setup was such that the principal direction of the flow was aligned with the direction in which
gravity acted.

In the experiment of Hardalupas et al. (1992), the gas flow was seeded with kaolin for the

Laser Doppler Velocimetry (LDV) measurements of the carrier phase velocity. The discrete
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Characteristic dimensions for the inlet and expansion tubes are 15mm & 75mm diameters and

500mm and 600mm length respectively.
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Table 1: Operating conditions and characteristic dimensions for the sudden expansion test case
of Hardalupas et al. (1992)

Sudden Expansion Operating Conditions & Characteristic Dimensions

Expansion Ratio 3.33 )
Particle Nominal Size Class 40 pm 80 um 40um 80 um
Diameters ................
Inlet Tube, d 15 mm
Expansion Tube, D 20 mm 75 mm
Step Height, h 17.5 mm 30 mm
Lengths ..................
Inlet Tube, I; 500 mm
Expansion Tube, [, 600 mm
Bulk Velocity at the ......
Inlet Tube Exit, U; 132ms™! 14.2ms™! 14.2ms™!
Expansion Tube Exit, U, 1.19ms™! 1.27ms™! 0.57ms!
Re basedon ..............
d 13000 14000 14000
D 3900 4200 2800
h 15200 16400 28000

phase were glass beads, particles of nominal 40 ym and 80 um size classes, with corresponding
uniform distribution between 37 —44 pum and 60 — 95 pum respectively, these were introduced into
the inlet tube by a screw feeder several diameters upstream of the step. In the computational
domain, there is no need for kaolin seeding particles to obtain Eulerian phase predictions and
the Lagrangian particles are at introduced at a similar distance upstream of the step. In an
axisymmetric sudden expansion the step height is defined as the difference between the inlet
and expansion tube radii. The relevant characteristic dimensions are summarized in Table 1
above. It should be mentioned that some additional tests, both experimental and computational,
were performed with an expansion tube of 50mm diameter and a corresponding expansion ratio
of D/d = 3.33. Throughout this thesis where measurements are given they refer to the D/d =5
case, unless it is explicitly stated that they are for the D/d = 3.33 geometry. The former mainly
serve to further prove the validity of the methods. The calculations performed on the D/d = 3.33
geometry are of reduced interest, as the discrepancies between experimental observations and
RANS computations are reduced. This is especially true where particle entrance within the
recirculation is concerned. The reader is referred to the publication describing the experiments

for further details regarding the original setup.

3.3 Large Eddy Simulations - Eulerian Phase

To initialize the flow field for the LES, a steady state RANS calculation was performed using
the standard k — e closure model for the carrier phase. The three-dimensional domain consisted
initially of 1.1 million hexa-hedral cells with Cauchy boundary conditions prescribed at the inlet
and exit. Specifically, Dirichlet conditions were prescribed for the velocity and the pressure,

respectively, at the inlet and the outlet, and conversely Neumann conditions for the same quan-
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Figure 3: Slices through the RANS simulation used to initialize the LES calculation. Visible
at the bottom is the 15mm inlet tube and the whole domain of the expansion tube of 75mm
diameter and 600mm length. Flow is from the bottom of the page to the top. Depicted from
left to right; velocity magnitudes colored for a range [0, 18m/s|; dissipation rate of specific
turbulent kinetic energy colored between [0, 1000m?/s%| and specific turbulent kinetic energy
colored between [0, 10m?/s?|

tities at the outlet and the inlet respectively. All the remaining boundaries were treated as
walls, with the no-slip condition imposed along with the appropriate assignment of wall models.
Figure 3 depicts a slice through the RANS computational domain showing from left to right
the magnitude of the velocity field, the dissipation rate of specific turbulent kinetic energy the
specific turbulent kinetic energy. The latter two are of particular interest for particle dispersion
in the RANS framework since a function of the two will determine the size of the ‘under-resolved’
eddy while the magnitude of the prescribed fluctuating componentent will be dictated in part
by the value of the specific turbulent kinetic energy.

These results were subsequently used to initialize the LES calculations and to perform an
analysis on the required mesh resolutions. Regarding the timestep, it was set to 10us, sufficiently

small to ensure the Courant number, Co, did not exceed 0.2 anywhere within the domain while
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iteration control was imposed through sufficiently small initial and final residual targets rather

than limitation on the maximum number of iterations.

3.3.1 Discretization & SGS

Higher order schemes were progressively employed to minimize the effects of numerical diffusion
before finally selecting the Crank-Nicholson scheme for time discretization, a 3¢ order Total
Variation Diminishing scheme for the spatial discretization of velocity and 2"¥order schemes for
all other variables. This proved to be a step in the right direction. However, after comparison
with experimental results, it was clear that this was not the sole cause of the poor prediction
of the location of the recirculation zone. Continuing, the SGS models for the closure equations
were investigated next. Both standard and dynamic versions of the Smagorinsky and the one-
equation model were tested. These tests showed little difference between them as far as the
prediction of the location of the recirculation zone is concerned. The standard one-equation
model was chosen over the Smagorinsky model for the sub-grid scale as it has been shown to
give the better results for channel flows over backwards facing steps and weirs (Monterfano
(2011)). For the solution of the algebraic set of equations, a preconditioned conjugate gradient
solver was employed for pressure and a bi-conjugate version for all other variables. Finally, the
PIMPLE algorithm (a merged version of the PISO and SIMPLE algorithms) was employed for
the coupling of the pressure and momentum equations although, due to the small timesteps,
this was effectively operating in PISO mode alone.

It should be noted here, that even after successive refinements of the computational domain
increased the cell count by several factors the misrepresentation of the recirculations zone posi-
tion persisted, indicating that it was not a discretization problem alone. Rather, the prescribed
boundary conditions appeared to be at fault. Evidenced from the shape of the velocity profile
across near the exit of the inlet pipe which was closer to a parabolic shape rather than the

characteristic 1/7 power law.

3.3.2 Boundary Conditions

An investigation was carried out to determine a suitable turbulent boundary condition for the
velocity at the inlet, as either the inlet pipe was not sufficiently long to allow the flow to transition
into the turbulent regime or there was some form of internal damping caused by the numerical
schemes. It should be noted that turbulent inlet boundary conditions for LES are themselves an
active field of research and their development no trivial issue. The need for an improved inlet BC
was apparent from qualitative inspections that showed the location of the recirculation region
was being miscalculated. Rather than being predicted to lie close to the expansion step it lay
farther downstream. Several approaches were employed, ranging from the included openFOAM
turbulent inlet boundary condition to custom developed ones available on the online repository
based on spectral methods (see Davidson (2007) & Piscaglia (2011)). Incremental improvements
in the prediction of the recirculation zone location with the use of these improved BCs indicated
this might be the source of the error.

The decision was made to try to physically perturb or ‘trip’ the flow within the inlet tube,

in order to allow the flow to transition from the laminar to the turbulent regime. This was
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done by separating the upstream tube from the remaining computation domain, introducing a
zero-thickness step%? and modifying inlet and outlet conditions to periodic in order to simulate
an infinitely long pipe. After approximately fifteen flow-through times had been modeled, the
step was removed and the flow field was allowed to cycle through several more times whilst
maintaining the periodic conditions at its ends. Through qualitative observations and inspection
of the mean velocity profile across the pipe it was determined that the flow field was sufficiently
turbulent and was not dissipating over several flow through times. The whole solution of the
inlet pipe flow field was the mapped back onto the initial domain and the turbulent conditions
preserved by introducing a periodic BC between a station 2/3 down the length of the pipe and
the inlet of the computational domain.

Figure 4 shows a slice through the upstream tube with the step visible at the first spanwise
section visible in the foreground. The mapped turbulent conditions were maintained within the
inlet tube of the sudden expansion domain by introducing periodic planes within it, similarly
to the approach of Tabor et al. (2004). Effectively, an infinitely long turbulent pipe was being
modeled, eventually resulting in the proper inlet conditions and Figure 5 depicts the whole
domain with the improved prediction of the recirculation zone, now predicted just downstream

of the step, rather than half-way down the expansion tube.

3.3.3 Measurement Locations And Normalizing Quantities

Before continuing the discussion concerning the investigation into the required mesh resolution,
we should first introduce the normalizing quantities that will be used in the following sections.
All spatial dimensions are normalized by the respective expansion tube diameter (D). For the
D/d=5 case this results in an expansion tube length of z/D=8, an inlet tube length of z/D=6.67
and for the D/d=3.33 these quantities are 12 and 10 respectively. Velocities were normalized by
the outlet tube mean values, U,, summarized in Table 1 except for the near wall analysis where
the friction velocity has been used for normalizing the mean axial velocity.

The spanwise measurements were performed at three different axial locations downstream
of the step z/D = 0.08, 2.67 & 5.33 where the radial variation of the quantities of interest
will be probed. The variation in the axial (i.e. streamwise) direction was investigated by
probing the flow along the centreline and at the wall, at y/D = 0 & 0.5 respectively. These
measurement stations correspond to the locations where the experimental measurements were
performed. It is worth noting that the measurements at the wall are not exactly on the wall
since, the no-slip condition limit the usefulness of any velocity measurement there. Rather, the
measurement are performed slightly offset of the wall as detailed in a later section. The origin of
the coordinate system lay on the centreline at the plane of the step, with the z,y-components of
the Cartesian system lying on a plane whose normal is parallel to the z-component aligned with
the streamwise direction. Visible in Figure 6 is a section of the computational domain along

with the aforementioned measurement locations.

%2The height of the step was approximately a quarter of the inlet tube diameter, d, and the zero thickness
dimension was in the direction of the flow. The rational behind choosing the unphysical thickness of the step
was to permit easier mapping of the flow domain back onto the original inlet pipe.
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Figure 4: Spanwise and streamwise sections through the inlet tube with the step in place.
Detail on the right hand side shows the zero thickness step of 3mm introduced into the inlet
pipe to trip the flow. Coloring is by normalized velocity magnitude (U/u,)and range of scale is
[0, 2.5].Characteristic dimensions for the inlet tube diameter and length are 15mm and 500mm

respectively. Flow direction is from the bottom of the page to the top.
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direction is from the bottom of the page to the top. Blue colors indicate flow reversal.
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Figure 6: Computational mesh of the expansion tube with the measurement locations indicated
by the black lines. Also shown is a slice depicting the normalized axial velocity colored by the
normalized axial velocity (U:/u,) with a range [-5, 35]. Expansion tube dimensions are 75mm and
600mm for the diameter and length respectively. Flow direction is from the bottom of the page
to the top. 08
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Figure 7: Representation of the 3 meshes depicting the mesh at the step from a perspective

view, from left to right; the coarse (800k cells), the standard (1,300k cells) and the fine grid

(8,800k cells). Inlet and expansion tube diameters are 15mm and 75mm respectively.
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3.3.4 Mesh Sensit

The tools were now in place to perform an investigation on whether the mesh resolution was

satisfactory for the remaining LES calculations. In addition to the initial mesh, which by now

had been refined locally in the near wall region and whose cell count had increased to 1.3

hedrals, two further meshes were constructed. One was coarser with approximately

million hexa-

eight hundred thousand cells and the other was finer through equal refinement in all directions,

resulting in cell dimensions half of the original ones and eight times the original cell count. The

2 and the Figures 7- 11 show portions of the

relevant information is tabulated below in Table

in the generated meshes.

three computational domains depicting the differences

The remainder of this section is devoted to the comparison of the results between the three

Figures 8 and 10 show details of the meshes

meshes and the differences in predicted quantities.

at the step and at the inlet to the computational domain, clearly discernible is mesh grading to

ensure that the cells by the walls are sufficiently small to adequately resolve the boundary layer

and to ensure that turbulent conditions are achieved. Also visible, in Figure 9, are the details of

, and the fact that the mesh grading that was introduced by

the mesh right at the step location

the walls of the inlet tube is extended throughout the rest of the domain, visible also at the outlet

in an effort to avoid unnecessary discretization errors that might arise by

7

location in Figure 11

structured grid. This grid also aids in resolving the shear stresses properly between

using a non

the fast moving jet upon its entrance into the near quiescent conditions of the expansion tube,

in turn ensuring that the interfacial instabilities between the two streams of different velocity

are properly predicted.
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Figure 8: Representation of an axisymmetric portion of the 3 meshes depicting the mesh at the
step. Shown from left to right; the coarse, the standard and the fine grid. The cells are all
hexa-hedral despite appearing to be prisms due to an issue with the rendering process of the
post-processing software.
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Figure 9: Representation of the 3 meshes depicting details of the mesh at the step location
Shown from left to right; the coarse, the standard and the fine grid.

Table 2: Mesh details for the three grids tested....
Computational Mesh Details

Mesh Name Coarse  Standard Fine
Number of Hexa-Hedral Cells 8.8x10° 1.33x10° 8.8x10°
Average Cell Size 0.42mm  0.31mm  0.23mm
Average Cell Size by Wall 0.075mm  0.05mm  0.025mm
yT value at the Inlet Tube Wall 1* 1.2 1

*Employing wall modeling
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Figure 10: Representation of the 3 meshes depicting details of the mesh at the inlet, diameter
is 15mm, from left to right; the coarse, the standard and the fine grid.
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Figure 11: Representation of the 3 meshes depicting details of the mesh at the outlet, diameter
is 7bmm, from left to right; the coarse, the standard and the fine grid.
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3.3.5 yT Analysis

Figure 12 shows a qualitative representation of the y™ values in the expansion tube downstream
of the step. This should be considered a qualitative representation only as the calculation of the
wall friction velocity inevitable involves some uncertainty whenever there exists flow reversal and
the calculation is not a DNS. This arises from the way the wall shear stress, o,,, is calculated from
the gradient of the axial velocity in the normal direction to the wall and in an LES calculation

there inevitably exists some interpolation due to the finite size of the cell next to the wall:

A

Perhaps a more accurate analysis of the near wall region requires one to limit the analysis to

the upstream tube where the pressure drop is constant and a value for the wall shear stress,
0w, Mmay be obtained through evaluation of the forces acting on the tube walls. From analysis
of the pressure drop, Ap, along the inlet tube the wall friction velocity, U,, may be estimated

according to:

P

In turn the estimation of the wall shear stress is straightforward for a fully developed flow®? and

may be calculated by balancing the forces on the inlet tube:

d? Ap-d
ZF:OHAp<7T4>—Uwﬂ'd-li:0<—>0w: P

4l;

Figure 13 shows the normalized velocity profiles in the near wall region along with the theoretical
predictions (teal and purple colors) at location z/D = —0.33, a short distance upstream of the
step. The aforementioned mesh resolutions result in y™ values of approximately 1*, 1.2 & 1
for the coarse, standard and fine meshes respectively. From inspection of the y* variation with
ut it might appear that all three meshes are predicting acceptable values for an LES, however
one should bear in mind that the coarse meshes employ LES wall functions to achieve just
that, whereas the standard and fine meshes avoid the use of wall modeling altogether. The wall
modeling produces satisfactory results within the wall shear dominated region of the inlet tube
but the mesh density is inadequate to capture accurately the physics of the recirculation zone.
Figure 13 suggests that all three meshes struggle to capture the logarithmic region accurately
and the benefits of the fine grid are small especially given the small improvement observed in
the log-law region (y* [30-1000]). Despite the fact that all three meshes are resolving to similar
levels the flow within the inlet pipe the large variation observed in Figure 12 seems to suggest

that further analysis is required before a satisfactory mesh resolution is selected.

3.3.6 Instantaneous Values

The following section will describe the evaluation of the calculated quantities from the three
meshes amongst themselves in an effort to make a decision regarding the required mesh resolution

and in order to validate the methodology. Evaluations will be made for instantaneous and time

3The introduction of cyclic BC in in the inlet pipe ensures that an infinetely long pipe is being modeled.
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Figure 12: From left to right details of; the coarse, the standard and the fine meshes, respectively,
depicting on the left the y™ values plotted on the surface of the domain as calculated within
openFOAM, with a range [0,10] and the magnitude of velocity on the right of each pane, with
a range [0, 15m/s|. Flow direction is from the bottom of the page to the top.

averaged quantities along the three spanwise and two streamwise locations identified in Section
3.3.3 while the comparison with the experimentally measured quantities will be presented in the
following section here the experimental data is included in the figures to provide a baseline for
the trends we expect to observe.

Although not constructive in making a definitive choice, the instantaneous data is interesting
in itself; First, it reveals to the reader the large fluctuations typically observed in highly turbulent
LES flows and secondly when the information for the three mesh resolutions is compared amongst
themselves one can observe from the smaller period of the sinusoidal patterns the effect of the
finer grid on the size of the calculated eddies. All results presented below are after a sufficient
number of flow-through times (between 20-30) have been calculated. Here a flow through time
is defined as the time required for the bulk inlet velocity to traverse the whole domain. Figures
14 to 18 show the axial velocity at the probing locations for two distinct instances in time.

It would appear that there is a discrepancy when it comes to predicting the near wall velocity
with all three meshes. However, it seems that this is a result of the limitation of how near to the
wall the experimental probe volume could actually measure when compared to how close to the
wall the calculation can be probed. The experimental measurements were limited to measuring
at a distance of a ~ Imm from the wall due to the experimental arrangement. The size of the
measuring probe in a LDV setup is determined from the diameter of the laser beams and the
angle formed at their intersection. The size of the probe may be roughly determined as follows
based on documentation by a commercial manufacturer of such systems (DANTEC 2006):

dy

dey = ———,dy =ds&d, =
cos (9/2)" Y s&

dy
sin (0/2)

where d¢ and 6 are the beam diameter and the angle of intersection respectively (1.25mm &
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Figure 13: Variation of y™ with u™ in the inlet pipe at at location z/D = —0.33 upstream of
the step for the three mesh densities along with the theoretical predictions. Note that the coarse
gird makes use of wall functions.
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Instantaneous Axial Velocity at y/D=0
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Figure 14: Streamwise variation of the instantaneous axial velocity along the centreline (¥/D = 0)
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Figure 15: Streamwise variation of the instantaneous axial velocity along the wall (¥/pD = 0.5)
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Instantaneous Axial Velocity at 2D=0.08
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Figure 16: Spanwise variation of the instantaneous axial velocity at /D = 0.08
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Figure 17: Spanwise variation of the instantaneous axial velocity at 2/D = 2.67
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Instantaneous Axial Velocity at z/D=5.33
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Figure 18: Spanwise variation of the instantaneous axial velocity at 2/p = 5.33

2x2.64deg). These values result in an ellipsoidal probe volume with overall dimension of 1.252mm
x 1.25mm x 27.2mm. However, this does not necessarily mean that 1.252mm/3 is the distance
from the wall where the experimental measurement were performed as that would inevitably
result in a significant amount of lager light reflecting off the glass tube walls. Nonetheless, the
information from the calculations presented here was made at a distance of 0.5mm from the
expansion tube walls which, in normalized terms corresponds to ¥/D = 0.493. However, for the
remainder of this thesis this location will be referred to as ¥/p = 0.5. It is important to note
that this distance from the wall corresponds to a point outside of the first cell from the wall
boundary for but the coarsest of the three meshes used.%*

Figure 19 shows the instantaneous axial velocity variation at three locations 1, 1.5 & 2mm
from the wall as taken from the calculation with the standard mesh. The trends in streamwise
variation are predicted correctly but the magnitude is dependent on the distance to the wall,
as would be expected. However, what is of primary importance is predicting the length of the
recirculation zone, indicated by the inflection in the sign of the normalized velocity, which is

captured precisely at the same location in all three calculations.

