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Abstract

In bioinformatics applications samples of biological variables of interest can take a va-

riety of structures. For instance, in this thesis we consider vector-valued observations

of multiple gene expression and genetic markers, curve-valued gene expression time

courses, and graph-valued functional connectivity networks within the brain. This

thesis considers three problems routinely encountered when dealing with such vari-

ables: detecting differences between populations, detecting predictive relationships

between variables, and detecting association between variables.

Distance-based approaches to these problems are considered, offering great flexi-

bility over alternative approaches, such as traditional multivariate approaches which

may be inappropriate. The notion of distance has been widely adopted in recent years

to quantify the dissimilarity between samples, and suitable distance measures can be

applied depending on the nature of the data and on the specific objectives of the study.

For instance, for gene expression time courses modeled as time-dependent curves, dis-

tance measures can be specified to capture biologically meaningful aspects of these

curves which may differ. On obtaining a distance matrix containing all pairwise dis-

tances between the samples of a given variable, many distance-based testing procedures

can then be applied. The main inhibitor of their effective use in bioinformatics is that

p-values are typically estimated by using Monte Carlo permutations. Thousands or

even millions of tests need to be performed simultaneously, and time/computational

constraints lead to a low number of permutations being enumerated for each test.

The contributions of this thesis include the proposal of two new distance-based

statistics, the DBF statistic for the problem of detecting differences between pop-

ulations, and the GRV coefficient for the problem of detecting association between

variables. In each case approximate null distributions are derived, allowing estimation

of p-values with reduced computational cost, and through simulation these are shown



to work well for a range of distances and data types. The tests are also demonstrated

to be competitive with existing approaches. For the problem of detecting predictive

relationships between variables, the approximate null distribution is derived for the

routinely used distance-based pseudo F test, and through simulation this is shown to

work well for a range of distances and data types. All tests are applied to real datasets,

including a longitudinal human immune cell M. tuberculosis dataset, an Alzheimer’s

disease dataset, and an ovarian cancer dataset.
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Chapter 1

Introduction

The work presented in this thesis is motivated by statistical problems commonly arising

in bioinformatics, which describes the study of data obtained from biological experi-

ments. The overall aim of such experiments is to understand the complex mechanisms

governing particular biological processes, such as susceptibility to disease.

Three problems commonly encountered in the bioinformatics literature can be

stated as follows:

(i) Detecting differences between populations: The interest is in detecting if the

behaviour of random variable Y alters in different populations. Y is observed

on sampling units representing the different populations, and the membership of

sampling units to a population can be captured by discrete-valued variable X .

(ii) Detecting predictive relationships between variables: The interest is in detecting

if the behaviour of random variable Y can be predicted by the behaviour of

random variable X .

(iii) Detecting association between variables: The interest is in detecting if the be-

haviour of random variables Y and X is associated.

The biological variables of interest in these problems can range from scalar-valued

gene expression to curve-valued gene expression time courses and graph-valued func-

tional connectivity networks (comprised of nodes connected by edges); see Table 1.1

for more examples. For scalar- and vector-valued variables (note that a vector-valued

random variable is also referred to as a random vector, i.e., a vector whose elements
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are scalar-valued random variables), traditional multivariate approaches are applied

to model the variation exhibited by these variables. For curve- and graph-valued vari-

ables, specialized methods are needed to capture and model the complex variational

properties (see for example, Liu and Yang (2009) and Lord et al. (2011)).

In this thesis we embrace the notion of distance to model the variation of a given

variable, regardless of its nature; it can be scalar-, vector-, curve- or graph-valued,

that is, the observations may be single values, vectors, functions (curves) or graphs,

respectively. For N observations of the given variable, the idea is to compute the

N × N distance matrix harbouring the distances between all pairwise combinations

of observations, and use this within the statistical testing framework instead of the

original observations themselves. This offers several advantages over existing meth-

ods. For instance, for observations of any type, many distances are available, and each

can be associated with a different biological meaning. We have demonstrated this for

curve-valued observations in our published article Minas et al. (2011), the material of

which is included in this thesis. Furthermore, distance-based testing procedures are

typically routed in well-known traditional methods, as demonstrated in the coming

chapters. They therefore generalize traditional approaches, which fosters their under-

standing, making them more accessible to biologists who may not fully understand the

specialized approaches. Lastly, on computing the distance matrix, many complemen-

tary methods are immediately available, such as clustering and visualization (Pekalska

and Duin, 2005). These can be used to supplement any statistical analyses performed.

Distance-based approaches have been proposed in the bioinformatics literature and

elsewhere for the problems of interest in this thesis. However, they all suffer from lim-

itations which inhibit their effective use in bioinformatics. The biggest impediment is

that the distribution of distance-based statistics under the null hypotheses of interest

are unknown (Mantel, 1967; McArdle and Anderson, 2001). In real applications, the

null distribution is commonly approximated by a discrete distribution generated by us-

ing Monte Carlo permutations to shuffle the observations and recompute the statistic,

i.e., a permutation distribution. P-values are estimated from this distribution as the

proportion of permuted statistic values as extreme or more extreme than the observed

statistic value (see, for instance, Beckmann et al. (2005), Wessel and Schork (2006)

and Salem et al. (2010)).
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Permutation approaches, however, are computationally intensive and introduce

sampling errors (Berry and Mielke, 1983). Moreover, whereas large p-values can be

well-approximated by a Monte Carlo approach, smaller ones will be estimated less

accurately (Mielke and Berry, 2007; Knijnenburg et al., 2009). In particular, it has

been shown that in order to obtain a permutation p-value within 10−5 of the true

p-value, O(107) permutations are required. We have observed that in real applications

a much smaller number of permutations are performed, giving rise to concerns about

the accuracy of the resulting p-values.

This is a major issue when many tests are simultaneously performed, as is typically

the case in bioinformatics; hundreds of thousands of genes are tested in gene expression

experiments (see, for instance, Storey et al. (2005b)) and millions of genetic markers

such as single nucleotide polymorphisms (SNPs) are tested in genome-wide association

(GWA) studies (see, for instance, Vounou et al. (2010)). In such experiments biological

variables identified as significant are pushed forward for further analysis, which of

course depletes resources of time and money. Type I errors therefore need to be

minimized in the testing phase, and much work has been done using multiple-testing

corrections on observed p-values to achieve this (see, for instance, Benjamini and

Hochberg (1995), Reiner et al. (2003) and Storey and Tibshirani (2003)).

When using Monte Carlo permutations to estimate p-values in such cases, the to-

tal number of permutations per test may be vastly limited due to time/computational

constraints. This has been shown to increase familywise type I error rates (Phipson

and Smyth, 2010). This is because for Nπ permutations, p-values of zero are obtained

with probability 1/(Nπ + 1) under the null hypothesis (Phipson and Smyth, 2010).

Thus even if no tests should be significant, a larger number of tests will yield permu-

tation p-values of zero and hence be deemed significant regardless of multiple-testing

corrections and significance levels applied. For example, suppose Nπ = 103 Monte

Carlo permutations are performed for a test of the null hypothesis of equality between

populations for each of 105 genes. The expected number of genes with correspond-

ing permutation p-values of zero will be 105/(1001) ≈ 100, even when no genes are

responsible for differential actions between populations.

Therefore, for distance-based approaches, minimizing type I error rates equates to

estimating small p-values more accurately, i.e., without using Monte Carlo permuta-
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tions, before applying multiple-testing corrections. For the distance-based approaches

considered for each of the three problems of interest in this thesis, computationally

cheap estimation of small p-values is a recurring theme.

1.1 Summary of Contributions

The contributions of this thesis by problem are:

(i) Detecting differences between populations: On applying distances to the obser-

vations of Y , a distance-based variance decomposition which generalizes the mul-

tivariate analysis of variance (MANOVA) decomposition is derived. A distance-

based F (DBF) statistic is derived from this, and its null distribution is approx-

imated by a continuous distribution using moment matching, allowing p-values

to be estimated without expensive permutations for any distance. The exact

moments of the permutation distribution which would be generated using all

possible permutations are used for this result, and are obtained analytically by

applying the results of Kazi-Aoual et al. (1995). The DBF test is shown to gener-

alize some MANOVA testing procedures, and simulations are provided to support

this claim. This test is applied to a case-control GWA study of Alzheimer’s dis-

ease, and to our knowledge provides the first distance-based case-control study

of this disease.

(ii) Detecting predictive relationships between variables: The pseudo F statistic of

McArdle and Anderson (2001) generalizes a statistic proposed for testing a null

hypothesis of zero-valued regression coefficients within a multivariate multiple

linear regression framework. It is routinely used with permutations in bioinfor-

matics applications, where distances are applied to the observations of Y and X is

vector-valued. We approximate its null distribution by a continuous distribution

using moment matching, allowing p-values to be estimated without permutations

for any distance. For this result expressions for the exact moments of the permu-

tation distribution generated by using all permutations are derived as no suitable

results exist in the literature. The pseudo F test using the approximate null dis-

tribution is applied to a candidate-phenotype GWA study of Alzheimer’s disease,
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which to our knowledge provides the first distance-based regression analysis of

such studies.

(iii) Detecting association between variables: We propose a new test statistic, the gen-

eralized RV (GRV) statistic, where distances are applied to both the observations

of Y and X , and derive its approximate null distribution by moment matching;

the moments are obtained analytically by applying the results of Kazi-Aoual et al.

(1995). Simulation experiments are performed to demonstrate competitiveness

with the well-known distance-based standardized Mantel test, and better perfor-

mance for specific experimental setups. We also show theoretically and through

simulation that the GRV test generalizes two well-established multivariate ap-

proaches to the problem; the RV test of correlation between random vectors of

Escoufier (1973), and the distance correlation (dCor) test of dependence between

random vectors of Székely et al. (2007). The GRV test is applied to a candidate-

phenotype GWA study of Alzheimer’s disease and a gene expression quantitative

trait loci (eQTL) mapping study of ovarian cancer, providing, to our knowledge,

the first fully distance-based analyses of such studies.

1.2 Thesis Structure

The thesis is partitioned into three parts; Part I: Background Literature is comprised

of Chapters 2, 3 and 4, Part II: Methodology is comprised of Chapters 5, 6 and 7, and

Part III: Applications is comprised of Chapters 8 and 9. See Figure 1.1 for a schematic

of the thesis structure.

Part I: Background Literature contains separate reviews for each of the three

problems. Each is comprised of the problem statement and existing approaches in

the multivariate and distance-based settings, after which the limitations of existing

distance-based approaches are highlighted. Chapter 2 considers the problem of de-

tecting differences between populations. Chapter 3 considers the problem of detecting

predictive relationships between two random vectors. In the multivariate setting the

variables are vector-valued but in the distance-based setting only the predictor variable

is strictly vector-valued. Chapter 4 considers the problem of detecting association be-

tween two random vectors. In the multivariate setting the variables are vector-valued
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but in the distance-based setting the variables can be of any type.

Part II: Methodology contains the main contributions for each problem. In Chapter

5 we derive the DBF statistic to test a null hypothesis of equality between populations,

and describe the permutation approach to estimate p-values. This was the initial ap-

proach used to assess significance, and has been published in Minas et al. (2011). The

approximate null distribution of the statistic detailed in this chapter was developed

after our publication. Theoretical connections are made with traditional multivariate

methods for vector-valued variables, and simulations are also provided. For a range of

data types and distance measures we demonstrate the applicability of the DBF test on

simulated data, in addition to real data. Finally, two power studies are performed, one

demonstrating the competitive performance of the DBF test with existing approaches

suitable for curve-valued variables, and one demonstrating the computational advan-

tage of using the approximate distribution over permutations for several distances and

data types.

In Chapter 6 we derive the approximate null distribution of the pseudo F statistic

used to test a null hypothesis of no predictive relationship between two variables. This

distribution is shown to be applicable for a range of distance measures and data types,

on simulated and real data.

In Chapter 7 we derive the GRV statistic to test a null hypothesis of no association

between two variables. The approximate null distribution is derived and through

simulation and real data examples it is shown to be applicable for a range of data

types and distance measures. For vector-valued variables theoretical connections with

the RV and dCor tests are discussed, and simulations are performed to demonstrate

these. Competitiveness with other distance-based tests is demonstrated through power

studies, including the standardized Mantel test.

Part III: Applications contains two chapters in which the different distance-based

tests proposed are applied to real datasets. In Chapter 8 we provide a brief review

of existing approaches used in GWA studies of Alzheimer’s disease, emphasizing the

distance-based approaches (or lack of). We present the findings from using the DBF

test to perform a case-control study, and the pseudo F and GRV tests to perform

candidate-phenotype studies.

In Chapter 9 we describe microarray gene expression studies, and pay particular
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attention to two variants; longitudinal microarray time course studies and eQTL map-

ping studies. For longitudinal microarray time course studies we provide a brief review

of existing methods, and highlight some key limitations. These limitations have been

presented in our article Minas et al. (2011), and justify the use of different distances

for longitudinal microarray time course analysis. The findings of a differential analysis

of M.tuberculosis performed using the DBF test with several distance measures and

using the permutation approach to perform inference are then presented (these have

also been published in Minas et al. (2011)). For eQTL mapping studies we provide a

brief review of existing methods and emphasize distance-based approaches which have

been proposed. Using the GRV test we perform an eQTL pathway analysis mapping

of ovarian cancer and present the findings.

Conclusions and directions for further work are presented in Chapter 10.
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Figure 1.1: Schematic of the thesis structure. The problem statements and corre-
sponding reviews for the problems of interest are contained in Part I: Background
Literature. New methodology for each problem is contained in Part II: Methodology,
with the arrows from the review chapters indicating which methodological chapters
are related to which problem. Arrows from the methodological chapters indicate the
study in Part III: Applications where the methodology has been applied. Conclusions
and directions for further work are presented in Chapter 10.



30

Part I

Background Literature
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Chapter 2

Detecting Differences Between

Populations

In this chapter we introduce the problem of detecting differences between popula-

tions. We begin by reviewing the problem in the classical multivariate framework

where observations are assumed to be real and vector-valued, and describe traditional

multivariate analysis of variance methods. For observations which do not conform

to the required assumptions of these methods, we review distance-based approaches

which can be applied. The chapter concludes with a summary of the limitations of

the existing distance-based methods.

2.1 Multivariate Approaches

2.1.1 Problem Statement

Consider N independent observations of Q-dimensional real-valued random vector

Y = (Y1, . . . ,YQ)T , given by {yi}N
i=1. Assume that these observations belong to one

of G populations with means {μg}G
g=1, each of size Ng such that N =

∑G
g=1 Ng. The

null hypothesis of interest is typically stated as

H0 : μ1 = . . . = μG, (2.1)

(Mardia et al., 1979). Under this hypothesis there is equality between the means of

the populations from which the observations are drawn. The alternative hypothesis is
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that the means are not equal for at least one group.

2.1.2 Traditional Multivariate Analysis of Variance

Traditional approaches to testing (2.1) are based on the multivariate analysis of vari-

ance (MANOVA). This is the approach whereby the total variance exhibited by the N

observations is partitioned into within- and between-group variance. This is achieved

as follows.

Define the overall sample mean by ȳ = 1
N

∑N
i=1 yi and each within-group sample

mean by ȳg = 1
Ng

∑N
i=1 yiIgi for g = 1, . . . , G, where Igi is an indicator variable taking

the value 1 if observation yi is in group g and 0 otherwise. The Q × Q covariance

matrix of Y is estimated by

S =
1

N − 1

N∑

i=1

(yi − ȳ) (yi − ȳ)T .

The total variance of the observations can be quantified by tr(S), that is, by the

summation of the variance of each of the Q variables comprising Y . Typically in

multivariate analysis, the Q × Q total sum of squares matrix given by

T =
N∑

i=1

(yi − ȳ) (yi − ȳ)T ,

is used to represent the information in S, since it is within a multiplicative factor

(Mardia et al., 1979). The quantity tr(T ) is defined as the total sum of squares, and is

a multivariate analogue of the sum of squares used for centered univariate observations

(Anderson, 2001). Since this is related to the total variance, we refer to tr(T ) as the

variability, to distinguish from the variance, as they both provide information about

scatter from the mean. The total sum of squares matrix can be expressed as the sum

of between- and within-group sum of squares matrices,

B =

G∑

g=1

Ng (ȳg − ȳ) (ȳg − ȳ)T and W =
G∑

g=1

N∑

i=1

(yi − ȳg) (yi − ȳg)
T Igi,

respectively. That is, T = B + W .
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MANOVA test statistics make use of different elements of this total sum of squares

decomposition to quantify differences in the amount of variability explained by the G

groups. For G = 2, the well-known Hotelling’s T 2 statistic is given by

T 2 =
N1N2(N − 2)(ȳ1 − ȳ2)

T W−1(ȳ1 − ȳ2)

N
.

Larger values of this statistic provide evidence against the null. For G > 2, MANOVA

statistics include Wilks’ Λ,

Λ = det(W )/ det(T ),

the Lawley-Hotelling trace,

LH = tr
(
W−1B

)
,

and the Pillai trace,

PT = tr
(
T−1B

)

(Rencher, 2002; Krzanowski, 2000). Wilks’ Λ uses the ratio of the determinants of the

within-group and total sum of squares matrices to yield a measure of the proportion

of variability in the given dataset explained by the within-group sum of squares. A

small statistic value indicates that the within-group variability accounts for a small

proportion of the total variability, meaning that the between-group variability accounts

for the remaining large proportion. Thus evidence against the null is provided. The

Lawley-Hotelling trace considers the matrix generalization of the fraction of two scalar

values, by multiplying the inverse of W by B. The trace of this quantifies how much

greater the effect of B is than W , such that larger values provide evidence against

the null. The Pillai trace similarly uses the trace operator, but compares the between-

group to the total sum of squares. Again, larger values of this statistic provide evidence

against the null.

Under the assumption that the observations are independent and identically dis-

tributed from a Multivariate Normal distribution with mean μ and covariance matrix

Σ, some distributional results are available. For instance, for G = 2, Hotelling’s T 2

statistic multiplied by a constant depending on N and Q has an exact F distribution

under the null;
N − Q − 1

(N − 2)Q
T 2 ∼ FQ,N−Q−1,
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where FQ,N−Q−1 denotes the F distribution with degrees of freedom Q and N −Q− 1.

For G > 2, Wilks’ Λ, the Pillai trace and the Lawley-Hotelling trace statistics can all be

similarly transformed to statistics which are well-approximated by the F distribution

with degrees of freedom dependent on N , G and Q (see, for example, Rencher (2002)).

When N < Q, as is typically the case with genomic datasets, the classical MANOVA

tests cannot be applied directly. This is because the T and W matrices are singu-

lar, and so have at least one zero-valued eigenvalue and cannot be inverted. Several

high-dimensional MANOVA settings with N < Q have been considered in the litera-

ture, and tests of equality between groups have been proposed, some using traditional

MANOVA statistics with generalized inverses (see Srivastava (2007) and Schott (2007)

for good reviews, and Tsai and Chen (2009) for an application to gene expression data).

One of the first tests was proposed by Dempster for G = 2 (Dempster, 1960),

where an F-type statistic defined as the ratio of within- to between-group variability

was proposed. This statistic was generalized for G > 2 and named the Dempster

trace criterion four decades later by Fujikoshi et al. (2004). They noticed that the

trace operator could be applied to the B and W sum of squares matrices to yield

equivalent expressions to those proposed by Dempster. Although not stated explicitly,

they use the sum of squares of each of the Q variables, i.e., tr(T ), to represent the

total variability of the N observations. They then partition this into between- and

within-group components via

tr(T ) = tr(B) + tr(W ), (2.2)

which follows by applying the trace operator to the decomposition T = B + W . The

Dempster trace criterion is then defined as

tr(B)

tr(W )
, (2.3)

and a transformation of this statistic is shown to be asymptotically Gaussian.

While MANOVA approaches are applicable in a wide range of scientific areas,

including genomics (Szabo et al., 2003; Tsai and Chen, 2009; Shen et al., 2011), they

may be inappropriate for at least two main reasons. Firstly, when the observations are

multivariate, the multivariate normality assumption may not necessarily hold, e.g.,
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if the observations are heavily skewed or discrete-valued, such as the genetic data

typically encountered in GWA studies (see, for instance, Wu et al. (2010) and Chapter

8). In such studies minor allele counts are observed for hundreds of thousands of

genetic markers across the genome. Secondly, observations may not be represented

by vectorial data structures. In an increasingly large number of applications they are

functional (i.e., curves), as in longitudinal microarray time course studies (see Chapter

9). In such studies gene expression measurements are observed over time, and are

modeled as smooth functions of time (Berk and Montana, 2009; Berk et al., 2012).

Observations can also be graph-valued, such as trees and networks; they are used in

neuroimaging studies to model functional connectivity between regions of the brain

(Rubinov and Sporns, 2010). In such cases we can turn to distance-based methods to

test for equality between populations, where only distances between observations are

required.

2.2 Distance-Based Approaches

2.2.1 Problem Statement

Consider N independent observations {yi}N
i=1 of random variable Y belonging to G

groups with means {μg}G
g=1. We place no restriction on the nature of these observa-

tions; they can be of any form, for example, scalar-, vector-, curve- or graph-valued.

The fundamental assumption is that we are able to define a distance measure dY(∙, ∙)

which quantifies the dissimilarity between any pair of observations in the random sam-

ple (note the terms ‘distance’ and ‘dissimilarity’ are used interchangeably). It is further

assumed that dY is either semi-metric or metric. It is semi-metric if it satisfies the

properties of identity ({dY(yi, yi) = 0}N
i=1), non-negativity ({dY(yi, yj) ≥ 0}N

i,j=1), and

symmetry ({dY(yi, yj) = dY(yj, yi)}i>j) (see, for example, Mardia et al. (1979)). If it

additionally satisfies the triangle inequality, that is, dY(yi, yj) ≤ dY(yi, yk) + dY(yk, yj)

for i, j, k = 1, . . . , N , then dY is metric.

The choice of distance depends on the type of data and scientific problem at hand.

Having chosen a suitable distance, arrange all pairwise distances in the N×N distance
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matrix ΔY = {dY(yi, yj)}
N
i,j=1. We are then interested in testing the null hypothesis

H0 : dY (μi, μj) = 0, (2.4)

for all i 6= j ∈ {1, . . . , G}. Here, there is equality between the group means with respect

to the chosen distance measure dY . The alternative hypothesis is that a difference

exists between any two groups.

In the literature there are two main distance-based methods suitable for testing

(2.4) which have been applied in bioinformatics applications. These are the multi-

response permutation procedure (MRPP) of Mielke et al. (1976) and the Mantel test

of Mantel (1967), which are described in detail below. In ecology methods also in-

clude ANOSIM which is based on ranks (Legendre and Legendre, 1998), and a non-

parametric analysis of variance approach (Anderson, 2001). These are not described

here.

2.2.2 The Multi-Response Permutation Procedure Test

The MRPP statistic (Mielke et al., 1976; Mielke and Berry, 2007) is formulated as the

weighted sum of within-group distances. In particular, it is defined as

δ(Δ) =
G∑

g=1

cg

Ng(Ng − 1)

∑

k<j

d2
Y(yk, yj)IgkIgj ,

where {cg}G
g=1 are positive weights such that

∑G
g=1 cg = 1. The weights can be chosen

to reflect the type of averaging required by the practitioner. Examples include {cg =

1/Ng}G
g=1 reflecting the view that each group contributes equally to the overall statistic,

{cg = Ng/N}G
g=1, indicating that larger groups contribute more to the overall statistic,

and {cg = (Ng − 1)/(N − 2)}G
g=1, magnifying the contribution provided by larger

groups and damping the contribution provided by smaller groups. The idea of this

non-negative statistic is to provide a measure of the within-group variability, so that

small values are indicative of groupings containing similar observations.

Inference is typically performed by using a Monte Carlo permutation procedure

where the observed statistic, denoted δ̂(Δ), is compared against a permutation sam-

pling distribution generated under the null. This is achieved by defining a set of
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Nπ Monte Carlo permutations π ∈ Π, where each π is a one-to-one mapping of the

set {1, . . . , N} to itself. For each permutation, the observed permuted statistic is

computed as δ̂(Δπ), where Δπ denotes the distance matrix with rows and columns

simultaneously permuted by π. The set {δ̂(Δπ)}π∈Π then defines the sampling distri-

bution under the null. The p-value of the observed δ̂(Δ) can then be approximated

by
#(δ̂(Δπ) ≤ δ̂(Δ))

Nπ

.

Note that this is a left-tailed test since smaller values of δ̂(Δ) indicate smaller within-

group variability.

An alternative approach has been proposed where the exact permutation distribu-

tion which would be obtained by using all N ! permutations is approximated by the

Pearson type III distribution (Mielke and Berry, 2007). This is a skewed distribution

which includes the Normal and Chi-squared distributions as special cases, and is thus

able to capture skewness which may be observed in the sampling distribution.

2.2.3 The Mantel Test

The Mantel statistic was originally proposed by Mantel (1967) to test a null hypoth-

esis regarding association between two distance matrices. This testing paradigm is

discussed in Chapter 4, where details of the Mantel statistic and corresponding testing

procedure are also provided.

In the context of testing (2.4), a form of the Mantel statistic can be used which

requires specification of a model matrix encoding group membership (Legendre and

Legendre, 1998). This matrix, which we denote M , is a symmetric N × N matrix

with binary-valued elements {mij}N
i,j=1 such that mij = 1 if yi and yj are in different

groups and mij = 0 if they are in the same group. This matrix thus corresponds to

the alternative hypothesis that the group means are dissimilar, as the within-group

portions of the matrix are set to zero while the between-group portions are non-zero.

The Mantel statistic is then given by

M(Δ) =
∑

i<j

dY(yi, yj)mij .



2.3 Summary 38

Since the elements mij take the value of 1 only for between-group distances, M(Δ)

is a weighted sum of the between-group distances. It therefore provides a measure of

between-group variability. It is non-negative, and large values provide evidence against

the null hypothesis.

Inference can be performed by using Monte Carlo permutations as with the MRPP

test. For Nπ permutations π ∈ Π, the p-value of an observed M̂(Δ) is estimated by

#(M̂(Δπ) ≥ M̂(Δ))

Nπ

,

which is a right-tailed test. For large N , Mantel (1967) has provided a Normal approx-

imation for this sampling distribution using the exact mean and variance that would

be obtained by using all possible permutations. However, its use has been cautioned

where the sampling distribution exhibits non-normal, i.e., skewed, tendencies (Mantel,

1967).

2.3 Summary

We have reviewed the traditional MANOVA approaches used to test null hypothesis

(2.1) of equality between populations. For many applications of interest in bioinfor-

matics, the data is of the form of discrete-, curve-, or graph-valued objects, for which

MANOVA approaches are inappropriate. Distance-based approaches can be used in-

stead, requiring only a suitably defined distance measure between observations of any

type. For the corresponding distance-based null hypothesis (2.4) of equality between

populations, we have reviewed the MRPP and Mantel tests.

Although these tests have been applied in bioinformatics applications, they suffer

from a few limitations. Firstly, the MRPP and Mantel statistics are not suitably

interpretable. The MRPP statistic, for example, may yield small values when between-

group distances are small. That is, no consideration is made for the between-group

distances, and hence true clustering effects of the distances across the groups cannot

be highlighted by the statistic alone. It is only through permutations of the sampling

units across groups that any clustering effects will become apparent, since the within-

group distances will change each time. Similarly, the Mantel statistic does not consider

within-group distances, so while between-group distances may be large, the within-



Chapter 2. Detecting Differences Between Populations 39

group distances may also be large in comparison. Thus, these statistics alone do not

provide a direct overview of all the distance information provided. A test statistic

for null hypothesis (2.4) should be interpretable and give a summary of all available

distance information.

Secondly, in drawing inferences in real applications, Monte Carlo permutations

seem to be applied rather than using the distributional approximations which exist

(see, for instance, Reiss et al. (2009) and Beckmann et al. (2005)). In addition, a

small number of permutations are used. For instance, the MRPP test has been applied

with O(104) permutations to vector-valued neuroimaging data with N = 38 samples

(Reiss et al., 2009), and the Mantel test has been applied with O(103) permutations to

discrete-valued genetic polymorphism data with N = 500 samples (Beckmann et al.,

2005). Using approximations of the null sampling distribution instead of permutations

will yield more accurate p-value estimates, in addition to reducing the computational

cost of performing inferences.

In Chapter 5 we propose a distance-based F (DBF) test for testing null hypothesis

(2.4) with an approximate null distribution. The DBF statistic is more interpretable

than the MRPP and Mantel statistics, and the approximate null distribution allows

p-values to be estimated without permutations and hence with a dramatically reduced

computational cost.
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Chapter 3

Detecting Predictive Relationships

Between Two Random Vectors

In this chapter we introduce the problem of detecting predictive relationships between

two variables, a response variable and a predictor variable, in a linear regression setting.

The problem is first reviewed from the multivariate perspective, where both variables

are vector-valued, i.e., random vectors. For response observations of other types, we

review a distance-based regression approach which can be applied. A summary of

limitations of the distance-based method concludes the chapter.

3.1 Multivariate Approach

3.1.1 Problem Statement

Consider explaining the Q-dimensional random vector Y = (Y1, . . . ,YQ)T ∈ RQ com-

prised of scalar-valued variables {Yq}
Q
q=1 in terms of the M -dimensional random vector

X = (X1, . . . ,XM )T ∈ RM comprised of scalar-valued variables {Xm}M
m=1. Each of the

scalar-valued variables comprising X are referred to as predictor variables and are in-

dependent to each other. The variables comprising Y are referred to as the response

or dependent variables (see, for example, Rencher (2002)).

The problem entails modeling the response variables as a linear function of the

predictor variables, i.e., setting up a multivariate multiple linear regression (MMLR)

model. The random vector Y is observed on N sampling units yielding the N × Q
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response matrix Y , which is typically then column-centered, and the random vector

X is observed on the same N sampling units yielding the N ×M predictor matrix X.

The MMLR regression model can then be stated as

Y = XB + E, (3.1)

where B is the M × Q matrix of regression coefficients, and E is the N × Q matrix

containing errors in the model. Column j of B contains the unknown coefficients which

model the jth response variable as a linear combination of the M predictor variables.

The null hypothesis of interest is that the response variables cannot be modeled as

a linear combination of the predictor variables, i.e.,

H0 : B = 0, (3.2)

(Rencher, 2002). The alternative is B 6= 0, i.e., at least one coefficient is non-zero.

In this case the response variables can be modeled as a linear combination of the

predictor variables. Note here that the emphasis is on detecting a relationship given

the observed data, rather than one from which the response observations associated

with new observations of the predictor variables can be predicted.

3.1.2 Multivariate Multiple Linear Regression

The traditional approach of testing null hypothesis (3.2) requires using a decomposition

of the total sum of squares matrix Y T Y (which equals T defined in Section 2.1.2 as Y

is centered), into elements explained and unexplained by the regression model. This

exact expression is deferred for the moment, as it requires first estimating the optimal

B.

The optimal B is found by minimizing the errors in E, typically approached by

minimizing the quantity

tr
(
ET E

)
= tr

(
(Y − XB)T (Y − XB)

)
.

This least squares approach results in a least squares estimator of B, denoted B̂, given

by
(
XT X

)−1
XT Y . On defining the idempotent and symmetric projection matrix
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H = X
(
XT X

)−1
XT , referred to as the hat matrix, the fitted values of the regression

model are given by Ŷ = XB̂ = HY , yielding residuals R = Y − Ŷ = (IN − H)Y

where IN is the N × N identity matrix.

The above exposition assumes that H is well-defined, which in turn depends on

XT X being non-singular. For this to be the case, X must be of full rank, i.e., the

M columns of X must be linearly independent. This will not be so if N < M , since

the rank of X is bounded from above by the minimum of N and M , and hence the

rank cannot equal M . If N = M , the rank of X may equal M and hence XT X may

be singular. However, in this case H will equal the N × N identity matrix IN (see

Appendix A for proof), and so will not be of any use in the regression model. It is

typically assumed that N >> M and that X is of full rank (see, for instance, Mardia

et al. (1979) and Bingham and Fry (2010)).

The sum of squares decomposition is then given by

Y T Y = Ŷ T Ŷ + RT R, (3.3)

where Ŷ T Ŷ is the sum of squares matrix predicted by the regression model (referred

to as the predicted sum of squares matrix) and RT R is the sum of squares matrix of

the residual errors in the predicted model (referred to as the residual sum of squares

matrix). The predicted sum of squares matrix provides the sum of squares components

explained by the fitted regression model, while the residual sum of squares matrix

provides the sum of squares components which are unexplained by the model. The

decomposition is analogous to the sum of squares decomposition described in Section

2.1.2 for MANOVA.

The traditional statistics used for MANOVA can also be applied to test (3.2). For

instance, Wilks’ Λ can be defined as

Λ =
det
(
RT R

)

det (Y T Y )
,

ranging between 0 and 1, with smaller values providing evidence against the null. This

is because det
(
RT R

)
provides a scalar-valued quantification of the size of the values

in RT R, and as this decreases, a greater proportion of the total sum of squares is

explained by the regression model (i.e., the values in Ŷ T Ŷ are larger). Similarly, the
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Lawley-Hotelling and Pillai trace statistics can be defined as

LH = tr
((

RT R
)−1

Ŷ T Ŷ
)

and PT = tr
((

Y T Y
)−1

Ŷ T Ŷ
)

.

Significance can be assessed via distributional results which are available under the

assumption that the errors in the regression model are distributed Multivariate Normal

(see, for instance, Rencher (2002)).

In bioinformatics applications, it is often the case that the number of response vari-

ables exceeds the number of sampling units, i.e., N < Q (see, for instance, Schork and

Zapala (2012), where random vector Y is taken to be the expression levels of multiple

genes). This causes problems for the Lawley-Hotelling and Pillai trace statistics, since

the total and residual sum of squares matrices are singular and cannot be inverted.