64Unlike the experiment, within the calculations there is no limitation as to how close to the wall one can
probe the flow. Hoever, one must bear in mind that, for meshes employing wall modeling measurements within
the first cell from the wall, the velocity profile is governed by the prescribed wall model.
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streamwise profiles of axial velocity near the wall

Figure 19: Streamwise (y/D) variation of the instantaneous axial velocity at 1, 1.5 & 2mm from
the wall

3.3.7 Comparisons With Experiments-Time Averaged Results

The level of agreement between the calculations and the experimental measurements needs the
information from the simulations to be averaged over time. Details of the approach adopted to
perform time averaging and estimate the error bars are included in Appendix B. Once again
let us reiterate that all the information used in generating the following figures was extracted
after 20-30 flow through times had been calculated. This ensured that all the information was
extracted only after the flow had reached fully developed and statistically steady-state conditions
so that any transient phenomena are due to the unsteadiness inherent to the flow itself, rather
than due to a developing simulated flow.

The largest discrepancy between calculations and the measurements exists at the spanwise
measurement station at z/D=0.08, shown in Figure 22 especially along the centreline and also
seen in Figure 20 between z/D [0-1]. At a distance of 0.05D either side of the centreline the
numerical predictions are in agreement with the experimental measurements. Examination
of the streamwise comparison at y/D=0 indicates that the discrepancy along the centreline
continues for approximately one D) downstream of the step for the standard and the fine grids,
thereafter the agreement is satisfactory when the uncertainties are taken into account, whereas
the discrepancy is still significant for the coarse grid for more than 2D downstream of the step.
These discrepancies seem to be a result of the under-resolution of the level of turbulence within
the inlet tube despite the efforts employed to address the issue. This is further supported by
the shape of the velocity profiles at the first spanwise station. For all practical purposes this
location is close enough to the step that it may safely be assumed that the profiles will not
look substantially different just a little bit upstream, within the inlet tube. And therein lies
the problem as there is a clear indication that the finer the mesh used, the closer the calculated
velocity profiles attains the characteristic ‘1/7 power-law’ like profile of fully developed turbulent

pipe flow. At the same time the two sides of the base of the parabolas provide a further clue
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Axial Velocity at y/D=0
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Figure 20: Streamwise variation of the time-averaged axial velocity along the centreline ( y/D=0)
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Figure 21: Streamwise variation of the time-averaged axial velocity at the wall (y/D=0.5)
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Axial Normalized Velocity at zZD=0.08
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Figure 22: Spanwise variation of the time-averaged axial velocity at z/D=0.08
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Figure 23: Spanwise variation of the time-averaged axial velocity at z/D=2.67
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Figure 24: Spanwise variation of the time-averaged axial velocity at z/D=5.33

as it appears the difference between the calculations and the experimental measurements bear a
remarkable resemblance to turbulent pipe flow in rough and smooth walled pipes, respectively.

At the next measurement station, at z/D=2.67, shown in Figure 23, the agreement is overall
good, bar the coarse mesh right at the centreline at y/D=0 and an unaccepted asymmetry
observed in the fine mesh prediction at y/D=-0.5. This might be a result of the averaging
method and the random selection of timesteps, indicating a false bias towards one side of the
flow or it might be an indication that the finer mesh, with its more detailed structure is more
susceptible to individual realizations than was thought and an increased number of samples
would resolve the issue. Meanwhile, at station z/D=5.33, shown in Figure 24, the standard
and coarse meshes seem to be capturing the overall trend observed in the experiments more
accurately, although all three calculations agree with the measured lines within error. Finally,
regarding the streamwise comparison near the wall, shown in Figure 21, the discussion made
earlier still holds true and the important aspect of accurate inflection point prediction, indicating
the extents of the rcirculation zone, is achieved by all three meshes.

It is possible to apply Reynolds Averaging to the instantaneous velocity and then make
comparisons between the meshes and the experimental measurements. Temporal averaging over
successive iterations of the instantaneous velocities was performed, resulting in the value UMean.
Results are shown in Figures 27 to 31. The qualitative representation is given in Figure 25 where
the effect of the different size scales is evident between the three meshes. For the coarse grid the
result is near identical to that predicted by the k— Epsilon calculation, the standard grid exhibits
some smaller fluctuations while for the fine grid the flapping motion of the jet is still clearly
discernible behavior. The effect of Reynolds Averaging on the different mesh densities on a LES
flow is similar to the application of a filtering kernel and is more discernible for the spanwise

velocity components shown in Figure 26. Although the ‘smoothed’ lines make the comparison of
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Figure 25: Comparison between the instantaneous and Reynolds averaged axial velocities, col-
ored between [0, 20m/s| on the left and right respectively for the coarse, standard and fine
meshes; from left to right. Flow direction is from the bottom of the page to the top.

the measurements at the streamwise and spanwise locations more discernible limited additional
conclusions may be drawn.

Overall the Reynolds averaged velocities exhibit very similar behavior, albeit it with some of
the fluctuations smoothed-out, to the instataneous data as expected and as they should. Finally,
from the comparison performed to this point it would seem that the coarse mesh is not suitable
due to the significant discrepancies along the centreline extending for several D downstream of
the step. The following sections will attempt to shed some light into the benefits of the finer
grid over the standard one. Also of note is the apparent asymmetry between the left and right
hand sides, observable for the fine mesh in Figures 3031. This would seem to indicate that
there are an insufficient number of flow-through times calculated for the fine mesh and that
statistics have yet to converge. For the present analysis this is of minor importance since the
main objective of the thesis is not to produce the most detailed LES data available for this test
case rather, to investigate what features of the Eulerian and Lagrangian phase are lost when a
uRANS approach is adopted.

3.3.8 Sub-Grid-Scale Viscosity Comparison

Another measure of grid resolution is the ratio of turbulent viscosity to the physical one. The
finer the resolution the smaller the ratio. While the difference between the coarse and the two
finer ones is large, the difference between the standard mesh and the fine mesh is very small
as is evident in Figure 32. In general, ratios close to unity are acceptable, as the greater the

ratio the larger the effects of the SGS model on the flow. Instantaneous and time averaged
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colored betwen [-1, +1m], on the left and right respectively for the coarse, standard and fine
meshes; from left to right. The orientation of the schematics is such that the z- component is
normal to the page. Flow direction is from the bottom of the page to the top.
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(a) Streamwise variation of the time averaged Reynolds Averaged Axial Velocity

Figure 27: Streamwise variation of the Reynolds Averaged Axial Velocity along the centreline
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(a) Streamwise variation of the time averaged Reynolds Averaged Axial Velocity

Figure 28:
(¥/D=0.5)

Streamwise variation of the Reynolds Awveraged Axial Velocity along the wall

UMean Time Averaged Axial Velocity at zD=0.08

45

TT -[T

— O ASE

——S5td

===Fine

ur
—
ul

——Experiment

|\

-05 -0.4 0.3 -0.2 -0.1 01 0.2 0.3 04 0.5

y/D

(a) Spanwise variation of the time averaged Reynolds Averaged Axial Velocity

Figure 29: Spanwise variation of the Reynolds Averaged Axial Velocity at z/D=0.08
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(a) Spanwise variation of the time averaged Reynolds Averaged Axial Velocity

Figure 30: Spanwise variation of the Reynolds Averaged Axial Velocity at z/D=2.67
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Figure 31: Spanwise variation of the Reynolds Averaged Axial Velocity at z/D=5.33.
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results are given in Figures 32 and 33 for the streamwise variation along the centreline and one
spanwise location at z/D=2.67 with both locations exhibiting similar behavior. In the spanwise
direction, at 0.1D on either side of the centreline the sharp drop in the ratio for all three mesh
densities is the result of extending the much finer mesh of the inlet tube into the expansion
chamber that was discussed earlier. Dombard & Taccarino (2012) note that SGS-viscosity to
physical viscosity ratios less than 0.8 may be considered to be coarse-grained DNS calculations,
as such the fine grid would seem to be excessive for the present purpose. Figures 32 and 33
suggest that the standard grid with 1.3 million cells is sufficient to reproduce the experimental
data and that there is little to gain by switching to the finer grid especially when the increased
computational cost and the remaining discrepancies between measurements and calculations are

taken into consideration.

3.3.9 Velocity fluctuations

Suprisingly, and disappointingly, little insight is provided from the comparison, between the
three grid resolutions, of the velocity fluctuations that are shown in Figures 34 & 35 as there is
no clear trend between the three grid resolutions: note that Figure 34 provides the comparison
at two instants in time, separated by 0.1s. The only comment that may be made is that they
are of the correct order of magnitude and the overall trend of greater velocity fluctuations near

the centreline is observed in the calculations as well in the experiments.

3.3.10 Recirculation Zone Locz

Finally, Figure 36 depicts the loci of the recirculation zone near the step, defined here as the
location along an axial/streamwise direction where the axial velocity changes signs from positive
to negative. In order to determine the extent of the recirculation zone, an approach similar to
that in the experimental measurements was used. Starting from a line parallel to the centreline
and close to the axis of symmetry, the calculation was probed for the location where the axial
velocity changes sign. The process was then repeated for a new line parallel to the centreline,
at a greater radial position, until the wall was reached. Due to the time consuming nature of
this process the results were not averaged in time in this instance: rather the same process was
repeated for each quadrant of the expansion tube and averaged spatially. Acceptable agreement

is observed between calculated and measured locations.

3.3.11 Eulerian Phase Summary

From the last several sections, and bearing in mind the increased computational cost of the finer
grids, it was deemed that the resolution provided by the “standard mesh” was adequate and
that the increased detail provided by the fine mesh was not significant and did not warrant its
use. The improvement in predicted axial velocity is small while at the same time the velocity
fluctuations from the fine grid are not resolved to a greater accuracy. Finally, the improvement in
the ratio of SGS viscosity to actual viscosity was deemed insignificant to warrant its use. Overall,
in terms of agreement with the experimental measurements the FEulerian phase predictions are

far from perfect with the inlet boundary condition being the most likely culprit. However, the
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(b) Spanwise variation of the ratio of turbulent to physical viscosity at z/D=2.67

Figure 32: Variation of the ratio of instantaneous turbulent to physical viscosity
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(b) Spanwise variation of the ratio of turbulent viscosity to physical viscosity at z/D=2.67

Figure 33: Variation of the ratio of time averaged turbulent to physical viscosity
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Instantaneous Axial Velocity Fluct. at z/D=2.67
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(b) Time instant B

Figure 34: Spanwise profile of the instantaneous axial velocity fluctuations at time instants A
& B separated by 0.1s
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Figure 35: Spanwise profile of the time averaged axial velocity fluctuations.

acceptable recirculation zone predictions and the unsteady velocity field are still usefull for the

Lagrangian investigations, presented in the following section.

3.4 Large Eddy Simulations - Lagrangian Phase

With the Eulerian phase validated against the experimental results, the groundwork was in place
to evaluate the performance of the Lagrangian solver in an LES environment on the standard
mesh. Two distinct particle size classes, with two mass loadings for each size class, were intro-
duced into the simulation several diameters upstream of the step similarly to the experimental
arrangement. The information pertaining to the Lagrangian particles is summarized in Table 3
below. At this point it is worth mentioning that the Lagrangian solver takes into account only
the effects of drag and gravity (acting in the downstream direction) on the particles as the rest
of the forces mentioned are one order of magnitude smaller and their effect should be minimal
as mentioned in the previous chapter. All intra-particle and particle wall collisions are treated
elastically and there are no coalescence models in place.

In this section only comparisons between calculated and measured particle velocities will
be made and the evaluations of concentrations are left to the following chapter. The particles
introduced within the calculations match the dimensions and densities of the glass-beads (of
two distinct size-classes) used in the experiments. The particles were introduced halfway down
the length of the inlet tube with an initial velocity equal to the bulk flow-rate of the carrier
phase in the inlet tube,U;, and with a uniform spatial distribution. Figure 37 depicts the spatial
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Figure 36: Spanwise instantaneous variation of the axial velocity fluctuations.
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Table 3: Lagrangian Phase Characteristic Dimensions and Properties

Particle Size Class 40 pm 80 um
Uniform Distribution Range 37—44um 60 —95um
density, pp 2420 kgm™3 2950 kgm >
Stokesian time constant, 7, 11.9ms 58.0ms
terminal velocity, UpT 11.1ems™!  44.8cms™!
Large Eddy Stokes no., St 0.23 1.12
Centrifuge Stokes no.,St. 0.10 0.49
Transit Stokes no., Sty 0.30 1.48
SGS Stokes no., Stsas 21 106
Flapping Jet Stokes no., St} 0.48 2.32
Flapping Jet Stokes no., St?cl 0.24 1.16
Mass Loading Condition 1, ML1 13% 23%
Mass Loading Condition 2, ML2 40% 40%

distribution of the Lagrangian particles within the expansion tube for three distinct instances
in time. The purpose of the figure is to show the sheer number of particles in the expansion
tube domain at any instant in time and the need to limit the comparisons not only to certain
locations but also to a small number of stored timesteps as the post-processing quickly gets out
of hand. Figure 38 shows the Lagrangian particles along the two streamwise locations and at
three spanwise measurements planes for the smallest mass loading®® case, ML1. These are the
locations where experimental measurements exist and validation with the calculations is limited
to these positions. What is also clear in this image is the large difference in the absolute number
of particles between the 40 um and 80 um cases. Although, the difference between mass loadings
of 13% and 23%, corresponding to ML1 conditions for the 40 yum and 80 pm respectively, is small,
the larger diameter results in a reduction of the number of particles by a factor of 22 which is
further reduced by a factor of 4/5 due to the greater density of the larger particles (see Table 3).
Also evident in these two figures is the reduction in number of particles entering the recirculation
zone and traveling upstream (in the schematic towards the bottom of the page) for the 80 um
particle case, the implication being that there is a smaller number of samples and the accuracy
is somewhat reduced.

Figure 39 serves to show what the instantaneous Lagrangian information extracted from the
calculations looks like in a qualitative sense. Here the particle locations are shown across the
three spanwise locations z/D—0.08, 2.67 & 5.33 for a representative instant in time and are
colored by their normalized axial velocity. The discussion relating to the spatial non-uniformity
observed especially for the 40 um is left for the following section. The dimensions of the
sampling locations were limited to the size/thickness of the experimental sampling probe with the
following difference; for the streamwise sampling locations, the z-component of the computational
probe was extended to the whole length of the expansion tube rather than only sampling at
several axial points. Similarly, for the spanwise locations, the particles were extracted for all
the radial and circumferential locations corresponding to each of the three axial positions. The
statistics may be improved further by averaging in time and, as before, the results shown below

were obtained from 10 instances in time, randomly selected from the total number of stored

65Mass loading here is defined as the ratio of mass flow-rate of the particles to the mass flow-rate of the fluid.
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(b) 80 um Particle positions for the ML1 case

Figure 37: Representation of Lagrangian particles within the expansion tube for the ML1 case
from left to right at an early, intermediate and fully developed time instant. Flow direction is
from the bottom to the top of the page similarly for the direction of gravity. Sub-Figure (a)
shows the 40 um and Sub-Figure (b) the 80 um particles.
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Figure 38: Extracted instantaneous data at measurement locations for Lagrangian phases at
ML1 conditions; spanwise at z/D=0.08, 2.67 & 5.33 from the bottom of the image to the top,
and for the streamwise direction at y/D=0 & 0.5, from the centreline and the wall, respectively.
Flow direction is from the bottom to the top of the page. Of note is the limited number of
particles away from the centreline for the larger particle size class. Sub-Figure (a) shows the
40 um and Sub-Figure (b) the 80 um particles.
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Figure 39: Qualitative representation of the instantaneous Lagrangian axial velocity at the three
spanwise measurement locations at ML1 conditions, from top to bottom, z/D=0.08,2.67 & 5.33,
for the two particle size classes. Particles are colored by their normalized axial velocity, (Uz/Uo)
for a range between [-0.239, +2.32]. Sub-Figure (a) shows the 40 um and Sub-Figure (b) the

80 pm particles.
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timesteps.

Before proceeding to the comparisons for the discrete phase it should be noted that just as
was noticed in the experiments, the introduction of the particle several diameters upstream of
the step and not at the entrance of the inlet tube results in the Lagrangian velocities ‘lagging’
behind the Fulerian ones. Figure 40 depicts sample histograms of the axial velocities recorded
for the Eulerian and Lagrangian phases at the inlet tube exit just by the step location at
z2/p = —0.05. For the computations, for both the 40 um and 80 pum sized particles the normalized
axial velocities range between [20, 30] whereas the Eulerian phases show maxima in the region of
40 for the normalized axial velocity.%The figure depicts sample histograms of the axial velocities
recorded for the Eulerian and Lagrangian phases at the inlet tube exit just by the step location.

Figures 41 & 42 show the agreement between the calculations and the experiments for
particles lying on the centreline and near the wall, respectively, but now two curves are fitted,
a Gaussian and a Smoothing spline. Along the centreline, Figure 41, the agreement is good
especially when the fact that the velocity in the Eulerian phase was being over predicted is
taken into account. The calculations capture the measured effect of the Lagrangian velocity
reaching a maximum slightly downstream of the step as well as the kink in the curve around
z/D=3. Similarly for the measurement along the wall, the calculations correctly capture the
larger extremities in both maximum and minimum velocity.

Similarly, scatter plots 43 to 48 show the position of the particles from 10 stored timesteps
along with their normalized axial velocity plotted on the vertical axis at three distinct axial
stations, namely at z/D—0.08, 2.67 & 5.33. Also shown, along with the scatter plots are lin-
early interpolated surfaces depicting the variation in Lagrangian velocity with radial location.
For comparison with the experimental data, that was measured solely across a diameter, it is
necessary to collapse the particles’ two dimensional positions onto a line, in effect performing
spatial averaging in addition to the implied temporal one, due to the superposition of the results
from 10 timesteps. These are shown alongside the previous scatter plots and show the compar-
ison against experimental data along with the 95% confidence intervals for the data from the
simulations, calculated by fitting a Gaussian curve to the scatter plots. The Gaussian fit might
not be optimal but is a good guide and the spread of the data is consistent with the measured
values and overall the agreement is good for the Lagrangian phases.

For the spanwise measurement the calculations correctly capture the slower response of the
large particles with the peak values at station z/D=0.08 being smaller than that of the 40 um
particles, comparing Figures 43 and 46 respectively. As the time constant is larger for the 80 um
particles, they have not had time to decelerate upon entrance into the expansion and this is also
observed at the next station, z/D=2.67 where the 40 um particles are now traveling at a slower
speed than the 80 um having reacted faster to the Eulerian conditions and having shed more
of their velocity visible, in Figures 44 and 47, respectively. For the final measurement station
at z/D=5.33, shown in Figures 45 & 46 for the 40 um & 80 pum particles respectively, trends
are predicted correctly overall with the exception of the particles lying close to the wall, where

the computations are over predicting the axial velocity. This may be attributed to the fact the

56The Eulerian histograms extend to zero velocities as a result of the no-slip condition imposed at the walls,
whereas the particles reflect elastically the walls and do not experience zero velocities in this section of the
domain.
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Figure 40: Discrepancy between Eulerian and the Lagrangian velocities at the step. Histograms
for the Lagrangian data generated from all particles within that domain section for a given
instant in time. Similarly, the Eulerian data extracted from the cells lying within that same
section of the domain with zeros values corresponding to cells by the walls and the no slip
condition imposed. At z/p = —0.05 upstream of the step.

simulations are modeling intra-particle and particle-wall collisions in a completely elastic manner
whereas the experimental observations noted a significant quantity of particle attachment to the
expansion chamber walls.

There remains, for both particle size classes, the issue of the slight discrepancy for the
z/D =5.33 station where the calculations in fact lie between measured mean velocities of the
continuous and discontinuous phases. This may be due to some uncertainty in the estimation
of the drag coefficient over the sphere which is still an issue especially at the relatively low
Re number range. A fact that should be further amplified when surface roughness uncertainty
is taken into account. In the absence of experimentally measured drag coefficients for these
particular particles to use as an input into the Lagrangian solver, the agreement is deemed more
than satisfactory. Alternatively, it could be that the particles are reflecting off the wall with low

velocities and are then convected by some slow sweeping structure back towards the centreline.

3.5 Turbulent structures

Figures 49 & 50 show, slices through the sudden expansion test case for several distinct time
instances, corresponding to the three spanwise stations downstream of the step. The qualitative
inspection is limited to those particles lying close to either side of the cross-sectional plane
corresponding to the spanwise locations which are the only ones shown. What is evident from a

simple qualitative inspection is that the spatial distributions are far from uniform especially for
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(b) Smoothing spline through the Lagrangian data

Figure 41: Lagrangian instantaneous axial velocity for the 40 um particles along the centreline
(/D = 0)
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(b) Smoothing spline through the Lagrangian data

Figure 42: Lagrangian instantaneous axial velocity for the 40 um particles along the wall
(y/D =0.5)
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Figure 43: Lagrangian instantaneous axial velocity for the 40 um particles at z/D=0.08
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(b) Lagrangian data across the station collapsed to a line

Figure 44: Lagrangian instantaneous axial velocity for the 40 um particles at z/D=2.67
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(b) Lagrangian data across the station collapsed to a line

Figure 45: Lagrangian instantaneous axial velocity for the 40 um particles at z/D=5.33
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(b) Lagrangian data across the station collapsed to a line

Figure 46: Lagrangian instantaneous axial velocity for the 80 um particles at z/D=0.08
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Lirear Interpalation, LI* 25, wowetD, wOverD ab 2(D=2 .67

(a) Lagrangian data across the station with Linear fit
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(b) Lagrangian data across the station collapsed to a line

Figure 47: Lagrangian instantaneous axial velocity for the 80 um particles at z/D=2.67
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LinearInterpalation, L* 7 Y5, AowetD wOverD ab 2(0=5.33

(a) Lagrangian data across the station with Linear fit
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(b) Lagrangian data across the station collapsed to a line

Figure 48: Lagrangian instantaneous axial velocity for the 80 um particles at z/D=5.33
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(a) Time instant A (b) Time instant B (c¢) Time instant C (d) Time instant D

Figure 49: Spatial non-uniformity of 40 um particles at ML1 conditions at four distinct time
instances for the three spanwise measurement stations at z/D=0.08, 2.67 & 5.33, from top to
bottom respectively

the 40 pym particles.

The correlation with the surrounding flow structures with sudden changes in the curvature
of the particle trajectories may provide insight into which structures are responsible for sud-
den and large changes in particle trajectory directions and eventually clustering. For example,
the separation distance between two particles lying on a vortex tube their separation distance
increases when the vortex tube increases as explained by Durbin & Petterson-Reif (2001). Vor-
ticity however is not a convenient method for vortex identification as it is hard to distinguish
between regions of strain and regions of vorticity.

Adrian et al. (2000) and Adrian & Liu (2002) note that a key requirement for the identifica-
tion of vortices is that they be viewed in the same frame of reference as the vortex core. However,
the whole process presents a particular difficulty as it would require an iterative approach to the
post-processing process: first a cluster would have to be identified, subsequently the Fulerian
fields have to be probed in the region surrounding the cluster at the same and prior instances in
time, before finally repeating the process at a later instant in time to observe whether the cluster

has persisted in space or had been dispersed. Meanwhile the implication is that, contrary to the
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(a) Time instant A (b) Time instant B (c¢) Time instant C (d) Time instant D

Figure 50: Spatial non-uniformity of 80 um particles at ML1 conditions at four distinct time
instances for the three spanwise measurement stations at z/D=0.08, 2.67 & 5.33, from top to
bottom respectively
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approach adopted up until this point, the investigation cannot be limited to a few measurement
stations. Rather it should be done for the whole domain as the structure and cluster are being
advected downstream.

On the right hand side of Figure 51 clusters of particles are shown within a downstream
portion of the sudden expansion along with contours of enstrophy®” in an effort to identify
structures (similar to the approach followed by Rogers & Moser (1991)). Holmes et al. (1996)
state that -provided the conditions that give rise to turbulence vary slowly- it is sufficient to
solely study the Reynolds stress (R;;) to investigate the coherent structures as these will scale
the same way as the mean momentum flux due to turbulent fluctuations. Such an approach did
not prove to be suitable for the present test case, perhaps because the aforementioned provision
is not met.

In the middle pane of Figure 51, contours of the second invariant of the velocity gradient
tensor, ), are shown in the sudden expansion flow along with those clusters of particles that lie
close to the plane. The need for velocity gradient invariants arises from the desire to identify
vortex cores unambiguously given the aforementioned limitations of vorticity. For a 3D flow
field with a velocity field given by u; = Aj;jx;, Chong et al. (1990) define the first invariant of

the the velocity gradient tensor A;; as its trace:
P =4

the second invariant, ) as:
1
Q = 5[P? = Sij8ji — Wi W]

the third invariant R as:

1
R = 3 [—P?’ + 3PQ — SiijkSki — 3WijokSki]

where

Sij = (Aij+Aji)/2 & Wz’j _ (AijiA”)/Q

Positive values of ) indicate points within a vortex and zero and negatives values indicate regions
of shear. The authors recommend investigating complex flow field structures by inspecting
surfaces of the invariants and their combinations. Such information was thought to be useful to
further improve the cluster simulating abilities of the phenomenological model of the subsequent
chapters. However, after careful investigation in 2D and 3D frameworks, shown in Figures 51
& 52 no conclusive insight was gained. This might be a limitation of the test method because
they are more suitable to flow fields with strong symmetry planes or stationary turbulence: even
small deviations from these conditions complicate the post processing procedure significantly. In
any case these approaches seemed to be further complicated by the fact that the selection of the
appropriate contour level is an arbitrary process. More, importantly, though is the fact that the
particles have finite relaxation times. They do not respond immediately to changes in the flow-
field conditions so that an inspection of the instantaneous flow-field may not be ideal. Rather,

it may be necessary to store all the timesteps to permit post-processing. Such an approach may

5"Equal to half the square of the vorticity, as defined by Frisch (1995)
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permit the correlation of the clustering of the Lagrangian phase observed at a time ¢ to some
Eulerian structure that is responsible for the formation of the cluster at a time t — At.

The large advecting velocity and periodicity observed here may require a different approach,
such as an investigation of the finite time Lyapunov exponents. Some recent work (Shadden et
al. (2009) & Garcia-Olivares et al. (2007)) suggests that this is a more suitable criterion for

evaluating the particle-gas interaction when the velocities are significant.

3.5.1 Stokes Numbers

Although the identification of turbulent structures responsible for the preferential concentration
of the particles proved to be troublesome, there are still some qualitative comparisons that may
be made in terms of the Stokes number. Several different St may be defined based on various
characteristic flow scales. For the particles entering the expansion tube, one relevant parameter

is the large eddy Stokes number, St., based on the step height, h:

Tp

(h/vo)

resulting in values of 0.23 & 1.11 for the 40 um and 80 pum particles respectively. The calculations

St. =

are consistent with the implied characterization by values of this number and even the large
particles, with a value close to unity, disperse across the diameter of the domain. For the
smaller particle class the value of the St., is significantly smaller than unity, and a much larger
number of particles enter the recirculation zone. A more relevant parameter in this case is the

centrifuge Stokes number, St., defined as:

where w is a representative value for the mean vorticity in the expansion tube. The significance
of the parameter, as Hardalupas et al. (1992) note, is that it relates the centripetal force ‘felt’ by
the particle to the viscous drag acting on its surface. The greater the angular velocity of the eddy
the more likely it is to centrifuge the particles as the St. will be correspondingly smaller. Using
a representative value for the vorticity in the region of the recirculation zone yields St. of 0.10
& 0.49 for the 40 um and 80 um respectively. The much smaller St. of the smaller particles is a
further justification of the existence of a greater number of particles in the recirculation zone but
also of the preferential concentration observed downstream visible in Figure 60. However, the
St. of the larger particles is also smaller than unity and as such one would perhaps expect more
particles in the recirculation zone than those observed. Evaluating a transit Stokes number, Sty,,
provides for an explanation for the smaller, than expected, number of 80 ym particles within the
recirculations zone. A characteristic timescale, T}, for the recirculation zone may be obtained

through consideration of the re-attachment length, Z,, and the velocity at that point, Ug,.

Z
r & Sty = -2

T =
r 1/2(Ucentreline + UZT) Ttr
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Figure 51: Sample sections though the LES domain for 40 um ML1 case, near the expansion
tube outlet, showing only the clusters of particles that lie close to the slices through the domain
depicting from left to right; enstrophy colored by a range [0, 10*s72]; @, the second invariant of
the velocity gradient tensor colored by a range [100, 2x103s72] and the magnitude of vorticity
colored by a range [0, 250571
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Figure 52: Sample sections though the LES domain of the expansion tube outlet for the 40 um
ML1 case , viewed from the step towards the expansion tube outlet. the view shows, in black,
only the particles that lie close to slices through the domain. The left panel shows enstrophy
colored by a range [0, 2x10%s72] and a contour of @ at 2.5x10*s72. The middle pane shows
a plane colored by the magnitude of Q for a range [0, 5x10*s~2| along with contours of the
magnitude of vorticity at 103s~!. The right hand pane shows a plane colored by the magnitude
of vorticity for a range [0, 5x103s71] along with contours of enstrophy at 10%s~2.
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For the 40 um and 80 pm, the Sty is found to be 0.30 & 1.48 respectively, explaining the smaller
number of 80 um particles within the recirculation zone when compared to the 40 um particles.

A Stokes number may also be used to evaluate whether a SGS dispersion model is required
within the calculation. A characteristic SGS timescale, Tsag, may be obtained by evaluating

the ratio of the average cell size to the bulk velocity, Uy.

Stsas = Tecs

resulting in Stggg of 21 & 106 for the 40 um and 80 um particles respectively indicating both
particles sizes respond too slowly to any changes of the flow-field on the SGS level and the use
of a dispersion model is not warranted. If on the other hand these where nano-sized particles

there might be a need for a SGS dispersion model.

3.5.2 Large scale oscillations of the jet

A further complication arises when trying to identify turbulent features of the flow responsible
for particle clustering on the chosen data set and this is perhaps evident in Figure 60 where
it appears that there is some periodicity to the spatial distribution of the particles at a few
diameters, D, downstream of the step. This may be attributed to the large scale oscillations of
the jet exiting the inlet tube. Just as the flow past a cylinder®® will shed downstream vortices
originating in an alternating fashion on either side of the obstacle, so too will a jet flap from side
to side as explained by Schlichting (1968) and Birkhoff & Zarantonello (1957). More precisely,
the oscillations occur at various alternating points around the jets azimuthal direction similarly
to the situation with a sphere. This oscillating jet results in a significant number of particles
being shed in alternating directions creating substantial voids in the spatial distribution. The
process is very similar to the break-up of a liquid sheet by a stream of high momentum gas,
(Fuster et al. (2013)) where the wave formed along the interface eventually gives rise to a
sufficiently energetic vortex that will break the liquid sheet sending droplets in an completely
unexpected but periodic and reproducible angle, every other wave.

Figures 53-55 serve to show the large scale oscillations of the jet under consideration at
several distinct time steps. Visible in the detailed snapshots of the same images of Figures
56-58 is the increase in resolution of structures associated with increasing mesh density. This
last observation may provide a qualitative explanation to the significant differences observed
in the large scale oscillation structures. The purpose of including the less detailed depictions
of Figures 53-55 is to show that the large scale oscillating motion persists farther downstream
in the expansion tube when finer grids are used. This Irge scale oscillations of the jet
results in particles being shed in clusters along with the vortices (or perhaps lagging them) in
alternating directions before being advected downstream. The pattern persists and is clearly
visible in Figure 60 for the smaller diameter particles whereas for the 80 um particles with the
larger Stokes number the effects are limited to a slight oscillation of the particles lying along the

centreline. The large number of particles present required rendering of the Lagrangian phase

58 At least for cases of engineering interest; that is, not for those particular circumstances achievable solely
under laboratory conditions.
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Figure 53: Large scale oscillations of coarse mesh jet, showing the normalized axial velocity
(Uz/u,) colored for a range [-5,35]. Flow direction is from the bottom of the page to the top.
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Figure 54: Large scale oscillations of the standard mesh jet , showing the normalized axial
velocity (Uz/u,) colored for a range [-5,35]. Flow direction is from the bottom of the page to the
top.
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Figure 55: Large scale oscillations of the fine mesh jet, showing the normalized axial velocity
(Uz/u,) colored for a range [-5,35]. Flow direction is from the bottom of the page to the top.
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Figure 56: Detailed view of the large scale oscillations of the coarse mesh jet, showing the
normalized axial velocity (Uz/U,) colored for a range [-5, 35]. Flow direction is from the bottom
of the page to the top.
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Figure 57: Detailed view of the large scale oscillations of the standard mesh jet, showing the
normalized axial velocity (U=/U,) colored for a range [-5, 35]. Flow direction is from the bottom
of the page to the top.
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Figure 58: Detailed view of the large scale oscillations of the fine mesh jet, showing the normal-
ized axial velocity (U=/U,) colored for a range [-5, 35]. Flow direction is from the bottom of the
page to the top.

to be restricted to a parallelepiped of small thickness in the normal direction of the page. An
additional Stokes number may be defined at this point to compare the period of the large scale

oscillations of the jet, ATy to the particle characteristic timescales:

-

Stp = M’;ﬂ
Unlike the case for a planar jet, when probing the axisymmetric sudden expansion to determine
the oscillating period, the result was a broad spectrum FFT with no single peak clearly visible,
this again is probably a result of the limited number of flow through times performed. The broad
spectrum is consistent with the experimental observations and , in an alternative approach for
the determination of the oscillating period, the probe’s time signal was investigated. The probe
location was positioned approximately at z/D=1.75 and half an inlet diameter off the centreline.
The field was probed for the axial velocity through that point, resulting in a recorded signal with
a clear sinusoidal pattern although it was also evident that there was more than one frequency
present. Two periods may be identified at 0.05s and at 0.025s, AT}Z & ATJ?Z respectively. Figure
59 depicts a recorded sample trace at one of the probe locations tested. The corresponding St}l
for the 40 um and 80 um particles are 0.48 and 2.32 respectively or, for Stfcl the values are
0.24 and 1.16. In both cases the values indicate that the jet flapping should have a substantial
effect on the spatial distribution of the smaller particles, which is consistent with the qualitative

observations of Figure 60. A probable explanation for the presence of multiple frequencies is the
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Figure 59: Probe Location and sample time trace

fact that, unlike a planar jet that will oscillate solely in the one, unique cross-stream direction,
to the mean flow, an axisymmetric one is free to oscillate in the radial direction but is also free
to oscillate in the circumferential one. Figure 61 shows slices through the computational domain

at different circumferential angles with the clustered particles persisting in all directions.

3.5.3 Voronoi Analysis

A different approach for cluster identification is the use Voronoi plots, as they provide a quanti-
tative measure for cluster identification. Sack & Urrutia (1999) define two dimensional Voronoi
diagrams as a representation where every cell may contain only one site, in this case a parti-
cle. The boundaries of each cell are drawn in such a manner that the Fuclidean distance from
any point within the cell to the site/particle is smaller than the distance to any other neigh-
boring site/particle. The implication is that a cell boundary delineates the equidistant points
between two sites/particles while a Voronoi vertex marks the equidistant point between three
sites/particles. Shading/coloring of the triangles and quadrilaterals by the size of their area
would yield a convenient measure of clustering. Figures 62 to 67 show Voronoi plots for the two
particle sizes at the spanwise measurements locations.

Applying such an approach may allow particle preferential concentrations to be evaluated in
a qualitative manner through evaluation of the Vorono: cell areas. A perfectly uniform spatial
distribution of particles should result in all Voronos: cell areas to be nearly identical if edge effects
are disregarded. Meanwhile, a random spatial distribution of particles should result in a near
Gaussian distribution of Voronoi cell areas with a specific standard deviation. In turn, a flow
with significant amount of clustering should start exhibiting an almost bi-modal pattern and an
increased standard deviation when its distribution of Voronoi cell areas is evaluated. Since the
voids should result in an increase of larger Voronos cell areas creating a peak near the tail end of

the Gaussian distribution and the clusters should result in an increase of the smaller areas near
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(b) 80 pm

Figure 60: Effect of jet flapping on particle spatial distribution at an early, intermediate and
fully developed time instance , from left to right. Flow direction is from the bottom to the top
of the page.
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Figure 61: Details of the instantaneous 40 um particle spatial distribution viewed as a slice of
the Lagrangian domain at 0, 30, 60 90, 120 & 150 degrees from the normal of the zy-plane. Flow
direction is from the bottom of the page to the top.
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Figure 62: Voronoi plots for the 40 um particles at z/D=0.08 for 6 instances in time

the centreline of the distribution. In a similar manner, the Vorono: analysis could be extended

to three dimensional space and the location of clusters be identified through the evaluation of

the Voronoi cell volumes.