An alternative statistic which can be used in this case is the pseudo F statistic

proposed by McArdle and Anderson (2001). Analogously to the classical F statistic

applied in linear regression where Y is scalar-valued, it is defined as the ratio of the total

variability of Y explained by the fitted regression model to that which is unexplained

by the fitted model. The required variability terms are obtained by applying the trace

operator to decomposition (3.3). In particular,

tr
(
Y T Y

)
= tr

(
Ŷ T Ŷ

)
+ tr

(
RT R

)
(3.4)

where tr
(
Y T Y

)
= tr (T ) is the observed total variability of Y , tr

(
Ŷ T Ŷ

)
is the

variability explained by the fitted regression model, and tr
(
RT R

)
is the variability

unexplained by the fitted regression model. The pseudo F statistic is then defined as

F =
tr
(
Ŷ T Ŷ

)

tr (RT R)
, (3.5)

taking non-negative values. Larger values provide evidence against the null hypothesis,

since larger values of tr
(
Ŷ T Ŷ

)
and smaller values of tr

(
RT R

)
indicate that much of

the observed variability is explained by the fitted regression model. If Q = 1, that is,

there is only one response variable comprising Y , this statistic reduces to the classical

F statistic applied in standard linear regression, ignoring degrees of freedom divisors.

For Q > 1, the null sampling distribution of F is unknown, so significance is typically
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assessed non-parametrically via permutations of the N sampling units.

3.2 Distance-Based Approach

3.2.1 Problem Statement

Consider now that random variable Y may not necessarily be vector-valued, i.e., it may

not be a random vector, but may curve- or graph-valued, for instance. Denote the N

observations of Y by {yi}N
i=1, and assume that a suitable semi-metric or metric distance

function, dY(∙, ∙), is defined yielding the N×N distance matrix ΔY = {dY(yi, yj)}
N
i,j=1.

From distance matrix ΔY it is possible to obtain a scalar-valued measure of the

spread of the N observations of Y , also referred to as the variability of Y . This

is achieved through principal coordinate analysis, which is described in Section 3.2.2.

The problem of interest then entails modeling this variability in terms of the variability

exhibited by the predictor variables comprising random vector X . Under the null

hypothesis, the variability in ΔY is not explained by X . A mathematical expression

of this null hypothesis is deferred until Section 3.2.3. Under the alternative hypothesis

the predictor variables do explain the observed variability in ΔY .

3.2.2 Principal Coordinate Analysis

Given N × N distance matrix ΔY , principal coordinate analysis, also known as clas-

sical multidimensional scaling (MDS), seeks to represent each observation as an N -

dimensional vector in Euclidean space. In particular, these vectors are sought such

that their pairwise Euclidean distances equal the corresponding pairwise distances

in ΔY (Torgerson, 1952; Gower, 1966). Thus, Y with observations {yi}N
i=1 is repre-

sented by N -dimensional random vector Ỹ with centered observations {ỹi}N
i=1 such

that d2
Y(yi, yj) = (ỹi − ỹj)

T (ỹi − ỹj).

In MDS the centered N ×N matrix Ỹ = (ỹ1, . . . , ỹN)T is sought and is referred to

as the principal coordinate matrix. It can be found via a three-step procedure which

derives and solves an equation containing the known distances ΔY and the unknown Ỹ

(Borg and Groenen, 2005). Begin by storing the squared pairwise Euclidean distances

between {ỹi}N
i=1 in the matrix Δ2 with elements

{
d2
Ỹ
(ỹi, ỹj) = (ỹi − ỹj)

T (ỹi − ỹj)
}N

i,j=1
.
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In the first step, Δ2 is expressed in terms of the N × N outer product matrix

Ỹ Ỹ T . This matrix contains the inner products between all N vectors, that is, the

(i, j)th element is given by ỹT
i ỹj for i, j = 1, . . . , N , so that the elements of Δ2 are

given by

d2
Ỹ(ỹi, ỹj) = ỹT

i ỹi + ỹT
j ỹj − 2ỹT

i ỹj ,

for all i, j. The matrix version of this relationship is given by

Δ2 = d1T
N + 1NdT − 2Ỹ Ỹ T , (3.6)

where d =
(
ỹT

1 ỹ1, . . . , ỹ
T
N ỹN

)T
is the column vector containing the diagonal elements

of Ỹ Ỹ T .

The second step consists of replacing the unknown Δ2 in (3.6) with the known

Δ2
Y , and deriving an equation in terms of Δ2

Y and Ỹ . This replacement yields

Δ2
Y = d1T

N + 1NdT − 2Ỹ Ỹ T , (3.7)

which can be simplified so that only Ỹ Ỹ T remains on the right-hand side. This is

achieved by using the symmetric N × N centering matrix C = (IN − JN/N), where

JN is the square matrix of ones, to remove the terms containing d. In particular,

1T
NC = 0T

N and C1N = 0N where 0N is the N -dimensional column vector of zeros, so

that the elements of d are weighted by zeros. These zero vectors arise by performing

a double-centering, i.e., multiplying on both sides by the centering matrix, as follows:

CΔ2
YC = Cd

(
1T

NC
)

+ (C1N) dT C − 2CỸ Ỹ T C

= Cd0T
N + 0NdT C − 2CỸ Ỹ T C

= −2CỸ Ỹ T C.

It follows that

−
1

2
CΔ2

YC = CỸ Ỹ T C,

and since Ỹ is assumed to be centered, CỸ = Ỹ , so that

−
1

2
CΔ2

YC = Ỹ Ỹ T .
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The double-centered matrix −1
2
CΔ2

YC is referred to as the centered inner product

matrix since it contains the inner products of the centered vectors {ỹi}N
i=1, and we

denote it by GY . In terms of the known distances {dY(yi, yj)}N
i,j=1, the elements of GY

are given by

gY(yi, yj) = −
1

2

(
1

N
d2
Y(yi, yj) −

1

N

N∑

k=1

d2
Y(yi, yk) −

1

N

N∑

l=1

d2
Y(yl, yj)

+
1

N2

N∑

l=1

N∑

k=1

d2
Y(yl, yk)

)

,

for i, j = 1, . . . , N , where
∑N

k=1 d2
Y(yi, yk)/N is the mean of the ith row of squared

distances,
∑N

l=1 d2
Y(yl, yj)/N is the mean of the jth column of squared distances, and

∑N
k=1 d2

Y(yl, yk)/N
2 is the total mean of all squared distances. This symmetric and

real-valued matrix depends solely on known quantities, so we obtain the equation

GY = Ỹ Ỹ T . (3.8)

For the final step of the MDS procedure, notice that Ỹ can be found via spectral

decomposition of GY . This is given by

GY = UYΛYUT
Y ,

where UY contains the N eigenvectors of GY with corresponding ordered eigenvalues

{λY,i}N
i=1 on the diagonal of ΛY . UY is referred to as the standard coordinate matrix

and its columns represent the N orthogonal dimensions comprising the Euclidean

space, i.e., UT
Y UY = UYUT

Y = IN . The ordered eigenvalues represent the importance

of each associated dimension. Ỹ is given by UYΛ
1
2
Y , where Λ

1
2
Y is the diagonal matrix

containing the square-rooted eigenvalues of ΛY .

If Y is a real-valued random vector with observations centered and dY is the Eu-

clidean distance measure, then GY = Ỹ Ỹ T = Y Y T , but Ỹ is not necessarily equal

to Y (indeed, the dimensions of the matrices will not even match if N 6= Q). Fur-

thermore, MDS is equivalent to classical principal component analysis (PCA) in this

case (Krzanowski, 2000), which is commonly used as a dimensionality reduction and

visualization tool. PCA represents the N observations in Y by an orthogonal config-
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uration in Euclidean space, Ỹ , such that the variance of the N values in each column

(where each column represents an orthogonal direction) is maximized. The configura-

tion Ỹ is found via an eigenanalysis of the covariance matrix of Y , i.e., Y T Y /(N−1).

The eigenvectors represent the orthogonal directions and the eigenvalues represent the

variance in the corresponding directions. The sum of the eigenvalues equals the total

sample variance of Y , found as the sum of the sample variance of each variable com-

prising Y . The proportion of variance explained by each direction can then be found

by comparing the eigenvalue of that dimension with the sum of all the eigenvalues.

MDS is also often used for dimensionality reduction and visualization. For example,

the inter-point relationships between the original observations {yi}N
i=1 can be viewed

by plotting the first 2 or 3 elements of the vectors {ỹi}N
i=1, which due to the ordering of

the eigenvalues, are deemed the most important. However, here MDS is described as

a means of quantifying the spread of the N observations of Y given dY , where Y may

not necessarily be a random vector. Since Ỹ represents Y , we can consider the sample

total sum of squares of Ỹ as an appropriate measure, given by tr
(
Ỹ T Ỹ

)
(since Ỹ is

centered). Since tr
(
Ỹ T Ỹ

)
= tr

(
Ỹ Ỹ T

)
= tr (GY), the total variability of Ỹ equals

the quantity

tr(GY) =
1

N

∑

i>j

d2
Y(yi, yj).

Therefore we define tr(GY) as the total variability of Y with respect to dY . Analogously

to PCA, the standard coordinates UY can be thought of as directions of variability

which explain the total variability. Each corresponding eigenvalue can be compared

with tr (GY) =
∑N

i=1 λY,i to yield the proportion of the sample total variability ex-

plained by the given direction of variability. For example, the first direction accounts

for (λY,1/tr (GY)) × 100% of the total variability.

So far no mention has been made of the nature of the eigenvalues {λY,i}
N
i=1, and

in particular, when they are non-negative. It has been shown that they will be non-

negative if the distance function dY is metric (Krzanowski, 2000). Consequently, some

eigenvalues will be negative for semi-metric distance functions, such as those encoun-

tered in genetics, for example. This yields coordinate matrix Ỹ with complex-valued

components, which hinders the configuration being presented well in Euclidean space.

Since the eigenvalues are ordered, the non-negative eigenvalues associated with the



3.2 Distance-Based Approach 48

first few directions of variability will be positive, and hence these more important di-

rections can be viewed in Euclidean space. The final few directions, however, will be

associated with negative eigenvalues, and therefore complex-valued axes are required.

There exist several approaches to dealing with negative eigenvalues (see, for exam-

ple, Pekalska and Duin (2005)). If the negative eigenvalues are small in comparison to

the positive eigenvalues, the directions of variability they represent can be disregarded

as noise (Pekalska and Duin, 2005). For negative eigenvalues of larger magnitude, a

correction can be applied to the off-diagonal elements of the original distance matrix.

This is achieved by adding a suitable constant such that the resulting distances satisfy

the triangle inequality (Legendre and Anderson, 1999). However, there is no conclu-

sive proof that altering distance matrices in this manner is beneficial in providing a

configuration in Euclidean space (Pekalska and Duin, 2005), as the structure of the

observed distances must be altered.

Regardless of the distance dY being metric or semi-metric, the total variability of

Y with respect to dY can still be described by tr (GY), since it is non-negative and

real-valued (as it equals a sum of squared distances).

3.2.3 The Pseudo F Test

McArdle and Anderson (2001) define the distance-based version of pseudo F statistic

(3.5), also named the pseudo F statistic, by writing it in terms of Euclidean distances

between the rows of Y and then generalizing to any suitable distance.

In order to achieve this, sum of squares decomposition (3.4) is written in terms

of the Euclidean distances between the rows of Y . This is done by first applying the

property of the trace operator that tr(AB) = tr(BA) for two matrices A and B of

suitable dimensions, as follows:

tr
(
Y T Y

)
= tr

(
Ŷ T Ŷ

)
+ tr

(
RT R

)

⇒ tr
(
Y Y T

)
= tr

(
Ŷ Ŷ T

)
+ tr

(
RRT

)

⇒ tr
(
Y Y T

)
= tr

(
HY Y T H

)
+ tr

(
(IN − H) Y Y T (IN − H)

)

⇒ tr
(
Y Y T

)
= tr

(
HY Y T

)
+ tr

(
(IN − H) Y Y T

)
. (3.9)

Expressing the sum of squares decomposition in this form presents the dependence
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on the N × N matrix product Y Y T . This matrix is related to the N × N distance

matrix ΔY containing the Euclidean distances between the rows of Y via GY (defined

in Section 3.2.2). In particular, Y Y T = GY since Y is column-centered, so that (3.9)

can be written as

tr (GY) = tr (HGY) + tr ((IN − H) GY) . (3.10)

In this decomposition, tr (GY) quantifies the total variability exhibited by the samples

of Y with respect to dY , tr (HGY) quantifies the variability explained by the predictor

variables, and tr ((IN − H)GY) quantifies the remaining variability.

In the computation of GY the distances stored in ΔY can be generalized to be

of any suitable type. It then follows that the response observations can be of any

type, not just vector-valued, provided a suitable distance measure is also defined. In

this case null hypothesis (3.2) is not strictly valid since it pertains to the original

regression model in which the response observations are vector-valued. This is not

described explicitly in McArdle and Anderson (2001), so we describe the reasoning

below.

The regression model being considered can be expressed in terms of the N × N

principal coordinate matrix Ỹ arising from GY . By substituting Ỹ into (3.9) and

reverse engineering the decomposition, we obtain

tr
(
Ỹ T Ỹ

)
= tr

(
ˆ̃Y T ˆ̃Y

)
+ tr

(
RT

1 R1

)
, (3.11)

where ˆ̃Y = HỸ and R1 = Ỹ − ˆ̃Y is the N × N residual sum of squares matrix. We

observe that this can come from applying the trace operator to the sum of squares

matrix decomposition

Ỹ T Ỹ = ˆ̃Y T ˆ̃Y + RT
1 R1.

This in turn can be seen to come from the MMLR model

Ỹ = XB1 + E1, (3.12)

where B1 is the M × N matrix of regression coefficients and E1 is the N × N matrix

of errors. This is clearly different from the original MMLR model given by (3.1); the
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dimensions of the regression coefficient and error matrices are different.

The null hypothesis of no predictive relationship based on (3.12) can be stated as

H0 : B1 = 0. (3.13)

This is equivalent to (3.2) in the case of dY being the Euclidean distance applied to

centered observations stored in Y . This is because GY = Ỹ Ỹ T = Y Y T , so that (3.11)

is equivalent to (3.9), which in turn was derived from the original MMLR model.

The distance-based pseudo F statistic used to test (3.13) is expressed as

F =
tr (HGY)

tr ((IN − H)GY)
, (3.14)

and quantifies the ratio of variability in ΔY explained and unexplained by the predictor

variables. Larger values of this statistic provide evidence against the null.

Given an observed value of the test statistic, F̂ , inference is performed using per-

mutations. Given Nπ Monte Carlo permutations π ∈ Π, the set {F̂π}π∈Π is generated

where F̂π is the pseudo F statistic evaluated with GY,π instead of GY , where GY,π

denotes GY with rows and columns simultaneously permuted by π. The p-value is

then computed as the proportion of the Nπ permuted statistics greater than or equal

to the observed F̂ , i.e.,
#(F̂π ≥ F̂ )

Nπ

.

Clearly, this is a one-sided test, since only larger values of F provide evidence against

the null.

3.3 Summary

In bioinformatics, regression models are routinely deployed to relate variables such as

genes to predictor variables such as genetic polymorphisms and environmental vari-

ables (see, for instance, Salem et al. (2010)). Where the response observations are real

and vector-valued, they are typically high-dimensional with N < Q, causing problems

for traditional multivariate approaches. Multivariate distances can be applied to the

responses in such cases, allowing the use of the distance-based pseudo F statistic to

test for no predictive relationship.
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The pseudo F test has been applied to many problems in bioinformatics, for which

the response observations are not necessarily real and vector-valued. In particular,

distances have been applied to response observations including real and vector-valued

gene expression and imaging data, discrete and vector-valued SNP data and curve-

valued dose-dependent gene expression data (Zapala and Schork, 2006; Wessel and

Schork, 2006; Salem et al., 2010). This exemplifies the broad utility of the pseudo F

test.

A limitation in its use in these applications, however, is the relatively low number

of Monte Carlo permutations enumerated when performing inference. For instance

Salem et al. (2010) use O(104) permutations for N = 49 samples, and Wessel and

Schork (2006) use O(105) permutations for N = 57 samples. Thus, the permutation

procedure used in conjunction with the pseudo F statistic is subject to the problems

discussed in the introduction. This limitation has also been highlighted recently by

Schork and Zapala (2012), especially inlight of the increasing need to perform repeated

tests, such as in GWA studies.

It has been unanimously agreed that the null distribution of the pseudo F statistic

cannot be derived exactly (Zapala and Schork, 2006; McArdle and Anderson, 2001),

since it is dependent on the particular distance measure being applied. No attempts

have been made in the literature to approximate this distribution. As a result, the full

potential of applying the pseudo F test in studies requiring tens of thousands of tests

has yet to be examined.

In Chapter 6 we provide an approximation for the null distribution of the pseudo F

statistic. We also demonstrate its applicability in imaging genetics, where the interest

is in modeling SNPs as predictor variables of observed imaging data.
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Chapter 4

Detecting Association Between

Two Random Vectors

In this chapter we introduce the problem of testing for no association between two

random vectors. This problem has received much interest in the multivariate literature,

where the random vectors are comprised of real and scalar-valued random variables.

While many approaches exist, we review a selected few as representative approaches

for the two separate multivariate null hypotheses which are typically tested. This

is followed by a review of distance-based approaches which are applicable when we

have random variables of different structures instead of two vector-valued random

variables. A summary concludes the chapter with limitations of the existing distance-

based methods.

4.1 Multivariate Approaches

4.1.1 Problem Statement

Consider the random vectors X = (X1, . . . ,XP )T ∈ RP and Y = (Y1, . . . ,YQ)T ∈

RQ. Having observed these on the same N sampling units, the aim is to infer if an

association exists between X and Y . In particular, the term association is used to

mean ‘some relationship’ which is symmetric, that is, the variables comprising either

X or Y are not deemed predictor variables of the other, as in the regression approach.

Classical approaches such as Canonical Correlation Analysis (Hotelling, 1936) and
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the RV test (Escoufier, 1973) consider linear relationships between the variables, as

captured by the (P + Q) × (P + Q) covariance matrix of (X ,Y) given by



ΣXX ΣXY

ΣYX ΣYY



 ,

where ΣXX = {cov(Xi,Xj)}P
i,j=1, ΣYY = {cov(Yi,Yj)}

Q
i,j=1, ΣXY = {cov(Xi,Yj)} for

i = 1, . . . , P and j = 1, . . . , Q, and ΣYX = ΣT
XY , where cov(∙, ∙) is the classical

covariance function.

The null hypothesis of interest is typically stated as

H0 : ΣXY = 0, (4.1)

thats is, the variables comprising X are uncorrelated with those comprising Y . The

alternative is ΣXY 6= 0, i.e., that they are correlated. It is clear that this is a general-

ization of the classical Pearson’s correlation test of no correlation between two random

variables.

On assuming that X and Y have density functions fX and fY , respectively, and

joint density function fXY , a null hypothesis of independence can be stated as

H0 : fXY = fXfY (4.2)

(Székely et al., 2007). The alternative hypothesis is fXY 6= fXfY , and hence that a

nonlinear relationship exists between X and Y .

We review the RV test of Escoufier (1973) and the distance correlation (dCor) test

of Székely et al. (2007) which can be used to test (4.1) and (4.2), respectively.

4.1.2 The RV Test

The RV test of Escoufier (1973) was proposed as a generalization of Pearson’s cor-

relation test to real-valued random vectors. It uses generalizations of the classical

(univariate) notions of covariance, variance and correlation to define scalar-valued

expressions for multivariate covariance, variance and correlation. We describe these

below.
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The covariance between X and Y , denoted COVV(X ,Y), is defined as the sum

of the squared covariances between every random variable comprising X with every

random variable comprising Y . That is,

COVV (X ,Y) =
P∑

i=1

Q∑

j=1

cov2(Xi,Yj),

which can be written in matrix form as COVV (X ,Y) = tr (ΣXYΣYX ). This definition

serves two purposes. Firstly, it permits an intuitive partitioning of COVV when X is

partitioned into two separate random vectors of reduced length. To see this, define X 1

and X 2 such that X = (X 1,X 2) where X 1 = (X1, . . . ,XK)T and X 2 = (XK+1, . . . ,XP )T

for some 1 < K < P . Then,

COVV (X ,Y) = COVV
(
(X 1;X 2),Y

)

=
P∑

i=1

Q∑

j=1

cov2(Xi,Yj)

=
K∑

i=1

Q∑

j=1

cov2(Xi,Yj) +
P∑

i=K+1

Q∑

j=1

cov2(Xi,Yj)

= COVV
(
X 1,Y

)
+ COVV

(
X 2,Y

)
.

The second purpose of the definition is to ensure that the scalar-valued variance of X ,

denoted VAV (X ) and defined by

VAV (X ) = COVV (X ,X )

= tr (ΣXXΣXX ) ,

is non-negative, inline with the fact that the variance of a real and scalar-valued

random variable is non-negative.

The correlation between X and Y , denoted RV(X ,Y), is then defined by substi-

tuting the multivariate covariance and variance definitions into the classical definition
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of correlation to yield

RV (X ,Y) =
COVV (X ,Y)

√
VAV (X ) VAV (Y)

=
tr (ΣXYΣYX )

√
tr (ΣXXΣXX ) tr (ΣYYΣYY)

. (4.3)

It ranges between 0 and 1, with 0 indicating no association when ΣXY = 0 (i.e.,

tr (ΣXYΣYX ) = 0), and 1 indicating perfect association when X = aY for some real-

valued constant a (i.e., ΣXY = aΣYY and ΣXX = a2ΣYY). It generalizes Pearson’s

correlation coefficient, denoted by the correlation function cor( ∙, ∙), in the following

way: if P = Q = 1, RV (X ,Y) = cor2(X ,Y).

Given centered observations X and Y of X and Y , respectively, empirical values

of COVV (X ,Y), VAV (X ) and VAV (Y) can be directly substituted into (4.3) to yield

an empirical RV coefficient. Define the (P + Q) × (P + Q) sample covariance matrix

of (X ,Y) by

1

N − 1



TXX TXY

TYX TYY



 ,

where TXX = XT X, TYY = Y T Y , TXY = XT Y and TYX = T T
XY . Then the sample

variance of X is given by tr(TXXTXX )/(N − 1), and similarly for Y , and the sample

covariance between X and Y is given by tr(TXYTYX )/(N − 1). The empirical RV

coefficient is then obtained as

RV(X, Y ) =
tr(TXYTYX )

√
tr(TXXTXX )tr(TYYTYY)

=
tr(XT Y Y T X)

√
tr(XT XXT X)tr(Y T Y Y T Y )

, (4.4)

with larger values providing evidence against null hypothesis (4.1). No association

exists when XT Y = 0, and perfect association exists when Y = XB for some

mapping matrix B ∈ RP×Q such that BBT = IP . That is, when there exists a linear

mapping which relates every P -dimensional observation in X to every Q-dimensional

observation in Y .

Robert and Escoufier (1976) have shown that the RV coefficient can be interpreted

in terms of the Euclidean distances arising from X and Y . Due to the properties of
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the trace operator, the RV coefficient can be written as

RV(X, Y ) =
tr(XXT Y Y T )

√
tr(XXT XXT )tr(Y Y T Y Y T )

=
tr(XXT Y Y T )

||XXT ||||Y Y T ||
, (4.5)

where || ∙ || denotes the Frobenius norm defined by ||A|| =
√

tr(AT A) for matrix

A. (4.5) differs from (4.4) in that emphasis is placed on the two symmetric N × N

matrices XXT and Y Y T , instead of the four covariance matrices XT Y ∈ RP×Q,

Y T X ∈ RQ×P , XT X ∈ RP×P and Y T Y ∈ RQ×Q.

The matrices XXT and Y Y T contain information on the Euclidean distances be-

tween the N observations in the P - and Q-dimensional spaces of X and Y , respectively,

since

XXT = −
1

2
CΔ2

XC and Y Y T = −
1

2
CΔ2

YC, (4.6)

with Euclidean distance matrices ΔX and ΔY and centering matrix C (as described

in Section 3.2.2). These matrices are invariant to rotations of X and Y , and can

be made invariant to scale by dividing by their respective Frobenius norms. Thus

XXT /||XXT || and Y Y T /||Y Y T || are comparable, and differences in the pairwise

Euclidean distances between the N observations in each space can be detected by

considering the Frobenius distance between them. This distance is given by

dF

(
XXT

||XXT ||
,

Y Y T

||Y Y T ||

)

=

∣
∣
∣
∣

∣
∣
∣
∣

XXT

||XXT ||
−

Y Y T

||Y Y T ||

∣
∣
∣
∣

∣
∣
∣
∣

=

√

2

(

1 −
tr(XXT Y Y T )

||XXT ||||Y Y T ||

)

, (4.7)

which on substitution of (4.5) yields

dF

(
XXT

||XXT ||
,

Y Y T

||Y Y T ||

)

=
√

2 (1 − RV(X, Y )). (4.8)

Thus, an RV coefficient value of 1 is equivalent to a Frobenius distance of 0 between

the rotation and scale invariant configurations arising from the Euclidean distances.

This distance representation of the RV coefficient can therefore be used to measure the

dissimilarity between X and Y given their respective observations of possibly different



Chapter 4. Detecting Association Between Two Random Vectors 57

dimensions.

Inference of an observed RV coefficient can be performed by using many permu-

tations of the rows of one of the data matrices, and each time recomputing the RV

coefficient to generate a null sampling distribution, to which the observed RV coeffi-

cient is compared. Since permutations are computationally expensive, alternative ap-

proaches consisting of approximating the exact permutation distribution which would

be obtained by using all possible permutations have been proposed. For instance, the

Normal, Lognormal and Pearson type III distributions have all been proposed, such

that the p-value can be obtained by comparing the observed RV value against the

given distributional approximation (Josse et al., 2008).

4.1.3 The Distance Correlation Test

The dCor test of Székely et al. (2007) uses the same idea as the RV coefficient, namely

that a generalization of Pearson’s correlation coefficient can be obtained by substi-

tuting the classical covariance and variance definitions for multivariate versions. For

dCor, the scalar-valued multivariate versions of covariance, variance and correlation

are defined with respect the notion of independence. These quantities are called dis-

tance covariance (dCov), distance variance (dVar) and distance correlation (dCor),

and are defined below.

The distance covariance between X and Y is defined as

dCov(X ,Y) =

√
1

cP cQ

∫

RP+Q

||fX ,Y(t, s) − fX (t)fY(s)||2

||t||1+P ||s||1+Q
dtds,

where || ∙ ||2 denotes the squared Euclidean norm, and constants cP and cQ are defined

as π(1+P )/2/Γ((1+P )/2) and π(1+Q)/2/Γ((1+Q)/2), respectively, with Γ(∙) the Gamma

function, and π is the standard mathematical constant. This is a weighted L2 norm,

and is defined in such a way that the resulting distance correlation defined below is

invariant to scale transformations (X ,Y) → ε(X ,Y) for positive ε. Furthermore, this

definition ensures that dCov(X ,Y) = 0 only if X and Y are independent, due to the

inclusion of ||fX ,Y(t, s) − fX (t)fY(s)||2 (Székely et al., 2007).

The distance variance of X is defined as dVar(X ) = dCov(X ,X ), and similarly for

Y . Distance correlation is then defined by substituting the expressions for dCov and
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dVar into the classical definition of correlation to yield

dCor(X ,Y) =
dCov(X ,Y)

√
dVar(X )dVar(Y)

.

This ranges between 0 and 1, with 0 characterizing independence of X and Y , and

hence no association. The value of 1 indicates maximum association, and hence larger

values provide evidence against the null hypothesis. If P = Q = 1, then dCor(X ,Y) ≤

|cor(X ,Y)| with equality when cor(X ,Y) = ±1.

Given centered observations X and Y , empirical values of dCov, dVar and hence

dCor can be obtained using Euclidean distances between the observations (Székely

et al., 2007). In particular, define the Euclidean distance matrices ΔX and ΔY , and

apply a double-centering to these to yield the centered matrices DX = CΔXC and

DY = CΔYC. The empirical value of dCov is then shown to be given by

dCov(X, Y ) =
1

N

√
tr (DXDY),

so that the empirical value of dVar is given by

dVar(X) =
1

N

√
tr (DXDX ),

and similarly for Y . The empirical value of dCor is then given by

dCor(X, Y ) =

√
tr (DXDY)

√
tr (DXDX ) tr (DYDY)

.

The dCov(X, Y ) quantity is key in determining the empirical association be-

tween X and Y . No association exists when dCor(X, Y ) = 0 which occurs when

dCov(X, Y ) = 0. Székely et al. (2007) show that dCov(X, Y ) = 0 equates to the

empirical marginal and joint density functions of X and Y satisfying the definition

of independence. Maximum association occurs when dCor(X, Y ) = 1, which occurs

if the double-centered Euclidean distance matrices are related via a scaling factor;

DX = aDY for some non-zero constant a (Székely et al., 2007). It has been shown

that this equates to Y and X being equal up to a translation, rotation and scaling

with factor a.
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A permutation test based on dCov is used to test null hypothesis (4.2), rather

than dCor. The permutation p-values of an observed dCor and dCov are identical,

but dCov is used due to being computationally less expensive. The empirical p-value of

an observed dCov statistic is found by comparing against the null sampling distribution

obtained by permutations of the rows of one of the data matrices.

Many theoretical properties of this approach have been discussed in the literature;

key papers include Székely et al. (2007) and Székely and Rizzo (2009). Two properties

of practical significance which have been highlighted in the review article of Newton

(2009) are the consistency of the test against all types of dependent alternatives, and no

assumption of normality being required for valid inferences. The dCor test provides a

method of detecting nonlinear relationships, which until recently have been considered

‘beyond the scope of ordinary applied statistics’ (Newton, 2009).

4.2 Distance-Based Approaches

4.2.1 Problem Statement

Suppose that either X , or Y , or both are comprised of a single random variable which

is not scalar-valued. So for instance, X could be a graph-valued random variable

while Y is either a random vector or a curve-valued random variable. Denote the N

observations of X and Y by {xi}N
i=1 and {yi}N

i=1, respectively, and assume that suitably

defined semi-metric or metric distances dX and dY are defined yielding N ×N distance

matrices ΔX = {dX (xi, xj)}
N
i,j=1 and ΔY = {dY(yi, yj)}

N
i,j=1.

The problem entails inferring if an association exists between X and Y given dis-

tance matrices ΔX and ΔY . Typically, the null hypothesis is expressed as

H0 : ΔX 6= aΔY , (4.9)

for some positive constant a. The constant represents possible scaling differences

between the elements of each distance matrix, which may arise because of the chosen

distance measures. For example, distances between the observations of X may lie in

[0, 1], while distances between the observations of Y may not be confined to the same

range (the minimum will be 0, but the maximum may not necessarily be 1). Under
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this null hypothesis, the pairwise distances in the X space are not linearly related to

those of the Y space. The alternative hypothesis is that the distance matrices are

equal up to a constant.

The most common approach to testing this hypothesis is via the standardized

Mantel test (Mantel, 1967). We review this method below, in addition to the less

well-known related MDS (RMDS) (Arenas and Cuadras, 2004), η2 (Cuadras, 2008)

and PROTEST (Jackson, 1995) approaches.

4.2.2 The Standardized Mantel Test

A classical approach which can be used to test (4.9) is the Mantel test (Mantel, 1967)

and its standardized version. The statistics associated with these tests provide mea-

sures of agreement between the distance elements of each matrix. In particular, they

seek to quantify the degree to which clustering effects are exhibited in both matrices.

In its original form, the Mantel test statistic is computed as the sum of the element-

by-element product of the A = N(N−1)/2 upper-triangular values of the two distance

matrices, that is,

M(ΔX ,ΔY) =
∑

i>j

dX (xi, xj)dY(yi, yj),

(Mantel, 1967). A more widely used version of this is its standardized version, which

has been proposed as a more interpretable statistic as it is bounded while M(ΔX ,ΔY)

has no upper limit to quantify perfect association (see, for instance, Legendre and

Legendre (1998) and Schneider and Borlund (2007)).

The standardized Mantel statistic is defined by applying the original Mantel statis-

tic with standardized distance elements. In particular, the A distances {dX (xi, xj)}i>j

are standardized by subtracting their mean and dividing by their standard deviation,

i.e.,
dX (xi, xj) − x̄

sx

,

where x̄ =
∑

i>j dX (xi, xj)/A, s2
x =

∑
i>j(dX (xi, xj) − x̄)2/(A − 1), and similarly

for the distances {dY(yi, yj)}i>j . Although some of the distances are correlated (as

there exists some dependence between them; for example, dX (x1, x2) and dX (x1, x3)

both contain observation x1), standardizing the upper-triangular distances in this way

essentially considers the distances as independent observations of a random variable
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with sample mean 0 and sample variance 1. Applying this standardization to both

distance matrices maps their elements to a space where they can be directly compared.

The standardized Mantel statistic is then given by

rM (ΔX ,ΔY) =
1

A − 1

∑

i>j

(
dX (xi, xj) − x̄

sx

)(
dY(yi, yj) − ȳ

sy

)

,

which equals Pearson’s correlation coefficient between the A-dimensional vectors dX

and dY containing the standardized distance elements {(dX (xi, xj) − x̄)/sx}i>j and

{(dY(yi, yj) − ȳ)/sy}i>j , respectively. That is,

rM(ΔX ,ΔY) = cor (dX , dY) ,

so that rM(ΔX ,ΔY) is bounded by ±1 and quantifies the linear correlation between

the distances in each distance matrix. As in the case of Pearson’s correlation coeffi-

cient, a value of −1 indicates a perfect negative correlation (distances in ΔX are large

when distances in ΔY are small, and vice versa), whereas 1 indicates perfect positive

correlation (distances in ΔX are large when distances in ΔY are large, and similarly for

small distances). A value of 0 indicates no correlation. Thus values tending towards

±1 provide evidence against the null hypothesis.