What is evident in Figures 62 to 67 is the increased level of clustering observed for the
particles 40 pm compared to the 80 pum. At the z/D=2.67 but especially at z/D=5.33 the

preferential concentration of particles is clearly discernible. Of particular interest is the size of the

clusters,whose largest scale appear to be of the order of the expansion tube diameter dimensions

but also of note is the fact that these features/clusters persist a significant distance downstream

of the step where the characteristic dimension of the dominant eddies should have attenuated

significantly in size. The size of these clusters is substantially larger than those observed in DNS

calculations where they are typically observed to be of the order of the Kolmogorov scales.
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Woronoi plot of particle locakions ak 2/0x
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Figure 63: Voronoi plots for the 40 um particles at z/D=2.67 for 6 instances in time
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Woronoi plot of padicle localions ak 20D=5.33

Figure 64: Voronoi plots for the 40 um particles at z/D=>5.33 for 6 instances in time
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Figure 65: Voronoi plots for the 80 um particles at z/D=0.08 for 6 instances in time
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Woronoi plot of particle localions ak 2iD=2.67 Woronoi plot of padicle localions ak 20D=2.87

Figure 66: Voronoi plots for the 80 um particles at z/D=2.67 for 6 instances in time
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Woronoi plot of particle localions ak 2iD=5.33
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Figure 67: Voronoi plots for the 80 um particles at z/D=>5.33 for 6 instances in time
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3.6 Summary

Chapter 3 presented a summary of the work performed regarding the LES calculations. This
included the development and validation of the required Eulerian-Lagrangian solvers for the
RANS and LES calculations within the openFOAM environment. Then the sudden expansion
test case was introduced along with an investigation to determine the required mesh resolution.
This was followed by a validation of the solver’s capabilities; first in terms of the Fulerian
phase through the comparison of the calculations and the experimental data showing acceptable
agreement, for th epresent purposes, between the measured quantities and predicted recirculation
zones. Subsequently, the Lagrangian calculations where found to agree satisfactorily with the
experimental measurements. The results demonstrate the formation of instantaneous particle
clusters in the flow, observed for the 40pm particles but not for the 80um particles. An effort was
made to identify dominant vortical structures throughout the LES calculation, using enstrophy,
vorticity and the 2°d invariant of the velocity gradient tensor, but this posed several difficulties
primarily due to the complexity of the flow. No clear correlation was identified between the
location of particle clusters and these characteristics features of the gas phase. Finally, Voronoi
analysis was used to quantify the scale of the particle clusters and indicate that their dimensions,
in the cross-stream direction, could be of the order of the expansion tube radius. This is much
larger than the cluster dimensions reported in the literature from DNS calculations, which tend

to link the size of the clusters to the Kolmogorov scale.
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4 Implementation of Kinematic Simulations within openFOAM

The objective of this chapter is to introduce a novel method for modeling flows at engineering and
atmospheric Reynolds numbers in a coupled Eulerian-Lagrangian framework. The stimulus for
this work is the inability of the currently available modeling tools to predict certain phenomena
in the behavior of the dispersed phase that have been observed experimentally. Namely, particle
preferential concentration and particle trajectories in recirculation zones and regions of flow
separation. The consequences of these limitations are that the non-uniformity/in-homogeneity of
particle distributions observed experimentally at high Reynolds number flows are not observed in
the corresponding modeling efforts. Regions of high strain and/or high vorticity result in regions
where particle voids and clusters are formed. The implication is that although the statistical
approach adopted by most of the presently available tools may result in acceptable predictions
of mean quantities, when non-linear mechanisms such as combustion are being modeled there
can be significant discrepancies. This is especially true when pollutant formation and prediction
is concerned. Many of these discrepancies may be attributed to the use of mean quantities
in place of the actual range of values. It may be argued that the source of the discrepancy
is the accuracy of combustion models, but without accurate initial conditions for the fuel-air
stoichiometry, even the most precise of combustion models would still result in significant errors.
A second area where currently available models fall short is in the prediction of droplet or particle
transport within shear layers and in recirculation zones. This is of primary significance when
investigating the effects of particle erosion, but also, as before, when investigating the spatial
distribution of particle concentrations in flows.

Direct numerical Simulation (DNS), whilst capable of predicting the aforementioned limita-
tions, is still years away from being applicable to flows of engineering and environmental interest
due to its prohibitive computational cost even at relatively low Reynolds numbers. Meanwhile,
Large Eddy Simulations (LES) have only recently being adopted by industry for their mod-
eling needs and are still considered too expensive both in terms of time and computational
requirements for everyday simulations.

What we propose here is a novel dispersion model for implementation within an (unsteady)
Reynolds Averaged Navier-Stokes ((u)RANS) computation. The limitation of current RANS
dispersions models, for example using the two equation k-epsilon model of turbulence, may be
traced back to the fact that the velocity and lengthscale of the ‘computed’ eddies are prescribed
only from the local values of the turbulent kinetic energy and the local dissipation rate of the
flow field, from which a stochastic fluctuating component of velocity interacts with the particle.
There is no further flow within these computationally ‘constructed’ eddies. What we propose
is the use of the standard (u)RANS technique for modeling the bulk of the flow field but then
employing Kinematic Simulation (KS) within each such eddy in order to introduce a more
realistic flow structure (an example of such a flow field with the dispersion of fluid elements is
shown in the figures of the following section) for the smaller scales of the flow, which are not
computed in a typical (u)RANS calculation.

In the following sections of this chapter the differences betweenthe proposed model and the
industry standard will be investigated through simulated trajectories of particle pairs. First,

a comparison will be made to show how the stochastic models differ on conceptual levels by
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evolving a pair of fluid elements through isotropic turbulent fields. The motion of the particles
is governed solely by the underlying dispersion mechanism and not by the mean flow. This will
be followed by a section detailing the implementation of KS within the CFD modeling package
along with details of the algorithm structure. Subsequently, particle pairs will be tracked through
isotropic turbulent fields but now the models will be used as they where orignially intended —as
dispersion models— prescribing fluctuating velocity components of the continuous phase to the
Lagrangian phase to complement the lack of information that exists in the contiuous (Eulerian)

phase from the filtering or averaging operations introduced in the modeling process.

4.1 Particle Pair Evolution In Isotropic Turbulent Fields by Stochastic Mo-
tion

In this section attention is focused on how the underlying dispersion mechanism governs particle
pair separation. The task at hand requires evolving a pair of particles, in this case fluid elements,
through an isotropic turbulent field and comparing the different trajectories as predicted by the
G&I ‘Brownian-like’ motion and KS motion. The purpose is to elucidate what would happen to
the discrete phase inside an under-resolved ‘eddy’ if the Lagrangian solvers actually attempted
to track a particle trajectory within that ‘eddy’ —albeit an isotropic one.

For this comparison, the implementation of the KS model was based on the version of
Mallik & Vassilicos (1999) outlined in earlier sections. As the present investigation calls for the
investigation of trajectories through an isotropic field, KS may be used as they were originally
preented requiring minimal modifications. The minimum and maximum wavenumbers were
adjusted to the characteristic and Kolmogorov length scales, respectively, of the aforementioned
domain (kmin = 27/L & kmaz = 27/n). The particles were modeled as fluid elements and were
released within a separation shorter than the Kolmogorov length scale, rather than being released
within a time interval shorter than the Kolmogorov time scale as was the case for the G&I-like
motion, as the two approaches are interchangeable.

For the G&I-like motion, at every instant in time the particle velocity is prescribed through
random sampling of a Gaussian curve whose standard deviation and amplitude are determined
by the local field values of the turbulent kinetic energy and the dissipation rate of turbulent
kinetic energy. The DNS solver included within openFOAM was chosen to perform this simu-
lation. However, several modifications were required. Unlike many other DNS codes, the one
included within OpenFOAM is not a spectral one, rather it explicitly solves the Navier-Stokes
equations, relying on a spectral method to ensure that the turbulence is not attenuated with the
passage of time. The forcing is achieved through the inclusion of a force term in the momentum
equations and the calculation of the required force at each cell in order to ensure that the over-
all/mean energy content complies with the prescribed value®®. As such it provides a convenient
basis for investigating the problem at hand, as the Lagrangian particle classes may be included

with the required modifications to the code structure being relatively straightforward.

59This is adequate for the qualitative purpose of this section: however it would not necessarily be correct
for the generation of turbulence statistics as Mashayek & Pandya (2003) mention that forcing of the large
scales alone does not result in accurate replication of spatial and temporal turbulence correlations. Rather the
recommendation quoted therein, following Eswaran & Pope (1988), is to apply a more flexible form of stochastic
forcing based on an Uhlenbeck-Ornstein process at the lower end of the wavespace.
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Similar to the procedure described earlier for the development of the fully coupled Eulerian-
Lagrangian solver, the momentum equations are modified to included the source term contribu-
tion of the discrete phase. On the other hand the Lagrangian C++ classes’, and specifically
those pertaining to the G&I model, were modified to return a particle velocity rather than re-
turning only a fluctuating component. The latter would typically be added to the particle’s mean
velocity commonly calculated from the cell’s Eulerian quantities once drag and other forces have
been accounted for. Effectively, the domain is used to generate the time varying field of turbulent
kinetic energy, k, values required by the G&I model, to sample the Gaussian and to prescribe a
velocity vector. Where this velocity vector, is calculated and prescribed at every timestep, and
not only when the TCT criterion is met ( for the definition see Chapter 1, Section 1.3 near the
end). The velocity vector for the discrete phase is calculated by randomly sampling a Gaussian
distribution whose standard deviation is determine by the local flow conditions, ¢ = \/% .
As there is no turbulence closure model employed in this DNS-like solver —that would typically
be responsible for the solution of the additional set of equations and the calculation of these
fields— a final pair of modifications are required to the solver structure. These are the explicit
calculation of the turbulent kinetic energy fields, £, and dissipation rate fields, €, at every cell
from the velocity field.

The computational domain used to perform the following simulations is a cube with sides of
3m, an extended geometry similar to that typically used to simulate box of turbulence experi-
ments for the investigation of isotropic turbulence flow. There are no walls in this computational
domain, rather periodic boundaries. The extension of the geometry is not dictated by physical
requirements but rather one necessitated by the need to qualitatively present the particle trajec-
tories and evaluate the distance between the pair. When using a smaller computational domain
the particles often reached the locations of these periodic boundaries, consequently appearing
at the opposite boundary, causing the trajectories to appear discontinuous. The computational
domain comprised 323 cells and thus the smallest scales of the flow, for the most energetic of
the three cases, are not adequately resolved as the grid mesh size, [, is only half the Kolmogorov
length scale, . Typically a fully resolved DNS would be performed on such a domain, however
the present extended geometry would require a significant increase in computational resources
to adequately resolve all scales and such an investigation is beyond the scope of this thesis and,
for the present section, the focus is limited to qualitative evaluations.

Sample trajectories were calculated for three different specific energy contents, Fa = 10, 20, 30 m*/s2,
and relevant information is summarized in Table 4. The timesteps were set to be a tenth of a
millisecond with 5 seconds of simulation time calculated. The former ensured that the maxi-
mum Courant number for the FVM domain remained below a value of 0.1 . The two Lagrangian
particles in this case are of identical density to the carrier fluid and of negligible diameter, effec-
tively fluid elements, responding to changes of the surrounding carrier phase immediately. The
two particles are released within a time interval much shorter than the Kolmogorov time scale,
7, ensuring that the surrounding flow conditions experienced are very similar and that the two

trajectories remain close initially.

"For the remainder of this chapter the word class is a reference to the C++ terminology and not a particle
size class.
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Figure 68 shows a schematic of the computational domain viewed from perspective and plan
views while Figures 69 to 72 depict individual realizations of the particle pair trajectories through
the isotropic turbulent field. The plan views have been included to show the complexity of the
trajectories through three dimensional space in a more suitable manner for the present medium.
It should be noted here that the present trajectories although representative are unique. There
is no reason that these should be reproducible due to the nature of the KS spectral method and
the random sampling of the ‘G&I-like’ vector velocities however, successive simulations yield
qualitatively very similar trajectories they should never yield identical ones. At this point it is
important to clarify that although the comparison of this section is made for isotropic turbulent
fields with the same specific energy the actual flow fields are different. The KS trajectories
are computed from a purely spectral method while the ‘G&I-like’ trajectories are modeled in a
domain that uses the FVM and spectral forcing is only employed to ensure that the turbulence
does not ‘die-out’. Thus although the fields are statistically similar for the KS and the ‘G&I-like’
calculations they are by no means identical. Perhaps the most important result that may be
drawn from this qualitative comparison is not how the individual trajectories evolve through
space but rather how the pair evolves.

Figure 73 shows graphs of the evolution of the magnitude of particle pair separation vector
with trajectory length for the three different energy contents. Of particular interest should
not be the final value of the separation vector nor necessarily the inflection points as these
again would change if the simulations were repeated or if the particles were released at different
parts of the domain. Rather, the interesting conclusion is that while the ‘G&I-like’ mechanism
results in a steadily increasing separation, the KS separation is almost steady until it abruptly
increases. In the first case the distance between the two particles grows at a steady rate due
to the random sampling process until the two particles drift into regions where the Eulerian
conditions are significantly different to cause a notable change in the extents of the Gaussian
and the ensuing stochastically sampled velocity. Meanwhile the KS trajectories remain very close
to each other until Fourier components of the spectral method align in such a manner to create
a highly-straining region, effectively an eddy, causing the two trajectories to separate suddenly.
The particle pair separations shown are not the mean square separation distance (<A2>) but
the outcome of individual realizations. For reasons outlined in Footnote 69 the spectral forcing
employed for the FVM domain does not lend itself to reproducing higher-order statistics.

It should be noted that although the KS trajectories appear to be shorter in length both
the spectral method and the FVM DNS were calculated for the same number of timesteps and
differences in length are attributed to the fact that the more convoluted KS trajectories result
in the particles staying closer to the centre of the isotropic field where velocities are smaller.
The importance of modeling realistically the evolution of the particle pair separation is that it
is a prerequisite for the accurate prediction of clustering.

Initially the more convoluted KS trajectories were believed to be a result of miscalculating the
largest wavenumber however this proved to not be the case; as halving the maximum wavenumber
still resulted in a significantly more convoluted trajectory than that predicted by the FVM DNS.
It was found that the trajectory complexity was sensitive to the number of modes that the

wavespace was being decomposed into. This is reasonable as the number of modes (or Fourier
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Table 4: Information on the Isotropic Turbulence Domain

Isotropic Turbulent Field, Fa = 20m?/s2

representative velocity for larger scales, U 1m/s
characteristic length, L 3m
kinematic viscosity, v 0.0025 m?/s
Reynolds number, Re ~ UL/, 120
integral length scale, | ~ L Re™"/? 0.27m
cell size, Ax 0.094m
mean dissipation rate,! (£) 0.0105m°/s3
Kolmogorov length scale, n = (+*/c)"* 0.035m
Kolmogorov time scale, 7 = (V/a)l/2 0.5s

components) are to a spectral approach (and hence gridless method) what mesh density is to
the FVM.

An additional validation of the implementation of the KS method within this work is provided
in Figure 74. The figure shows that by repeating the particle particle pair evolution experiments
in the spectral space allows the t3 law —discussed in the literature review— to emerge. Multiple
realizations of the KS trajectories were performed and the particle pair separations were then
averaged after 2, 5,10 & 50 realizations. Figure 75 shows what these averaged trajectories look
like in space (although for this schematic it was necessary to impart an initial velocity to the
particles to avoid the trajectories appearing like a bowl of spaghetti). Effectively, the particle
pairs are evolved through turbulent isotropic fields that are statistically identical but might be
very different in detail as in each realization of the spectral space the Fourier components and the
orthogonal wavemode vectors are different. Here the ¢3 dependence is observed for all three levels
of isotropic field energy content tested, although an estimation of the Richardson constant would
require significantly greater number of realizations to be performed and is beyond the scope of
this work.

At this point it might be necessary to re-iterate that this comparison was not intended to be
a DNS study and should not be confused with one because the range of scales are inadequately
resolved. Rather, some approaches from DNS were borrowed and modified in order to generate
an isotropic turbulent field where the turbulent kinetic energy and dissipation rate were known
and thus allowed sample trajectories for ‘G&I-like’ motion to be constructed. At the same time
the lack of small scale resolution is not expected to significantly change the shape of the ‘G&I
like’ trajectories since the smaller scales would contribute to smaller fluctuations and not result
in significant changes of the main features of the trajectories. Finally, the repetition of the
DNS-like calculations for the investigation of the particle pair separation statistics is too costly

to be performed within this thesis.
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4.2 Kinematic Simulat

The premise for the proposed model is to allow the standard (u)RANS implementation of the

modeling package to treat the bulk flow and to introduce KS for modeling the effect of the

fluctuating components of the Eulerian phase —absent in the Reynolds Averaged approach— on

the Lagrangian phase. This is typically treated with some version of the Gosman & Ioannides

(1981) dispersion model (GI). The implication is that we are using the (u)RANS approach to

model the mean and larger scales of the flow (of the order of the integral scales) and only

for the Lagrangian phase, will we introduce KS to provide what we hope will be an improved

interpretation of the turbulence at the inertial and dissipative ranges of the energy spectrum.

We chose to implement the proposed model within the openFOAM framework due to the

relative transparency of the code structure and its open source nature. The coupled unsteady

Lagrangian-Eulerian solver for incompressible flows developed within the openFOAM package,

and used here, was presented and evaluated in the Chapter 3. Once again the object oriented

structure of openFOAM aided in the development and implementation of the proposed model,

as it was implemented as a dispersion model using the same class structure that was used for

the GI model in the compressible versions of Eulerian-Lagrangian solver.

1999) and Maihy

(

& Nicolleu (2005) and the algorithm specifics will be presented subsequently. However, some

The version of KS implemented follows closely that of Mallik & Vassilicos

differences exist between the original KS and the implementation here, namely that for every

fluid element evolved through the spectral field only one realization is performed and that the

range of the wave-space modeled needs to be extended over several decades of the wavespace

to reflect the turbulent conditions of the selected geometry/model. The latter of the two is a
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logical extension of KS, when used in such a hybrid form. In order to generate appropriate
fluctuating velocity components for the averaged or unresolved scales, these should be generated
from turbulent like fields that are representative of the actual turbulent flow conditions (namely
the intensity and extent of length scales) present in the domain in question. The former of
the two is justified, since the purpose of the KS implementation is not necessarily to generate
accurate turbulent statistics but rather, a more realistically generated instantaneous particle
velocity. While the sheer number of particles introduced into the model, thanks to the large
mass loadings of the dispersed phase, results in a sufficient number of independent samples for
generating accurate statistics for comparison with the experimental results.

The conditions for selecting whether a particle is prescribed a fluctuating component were
detailed earlier in the section on dispersion models and are identical to the implementation of
the Gosman & loannides (1981) model included in the openFOAM distribution, which uses the
updated constants of Shuen et al. (1983). The length of time a particle evolves through the KS
field is also determined at this stage by comparing the particle relaxation time with the eddy
turnover time (or more precisely the TCT) and then allowing it to move through the KS field for
an integer number of time steps. Due to the relatively small time steps required for the uRANS
implementation, this means that the vast majority of particles progress for only a single or a
few time-steps™ and only the particles that are determined to be trapped within an eddy will
undergo tens of KS operations.

At this point it is necessary to clarify that although the initial intention was to alter the
particle position in addition to the particle velocity, as predicted by KS, for each individual
particle this posed some complications. A problem arises, as moving the particle from one cell
into another farther downstream constitutes a violation of the conservation equations unless the
movements are accounted for through inclusion of source terms in the momentum equations of the
Eulerian phase. It might appear that the solution is trivial and simply requires the introduction
of additional corrector steps in the solution algorithm, ensuring that particle presence has been
accounted for through inclusion of source terms in the Navier-Stokes. However, this would still
result in a falsely coupled Eulerian-Lagrangian solver, since the cells in between the original
and final particle position would not have been altered accordingly. By this we mean that the
Eulerian field would be coupled to the Lagrangian in the originating and terminating cells, but
not the intermediate cells that lie along the particle trajectory. An alternative solution would be
to reduce the Lagrangian time step to such a size that one could ensure that the vast majority
of particles would raverse only from one cell to the neighboring in the allocated time. This,
in turn, would ensure that the conservation equations are not violated anywhere. At the same
time, however, this would increase the computational requirements significantly and the net
effect would be of prescribing solely a particle velocity rather than significantly changing the
particle position, since it would move only to an adjacent cell. Provided the number of particles
were small, the code had enough numerical damping to account for this violation of conservation
laws. However, there was no guarantee that the same would be true when the mass loadings

were increased to the desired levels.

"Note that we are now discussing about KS time steps and these usually are smaller than the uRANS by at
least an order of magnitude.
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It was decided to adopt the robust approach of prescribing solely a fluctuating velocity
generated by a KS field for the following reasons. By comparing the particle trajectory generated
by the KS with the size of the originating cell, it was seen that for most particles the computed
trajectories were of the same order as the grid dimensions, if not smaller. Only for a very small
number of particles did the computed KS trajectory result in a final particle position several
cells away. The small length of the computed trajectories is not a limitation of the KS method
but rather a result of the small time step imposed by the requirement for uRANS framework.
Given a larger time-step, typical of uncoupled RANS simulations, the computed KS trajectories
would be significantly longer and in an uncoupled framework the presence of source terms in the
Eulerian phase is not an issue and with very minor modifications the developed model may be
adapted to such use.

An additional benefit of prescribing solely a fluctuating velocity is that the model may be
implemented with little modification into existing software packages, provided that they already
include some version of the commonly employed dispersion models. For the reasons mentioned
above, it was determined to adopt the more physically sound approach of prescribing only a
velocity fluctuation, at least for the present fully-coupled version of the model, and not to
include a ‘forced’ particle location, avoiding altogether any issue of violating any conservation

principles.

4.2.1 Version A

The first implementation calls for selecting the extent of the wavespace modeled from either
turbulence scaling arguments or, ideally, from an energy spectrum measured experimentally or
generated from an LES computation. From this spectrum one can then determine the extent of
the inertial range and input to the KS model, in a sense it is a ‘hardcoded’ version. However,
because we have adopted a field average range for the scales being modeled through KS, scaling
is required to bring these generated velocities to the appropriate magnitude for every location of
the Eulerian flow field. The scaling of the fluctuating component generated is achieved through
calculating the value of the Turbulence Intensity (TI) for the cell in which the particle lies. This
approach generates suitable results and has the desired qualitative effects as will be presented in
the following sections. An additional benefit of this approach is that, with a few modifications
to the code, the wavemodes need only be generated once at the beginning of the computation
and then the orthogonal vector components would be chosen at random for each step. Figures

76 & 77 depicts flowcharts for the version of the KS implementation.

4.2.2 Version B

Additional modifications were implemented in order to remove the requirement for user input
at the case-setup stage. First, the scaling by the local value of Turbulence Intensity is removed.
Although a physically sound scaling argument, it is not the sole scaling parameter that can be
formulated. By removing this step the robustness and universality of the proposed method is
improved as the performance of the model is no longer subject to the selection of the particular
scaling argument over an alternative. The scaling is replaced by sampling the local value of the

turbulent kinetic energy, modifying the energy content of each generated KS, adjusting the peak
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of the turbulent energy spectrum. Additionally, alterations include a wavespace range for the KS
method individually selected for every particle based on the local Eulerian field attributes. The
smallest wavenumber, k,,;, is determined from the size of the ‘eddy’ with which the particle has
been determined to interact and the largest wavenumber, kj,q; is determined from the size of
the Kolmogorov scale, estimated from the local value of the dissipation rate of turbulent kinetic
energy, €. These modifications in turn allow the model to be used on a much greater range of
problems, as no prior knowledge of the flow conditions is required whilst at the same requiring

significantly less user input. Flowcharts for the process are shown in Figures 78 & 79.7

4.3 Particle Pair Dispersion in Isotropic Turbulent Fields

The purpose of the following section is primarily to elucidate, in a qualitative sense, the differ-
ences between the proposed KS and the widely used G&I dispersion models in a simple, yet still
academically interesting, flow. This is done through the presentation of representative particle
trajectories in isotropic turbulent fields. In all cases, the pair of particles is released at the
center of the domain and evolved through the flow field. In the following section a comparison is
made, namely of how the particle pair trajectories differ when implemented as dispersion models
within OpenFOAM. This exercise is useful to provide qualitative representation of the difference
between the two models on a simplified computational domain, as the sudden expansion test

case does not lend itself to such a purpose.

4.3.1 Kinematic Simulations implemented as a Dispersion Model - Coupling with
openFOAM

The following section serves to show differences between the proposed phenomenological model,
now integrated within the openFOAM environment, against the standard implementation of the
G&I model for fluid elements and inertial particles in an isotropic turbulent field. Once again,
the purpose is to provide a qualitative representation of how the particle trajectories differ in
a simple geometry and for a limited number of particles. This is because the large number of
particles and complicated geometry of the axi-symmetric sudden expansion test case make such
a comparison unnecessarily complicated.

In Figures 82 & 83, comparisons are made for particle pair dispersion using the G&I model,
the proposed KS model as well as trajectories calculated with the use of no dispersion model
for inertial particles, 80um in diameter with a density equal to that of water, with intra-particle
release times much shorter and greater than the Kolmogorov time scales. Additionally, repre-
sentative streamlines for the isotropic turbulent field are shown in Figure 81.

This comparison also makes use of the same FV computational domain described earlier with
the details pertaining to the Fulerian phase remaining unchanged but with modifications to those
of the Lagrangian phases. The Lagrangian class are now included in the original unmodified
form; the G&I implementation is the standard one included within the openFOAM modeling

environment; while our implementation of the KS model is included in an identical manner to

"The use of of the Adams-Bashforth & Runge-Kutta methods followed the approach of Malik & Vassilicos
(1999). For the intended application of KS these higher order methods could probably be replaced with ‘quicker’
methods.

174



Evaluate the Turbulence

Correlation Time (TCT)

and particle characteristic
tirqescale

Is the Lagrangian
time step smaller

than the TCT?
Yes No
Straightforward Sample Eulerian field
finite differencing variables: turb. kinetic
approximations energy, k, and dissipation

rate, epsilon.
1

wavenumbers, k. & k.., from the

Kolmogorov length scale at that cell

Determine min. and max.

char. eddy lengthscale and the

Decompose the wavespace into the
chosen number of modes, k. User

defined, typically ~ [50-100]

Construct a KS flowfield, with an
energy content prescribed from the local
value of turb. kinetic energy, k.

Compare TCT and particle characteristic time.
determine time spent in KS field and number of

timesteps in the field:

#1 2]
Use a 4™ order Runge - Use a 4™ order Runge -Kutta method
Kutta method to evaluate to evaluate particle trajectory and
particle trajectory and fluct. velocity components and use as
fluct. velocity initial conditions for the Adams-
components Bashforth method

Use a 4™ order Adams-Bashforth method

Return fluctuating
velocity components,
UTurb to openFOAM

with predictor- corrector steps for the pre-
determined number of operations to
reconstruct the trajectory and evaluate
particle fluct. velocity components

Figure 78: Flowchart for KS version B (descriptive)

175



tinteraction = Min(te, tc)
le

2k/3

e

o= —

=

C 3 .|,-"4 IL J{."'Q

te=—7pln (1 —

dppd,

L.

7p |Ug — Up|

T =
P 3pCp [Ug — Uy

)

tinferact ion < deag?'angian

Ye§

No dispersion model
applied.

Estimation of particle
velocity from the

Eulerian field and
evolution from
straightforward finite

No
2m el S 2w
Iit“'mi‘r'r. ~ _L , where l.[[e - 7“””"3& kﬂl(‘t.t: ~ 17
'!e £ (”3.-"15} 4
k= k™t q = (knyfr1) )
1
(k2—k1)/2 forn=1
Akp = { (knpai—kn-1)/2 forl < n < Ni

{kﬁ'}\. —kny )/2 fO'J" n = L'?\"r_l‘-

differencing
approximations.
_"\1'-4\.
u(x,t) = Z
n=1

A, Ak, &B, Ak, & A2 = B2 = %E(ﬁ;n)ﬁkn wn = AV K3 E ()

:(An x Rn) cos (Kn - X + wnt) + (Bn X Rn) sin (k, - x—f—cunf)}

EKS—{G{D.E ~ ktur‘b_-_ A~1& E{k) ~ E%"sk—?,*'a

linteraction

No. of KS timesteps =

Tparticle

#1

>1

Use a 4™ order Runge -

Kutta method to evaluate

particle velocity at the 1
components

Use a 4™ order Runge -Kutta
method to evaluate particle velocity
components at 1% point along the
trajectory. Use Adams-Bashforth

method to evaluate the subsequent

positions and velocities

U', = Ugs

Use a 4™ order Adams-Bashforth method with

predictor- corrector steps for the pre-determined
number of operations to reconstruct the particle
trajectory and evaluate velocity components at
each subsequent position

Figure 79: Flowchart for KS version B (mathematical definitions)

176



that described at the beginning of this chapter (KS-B) in the section regarding the integration
of the KS model as a dispersion mechanism in the coupled transient incompressible Eulerian-
Lagrangian solver. That is to say, both of the dispersion models are returning a fluctuating
velocity component to be added to the mean velocity component prescribed from the local
condition of the Fulerian phase. As the DNS domain has already been deemed inadequately
resolved, the dispersion models are being used here in a more appropriate context as they
attempt to model the effects of the unresolved scales on the particles. The FVM domain remains
unchanged from the previous section, with periodic boundary conditions and a specific energy
content of Ea = 30m%/s2 and on this occasion is used for all the trajectories presented for
the remainder of this chapter. A series of screen-shots, shown in Figure 80, are presented for
the Eulerian phases of the domains to convince the reader that, although there is an element
of randomness introduced through the spectral forcing in the DNS-like solver along with the
numerical errors, these are not enough to significantly change the flow field over the short
period of time the Lagrangian trajectories are calculated (5s of physical time are modeled).
This clarification is needed since the comparison between the ‘G&I’, the KS and ‘no-dispersion’
models cannot be made simultaneously i.e. during the same run. Rather it is necessary to
perform the simulation three times starting from exactly the same initial field and showing that,
for a small enough time, the numerical errors will not result in significantly different Eulerian
fields. Additionally, it may be constructive to present some representative streamlines for the
isotropic turbulent field; these are shown in Figure 81.

Recalling that the Eulerian conditions within the domains remain very similar for the dif-
ferent dispersion models tested, any differences in particle trajectories may be attributed to the
dispersion models. For the shorter intra-particle release time, Figure 82, the initial portions of
the trajectories are similar, a result of the low turbulent/energetic conditions at the center of
the domain. For this length of the trajectory, the TCT —evaluated at every time step— is such
that none of the particles interact with the ‘eddies’ of the surrounding flow, rather they are
being advected by the Eulerian phase. The location at which the trajectories suddenly diverge,
indicates a location where the TCT was such that a dispersion model was activated, imposing
on the particle a fluctuating velocity vector resulting in the departure from the no-dispersion
trajectories. From then on, as the trajectories diverge further, the particle pair may experi-
ence significantly different Fulerian conditions resulting in either differing amounts of advection
and/or interaction with ‘eddies’, prompting yet further generation of fluctuating velocity com-
ponents to be prescribed by the dispersion models. As far as the comparison for the longer
intra-particle release times are concerned, Figure 83, the conclusion is that the simulations re-
flect expectation; namely no correlation whatsoever between the trajectories of the particle pair,
as the surrounding carrier phase has changed significantly within that time.

A few general remarks arise regarding the shape of the trajectories or, specifically the absence
of sudden changes in curvature in the KS trajectories seen in the previous section. As detailed
at the beginning of this chapter the integration of KS into a coupled Eulerian-Lagrangian solver
required some modifications, the most important of these being the generation of a fluctuating
velocity component rather than modifying the whole trajectory as that would result in violations

of the conservation principles for coupled Eulerian-Lagrangian solvers. This was explained in
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Time: 42.500000 Time: 42.500000
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(¢) View from the XZ-plane

Figure 81: Streamlines within the isotropic turbulence domain
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Figure 82: Particle pair trajectories for 80um diameter particles with a release time smaller than
the Kolmogorov timescale. Black trajectories indicate the no dispersion model, red indicate the
KS dispersion model and blue the G&I dispersion model particle pair respectively.
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detail earlier and will be shown to be well founded by the validation presented in the follow-
ing chapter. Effectively, when the KS dispersion model is activated, a KS is created and the
trajectories through the isotropic field are computed. However, as the (u)RANS calculations
timesteps are very short, so too is the time allocated for the particle to traverse through the KS
field —with only a few KS-timesteps being performed— in turn resulting in small computed KS
trajectories. This minimizes the effect of having used a fluctuating component only, as the up-
dated particle position —predicted by the KS trajectory— still lies within the same computational
cell for most instances. This results in a small KS, small in terms of the trajectories computed,
because this is a spectral method, there are no physical domain extents, rather the length of the
trajectory determines the size of the KS. In any case the interaction of a particle with the inad-
equately resolved or averaaged ‘eddies’ of the Eulerian phase calculation, modeled by isotropic
turbulent fields —whose size, range of scales and intensity are determined from the local Eulerian

conditions— are accounted for through the generation of fluctuating velocity components.

4.4 Summary

A novel phenomenological dispersion model for coupled Eulerian-Lagrangian frameworks has
been developed and presented in this chapter. This is based on the standard RANS solvers
for modeling the large scales structures of the mean flow and then Kinematic Simulations are
introduced to model the effect of the integral to dissipative ranges of the turbulent flow on
the dispersion of Lagrangian particles. The interaction of a particle with an under-resolved
or averaged ‘eddy’ is accounted for through the evolution of this particle through an isotropic
turbulent field that has been created using Kinematic Simulations. The energy content and
extent of scales of this field are determined from the local properties of the ‘eddy’ as resolved
by the Eulerian calculation.

Qualitative comparisons between the proposed model and the G&I dispersion model showed
differences in the underlying dispersion mechanisms as well as marked differences in particle
trajectories when used as a dispersion model through identical flow-fields. In the G&I model,
the particle pair separates gradually and a sudden change in particle pair separation distance
occurs when the particles are eventually advected apart by the larger resolved Eulerian scales of
the flow. Whereas the KS trajectories are capable of modeling the sudden separation even within
the unresolved scales. This is an important point to note as the intended use of such models is
primarily to ‘compensate’ for the lack of the averaged or unresolved scales of a flow-field and

the expectation is that they should result in increased dispersion.
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5 KS in sudden expansion

The test case chosen for validation of the proposed phenomenological model was the axisym-
metric sudden expansion particle laden flow of Hardalupas et al. (1992) that investigated the
dispersion of different sizes of mono dispersed particles through an axisymmetric sudden expan-
sion for a range of air flows. What makes this particular set of experimental data interesting
is the detailed measurements of both Eulerian and Lagrangian phases, for two different bead
sizes, with nominal diameters of 40um and 80um, at high Reynolds number (Re ~ 104). In
the present context it is a particularly insightful test case as past investigations of existing dis-
persion models in RANS frameworks have predicteds, that only a limited number of the 80um
particles enter the recirculation zone, contrary to experimental observations where a significant
number of particles were observed. An additional consideration, though, is the inherent similar-
ity of the axisymmetric sudden expansion recirculation zone to the external recirculation zones
formed downstream of aviation air-blast atomizers. Such an environment necessitates a RANS
approach as the computational costs of LES are still prohibitive. Both in a qualitative and
a quantitative sense the new model should predict a greater number of particles
entering the recirculation zone and/or an increase in magnitude of the fluctuating
velocity component without overpredicting the levels of dispersion in the remaining
regions.

The geometry has already been introduced in the previous chapter and what needs to be
mentioned here is that the k- Epsilon closure model is chosen for reasons explained in the following
section and that all other mesh details are the same as the standard mesh of the LES calculations,
with the exception of the wall models employed being replaced by the corresponding RANS ones.
The justification for using what may be argued is a fine mesh for a u-RANS calculation was
the desire to capture the large scale oscillations of the jet as it entered the expansion chamber
since its importance in particle distribution was observed and discussed earlier extensively. A

fine mesh and a small timestep were necessary to achieve this.

5.1 Selection of k-Epsilon closure model

One of the weaknesses of the standard k-Epsilon model, and models derived directly from it,
lies with the modeled equation for the dissipation rate, €. The limitation manifests itself in
what has come to be known as the plane jet - round jet anomaly, so named because while the
spreading rate in planar jets is predicted reasonably well, the prediction of the spreading rate
for an axisymmetric jet is much poorer™. This means that although the recirculation zone
downstream of a plane jet is modeled accurately the same is not true for an axisymmetric round
jet, where the k-Epsilon under-predicts the spreading rate resulting in a jet that ‘fans-out’ over a
greater axial/longitudinal distance. Wilcox (2006) attributes this to the inferior representation
of cross-diffusion in k-Epsilon models when compared to k-Omega ones. He proceeds to compare
the most popular RANS models against experimental measurements for the spreading rates of

round and plane jets. He confirmed that k-Epsilon model exhibits superior performance for

"The spreading rate in such contexts may be defined as the radial distance from the centreline where the
velocity drops to half the value measured along the centreline.
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the plane jet overall, but for the round jet although the overall shape of the variation of the
spreading rate with spanwise distance from the centreline is captured correctly, it is consistently
offset, predicting greater velocities. In contrast, the k-Omega captures the velocities near the
centreline accurately its performance drops with increasing distance from the centreline. Wilcox
(2006) attributes the superior performance of the k-Omega model to the better modeling of
cross-diffusion terms in the model’s closure equations. The reason this is not noticed in the
plane jet for the k-Epsilon model is due to the fact that vortex stretching in two dimensional
flow is not present, on average, and in turn the effects of cross-diffusion smaller. He does however
investigate the sensitivity of k-Omega models to the free stream values of the closure equations
for which little data is available from experimental measurements. Meanwhile, in the absence
of any noticeable swirl in the present flow the benefits of a k-SST-Omega model should be
small especially when the exaggerated prediction of turbulence levels near stagnation points and
regions of large normal strain and acceleration is considered (Menter (1994)).