Inference is typically performed by using a Monte Carlo permutation procedure

where the observed statistic, denoted r̂M(ΔX ,ΔY), is compared against a permutation

sampling distribution generated under the null. For each permutation π ∈ Π, the

observed permuted statistic is computed as r̂M(ΔX ,ΔY,π), where ΔY,π denotes ΔY

with rows and columns simultaneously permuted by π. The set {r̂M(ΔX ,ΔY,π)}π∈Π

then defines the sampling distribution under the null. The p-value of the observed

r̂M(ΔX ,ΔY) can then be approximated by

#(|r̂M (ΔX ,ΔY,π)| ≥ |r̂M(ΔX ,ΔY)|)
Nπ

,

where | ∙ | is the absolute operator. Note that this is a right-tailed test since larger

values of |rM (ΔX ,ΔY)| indicate greater association. An alternative approach has also

been proposed for large N , where the exact permutation distribution which would

be obtained by using all possible permutations is approximated by the Normal dis-
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tribution (Mantel, 1967). However, its use has been cautioned where the sampling

distribution appears skewed (Mantel, 1967).

The standardized Mantel test has been widely used in the literature. Some exam-

ples include Dow et al. (1987), Heywood (1991) and Legendre and Legendre (1998).

However, the test suffers from a limitation when X and Y are P - and Q-dimensional

real-valued random vectors, respectively. In particular, when the N centered observa-

tions stored in X and Y are such that XT Y = 0, so that X and Y are not associated

via the traditional CCA or RV tests, say. In this case the standardized Mantel test

will detect a linear relationship between their respective Euclidean distance matrices

(when one does not exist between the raw data matrices). This discrepancy has been

shown empirically (see, for example, Peres-Neto and Jackson (2001) and Section 7.6.1).

A mathematical explanation has been offered recently by Legendre and Fortin (2010),

based on the connection between the sum of squares components arising from a linear

regression analysis of dY on dX and Pearson’s correlation between them, cor(dX , dY).

In particular, a linear regression analysis of dY on dX yields the sum of squares

decomposition

dT
YdY = dT

YHdY |dX dY + dT
Y

(
IA − HdY |dX

)
dY ,

where HdY |dX = dXdT
XdY/(dT

XdX ) is the A × A hat matrix. The sum of squares of

dY is represented by dT
YdY , the sum of squares explained by dX is represented by

dT
YHdY |dX dY , and the residual sum of squares (unexplained by dX ) is represented by

dT
Y

(
IA − HdY |dX

)
dY . It can then be shown that

cor2 (dX , dY) =
dT
YHdY|dX dY

dT
YdY

, (4.10)

where the term on the right is known as the coefficient of determination (Weisberg,

1985).

Now consider a linear regression analysis of Y on X, yielding sum of squares

decomposition

tr
(
Y Y T

)
= tr

(
HY Y T H

)
+ tr

(
(IN − H) Y Y T (IN − H)

)
,

where H = X
(
XT X

)−1
XT . The multivariate analogue of the coefficient of deter-
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mination is given by
tr
(
HY Y T H

)

tr (Y Y T )
, (4.11)

(Legendre and Fortin, 2010). Note that HY = 0 (since XT Y = 0), indicating

no effect of X in explaining the sum of squares of Y , but we do not simplify the

expressions accordingly in this exposition.

The key point highlighted by Legendre and Fortin (2010) is that the sum of squares

expressions in the denominators of (4.10) and (4.11) are not equal, that is, the total

sum of squares of Y (tr
(
Y Y T

)
) is not equal to the sum of squares of the Euclidean

distances between the observations of Y (dT
YdY). This can be seen directly by repre-

senting tr
(
Y Y T

)
in terms of Euclidean distances and comparing with dT

YdY . From

Section 3.2.2 we have that

tr
(
Y Y T

)
=

1

N

∑

i>j

d2
Y(yi, yj), (4.12)

where dY is the Euclidean distance (as Y Y T = GY), whereas the expression dT
YdY

equals
∑

i>j

(dY(yi, yj) − ȳ)2 =
∑

i>j

d2
Y(yi, yj) − Aȳ2. (4.13)

Since (4.12) and (4.13) are not equal, the coefficients of determination do not measure

the same relationship. It is therefore argued that in the case where the original vector-

valued observations are available, a test of no association that operates directly on

these, and not on the derived distances, should be used.

4.2.3 The RMDS Coefficient

The RMDS coefficient of Arenas and Cuadras (2004) measures association by consid-

ering the notion of a distance matrix which combines information from the individual

distance matrices. This distance matrix, denoted ΔXY and termed the joint distance

matrix, satisfies certain properties relating to the corresponding principal coordinates

arising from MDS. These represent an average configuration of the N sampling units

with respect to the distances in both distance matrices, and can be used to measure

the level of redundancy between the separate coordinates arising from ΔX and ΔY .
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The properties satisfied by ΔXY are given as follows. On altering one distance

matrix by a multiplicative constant so that tr(GX ) = tr(GY), i.e., the respective

variabilities are equal, obtain the centered inner product matrices GX and GY and the

corresponding principal coordinate matrices X̃ and Ỹ . If X̃ = Ỹ so that ΔX = ΔY ,

then ΔXY = ΔX = ΔY . Only the principal coordinates from one distance matrix

are required to fully represent the information provided by both distance matrices, so

there is maximum redundancy (one distance matrix can be ignored). If X̃T Ỹ = 0,

this means that Λ
1
2
XUT

XUYΛ
1
2
Y = 0 so that the directions of variability, UX and UY ,

are orthogonal. Then Δ2
XY = Δ2

X +Δ2
Y , and there is minimum redundancy since both

distance matrices are required to yield an overall view of the N sampling units with

respect to dX and dY . For intermediate cases where X̃ and Ỹ are not equal and not

orthogonal, ΔXY contains some form of average of the individual distance matrices.

ΔXY is not explicitly defined by Arenas and Cuadras (2004). Instead, its centered

inner product matrix, denoted GXY , is defined;

GXY = GX + GY −
1

2

(
G

1
2
XG

1
2
Y + G

1
2
YG

1
2
X

)
,

where G
1
2
X = UXΛ

1
2
XUT

X and G
1
2
Y = UYΛ

1
2
YUT

Y (from (3.7), ΔXY can be obtained from

GXY as ΔXY =
(
dG1T

N + 1NdT
G − 2GXY

) 1
2 where dG is the column vector containing

the diagonal elements of GXY). Note that GX = GY is equivalent to ΔX = ΔY , and in

this case GXY = GX = GY , which is equivalent to Δ2
XY = Δ2

X = Δ2
Y . If UT

XUY = 0,

then GXY = GX + GY which is equivalent to Δ2
XY = Δ2

X + Δ2
Y . The distances in

ΔXY are with respect to unknown distance function dXY , and the sample variability

with respect to dXY can be quantified by tr (GXY). Due to the properties defined

above, tr (GXY) = tr (GX ) = tr (GY) if ΔX = ΔY , and tr (GXY) = tr (GX + GY) if

UT
XUY = 0.

The RMDS coefficient compares the sample variabilities with respect to dX and dY

against the sample variability observed with respect to dXY . It is defined as

RMDS(X ,Y) = 2

(

1 −
tr (GXY)

tr (GX + GY)

)

,

and ranges between 0 and 1. The minimum is attained when UT
XUY = 0, that is,

when there is minimum redundancy as information from both distance matrices is
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required. The maximum is attained when ΔX = ΔY , that is, when there is maximum

redundancy as one distance matrix can be ignored. Larger values provide evidence

against the null hypothesis.

Although no procedure is described to assess the significance of an observed asso-

ciation value, a Monte Carlo permutation procedure can be invoked to achieve this.

A sampling distribution of RMDS can be generated under the null hypothesis by si-

multaneously permuting the rows and columns of GY (or GX ) many times, and each

time recomputing GXY and hence the RMDS value. Comparing the observed RMDS

value against this sampling distribution yields an estimate of the p-value.

A limitation of the RMDS coefficient is that GXY may not be well-defined, as it may

not be real-valued. This occurs when some eigenvalues in ΛX and ΛY are negative,

resulting in complex-valued elements of G
1
2
X and G

1
2
Y , and hence of GXY . This would

imply that some squared distances with respect to dXY are complex-valued, and hence

the distances are negative. To overcome this a correction for negative eigenvalues

can be applied. However, this alters the information provided in the original distance

matrices.

4.2.4 The η2 Coefficient

The η2 coefficient of Cuadras (2008) considers a reduced dimension approach to mea-

suring association based on the directions of variability arising from MDS of ΔX and

ΔY . It considers the orthogonality between the first few directions of variability of

each, and uses the determinant operator to yield a scalar-valued measurement of as-

sociation.

On denoting the first S columns of UX by UX ,S, and the first K columns of UY by

UY,K , the coefficient is defined as

η2(X ,Y) = det
(
UT

X ,SUY,KUT
Y,KUX ,S

)
.

Cuadras (2008) has shown that this coefficient ranges between 0 and 1. It equals 0 if

the standard coordinates are orthogonal representing no overlap in the most important

S and K directions of variability of ΔX and ΔY , respectively. Conversely, it equals

1 if the chosen directions of variability are the same, and hence the variabilities with
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respect to dX and dY are explained by the same important directions of variability.

Larger values provide evidence against the null hypothesis.

As with RMDS, there is no described procedure for assessing the significance of an

observed association value. However, a Monte Carlo permutation procedure can be

applied to generate a sampling distribution of η2 under the null hypothesis, to which

the observed η2 value can be compared. This requires permuting the rows of either

UX ,S or UY,K , and recomputing the coefficient value many times.

A difficulty in applying this test, however, lies in the computation of the coefficient.

No guidance is provided in choosing the number of dimensions S and K. It can be

argued that it is natural to set S = K = N , so that there is no possible loss of

information induced by considering S,K < N . This yields a coefficient value of 1

because UY,KUT
Y,K = UX ,SUT

X ,S = IN , and hence is not an appropriate choice as then

X and Y would always be perfectly associated.

4.2.5 PROTEST

The PROTEST procedure of Jackson (1995) refers to the application of Monte Carlo

permutations to the well-known Procrustes procedure comparing two data matrices of

interest (see, for example, Mardia et al. (1979)). The Procrustes procedure translates,

rotates and dilates one matrix optimally to match the other. The corresponding

PROTEST statistic is derived from a measure of the goodness-of-fit of the two matrices

after transformation.

The PROTEST statistic can be applied to the two principal coordinate matrices,

X̃ and Ỹ , arising from ΔX and ΔY in order to test (4.9) (Gower, 1971). They are

initially scaled such that their respective total variabilities are equal to 1, that is,

tr(GX ) = tr(GY) = 1. This ensures that the same result is obtained regardless of

which matrix is kept fixed during these transformations (as will be shown later in this

section).

Since X̃ and Ỹ are column-centered, their centroids are at the origin so no trans-

lation is required. Thus, consider applying only the rotation and dilation transfor-

mations to Ỹ , represented mathematically by letting Ỹ equal rAỸ , where r is the

dilation parameter and A is an N × N orthogonal rotation matrix. The aim is to

find the optimal r and A such that the goodness-of-fit criterion, defined as the resid-
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ual sum of squares between all paired observations, is minimized. This is equiva-

lent to minimizing the squared Frobenius distance between X̃ and rAỸ , given by

d2
F (X̃, rAỸ ) = tr

(
(X̃ − rAỸ )T (X̃ − rAỸ )

)
. Thus the optimization problem of

interest can be stated as

min
r,A

{
d2

F (X̃, rAỸ )
}

= min
r,A

{
tr (GX ) + r2tr (GY) − 2rtr

(
X̃T Ỹ A

)}
.

subject to AAT = IN . The optimal dilation, r̂, can be found immediately by dif-

ferentiation of the objective function (tr(GX ) + r2tr(GY) − 2rtr(X̃T Ỹ A)), as r̂ =

tr
(
X̃T Ỹ A

)
/tr (GY). Note the term tr(GY) in the denominator; this leads to a dif-

ferent solution if applying the transformation to the X̃ matrix instead. However, since

tr(GY) = tr(GX ) = 1, the solutions are the same.

Given r̂, the optimal Â is then found as the maximizer of tr
(
X̃T Ỹ A

)
subject

to AAT = IN . It can be shown that by using Lagrange multipliers and the singular

value decomposition of X̃T Ỹ (X̃T Ỹ = V ΓUT ), Â = V UT (Mardia et al., 1979).

The PROTEST coefficient is then defined as the minimum squared Frobenius distance,

d2
F (X̃, r̂ÂỸ ), given by

PROTEST(X̃, Ỹ ) = 1 − tr (Γ)2 .

This ranges between 0 and 1, with perfect association indicated by a value of 0 when

X̃ and Ỹ are linearly related, and no association indicated by the value of 1 when

X̃T Ỹ = 0. Thus smaller values provide evidence against the null hypothesis since the

configurations are deemed less dissimilar after optimal transformation. The p-value of

an observed association value can be approximated by permuting the rows of one of

the data matrices and recomputing the coefficient value for many permutations.

A limitation of this procedure is in requiring a correction for negative eigenvalues

if distance functions are semi-metric, as advocated by Peres-Neto and Jackson (2001).

On applying a correction, the principal coordinate configurations can be represented

in real-valued Euclidean space (as eigenvalues are non-negative), but at the cost of

altering the information provided in the distance matrices to force such a configuration.
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4.3 Summary

When X and Y are real and vector-valued, we have reviewed the suitable multivariate

RV and dCor tests of no association. While the RV test considers linear relationships

between the variables comprising each vector, dCor considers more general, nonlinear

relationships. When X and/or Y are comprised of a single random variable which is

not scalar-valued, such as a curve- or graph-valued random variable, and multivariate

approaches cannot be applied, we have reviewed a handful of suitable distance-based

approaches.

Of the distance-based approaches reviewed, only the standardized Mantel test has

been applied to genetics data, and in particular to relate discrete-valued genetic poly-

morphism data to environmental variables (see, for instance, Legendre and Fortin

(2010)). Thus, while a few distance-based approaches exist which are clearly advan-

tageous over multivariate approaches when one has non-vector-valued observations,

their utility has yet to be fully investigated in the field of bioinformatics.

Based on the strengths and weaknesses of each distance-based approach, we form a

list of requirements which should comprise a ‘good’ testing procedure for null hypoth-

esis (4.9), such that it may be easily applied in bioinformatics applications. Firstly,

given orthogonal real and vector-valued data which is centered, a distance-based ap-

proach applied with Euclidean distances should yield no association. That is, the

distance-based approach should yield equivalent results to non-distance-based ap-

proaches. The main reason for this is to assist in the understanding of how these

methods work, and hence help foster their use. Standardized Mantel does not main-

tain this equivalence, but it appears that methods with multivariate foundations, such

as PROTEST, do maintain this equivalence. Thus a good distance-based approach

should be a generalization of a well-understood multivariate approach.

Secondly, no dimensionality reduction should be applied to standard or principal

coordinates arising from distance matrices as this could lead to a loss of information.

The η2 coefficient requires such a dimensionality reduction, but no guidance is offered

on how best to obtain the resulting reduced dimension. Standardized Mantel, RMDS

and PROTEST do not require dimensionality reduction, and as such retain all infor-

mation provided in the original distance matrices (unless a correction is applied for

semi-metric distances).
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Thirdly, for semi-metric distance functions no alterations to the distance matrices

should be applied. These distort the observed distances, again, possibly leading to

a loss of information. Alterations are required for PROTEST and RMDS, but not

standardized Mantel or η2. Since they are not known to be beneficial for the problem

at hand (Pekalska and Duin, 2005), such extra computation should be applied with

caution. In fact, we show in Section 7.6.3 that applying such corrections can lead to

a loss of power for a given method by applying it with and without a correction.

Finally, inference should be drawn without permutations. Standardized Mantel

and PROTEST are typically used with permutations (Schneider and Borlund, 2007),

regardless of the Normal approximation available for the permutation distribution of

standardized Mantel. Furthermore, the Normal approximation will be inappropriate

when the sampling distribution appears skewed, as is often the case in practice (Mantel,

1967).

In Chapter 7 we propose a distance-based statistic to test null hypothesis (4.9)

which is generalized from the RV coefficient. It satisfies the above requirements, in-

cluding having an approximate null distribution which can model skewed distributions.

We provide evidence that it performs competitively with the standardized Mantel and

PROTEST approaches, and since no permutations are required to assess significance,

is particularly suited to applications where many tests need to be performed. We also

show that for a specific distance measure the statistic equals the dCor statistic. Thus

it encompasses both the linear (RV) and nonlinear (dCor) multivariate statistics, and

is thus able to test null hypotheses (4.1) and (4.2), respectively, without permutations.
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Part II

Methodology
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Chapter 5

Distance-Based Analysis of

Variance: the DBF Test

In this chapter we derive a distance-based generalization of the MANOVA decompo-

sition used for high-dimensional vector-valued data. An interpretable distance-based

statistic using both within- and between-group distance information is then defined

to test null hypothesis (2.4). We derive an approximate null sampling distribution

allowing inference to be performed without permutations, and demonstrate its appli-

cability to a wide range of real applications. Several simulation studies are performed

to highlight key advantages over competing methods.

5.1 The Distance-Based Variance Decomposition

In this section we generalize the MANOVA decomposition (2.2) by first showing that

it can be written in terms of Euclidean distances. The distance-based variance decom-

position then results by substituting any distance in place of the Euclidean distance.

Begin by considering the quantity tr(T ) associated with vector-valued observations

{yi}
N
i=1. It is a measure of spread found by summing the squared Euclidean distance

of each observation to the population mean vector. This quantity can be equivalently
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written using only pairwise Euclidean distances between observations, as follows:

tr(T ) =
N∑

i=1

(yi − ȳ)T (yi − ȳ),

=
1

2

N∑

i=1

yT
i yi +

1

2

N∑

j=1

yT
j yj −

1

N

N∑

i=1

N∑

j=1

yT
i yj

=
1

2N

N∑

i=1

N∑

j=1

(yi − yj)
T (yi − yj)

=
1

2N

N∑

i=1

N∑

j=1

d2
E(yi, yj),

where dE denotes the Euclidean distance. Thus, tr(T ) is proportional to the sum of

squared inter-point Euclidean distances between all N observations. This well-known

connection shows that the total variability of a given set of vectorial observations,

traditionally found using the population mean, can be computed using only the inter-

point Euclidean distances (Gower and Krzanowski, 1999; Anderson, 2001). In an

analogous manner, the within- and between-group variability quantities tr(W ) and

tr(B) can also be written in terms of squared Euclidean distances, as follows:

tr(W ) =

G∑

g=1

N∑

i=1

(yi − ȳg)
T (yi − ȳg) Igi

=
G∑

g=1

(
1

2

N∑

i=1

yT
i yiIgi +

1

2

N∑

j=1

yT
j yjIgj −

1

Ng

N∑

i=1

N∑

j=1

yT
i yjIgiIgj

)

=
G∑

g=1

(
1

2Ng

N∑

i=1

N∑

j=1

(yi − yj)
T (yi − yj) IgiIgj

)

=
1

2

G∑

g=1

N∑

i=1

N∑

j=1

d2
E(yi, yj)

IgiIgj

Ng

,

and since tr(B) = tr(T ) − tr(W ), we obtain

tr(B) =
1

2N

N∑

i=1

N∑

j=1

d2
E(yi, yj) −

1

2

G∑

g=1

N∑

i=1

N∑

j=1

d2
E(yi, yj)

IgiIgj

Ng

=
1

2N

N∑

i=1

N∑

j=1

d2
E(yi, yj)

(

1 −
G∑

g=1

N
IgiIgj

Ng

)

.
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Generalizations of these quantities can be defined by replacing the Euclidean dis-

tance, dE, with any distance dY . Thus we can define the total variability of a set of

observations {yi}N
i=1 with respect to distance dY as

TΔ =
1

2N

N∑

i=1

N∑

j=1

d2
Y(yi, yj),

the within-group variability with respect to dY as

WΔ =
1

2

G∑

g=1

N∑

i=1

N∑

j=1

d2
Y(yi, yj)

IgiIgj

Ng

,

and the between-group variability with respect to dY as

BΔ =
1

2N

N∑

i=1

N∑

j=1

d2
Y(yi, yj)

(

1 −
G∑

g=1

N
IgiIgj

Ng

)

.

The total variability in the data captured by TΔ can hence be decomposed into the

sum of two components quantifying within- and between-group variability. That is,

TΔ = WΔ + BΔ, analogously to the decomposition tr(T ) = tr(W ) + tr(B) used for

high-dimensional vectorial data. This distance-based variability decomposition holds

for any distance.

We can write TΔ, BΔ and WΔ more compactly in matrix form by using the centered

inner product matrix GY . This matrix contains all the information on the inter-point

distances between the N observations, and is such that its trace equals TΔ;

tr (GY) = tr

((

IN −
1

N
JN

)(

−
1

2
Δ2

Y

))

= tr

(

−
1

2N
Δ2

Y +
1

2N
JNΔ2

Y

)

=
1

2N
tr
(
JNΔ2

Y

)

=
1

2N

N∑

i=1

N∑

j=1

d2
Y(yi, yj).

Therefore we rewrite TΔ more conveniently as tr(GY). For WΔ and BΔ we define the

centered N × N matrix of constants encoding group membership of each observation
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to one of the G groups as

Hc =










1
N1

JN1 0

1
N2

JN2

. . .

0 1
NG

JNG










−
1

N
JN , (5.1)

where Ja is the square matrix of ones of size a. Since this matrix is centered, we have

that CHcC = Hc for centering matrix C, and we use this fact in the evaluation of

the quantity tr(HcGY) to derive expressions for WΔ and BΔ in terms of GY . We have

tr(HcGY) = tr
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JN2

. . .
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NG

JNG










Δ2
Y










=
1

2N

N∑

i=1

N∑

j=1

d2
Y(yi, yj) −

1

2

G∑

g=1

1

Ng

N∑

i=1

N∑

j=1

d2
Y(yi, yj)IgiIgj

= TΔ − WΔ,

and since BΔ = TΔ−WΔ, we have that BΔ = tr(HcGY). Also, since WΔ = TΔ−BΔ,

we find that WΔ = tr ((IN − Hc)GY).

5.2 The Distance-Based F Statistic

Making use of the distance-based variance decomposition above, we can generalize the

Dempster trace criterion (given by (2.3)) by replacing tr(B) with BΔ and tr(W ) with

WΔ. That is, we define the distance-based F (DBF) statistic as

FΔ =
BΔ

WΔ

=
tr(HcGY)

tr ((IN − Hc)GY)
. (5.2)
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Analogously to the Dempster trace criterion and Lawley-Hotelling trace statistic, this

statistic considers a ratio of between- to within-group variability. Larger values provide

evidence against the null hypothesis, as larger between-group variability and smaller

within-group variability suggest that observations in the same group are more similar

than observations in different groups. A statistic of similar form was proposed by

Anderson (2001) for application in ecology, but with degrees of freedom divisors G−1

and N − G in the numerator and denominator, respectively.

5.3 Connection with MANOVA Statistics

It can be shown that FΔ is monotonically related to several MANOVA statistics when

the observations are Q-dimensional vectors.

When Q = 1 and the Euclidean distance is applied, upon which we denote FΔ by

FΔE
, FΔE

is identical to the classical one-way ANOVA F statistic, ignoring the degrees

of freedom divisors G− 1 and N −G in the numerator and denominator, respectively.

Thus,

FΔE

(
N − G

G − 1

)

∼ FG−1,N−G

(Anderson, 2001).

For Q > 1 and G > 2, we can show that FΔ is related to the Lawley-Hotelling

and Pillai-trace statistics by using distance measures involving the within-group and

between-group total sum of squares matrices. That is, although the DBF statistic is

derived based on Euclidean distances which do not account for correlation amongst

the variables comprising Y , this information can be incorporated by an appropriate

choice of distance measure (when N > Q). We show this in the following proposition.

Proposition 1 On defining the distance matrices ΔW = {dW (yi, yj)}N
i,j=1 and ΔT =

{dT (yi, yj)}N
i,j=1 with

d2
W (yi, yj) = (yi − yj)

T W−1 (yi − yj) and d2
T (yi, yj) = (yi − yj)

T T−1 (yi − yj) ,

we have that

FΔW
=

LH

Q
and FΔT

=
PT

Q − PT
.
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Proof. FΔ can be rearranged in terms of only TΔ and WΔ as

FΔ =
TΔ

WΔ

− 1. (5.3)

We show that LH and PT can be written in terms of TΔW
and WΔT

, respectively, and

these expressions can be substituted into (5.3) to obtain the required relationships.

We begin by re-writing LH as

LH = tr(W−1B)

= tr(W−1(T − W ))

= tr(W−1T ) − Q

=
1

2N
tr

(

W−1

N∑

i=1

N∑

j=1

(yi − yj) (yi − yj)
T

)

− Q

=
1

2N

N∑

i=1

N∑

j=1

(
(yi − yj)

T W−1 (yi − yj)
)
− Q

=
1

2N

N∑

i=1

N∑

j=1

d2
W (yi, yj) − Q

= TΔW
− Q.

From this we have that TΔW
= LH + Q, which we substitute into (5.3) to obtain

FΔW
=

LH + Q

WΔW

− 1.

On expanding WΔW
we find that it equals Q, yielding

FΔW
=

LH

Q
,

as required.
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On following a similar argument with PT we obtain

PT = tr(T−1B)

= Q − tr(T−1W )

= Q −
1

2
tr

(

T−1

G∑

g=1

N∑

i=1

N∑

j=1

(yi − yj) (yi − yj)
T

(
IgiIgj

Ng

))

= Q −
1

2

N∑

i=1

N∑

j=1

(yi − yj)
T T−1 (yi − yj)

G∑

g=1

IgiIgj

Ng

= Q − WΔT
.

Since TΔT
= Q (easily shown by expansion), we find that

FΔT
=

PT

Q − PT
,

as required.

�

For G = 2, it follows from this proposition and the fact that T 2 = (N − 2)PT/(1−

PT) (Rencher, 2002) that FΔ with the Mahalanobis-like distance dT , denoted FΔT
, is

monotonically related to Hotelling’s T 2 statistic via the equation

T 2 =
(N − 2)QFΔT

1 + (1 − Q)FΔT

. (5.4)

Expanding on this relationship, since we know that (N − Q − 1)T 2/((N − 2)Q) has

an F distribution under the null, it follows that

(N − Q − 1)FΔT

1 + (1 − Q)FΔT

∼ FQ,N−Q−1.

That is, a transformation of FΔT
follows the F distribution with degrees of freedom

Q and N − Q − 1 under the null.

5.4 Inference

Given an observed value of the test statistic, F̂Δ, computed for any suitably chosen

distance measure dY , inference can be performed using a non-parametric approach.
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That is, the p-value can be estimated using permutations. Given Nπ permutations

π ∈ Π, the set {F̂Δπ}π∈Π is generated by recalculating BΔ for each permutation,

denoted B̂Δπ , and using the monotonic relationship

F̂Δπ =
B̂Δπ

TΔ − B̂Δπ

. (5.5)

TΔ is fixed for all permutations so that permuted values of FΔ are monotonically

related to permuted values of BΔ. The p-value is then estimated as the proportion of

the Nπ permuted statistics greater than or equal to the observed F̂Δ, i.e.,

#(F̂Δπ ≥ F̂Δ)

Nπ

.

Clearly, this is a one-sided test, since larger values of FΔ provide evidence against the

null.

As an alternative to this expensive permutation-based testing approach, we con-

sider an approximate distribution for the null sampling distribution of FΔ, as this

would allow p-values to be well-approximated without permutations. Since FΔ is re-

lated to BΔ via (5.5), we first consider approximating the null distribution of BΔ,

that is, the between-group variability.

5.4.1 The Approximate Null Distribution of the Between-Group Vari-

ability

For general data structures and distance measures, the null sampling distribution of

the DBF test statistic (5.2) is unknown. This is because the between-group variability

quantity, BΔ, which features in the statistic will, in general, follow some unknown

distribution which depends on the specific distance measure being used (Mantel, 1967).

On denoting the (i, j)th element of Hc by hij and recalling that Hc is centered, BΔ

can be expressed as the weighted sum of squared distances

BΔ = −
1

2

∑

i 6=j

d2
Y(yi, yj)hij .
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Thus even if each d2
Y(yi, yj), for i 6= j, was assumed to be a random variable with known

distribution, BΔ would be a weighted sum of correlated and uncorrelated random

variables, whose distribution would be difficult to evaluate. For instance, the problem

of evaluating the sum of correlated and uncorrelated Chi-squared and Gamma random

variables has been considered extensively (see, for example, Solomon and Stephens

(1977) and Kourouklis and Moschopoulos (1985)). Although it has been argued that a

quantity of the form of BΔ has the appearance of a U-statistic which is asymptotically

normal (Mantel, 1967; Hoeffding, 1948), in our experience with different data types,

even for large sample sizes, BΔ often appears to be skewed to various degrees.

To demonstrate this, we explore the empirical permutation distribution of BΔ for

four real datasets involving different data structures and distances:

(i) Vectorial and real-valued data: the data consists of Q = 50 gene expression

measurements observed on N = 103 biological samples from the Novartis multi-

tissue dataset described in Monti et al. (2003). In this case G = 4, corresponding

to four different tissues. For this dataset, we consider the Euclidean, Mahalanobis

and Manhattan distances (details provided in Appendix B.1).

(ii) Vectorial and discrete-valued data: the data consists of Q = 5 randomly selected

SNPs observed on N = 254 samples from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) cohort (see Section 8.2 for further details). The observation

of each sample at each SNP is the number of minor alleles, taking one value in

{0, 1, 2}. In this case G = 2, corresponding to the two groups being compared,

healthy controls and Alzheimer’s disease patients. Here we use the identity-by-

state (IBS), Rogers and Tanimoto I, and Sokal and Sneath genetic distances.

The IBS distance compares the number of minor alleles at each SNP in the set

of SNPs, while the Rogers and Tanimoto I and Sokal and Sneath distances use a

function of the total number of matches of minor alleles across the whole set of

SNPs (see Appendix B.3 for further details).

(iii) Functional data (curves): the data consists of N = 18 gene expression functional

data replicates for a randomly selected gene in a dataset on M.tuberculosis ana-

lyzed by Tailleux et al. (2008). In this case G = 2, corresponding to two different

types of cell, and replicate time courses were observed at 4 time-points. These
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were smoothed via cubic smoothing splines to yield the 18 replicate curves (Mi-

nas et al., 2011). Figure 5.1 shows observed time courses and their fitted curves

for two randomly selected genes. The L2, Visual L2 and Curvature distance

measures are applied to this dataset. The L2 measure captures the difference in

magnitude between curves, the Visual L2 measure captures their scale-invariant

differences in shape, and the Curvature measure captures their difference in rate

of change regardless of direction (see Appendix B.2 for further details).
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Figure 5.1: Replicate gene expression time courses modeled as time-dependent curves
for genes RPL6 and SLC22A18 of the M. tuberculosis dataset; black for dendritic cells
and gray for macrophages. The points represent the original gene expression time
course measurements.

(iv) Graph data: the data consists of N = 91 graphs representing the functional

connectivity networks from a functional MRI (fMRI) dataset on Schizophrenia

described in Lord et al. (2011). In this case G = 5, corresponding to different

levels of ‘at-risk mental state’ (ARMS) to which subjects can be diagnosed. Each

graph is comprised of 19 vertices, with each representing a region of interest

(ROI) across the brain. Figure 5.2 presents two graphs from this dataset; one

observed on a control subject, and one observed on a subject with high ARMS,

denoted ARMS-H. We apply the Hamming, Graph Edit, and Maximum Common

Subgraph (MCS) distances. The Hamming distance captures the number of
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Figure 5.2: Sample control and ARMS-H brain connectivity graphs from the func-
tional MRI dataset. Each circle represents a vertex, and the number within the circle
denotes the corresponding ROI of the brain. The gray line connecting any pair of ver-
tices represents an edge, and hence indicates some relationship between the two ROIs
represented by the vertices. The control subject exhibits a much richer functional
connectivity network between the ROIs than the ARMS-H subject, as indicated by
the visibly larger number of edges.

common edges across any pair of graphs, the Graph Edit distance quantifies the

number of edge deletions, insertions and substitutions required to transform one

graph into another, and the MCS distance captures the proportional size of the

maximum common subgraph between any pair of graphs (see Appendix B.4 for

further details).

The exact permutation distribution of BΔ in each case would be given by the set

{B̂Δπ}π∈Π where Π contains all N ! permutations π of the elements of {1, . . . , N}.

Due to the computational effort required in enumerating all possible permutations,

even for moderate size N , the exact distribution is generally unavailable. Figure 5.3

shows the approximate sampling distribution of BΔ obtained by using 106 Monte

Carlo permutations for each of the data types and distance measures considered. The

distributions exhibit varying degrees of skewness, even for large sample sizes.

Since the exact permutation distribution of BΔ is computationally and analytically
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Figure 5.3: Sampling distributions of BΔ obtained by using 106 Monte Carlo permu-
tations for four different data types and corresponding distances. (a)-(c) Vectorial and
real-valued gene expression data with N = 103. (d)-(f) Vectorial and discrete-valued
SNP data with N = 254. (g)-(i) Functional representation of longitudinal gene ex-
pression data with N = 18. (j)-(l) Graph representation of fMRI data with N = 91.
Overlayed is the proposed approximate null probability density function described in
Section 5.4.2.

intractable, we propose approximating it via moment matching. In moment matching

the unknown distribution is approximated by a continuous distribution whose first few
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moments ‘match’ those of the unknown distribution (Pearson, 1963; Johnson et al.,

1994).

The procedure is comprised of two steps. Firstly, the first three or four moments of

the unknown distribution are either estimated or their exact values obtained. Exact

values, which are obtained analytically, are preferred since they are not subject to

sampling variability (Solomon and Stephens, 1978). Secondly, candidate distributions

are considered for approximation. For example, Gamma and Lognormal distributions

have both been applied to model the skewness observed in the sampling distributions of

various multivariate and distance-based statistics (Berry and Mielke, 1983; Kazi-Aoual

et al., 1995; Josse et al., 2008).