The dispersion model should be capable of predicting adequate Lagrangian dispersion in the
recirculation zone from the chosen closure equations rather than, resulting to overprediction of
the discrete phase fluctuating velocities across the domain. Furthermore, Versteeg & Malalasek-
era (1995) summarizing the work of Rodi (1980) and Launder et al. (1975) note that the RSM
models suffer similar limitations which are exacerbated in the presence of swirling flows making
them completely unsuitable for the intended industrial application before the increased com-
putational cost is even taken into account. So the choice of appropriate closure model for the
present test case is between the k-Omega and the k-Epsilon closure models. The latter was
chosen for several reasons. First, it may be argued that it is the simplest of all closure models.
Secondly, it is the original closure model on which the original Gosman & Ioannides (1981)
model was developed and as such the ensuing comparison between the proposed KS model and
the GI model should not favor one over the other. Finally, it was mentioned in Chapter 3 that
the locus of the recirculation is predicted to occur at a slightly greater downstream locations
which was what was observed in the previous chapter in the LES calculations as well. Thus no
unfavorable advantage is given to the uURANS models over the LES calculations - in fact, rather

the contrary.

5.2 Qualitative Comparisons

The following section will demonstrate the increased particle dispersion and flux of particles
within the recirculation zone predicted by the KS models. This will be done through qualitative
inspections of instantaneous snapshots from the calculations and evaluation of the increase in
range of fluctuating velocity components predicted by the proposed model.

Figure 84 depicts the expansion tube section of the computational domain and shows equa-
torial plane slices for the Eulerian phase; namely the magnitude of velocity, the turbulent kinetic
energy dissipation rate and the turbulent kinetic energy extracted from the coupled calculations.
Figure 85 is a qualitative depiction of the difference between the particle locations predicted by
LES and the two stochastic models for the smaller mass loading condition, ML1. The inhomo-
geneity of the LES calculation is seen on the left hand most pane, while comparing the center and

the right hand most pane one can discern a slight increase in the number of particle entering the
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recirculation region, approximately half-way down the domain. The two RANS dispersion mod-
els exhibit more uniform spatial particle distributions than the LES calculations where the large
scale oscillations of the jet resulted in a significant degree of inhomogeneity. These calculations
used the same grid as that employed by the LES and an identical timestep (dt = 10us). Despite
the fine mesh employed and small timesteps used for the uRANS calculations, the flapping of
the jet was not resolved sufficiently with the k-Epsilon model, with only a minute amplitude of
oscillation observed near the very tip of the jet. Nevertheless, a circumferential oscillation in the
flow field was observed in the region of the recirculation zone. However, this does not result in
the same downstream particle spatial non-uniformity as that caused by the shedding of particles
at the tip of the oscillating jet. These findings are consistent with the work of Dunham et al.
(2009) who investigated a confined swirling-jet flow in both uRANS and LES frameworks and
noticed that although uRANS was able to predict large scale vortical structures, these were not
consistent with experimental measurements.

Figure 86 shows perspective views of the computational domain from a position just above
the step looking downstream for the higher mass loading cases, ML2, for both the 40um and
80um particle size classes. In this series of screen-shots all the injected particles are plotted and
the equatorial plane depicts contour of the concentration evaluated on the Eulerian field with
the method described in the following section. This series of screen shots serves to show the
spatial non-uniformity of the LES calculations, which is ultimately the desired goal of uRANS
dispersion models. For the higher mass loading case the discrepancies appear to be smaller, but
this is probably an artifact due to the sheer number of additional particles introduced which
makes distinguishing such discrepancies in a qualitative sense cumbersome. An additional point
that should be made is that this series of images correspond to instantaneous snapshots and
once temporal averaging is performed the discrepancies, namely departures from axisymmetry,
will be significantly smaller. It is exactly this instantaneous non-uniformity which needs to be
captured in order to allow the combustion models to take into account temporal temperature

and stoichiometry fluctuations within the domain if they are ever to predict accurate emissions.

Up until now we have been inspecting the entire domain, however it is important to focus
on the recirculation zones since it is at exactly these regions where the limitations of the GI
model were most pronounced, especially concerning the 80um particle case and the very small
number of particles that are observed to enter these recirculation zones. Figure 87 shows the
particle dispersion as predicted by the GI and KS models in the expansion tube downstream
of the step along with a representation of the locus of the recirculation zone in the continuous
phase where blue colors indicate regions of flow reversal. For both models, calculations were
performed from identical starting conditions and Eulerian parameters and allowed to run for the
same number of iterations. The KS model predicts an increased number of particles entering
into the recirculation zone and traveling upstream when compared to the particle dispersion
predicted by the GI model.

To understand how this is being achieved, one’s attention must be drawn to the computed
particle velocities from the two models and restricted to the region of the expansion tube that

corresponds to the recirculation zone. Depicted in the following series of figure, Figure 88 to 94
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are the particle fluctuating velocities computed by the KS and the GI models. The Lagrangian
domain has been clipped or reduced to the region of interest in order to make the visualization
and post processing more tractable; specifically only the particles downstream of the step are
shown extending to a region corresponding to half the expansion tube length (2=0.3m).

Figures 88 to 94 compare the GI and KS simulations starting with a qualitative depiction
of the magnitude of the particles’ fluctuating velocity components intended to show the overall
increase of particle dispersion, especially past the axial location indicated by the horizontal axis.
While Figures 88a to 94a have been colored by a range corresponding to the extremities of the
computed velocities, the subsequent plots (Figures 88b to 94b) are colored to the same scale
showing clearly the increased velocities of the KS dispersed particles. Once the particle velocities
are depicted inthe latter manner, it becomes clear that the larger range of fluctuations predicted
by the proposed KS model is not present throughout the Lagrangian phase rather it is restricted
to the regions of high turbulent kinetic energy near the centreline and close to the step. The
range of predicted velocities decreases markedly as the distance from the step increases and the
particles travel downstream.

Similar comparisons are repeated for the individual fluctuating velocity components. For
every one of these individual velocity component plots the presentation is repeated, coloring
with two distinct scaling schemes and then is repeated but with the Lagrangian data clipped
in two distinct ways; Either the Lagrangian data is clipped in solely in the axial direction,
restricting the analysis to those particles close to recirculation region or it is clipped in both
the axial direction and in a spanwise direction parallel to a vector normal to the plane of the
page, further restricting the comparison to particles that lie on a equatorial plane. The former
three dimensional Lagrangian representations serve to show circumferential non-uniformities but
most importantly, to elucidate that the large fluctuating velocity components predicted by the
KS model are limited to regions near the centreline while near the walls both models predict
very similar ranges of near zero velocities as would be expected. The series of images depicting
the particle velocities that have been restricted in both the streamwise and circumferential
directions (a 2D representation of the Lagrangian phase) serve to show the increased dispersion
in this region (z ~ [0.20 — 0.26m]) and to remove any falsehood in interpreting the qualitative
data that might arise from a two dimensional representation of a three dimensional spatial
distribution where it may be hard to distinguish between increased dispersion and a particle
that lies near the wall but at a different circumferential direction.

The entire discussion so far has been a qualitative descripton of the way the KS model

performs in this region and this information will be quantified in a following sections.

5.3 KS-model Evaluation

The evaluation of the KS model in the axisymmetric sudden expansion geometry will be done
in two parts. First, attention is directed in evaluating how the particle spatial distribution is
affected from use of the proposed model. Evaluation will be done by evaluating the particle
concentration at several locations and comparing it to the G&I model, to LES predictions, as
well as to the experimental measurements. Then, a comparison of the fluctuating velocities

generated by the G&I and the proposed models will be performed.
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Figure 92: z-component of fluctuating velocity for 80um particles as calculated by the G&I on
the left and the KS2 models on the right. Note that the domain is restricted to show only the
particles lying close to an equatorial plane.
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Figure 93: y-component of fluctuating velocity for 80um particles as calculated by the G&I on
the left and the KS2 models on the right. Note that the domain is restricted to show only the
particles lying close to an equatorial plane.
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Figure 95: Schematic indicating the particle number density evaluation problem; For the two
boxes on the top the number density evaluated at the measurement location will be the same,
while for those at the bottom of the figure, the result will be completely different.

5.3.1 Evaluation of particle concentration

Before the quantitative comparison is performed, it is necessary to clarify how particle concen-
trations are evaluated for the remainder of this work. A problem arises in the standard definition
of particle number density for computational meshes with varying mesh density. This may be
seen in Figure 95, where a schematic is drawn indicating the issue at hand. The phenomenon
is especially acute on unstructured meshes, or when mesh refinement occurs, and the measuring
plane is located arbitrarily in space. It is just as much a problem in the test case, where the cell
spacing is finer near the walls, since the usual method of evaluating number density of particles
involves summation of the number of particles within a cell and dividing by the cell volume.
The problem is exaggerated when comparing with experimental data where the measured ex-

perimental stations will rarely lie in areas corresponding to regions of uniform mesh density.

The solution adopted was to implement an analogue to the experimental approach for eval-
uating the concentration. The approach was developed by Hardalupas & Taylor (1989) for the
measurement of particle concentration measured during Laser Doppler Velocimetry experiments
near stagnation points, but can be adapted to a computational context. It involves measuring
the transit time, 7,, of every particle crossing the measurement probe and dividing by the sample
time, Ts and the probe volume, V, according to:

oty - =20

where the index relates to particle concentrations of different size classes.
In the present computational study, every cell becomes a “measurement probe” and the

particle transit times are stored as they cross each cell™. Figures 96 & 97 depict the annuli

"SFollowing a private communication with Braun (2014) of ANSYS, it was determined that a very similar
procedure is adopted by the commercial ANSYS computational package where the residence time of every particle
through every cell is stored in order to be able to evaluate the concentrations of Lagrangian particles.
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Figure 96: Sample instantaneous 40um particle concentration representation of the concentra-
tion evaluation annuli of the domain. (Note: the concentration here has not been normalized)

(at») (lt)) (c) at 2/D=2.67
2/D—=0.08 2/D=1.33

Figure 97: Sample instantaneous 80um particle concentration representation of the concentra-
tion evaluation annuli of the domain. (Note: the concentration here has not been normalized)

used for circumferential averaging that will be presented shortly during the comparison with the
experimental data. Figure 98 shows the three measurement stations downstream of the step at
z/D = 0.08, 1.33 & 2.66, where the origin of the ordinate system is on the centreline at the step
location. Meanwhile, Figures 99 & 100 show sections through the plane of symmetry of the
domain and the evaluated instantaneous particle concentrations for both mass loading cases.
The improved predictive capability of the KS is visible as the contour plots resemble the LES
predictions closer; this is also true for the ML2 conditions (Figures 99b & 100b) . The cells used
as “measurement probes” were averaged in the circumferential direction, which explains why in
Figures 101 through 104, depicting the comparisons between measured and computed particle

concentration, the latter only extends over half the extent of the abscissa.

Mass Loading Condition 1
So far only a qualitative comparison has been made. We will now show how the particle
concentrations compare for the two particle size classes against the LES and experimental data.

In both cases, measurements are for three spanwise locations at z/D= 0.08, 1.33 & 2.66. Figures
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Z-Axis

(a) Perspective view of the computational domain showing the three measurement locations at z/D=0.08, 1.33 & 2.66 from left

to right with the step visible on the left

€e'L=a/z
(9'¢=A/z

0.0 0.2
Z-Axis

(b) Plan view of the computational domain showing the three measurement locations at z/D=0.08, 1.33 & 2.66 starting from

the step

Figure 98: Schematic depiction the three spanwise stations in the pipe at z/D=0.08-1.33-2.66
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(a) ML1 - the extent of the domain has been clipped near the outlet

centratic

g B P

(b) ML2

Figure 99: Eulerian representation of instantaneous particle concentrations - 40um particles,
section through a plane of symmetry. Flow direction is from the bottom to the top of the page.
(Note: the concentration here has not been normalized)
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Figure 100: Eulerian representation of instantaneous particle concentrations - 80um particles,
section through a plane of symmetry. Flow direction is from the bottom to the top of the page.
(Note: the concentration here has not been normalized)
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101 & 102, for the 40um and 80um particles respectively, show the good agreement between
calculations and experiments for the low mass loading case, ML1, note that the ordinate is
logarithmic.

The concentrations have been normalized in a similar manner to Hardalupas et al. (1992)
from which the experimental data is taken in order to generate a dimensionless quantity. Near
the centreline, we see that all three simulations slightly over predict concentration. For the two
uRANS models, this can be attributed to the fact that the k-Epsilon model under predicts the
velocity along the centreline. An under-predicted velocity would result in the particle transit
time through the measurement volume being over predicted and hence resulting in a larger
concentration. The effect is more pronounced for the smaller size class, where there is the
compounding effect of accurate estimation of drag coefficients. These are still associated with
a large degree of uncertainty due to the difficulty in obtaining accurate experimental data and
the effect is more pronounced near the centreline where the velocities are higher.

In Figures 101 & 102, for the 40pm and 80um particles repsectively, as one moves away
from the centreline in the physical domain, the agreement deteriorates. This is at least partly a
result of the statistical uncertainties of the calculations, since the sampling for the experimental
measurements is performed over several minutes rather than a few seconds, which is the case
for the calculations. Even though several flow-through times are modeled, longer values are
necessary to build up statistically significant averages as the velocity field within the recirculation
zone is transporting the particles upstream at a significantly smaller velocity than that of bulk
velocity in the downstream direction. This explains why even the LES calculations are under
predicting the concentration near the wall even more than the stochastic models as there were
fewer flow through times calculated and averaged for the LES calculations.

Near the expansion tube walls (y/D=0.5|) the experimental data show very large concentra-
tions and this was the result of the tendency of a large percentage of particles to adhere to the
expansion tube walls. As it is very hard to quantify the exact percentage that stick to the wall,
the calculations do not reflect this phenomenon and all particles are modeled to rebound elasti-
cally off the wall (billiard-ball model). The effect is that far downstream of the expansion step
(several inlet diameters downstream of the recirculation zone), we expect our calculations, when
compared to the experimental data, to over-predict the concentration in the near wall regions
but to under-predict it on the wall. Overall, the proposed model shows acceptable agreement,
especially for the 80um particle class size, with the LES and experimental data of Hardalupas
et al. (1992), outperforming the GI based model.

Mass Loading Condition 2

Figures 103 & 104 present the comparison between the experimental data and calculations
based on the dispersion models for the higher mass loading case, ML2. The agreement is
improved for the higher mass loading cases and the effects of the aforementioned limitations seem
to be reduced due to the larger number of particles present providing improved statistics for the
comparison of the calculations. This results in smaller error bands (calculated from the standard
deviation of each circumferential averaging annulus variation over time) for the measurements

near the walls especially for the two measurement stations within the recirculation zone at z/D=
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0.08 & 1.33.

Overall, agreement for the ML2 conditions is improved over that for the ML1 conditions, at-
tributable to the greater number of particles in the computational domain improving the quality
of the statistics. For both mass loading conditions the agreement between all the calculations
and experimental measurements is improved at the farther downstream measurements stations
over those close to the step. A result of the well-mixed conditions further downstream in the
expansion tube and of the discrepancies between the calculated continuous and discrete phases
just before entrance into the expansion tube discussed in Chapter 3. There is further small
improvement at the downstream measurement stations between the LES predictions for the two
particle size classes; it appears that for the limited simulation time available, the absence of
clustering for the 80um particles improves the agreement between calculations and experiments
due to the greater predicted spatial uniformity. This is also true for the two RANS dispersion
models where the greater spatial uniformity —compared to the LES predictions— improves the

agreement with the experimental data.

5.3.2 Quantitative comparison of fluctuating velocity components

This section quantifies the information presented in the qualitative comparison presented earlier
in section 5.2. The comparison is made by looking at the probability functions of the indi-
vidual velocity components generated by the dispersion models for the 80um particles for the
higher mass loading case, ML2. The histograms are presented in Figures 105 to 109. Once
again the study is restricted to those particles lying in the region within the recirculation zone
(z ~ [0 —0.3m]) in order for the individual differences to be better highlighted. Here a com-
parison is also made between the two distinct implementations of the KS models, KS1 & KS2
and the GI model, as up until this point only results from the KS2 model have been shown.
In all cases the extent of the abscissa extends to the extremities of the range predicted by the
corresponding model. Both KS1 & KS2 models predict a greater range of fluctuating velocities
components than the GI model; that is to say, the variance is significantly larger for all three
fluctuating velocity components. Between the KS1 and KS2 it is evident that the latter results
in an even greater variance, a result of the fact that for KS1 both the energy content and the
range of wavespace extent were computed from mean values and then scaled by the local value
of the turbulence intensity. An important point that needs to be made relates to the shape of
the distributions. In the GI model the Gaussian shape is prescribed (i.e. the shape is known
beforehand from the construction of the model), whereas for the KS models this is a result (i.e a
simulation outcome) and in turn a confirmation of the validity of the method’s implementation.

The analysis continues by presenting combined plots for the individual fluctuating velocity
components of the three individual dispersion models shown in Figure 108. The abscissa here
has been restricted in order to draw attention to the slight differences in the shapes of the
distributions where the smaller kurtosis of KS2 is evident.

It is worth pointing out that what appears to be a ‘spike’ about the mean and is more
pronounced in the KS2 than in the KS1 model, is a result of having generated these statistics
from all of the particles in the aforementioned region and there is a significant number of particles

which either lie on the wall or do not interact with an ‘eddy’ and hence the fluctuating velocity
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component prescribed is zero. This is also true of the GI model but the smaller variance and
greater kurtosis means that is a less pronounced feature.