The choice of distribution is not limited to these, and systems of distributions

have been proposed to ‘provide approximations to as wide a variety of observed dis-

tributions as possible’ (Johnson et al., 1994). These systems are comprised of several

distributions parameterized by the moments, often referred to as ‘types’. For instance,

the Pearson system (Pearson, 1895, 1901) proposed to capture different degrees of ob-

served skewness is comprised of seven distributions. They encompass the Gamma,

Beta, Exponential and Normal distributions by considering the first three or four mo-

ments. Another system often adopted is the Johnson system (Johnson, 1949), which

is comprised of three types of distribution and encompasses the Lognormal distribu-

tion. This uses log-transformations of the first two moments of the variable of interest

with the aim of removing skewness yielding a transformed distribution which appears

normally distributed (see, for instance, Josse et al. (2008)). Other approaches include

using polynomial expansions, such as the Gram-Charlier and Edgeworth expansions

(see, for instance, Wallace (1958) and Johnson et al. (1994)). The expansion coef-

ficients are given by the moments, and typically the first three moments are used

(Josse et al., 2008). However, these can yield negative densities over the support and

can exhibit multimodal features. These are undesirable properties in application to

observed data, prompting caution when used (see, for instance, Barton and Dennis

(1952), Johnson et al. (1994) and Josse et al. (2008)).

The choice of distribution within a given system depends on practical considera-

tions such as ease of implementation and theoretical arguments in their favour. We

use the Pearson type III distribution, which encompasses the Gamma, Exponential
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and Normal distributions, as it is flexible enough to capture the varying degrees of

skewness often observed in real data (see Figure 5.3). While the distribution of BΔ is

skewed for many distances, it also exhibits negligible skewness for some distances. For

example, Figures 5.3 (b) and (j) demonstrate that BΔ appears normally distributed for

the Mahalanobis and Hamming distances, and these can be captured by the Pearson

type III distribution.

Furthermore, it retrieves the distributions expected in special cases of data and dis-

tance measure. To see this, recall from Section 5.2 that the ANOVA F and Hotelling’s

T 2 statistics follow F distributions under the null when the observed data is normally

distributed. The DBF statistic is monotonically related to these (with the relevant

distance measures), so that it follows the F distribution; indeed, this is supported by

our simulation results in Section 5.5.1. Since the F distribution arises from the ratio of

two Chi-squared and hence Gamma distributions, it follows that BΔ (and hence WΔ)

follows the Gamma distribution, and this is encompassed within the Pearson type III

distribution.

Using the Pearson type III distribution to approximate the distribution of BΔ

requires the mean, variance and skewness of the exact permutation distribution of

BΔ, which are given by

μB =
1

N !

∑

π∈Π

B̂Δπ , σ2
B =

1

N !

∑

π∈Π

B̂2
Δπ

−μ2
B and γB =

1
N !

∑
π∈Π B̂3

Δπ
− 3μBσ2

B − μ3
B

σ3
B

,

respectively. Kazi-Aoual et al. (1995) have evaluated these expressions analytically

and provide closed form manipulations allowing their efficient computation for N > 6

without the need for permutations. These closed form expressions require that Hc and

GY are square, symmetric and centered, which they are by definition. The expressions

for μB, σ2
B and γB are provided in Appendix C.

On standardizing BΔ by subtracting μB and dividing by σB, the Pearson type III

distribution is parameterized by the skewness γB. That is,

Bs
Δ =

BΔ − μB

σB

∼ PTIII (γB) ,

where PTIII denotes the Pearson type III distribution. By assumption of this dis-
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tribution, the support of random variable Bs
Δ is given by [−2/γB,∞) if γB > 0,

(−∞,−2/γB] if γB < 0, and (−∞,∞) if γB = 0. We denote the cumulative distribu-

tion function (CDF) of Bs
Δ by FBs

Δ
(b; γB), and the probability density function (PDF)

of Bs
Δ by fBs

Δ
(b; γB). The PDF fBs

Δ
(b; γB) is defined by

(2/γB)4/γ2
B

Γ (4/γ2
B)

(
2 + γBb

γB

)(4−γ2
B)/γ2

B

exp

(

−
2(2 + γBb)

γ2
B

)

for γB > 0 and −2/γB ≤ b < ∞, where Γ(∙) denotes the usual Gamma function,

(−2/γB)4/γ2
B

Γ (4/γ2
B)

(
−(2 + γBb)

γB

)(4−γ2
B)/γ2

B

exp

(

−
2(2 + γBb)

γ2
B

)

for γB < 0 and −∞ < b ≤ −2/γB, and

1
√

2π
exp

(

−
b2

2

)

for γB = 0, i.e., the standard Normal distribution (Mielke and Berry, 2007).

5.4.2 The Approximate Null Distribution of the DBF Statistic

We aim to approximate the null distribution of FΔ in terms of the distribution of Bs
Δ

by using the one-to-one function h : Bs
Δ 7→ FΔ defined by

h (Bs
Δ) =

μB + σBBs
Δ

TΔ − μB − σBBs
Δ

, (5.6)

with inverse h−1 : FΔ 7→ Bs
Δ defined by

h−1 (FΔ) =
(TΔ − μB) FΔ − μB

σB (1 + FΔ)
. (5.7)

Transformation h must be continuous over the support of Bs
Δ. We have observed that

for real datasets γB is not equal to 0 exactly (see Figure 5.3) so we only consider

the cases where γB > 0 and γB < 0, and do not consider the case of γB = 0 in this

exposition.

Transformation h is not continuous in the positive plane at β = (TΔ − μB)/σB

because TΔ = tr (GY) > μB due to tr(Hc) = 1. The boundary of the support of Bs
Δ
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depends on the skewness, so the position of β may or may not affect the continuity of

the distribution of Bs
Δ over the support for the particular case of skewness. We thus

consider dealing with the discontinuity separately for both cases of skewness.

First consider the positive skewness case, where the support of Bs
Δ is [−2/γB,∞).

Since γB > 0, −2/γB is negative and the discontinuity can be observed as Bs
Δ increases

form −2/γB to ∞. Figure 5.4 (a) shows how FΔ behaves as a function of Bs
Δ over this

support; FΔ is an increasing function of Bs
Δ on both sides of the discontinuity at β.

B∆
s

F ∆

− 2 γB β ∞

α −1

(a) γB > 0

B∆
s

F ∆

− ∞ β − 2 γB

−1 α

(b) γB < 0 and α < −1

Figure 5.4: FΔ as a function of Bs
Δ. (a) FΔ and Bs

Δ are monotonically related
everywhere except at Bs

Δ = β for γB > 0 over the support [−2/γB,∞). (b) FΔ

and Bs
Δ are monotonically related everywhere except at Bs

Δ = β for γB < 0 over the
support (−∞,−2/γB] when α < −1.

We thus divide the support of Bs
Δ into the two regions

[
−2

γB

, β

)

and (β,∞) ,

where the equivalent regions of support of FΔ are given by [α,∞), where

α =
γBμB − 2σB

γB (TΔ − μB) + 2σB

(5.8)

satisfies h (α) = −2/γB, and (−∞,−1). We can show by contradiction that α > −1,
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since α ≤ −1 implies TΔγB ≤ 0, and by definition both TΔ and γB are positive. In

these regions we can apply the transformation since there are no discontinuities, and

define the CDF of FΔ in terms of the CDF of Bs
Δ by

FFΔ
(f ; μB, σB, γB) =






FBs
Δ

(h−1(f); γB) −FBs
Δ

(β; γB) −∞ < f < −1

1 + FBs
Δ

(h−1(f); γB) −FBs
Δ

(β; γB) α ≤ f < ∞
(5.9)

for γB > 0. The derivations are provided in Appendix D.1, including a proof that this

is a valid CDF.

Now we turn our attention to the negative skewness case, where the support of Bs
Δ

is (−∞,−2/γB]. In this case, γB < 0 so that −2/γB is positive. The discontinuity at

Bs
Δ = β thus only needs to be considered if β is to the left of −2/γB, otherwise it can

be ignored since it is not included in the support of Bs
Δ. We consider these two cases

separately. First consider the case where β < −2/γB. We have that

β <
−2

γB

⇒
−μB

σB

<
TΔ − μB

σB

<
−2

γB

,

since TΔ > μB, from which we find

0 <
γBTΔ

γBμB − 2σB

< 1. (5.10)

Applying this with the equation for α given by (5.8) yields α < −1. Thus we define

the occurrence of this first case when α < −1. Figure 5.4 (b) shows how FΔ behaves

as a function of Bs
Δ over the support (−∞,−2/γB] when α < −1. As with the positive

skewness case, FΔ is an increasing function of Bs
Δ on both sides of the discontinuity

at β. We thus divide the support of Bs
Δ into the two regions

(−∞, β) and

(

β,
−2

γB

]

,

with equivalent supports of FΔ given by (−1,∞) and (−∞, α], in which FΔ and Bs
Δ
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are monotonically related with no discontinuities. Thus we define the CDF of FΔ as

FFΔ
(f ; μB, σB, γB) =






FBs
Δ

(h−1(f); γB) −FBs
Δ

(β; γB) −∞ < f ≤ α

1 + FBs
Δ

(h−1(f); γB) −FBs
Δ

(β; γB) −1 < f < ∞
(5.11)

for γB < 0 and α < −1. The derivations are provided in Appendix D.2, including a

proof that this is a valid CDF.

Now consider the case where β > −2/γB; this is equivalent to α > −1. In this case

there are no discontinuities in the support of Bs
Δ, so FΔ and Bs

Δ are monotonically

related everywhere. The support for Bs
Δ given by (−∞,−2/γB] is equivalent to the

support for FΔ of (−1, α]. Thus the CDF of FΔ is defined as

FFΔ
(f ; μB, σB, γB) =






0 −∞ < f ≤ −1

FBs
Δ

(h−1(f); γB) −1 < f ≤ α

1 α < f < ∞

(5.12)

for γB < 0 and α > −1. This is a valid CDF as FBs
Δ

(∙; γB) is a valid CDF.

Using these results, the approximate p-value of an observed F̂Δ can be readily

obtained without permutations. On computing the permutational mean μB, variance

σ2
B, and skewness γB, and additionally α if γB < 0, the p-value is given by 1 −

FFΔ

(
F̂Δ; μB, σB, γB

)
.

For the given case of skewness and α value, the PDF of FΔ, denoted fFΔ
(f ; μB, σB, γB),

is given in terms of fBs
Δ

(∙; γB) by differentiating the CDF. Thus we have that

fFΔ
(f ; μB, σB, γB) =

∣
∣
∣
∣
d

df
h−1(f)

∣
∣
∣
∣ fBs

Δ
(h−1(f); γB)

=
TΔ

σB(1 + f)2
fBs

Δ
(h−1(f); γB),

where the range of f is given by the selected case of CDF.
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5.5 Simulation Experiments

We provide a range of simulation results for the DBF test. In Section 5.5.1 we present

empirical evidence in support of the results stated in Section 5.3, showing that the

approximate null distribution matches those of the ANOVA F and Hotelling’s T 2 tests.

Section 5.5.2 details a power study demonstrating the competitiveness of the DBF

test with the Mantel test and existing tests for the specific problem of testing a null

hypothesis of equality between functions (curves). In Section 5.5.3 we illustrate how

the approximate null distribution of the DBF statistic compares with the Monte Carlo

permutation distribution for a number of data types and distances. In Section 5.5.4

we compare the permutation and approximation approaches of performing inference

of an observed DBF statistic.

5.5.1 Comparison of DBF with ANOVA and MANOVA

Given that FΔ equals the ANOVA F statistic up to a constant as a special case for

univariate data, we verify that the proposed approximate distribution of FΔ approx-

imates that of the ANOVA F statistic well as N and G increase. Also, since FΔ is

related to Hotelling’s T 2 as a special case for multivariate data with G = 2, we verify

that our proposed distribution, transformed via (5.4), approximates the distribution of

T 2 well as N increases. That is, we aim to show that for the special cases the DBF test

is approximately equivalent to the ANOVA F and Hotelling’s T 2 tests, respectively.

For the univariate case, data is generated under the null and the DBF statistic

with the Euclidean distance and the ANOVA F statistic are computed. P-values are

found by comparing against their respective distributions. For N = 40, 100, 500, 1000

and G = 2, 4, 5, the kth Monte Carlo run consists of simulating y1, . . . , yN ∼ N(μk, σ
2
k),

where μk ∼ U(−10, 10), σ2
k ∼ U(0, 10) (where U(a, b) denotes the Uniform distribution

over [a, b]). The mean and standard deviation of the absolute differences between the

p-values obtained for B = 200 Monte Carlo simulations are reported in Table 5.1. It

can be seen that as N and G increase, the absolute difference between the p-values

decreases, thus showing that the approximate distribution of the DBF statistic behaves

as expected in this case.

For the multivariate case, the DBF statistic using the Mahalanobis-like distance
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measure dT (defined in Proposition 1) and the Hotelling’s T 2 statistic are computed.

P-values are found by comparing against their respective distributions. For N =

40, 100, 500, 1000 and Q = 10, the kth Monte Carlo run consists of simulating y1, . . . yN ∼

NQ(μk,Σk), where μk = (μk1, . . . , μkP )T with μjk ∼ U(−6, 6) for j = 1, . . . , Q, and

Σk a random Wishart matrix of size Q×Q. The mean and standard deviation of the

absolute differences between the p-values obtained for B = 200 Monte Carlo runs are

reported in Table 5.1. As N increases the difference between the p-values decreases,

showing that the DBF and Hotelling’s T 2 tests are approximately equivalent as N

increases.

A further experiment is performed to show that, as N increases, the proposed

approximate null distribution of the DBF statistic approximates the true ANOVA F

and Hotelling’s T 2 distributions, on applying the required transformations. In partic-

ular, we show that it yields a better approximation than a permutation-based CDF,

especially when the number of permutations is low.

For Q = 1, G = 2, and each of N = 50, 70, one set of univariate observations is

generated under the null from a Normal distribution as above. The DBF null CDF,

suitably transformed, and the ANOVA F CDF are obtained, and the Kolmogorov-

Smirnov (KS) statistic is used to compute the difference between these distributions.

This statistic is computed as the maximum distance between two vectors representing

the CDFs of interest; we use a vector of 1000 equally spaced points across the range

of the approximate DBF distribution. For the given dataset for each N , and for each

of B = 200 Monte Carlo runs, we use an increasing set of Monte Carlo permutations

to compute the permutation CDF of the DBF statistic. We use 103, 104, 5 × 104 and

105 permutations, so that for each Monte Carlo run, 103 Monte Carlo permutations

are enumerated, then 9 × 103 Monte Carlo permutations are added to yield the larger

set of 104 permutations and so on. For each of these four sets of permutations the KS

statistic depicting the difference between the DBF permutation CDF and the ANOVA

F CDF is computed. This yields an empirical distribution of 200 KS statistic values for

each set of permutations. The results of this experiment are shown in Figures 5.5 (a)

and (b). We see that for N = 50, using more than 5 × 104 permutations yields a per-

mutation distribution which is directly comparable with our approximate distribution.

For N = 70, however, the approximate DBF distribution better approximates the true
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underlying ANOVA F distribution than the permutation distributions typically used

in practice; typically not more than 105 permutations are used for real data analyses.

For Q = 10, G = 2 and N = 50, one set of multivariate observations is generated

under the null from a Multivariate Normal distribution as described above. The DBF

null CDF, suitably transformed, and the Hotelling’s T 2 CDF are obtained. Repeating

as above, and using the KS statistic to quantify the difference between the transformed

DBF permutation CDF and true Hotelling’s T 2 CDF, the results are given in Figure

5.5 (c). We see that for N = 50 the approximate DBF distribution yields a better

approximation of the true distribution than the permutation distributions.
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Figure 5.5: (a)-(b) Empirical distributions of the KS statistic quantifying the difference
between the DBF permutation CDF, suitably transformed, and the ANOVA F CDF,
for each set of Monte Carlo permutations. The dotted line represents the KS statistic
comparing the approximate DBF CDF, suitably transformed, and the ANOVA F CDF.
(c) Empirical distributions of the KS statistic quantifying the difference between the
DBF permutation CDF, suitably transformed, and the Hotelling’s T 2 CDF, for each set
of Monte Carlo permutations. The dotted line represents the KS statistic comparing
the approximate DBF CDF, suitably transformed, and the Hotelling’s T 2 CDF.

5.5.2 Power Study with Functional Tests

Here we compare the DBF test against the Mantel test and two tests specifically

designed for detecting differences between population curves (this problem is detailed

in Section 9.2). These are the EDGE (Storey et al., 2005b) and TN (Zhang et al.,

2010) tests, which have been proposed to test a null hypothesis of equality between

population curves. This is equivalent to distance-based null hypothesis (2.4) with the
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L2 distance, because equality between curves equates to the area between them being

zero. From this power study we aim to show that (i) DBF is competitive with existing

methods for testing a null hypothesis of equality between curves, and (ii) for detecting

other types of differences, DBF outperforms all methods, including the distance-based

Mantel test.

We perform three Monte Carlo simulations in this endeavour, each with B = 200

runs. For each run 250 independent datasets of N curves across G = 2 groups of equal

size are generated with 225 under the null hypothesis and 25 under the alternative

hypothesis. For each experiment a different notion of distance is embraced: (i) area-

preserving, in which the null curves have zero L2 distances; (ii) shape-preserving, in

which the null curves have zero Visual L2 distances; (iii) curvature-preserving, in which

the null curves have zero Curvature distances.

For a particular notion of distance, we simulate curves similar to those observed in

real longitudinal gene expression datasets, such as those of the M.tuberculosis dataset

described in Section 9.2.4, while respecting the chosen distance measure. We adopt a

three-stage procedure to achieve this. First, true group curves {μg(t)}2
g=1 are defined

for t ∈ τ = [0, 48] (to mimic the time-range of the M.tuberculosis data) using quadratic

Bezier curves (Farin, 1992). In the second step, longitudinal observations are sampled

from these curves at time-points t = (t1, . . . , tS)T , to yield N S-dimensional longitudi-

nal observation vectors. The third and final step consists of applying functional data

analysis (FDA) techniques to model these vectors as curves (Ramsay and Silverman,

2006; Wu and Zhang, 2006), yielding a set of N curves. We describe each of these

steps in detail below.

To begin, we use quadratic Bezier curves to generate {μg(t)}2
g=1. These curves

are parameterized by a scalar z ∈ [0, 1] and three two-dimensional control points; a

start point pS, a middle point pM , and an end point pE. The first dimension of each

coordinate represents time and the second dimension represents the curve value. The

points pS and pE define the start and end of the curve being generated, with the

middle coordinate pM influencing the pattern of the curve between these points. The

quadratic Bezier curve is defined by

b(z; pS, pM , pE) = (1 − z2)pS + 2(1 − z)zpM + z2pE,
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(Farin, 1992). By controlling the parameters we are able to generate realistic curves as

typically observed in real gene expression datasets. Figure 5.6 shows a quadratic Bezier

curve generated with randomly chosen control points pS = (0, 0)T , pM = (10, 3.5)T

and pE = (48,−0.65)T .

Random quadratic Bezier curve
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C
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ue

0
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0 10 48

(0,0)

(10,3.5)

(48,−0.65)

Figure 5.6: A quadratic Bezier curve with control points pS = (0, 0)T , pM = (10, 3.5)T

and pE = (48,−0.65)T represented by the black points.

The Bezier curves representing the two true curves {μg(t)}2
g=1 for a given Monte

Carlo dataset are generated as follows. For dataset i = 1, . . . , 250 we let

μg(t) = b
(g)
i

(

z; (0, 0)T ,
(
A

(g)
i , B

(g)
i

)T

,
(
48, C

(g)
i

)T
)

,

for g = 1, 2. In all cases, the start coordinate is taken to be pS = (0, 0)T so that

all curves have value 0 at time 0, and the first element of the end point pE being

48 ensures that all the curves end at time 48. The parameters A
(g)
i , B

(g)
i and C

(g)
i

are randomly chosen constants that determine specific features of the curves. The

parameters are controlled in different ways, depending on the distance setting chosen

for the experiment:
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(i) Area-preserving distance settings: Under the null, the area between curves in

the two groups is zero, and under the alternative, there is a large L2 distance

between the group curves. The generation of curve μ1(t) under both hypotheses

is carried out by assuming the following sampling distributions: A
(1)
i ∼ Ud(2, 47)

(discrete Uniform distribution over [2, 47]), B
(1)
i ∼ U(−6, 6) and C

(1)
i ∼ U(−6, 6).

This generates curves with peaks and troughs occurring at a range of time-points

over τ and general up and down directions, representative of the type of patterns

exhibited by real data. For H0 datasets j, μ2(t) is defined by the same coordinates

as the group 1 curves, that is, A
(2)
j = A

(1)
j , B

(2)
j = B

(1)
j and C

(2)
j = C

(1)
j , ensuring

equality. For H1 datasets l, we let A
(2)
l ∼ Ud(2, 47) but with the constraints that

A
(2)
l 6= A

(1)
l , B

(2)
l = B

(1)
l + U(−3.5,−1.5) and C

(2)
l = C

(1)
l + U(1.5, 3.5). This

ensures that under H1 both curves have different expression values at similar

time-points over τ , yielding large L2 distances.

(ii) Shape-preserving distance settings: The μ1(t) curves are generated using the

area-preserving distance settings. Under the null hypothesis we simulate μ2(t)

to have the same shape as μ1(t) but with the amplitude altered. For each H0

dataset j, we let A
(2)
j = A

(1)
j , B

(2)
j = Kj × B

(1)
j and C

(2)
j = Kj × C

(1)
j where

Kj ∼ U(1.4, 1.9), so that μ2(t) is a scalar shift of μ1(t), resulting in different

expression values at the same time-points, but with the same overall shape.

Under the alternative hypothesis of different scale-invariant shapes, we use the

same procedure as in the area-preserving experiment to yield group curves having

different shapes over τ , yielding large Visual L2 distances.

(iii) Curvature-preserving distance settings: We simulate datasets such that the μ1(t)

curves have relatively large curvatures. This is achieved by generating curves

with prominent peaks by letting B
(1)
i ∼ U(4, 6) and C

(1)
i ∼ U(−6,−2), and

letting A
(1)
i ∼ Ud(2, 47) as before. Under the null hypothesis of no difference in

curvature, the μ2(t) curves can be either equal to μ1(t), or reflections of μ1(t)

in the time axis. We thus simulate the μ2(t) curves to be inversions of the

μ1(t) curves in 50% of the datasets under H0, and let μ2(t) equal μ1(t) in the

remaining 50% of datasets under H0. For each H0 dataset j, this is achieved by

letting A
(2)
j = A

(1)
j , B

(2)
j = Mj × B

(1)
j and C

(2)
j = Mj × C

(1)
j where Mj = 1 and
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Mj = −1 with respective probabilities of 0.5. Under the alternative hypothesis

of different curvatures, we simulate low-curvature μ2(t) curves by letting them

be straight lines, that is, we let A
(2)
l = 24, B

(2)
l = 0.5 × C

(1)
l and C

(2)
l = C

(1)
l for

H1 datasets l.

Having obtained the true curves {μg(t)}2
g=1 for a given dataset for the chosen

distance measure, the second step involves sampling from these at time-points t =

(t1, . . . , tS)T to yield N/2 S-dimensional observation vectors for each group. For group

g = 1, 2, denote these by y
(g)
j for j = 1, . . . , N/2 and g = 1, 2. These are generated via

the model

y
(g)
j = μg(t) + ε, (5.13)

for j = 1, . . . , N/2 where ε = (ε1, . . . , εS)T with εs ∼ N(0, σ2) for s = 1, . . . , S and

σ2 ∼ U(0.05, 1). The S-dimensional vector μg(t) contains the estimated values of the

curve μg(t) at the time-points t1, . . . , tS, and the elements of ε provide elements of

noise. All the vectors of both groups are collected together, and the notation altered

so that we denote the N longitudinal observations across the two groups as {yi}N
i=1,

where yi = y
(1)
i for i = 1, . . . , N/2 and yi = y

(2)
i−N/2 for i = N/2 + 1, . . . , N .

In the third and final step of the simulation procedure, these longitudinal ob-

servation vectors are represented as time-dependent curves. This is achieved by as-

suming they are noisy realizations of underlying true curves {zi(t)}N
i=1 defined for

t ∈ τ , which must be inferred from the data. This is the underlying premise of FDA

methodology. In FDA, each curve is represented as a linear combination of K basis

functions {φk(t)}K
k=1, all defined for t ∈ τ , which are chosen depending on the char-

acteristics of the observed data. Typically, a Fourier basis is preferred for periodic

data, while B-splines offer a very flexible basis particularly suited to modeling non-

periodic data (Ramsay and Silverman, 2006). The curve zi(t) can then be written

as zi(t) = φ(t)T ci, where φ = (φ1(t), . . . , φK(t))T is the vector of basis functions

and ci = (ci1, . . . , ciK)T are the corresponding basis expansion coefficients which are

unknown. Methods of finding the optimal coefficients denoted {ĉi}N
i=1, leading to

estimated curves {ẑi(t) = φ(t)T ĉi}N
i=1, include weighted and penalized least-squares

methods (Wu and Zhang, 2006) and semi-parametric mixed effect models (Storey et al.,

2005b; Berk and Montana, 2009; Aryee et al., 2009; Stegle et al., 2010). Here we use
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cubic smoothing spline smoothing, which is a penalized least-squares approach using

B-splines, to infer curves {ẑi(t)}N
i=1 (details are provided in Appendix E). These are

then taken as the N curves of our simulated dataset.

We use several combinations of N and S to generate datasets with different group

sizes and using a different number of sampling points in creating the observed longitudi-

nal data. We use N = 6, 18 and S = 4, 9, with respective time-points t = (0, 4, 8, 48)T

and t = (0, 6, 12, 18, 24, 30, 36, 42, 48)T . Figure 5.7 provides example curves simulated

under both hypotheses for each distance setting for N = 18 and S = 4; these settings

imitate the real data analyzed in Section 9.2.4.

For each of these distance settings and choice of N and S, the power of each method

is computed using B = 200 Monte Carlo runs. These are reported in Table 5.2 for

false positive rates of 1%, 5% and 10%. For the area-preserving distance settings, DBF

is competitive with EDGE and TN in testing a null hypothesis of equality between

curves for all N and S settings, as expected. As N and S increase, so does the power

of all tests. For the shape-preserving distance settings, where the Visual L 2 distance

is considered, DBF outperforms Mantel while TN and EDGE have very little power

to detect the shape-related differences between groups. For the curvature-preserving

distance settings, we see that again, DBF outperforms Mantel, with TN and EDGE

not being able to detect the differences between groups. The better performance of

DBF than Mantel is expected because DBF considers both within- and between-group

distances rather than just between-group distances. It can be seen that Mantel suffers a

large reduction in power for the curvature-preserving distance settings. This is because

the Curvature distances are of low magnitude, masking the signal of difference between

curves provided by the between-group distances. The DBF statistic detects this signal

due its ratio formulation of between- to within-group distances. However, it can also

be seen that the power of the DBF test for the dataset with N = 6 decreases as S

increases. This is because the Curvature distance is very sensitive to perturbations in

the curves, which can result from using more sampling points across τ . As N increases,

a clearer signal of difference is exhibited and detected by DBF (as is the case with all

testing procedures; as N increases so does their power).
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Figure 5.7: Examples of simulated curves for each of the distance settings with N = 18
and S = 4 under the null and alternative hypotheses. Curves in group 1 are black and
those in group 2 are gray, with those on the left simulated under the null, and those
on the right simulated under the alternative.

5.5.3 The Approximate Null Distribution of the DBF Statistic

In this section we illustrate how the approximate null distribution of the DBF statistic

compares with the Monte Carlo permutation distribution for a number of data types

and distances. In our setting, we explore a range of sample sizes and distance measures

for simulated datasets, some of which are designed to mimic the real datasets intro-
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duced in Section 5.4.1. For vectorial and real-valued data, we consider the Euclidean,

Bray-Curtis, Manhattan and Maximum distances (see Appendix B.1 for details). For

vectorial and discrete-valued data, we consider the IBS, Simple Matching, Sokal and

Sneath, Rogers and Tanimoto I and Hamman I distances (see Appendix B.3 for de-

tails). For functional data we consider the L2, Visual L2 and Curvature distances (see

Appendix B.2), and for graph-structured data we consider the Hamming distance (see

Appendix B.4). On selection of data type, distance measure and number of samples

N , the datasets are simulated as follows:

(i) Vectorial and real-valued data: 1000-dimensional vectors {yi = (yi1, . . . , yi,1000)
T}N

i=1

are simulated such that yiq ∼ N(0, 4) for i = 1, . . . , N and q = 1, . . . , 1000. For

the Bray-Curtis distance where positive values are required, we take absolute

values.

(ii) Vectorial and discrete-valued data: 5-dimensional vectors {yi = (yi1, . . . , yi5)
T}N

i=1

are simulated based on the observations of the 153 control subjects from chro-

mosome 1 of the ADNI dataset described in Section 8.2. N control subjects

are randomly selected and their minor allele counts at 5 randomly chosen SNPs

across the chromosome selected.

(iii) Functional data (curves): N curves {yi(t)}N
i=1 are simulated over the range t ∈

[0, 48] by using the procedure detailed in Section 5.5.2 using quadratic Bezier

curves and cubic smoothing splines. N Bezier curves are randomly generated,

and N 1000-dimensional vectors are sampled from them at equally spaced points

across [0, 48] with standard Gaussian error. These are then smoothed via cubic

smoothing splines to yield the N curves. This procedure generates random curves

similar to those observed in real longitudinal datasets, such as those shown in

Figure 5.1.

(iv) Graph-structured data: N undirected graphs {Gi = (Vi, Ei)}N
i=1 are generated

with vertex sets Vi and edge sets Ei. For the ith graph the number of vertices is

denoted |Vi| and the number of edges connecting these vertices is denoted |Ei|.

We set {Vi = V }N
i=1 with |V | = 15, such that all graphs have a common vertex

set comprised of 15 vertices. The edge sets {Ei}N
i=1 are generated via the Erdős-

Rényi model (Erdős and Rényi, 1960) such that {|Ei| = 94}N
i=1, that is, each
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graph is comprised of 94 edges. This procedure generates random graphs with

|V | vertices and M edges as follows. The maximum number of undirected edges

is NV =
(|V |

2

)
, and there exist

(
NV

M

)
unique edge sets with M edges. An edge

set is randomly selected from the unique edge sets, and together with the vertex

set defines the random graph. Example graphs generated under this model are

presented in Figure 5.8.

Random graph: 15 vertices, 94 edges
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Figure 5.8: Two graphs generated under the Erdős-Rényi model which generates ran-
dom graphs with a given number of vertices and edges. They are both comprised of 15
vertices, but one connects these vertices with 94 edges while the other uses 56 edges.
The greater number of edges results in a graph of greater density.

We compare the theoretical and permutation p-values resulting from applying the

DBF test under the null for the different distances applied to each data type. For

N = 10, 30, 100 and G = 2, B = 200 Monte Carlo runs are performed, where for

each run data is generated under the null, i.e., no group effect. For N = 10, all N !

permutations are used to compute the permutation p-value, but for N = 30, 100, a

Monte Carlo set of 106 permutations is used. The theoretical and permutation p-

values are computed, and the mean and standard deviation of the absolute difference

between these for each combination of data type, distance measure and N are reported

in Table 5.3. As expected, the absolute difference between the p-values decreases as

N increases for each distance measure applied to each data type.
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5.5.4 Power Study of Approximation and Permutation Approach

In this section we compare the power of the DBF test to reject the null hypothesis when

using the approximate null distribution and Monte Carlo permutations. We perform

a Monte Carlo experiment where vectorial and real-valued, and graph-structured data

are generated under the alternative hypothesis, and the proportion of these rejected

for given significance levels are monitored.

For this study we use 50 Monte Carlo runs, and for both data types generate

50 datasets under the alternative hypothesis. Each dataset is comprised of N ob-

servations simulated across two groups of equal size. The N vectorial observations

{yi = (yi1, . . . , yiQ)T}N
i=1 are generated with yiq ∼ N(0, 4) for i = 1, . . . , N/2 and

q = 1, . . . , Q, and yiq ∼ N(4, 4) for i = N/2+1, . . . , N and q = 1, . . . , Q, with Q = 10.

The N graphs are generated under the Erdős-Rényi model with a common vertex set,

V , with |V | = 15 but a different number of edges between the groups. In particular,

we generate graphs {Gi = (V,Ei)}N
i=1 such that |Ei| = 94 for i = 1, . . . , N/2 and

|Ei| = 70 for i = N/2 + 1, . . . , N .

The DBF statistic is computed for each dataset using the Euclidean and Maximum

distances for the vectorial observations, and the Hamming distance for the graph-

structured observations. The p-value of each observed DBF statistic is then estimated

via two approaches. The first is via the Pearson type III approximation, for which the

proportion of p-values less than or equal to the significance levels of 0 .1% and 0.01% are

recorded. The mean power across all 50 Monte Carlo runs for each data type, distance

measure and significance level are reported in Table 5.4 for N = 14, 16, 18, 20, 22. As

expected, the power increases with N .

The second approach is via Monte Carlo permutations. A difficulty in performing

a reliable power study using permutations is that permutation p-values suffer from

sampling error which decreases as the number of permutations increases (see, for in-

stance, Brown et al. (2001) and Phipson and Smyth (2010)). This suggests that one

should use a very large (fixed) number of permutations for each setting, but this would

be computationally infeasible. Instead, we consider using an unconstrained number of

Monte Carlo permutations, and running as many permutations as required to achieve

a power estimate with a given accuracy. In this way, we can indicate the order of the

number of permutations required to achieve the given estimates of power via Monte
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Carlo permutations.

We use the algorithm of Gandy and Rubin-Delanchy (2011) to achieve this. This

algorithm estimates the power of a Monte Carlo test, and in addition gives a con-

fidence interval around this estimate boasting a guaranteed coverage probability. It

requires specification of a value which represents the maximum length of the resulting

confidence interval, and the coverage probability, say 95% (i.e., 95% of the confidence

intervals generated via this method will contain the true power). It then runs as many

permutations as required to yield a power estimate with a confidence interval of length

no greater than specified, and with the given coverage probability.