Finally, for illustrative purposes a comparison is made between the velocity components
generated by the RANS and LES calculations and is presented in Figures 109. Differences in the
results between the RANS models are not expected to be significant since the main contribution
to the mean velocity of the particle comes from the surrounding fluid which should be very
similar for all RANS cases. As far as the comparison between LES & RANS is concerned,
noticeable differences are observed for the z-component of velocity only. The LES predictions
exhibit a bimodal pattern, with a strong lower peak being associated with negative velocities
and a comparatively (by comparison with the uRANS calculations) less pronounced peak at the
far end of the positive velocity range. The first is attributed to the larger number of Lagrangian
particles predicted to be within the recirculation zone of the LES calculation while the latter
is attributed to the fact that the LES calculations predict a less uniform axial velocity near
the centreline for the FKulerian phase due to the amount of large scale oscillations observed and
greater range of modeled scales; this in turn affects the Lagrangian velocities. Both of these
differences indicate that the chosen dispersion model should generate fluctuating velocities that
have greater kurtosis and standard deviation than the GI modeld since both of these attributes
will reduce the uniformity in the predicted velocity —especially in the axial direction— after the
fluctuating components have been added to the mean velocity components. This last section
has focused on demonstrating that the dispersion model presented in the thesis possessed both
of these attributes and provides further support for the suitability of the KS dispersion model

over the currently employed models.

5.4 Summary

To conclude, a novel phenomenological dispersion model for coupled Eulerian-Lagrangian frame-
works has been developed. This is based on the standard RANS solvers for modeling the large
sweeping structures of the mean flow and then Kinematic Simulations are introduced to model
the effect of the inertial and dissipative ranges of the turbulent flow on the dispersion of parti-
cles calculated in a Lagrangian framework. The interaction of a particle with an inadequately
resolved —whether averaged or filtered out— ’eddy’, —whose size, range of scales and intensity
are determined from the local Eulerian conditions— is accounted for through the generation of a
fluctuating velocity component.

Initial validation was performed through comparison of the proposed model against the most
commonly used dispersion model for RANS simulations, LES and experimental data. Further
calculations with larger mass loadings were performed to confirm the promising initial results.
Additionally, the validation process required the development of a novel approach, in the CFD
context, for accurately estimating particle concentrations without relying on the evaluation of
number density based on an instantaneous approach rather, adoptinga time of a ‘time of flight’
approach.

Quantitative and qualitative analysis has been performed and the proposed model addresses
the limitations of the currently employed model. Improved agreement was noted between the

proposed model and the experimental results and LES calculations, over that of the GI model, on
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Figure 105: Comparison of the probability of occurrence of the particle fluctuating velocity
component, UTurby, calculated from the dispersion models restricted to those particles lying

within the recirculation zone.
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Figure 107: Comparison of the probability of occurrence of the particle fluctuating velocity
component, UTurb,, calculated from the dispersion models restricted to those particles lying
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the axisymmetric sudden expansion test case. Subsequently, the proposed model was provided to
the industrial sponsors of this work for testing on their proprietary CFD package with promising

results reported for two industrial geometries (results included in Appendix C).
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6 Future work & Conclusions

6.1

Summary

— The industrial and the engineering community have recognized a need for improved par-

ticle dispersion models. The completed literature review has identified that there exist
computational tools to accurately describe particle dispersion and preferential concentra-
tions. However the cost associated with such calculations remains prohibitively expensive.
The implication is that there is a need within the community, especially the industrial
one, for a model that is capable of producing improved particle dispersion characteristics
without the costs associated with the more expensive methods. The model proposed in
this thesis does not aspire to describe all the physics accurately. Rather it will introduce,
in a phenomenological sense, some of the characteristics of the more costly methods in an
effort to allow industrial codes to predict spatial and temporal non-uniformities of particle

concentrations and more realistic dispersion properties.

A custom, coupled Fulerian-Lagrangian solver was developed for unsteady incompressible
flows since such a solver was missing from the standard distribution of openFOAM. The
solver developed was capable of using a wide range of Lagrangian sub-models present
within openFOAM such as collision, injection and dispersion models amongst others. It
is this flexibility and adaptability available within openFOAM that was the main reason
for its selection and use as a base to develop the proposed phenomenological dispersion

model.

The developed Eulerian-Lagrangian solver for the RANS and LES calculations was evalu-
ated on the axisymmetric sudden expansion test case. The test case was introduced along
with an investigation to determine the required mesh resolution. This was followed by a
validation of the solver’s capabilities. First, in terms of the Eulerian phase through the
comparison of the calculations and the experimental data which showed acceptable agree-
ment between the measured quantities and predicted recirculation zones; and subsequently
in terms of the Lagrangian phase where good agreement was observed. The results from
the calculations demonstrate the formation of instantaneous particle clusters in the flow
for the 40pum particles; but not for the 80um particles. An effort was made to identify
dominant vortical structures throughout the LES calculation, using enstrophy, vorticity
and the 2" invariant of the velocity gradient tensor, but this posed several difficulties
primarily due to the complexity of the flow. No clear correlation was identified between
the location of particle clusters and these characteristic features of the gas phase. Finally,
Voronot analysis was used to quantify the scale of the particle clusters which indicated
that the cluster dimensions, in the cross-stream direction, could be of the order of the
downstream, expansion tube radius. This is much larger than the cluster dimensions re-
ported in the literature from DNS calculations of isotropic turbulence, which tend to link

the size of the clusters to the Kolmogorov scale..

— A novel phenomenological dispersion model was developed for coupled Eulerian-Lagrangian

frameworks. This is based on the standard RANS solvers, for modeling the large sweeping
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6.2

structures of the mean flow and then Kinematic Simulations are introduced to model the
effect of the inertial sub-range of the turbulent flow on the dispersion of Lagrangian parti-
cles. The interaction of a particle with an under-resolved ‘eddy’ is accounted for through
the evolution of this particle through an isotropic turbulent field that has been created
using Kinematic Simulations. The energy content and extent of scales of this field are
determined from the local Eulerian properties of the under-resolved ‘eddy’. Qualitative
comparisons between the proposed model and the G&I dispersion model showed differ-
ences in the underlying dispersion mechanisms as well as marked differences in particle
trajectories when used as a dispersion model through identical flow-fields. This may be at-
tributed to the underlying mechanisms of each model. In the G&I model, the particle pair
separates gradually and a sudden change in particle pair separation distance occurs when
the particles are eventually advected apart by the larger, resolved scales of the flow. In
contrast, the KS is capable of modeling the sudden separation even within the unresolved
scales. This is an important point to note, as the intended use of such models is primarily

for the unresolved scales of a flow-field and should result in increased overall dispersion.

Validation of the phenomenological dispersion model was performed through comparison
of the proposed model against the most commonly used dispersion model for RANS sim-
ulations, that is the G&I model, LES and experimental data. Further testing with larger
mass loadings was performed to confirm the promising initial results. Additionally, the
validation process required the development of a novel approach, in the CFD context,
for accurately estimating particle concentrations without relying on a number density ap-
proach. Quantitative and qualitative analysis has been performed and the proposed model
addresses the limitations of the currently employed model, predicting increased particle
entrance within the recirculation zone. Good agreement was noted between the proposed

model and the experimental results and LES calculations.

Finally, Appendix C shows the proposed model developed within this theis provided to
the industrial sponsors of this work for integration within their proprietary CFD software
and tested on an industrial geometry of an aviation gas-turbine combustor currently in

flight with promising initial results.

Recommendations for Future Work

The present work has validated the use of KS within a RANS framework. The first step was
to establish the validity of the method through its use as a dispersion model. Having shown
that it addresses some of the limitations of the presently available models and shows good
comparison with experimental results and more costly computational methods, a logical
next step is to take advantage —even if it is limited to the phenomenological level— of the
improved physical representation of turbulence provided by the KS method. That is, to
investigate the method’s ability to predict preferential concentrations on the smaller scales
(those modeled by KS) within the RANS framework. The literature review has identified
that the method is capable of predicting preferential concentrations and has also shown

that it is capable of such predictions across a range of scales, capturing the self-similar
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nature of the phenomenon. The present proposition is to take advantage of these abilities
of KS and to predict preferential concentration at the smaller scales. One way of doing
this would be to track the evolution of neighboring particles —say those that are separated
by a distance smaller than the Kolmogorov scale- through the same KS field. Such an
approach would might allow the RANS method some of the KS method’s ability to predict

clusters.

— A worthwhile pursuit would be further development and testing of the KS dispersion
model within an uncoupled Eulerian-Lagrangian RANS solver where the particle position
(in addition to its velocity) would be adjusted according to the KS trajectory. Such a
version has been developed and tested with the solver being stable for small mass loadings.
What is required, now, is the identification of a suitable test case for validation purposes.
Such a version of the dispersion model would be particularly suited for modeling larger

geometries, such as pollutant dispersion in environment-scale flows.

— The proposed model could be adapted for use within the LES environment. In this context
the KS model would be used as an SGS model for particle dispersion in cases where the grid
was relatively coarse and the Stokes number of the grid was small. Such modifications have
already been carried out and a suitable test case is currently being sought. Additionally,
it need-not be limited to the Lagrangian phase but could be adapted for use as an SGS

model to improve the prediction of the mixing of scalars within the unresolved scales.

— The increased computational cost of the KS dispersion model over the G&I model was
small, in the region of 10-15% as measured by both the author and the industrial partner,
when implemented within their CFD package and tested on their geometries. There may
be room for improvement of the code structure in order to reduce the computational
overheads although this was not examined as such modifications would have increased the
efforts required by the project partners during integration within their proprietary CFD

code.

— An interesting development of the KS dispersion model abilities would be to investigate
the potential for use in wall bounded or stratified flows, regions where the hypothesis
of isotropic turbulence is not applicable. This could be achieved by prescribing separate
turbulent energy spectra for the principal directions or changing the prescribed exponent

of the energy spectrum.

— Finally, the LES results showed some interesting features in terms of the size of the clusters
that were formed. It could be a worthwhile endeavor to investigate how these clusters
are formed and for how long these persist in addition to correlating their formation and

evolution with the surrounding flow structures.

6.3 Conclusions

This thesis has shown that the initial hypothesis of combining a spectral method with the

standard RANS simulations for improved modeling of the dispersed phase is promising one.
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Kinematic Simulations were introduced to provide a more realistic representation of turbulence
with which the discrete phase interacts with, given the absence of small scale resolution in a
RANS simulation. The effect of the large flow scales on the particles are modeled with RANS
while Kinematic Simulations are employed for the modeling of the inertial and dissipative ranges.

The improvement observed after introducing the dispersion model in this thesis may be at-
tributed to the fact that the prescription of the fluctuating velocity component of the continuous
phase which is ‘sampled’ by the Lagrangian phase is no longer based on the ‘one time’ event
drawn from a Gaussian distribution. Rather, the interaction of a particle with an under-resolved
‘eddy’ is accounted for by evolving the particle through an isotropic turbulent field. This field
is constructed with Kinematic Simulations, a relatively non-costly computational method. The
energy content and spatial extent of scales of the isotropic field are determined from the local
Eulerian properties independently every time a particle meets an under-resolved ‘eddy’. The
evaluation of the proposed model was performed on a simple well documented test case and
showed good agreement with experimental results and LES calculations.

The validation of the particle concentrations required the development of a new method
for evaluating particle number density. Inspired by a experimental technique, the new method
requires the evaluation of the particle residency time within each cell and removes many of the
issues associated with the evaluation of concentrations on non-uniform or unstructured grids.
In addition, Voronoi analysis was performed on the outcome of the LES calculation for the
identification of particle clusters. These were found to be of the order of the expansion tube
radius, much larger than Kolmogorov sized clusters identified in DNS calculations.

Further testing of the proposed model was performed on industrial geometries by the indus-
trial sponsors of this work. These tests confirmed the relatively small increase in computational
overhead required by the proposed method compared to the presently used dispersion model.
Most important, though, was the observation of significant differences between the particle tra-
jectories computed with the proposed model and those with a model widely used in industry.
This last point is of particular significance as one of the limitations of the currently used mod-
els was the high degree of spatial uniformity in the predicted particle distribution. This was
addressed by the present model both on the basic test case but also on the industrial geometry.

Having validated the proposed model’s implementation as a a dispersion model it is deemed
a worthwhile endeavor to further extend and investigate its capabilities, since Kinematic Simula-
tions provide a substantially improved representation of turbulence that can reproduce clustering

and the higher order statistics of the dispersed phase.
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A Spectral Methods

Before we delve any further into the field of KS it is perhaps necessary as well as instructive to
review the fundamentals of spectral methods which form the core of KS. The summary presented
here is an amalgam of the chapters dedicated to this field by the classic monographs of Monin
& Yaglom (1975), Tennekes & Lumley (1972) and Lumley (1970). It is not intended to be an
exhaustive review of these methods as that is beyond the scope of this thesis and would require a
volume to be complete, rather the aim of this section is to introduce or remind the reader of the
tools and methods commonly used in order to make the following sections more approachable.

In the field of fluid dynamical turbulence the study of homogeneous -in a statistical sense-
turbulence has proved invaluable in shedding light into this chaotic phenomenon. The most
valuable tool available to researchers for its study is the Fourier transform. Significant insight
has been gained through the investigation of two-point statistics. Of these the velocity autocor-
relation is perhaps the most widely used as its Fourier transform yields the energy spectrum of
the field which in turn forms the basis for the investigation of the transfer of energy amongst
the turbulent scales.

If the velocity correlation is a function of a time interval, 7, the transform variable is a
frequency, w. Alternatively, if the correlation is a function of a separation vector, r, the transform
variable is a wavenumber vector, k. It should be noted that the accuracy of the Fourier transform
representing the random function depends on the frequency domain or the size of the wavenumber
interval, respectively. An alternative way of viewing this is that the greater the number of
uncorrelated harmonic motions of random amplitude and phase that are used in the summation
the closer the random function will be approximated.

Durbin & Petterson-Reif (2001) summarize the main benefits of the use of the Fourier trans-
form when studying turbulence; they are listed now and will be reviewed further in the following
sections. These are the ease with which translational and rotational invariance is accommodated
for within the Fourier transform. The fact that each random Fourier mode is not correlated with
all the others and finally the simplification of the differential form of the Navier-Stokes equa-
tions into simpler algebraic relations as well as the subsequent simplification of the higher order
statistics and derivatives.

The mathematical foundation for spectral methods lies in the harmonic analysis of random
functions. When the latter has only one dependent variable we are dealing with a random process
whereas when the order of variables increases we are dealing with random fields. The number
of variables of the function in question increases the complexity of the process somewhat but
the underlying mathematics remains largely unchanged. The basis is the representation of the
random process through a number of Fourier series or integrals. Strictly speaking the former is
used for purely periodic functions while the latter approach is applicable to functions that vanish
as they approach infinity. However, for all stationary random processes’%and for all homogeneous
random fields there exists an appropriate Fourier expansion that can represent the process or
field. It is exactly this representation of any random process or field by the superposition of

harmonic oscillations or plane waves that we call a spectral representation. Monin & Yaglom

6By stationary we mean statistics exhibit temporal translational invariance that is they are independent of
the time origin. However these methods can be extended to cases of non-stationarity see Lumley (1970b)
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(1975) clarify that such a representation is a special case of representing a random function
through the summation of a series of components of given functional form and of random and
uncorrelated coefficients.

We will return at a later stage to clarify the importance of the randomness and non-
correlation of the components but for now we will restrict ourselves to distinguishing between
the two main types of random functions. Those defined over a finite interval, or perhaps more
appropriately those of finite energy that may be represented by a series expansion of a finite set
of orthogonal functions and those extending over an indefinite interval or alternatively of infinite
energy that may be represented as an integral expansion of a continuous set of functions.

The spatial and temporal correlation tensors are, respectively, given by the following rela-

tions:

R;ij(r) = ui(x, t)uj(x +r,1)

77&

Rij(T) = ui(x, t)Uj(X, t+ 7')

Where r is the separation vector and 7 is the time interval. Their corresponding Fourier trans-

forms result in the following spectrum tensors:

e = L i (~ikr) .
4409 = s [// (KT R.(2)dr
17
qﬁij(w) = —271_ /e(le)RZ‘j(T)dT

The inverse relationships are also true, that is, knowledge of the spectrum tensor can result

directly in the correlation tensors:

[e.e]

Rij(r) = /// elT) g, (k) dk
Rij(T) = 7e(iw7)¢ij(w)dw

Limiting the separation vector’s orientation to lie parallel with one of the principal directions,
i.e.
r= (T? 0’ O) ) (07 T‘? O) or (07 O? /r)

results in the most frequently measured correlations. These are the longitudinal and transverse
correlations, for parallel and perpendicular velocity components respectively. The related one
dimensional spectra, F11& Fby are known as the longitudinal and transverse spectra respectively

and given by the following relationships:

""We have not normalized with the variances / ufu?because in tensor notation these looks like the Reynolds
Stress from Reynolds averging. These are two-point correlations and there should be no confusion.
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Ry1(r,0,0) = / W Py (ki )dky = / elikr) // b1 (K)dkodks
Ra2(r,0,0) = /e(ikr)FQQ(kl)dk’l = /e(ikT)//¢22(k)dk2dk3

The nested double-integration implies that the integration is not calculated over the entire

78 Successive

wave-number space but rather for a smaller slice at a given wave-number kg
measurements of the correlations of incrementally increasing wave-numbers and subsequent su-
perposition of the resultant Fourier transforms results in the complete one dimensional energy
spectruin.

At this point it should be mentioned that we have overlooked one issue that burdens all
Fourier transform operations. This is known as aliasing and the problem is exasperated further
in three dimensional turbulence as not only do the greater wavenumbers in the same direc-
tion contribute to the measured correlation but the wavenumbers of the other two directions
contribute as well. At the higher end of the wavenumber space the problem tends to be less sig-
nificant as the turbulence tends to be isotropic and the eddies in all directions are approximately
equal. This is not true though for the large scales (small wavenumbers) in the inertial range. The
solution is to obtain measurements of the same correlation in all possible directions. However,
Tennekes & Lumley (1972) note that such a measurement would yield more information than
one can physically reason.

The complexity arises because it is uncommon to be able to describe the velocity field purely
in terms of the superposition of even and real function (i.e. cosines). Rather to accurately
describe the field one must resort to the superposition of odd and even functions (i.e. sines
and cosines). The Fourier transform of an odd function will result in a Real and an Imaginary
part. Hence, the Fourier transform of a 1D odd function needs to be represented on 2-axes, the
Fourier transform of a 2D odd field will require 4-axes and that of 3D field 6-axes’. The solution
is to integrate the spectrum over spherical shells of wave-number space, that is a spectrum
representing the total energy at that scalar wavenumber. The scalar radius, k is determined by

calculating the modulus of the vector k:
k| = vk -k =kik;

Finally, in order to account for the total kinetic energy and not only for the contribution of a

single velocity component, the spectra of all three velocity components must be added together.

"8Regarding the shape of Roz which turns negative: The mean velocity in the transverse direction should be
zero, the implication for an incompressible field is that in order to avoid net flux in one direction (or the other)
through a plane, whose normal vector is aligned with the transverse direction, the correlation must turn negative

eventually.
"Recalling that (Bracewell (1986)):

— The Fourier transform of the even part of a Real function is Real and even.