For each setting we run this algorithm and seek power estimates with confidence

interval lengths bounded by twice the standard deviation of the corresponding estimate

obtained via the approximation. That is, we consider one standard deviation on either

side of the power estimate via the approximation as an empirical indication of the

precision achieved. We monitor the number of Monte Carlo permutations required to

obtain power estimates with such confidence intervals with a coverage probability of

95%. These results are also given in Table 5.4, where the power is stated alongside the

confidence interval, and the number of Monte Carlo permutations required is stated

on a separate line below the confidence interval.

We highlight two key aspects of these results. Firstly, while the power estimates

improve with N , as expected, the number of Monte Carlo permutations varies between

O(107) to O(1010) nonlinearly with N . One might expect that more permutations are

required as N increases, but this is not the case with the algorithm used for this

power study. The expected number of permutations depends on the length of the

confidence interval sought (Gandy and Rubin-Delanchy, 2011), since greater precision

is demanded when specifying a smaller length. This can be seen by the results of

the Manhattan and Hamming distance settings with significance level 0 .1% and N =

20, 22. The power estimates are similar, around 0.95 − 0.99, but more permutations

are required when the standard deviation of the estimate with the Pearson type III

approximation is smaller (and hence the specified length of the confidence interval is

smaller). Furthermore, the authors also show that the region of the confidence interval

in the range [0, 1] dictates the expected number of permutations. In particular, the

algorithm requires more permutations when the true power is close to 0 .5, since the



Chapter 5. Distance-Based Analysis of Variance: the DBF Test 105

T
ab

le
5.

4:
P
ow

er
of

th
e

D
B

F
te

st
at

si
gn

ifi
ca

n
ce

le
ve

ls
of

0
.1

%
an

d
0.

01
%

co
m

p
u
te

d
u
si

n
g

th
e

P
ea

rs
on

ty
p
e

II
I

ap
p
ro

x
im

at
io

n
,

d
en

ot
ed

A
p
p
ro

x
.,

(w
it
h

st
an

d
ar

d
d
ev

ia
ti
on

),
an

d
an

u
n
co

n
st

ra
in

ed
n
u
m

b
er

of
M

on
te

ca
rl
o

p
er

m
u
ta

ti
on

s,
d
en

ot
ed

U
n
co

n
.,

(w
it
h

co
n
fi
d
en

ce
in

te
rv

al
en

d
-p

oi
n
ts

st
at

ed
in

sq
u
ar

e
b
ra

ck
et

s)
.

T
h
e

co
n
fi
d
en

ce
in

te
rv

al
s

ar
e

ob
ta

in
ed

w
it
h

a
95

%
co

ve
ra

ge
p
ro

b
ab

il
it
y,

an
d

th
e

av
er

ag
e

n
u
m

b
er

of
re

q
u
ir
ed

M
on

te
C

ar
lo

p
er

m
u
ta

ti
on

s
in

m
il
li
on

s
is

st
at

ed
b
el

ow
th

e
co

n
fi
d
en

ce
in

te
rv

al
fo

r
ea

ch
d
is

ta
n
ce

m
ea

su
re

,
si

gn
ifi

ca
n
ce

le
ve

l
an

d
N

.

D
is

ta
nc

e
Si

g
M

et
ho

d
N

le
ve

l
14

16
18

20
22

(%
)

M
an

ha
tt

an
0.

1
A

pp
ro

x.
0.

57
8

(0
.0

82
)

0.
79

2
(0

.0
54

)
0.

89
6

(0
.0

50
)

0.
95

8
(0

.0
29

)
0.

98
1

(0
.0

17
)

U
nc

on
.

0.
52

7
[0

.4
57

,0
.6

20
]

0.
78

3
[0

.7
26

,0
.8

33
]

0.
87

5
[0

.8
22

,0
.9

22
]

0.
95

2
[0

.9
18

,0
.9

76
]

0.
97

8
[0

.9
56

,0
.9

89
]

76
. 4

9
48

.3
8

16
.2

3
23

.9
1

50
.8

0
0.

01
A

pp
ro

x.
0.

00
6

(0
.0

11
)

0.
15

5
(0

.0
46

)
0.

45
7

(0
.0

56
)

0.
71

7
(0

.0
67

)
0.

86
1

(0
.0

42
)

U
nc

on
.

0.
00

9
[0

.0
02

,0
.0

24
]

0.
05

6
[0

.0
20

,0
.1

12
]

0.
56

7
[0

.5
07

,0
.6

19
]

0.
73

9
[0

.6
62

,0
.7

92
]

0.
87

1
[0

.8
28

,0
.9

12
]

43
3.

2
85

9.
5

10
43

81
9.

8
54

4.
4

M
ax

im
um

0.
1

A
pp

ro
x.

0.
45

0
(0

.0
69

)
0.

63
7

(0
.0

66
)

0.
74

1
(0

.0
72

)
0.

84
8

(0
.0

45
)

0.
91

1
(0

.0
45

)
U

nc
on

.
0.

36
3

[0
.3

17
,0

.3
63

]
0.

59
6

[0
.5

32
,0

.6
63

]
0.

73
9

[0
.6

58
,0

.7
99

]
0.

83
1

[0
.7

82
,0

.8
70

]
0.

91
5

[0
.8

64
,0

.9
53

]
83

. 4
5

57
.2

4
23

.0
1

34
.4

8
11

.5
6

0.
01

A
pp

ro
x.

0.
07

0
(0

.0
39

)
0.

23
2

(0
.0

54
)

0.
41

0
(0

.0
71

)
0.

58
9

(0
.0

59
)

0.
71

4
(0

.0
65

)
U

nc
on

.
0.

00
4

[0
.0

00
,0

.0
78

]
0.

03
0

[0
.0

06
,0

.1
13

]
0.

41
9

[0
.3

36
,0

.4
78

]
0.

60
2

[0
.5

42
,0

.6
59

]
0.

73
3

[0
.6

66
,0

.7
95

]
11

.8
2

38
8.

8
74

6.
4

48
9.

7
47

0.
4

H
am

m
in

g
0.

1
A

pp
ro

x.
0.

45
8

(0
.0

61
)

0.
68

3
(0

.0
64

)
0.

86
7

(0
.0

60
)

0.
95

7
(0

.0
23

)
0.

99
4

(0
.0

12
)

U
nc

on
.

0.
47

3
[0

.4
31

,0
.5

52
]

0.
71

9
[0

.6
52

,0
.7

78
]

0.
88

0
[0

.8
17

,0
.9

34
]

0.
96

9
[0

.9
40

,0
.9

87
]

0.
99

4
[0

.9
66

,0
.9

99
]

14
2.

6
31

.2
0

16
.0

7
32

.4
1

38
.9

3
0.

01
A

pp
ro

x.
0.

09
9

(0
.0

44
)

0.
28

0
(0

.0
64

)
0.

53
2

(0
.0

75
)

0.
74

5
(0

.0
71

)
0.

90
2

(0
.0

42
)

U
nc

on
.

0.
00

4
[0

.0
00

,0
.0

87
]

0.
00

0
[0

.0
00

,0
.1

28
]

0.
59

2
[0

.5
14

,0
.6

62
]

0.
81

5
[0

.7
34

,0
.8

73
]

0.
92

1
[0

.8
71

,0
.9

56
]

12
.7

2
31

.6
6

48
5.

7
13

1.
3

14
1.

4



5.6 Summary 106

distribution of the p-values under the alternative tends to have greater mass around the

threshold significance level (Gandy and Rubin-Delanchy, 2011). This can be observed

with our results; for most settings the highest number of permutations is required for

power estimates close to 0.5.

Secondly, in almost every setting the power estimates are similar to those of the

approximation. In some cases where the power estimated via the approximation is

not within the stated confidence interval, it is greater than that estimated by the

large number of Monte Carlo permutations (for example, Hamming distance with

significance level 0.01% and N = 14, 16). Thus, the approximation does not lose power

when compared to running an unconstrained number of Monte Carlo permutations.

5.6 Summary

The DBF statistic suitable for testing null hypothesis (2.4) is derived based on an

intuitive distance-based variance decomposition. It directly generalizes the Dempster

trace criterion, such that the statistics are equal when the centered observations are

vector-valued and the Euclidean distance is applied. It has also been shown that the

DBF statistic is monotonically related to classical MANOVA statistics when specific

Mahalanobis-like distances are applied.

For an observed DBF statistic, inference can be performed with or without Monte

Carlo permutations. Without permutations, this requires approximating the discrete

sampling distribution of the DBF statistic under the null by a suitably chosen contin-

uous distribution. We showed that the permutation distribution of the DBF statistic

depends on the permutation distribution of the between-group variability component

of the distance-based variance decomposition. On presenting the skewed characteris-

tics of the between-group variability for real biological datasets, we justified the use of

the Pearson type III distribution to model its skewed nature. We then used its mono-

tonic relationship with the DBF statistic to derive an approximate null distribution

for the DBF statistic.

Simulation studies were used to present key aspects of the DBF test. For instance,

the approximate null distribution of the DBF statistic was shown to approximate the

known distributions of the ANOVA F and Hotelling’s T 2 statistics. Furthermore, it

was shown to approximate these distributions better than by using the number of
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permutations typically used in practice, O(105). For more general data types and

distance measures, the permutation p-values under the null were shown to tend to the

p-values arising from the approximate distribution as sample size increases.

Two power studies were additionally performed. In the first, the DBF test was

shown to be competitive with the EDGE and TN methods when testing for equality

between curves, which is a problem arising in the gene expression microarray time

course literature (more details are given in Section 9.2). For detecting other types of

differences between curves, the DBF test was shown to maintain power while EDGE

and TN have no power. It was also shown that the Mantel test offers less power than

the DBF test.

In the second power study, the power of the DBF test to reject the null hypothesis

using the permutation and approximation approaches were compared for a range of

distance measures and data types. It was shown that even for small sample sizes many

millions of permutations would be required to achieve similar power estimates to those

obtained via the approximation. Given that such a large number of permutations

is required for the relatively small sample sizes considered (when compared to real

datasets), these results provide empirical evidence of the computational advantage

offered by using the approximation approach. Power of at least the same order can be

achieved at much less computation cost by using the approximation. Thus the DBF

test applied with the approximation is suitable in situations where many tests are

required, such as for case-control GWA studies. Section 8.2 details such an analysis.
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Chapter 6

Distance-Based Regression: the

Pseudo F Test

In this chapter we derive an approximate null distribution for the pseudo F statistic

described in Section 3.2.3 which quantifies the predictive relationship between a pre-

dictor matrix X and a distance matrix ΔY . It is used to test null hypothesis (3.13),

and we derive the null distribution such that the null hypothesis can be tested without

permutations. First we show that the permutation distribution of the pseudo F statis-

tic is monotonically related to the permutation distribution of a particular quantity

featuring in the statistic, denoted H. Then we derive an approximate distribution

of H by using expressions for the mean, variance and skewness which would be ob-

tained by enumerating all permutations. The approximate distribution of the pseudo

F statistic is then found based on this. Finally, we illustrate the applicability of the

derived distribution for a range of distances and data types using simulated data and

a real imaging genetics dataset.

6.1 Permutation Distribution of the Pseudo F Statistic

Recall from Section 3.2.3 that the permutation distribution of the pseudo F statistic

under the null hypothesis is given by the set {F̂π}π∈Π. For permutation π, F̂π is defined

by

F̂π =
Ĥπ

tr(GY) − Ĥπ

, (6.1)
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where Ĥπ = tr(HGY,π), H = X
(
XT X

)−1
XT is the hat matrix computed from

the N × M regressor matrix X, and GY,π is the permuted centered inner product

matrix GY arising from ΔY . Thus, permuted values of F are monotonically related

to permuted values of the quantity H = tr(HGY). In order to approximate the null

distribution of F , we begin by approximating the null distribution of H.

6.2 The Approximate Null Distribution of H

The quantity H = tr(HGY) is very similar to the quantity BΔ = tr (HcGY) which

arises in distance-based analysis of variance (Chapter 5). Similarly to BΔ, H is a

weighted sum of squared distances whose distribution under the null is difficult to

evaluate. We therefore approximate it by moment matching, and follow the approach

adopted in Section 5.4.1.

In particular, we consider a Pearson type III approximation, and justify it as fol-

lows. From Sections 3.1.2 and 3.2.3 we know that the pseudo F statistic equals the

classical F statistic (ignoring degrees of freedom divisors) when the response observa-

tions are scalar-valued, centered and the Euclidean distance measure is applied. In this

case H equals the variance explained by the fitted regression model in the univariate

linear regression framework, which is known to have the Chi-squared distribution under

the null when errors are assumed to be normally distributed (see, for instance, Rencher

(2002)). The Pearson type III distribution encompasses the Chi-squared distribution,

which is a Gamma distribution, as a special case. Therefore using this distribution

to approximate the null distribution of H means the Chi-squared distribution can be

recovered in this special case.

For this approximation we require the mean, variance and skewness of the exact

permutation distribution of H, which are given by

μH =
1

N !

∑

π∈Π

Ĥπ, σ2
H =

1

N !

∑

π∈Π

Ĥ2
π − μ2

H and γH =
1

N !

∑
π∈Π Ĥ3

π − 3μHσ2
H − μ3

H

σ3
H

,

respectively. We wish to use analytic manipulations of these expressions which only

require specification of H and GY , and do not require performing the N ! permuta-

tions. The results of Kazi-Aoual et al. (1995) which were used for the corresponding
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expressions for BΔ are not valid here, because while H and GY are both square and

symmetric, H is not centered. Centering H yields an asymmetric matrix, so again

the results of Kazi-Aoual et al. (1995) are not valid.

To proceed we require results for the permutational mean, variance and skewness

of H, which we derive in Section 6.2.1. For simplicity of notation in the following

exposition, we drop the subscript associated with GY so that H = tr (HG). H is

thus comprised of the N × N matrices H = {hij}N
i,j=1 and G = {gij}N

i,j=1 satisfying

the following properties: H is the projection matrix arising from the N ×M regressor

matrix X of full rank, i.e., it is symmetric, not centered and tr (H) = M , and G is

symmetric and centered.

6.2.1 Permutational Mean, Variance and Skewness of H

The permutational mean, variance and skewness of H are given by

μH = EΠ (H) , σ2
H = EΠ

(
H2
)
− μ2

H , and γH =
EΠ (H3) − 3μHσ2

H − μ3
H

σ3
H

, (6.2)

respectively, where

EΠ (H) =
1

N !

∑

π∈Π

Hπ, EΠ

(
H2
)

=
1

N !

∑

π∈Π

H2
π, and EΠ

(
H3
)

=
1

N !

∑

π∈Π

H3
π, (6.3)

are the first three permutational moments of H, with Hπ = tr (HGπ) and where EΠ(∙)

denotes the permutational expectation over all N ! permutations π ∈ Π.

To obtain explicit expressions for the quantities in (6.2), explicit expressions for

the moments given in (6.3) are required. On expanding the moment expressions, we

see that this equates to analytically evaluating the multiple summations

EΠ (H) =
N∑

i=1

N∑

j=1

EΠ (gij) hij

EΠ

(
H2
)

=
N∑

i=1

N∑

j=1

N∑

k=1

N∑

l=1

EΠ (gijgkl) hijhkl

EΠ

(
H3
)

=
N∑

i=1

N∑

j=1

N∑

k=1

N∑

l=1

N∑

p=1

N∑

q=1

EΠ (gijgklgpq) hijhklhpq.



Chapter 6. Distance-Based Regression: the Pseudo F Test 111

This is achieved by decomposing each into weighted sums of summation operators

applied to distinct combinations of the indices. We call these ‘distinct index pat-

terns’, and the corresponding weight indicates the number of variations of index val-

ues, through symmetry and label-swapping, which are equivalent to the given distinct

index pattern. For instance, EΠ(H) is decomposed as

EΠ(H) =
N∑

i=1

EΠ (gii) hii +
∑

i 6=j

EΠ (gij) hij

= EΠ (gii)
N∑

i=1

hii + EΠ (gij)
∑

i 6=j

hij ,

that is, two components dictated by the distinct index patterns i = j and i 6= j. We

denote these by ii and ij, respectively, using distinct letters to indicate indices which

are not equal. Both patterns have corresponding weights of 1 since there is only one

way to obtain them. In each case the summation operator is directly applied to the

elements of H with the given index pattern, while the expected value of the index

pattern applied to the elements of G is a multiplicative constant. The expected values

EΠ (gii) and EΠ (gij) represent the expected values of the diagonal and off-diagonal

elements of G, respectively, over all permutations.

We can express the decomposition of each multiple summation as

EΠ (Hr) =
N(r)∑

i=1

w
(r)
i EΠ

(
p

(r)
i (G)

)∑(
p

(r)
i (H)

)
(6.4)
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for r = 1, 2, 3, where

N (r) = number of distinct index patterns comprising the rth moment

w
(r)
i = number of variations of index values equivalent to the ith distinct

index pattern

p
(r)
i = ith distinct index pattern

p
(r)
i (A) = p

(r)
i with respect to elements of N × N matrix A

EΠ

(
p

(r)
i (A)

)
= expected value of p

(r)
i (A) over all N ! permutations in Π

∑(
p

(r)
i (A)

)
= summation operator applied to p

(r)
i (A), summing over all

non-equal indices.

With this notation, we have for r = 1 that N (1) = 2, w
(1)
1 = w

(1)
2 = 1, p

(1)
1 = ii,

p
(1)
2 = ij. The evaluations of the expected values and summation operators applied to

the elements of G and H are provided in the first two rows of Table F.1 in Appendix

F. We provide the full derivations below to show the general approach used to obtain

the required quantities.

For the quantities in terms of H ,
{∑(

p
(1)
i (H)

)}2

i=1
, we have

∑(
p

(1)
1 (H)

)
=

N∑

i=1

hii

= tr (H)

= M,
∑(

p
(1)
2 (H)

)
=

∑

i 6=j

hij

=
N∑

i=1

N∑

j=1

hij −
N∑

i=1

hii

=
∑

H − M,

where
∑

H =
∑N

i=1

∑N
j=1 hij , as required. For the expected values of the elements

of G, we note the following. EΠ

(
p

(1)
1 (G)

)
= EΠ (gii), i.e., the expected value of

the diagonal elements of G. For all N ! permutations, the rows and columns of G

are simultaneously permuted so that the diagonal elements remain in the diagonal
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positions of G. Thus, each diagonal element can only go into one of the N diagonal

positions, that is, the ith diagonal position of G takes each value in {gii}N
i=1 with

probability 1/N . Hence

EΠ

(
p

(1)
1 (G)

)
= EΠ (gii)

=
1

N

N∑

i=1

gii

=
1

N
tr (G)

=
(N − 1)!

N !
tr (G) ,

as required. A similar argument is used for EΠ

(
p

(1)
2 (G)

)
= EΠ (gij), i.e., the expected

value of the off-diagonal elements of G. There are N(N−1) off-diagonal positions in G,

and these are filled with only the off-diagonal elements of G for all permutations. Thus

the (i, j)th position of G takes each value in {gij}N
i 6=j=1 with probability 1/(N(N −1)),

so that

EΠ

(
p

(1)
2 (G)

)
= EΠ (gij)

=
1

N(N − 1)

∑

i 6=j

gij

=
1

N(N − 1)

(
N∑

i=1

N∑

j=1

gij −
N∑

i=1

gii

)

= −
1

N(N − 1)
tr (G)

= −
(N − 2)!

N !
tr (G) ,

since G is centered.

From these expected value derivations we note that for any distinct index pattern

with N
(1)
i distinct indices,

EΠ

(
p

(1)
i (G)

)
=

(
N − N

(1)
i

)
!

N !

∑(
p

(1)
i (G)

)
,

where N
(1)
1 = 1 and N

(1)
2 = 2. This relationship can be generalized for r = 2, 3,
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and shows that the expected values are computed by multiplying a constant to the

evaluated summation over the distinct index pattern. Thus for any moment r and

distinct index pattern p
(r)
i , the same summation operators are applied to the elements

of G and H , whereupon they each have their respective simplifications. For instance,

for the first moment, the summations over the elements of H are evaluated and the fact

that tr (H) = M is used. The corresponding expected value EΠ(∙) over the elements

of G is evaluated by using the same summation operator applied to the elements of

G, applying the fact that
∑N

i=1

∑N
j=1 gij = 0, and multiplying by the corresponding

constant.

For the second and third moments, we have N (2) = 7 and N (3) = 23, and the

corresponding quantities are also given Table F.1. Example derivations for r = 2 are

also provided in Appendix F, in addition to examples of how the weights are derived.

The mean, variance and skewness of H are then accessible by substituting the re-

quired permutational expectation quantities given by (6.4) (in conjunction with Table

F.1) into (6.2). For instance, the mean is given by

μH =
N (1)∑

i=1

w
(1)
i EΠ

(
p

(1)
i (G)

)∑(
p

(1)
i (H)

)

=

(

1 ×
(N − 1)!

N !
tr (G) × M

)

+

(

1 ×−
(N − 2)!

N !
tr (G) ×

(∑
H − M

))

=
(NM −

∑
H) tr (G)

N(N − 1)
. (6.5)

The variance and skewness quantities are not easily simplified, so we do not include

them here.

6.2.2 A Pearson Type III Approximation

The Pearson type III distribution is adopted to model the distribution of H given

the exact mean, variance and skewness. On standardizing H by subtracting μH and

dividing by σH , the distribution is parameterized by γH , as

Hs =
H − μH

σH

∼ PTIII (γH) .
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The support of Hs is then given by [−2/γH ,∞) if γH > 0, (−∞,−2/γH ] if γH < 0,

and (−∞,∞) if γH = 0. We denote the CDF of Hs by FHs(h; γH), and the PDF of

Hs by fHs(h; γH), defined by

(2/γH)4/γ2
H

Γ (4/γ2
H)

(
2 + γHh

γH

)(4−γ2
H)/γ2

H

exp

(

−
2(2 + γHh)

γ2
H

)

for γH > 0 and −2/γH ≤ h < ∞,

(−2/γH)4/γ2
H

Γ (4/γ2
H)

(
−(2 + γH)

γH

)(4−γ2
H)/γ2

H

exp

(

−
2(2 + γHh)

γ2
H

)

for γH < 0 and −∞ < h ≤ −2/γH , and

1
√

2π
exp

(

−
h2

2

)

for γH = 0 and −∞ < h < ∞.

6.3 The Approximate Null Distribution of the Pseudo F Statis-

tic

We wish to derive the null distribution of F in terms of the null distribution of Hs via

the one-to-one function h1 : Hs 7→ F defined by

h1 (Hs) =
μH + σHHs

tr (G) − μH − σHHs

,

with inverse h−1
1 : F 7→ Hs defined by

h−1
1 (F ) =

(tr (G) − μH) F − μH

σH (1 + F )
,

analogously to the approach of Section 5.4.2. The function h1 is equal to the function h

given by (5.6), except that the mean, variance and skewness correspond to the quantity

Hs rather than Bs
Δ, and tr (G) is used in place of TΔ (recall they are equal).

To proceed as in Section 5.4.2, we require h1 to be continuous over the support

of Hs. Clearly it is not continuous at β1 = (tr (G) − μH) /σH , and we require the
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discontinuity at Hs = β1 to be in the positive plane. This can be shown as follows.

We have from (6.5) that

β1 =
1

σH

(

tr (G) −
(NM −

∑
H) tr (G)

N(N − 1)

)

=
tr (G)

N(N − 1)σH

(
N(N − 1) − NM +

∑
H
)

,

and since tr (G) and σH are positive, it remains to show that

N(N − 1) − NM +
∑

H > 0.

To do this, recall assumption N >> M regarding predictor matrix X (Section 3.1.2).

From this, N − 1 > M , and multiplying on both sides by N yields N(N − 1) > NM

so that

N(N − 1) − NM > 0. (6.6)

Furthermore, H is positive semi-definite since it has non-negative eigenvalues (see,

for instance, Hoaglin and Welsch (1978)), thus
∑

H = 1T
NH1N ≥ 0. Therefore,

non-negative
∑

H can be added to the left-hand side of (6.6) to yield

N(N − 1) − NM +
∑

H > 0,

showing that β1 > 0 as required.

It then follows that the arguments presented in Section 5.4.2 can be used in order to

derive the null CDF and PDF of F , denoted FF (∙; μH , σH , γH) and fF (∙; μH , σH , γH),

respectively, in terms of the CDF and PDF of Hs. We provide them in the following

proposition for the cases of negative and positive skewness; the case of zero skewness

is ignored since in practice the skewness is not equal to zero exactly.

Proposition 2 The approximate null CDF of the pseudo F statistic, F , can be written

in terms of the CDF of the Hs statistic as

FF (f ; μH , σH , γH) =






FHs

(
h−1

1 (f); γH

)
−FHs (β1; γH) −∞ < f < −1

1 + FHs

(
h−1

1 (f); γH

)
−FHs (β1; γH) α1 ≤ f < ∞
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for γH > 0, where

α1 =
γHμH − 2σH

γH (tr (G) − μH) + 2σH

,

FF (f ; μH , σH , γH) =






FHs

(
h−1

1 (f); γH

)
−FHs (β1; γH) −∞ < f ≤ α1

1 + FHs

(
h−1

1 (f); γH

)
−FHs (β1; γH) −1 < f < ∞

for γH < 0 and α1 < −1, and

FF (f ; μH , σH , γH) =






0 −∞ < f ≤ −1

FHs

(
h−1

1 (f); γH

)
−1 < f ≤ α1

1 α1 < f < ∞

for γH < 0 and α1 > −1.

The approximate null PDF of F can be written in terms of the PDF of Hs as

fF (f ; μH , σH , γH) =
tr (G)

σH(1 + f)2
fHs(h

−1
1 (f); γH),

where the range of f is given by the selected case of CDF.

The proof that the CDF is a valid CDF is identical to that given for the DBF null

distribution.

Having obtained the approximate null CDF of F , the p-value of an observed statis-

tic, F̂ , can be approximated by 1 −FF

(
F̂ ; μH , σH , γH

)
.

6.4 Simulation Experiments

In this section we illustrate how the approximate null distribution of the pseudo F

statistic compares with the Monte Carlo permutation distribution for a number of

data types and distances. In addition we demonstrate the applicability of the PDF by

applying it to real neuroimaging genetics data.

6.4.1 The Approximate Null Distribution of the Pseudo F Statistic

We explore a range of sample sizes and distance measures for simulated response

observations, and consider 6 predictor variables in each case. For vector-valued data we
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consider the Euclidean, Person’s correlation and Manhattan distances. For functional

data we consider the L2, Visual L2 and Curvature distances, and for graph-valued

data we consider the Hamming, Edit and MCS distances. On selection of data type,

distance measure and number of samples N , the response observations are simulated

exactly as in (i), (iii) and (iv) of Section 5.5.3. In each case the N observations

{xi = (xi1, . . . , xi6)
T}N

i=1 comprising the rows of predictor matrix X are simulated

such that xim ∼ N(0, 4) for i = 1, . . . , N and m = 1, . . . , 6. Thus there is expected

to be no predictive relationship between X and the simulated response observations

since they are simulated independently.

We compare the theoretical and permutation p-values resulting from applying the

pseudo F test under the null for the different distances applied to each data type. For

N = 30, 60, 100, B = 200 Monte Carlo runs are performed, where for each run the

data is generated as described above. For all N , a Monte Carlo set of 106 permutations

is used. The theoretical and permutation p-values are computed, and the mean and

standard deviation of the absolute difference between these for each combination of

data type, distance measure and N are reported in Table 6.1. As expected, the absolute

difference between the p-values decreases as N increases for each distance measure

applied to each data type.

6.4.2 Illustration of the Approximate Null Distribution of the Pseudo

F Statistic with Real Data

We use a subset of the neuroimaging genetics data described in Section 8.3.1 to com-

pare the approximate null distribution of the pseudo F statistic with that obtained by

Monte Carlo permutations. This subset contains longitudinal MRI images observed

on N = 253 subjects, which are represented as real-valued vectors, and discrete-valued

SNPs genotyped in chromosome 1.

We apply three vectorial distance measures to the imaging data; the Euclidean,

Pearson’s correlation and Normalized Mutual Information (NMI) distances (see Ap-

pendix B.1 for details). For each distance we consider the pseudo F framework using

two sets of SNPs as predictor variables. We use M = 7 and M = 50 contiguous SNPs

(located side-by-side on the genome) as predictor variables, and use 10 6 Monte Carlo

permutations to generate the null sampling distribution of the pseudo F statistic. The
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approximate null distribution is computed via the proposed approach, and the PDF is

superimposed on the permutation distributions generated. These are shown in Figure

6.1. Observe that the permutation distributions exhibit varying degrees of skewness,

and in each case the approximation appears to capture the exhibited characteristics

well.
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Figure 6.1: Sampling distributions of F obtained using 106 Monte Carlo permutations
and the proposed approximate PDF. The Euclidean, Pearson’s correlation and NMI
distances are applied to the real and vector-valued imaging data, and a subset of M
discrete-valued SNPs are used as predictor variables. (a)-(c) M = 7 SNPs are used.
(d)-(f) M = 50 SNPs are used.

6.5 Summary

The approximate null distribution of the pseudo F statistic, F , was derived by using its

monotonic relationship with the quantity H featuring in the statistic. For this quantity

the first three exact permutational moments, i.e., the moments that would be obtained

by enumerating all permutations, were derived. A Pearson type III distribution was
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then used to approximate the null distribution of H given the first three moments.

The approximate null distribution of the pseudo F statistic was then derived in terms

of this approximate null distribution.

We demonstrate that the proposed distribution works well for a range of simulated

data and using a subset of real imaging genetics data. In Section 8.3 we demonstrate

that the pseudo F test with the null distribution approximation can be easily applied

to GWA studies, where hundreds of thousands tests are required.
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Chapter 7

Distance-Based Association: the

GRV Test

In this chapter we propose the generalized RV (GRV) test suitable for testing null

hypothesis (4.9). It is derived as a generalization of the RV test of Escoufier (1973)

by first showing that the RV coefficient can be written in terms of the Euclidean

distances between centered vector-valued observations. The Euclidean distances can

then be replaced with any other distances to yield the GRV coefficient. We show

that it is related to the dCor coefficient of Székely et al. (2007) when observations are

vector-valued and a particular distance is used, and hence it can test null hypothesis

(4.2) of independence between random vectors. For more general distance measures

and data types, simulation studies are presented which demonstrate competitiveness

with the distance-based standardized Mantel and PROTEST tests. An approximate

distribution is also proposed, allowing inferences to be drawn without permutations

for any distances applied. We demonstrate that the distribution works well for a range

of simulated and real data.

7.1 A Distance Approach for the RV Coefficient

Consider the case where X and Y are real-valued random vectors with corresponding

centered observations stored in X and Y . Assume also that we are given the corre-

sponding Euclidean distance matrices ΔX and ΔY . From principal coordinate analysis

(Section 3.2.2), we know that X and Y can be represented by N -dimensional random
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vectors X̃ = (X̃1, . . . , X̃N)T and Ỹ = (Ỹ1, . . . , ỸN)T , respectively, with observations

given by the principal coordinates X̃ and Ỹ . By considering the derivation of RV

with these vectors instead of X and Y , we can show that the observed RV coefficient

can be written directly in terms of Euclidean distances.

X̃ and Ỹ are such that cov(X̃i, X̃i) = λX ,i for i = 1, . . . , N and cov(X̃i, X̃j) = 0 for

i 6= j, and similarly for Ỹ , within a multiplicative factor of 1/(N − 1). The 2N × 2N

covariance matrix of (X̃ , Ỹ) is thus given by




1

N−1
ΛX ΣX̃ Ỹ

ΣỸX̃
1

N−1
ΛY



 ,

where ΣX̃ Ỹ = {cov(X̃i, Ỹj)}N
i,j=1, and ΣỸX̃ = ΣT

X̃ Ỹ
. The RV coefficient between X̃ and

Ỹ is then defined as

RV(X̃ , Ỹ) =
(N − 1)2tr

(
ΣX̃ ỸΣỸX̃

)

√
tr (Λ2

X ) tr
(
Λ2

Y

) .

The empirical RV coefficient is given by

RV(X̃, Ỹ ) =
tr
(
X̃X̃T Ỹ Ỹ T

)

√
tr (Λ2

X ) tr
(
Λ2

Y

) ,

since ΣX̃ Ỹ and ΣỸX̃ are estimated by X̃T Ỹ /(N − 1) and Ỹ T X̃/(N − 1), respectively.

Recall that the centered inner product matrix arising from ΔX , GX , satisfies GX =

X̃X̃T = UXΛXUT
X so that tr (Λ2

X ) = tr
(
X̃X̃T X̃X̃T

)
= ||X̃X̃T ||2, and similarly

tr
(
Λ2

Y

)
= ||Ỹ Ỹ T ||2. Then

RV(X̃, Ỹ ) =
tr
(
X̃X̃T Ỹ Ỹ T

)

∣
∣
∣
∣
∣
∣X̃X̃T

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣Ỹ Ỹ T

∣
∣
∣
∣
∣
∣
. (7.1)

By definition, GX = −CΔ2
XC/2 = X̃X̃T for centering matrix C, but we also know

that GX = XXT in this case. It therefore follows that X̃X̃T = XXT , and similarly

for Ỹ Ỹ T . Therefore RV(X̃, Ỹ ) = RV(X, Y ), where we note that RV(X̃, Ỹ ) = 0 is

equivalent to RV(X, Y ) = 0, so that no association is obtained when XT Y = 0.

Crucially, from this equality of RV(X, Y ) and RV(X̃, Ỹ ), we observe that the RV
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coefficient applied to the original centered data matrices is given by

RV(X, Y ) =
tr
(
CΔ2

XCΔ2
Y

)

||CΔ2
XC||||CΔ2

YC||

(since CC = C). The RV coefficient can therefore be expressed solely in terms of the

Euclidean distance matrices ΔX and ΔY .

7.2 The Generalized RV Coefficient

Now consider the case where different distance functions dX and dY are applied to

the pairwise observations of X and Y to yield ΔX and ΔY . Repeating as above, we

can use the principal coordinates X̃ and Ỹ as in (7.1). Since the terms X̃X̃T = GX

and Ỹ Ỹ T = GY arise in the computation of the coefficient, X̃ and Ỹ do not need to

be explicitly computed. This therefore means that any complex-valued components

arising from semi-metric distance functions do not need to be explicitly handled, since

GX and GY will be real-valued. As a computational advantage, this also means

that spectral decompositions of GX and GY are not required. Thus, we define the

generalized RV (GRV) coefficient as

GRV(GX , GY) =
tr (GXGY)

||GX || ||GY ||
, (7.2)

noting the implicit assumption ||GX || ||GY || > 0 which is always satisfied in practice;

||GX || =
√∑N

i=1

∑N
j=1 g2

X (xi, xj) > 0 since GX contains real-valued elements which

are not all trivially zero, and similarly for GY .

Similarly to the standardized Mantel coefficient, GRV can be thought of as a cor-

relation coefficient. To see this, vectorize the matrices GX/||GX || and GY/||GY ||,

denoting the resulting N2-dimensional vectors gX and gY , and consider the quantity

cor(gX , gY). To compute this we require the mean and standard deviation of the val-

ues in gX and gY . The means are 0 since GX and GY are centered matrices. The
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standard deviation of the elements in gX is given by

√√
√
√ 1

N2 − 1

N∑

i=1

N∑

j=1

(
gX (xi, xj)

||GX ||

)2

=

√√
√
√ 1

||GX ||2 (N2 − 1)

N∑

i=1

N∑

j=1

g2
X (xi, xj)

=

√
||GX ||2

||GX ||2 (N2 − 1)

=

√
1

N2 − 1
,

and similarly for gY . Thus the correlation of interest is given by

cor (gX , gY) =
1

N2 − 1

N∑

i=1

N∑

j=1



gX (xi, xj)/|GX ||√
1

N2−1







gY(yi, yj)/||GY ||√
1

N2−1





=
1

N2 − 1

1
(

1
N2−1

)
N∑

i=1

N∑

j=1

gX (xi, xj)gY(yi, yj)

||GX ||||GY ||

=
1

||GX ||||GY ||

N∑

i=1

N∑

j=1

gX (xi, xj)gY(yi, yj)

=
tr (GXGY)

||GX || ||GY ||
= GRV(GX , GY).

Consequently, GRV can be directly compared with the standardized Mantel coefficient.

We see that the difference in these coefficients lies in the methods of standardization

applied to the distances in each case. In standardized Mantel, the upper-triangular

distances are subjected to a classical standardization, where their mean is subtracted

and they are divided by their standard deviation. In GRV, however, all distance

elements are considered, and they are squared, double-centered and normalized by

dividing by their Frobenius norm.

7.3 Properties of the GRV Coefficient

The interpretation of GRV as a correlation coefficient indicates that it may range

between −1 and 1. We show here that not all values in this range are attainable, and

that negative values do not indicate association in the form of a linear correlation of
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different sign (as with Pearson’s correlation coefficient or standardized Mantel), but

less association.

To begin, recall the relationship between the Frobenius distance and the RV coef-

ficient given by (4.8). Analogously to this, the Frobenius distance between the scale

invariant configurations GX/||GX || and GY/||GY || is given by

dF

(
GX

||GX ||
,

GY

||GY ||

)

=
√

2 (1 − GRV(GX , GY)), (7.3)

(replace XXT /||XXT || and Y Y T /||Y Y T || in (4.7) with GX/||GX || and GY/||GY ||).

From this we see that dF (GX/||GX ||, GY/||GY ||) = 0 suggests that perfect association

is achieved when GRV(GX , GY) = 1, i.e., when

GX

||GX ||
=

GY

||GY ||
. (7.4)

This equality, however, can only be attained if GX and GY are both positive semi-

definite (having non-negative diagonals), or both indefinite (having non-negative and

negative values on the diagonals). These occur if dX and dY are both metric, or

semi-metric, respectively. When one distance function is metric and the other is semi-

metric, perfect association cannot be attained, as the diagonals of GX and GY cannot

be equal. To see this, consider the upper and lower bounds of the GRV coefficient,

provided in the following proposition.

Proposition 3 The bounds of the GRV coefficient for given centered inner product

matrices GX and GY with ordered eigenvalues {λX ,i}N
i=1 and {λY,i}N

i=1, respectively,

are given by

∑N
i=1 λX ,iλY,N−i+1

||GX ||||GY ||
≤ GRV(GX , GY) ≤

∑N
i=1 λX ,iλY,i

||GX ||||GY ||
,

with
∑N

i=1 λX ,iλY,i ≤ ||GX ||||GY ||.

Proof. First, consider the bounds of the quantity tr (GXGY). We use the result

of Lasserre (1995), which gives bounds for the trace of the product of two square

Hermitian matrices (square, complex-valued, and equal to their conjugate transpose).
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In terms of GX and GY (which are square and symmetric), the bounds are given by

N∑

i=1

λX ,iλY,N−i+1 ≤ tr(GXGY) ≤
N∑

i=1

λX ,iλY,i,

and since ||GX ||||GY || > 0, we obtain

∑N
i=1 λX ,iλY,N−i+1

||GX ||||GY ||
≤ GRV(GX , GY) ≤

∑N
i=1 λX ,iλY,i

||GX ||||GY ||
,

as required.

To show
∑N

i=1 λX ,iλY,i ≤ ||GX ||||GY ||, consider the following. From the Cauchy-

Schwarz inequality, we have that

(∑N
i=1 λX ,iλY,i

)2

≤
N∑

i=1

λ2
X ,i

N∑

i=1

λ2
Y,i

⇒ −

√√
√
√

N∑

i=1

λ2
X ,i

N∑

i=1

λ2
Y,i ≤

∑N
i=1 λX ,iλY,i ≤

√√
√
√

N∑

i=1

λ2
X ,i

N∑

i=1

λ2
Y,i,

and it is easily shown that the term on the right-hand side equals ||GX ||||GY ||. Thus
∑N

i=1 λX ,iλY,i ≤ ||GX ||||GY ||, as required.

�

The upper bound on
∑N

i=1 λX ,iλY,i ensures that the GRV coefficient does not exceed

a value of 1. Thus the Frobenius distance given by (7.3) has a minimum value of 0,

and the greater the distance value, the less associated X and Y are considered to be

with respect to dX and dY .

The numerators of the upper and lower bounds of the GRV coefficient are sums of

eigenvalue products, and so may be non-negative or negative depending on the sign of

the eigenvalues. This in turn depends on the distance functions satisfying the metric

property. We describe each of the three cases in turn: (i) both distance functions are

metric, (ii) one distance function is metric and the other is semi-metric, and (iii) both

distance functions are semi-metric.
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7.3.1 Metric Distance Functions

If dX and dY are metric then GX and GY are positive semi-definite and the ordered

eigenvalues {λX ,i}N
i=1 and {λY,i}N

i=1 are non-negative. The summation in the lower

bound contains the terms {λX ,iλY,N−i+1}N
i=1, which are therefore non-negative, so that

∑N
i=1 λX ,iλY,N−i+1

||GX ||||GY ||
≥ 0 ⇒ GRV(GX , GY) ≥ 0.

The minimum value of 0 is attained when tr (GXGY) = 0 ⇒ tr
(
X̃X̃T Ỹ Ỹ T

)
=

tr
(
Ỹ T X̃X̃T Ỹ

)
= 0. This occurs when the principal coordinates are orthogonal, i.e.,

X̃T Ỹ = 0, and indicates no association. The maximum value GRV can take is 1, since

GX and GY have positive diagonal elements so that equality (7.4) can be attained.

In this case the distance matrices are equal up to a positive scaling factor, and there

is perfect association. Note also that when X and Y are centered vector-valued

observations with XT Y = 0, and dX and dY are the Euclidean distance functions,

then the GRV coefficient yields a value of 0 (as tr(X̃X̃T Ỹ Ỹ T ) = tr(XXT Y Y T ) =

tr(XT Y Y T X) = 0).

7.3.2 Metric and Semi-Metric Distance Functions

Assume that dX is metric and dY is semi-metric. Then only the ordered eigenvalues

{λX ,i}N
i=1 are strictly non-negative, so that the summation in the lower bound may be

negative. In this case, the GRV coefficient may attain negative values. From (7.3)

we see that a negative GRV coefficient leads to a greater Frobenius distance between

GX/||GX || and GY/||GY ||, so that there is less association. The maximum Frobenius

distance is attained for the minimum GRV value of

∑N
i=1 λX ,iλY,N−i+1

||GX ||||GY ||
,

which therefore indicates no association. The maximum attainable value of the GRV

coefficient is not 1 in this case, since equality (7.4) cannot be attained. This is because

the diagonals of GX are positive while the diagonals of GY are both positive and
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negative. The upper bound of the GRV coefficient is therefore given by

∑N
i=1 λX ,iλY,i

||GX ||||GY ||
< 1,

so that perfect association cannot be attained, but larger values indicate greater asso-

ciation.

Recall that metric distance functions satisfy the triangle inequality so that distances

with respect to dX between any three observations satisfy the triangle inequality. The

corresponding distances with respect to dY will not necessarily share this property as

dY is semi-metric. Thus the inter-point relationships between all the distances in ΔX

will not match those in ΔY (for if they did dY would satisfy the triangle inequality).

Heuristically then, the relationship between distances with respect to dX and dY cannot

be the same, and so it is natural that perfect association cannot be attained.

7.3.3 Semi-Metric Distance Functions

If dX and dY are semi-metric the ordered eigenvalues {λX ,i}N
i=1 and {λY,i}N

i=1 are both

non-negative and negative, so that no association is indicated by a GRV value of

∑N
i=1 λX ,iλY,N−i+1

||GX ||||GY ||
,

which may be negative (this is when the maximum Frobenius distance is attained). For

the maximum value of GRV, note that the diagonal elements of GX and GY are both

positive and negative, so that there may exist two such matrices with equal diagonals.

Hence there may exist a scenario in which equality (7.4) is attained, although it is

not clear under what conditions this will happen. Thus a GRV value of 1 is attained,

indicating perfect association.

7.4 Inference

Under null hypothesis (4.9) of no association between the distance matrices, the sam-

pling distribution of the GRV coefficient is unknown. This is because the quantity

T = tr(GXGY) in the numerator of the statistic is completely specified by the ele-

ments of the distance matrices ΔX and ΔY , which have unknown distributions. In
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addition, some of the distance elements are correlated within each distance matrix, so

T is a complicated expression involving sums and products of correlated and uncorre-

lated random variables.

The sampling distribution under the null can be generated by using permutations

of one of the centered inner product matrices, GY , say. For each of Nπ permutations

π ∈ Π, the rows and columns of GY are simultaneously permuted yielding GY,π. This

generates the set { ˆGRV(GX , GY,π)}π∈Π which defines the permutation distribution

of GRV(GX , GY). We note here that the bounds described for the GRV coefficient

remain unchanged with permutations since the ordered eigenvalues of GY,π are equal

to those of GY . Given an observed GRV coefficient, ˆGRV(GX , GY), the empirical

p-value under the null is found as

#
(

ˆGRV(GX , GY,π) ≥ ˆGRV(GX , GY)
)

Nπ

,

as this is a right-tailed test; larger values of the statistic indicate greater association.

In order to approximate the p-value without expensive permutations, we adopt a

moment matching approach where the exact null distribution which would be obtained

if all N ! permutations were used is approximated by a continuous distribution. In

particular, we approximate the null distribution by the same continuous distribution

which has been used by Josse et al. (2008) for the RV coefficient; the Pearson type

III distribution. To do this we require the mean, variance and skewness of the exact

permutation distribution of T , given by

μT =
1

N !

∑

π∈Π

T̂π, σ2
T =

1

N !

∑

π∈Π

T̂ 2
π − μ2

T , and γT =
1

N !

∑
π∈Π T̂ 3

π − 3μT σ2
T − μ3

T

σ3
T

,

respectively, where T̂π = tr(GXGY,π) and Π contains all N ! permutations. Closed form

expressions of these quantities are retrievable via the analytical results of Kazi-Aoual

et al. (1995), requiring GX and GY to be square, symmetric and centered (properties

satisfied by definition). These are provided in Appendix C.

On obtaining the mean, variance and skewness of the exact permutation distribu-

tion of T , we standardize T by subtracting μT and dividing by σT . The Pearson type
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III distribution can then be parameterized by γT :

Ts =
T − μT

σT

∼ PTIII (γT ) .

Denote the CDF and PDF of Ts by FTs(t; γT ) and fTs(t; γT ), respectively, for t in the

support of random variable Ts. By assumption of this model, the support of Ts is

given by [−2/γT ,∞) if γT > 0, (−∞,−2/γT ] if γT < 0, and (−∞,∞) if γT = 0.

Using the above approximation for the distribution of Ts, we can obtain the ap-

proximate distribution of GRV(GX , GY) = T/||GX ||||GY || by a simple transformation.

Denote the CDF of the GRV coefficient by FGRV(∙; γT ) and the PDF by fGRV(∙; γT ),

then we have the following.

Proposition 4 The approximate null CDF and PDF of the GRV coefficient can be

written in terms of the CDF and PDF of the Ts statistic as

FGRV(x; γT ) = FTs

(
x||GX ||||GY || − μT

σT

; γT

)

,

and

fGRV(x, γT ) =

(
||GX ||||GY ||

σT

)

fTs

(
x||GX ||||GY || − μT

σT

; γT

)

,

respectively.

Proof. The CDF of GRV is found as

FGRV(x; γT ) = P (GRV(GX , GY) ≤ x)

= P

(
σT Ts + μT

||GX ||||GY ||
≤ x

)

= P

(

Ts ≤
x||GX ||||GY || − μT

σT

)

= FTs

(
x||GX ||||GY || − μT

σT

; γT

)

,

as required. This is a valid CDF since FTs(; γT ) is a valid CDF.
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The PDF is found by differentiation as

fGRV(x, γT ) =

∣
∣
∣
∣

d

dx

(
x||GX ||||GY || − μT

σT

)∣∣
∣
∣ fTs

(
x||GX ||||GY || − μT

σT

; γT

)

=

∣
∣
∣
∣
||GX ||||GY ||

σT

∣
∣
∣
∣ fTs

(
x||GX ||||GY || − μT

σT

; γT

)

=

(
||GX ||||GY ||

σT

)

fTs

(
x||GX ||||GY || − μT

σT

; γT

)

,

since ||GX ||||GY || > 0 and σT > 0.

�

The approximate p-value of an observed GRV coefficient ˆGRV(GX , GY) is then

found as 1 − FGRV( ˆGRV(GX , GY); γT ). Empirical results demonstrating how the p-

values obtained in this matter compare with those obtained by Monte Carlo permu-

tations are provided in Section 7.6.4.

7.5 Connection with the Distance Correlation Test

Although the GRV coefficient has been generalized from the correlation-based RV

coefficient, we can show that for specific distance measures the GRV coefficient is

related to the dCor statistic. Consequently, it can be applied to test for independence

between real-valued random vectors X and Y .

This connection arises when dX and dY are the square-rooted Euclidean distance

measures applied to the pairwise combinations of rows of the centered observations X

and Y of X and Y , respectively. This is due to the following result which relates the

squared distance covariance (dCov) to tr(GXGY).

Proposition 5 Let ΔX and ΔY be the square-rooted Euclidean distance matrices re-

sulting from applying the square-rooted Euclidean distance functions dX and dY to the

pairwise combinations of rows of X and Y , respectively. Then

dCov2(X, Y ) =
4tr(GXGY)

N2
.

Proof. By definition of dCov, we have that

dCov2(X, Y ) =
tr (DXDY)

N2
,
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where DX = CΔ2
XC where Δ2

X is the Euclidean distance matrix (since ΔX is the

square-rooted Euclidean distance matrix) and C is the centering matrix, and sim-

ilarly for DY . Since the centered inner product matrix arising from ΔX is GX =

−CΔ2
XC/2, it follows that DX = −2GX and similarly for DY . Hence

DXDY = 4GXGY

⇒ tr (DXDY) = 4tr (GXGY)

⇒ dCov2(X, Y ) =
4tr (GXGY)

N2
,

as required.

�

As a consequence of Proposition 5, dVar2(X) = 4tr(GXGX )/N 2, so that

dVar2(X) =
4

N2
||GX ||

2 ,

and similarly for dVar2(Y ). It then follows that the squared dCor statistic is given by

dCor2(X, Y ) =
dCov2(X, Y )

√
dVar2(X)dVar2(Y )

=
4tr(GXGY)/N 2

√
16 ||GX ||

2 ||GY ||
2 /N 4

=
tr(GXGY)

√
||GX ||2||GY ||

2

= GRV (GX , GY) .

Hence the GRV coefficient equals the squared dCor statistic when using the square-

rooted Euclidean distance measure. In this case it ranges between 0 and 1, taking the

value 0 when dCor equals 0, i.e., when X and Y are independent. Similarly it takes

the value of 1 when dCor takes the value of 1. Thus GRV can be used to test for

independence between X and Y , analogously to dCor. We provide empirical evidence

of this in Section 7.6.5.



7.6 Simulation Experiments 134

7.6 Simulation Experiments

In this section we report on a range of simulation experiments designed to demonstrate

different aspects of the GRV test. In Sections 7.6.1 and 7.6.2 we demonstrate how the

GRV test compares with the standardized Mantel test for specific cases regarding

vector-valued observations. In Section 7.6.3 a power study is performed to demon-

strate the competitiveness of the GRV test with standardized Mantel and PROTEST

for vectorial, curve and genetic distance measures. For semi-metric distance functions,

we also apply the RV test to the corresponding principal coordinates which have been

corrected to be real-valued. We show that the GRV test achieves greater power than us-

ing the RV test with corrected principal coordinates. In Section 7.6.4 the approximate

null GRV distribution is compared with the Monte Carlo permutation distribution,

and the distribution is applied to real data to demonstrate its applicability. Finally,

in Section 7.6.5 the GRV test is shown to be competitive with the dCor test when

testing null hypothesis (4.2) of independence between random vectors.

7.6.1 Orthogonal Data Matrices: GRV and Standardized Mantel

Here we consider the setup where X and Y are P -dimensional real-valued random

vectors satisfying {cov(Xi,Yj) = 0}N
i,j=1 and hence are not associated. We demonstrate

that when applying the Euclidean distance function to pairwise centered observations

of each, the standardized Mantel test incorrectly rejects the null hypothesis of no

association while the GRV test does not. That is, it suffers from increased type I error

rates.

A Monte Carlo experiment is performed with B = 100 Monte Carlo runs. For each

run N ×P data matrices X and Y are generated under a model of no association, and

the GRV and standardized Mantel tests are applied. X and Y are first generated to be

orthogonal, and then Y is altered by adding noise to each element. The orthogonality

is achieved by generating an N ×N matrix Z with orthogonal columns, and using the

first P columns as the columns of X, and the subsequent P columns as the columns of

Y . Z is generated as the principal coordinate matrix arising from applying MDS to the

Euclidean distance matrix containing distances between the rows of a random N ×N

Wishart matrix. Y is then replaced with Y +E, where the elements of E are random
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observations from N(0, σ2), and is subsequently centered. The σ parameter controls

the amount of noise added to Y ; as σ increases the signal of orthogonality between X

and Y becomes less clear. The Euclidean distance matrices are obtained for each data

matrix, and both tests are applied. The theoretical p-value approximation is used to

obtain the p-values for the GRV test, and 104 Monte Carlo permutations are used for

the standardized Mantel test.

The above experiment is performed with N = 50, P = 10, and for σ ranging from

0 to 5 in steps of 0.1. As the error components are increased, we monitor the average

p-value obtained for each test. These are plotted in Figure 7.1. The standardized

Mantel test obtains p-values less than the cutoff value of 0 .05 for lower σ, indicating

significant association. As σ increases so the signal of orthogonality between X and

Y becomes less and less clear, small p-values yielding significant associations are still

obtained. Eventually they rise above 0.05 to indicate no association, but at a slow

rate. Conversely, the GRV test obtains mean p-values of 1 for all σ, indicating no

associations. While GRV is expected to perform better than standardized Mantel in

the case of orthogonal data, it is unclear how it consistently yields p-values of 1 such

that no elements of the signal of orthogonality are masked by the added noise.

7.6.2 Correlated Distance Matrices: GRV and Standardized Mantel

Here we consider the setup where X and Y are real-valued random variables whose

observations are correlated. We demonstrate that the GRV test has greater power to

detect association than the standardized Mantel test.

We perform a Monte Carlo experiment with B = 100 runs, and for each run gener-

ate N × 1 data vectors x and y under a model of association. First x = (x1, . . . , xN )T

is generated to have a clear difference between two subsets of the observations; xi ∼

N(μ, 1) for i = 1, . . . , N/2 and xi ∼ N(5μ, 1) for i = N/2+1, . . . , N , with μ ∼ U(1, 2).

Then the linear model y = x + e, where e = (e1, . . . , eN )T with ei ∼ (0, σ2) for

i = 1, . . . , N , is used to generate y. We obtain the Euclidean distance matrices corre-

sponding to x and y, and apply the GRV and standardized Mantel tests. As before,

p-values are obtained via the theoretical approximation for GRV, and with 10 4 Monte

Carlo permutations for standardized Mantel.

The above experiment is performed with N = 50, and σ ranging from 0 to 11 in
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Figure 7.1: Mean p-value of each test after 100 Monte Carlo runs as σ increases from
0 to 5. The black line represents the p-value cutoff of 0.05, below which tests are
deemed significant. The GRV test consistently yields large p-values of 1, indicating
no association. The standardized Mantel test yields p-values less than 0 .05 for smaller
σ, indicating rejection of the null hypothesis in favour of the alternative hypothe-
sis of association. As σ increases the p-values rise slowly, eventually indicating no
association.

steps of 0.1. Generating the data in this way yields a bimodal distribution for the

distances of the observations of X , and the idea is to monitor how well this bimodal

signal is detected in the distances of Y using each method. For example, with little

noise (σ = 0.1) the bimodal characteristics of the distances in ΔX are mirrored in

ΔY . Histograms of the standardized elements of these distance matrices, which are

considered by the standardized Mantel statistic are shown in Figures 7.2 (a) and (b).

The same bimodal characteristics are exhibited in both sets of distances, yielding a

large standardized Mantel statistic, 0.9983, with associated permutation p-value of

0. Similarly, the distances are encoded in GX/||GX || and GY/||GY || such that the

same bimodal characteristics are exhibited, yielding a large GRV value of 0 .9987 with

associated p-value 7 × 10−13; Figures 7.2 (c) and (d).
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(a) Histogram of standardized ∆X
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(b) Histogram of standardized ∆Y
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(c) Histogram of GX/||GX||

gX(xi,xj)/||GX||

D
en

si
ty

−0.04 −0.02 0.00 0.02 0.04

0
5

10
20

30

(d) Histogram of GY/||GY||
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Figure 7.2: (a)-(b) Histogram of the standardized elements of the N(N − 1)/2 up-
per triangular values of ΔX and ΔY , respectively. The standardized Mantel statis-
tic depicting the correlation between these values is 0 .9983 (p-value of 0 with 104

Monte Carlo permutations). (c)-(d) Histogram of the N2 elements of GX/||GX || and
GY/||GY ||, respectively. The GRV statistic depicting the correlation between these
values is 0.9987 (p-value of 7 × 10−13).

However, as the noise increases, the bimodal characteristics in ΔY are masked,

causing difficulties for both methods in detecting the association. Figure 7.3 shows the

mean p-values obtained by applying each method as σ increases. The standardized

Mantel test loses power to detect the association at a lower level of noise than the

GRV test, as it attains higher p-values for lower σ (reaching the cutoff value of 0.05

for lower σ than GRV). As discussed, both methods are correlation coefficients applied
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to different standardizations of the same distances. Thus the standardization adopted

by GRV may be more beneficial in preserving any hidden signals than that used by

standardized Mantel.
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Figure 7.3: Mean p-value of each test after 100 Monte Carlo runs as σ increases from
0 to 11. The black line represents the p-value cutoff of 0.05, below which tests are
deemed significant. For lower σ both tests yield small p-values, as expected. As σ
increases, however, the standardized Mantel test yields higher p-values than the GRV
test. This causes the standardized Mantel to lose power to detect the association for
lower σ than GRV.

7.6.3 Power Study for Distance-Based Hypothesis

Two sets of simulations are performed to compare the power of the GRV test against

the standardized Mantel and PROTEST approaches for testing (4.9). We demon-

strate that GRV is a competitive test of no association between distance matrices.

Furthermore, we consider semi-metric distances, and provide evidence that applying

corrections to yield real-valued principal coordinates to be subsequently used can lead

to a loss of power for a given test. In particular, we demonstrate that the RV test
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applied to principal coordinates resulting from a correction is less powerful than the

GRV test (which is essentially the RV test applied to the principal coordinates arising

from applying no corrections).

The simulations are inspired by the application of detecting associations between

paired data observed on SNPs and phenotypic variables. The idea is to simulate allele

counts for two SNPs and generate phenotype responses dependent on the SNP obser-

vations via an additive model. The phenotypes are vector-valued in one simulation,

and functional (curve-valued) in the other. We describe each simulation setting below,

but first describe the common procedure for generating realistic SNP data.

The N × 2 SNP data matrix X contains the N simulated minor allele counts at

P = 2 SNPs, denoted xi = (xi1, xi2)
T for i = 1, . . . , N , with varying minor allele

frequencies (MAFs). For SNP p, the MAF mp ∼ U(0.1, 0.5) is generated, and {xip}N
i=1

are simulated from the Multinomial distribution with probabilities (1 −mp)
2, 2mp(1−

mp), and m2
p of observing 0, 1 and 2 minor alleles, respectively. The IBS distance

measure is then applied to the simulated SNP data.

The N×Q phenotype data matrix Y = (y1, . . . , yN )T containing N Q-dimensional

vector-valued observations is then generated as follows. Under the null hypothesis of

no association, yi = ei for i = 1, . . . , N , where ei ∼ NQ(μ,Σ), with μ = (μ1, . . . , μQ)T

and μq ∼ U(0, 1) for q = 1, . . . , Q, and Σ a random Q × Q Wishart matrix. Under

the alternative hypothesis of association, the N × 1 vector z = X12 = (z1, . . . , zN )T

containing the row sums of X, i.e., the minor allele counts across the two SNPs, is

computed. Then yi = zi1Q + ei, where ei is generated as in the case of no associa-

tion. The Euclidean and Mahalanobis distance measures are applied to the simulated

vectors.

The N functional phenotypes {yi(t)}N
i=1 with t ∈ τ are generated as observations of

underlying true phenotype curves dependent on the minor allele counts across the two

SNPs. In particular, for τ = [0, 5], quartic Bezier curves (Farin, 1992) are defined with

common start and end points such that their characteristics in between are dependent

on the minor allele count. As the minor allele count increases, the curves are simulated

to rise faster, as shown in Figure 7.4. Denote these 5 true phenotype curves by

{fq(t)}4
q=0, with the subscript q denoting the minor allele count.

Under the null hypothesis, all curves {yi(t)}N
i=1 are generated as random instances
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Figure 7.4: Simulated true phenotype curves defined over τ = [0, 5]. All curves have
the same start and end points, and they rise faster in between these points as the
minor allele count increases.

of the same underlying true curve via a three-step process. In the simulation we take

this curve to be f0(t), but here we describe the procedure of generating curve y(t) as a

random instance of curve f2(t), with an illustration provided in Figure 7.5 (f2(t) lends

itself more nicely to a visual example than f0(t); it is represented by the gray line).

First we simulate a longitudinal vector representing the value of f2(t) at the time-

points t = (0, 1.25, 2.5, 3.75, 5)T , denoted f2(t) (the gray points in Figure 7.5). In the

second step noise is added to these points in the form of random Normal observations.

These new points, given by f2(t) + e where e = (e1, . . . , e5)
T with ej ∼ N(0, σ2) for

j = 1, . . . , 5 and σ ∼ U(1, 4), represent noisy observations of the curve y(t) at t (the

black points in Figure 7.5). In the third step we use cubic smoothing spline smoothing

to infer curve y(t) from its observation points f2(t) + e (the black line in Figure 7.5).

Thus, under the null hypothesis, N curves {yi(t)}N
i=1 are simulated in this manner,

using f0(t) as the true underlying phenotype curve. Under the alternative hypothesis,

curve yi(t) is simulated based on true underlying curve fzi
(t), so that it is dependent

on the minor allele count across the SNPs. The L2 and Visual L2 distance measures

are applied to the simulated curves.
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Figure 7.5: Simulation procedure for a random instance of a true phenotype curve. The
value of the true curve defined over τ = [0, 5], represented by the gray line, is obtained
at the time-points t = (0, 1.25, 2.5, 3.75, 5)T , represented by the gray points. Noise
is added to these points, yielding new observation values, represented by the black
points. A curve is fitted to these new points via cubic smoothing spline smoothing,
represented by the black line. This resulting curve is the random instance of the true
phenotype curve.

The comparison of the methods is then conducted as follows. For N = 50, 100,

B = 100 Monte Carlo runs are performed, and each time 200 datasets are generated for

both types of phenotype data (Q = 10 for the multivariate phenotypes). 180 of these

are generated under the null hypothesis, and 20 under the alternative hypothesis. For

each dataset the GRV, standardized Mantel and PROTEST coefficients are computed.

A correction is also applied to the semi-metric distance matrices (the IBS and Visual L 2

distance matrices), and the RV coefficient is computed with the resulting real-valued

principal coordinates. The power of each test is reported in Table 7.1 for false positive

rates of 1%, 5% and 10%.

These results demonstrate that GRV is competitive with standardized Mantel and

PROTEST for all false positive rates, and in particular, GRV exhibits more power

than standardized Mantel in some cases (such as when using the Mahalanobis and

Visual L2 phenotype distances). Since both can be written as correlation coefficients,
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the difference is due to the standardized distance elements used as inputs in each

case; a classical standardization is applied by standardized Mantel, and a normalized

double-centering is applied by GRV. To demonstrate this we take two datasets gener-

ated under the null hypothesis for N = 50, one for each type of phenotype. We plot

the standardized upper triangular values of ΔX and ΔY , and the values of GX/||GX ||

and GY/||GY ||, showing how the correlation between these values differs. These are

given in Figure 7.6; (a) and (b) correspond to the multivariate phenotypes with the

Mahalanobis distance, and (c) and (d) correspond to the functional phenotypes with

the Visual L2 distance. To see the difference in correlations more easily, linear regres-

sion lines are superimposed. The gradients of these lines are equal to the correlations,

so the steeper the gradient, the greater the correlation. It is clear that in (b) and

(d) the gradients are steeper than in (a) and (c), respectively, showing that the stan-

dardized distance elements in GX/||GX || and GY/||GY || are more correlated than the

classically standardized elements of ΔX and ΔY .

In addition, GRV exhibits more power to reject the null hypothesis than RV, show-

ing that applying a correction for semi-metric distances is not always beneficial. At

least for these simulations, the results suggest that using the observed distances, and

not altering them in any way, preserves the underlying signals of association.

7.6.4 The Approximate Null Distribution of the GRV Coefficient

We illustrate how the approximate null distribution of the GRV coefficient compares

with the Monte Carlo permutation distribution for the distances used in the above

simulations. For N = 30, 60, 100, B = 200 Monte Carlo runs are performed, where for

each run data is simulated under the null hypothesis. The GRV coefficient is computed,

and the corresponding p-value is computed via the Pearson type III approximation and

by a Monte Carlo set of 106 permutations. The mean and standard deviation of the

absolute difference between these for each N and for each phenotype distance are

reported in Table 7.2. It can be seen that as N increases the differences between the

p-values decrease.

As a further illustration of how the null distribution compares with the permutation

distribution, we consider a subset of the imaging genetics data described in Section

8.3.1. This is the same data used in Section 6.4.2, but in the context of the GRV test



Chapter 7. Distance-Based Association: the GRV Test 143

T
ab

le
7.

1:
P
ow

er
(a

n
d

st
an

d
ar

d
d
ev

ia
ti
on

)
of

th
e

G
R
V

,
st

an
d
ar

d
iz

ed
M

an
te

l
(s

t.
M

an
te

l)
,

P
R

O
T

E
S
T

an
d

R
V

te
st

s
fo

r
fa

ls
e

p
os

it
iv

e
ra

te
s

of
1%

,5
%

an
d

10
%

.
G

R
V

is
co

m
p
et

it
iv

e
w

it
h

st
an

d
ar

d
iz

ed
M

an
te

l
an

d
P

R
O

T
E

S
T

,
an

d
ou

tp
er

fo
rm

s
R
V

ap
p
li
ed

to
re

al
-v

al
u
ed

p
ri
n
ci

p
al

co
or

d
in

at
es

ar
is

in
g

fr
om

co
rr

ec
ti
on

s
of

th
e

se
m

i-
m

et
ri
c

d
is

ta
n
ce

s.

N
=

50
N

=
10

0
P

h
en

ot
y
p
e

F
al

se
p
os

it
iv

e
ra

te
(%

)
F
al

se
p
os

it
iv

e
ra

te
(%

)
d
is

ta
n
ce

T
es

t
1

5
10

1
5

10

E
u
cl

id
ea

n
G

R
V

0.
50

4
(0

.1
51

)
0.

74
8

(0
.1

11
)

0.
82

6
(0

.0
92

)
0.

85
7

(0
.0

93
)

0.
95

4
(0

.0
41

)
0.

96
9

(0
.0

40
)

st
.

M
an

te
l

0.
23

4
(0

.1
20

)
0.

42
0

(0
.1

13
)

0.
52

6
(0

.1
12

)
0.

44
9

(0
.1

52
)

0.
66

3
(0

.1
12

)
0.

75
4

(0
.0

91
)

P
R

O
T

E
S
T

0.
52

9
(0

.1
63

)
0.

76
3

(0
.1

00
)

0.
84

5
(0

.0
81

)
0.

69
7

(0
.1

42
)

0.
87

5
(0

.0
74

)
0.

92
5

(0
.0

54
)

R
V

0.
45

8
(0

.1
54

)
0.

67
4

(0
.1

11
)

0.
77

7
(0

.0
94

)
0.

69
5

(0
.1

22
)

0.
84

3
(0

.0
84

)
0.