— The Fourier transform of the odd part of a Real function is Imaginary and odd.
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That is we are interested in the diagonal terms, of the spectrum tensor, ¢;;:

Gii = P11 + 22 + P33

The resulting energy spectrum is known as the three-dimensional spectrum, given by:

B(b) = 5 o ¢u(kas(k)

Where, dS(k), is a surface element on the wavenumber spherical shell at a radius |k|. As
the energy may be distributed in a variety of ways amongst the wavenumber components con-
tributing to the spectrum E(k), does not uniquely define ¢;;(k). The relationships between the
one-dimensional spectra and the three-dimensional ones are complicated bar the special case of

isotropy, where they are as follows:

30 @)  d(Fo(k)) _ ki d*(Po(k)

Ek) =k d ~1
(k) dk dky 2 dk?

Although the measurement and experimental apparatus for obtaining the spectra can be com-
plicated at times, working with the Fourier transforms has two benefits of great importance for
researchers investigating turbulence; the higher order statistical moments and the partial deriva-
tives of the equations of motion once cast in Fourier space are significantly easier to solve. One
should also note the tendency of the two-point correlation to rapidly approach zero as the sep-
aration vector increases, which, in turn is a consequence of the finite energy available at higher
wavenumbers (observed in the energy spectrum) as the converse would constitute a violation of
the energy conservation principle.

A further convenient property of the homogeneous turbulence described by Fourier trans-

forms is that their wavenumber components are uncorrelated:
Ui(k)U(K')=0 fork # K

Given that the flow-field is a Real valued function, the complex conjugate can be freely replaced

with its negative:

U;(k)U; (—K') = 0 for k # —K

where, * denotes the complex conjugate quantity and U;(k) denotes the Fourier transform of

Ui(k) = (2;)3 /Z %y (x)dx

We will see in subsequent sections dealing with the construction of KS, that this property is

u;(x) given by:

especially accommodating in the synthesis of turbulent flow fields. Durbin & Petterson-Reif
(2001), have an elegant derivation of this result avoiding the somewhat abstract mathematical

proof usually given and it will be presented here:
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U; (k) U7 (K) =

/elk Xy (x)dx @jr):gZZZe_ik"xlui(x’)dx’
_ (271T)6/7//7/€i(k-x—k’x')zwwdxdx/

—0o0 —00
By rearranging the exponents we can substitute with the two-point correlation, R;; sincer = x — x’

and in turn with the spectrum tensor, ¢;: 8°

U,(k)U(K) = L ////// ik=K)x'oikr o (1) drdx’

—0o0 —00

C I nera
- (277)3‘25“/// T

But the term within the triple integral is the Dirac delta expressed in three dimensions: §(k — k') =
[e.@]

[[] &%) ¥ substituting gives the desired result, as the delta function will be zero when k # —k/8!:
—0o0

U007 () = 6(k — K') 6

At this point the following observation should be made, although we have mentioned that the
flow-field may be constructed from the summation of Fourier modes, each of these extends
within [—o0, +00] unattenuated, whereas an eddy is a local feature or structure. Durbin &
Petterson-Reif (2001), attribute this to the phenomenon of statistical scrambling of the random
oscillations. The summation results in a correlation that statistically represents the eddies and
provided the total energy content of the Fourier and physical system are preserved so should the
overall statistics. The immediate implication of this, is that no single wavenumber should be
associated with a single size eddy, that is a single wavenumber does not correspond to a wave-like
disturbance. Rather, as Tennekes & Lumley (1972) point out, each eddy should be thought of
as contributing not a narrow but a broad spike/peak to the energy spectrum and hence many
Fourier coefficients and knowledge of the phase angle between them is required to accurately
describe them. This should not come as a surprise as an eddy is far from static, instead it is
constantly interacting with its neighbors exchanging energy and as it does so it must also change
its shape.

In order to clarify the rationale behind the existence of a broad spike it is necessary to consider
the energy cascade, that is the exchange of energy between the different scales of turbulence.
As the discussion of the energy cascade is by no means a trivial issue with several monographs

devoted to this subject alone, we will attempt to restrict the discussion here to the key concepts.

80C is an integration constant but can be related to the turbulence intensity, see Durbin & Petterson-Reif
(2001)

®1Recall that in 1D: [ §(z)dz = 1 and in 3D:[ [ [d(x)dx = 1 which may also be interpreted as §(z) =
*3?2/@2 - *(51324*1/2‘#:20)?@2

lim € and §(x) = §(2)d(y)d(z) = lim ©

a—0 ay/w a—0 a373/2

respectively
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The starting point for this analysis is to consider two vortex tubes aligned perpendicular to
each other in a straining flow field that varies only along two of its directions, i.e. it is a planar
strain-rate field (where the strain tensor is a 2x2 and not a 3x3 matrix). The latter require-
ment simplifies significantly the investigation without loss of generality while the requirements
for vortex tubes rather than eddies arises from the fact that the turbulence is a three dimen-
sional phenomenon and to draw any meaningful conclusions we should not restrict ourselves to
the elementary, and perhaps flawed point of view of turbulence as two dimensional revolving
structures or features. One of these vortex tubes is aligned in the direction of positive strain
whilst the other lies perpendicular to the first along the direction of an equal in magnitude but
negative strain. This requires that at the same time the strain tensor is diagonal, meaning that
the vortex tubes are under the strain alone and there is no shear present.

The principle of conservation of angular momentum dictates that the vortex tube under
positive strain increases its vorticity as it elongates thus reducing its diameter. The converse
must be true for the vortex tube under negative strain which contracts in length while increasing

in diameter and thus decreasing its rate of rotation. The general vorticity equation is given by:

dwi
&

And if the original vorticity of both tubes was, w1 = we = w and the magnitude of strain is
constant and equal to s then the equations governing the vorticity evolution for the vortex tubes

for this case reduce to82:

dwq & dws
— = W1S11 = WS — = W9S899 = —WS
dt dt
and in turn:
w1 = wet | wy = we™ & w? + wi = 2w? cosh 2st

From which it should be evident that for all but the smallest of values of st the vorticity of
the tube being elongated will increase faster than the rate at which the vorticity of the other
decreases. At the same time though, an increase in the vorticity, w; must equate into an increase
of us and ws. Similarly a decrease in the magnitude of wy must correspond to a decrease of u;
and wu3. The net effect should be an increase of ug, a more gradual increase of us and a decrease

of u;. If the energy exchange rate per unit mass is given by the following equation:
T =503 ~ )

this quantity must be positive. Hence the eddies tend to remove energy from their surrounding
field and if one starts to think of large eddies convecting smaller ones the idea of an energy
cascade from the large scales to the smaller ones becomes apparent. But the question still
remains as to whether only the immediately larger-sized eddy transfers some of its energy to the
smaller one or is it a range of larger eddies that contribute to the energy transfer. To determine
the relevant energy contributions of the large scales to the smaller ones it is necessary to estimate

the contribution of the strain rate.

82Note that we have assumed that this is a high Re flow and are using the inviscid versions of the equations
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From simple scaling arguments one can see that the strain rate of the largest scales must be
of the order of u/l while that of the Taylor micro-scale should be of the order of u/\, from which
one may deduce that the strain rate increases as the length scale decreases or alternatively, the
strain rate increases as the wavenumbers increase. Lumley (1970) & Tennekes & Lumley (1972)
consider the contribution of progressively larger neighboring scales to arrive at the conclusion
that the strain rate contribution of the immediately larger scale is equal to half of that of the
next scale over which, is in turn equal to a quarter of the total contribution and so forth.

Subsequently with knowledge of the slope of the energy spectrum one can derive the cor-
responding energy cascade between the scales. This is calculated to be equal to two-thirds for
the given wavenumber while the neighboring eddy of greater wavenumber receives one-sixth and
the remaining one-sixth is distributed to the yet smaller scales. We will limit the extent of
the discussion here as any further discussion is well beyond the scope of this work, suffice to
say, that the debate is still ongoing as to the precise nature of the energy cascades shape and
slope however there is general agreement on the concept of local isotropy, that smaller scales
can respond to changes much quicker than the larger scale thus restoring equilibrium faster and
in a statistical sense are isotropic.

Up until this point this short treatise on spectral methods has only dealt with the definitions
and the mathematics of the methods, except for the notion of homogeneity and isotropy which
permitted the introduction of invariance and hence served to reduce the complexity by removing
a preferential direction, there has been no other mention of any physical characteristics of the
flow field. Restricting the analysis to incompressible fields, what are often called solenoidal
fields, a very interesting and useful result emerges once the continuity equation is cast in Fourier
space:

Oiu; =V-u=0

But in Fourier space the dot product of the divergence operator and the velocity vector should
reduce to the dot product of the wavenumber vector with the velocity vector, —ik - u. This

can be seen if the inverse Fourier transform of the velocity is differentiated with respect to the

diui = 0; ///Uieik'xdk _///—ikiUieik'xdk

Therefore incompressibility of the flow field results in the velocity vector’s orthogonality with

wavenumber:

the wavenumber vector: k;U; = 0. This means that the amplitude of the Fourier wave must
be normal to the wavenumber vector, which as Lumley (1970) points out is simply a statement
that in an incompressible field the waves must be transverse and the motion must be parallel
to the wave crest. Furthermore, if the function is ergodic, the spectrum is guaranteed to be a
regular function and we can extend the previous result to the spectrum tensor, ¢;;, as follows:
kipij = ¢ijk; = 0 which follows from differentiating the two point velocity correlation, R;; and

using the previous result:

Oz (Rij) = O [us (%) uj (¥)] = [0;us (x)] uj(x') = 0
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and similarly

0r, (Biy) = 0 T () 1, ()] = |01y ()| () = 0

Another interesting result that arises from the condition of isotropy is the simplification
in evaluating the spectrum tensor thanks to reflectional and rotational invariance that must
apply®3. The main result is that if the field is isotropic so too must the spectrum tensor, Gijs

and hence it is only a function of the wavenumber vector, k, and the delta function, d;;:
¢ij = Adij + Bkik;

where the coefficients A and B may be functions of the magnitude of the wavenumber vector.

Using ¢;jk; = 0 it may be shown that:
¢ijk; = [Ad;; + Bkik;] k; = Ak; + Bk; |k|* =0 +» A = —B|k|?

However, we know that the energy of the spectrum may be determined by integrating the trace

of the spectrum tensor, ¢;; , over spherical shells of radius |k|:
E(|k|) = 2m [k[* ¢ui([k|)

Combining these two results yields the following equation for evaluating the spectrum tensor

provided the energy, F(|k|) has been either measured or arbitrarily specified :

EK) (;, )
= S —
P e M

At this point the fundamental concepts of spectral methods have been covered and we can
introduce an elementary spectral method illustrated by Durbin & Petterson-Reif (2001). They
describe a method by which a random field may be constructed from a sum of Fourier modes of
random amplitudes and phases with the only constraint being that the amplitudes be a function
of the energy of the spectrum. The starting point is an isotropic random function, (k) defined

in wavenumber space. One possible choice for such a random process is given as:
; k
(10 = Voo 109
Silk) Vdk

Where ¢, denotes the phase angle, distributed uniformly between [0, 27| and n(k; is a unit vector

83

— Consider the reflection in the yz-plane, homogeneity requires that the single point statistics at z and -z
be the same and u should become -u:

u(z, y)o(z,y) = —u(a’,y)v(z,y) =0

— Similarly for the two-point statistics reflected in an zy-plane, from points ((z’,y’) & (z,y’)) to ((z’,y) &

(z,)) :

u(x, y)o(a',y') o< (z —2')(y —y') = ulz, y)o(a’,y') = —u(z,y)o(z,y)
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of random orientation independently chosen for each k, one possible definition is as follows:

= (p, + cos /1 — p2, isinﬁﬂ)

Where p& 6 are uniformly distributed between [—1,+1] & [0, 27] respectively and are chosen
randomly and independently for each n(k;. Meanwhile, the requirement for independent and

random orientation of each unit vector results in:
min; = 1/36i;
While, the independence of the wavenumber vectors result in the following property, for k # k'
n; (k) n; (k') =0

These last properties lead to:

&i(k)E(K) = 6;50 (k — K')

which may be used to confirm that the proposed method does indeed result in an isotropic spec-
trum when evaluating the velocity correlation U;U;. Finally, the condition of incompressibility,
as mentioned above, requires that the velocity is orthogonal to the wavenumber vector and the

proposed Fourier transform modes of the velocity field are:

— [ E(R) E(k)
U=kA¢ Tercd or U; = g;;k;§ Tt

where we have also given the index notation for ease of interpretation and have used the substi-

tution of the modulus of the wavenumber x = |k| for the sake of clarity®!. What remains to be
confirmed is that the proposed field is truly isotropic, this will be shown through evaluation of

the velocity correlation:

2
Ui(k)U; (K') = €itmejnpkikn&mp ( EW(HD -

E(x) E(x)
= (8j0m — Gind;)kuknd (k = K') =7 = 6 (k = k') o (K26i5 — kikj)

Where we have made use of the property:
&i(k)&;(K) = 6550 (k — k')
along with the following useful result for the product of two skew symmetric tensors:

EitmEjnp = (0ij01n — dindi;)

84 A denotes the wedge or exterior product and €ij1 @ skew symmetric tensor, that is: 53;1 = —&4j1
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Comparing the right hand side of the equation with
Ui(k)U; (K') = d(k — k') ¢y

which was derived earlier, we obtain the desired result:

E(x)
Amrd

bij = (k2035 — kik;)
Note that this is not the only possible construction that will yield this result as will be shown

in subsequent sections®?.

85 Durbin & Petterson-Reif (2001) mention that energy spectrum may be replaced by a number of different
random variables provided the chosen one maintains the same variance as E(k)
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B Time Averaging for LES

The question remains however, as to how many samples from every simulated flow are required
to average over in order to produce acceptable statistics. This is especially true when extracting
results from LES flows where the size of the generated data sets is massive leading to a tedious
and time consuming post processing process.

To answer this question a bootstrapping method is employed. For the standard mesh case 30
records were extracted for the centreline and one spanwise location at 2/p = 2.67, the location
where the jet exhibits the largest amplitude of oscillations in its flapping pattern. From the 30
samples, averages were created with 25, 20, 15, 10 and 5 samples. Each average was created
by randomly selecting a number of samples from the total number with replacement, i.e. a
particular sample might be selected twice and used in the averaging process.

Figure 110 portrays all the samples for the streamwise and spanwise locations respectively
while figures 111 and 112 show the mean lines generated from the bootstrapping method along
with detailed views, respectively. The process of time-averaging is constructive as it allows an
indication for the spread of the data and the 95% confidence intervals are also depicted here.
As the distribution of the fluctuating component of the velocity is expected to be Gaussian for
the Eulerian phase the standard deviation from the averaging process may be used to calculate
the specified confidence interval. Examination of the last few figures indicated that there was
little to gain in generating averages with more than 10 samples, as the location of the mean
lines did not change significantly and the spread of the confidence band is very similar bar for
the two extreme cases of 5 and 25 samples. Hence 10 samples were deemed to be sufficient for
the estimate of the mean value of the various parameters. This approach is adopted for the
remainder of the chapter and all of the subsequent time-averaged information presented from

the calculations are generated in this manner.36

8 Noting that for the coarse and fine meshes it is expected that 10 samples will result in smaller and wider
confidence bands, respectively, since it is expected that the fine grid predicts larger or more extreme fluctuations
than the standard grid and reciprocally for the coarse mesh.
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(b) Spanwise instantaneous axial velocity profiles at z/p = 2.67

Figure 110: Instantaneous axial velocity profiles for bootstrap method
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Bootstrap Std Mesh, Axial Yelocity Along The Centreline
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(b) Spanwise averaged axial velocity profiles at z2/p = 2.67 for various number of samples

Figure 111: Averaged axial velocity profiles for bootstrap method using different number of
samples
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Bootstrap Std Mesh, Axial YVelociy Along The Cenreling
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C Industrial Geometry

This final section describes the implementation of the KS2 dispersion model within an indus-
trial geometry. The results presented below are from simulations performed by Drs S. Stowe
and M. Zedda of Rolls Royce ple. with the KS2 model implemented within their proprietary
CFD modeling software, PRECISE. Figures 113 & 114 presented below are from simulations
performed on a section of one of their rich burn annular combustors currently in flight. Calcu-
lations were performed in a uRANS framework employing the k-SST-Omega closure model on
an unstructured grid. Figure 113 shows trajectories for the fuel droplets along with the Sauter
Mean Diameter represented by color in a spanwise slice, which is looking upstream from the
combustor exit. What is immediately noticeable is the increased dispersion of the KS model
into the external recirculation zone but more also into the inner recirculation zone when com-
pared to the trajectories predicted by the G&I model. This is an important improvement as
the experimental measurements available for the combustor indicated that the G&I dispersion
model was under-predicting the droplet dispersion.

Also noteworthy, is the asymmetry in the increased dispersion observed as the model pre-
dicts greater dispersion on the top side of the combustor than the bottom. Recalling that the
energy content of the modeled isotropic turbulence and the extent of its wavespace are both
determined from local Eulerian quantities one may attribute the decreased dispersion to the
smaller magnitude of generated velocity fluctuations. In turn, attributed to the increase in kp,n
resulting from the slightly smaller sized eddies at the smaller radial position.

This apparently small detail has an important effect on the subsequent combustion as is
evident in Figure 114, where the reader’s attention is drawn to in the primary combustion
zone near the position of the inner recirculation zone. Furthermore, the radial asymmetry
of particle dispersion also affects the secondary combustion zone downstream. The smaller
predicted fluctuating velocities at the bottom have an equally important effect on the combustion
rate compounding the effect observed in the simulations of the other two instances and may be
explained through a reduction in overall heat transfer rate caused by the decreased velocities near
the top of the combustor which result from the conservation of angular momentum of both the
swirling airflow exiting the atomizer and the circumferential low extant in the annual combustor.
Unfortunately non-disclosure agreements prevent us from showing, the exact temperature range
but cold regions are in the region of 600K and hot ones in excess of 2000K. It is important
to note that the spanwise temperature profile predicted by the KS model matches closely the
values and the trends (profiles) that have been measured experimentally. Zedda (2014) noted
the importance of predicting such inhomogeneity and hot spots as these will in turn allow the
emissions models to predict more accurate results.

Finally, it should be noted that the model was also tested on a lean-burn annular combus-
tor with good overall performance, equally distinct predictions between KS and GI computed
trajectories and good temperature agreement with the experiment data. Unfortunately, these
results may not be presented here as that particular geometry has yet to be disclosed to the

public.
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Figure 114: Liquid mixture fraction and temperature shown on the top and bottom respectively
in the gas turbine combustor employing no dispersion, GI dispersion and the KS2 dispersion
models from left to right respectively.
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