88
5

(0
.0

82
)

M
ah

al
an

ob
is

G
R
V

0.
87

9
(0

.0
81

)
0.

95
0

(0
.0

54
)

0.
96

4
(0

.0
41

)
0.

99
2

(0
.0

24
)

0.
99

7
(0

.0
10

)
0.

99
8

(0
.0

11
)

st
.

M
an

te
l

0.
39

7
(0

.1
63

)
0.

70
3

(0
.1

04
)

0.
79

6
(0

.0
91

)
0.

79
9

(0
.1

20
)

0.
95

9
(0

.0
44

)
0.

97
8

(0
.0

31
)

P
R

O
T

E
S
T

0.
09

0
(0

.0
74

)
0.

22
2

(0
.1

04
)

0.
34

4
(0

.1
21

)
0.

11
4

(0
.0

80
)

0.
28

2
(0

.1
20

)
0.

40
7

(0
.1

24
)

R
V

0.
12

1
(0

.1
01

)
0.

30
7

(0
.1

24
)

0.
43

2
(0

.1
41

)
0.

10
7

(0
.0

84
)

0.
28

2
(0

.1
24

)
0.

40
5

(0
.1

35
)

L
2

G
R
V

0.
96

6
(0

.0
40

)
0.

98
3

(0
.0

35
)

0.
98

6
(0

.0
31

)
0.

99
6

(0
.0

15
)

0.
99

7
(0

.0
12

)
0.

99
9

(0
.0

14
)

st
.

M
an

te
l

0.
95

9
(0

.0
54

)
0.

98
4

(0
.0

31
)

0.
98

8
(0

.0
24

)
0.

99
5

(0
.0

25
)

0.
99

8
(0

.0
16

)
0.

99
9

(0
.0

11
)

P
R

O
T

E
S
T

0.
70

9
(0

.1
65

)
0.

88
4

(0
.0

75
)

0.
91

9
(0

.0
63

)
0.

87
0

(0
.1

56
)

0.
97

2
(0

.0
46

)
0.

97
9

(0
.0

34
)

R
V

0.
93

6
(0

.0
68

)
0.

96
4

(0
.0

43
)

0.
96

9
(0

.0
45

)
0.

96
7

(0
.0

42
)

0.
97

2
(0

.0
42

)
0.

97
4

(0
.0

40
)

V
is

u
al

L
2

G
R
V

0.
86

7
(0

.0
96

)
0.

93
8

(0
.0

54
)

0.
95

7
(0

.0
47

)
0.

96
8

(0
.0

45
)

0.
98

6
(0

.0
35

)
0.

99
2

(0
.0

23
)

st
.

M
an

te
l

0.
72

6
(0

.1
35

)
0.

85
1

(0
.0

80
)

0.
87

1
(0

.0
85

)
0.

85
0

(0
.1

06
)

0.
91

5
(0

.0
63

)
0.

93
3

(0
.0

57
)

P
R

O
T

E
S
T

0.
11

3
(0

.0
97

)
0.

22
0

(0
.1

24
)

0.
31

5
(0

.1
20

)
0.

15
1

(0
.1

00
)

0.
28

2
(0

.1
05

)
0.

34
3

(0
.1

04
)

R
V

0.
46

5
(0

.1
44

)
0.

64
0

(0
.1

24
)

0.
72

8
(0

.1
11

)
0.

30
1

(0
.1

27
)

0.
47

5
(0

.1
18

)
0.

57
9

(0
.1

10
)



7.6 Simulation Experiments 144

−1 0 1 2 3

−2
0

1
2

3
4

(a) St. ∆Y against st. ∆X

Standardized dX(xi,xj)

S
ta

nd
ar

di
ze

d 
d Y

(y
i,y

j)

gradient = 0.0439

−0.05 0.00 0.05 0.10

−0
.1

0
0.

00
0.

10

(b) GY/||GY|| against GX/||GX||

gX(xi,xj)/||GX||

g Y
(y

i,y
j)/

||G
Y
||

gradient = 0.165

−1 0 1 2

−2
−1

0
1

2

(c) St. ∆Y against st. ∆X

Standardized dX(xi,xj)

S
ta

nd
ar

di
ze

d 
d Y

(y
i,y

j)

gradient = 0.0310

−0.06 −0.02 0.02 0.06

−0
.0

4
0.

00
0.

04
0.

08

(d) GY/||GY|| against GX/||GX||

gX(xi,xj)/||GX||

g Y
(y

i,y
j)/

||G
Y
||

gradient = 0.0940

Figure 7.6: Standardized and normalized double-centered elements used in the cor-
relation coefficient representation of the standardized Mantel and GRV coefficients,
respectively (gray points). The linear regression lines (black lines) are superimposed
indicating the strength of correlation between the values. (a)-(b) Multivariate pheno-
type with the Mahalanobis distance measure applied. (c)-(d) Functional phenotype
with the Visual L2 distance measure applied. For both phenotypes the standardization
used in GRV yields a higher correlation than in standardized Mantel.

we describe it as follows. For the N = 253 subjects, Y is the data matrix containing

the vector-valued imaging data, and X is the data matrix containing observations of

P discrete-valued SNPs in chromosome 1. For the imaging data we apply the NMI

distance, and for the SNP data we apply the IBS, Sokal and Sneath, and Rogers and

Tanimoto I distances. We consider three sets of SNP data; N observations of P = 3,

P = 5 and P = 7 contiguous SNPs. For each combination of genetic distance measure

with the imaging distance and P , we obtain the approximate null distribution of the
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Table 7.2: Mean (and standard deviation) of the absolute differences between theoret-
ical and permutation p-values of the GRV coefficient under the null hypothesis with
200 Monte Carlo runs. The Euclidean and Mahalanobis distances are used for the mul-
tivariate phenotypes, and the L2 and Visual L2 distances are used for the functional
phenotypes. 106 Monte Carlo permutations are used for the permutation p-values.

Phenotype N
distance 10 30 100

Euclidean 0.00373 (0.00351) 0.00311 (0.00239) 0.00285 (0.000219)
Mahalanobis 0.00207 (0.00139) 0.00100 (0.000581) 0.000920 (0.000529)
L2 0.00671 (0.00603) 0.00570 (0.00432) 0.00467 (0.00309)
Visual L2 0.00758 (0.00813) 0.00619 (0.00520) 0.00512 (0.00525)

GRV statistic and the permutation distribution using 106 Monte Carlo permutations.

These are given in Figure 7.7, where we see that the approximate distribution provides

a good fit for the often skewed permutation distribution.

7.6.5 Power Study for Independence Hypothesis

We compare the power of the dCor test and GRV test (with square-rooted Euclidean

distances) to detect dependence between X and Y , i.e., to test (4.2). We consider a

range of univariate setups where Pearson’s correlation test is also included for com-

parison, and a multivariate setup where RV and PROTEST are included.

Univariate Power Study

For P = Q = 1, we consider four examples of paired univariate distributions provided

by Newton (2009); Figure 7.8 shows these four setups for N = 500. Each one is

characterized by the general shape exhibited by the samples; w, parabola, hyperbola

and independent clouds. The w, parabola and hyperbola setups are found via nonlinear

relationships between X and Y , and hence constitute datasets generated under the

alternative hypothesis of dependence. For the independent clouds setup there is no

dependence between X and Y , so this constitutes a dataset generated under the null

hypothesis of independence.

We perform a Monte Carlo experiment with B = 1000 runs, where for each run
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Figure 7.7: Sampling distributions of the GRV statistic obtained using 10 6 Monte
Carlo permutations and the proposed approximate PDF. The NMI distance is applied
to the real and vector-valued imaging data, and the IBS, Sokal and Sneath, and Rogers
and Tanimoto I distances are applied to the observations of P discrete-valued SNPs.
(a)-(c) P = 3 SNPs are used. (d)-(f) P = 5 SNPs are used. (g)-(i) P = 7 SNPs are
used.

N = {25, 30, 35, . . . , 95, 100} samples are generated for each paired univariate setup.

For each N and paired univariate setup, the dCor test is applied with 104 Monte Carlo

permutations, the GRV test (with square-rooted Euclidean distances) is applied with

the theoretical p-value approximation and Pearson’s correlation test (denoted ρ) is

applied with the theoretical p-value.
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Figure 7.8: Scatter plot of 500 samples from each joint univariate distributional setup.
The w, parabola and hyperbola setups are all obtained from a nonlinear relationship
between X and Y , whereas the independent clouds are obtained from an independent
relationship between X and Y .

The power to reject the null hypothesis at the 5% significance level is monitored

for each method; Figure 7.9 shows the power as a function of sample size. For the w,

parabola and hyperbola setups it is clear that dCor and GRV are competitive, with

power increasing to 1 with N at almost identical rates. Note the much better perfor-

mance than Pearson’s correlation coefficient, as expected because Pearson’s correlation

does not detect the nonlinear dependence. For the independent clouds setup, all tests

have a power of around 0.05, which is expected.

Multivariate Power Study

For P = Q = 5, we consider an example taken from Székely et al. (2007). For N =

{25, 26, . . . , 49, 50, 55, 60, . . . , 95, 100}, and for each of B = 1000 Monte Carlo runs, we

generate observations of X by xi ∼ N5(0,Σ) for i = 1, . . . , N , where Σ is a random

5×5 Wishart matrix. Observations of Y are generated as yi = (log(xi1), . . . , log(xi5))
T

for i = 1, . . . , N . We denote the relationship between X and Y by Y = log(X2). For

each N the dCor and PROTEST tests are applied with 104 Monte Carlo permutations,

and the RV and GRV (with square-rooted Euclidean distances) tests are applied with

their respective theoretical p-value approximations.

We monitor the power of each test to reject the null hypothesis of independence

at the 5% significance level; Figure 7.10 shows the power as a function of sample size.

Here dCor and GRV behave identically, and outperform PROTEST and RV. Thus
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Figure 7.9: Power versus N for 1000 Monte Carlo runs for each paired univariate setup
at the 5% significance level. dCor and GRV behave almost identically for increasing
N , outperforming Pearson’s correlation test which exhibits poor performance. For the
independent clouds setup the gray line represents the power level of 5%, expected for
all tests.

GRV is competitive with dCor, and it is interesting to note that its behaviour would

have been identical to that of RV if it had been applied with Euclidean distances rather

than square-rooted Euclidean distances.

7.7 Summary

The GRV test has been generalized from the RV test and been shown to be a ver-

satile distance-based testing procedure for null hypothesis (4.9). When X and Y
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Figure 7.10: Power versus N for 1000 Monte Carlo runs for the paired multivariate
setup Y = log(X2) at the 5% significance level. dCor and GRV behave identically, and
outperform PROTEST and RV which are unable to detect the nonlinear dependence.

are real-valued random vectors, both multivariate hypotheses (4.1) and (4.2) can be

tested. When Euclidean distances are applied to centered observations of the ran-

dom vectors, the GRV coefficient equals the RV coefficient, and null hypothesis (4.1)

of no correlation between the variables comprising each vector can be tested. When

the square-rooted Euclidean distance measure is used, the GRV coefficient equals the

squared dCor coefficient, and hence can test null hypothesis (4.2) of independence

between the random vectors.

For vector-valued X and Y , the GRV test has been shown to counter the limitations

of the standardized Mantel approach which have been highlighted by previous authors

(see Section 4.2). In particular, for orthogonal data matrices, the GRV test does not

incorrectly reject the null hypothesis of no association. We have also demonstrated
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that the GRV test has higher power than the standardized Mantel test to detect

association between correlated scalar-valued variables.

For non-vector-valued X and Y and corresponding distance measures, the GRV

test was shown to be competitive with standardized Mantel and PROTEST. For semi-

metric distance functions, we also demonstrated that using the RV test with principal

coordinates arising from corrected distance matrices yields lower power than the GRV

test (which is applied with the uncorrected distance matrices). This provides evidence

that when testing for no association between distance matrices, applying corrections

may not be beneficial, as suggested by Pekalska and Duin (2005).

An approximate null distribution was also proposed for the GRV coefficient, which

can be applied for any distance measure. Through the connection between the GRV

coefficient and dCor, this allows a test of independence between random vectors to

be performed without permutations (permutations are required for the dCor test).

In addition, through simulation we showed that the approximation works well for a

selection of vectorial and curve distance measures. We also illustrated its applicability

to a real imaging genetics dataset. In Sections 8.4 and 9.3.2 we demonstrate the

full potential of the GRV test by applying it to two studies where many tests of no

association between distance matrices are required.
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Part III

Applications
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Chapter 8

Genome-Wide Association Studies

of Alzheimer’s Disease

In this chapter we describe the use of GWA studies in the pursuit of genetic variants

causative of Alzheimer’s disease. We survey the existing distance-based approaches

which have been applied in this endeavour. Three separate studies are then performed

using the DBF test, the pseudo F test and the GRV test with data obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Each distance-based

method identifies well-known genetic variants, suggesting their validity in GWA stud-

ies.

8.1 A Brief Overview

Alzheimer’s disease (AD) is a common neurodegenerative condition which causes suf-

ferers to progressively lose their mental and physical functions (Bertram et al., 2010).

It is influenced by both environmental and genetic factors, and is thought to be moder-

ately to highly heritable (Gatz et al., 2006; Braskie et al., 2011). In other words, many

clues about the causes of AD lie within the genome, and GWA studies have been suc-

cessfully performed to find the genetic variants across the genome associated with AD;

an up to date list can be found on the AlzGene database at http://www.alzgene.org/.

In GWA studies, the genome is searched for genetic variants associated with disease

risk (see, for example, Altshuler et al. (2008) and Pearson and Manolio (2008)). That

is, genetic variation, which can be captured by observing SNPs, is related to disease
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risk. Human SNPs are biallelic genetic markers which are comprised of a combination

of two alleles; a major allele occurring more commonly in the study cohort, and a

minor allele which is less common (this is considered to be the risk allele). The possible

combinations are ‘major, major’, ‘major, minor’ and ‘minor, minor’. The genotype of

an individual at a given SNP is summarized by the discrete-valued minor allele count

(i.e., the number of copies of the minor allele), and is thus represented by one element

in {0, 1, 2}. These correspond to homozygotes for the major allele, heterozygotes

and homozygotes for the minor allele, respectively. Typically, SNPs contributing to

disease have large effects in aggregate but only small effects individually (Braskie et al.,

2011; Silver et al., 2012). This has motivated multi-locus GWA studies, where multiple

SNPs associated with disease are sought across the genome in a manner which nurtures

possible joint effects (Hibar et al., 2011). Examples include the regression approaches

of Vounou et al. (2010), Silver et al. (2012), and Ge et al. (2012), which are adopted

in favour of mass-univariate approaches which consider SNPs individually.

A common approach of scanning the genome in search of causative variants is to

group SNPs together into SNP sets where it is plausible that some dependence exists

between them. For example, they can be comprised of SNPs in the same gene or bio-

logical pathway (Mukhopadhyay et al., 2010; Wu et al., 2010; Yang et al., 2009). Such

groupings, however, ignore intergenic regions which may harbour useful information.

These regions can be included by using a sliding window of fixed length which parti-

tions the entire genome, chromosome-by-chromosome, into overlapping SNP sets (the

window is moved one SNP at a time). Typically, window lengths of 2 to 9 SNPs have

been used in application to GWA studies (Mathias et al., 2006; Yang et al., 2009). This

yields SNP sets numbering in the hundreds of thousands to be analyzed for association

with disease.

For the genome to be analyzed for variants associated with AD, a signature charac-

teristic of AD is required with which to query the genome. This signature is generated

by observing a phenotype of AD on the subjects in the study cohort. In traditional

GWA studies this has been provided in the form of a dichotomous variable indicating

case or control status of each subject, comprising ‘case-control’ GWA studies. Here,

the classification of a subject is determined through clinical or cognitive assessment.

However, such assessments are influenced by many factors unrelated to disease, such
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as fatigue and anxiety of the subjects for instance (Braskie et al., 2011), and can be

misleading. In addition, subjects may not fall clearly into a particular group (Hibar

et al., 2011).

Recent interest has turned to considering quantitative imaging-derived signatures

characteristic of AD, rather than crude dichotomous indicators (Braskie et al., 2011;

Hibar et al., 2011; Ge et al., 2012). In the case of AD, so-called ‘neuroimaging phe-

notypes’ are extracted from scans of the brain, such as those obtained via magnetic

resonance imaging (MRI) or positron emission tomography (PET). The imaging data is

typically represented by a very high-dimensional vector of voxels where each voxel rep-

resents the measurement of a 3-dimensional region of the brain measured in O(mm3).

Such data provides visible clues of how the brain works differently in cases where, for

example, a subject is suspected of having AD but the symptoms are not clearly evident

through behavioural changes (Braskie et al., 2011). Thus, imaging-derived phenotypes

may lead to improved power in detecting causative genetic variants associated with

AD (Hibar et al., 2011).

The term ‘imaging genetics’ refers to the paradigm of seeking genetic variants

across the genome which are associated with imaging phenotypes. GWA studies can

be further categorized based on the manner in which the imaging phenotypes are

considered. For instance, in ‘candidate-phenotype’ GWA studies, a set of voxels are

preselected from all observed voxels and are held fixed while the genome is searched.

An alternative approach is offered by ‘brain-wide’ GWA studies, where all available

voxels are searched analogously to the SNPs comprising the genome.

In the following subsections separate reviews are provided of distance-based ap-

proaches which have been used in case-control and brain-wide GWA studies. To

our knowledge no distance-based approaches have been considered for candidate-

phenotype GWA studies.

8.1.1 Distance-Based Case-Control GWA Study Methods

Two prominent distance-based testing procedures derived specifically for case-control

multi-locus GWA studies are KBAT (Mukhopadhyay et al., 2010) and a logistic kernel-

machine regression test which we denote LKMT (Wu et al., 2010). For these ap-

proaches the genome is partitioned into SNP sets, and for each SNP set KBAT and
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LKMT make use of similarities between observations rather than distances. This is

achieved through the use of kernel functions K(∙, ∙) (Shawe-Taylor and Cristianini,

2004) which are closely related to distance measures, for instance, the IBS kernel

function is equal to one minus the IBS distance measure.

KBAT (Mukhopadhyay et al., 2010) tests for joint association of SNPs with a given

disease by using similarities between subjects for each individual SNP as observations

in separate classical ANOVA models. For each ANOVA model the classical within- and

between-group variance quantities are computed. A combined within-group quantity

is obtained by summing the within-group variance terms corresponding to all SNPs

in the SNP set, and similarly for the between-group quantities. The KBAT test

statistic is then formed as the ratio of these two quantities. Since the similarities

are not normally distributed and are not all independent, significance of the KBAT

statistic is assessed by permutations of the SNP observations across the groups. This

approach suffers from two limitations. Firstly, joint association is modeled in an ad-

hoc manner, as similarities between subjects are only measured for individual SNPs

and then combined. That is, similarities are not computed using the information

across all SNPs in the SNP set simultaneously. Secondly, due to the vast number

of tests required to conduct a GWA study, the requirement to conduct permutations

for inference will cause difficulties in implementation (the method was only presented

with simulated data and an example with real data was not provided).

LKMT (Wu et al., 2010) is a logistic regression approach which uses similarities

between individuals based on all SNPs in the given SNP set (instead of individually)

and does not require permutations. The approach consists of modeling the probability

that a given subject is a case subject as a linear function of covariates such as age

and sex, which can be referred to as non-SNP covariates, and a linear function of

the similarities between that subject and all other subjects given observations of the

SNPs. In this way, the joint effect of multiple SNPs, and possible nonlinear interactions

between them, can be captured through the similarities and used to model case-control

status.

Denote the case-control status of the N subjects by {si}N
i=1, where si = 0 for

controls and si = 1 for cases, the SNP set observations by {zi}N
i=1, and the observations
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of M non-SNP covariates by {xi = (xi1, . . . , xiM )T}N
i=1. The model is then given by

logit[P (si = 1)] = β0 +
M∑

m=1

βmxim + h(zi),

for i = 1, . . . , N , where β0 is an intercept, {βm}
M
m=1 are regression coefficients, and

h(zi) =
∑N

j=1 γjK(zi, zj) for some constants {γj}N
j=1. The null hypothesis of no

SNP effect on case-control status, i.e., H0 : h = 0 where h = (h(z1), . . . , h(zN ))T ,

is tested by using a variance-component score statistic Q = (s − p̂)T K(s − p̂)/2,

where s = (s1, . . . , sN)T , K = {K(zi, zj)}N
i,j=1, and p̂ = (p̂1, . . . , p̂N)T is such that

{
logit (p̂i) = β̂0 +

∑M
m=1 β̂mxim

}N

i=1
. The distribution of Q under the null hypothesis

is a mixture of Chi-squared distributions, which via the Satterthwaite method can be

approximated by a scaled Chi-squared distribution. Inferences for each SNP set across

the genome can then be drawn without permutations.

8.1.2 Distance-Based Brain-Wide GWA Study Methods

To our knowledge, brain-wide GWA studies of AD have not been performed where both

the imaging data and the genetics data are subjected to distance-based representations.

A very recent distance-based approach is the least squares kernel machine approach

of Ge et al. (2012), which we denote LSKM, where similarities between samples are

considered for multi-locus SNP sets obtained by grouping together SNPs in the same

gene. That is, similarities are considered only for the genetics data, and not the

imaging data.

This approach combines two areas: semi-parametric regression modeling and ran-

dom field theory (RFT). The regression model is used to relate the scalar-valued

observations of an imaging trait at a given voxel to non-SNP covariates linearly, and

to the SNPs in the given SNP set nonlinearly. This nonlinear component is cap-

tured via similarities between SNP set observations obtained through the IBS kernel

function, as in LKMT used for case-control multi-locus GWA studies. The RTF ele-

ment of the approach is concerned with performing inference across the brain where

multiple-testing corrections are required. The objective is to detect localized regions

of high-intensity effects for individual voxels (voxel-wise inference), or spatial regions
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represented by sets of contiguous voxels (cluster-wise inference), respectively, which

exhibit association with the given SNP set.

The semi-parametric regression model is defined as follows. Define the N observa-

tions of voxel v by y = (yv1, . . . , yvN )T , the SNP set observations by {zi}
N
i=1, and the

observations of M non-SNP covariates by
{
xi = (xi1, . . . , xiM )T

}N

i=1
. Then

yvi =
M∑

m=1

βmxim + h(zi) + εvi,

for i = 1 . . . , N , where {βm}
M
m=1 are regression coefficients, εvi are errors assumed to

be distributed N(0, σ2
v) for unknown voxel-specific variance σ2

v , and h(zi) represents

the nonlinear effect of the multiple SNPs in the SNP set determined through kernel

function K(∙, ∙). The null hypothesis that the SNP measurements do not explain the

measurements of voxel v is tested by using the score statistic

Q(v) =
1

2σ̂2
v

(
y − Xβ̂

)T

K
(
y − Xβ̂

)
,

where X is the N×M matrix of non-SNP covariate measurements, β̂ = (β̂1, . . . , β̂M )T

are the maximum likelihood estimates of the corresponding regression coefficients, σ̂2
v

is the maximum likelihood estimate of σ2
v , and K = {K(zi, zj)}N

i,j=1. As with LKMT,

the null distribution of Q(v) is approximated by a scaled Chi-squared distribution.

For a given SNP set, the above model is applied independently to each voxel across

the brain, yielding an observed statistic with a corresponding approximate p-value.

To perform a voxel-wise analysis of the brain, a correction must be applied to these

p-values. This is achieved by using notions from RFT, where the voxels are modeled as

random elements comprising a random field. In particular, a familywise error corrected

p-value is obtained which accounts for the volume and smoothness of the corresponding

statistic mapped to this random field. Given the observed statistic Q̂(v) at voxel v, the

corrected p-value is estimated by using permutations as follows. For every permutation

π of Nπ Monte Carlo permutations, the statistic value for each voxel is computed, and

the maximum across all voxels stored. Thus for each permutation a ‘maximal statistic’

Mπ is found as

Mπ = max
v

|Q̂π(v)|,
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where Q̂π(v) is Q(v) computed with the permuted kernel matrix Kπ (K with rows

and columns simultaneously permuted by π). The corrected p-value is then estimated

by
#(Mπ ≥ Q̂π(v))

Nπ

,

and where #(Mπ ≥ Q̂π(v)) < 10, a generalized Pareto distribution is used to approx-

imate the tail of the permutation distribution such that small corrected p-values can

be obtained more accurately. This greater accuracy for smaller p-values is required

because a further Bonferroni correction is applied for the multiple-testing problem

arising from considering multiple SNP sets across the genome.

The above corrected p-values can also be obtained for cluster-wise inference across

the brain. Here, sets of contiguous voxels, which we call voxel sets, are considered

across the brain. For each voxel set, the independently-derived statistic values of each

voxel are combined (we omit the theoretical details). In doing so, practitioners are able

to model spatial information exhibited by regions of the brain, which are represented

by a multiple voxels, in terms of the multiple effects (and possible interactions) of

SNPs in the chosen SNP set.

However, this is an ad-hoc approach to modeling spatial information of the brain

because the predictive relationship of the SNP set is modeled individually for each

voxel, and then combined. Perhaps modeling the explanatory relationship of a given

SNP set directly on the voxel set, rather than on individual voxels, would be a suitable

alternative. Furthermore, applying distances to the voxel data can potentially yield

interesting patterns driven by distributed spatial patterns in the data, and these may

be taken advantage of within the imaging genetics paradigm. We demonstrate this

in Sections 8.3 and 8.4, where candidate-phenotype GWA studies are conducted with

both the pseudo F test (distances only used for the imaging data), and the GRV test

(distances used for both imaging and genetics data).

8.2 Case-Control Multi-Locus GWA Study of Alzheimer’s Dis-

ease with the DBF Test

In this section we describe a case-control multi-locus GWA study of AD using the

DBF test. On first describing the data, we discuss the choice of sliding window used
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to obtain the SNP sets across the genome and which SNP distances to apply. We then

describe the application of the DBF test to the data, present findings, and demonstrate

the competitiveness of DBF with LKMT on a particular subset of the data.

8.2.1 Data Description

The data used is described in Vounou et al. (2010) and was obtained from the ADNI

database (http://loni.ucla.edu/ADNI/). It consists of 254 subjects, 101 cases of AD

and 153 controls, all genotyped at 316, 348 SNPs across chromosomes 1 to 22.

8.2.2 Choice of Sliding Window and SNP Distance Measure

We apply a sliding window of length 5, which is chosen somewhat arbitrarily. The key

point here is that we wish to scan the genome and identify joint effects of SNPs which

lie within close proximity to each other. If the window length is too large such that the

window highlights a SNP set containing a small proportion of causative SNPs, their

signal may be hidden by the non-causative SNPs. This may cause difficulty in locating

the exact positions on the genome where the causative SNPs are located. A smaller

window, however, will detect the signal more accurately, even if not all of the causative

SNPs in the neighbourhood are highlighted within the window. Where causative SNPs

are positioned side-by-side across the genome, their number is unknown and may differ

at different locations. With a small window it is expected that the exact position of

such causative SNPs will be more easily identifiable than by using a large window.

Having chosen a window length of 5, the N individuals are represented by discrete-

valued 5-dimensional vectors in each SNP set. This results in a total number of 316 , 260

SNP sets to be compared across the two populations.

Now we turn to the issue of which SNP distance measure to apply. Many measures

exists (see, for instance, Selinski and Ickstadt (2005) and Appendix B.3). In an ex-

ploratory endeavour, we use five distance measures; the IBS, Simple Matching, Sokal

and Sneath, Rogers and Tanimoto I, and Hamman I distances. The IBS distance is

commonly used in GWA studies (Mukhopadhyay et al., 2010; Wu et al., 2010) and

quantifies the difference in the proportion of risk alleles shared across the SNP set.

That is, subjects are deemed less dissimilar if they have more risk alleles in common.
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The Simple Matching, Sokal and Sneath, Rogers and Tanimoto I, and Hamman I dis-

tances all quantify differences between subjects based on the number of mismatches

and matches in minor allele counts across the SNPs of the SNP set. The Simple

Matching distance, for instance, considers the proportion of matches across the SNPs.

The Sokal and Sneath, and Rogers and Tanimoto I distances consider two different

ways of quantifying the ratio of mismatches to matches in minor allele counts across

the SNPs. Subjects are deemed less dissimilar as this ratio increases. The Hamman I

distance quantifies dissimilarity based on the difference in the number of matches and

mismatches as a proportion of the number of SNPs.

8.2.3 Experimental Results

For each SNP set the DBF statistic and corresponding approximate p-value is com-

puted using all five distance measures. For each distance measure this results in the

simultaneous observation of 316, 260 p-values, and hence a large multiple-testing prob-

lem.

Declaring SNP sets as significant based on each individual p-value being below a

stated cutoff value will yield an abundance of significant SNP sets. It is expected

that only a few of these are truly significant, so multiple-testing corrections can be

applied in pursuit of these truly significant SNP sets. Typically one of two approaches

is deployed in this search. The first controls the familywise error rate by the well-

known Bonferroni correction (Hochberg and Tamhane, 1987). That is, the probability

that at least one SNP set is called significant when it is truly null (a false positive)

is controlled. However, of the SNP sets called significant, the expected proportion of

truly null SNP sets is unknown because the total number of truly null SNP sets is

unknown. The second approach controls the false discovery rate, which is the rate at

which SNP sets are truly null if they are called significant (Benjamini and Hochberg,

1995). Here, the expected proportion of truly null SNP sets of all of those called

significant is known (it is directly controlled), even though the true total number of

null SNP sets is still unknown. Thus it is expected to yield less truly null SNP sets than

by controlling the familywise error rate. Approaches to control the false discovery rate

include the Benjamini-Hochberg correction of Benjamini and Hochberg (1995) and the

q-value approach of Storey and Tibshirani (2003).
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In this case we control the familywise error rate by adopting a genome-wide signif-

icance threshold of 10−7. Wu et al. (2010) state that such a threshold is very stringent

and difficult to attain, so we adopt it here to show that with the proposed null sampling

distribution such p-values can be attained.

In Figure 8.1 we provide a Manhattan plot which depicts the significant SNP sets

across the entire genome for the Sokal and Sneath distance measure, showing the

greatest effects in chromosomes 18 and 19. The results of all distance measures are

summarized by the unique SNP and gene combinations identified; see Table 8.1. All

significant SNPs are identified in chromosomes 18 and 19. In particular, chromosome

19 contains two genes, APOE and TOMM40, which are the major genetic variants

found in many studies (see, for example, Braskie et al. (2011) and Shen et al. (2010)).

Other reported genetic variants in chromosome 19 that overlap with our findings in-

clude APOC4, PVRL2 and CLPTM1 (Takei et al., 2009; Yu et al., 2007). The DCC

gene has also been previously identified (Bredesen, 2009; Lourenco et al., 2009).

Figure 8.1: Manhattan plot of the -log(p-values) computed across the genome with
the DBF test applied with the Sokal and Sneath genetic distance measure. Each point
represents a window containing a multi-locus SNP set consisting of 5 contiguous SNPs.
The dashed line represents the genome-wide significance threshold of -log(10−7). The
black and gray colours are used to distinguish between adjacent chromosomes.

We also compare our results with those obtained using LKMT. Since LKMT makes

use of an approximate distribution rather than permutations, it is a direct competitor
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of the DBF test in case-control GWA studies with no non-SNP covariates. We apply

LKMT across the SNP sets of chromosome 19, which is the chromosome in which we

obtained the smallest p-values. We apply the IBS kernel function and monitor the ap-

proximate p-values which result from LKMT. Figure 8.2 provides a visual comparison

of the p-values obtained by both methods in this chromosome. Note that both meth-

ods identify the same SNPs at the significance threshold of 10−7, i.e., the ones listed

in Table 8.1. This provides evidence that DBF performs comparably with LKMT, as

they both identify the well-known APOE and TOMM40 genes.
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Figure 8.2: Manhattan plot of the -log(p-values) computed across chromosome 19 us-
ing the DBF and LKMT tests with the IBS distance measure and IBS kernel function,
respectively. Each point represents a multi-locus SNP set consisting of 5 contigu-
ous SNPs, and the dashed line represents the transformed genome-wide significance
threshold of -log(10−7).

8.3 Candidate-Phenotype Multi-Locus GWA Study of Alzheimer’s

Disease with the Pseudo F Test

In this section we describe a candidate-phenotype multi-locus GWA study of AD in

which the pseudo F test is used with distances applied to the imaging data. The

objective is to model the explanatory relationship of a multi-locus SNP set on a set of
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voxels which have been preselected from all the available voxels. On first describing

the data, we describe how the voxels have been selected. We then describe how a

distance-based signature characteristic of AD can be derived from these voxels. The

application of the pseudo F test to the data is then described and we present the

findings.

8.3.1 Data Description

The data is described in Silver et al. (2012) and was obtained from the ADNI database.

The original sample consists of 464 elderly subjects representing three groups; 99 have

AD, 211 exhibit mild cognitive impairment (MCI), and 154 are healthy controls. They

have been genotyped across the entire genome, and longitudinal MRI brain scans have

been obtained. For this study we only consider the 253 AD and control samples.

Originally, the genetic markers observed on the subjects consist of SNPs and copy

number variations (CNVs). Only SNPs in chromosomes 1 to 22 are considered for this

study, and after pre-processing 434, 271 remain for analysis (Silver et al., 2012).

The longitudinal MRI scans of the subjects’ brains were observed at screening and

followed up at 6, 12 and 24 months. To derive a neuroimaging phenotype from these,

Silver et al. (2012) selected the subset of voxels deemed most discriminative between

AD and control status. This subset was found via the following data-driven approach.

For each subject a slope coefficient was obtained for each voxel representing the ven-

tricular volumetric change across the 3 time-points relative to baseline, i.e., the initial

scan. ANOVA was then performed at each voxel to quantify the difference between

the average slope coefficients observed for the AD and control subjects, adjusting for

age and sex. On applying a familywise error rate of 5% to the ANOVA p-values, a

subset of 148, 023 voxels exhibited significant non-zero differences between average AD

and control slope coefficients. The neuroimaging phenotype data matrix used in this

study is comprised of the slope coefficients of each of the 253 subjects at the selected

148, 023 voxels.



8.3 Candidate-Phenotype Multi-Locus GWA Study of Alzheimer’s
Disease with the Pseudo F Test 164

8.3.2 Choice of Image Distance Measure

In order to derive a distance-based signature characteristic of AD given the observa-

tions of the preselected voxels, we choose a distance measure from a selection such

that separation is exhibited between the AD and control samples.

Distances which have been applied in the imaging literature include the Euclidean

distance, Pearson’s correlation distance and the NMI distance (Michaels et al., 1998;

Holden et al., 2000). We therefore consider these. In addition, we consider the Man-

hattan, Maximum, and Spearman’s correlation distances. This selection of distance

measures allows a range of possibly complex relationships to be captured across the

observations of the voxels. For instance, Pearson’s and Spearman’s correlation dis-

tances capture positive linear relationships between the observations, while the NMI

distance captures dependence between them.

Having obtained each of these distance matrices from the voxel data, we apply the

DBF test to quantify the separation between the AD and control samples. In Figure 8.3

we provide 2-dimensional MDS plots of the samples showing the separation exhibited

by each distance matrix, ranked in descending order of their respective DBF statistic

values; Spearman’s correlation (DBF=0.4504), Pearson’s correlation (DBF=0.4351),

Manhattan (DBF=0.2788), Euclidean (DBF=0.254), Maximum (DBF=0.1655) and

NMI (DBF=0.005) (all are significant except for the NMI distance). The correlation

distances exhibit the most separation, indicating a difference in the strength of positive

linear relationships between the ventricular volumetric changes of the AD and control

samples.

To see even more clearly how this separation is depicted, heatmaps of the normal-

ized centered inner product matrices of the Spearman’s correlation, Euclidean and NMI

distance matrices are presented in Figure 8.4. We see that the clearest signal is indeed

provided by the normalized centered inner product matrix arising from Spearman’s

correlation centered inner product matrix. We therefore retain the corresponding dis-

tance matrix and use it in the GWA study.
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Figure 8.3: 2-dimensional MDS plots showing the separation exhibited by each of the
distance measures between AD and control samples: Spearman’s correlation, Pearson’s
correlation, Manhattan, Euclidean, Maximum and NMI. Spearman’s and Pearson’s
correlation exhibit the most separation, as indicated by their DBF statistic values.
The NMI distance exhibits the least separation, achieving the lowest DBF value.

8.3.3 Experimental Results

We apply a sliding window of 7 contiguous SNPs across the genome chromosome-by-

chromosome. This results in 434, 139 multi-locus SNP sets, with the observations of

each forming a 253 × 7 predictor matrix of full rank (a sliding window of length 5

resulted in predictor matrices which were not all of full rank). The pseudo F test is

applied to model the variation observed in the chosen image distance matrix in terms

of each of the SNP set predictor matrices. The p-values have been presented in the

Manhattan plot shown in Figure 8.5, showing that the main effects highlighted by a

significance threshold of 10−7 are in chromosome 19.

To identify significant SNP sets, and hence SNPs, we apply multiple-testing correc-

tions to the p-values and set a threshold significance level. The Bonferroni correction

is applied and the familywise error rate controlled at 5%, and both the Benjamini-
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AD; APOE, TOMM40, APOC4, PVRL2 and CLPTM1. These overlap with the results

of the DBF test described in Section 8.2. In addition, we also find rs10413089 which

has been previously identified by Cervantes et al. (2011) via a fine mapping analysis

of the APOE cluster genes (APOE, APOC1, APOC4, APOC2, and TOMM40).

8.4 Candidate-Phenotype Multi-Locus GWA Study of Alzheimer’s

Disease with the GRV Test

In this section we report on a candidate-phenotype multi-locus GWA study of AD

conducted with the GRV test. Here a distance measure is used for both the imaging

data and the genetics data. The imaging data and corresponding distance measure

used are as described in Section 8.3. The SNP data is also as in Section 8.3, for which

a range of distance measures and sliding window lengths are used in conjunction with

the GRV test. We report on the findings and also provide some illustrative examples

demonstrating how the GRV test works for this real dataset.

8.4.1 Experimental Results

Within the GRV testing framework the image centered inner product matrix remains

fixed, and results from the Spearman’s correlation distance matrix selected as in Sec-

tion 8.3. We then apply three separate sliding windows across the genome; following

Yang et al. (2009) we consider one of length 3, one of length 5 and one of length 7.

For each SNP set obtained with each sliding window, the IBS, Sokal and Sneath, and

Rogers and Tanimoto I distances are computed. This results in nine separate GWA

studies, where the genome is partitioned into 434, 227 SNP sets containing 3 SNPs,

434, 183 SNP sets containing 5 SNPs, and 434, 139 SNP sets containing 7 SNPs. On

applying the GRV test with each SNP distance measure, the corresponding number of

p-values are obtained.

The three multiple-testing corrections used in Section 8.3 were also used in this

study. To show the different SNP sets identified via these corrections, we present the

Manhattan plot obtained by using a sliding window of length 3 and the Sokal and

Sneath distance measure in Figure 8.6 (a). The dashed line represents the threshold

value controlling the familywise error rate at 5%. Figure 8.6 (b) shows the equivalent
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p-values after being corrected via the Benjamini-Hochberg procedure and 8.6 (c) shows

the equivalent q-values after using the approach of Storey and Tibshirani (2003). In

both of these plots the dashed line represents the threshold value controlling the false

discovery rate at 5%. For the Bonferroni and q-value approaches the greatest effects

are highlighted in chromosome 19, but for the Benjamini-Hochberg approach some

effects are also located in chromosome 6.

The results of all distance measures and window lengths are summarized in Ta-

bles G.1, G.2 and G.3 in Appendix G, one for each setting of sliding window length.

The majority of SNPs idenfitied are located in chromosome 19, and overlap with the

findings of the DBF and pseudo F tests; they are located in genes APOE, TOMM40,

APOC4, PVRL2 and CLPTM1. As with the pseudo F test approach, rs10413089 is

also identified in chromosome 19. In addition to these previously reported variants,

we identified several SNPs in chromosomes 1 and 6 as being associated with AD, none

of which appear in the literature on Alzheimer’s disease.

Finally, we give an illustrative example of how the GRV test works by considering

two SNP sets of length 5, and applying the IBS genetic distance measure. One SNP

set contains the apoe4 SNP, representing a well-known genetic variant associated with

AD, and one contains the rs999562 SNP, representing a variant not known to be

associated with AD. For each SNP set the normalized centered inner product matrix

arising from the IBS distance matrix is obtained, and hierarchical clustering is applied

to give some order to the samples given the observed distances (see, for instance,

Venables and Ripley (2002)). The resulting clusters can be visualized using heatmaps

or dendrograms; we provide the heatmaps in Figures 8.7 (a) and 8.7 (c). The GRV

statistic and p-value indicating the strength of association between the SNP set and

the neuroimaging phenotypes is also given, and it is seen that the SNP set containing

apoe4 is associated with AD (GRV statistic is 0.104 and corresponding p-value is

1.27×10−9) while the SNP set containing rs999562 is not (GRV statistic is 0 .0151 and

corresponding p-value is 0.0835).

For the genetic heatmaps arising from each SNP set, the samples are ordered differ-

ently as they depend on the separate clustering results. We compare these heatmaps

with those arising from the neuroimaging phenotype distances upon applying the same

ordering of samples. In this way the genetic and neuroimaging phenotype heatmaps
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are directly comparable for each SNP set. The image heatmap given in Figure 8.7

(b) presents the samples ordered based on the clustering results arising from the SNP

set containing apoe4. Similar patterns are visible in this heatmap and the genetic

heatmap in Figure 8.7 (a), and this similarity is detected by the GRV test. In Figure

8.7 (d) the image heatmap is obtained by ordering the samples using the clustering

results arising from the SNP set containing rs999562. Here we do not see clear sim-

ilarities between the genetic and image heatmaps as in Figures 8.7 (a) and 8.7 (b),

suggesting much weaker association, as depicted by the GRV test results.

The GRV statistic has been shown to measure the linear correlation between the

elements of two normalized centered inner product matrices. Therefore the degree of

similarity between the patterns exhibited by the imaging data and each SNP set can

also be observed by looking at the respective scatter plots of the normalized centered

inner product matrix elements arising from each. The two scatter plots are provided

in Figures 8.8 (a) and (b). In (a) the elements arising from the neuroimaging phe-

notypes are plotted against the elements arising from the SNP set containing apoe4.

The gradient of the superimposed regression line equals the GRV statistic value, and

it is clear that there is a linear correlation between the elements of the respective nor-

malized centered inner product matrices. Hence there is an association between the

neuroimaging phenotypes and the SNP set containing apoe4. (b) provides the equiva-

lent plot for the elements arising from the SNP set containing rs999562. The regression

line has a much lower gradient than in (a), indicating a much weaker association.

8.5 Summary

Imaging genetics is a growing area in which the genetic variants associated with dis-

ease risk are sought using imaging phenotypes of disease. The imaging and genetics

data are both high-dimensional, and each exhibit complex characteristics. Recent

methods have adopted the idea of similarity through the use of kernel functions in

order to capture the joint effects and possible interactions of multiple SNPs through

similarities. For imaging data, however, the notion of similarity/distance has not been

considered when the interest is in locating spatial regions (sets of voxels) of the brain

which exhibit effects associated with genetic variation. Instead, ad-hoc procedures

using independently-derived information from each voxel are adopted. We have shown
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through the use of the pseudo F and GRV tests that all voxels in a given voxel set can

be modeled simultaneously through the use of distances. In the applications presented

the voxel set was chosen based on a discriminative analysis of all voxels. Regardless

of how the voxel sets are defined, the distance-based pseudo F and GRV approaches

can still be applied.

We have presented three separate GWA studies of AD; one case-control study and

two candidate-phenotype studies. The case-control study was performed using the

DBF test, resulting in well-known genetic variants being identified. We have also

shown that the DBF test is competitive with the LKMT (when ignoring non-SNP

covariates).

For the candidate-phenotype GWA study paradigm we have shown that the pseudo

F and GRV tests can be successfully applied to find genetic variants associated with

AD. The analyses described comprise the first known GWA studies of AD in which dis-

tances are applied to neuroimaging phenotypes. The results indicate that observations

of multiple voxels can be considered simultaneously through the use of distances.

The pseudo F and GRV tests offer two different approaches to performing GWA

analysis. The pseudo F test models multiple SNPs as predictors of the imaging data,

whose variation is assessed through distances. In this regression framework, restric-

tions on the predictor matrix being of full rank can cause difficulty in its implemen-

tation. The GRV test, however, is symmetric in the sense that it does not model

the predictive ability of one set of data on another, and so overcomes the limitations

hindering the effective implementation of the pseudo F test in GWA studies. It also

offers greater flexibility as any distance can be applied to each type of data.

The results indicate that the GRV test utilizing distances from both imaging and

genetics data can yield potentially interesting insights when used in conjunction with

GWA studies. The well-known SNPs/genes highlighted by the DBF and pseudo F

tests were also highlighted by the GRV test, but in addition, other SNPs previously

unidentified by other studies were also highlighted. This shows that there are poten-

tially interesting insights to be gained by using distances applied to the imaging data,

in addition to the genetics data.
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Table 8.1: Significant SNPs and genes identified by the DBF test using each genetic
distance measure and a genome-wide significance threshold of 10−7. The chromosome
in which the SNPs were identified are given, in addition to the p-value of the sliding
window containing the given SNP. Where SNPs are present in more than one selected
window, the minimum p-value of the windows is given.

Distance
measure

SNP Gene
Chromo-
some

P-value
of window

IBS

rs2075650
rs8106922
rs5167
apoe4
rs3760627
rs405509
rs2075642
rs6859
rs157580

TOMM40
TOMM40
APOC4
APOE
CLPTM1
APOE
PVRL2
PVRL2
TOMM40

19
19
19
19
19
19
19
19
19

1.626 × 10−10

3.600 × 10−10

4.844 × 10−10

4.844 × 10−10

1.237 × 10−9

3.080 × 10−9

6.449 × 10−8

6.449 × 10−8

6.449 × 10−8

Sokal
and Sneath

apoe4
rs405509
rs2075650
rs8106922
rs157580
rs1222938
rs12960771
rs1560531
rs2960617
rs3862684
rs2075642
rs4803766
rs6859
rs17748116

APOE
APOE
TOMM40
TOMM40
TOMM40
DCC
DCC
DCC
DCC
DCC
PVRL2
PVRL2
PVRL2
DCC

19
19
19
19
19
18
18
18
18
18
19
19
19
18

8.458 × 10−11

8.458 × 10−11

8.458 × 10−11

8.458 × 10−11

2.104 × 10−8

5.736 × 10−8

5.736 × 10−8

5.736 × 10−8

5.736 × 10−8

5.736 × 10−8

7.498 × 10−8

7.498 × 10−8

7.498 × 10−8

8.212 × 10−8

Rogers and
Tanimoto I

rs157580
rs2075650
rs8106922
rs5167
apoe4
rs405509

TOMM40
TOMM40
TOMM40
APOC4
APOE
APOE

19
19
19
19
19
19

4.129 × 10−10

4.129 × 10−10

1.067 × 10−9

6.915 × 10−8

6.915 × 10−8

6.915 × 10−8

Simple
Matching,
Hamman I

apoe4
rs405509
rs157580
rs2075650
rs8106922

APOE
APOE
TOMM40
TOMM40
TOMM40

19
19
19
19
19

2.738 × 10−10

2.738 × 10−10

2.738 × 10−10

2.738 × 10−10

2.738 × 10−10
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Table 8.2: Significant SNPs and genes identified by the pseudo F test applied with
the Spearman’s correlation image distance and a sliding window of length 7, with
familywise error and false positive rates controlled at 5%. The chromosome in which
the SNPs were identified are given, in addition to the p-value of the sliding window
containing each SNP. Where SNPs are present in more than one selected window, the
minimum p-value of the windows is given. The columns B (for Bonferroni), BH (for
Benjamini-Hochberg) and Q (for q-value) indicate with which p-value correction the
SNPs were identified.

SNP Gene
Chromo-
some

P-value
of window

P-value
correction

B BH Q

rs2075650 TOMM40 19 2.282 × 10−8 X X X
rs8106922 TOMM40 19 2.282 × 10−8 X X X
rs405509 APOE 19 2.282 × 10−8 X X X
apoe4 APOE 19 2.282 × 10−8 X X X
rs439401 APOE 19 2.282 × 10−8 X X X
rs5167 APOC4 19 2.282 × 10−8 X X X
rs10413089 19 2.282 × 10−8 X X X
rs760114 CLPTM1 19 2.700 × 10−8 X X X
rs3760627 CLPTM1 19 2.786 × 10−8 X X X
rs157580 TOMM40 19 5.583 × 10−8 X X X
rs11668758 19 1.685 × 10−7 X X
rs387976 19 3.070 × 10−7 X X
rs6859 PVRL2 19 3.070 × 10−7 X X
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Figure 8.6: Manhattan plots of the -log(p-values) and adjusted -log(p-values) com-
puted via the GRV test across the genome for the Sokal and Sneath genetic distance
measure. Each point represents a window containing a multi-locus SNP set consist-
ing of 3 adjacent SNPs. The black and gray colours are used to distinguish between
adjacent chromosomes. (a) -log(p-values) with the dashed line representing the Bon-
ferroni significance threshold of -log(0.05/434227) controlling the familywise error rate
at 5%. (b) -log(Benjamini-Hochberg-corrected p-values) with the dashed line repre-
senting the significance threshold of -log(0.05) controlling the false discovery rate at
5%. (c) -log(q-values) with the dashed line representing the significance threshold of
-log(0.05) controlling the false discovery rate at 5%.
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Figure 8.8: Scatter plots of the elements of the normalized centered inner product
matrix arising from the neuorimaging phenotype distance matrix against the elements
arising from the SNP set distance matrices (gray points). The linear regression lines
(black lines) are superimposed indicating the strength of correlation between the val-
ues. The gradient of these lines equals the respective GRV statistic values. (a) Neu-
roimaging phenotypes against the SNP set containing apoe4. (b) Neuroimaging phe-
notypes against the SNP set containing rs999562. A stronger correlation is evident
between the normalized centered inner product matrix elements arising from the neu-
roimaging phenotypes and the SNP set containing apoe4.
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Chapter 9

Microarray Gene Expression

Studies

In this chapter we introduce microarray gene expression studies, explaining two biolog-

ical problems of interest where such data is used. These problems are the identification

of genes whose expression differs over time between populations, and gene expression

quantiative trait loci (eQTL) mapping where genes associated with SNPs are sought.

For each of these problems we review existing approaches, highlighting areas for further

development and how these can be addressed by the DBF and GRV tests, respectively.

We then apply the DBF test to perform a differential analysis of a human immune cell

M.tuberculosis dataset, the GRV test to perform an eQTL mapping of ovarian cancer,

and present the findings of each study.

9.1 Gene Expression and Microarrays

In genomic experiments, researchers are interested in understanding the role of indi-

vidual genes or collections of genes in achieving particular biological functions. For

these studies, the biological variable of interest is gene expression. For instance, the

interest may be in identifying genes which contribute to controlling a given infection,

and this can be achieved by studying the effects of disease on gene expression. Al-

ternatively, the interest may be in detecting genes which are differentially expressed

between different populations or treatments. This can be achieved by studying the

expression of genes within and between populations or treatments.
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The starting point of many studies which seek to identify particular genes is the

observation of expression levels of thousands of genes on a given cohort of biological

replicates, such as cells. In the following paragraphs we describe what is meant by the

term ‘gene expression level’, and how the expression levels of thousands of genes can

be simultaneously observed using microarray technology.

Each replicate in the given cohort contains a copy of the complete DNA sequence,

and genes are defined by small sections of this sequence. A gene is said to be expressed

if there is a transfer of genetic information from the respective section of DNA of which

it is comprised, to protein, which is used to perform biological functions within the

replicate. This transfer is performed by messenger RNA (mRNA), and the level of

gene expression is quantified by the abundance of this mRNA.

The relatively recent advent of microarray technology allows the simultaneous ob-

servation of mRNA abundance for thousands of genes using mRNA extracted from

a biological replicate (see, for instance, Gibson and Muse (2004)). A microarray is

a surface typically of the order of a few centimeters squared, containing many small

deposits of DNA, referred to as ‘transcripts’ or ‘probes’. Each probe corresponds to

one gene, and multiple probes can correspond to the same gene. A process known as

hybridization is then used to indicate which probes exhibit abundance of the mRNA

extracted from the replicate; mRNA is said to be hybridized to the microarray. The

probes exhibiting higher levels of abundance indicate the genes which are more ex-

pressed than others. Repeating for each replicate in the given cohort yields many

observations of mRNA abundance for each probe, and hence each gene.

The ability to easily observe the expression levels of thousands of genes allows

researchers to perform a wide range of experiments. A common set of experiments

conducted are longitudinal microarray time course experiments, where repeated mea-

surements of mRNA are extracted from all the available replicates at a relatively small

number of time-points. Through hybridization to microarrays, the expression level of

all genes can be observed over time, yielding time courses for each probe/gene. These

time courses capture the temporal evolution of the genes’ expression levels, and are

typically compared between different populations in order to identify genes which are

differentially expressed. A review of such studies is provided in Section 9.2, in addi-

tion to a differential analysis of human immune cells in response to the M.tuberculosis
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infection.

Gene expression can also be used as phenotypes in GWA studies. In this case, the

gene expressions are typically observed in addition to SNPs for each replicate, and the

interest is in detecting individual SNPs or collections of SNPs which are associated

with a gene, or multiple genes. This is commonly referred to as eQTL mapping, and

we describe these studies in more detail in Section 9.3. An eQTL pathway analysis of

ovarian cancer is also presented.

9.2 Longitudinal Microarray Time Course Studies

In longitudinal microarray experiments, the temporal evolution of expression levels of

thousands of genes are monitored in an attempt to understand the dynamic processes

that regulate them (Storey et al., 2005b). A common aim of such studies is to compare

gene expression profiles observed in different populations or under different experimen-

tal conditions, and to identify genes whose temporal profiles differ significantly.

The data produced by such longitudinal studies present several challenges for sta-

tistical analysis. Tests developed for cross-sectional data, such as the t test and its

many modifications, are inadequate because they are only able to detect differential

expression at individual time-points and they ignore the temporal dependencies that

are typical of the experimental data (Storey et al., 2005b). Models from classical time

series analysis are also limited in scope as the time courses are generally very short,

sampled at irregularly spaced time-points, and often contain missing data (Tai and

Speed, 2005; Bar-Joseph et al., 2003).

Over the last few years these issues have led to an increasing interest in the applica-

tion of FDA techniques to model the longitudinal time courses as smooth curves (see,

for instance, Ramsay and Silverman (2006) and Wu and Zhang (2006)). This results

in a set of inferred curves representing the time courses of each probe, and these are

subjected to testing in order to assess if there is a significant difference between the

expression curves of each population.

The problem of detecting differentially expressed genes can be framed as a test of

the null hypothesis of equality between curves belonging to different populations or

groups. This problem has been considered in the non-parametric statistics literature

and in the microarray literature. A brief review of methods in each field are given in
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Sections 9.2.1 and 9.2.2, respectively.

9.2.1 Existing Methods in the Non-Parametric Statistics Literature

Existing tests of equality between curves can be categorized by the way in which the

corresponding statistics use the information provided by the sample curves. For in-

stance, some approaches explicitly use all curves in the statistic, while others only use

the mean curve estimated for each group. In addition, some methods treat the curves

as infinite-dimensional objects while others use finite but high-dimensional represen-

tations of the curves by discretizing them over a large number of time-points, i.e., the

curves are vectorized.

Vectorization approaches include functional ANOVA (FANOVA) (Ramsay and Sil-

verman, 2006), high-dimensional ANOVA (HANOVA) (Fan and Lin, 1998), and the

graphical SiZer approach of Park and Kang (2008). The FANOVA approach of Ramsay

and Silverman (2006) is proposed as a method for detecting differences between curves

at a specific time-point. It applies the classical univariate ANOVA F test to the values

of the curves at the given time-point, and where many time-points are of interest,

the tests are applied independently. This approach therefore yields a multiple-testing

problem which must be addressed.

The HANOVA approach of Fan and Lin (1998) considers using many time-points

simultaneously within the corresponding statistic, as opposed to single time-points

independently. For this approach the mean curves of two groups are represented by

high-dimensional longitudinal vectors, and the vector of differences between these is

obtained. Dimensionality reduction is performed to differentiate noise from actual

signals in this vector of differences, and this is achieved by applying a discrete Fourier

transform. The result is a representation in the frequency domain where high frequency

components are discarded as noise. An adaptive Neyman statistic is then proposed

which sums the remaining differences in the frequency domain, and is shown to have

an asymptotic distribution.

Park and Kang (2008) use a graphical device called SiZer to visualize the differences

between any pair of mean curves by discretizing them at many time-points. This

method is based on local polynomial kernel smoothing (see Wu and Zhang (2006)),

which is defined by a bandwidth which dictates the level of smoothing. SiZer lets
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the bandwidth take a range of values, and for each resulting resolution computes the

difference between the mean curves and the corresponding confidence intervals of the

differences at the discretized time-points. If the confidence intervals do not contain zero

for a given time-point and resolution, the curves are said to be different at that point

in time and resolution. This method offers the practitioner a detailed visual analysis

of where the differences occur and in what resolution, utilizing as much information

as possible from the local polynomial kernel smoother.

For these high-dimensional vectorial approaches, better inference results from con-

sidering more time-points as more information regarding the temporal behaviour of

the curves is used. Testing procedures which respect the infinite dimensionality of

the curves are therefore expected to have more power to detect differences between

groups. Approaches include the functional F test of Shen and Faraway (2004), and

the L2-based approaches of Cuevas et al. (2004) and Zhang et al. (2010).

Shen and Faraway (2004) generalize the single time-point FANOVA procedure of

Ramsay and Silverman (2006). In FANOVA, the classical between- and within-group

variance quantities are computed at a given time-point, and hence are both a function

of time. Shen and Faraway (2004) generalize these quantities by integrating over all

time-points in the given time-range. A functional F statistic is then defined by the

ratio of these generalized between- and within-group quantities, and for a large sample

size this statistic is shown to have an approximate F distribution under the null.

In a two-group setting, Cuevas et al. (2004) propose a statistic proportional to the

L2 distance between the group mean curves. This statistic rejects the null hypothesis

for large values, and the authors give details of an asymptotic distribution. A similar

statistic is proposed by Zhang et al. (2010), which we denote the TN statistic. It is

proportional to the L2 distance between the mean curves, and significance is assessed

via permutations.

Many other approaches also exist, such as the approach of Behseta and Kass (2005)

which considers detecting differences between curves by using their respective basis

coefficients. Other methods consider comparing the residuals obtained by modeling

the original longitudinal vectors via local polynomial kernel smoothers - the residuals

are the differences between the fitted values at the observation time-points and the

observed values. Such methods include those described by Neumeyer and Dette (2003),
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Pardo-Fernández et al. (2007) and Hall and Van Keilegom (2007).

9.2.2 Existing Methods in the Microarray Literature

A widely used method for detecting differentially expressed genes is EDGE, proposed

by Storey et al. (2005b). The longitudinal time courses arising from each probe are

modeled via a functional mixed-effects model comprising of a mean curve and an addi-

tive replicate-specific effect at the observation time-points. Under the null hypothesis

of equality between population curves, all time courses are modeled as coming from one

population. Natural cubic splines are used, and deviation of each replicate from this

curve is captured via the replicate-specific effects. Under the alternative hypothesis

the time courses of different populations are modeled via separate models.

Under the null and alternative models the residuals are computed and an F-type

statistic is computed as the ratio of two components; the difference in sum of squared

residuals under the null and alternative, and the sum of squared residuals under the

alternative. Larger values of this statistic indicate that separate modeling of the time

courses arising from each population yields a better fit of the observed data. Thus

larger values provide evidence of differential expression, and significance is assessed

via application of the bootstrap procedure.

A functional hierarchical empirical Bayes approach has been proposed by Hong

and Li (2006) for a two-group setting. The replicate time courses in a given gene are

modeled via B-spline basis expansion, where the basis coefficients are comprised of

a gene-specific component and a replicate-specific component. The replicate-specific

component is equal to a Bernoulli random variable multiplied by a constant repre-

senting the difference between the coefficients for curves of different populations. The

random variable dictates whether or not this difference exists in modeling a particu-

lar replicate. For instance, if the variable is zero-valued for all replicates, then this

suggests there is no difference between populations. The posterior probability of a dif-

ference existing is computed as one minus the probability that the Bernoulli random

variable is zero given all the data. A hierarchical model is specified to compute this

probability, and an EM algorithm is used to obtain the required parameter estimates

for this model. The probability associated with each gene is used as the statistic of dif-

ferential expression, and significant genes are identified by ranking these probabilities
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and applying a threshold cutoff.

Bar-Joseph et al. (2003) also consider a two-group setting, and model the two pop-

ulation curves in each gene as noisy realizations of the other under the null hypothesis.

By setting one of the estimated curves to be a reference curve, optimal fitted values

of the second curve are sought such that the probability of the curve being a noisy

realization of the reference curve is maximized. This uses the L2 norm of the difference

between the two curves, and once the optimal fitted values are found, the Euclidean

distance between these and the actual fitted values of the second curve is obtained.

The statistic of differential expression is then taken to be a value proportional to this

Euclidean distance, which is shown have a Chi-squared distribution under the null.

Other methods include PACE (Liu and Yang, 2009), which uses a functional mixed-

effects model with replicate-specific effects modeled in terms of functional principal

components, and the functional Bayes approach of Angelini et al. (2007). A compre-

hensive review of methods can be found in Coffey and Hinde (2011).

9.2.3 Limitations of Existing Methods for Microarray Applications

The underlying assumption shared by all methods in the non-parametric and microar-

ray literature is that, under the null hypothesis of equality between curves, the area

between them is zero. This is equivalent to the L2 distance being zero, showing that ex-

isting methods either explicitly or implicitly test a null hypothesis of zero L 2 distances

between population curves. The rest of this section describes how this is restrictive

for longitudinal microarray studies, and we argue that using other distances can be

beneficial in longitudinal microarray time course analysis.

The L2 distance is only concerned with vertical distances between points taken

on each curve, so expression profiles may not necessarily exhibit shape-based differ-

ences in the time-varying patterns of mRNA abundance even when having large L 2

distances. We illustrate this in Figure 9.1, where we consider several types of differ-

ence between two simulated gene curves. The solid vertical lines indicate the vertical

distances considered when computing the L2 distance. For both the A1 and A2 com-

parisons (top row) the L2 distances are equal (indicated by dL = 3.24 in the plots),

indicating that the area between the two curves (shaded region) is the same in both

cases. However, there is a clearly visible difference in their respective shapes. Specifi-
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cally, halfway through the time course, the expression levels in A1 increasingly diverge

as time progresses, whereas the expression levels in A2 both plateau.
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Figure 9.1: Four different comparisons between two simulated gene curves illustrating
the effects of using the L2 (dL), Visual L2 (dV ) and Curvature (dC) distances. The
curves in A1 and A2 have the same L2 distances (represented by the shaded regions
with vertical lines) despite clearly visible differences in the temporal gene expression
patterns. Similarly, the curves in B1 and B2 have the same L2 distances, although the
curves in B1 have quite different time-varying behaviour while those in B2 have the
same shape but are time-delayed. These shape-related differences are better captured
by the Visual L2 and Curvature distances.

For both the B1 and B2 comparisons (bottom row), we again see that the areas

between the curves are the same (dL = 1.8). Whereas the two curves in B2 have very

similar shapes and have only undergone a time-shift, the curves in B1 have different

time-varying patterns, resulting in shapes more different than just being time-shifted.

Thus the L2 distance is unable to identify similar temporal profiles that only differ

due to delays on the time scale. Such time-shifts can be representative of expression

responses which may be slower in one group than another, due to a time-lag in their

transcription control, for example (Qian et al., 2001).
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These examples demonstrate that the L2 distance may be unable to capture clearly

visible differences in the shape of the expression profiles. Hence existing tests that

focus on this distance are expected to have very little statistical power in detecting

certain shape-related differences, as demonstrated by our simulations in Section 5.5.2.

The Visual L2 and Curvature distances can be deployed to capture such shape-related

differences.

The Visual L2 distance takes into account both vertical and horizontal distances

between points on the curves once they have been made scale-invariant. In the A1

comparison in Figure 9.1, the curves have a larger Visual L2 distance (indicated by

dV = 0.56) than in A2 (dV = 0), since once the difference in amplitude has been

removed the two curves have exactly the same shape. Also, the Visual L2 distance is

smaller for the curves represented in the B2 comparison than those in B1. This agrees

with a visual exploration of the curves which clearly shows that the two temporal

profiles are time-shifted, but their shapes are otherwise very similar.

The Curvature distance, on the other hand, quantifies the difference in smoothness

of the curves, and unlike the L2 and Visual L2 distances, will yield a zero value if

the curves are perfect reflections of each other in the time axis (for example, one

having a peak and the other having a trough). Such inverted temporal profiles can

indicate inhibitory relationships between the populations (Shi et al., 2007). In this case

using the Curvature distance will show that the gene curves are considered similar. In

Figure 9.1, the Curvature distance is smaller in B2 than in B1 (indicated by comparing

dC = 0.000033 and dC = 0.00011), showing that similarity in time-shifted curves can

be detected.

9.2.4 Differential Analysis of Human Immune Cell M.tuberculosis Time

Course Data with the DBF Test

Processes that may contribute to controlling M.tuberculosis infection may be high-

lighted by comparing the expression profiles of human phagocytic immune cells -

macrophage and dendritic cells (denoted M/DCs) - that differ in their ability to limit

bacterial growth (Tailleux et al., 2008). In this section we describe a differential anal-

ysis performed on a sample of human immune cells which have been infected with

M.tuberculosis. The analysis was published by us in Minas et al. (2011), and was
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conducted using the DBF test with permutations.

Time course measurements of gene expressions were recorded at 0, 4, 18 and 48

hours after infection using Affymetrix U133A high-density oligonucleotide arrays. The

observation of each type of cell at each time-point was repeated with human immune

cells isolated from 9 healthy donors, yielding N = 18 samples. After pre-processing and

removal of missing data, 10, 995 probes remained for the differential analysis (Tailleux

et al., 2008), each mapped to a particular gene (not necessarily uniquely). Temporal

profiles of all genes were smoothed using cubic smoothing splines, after which they were

normalized at baseline so that any differences detected were relative to pre-infection

state. The DBF test was applied to each probe with the L2, Visual L2 and Curvature

distances and using 24, 310 Monte Carlo permutations.

This results in the simultaneous estimation of 10, 995 p-values, forming a multiple-

testing problem. We use the approach of Storey and Tibshirani (2003) to control the

false discovery rate at 1%. This yields 3, 201 probes exhibiting a significant difference

between the M/DCs in response to M.tuberculosis infection. The Venn diagram in

Figure 9.2 presents a global view of how the distance measures identified these probes.

While there is some overlap between the probes identified by different distance mea-

sures, as expected due to curve patterns exhibiting differences of different types (such

as large areas and diverging over time), many probes are also identified uniquely by

each distance measure.

The significant probes were then grouped into predefined gene ontology (GO) clas-

sifications of genes, resulting in a set of functional categories which were significantly

enriched with each distance measure. In doing so, an overview of the pathways that are

likely to be reprogrammed in dendritic cells compared to macrophages after infection

is accessible. GO terms for membrane invagination (GO:0010324) and endocytosis

(GO:0006897, GO:0016193, GO:0016196), the process whereby phagocytic cells (such

as M/DCs) engulf foreign bodies (such as M.tuberculosis bacilli), significantly over-

lapped with genes recognised using the L2 distance. Additionally, genes associated

with the endosome (GO:0005768) and late endosome (GO:0005770), the membrane

structures containing foreign bodies that are formed during endocytosis, were sig-

nificantly enriched only using the Visual L2 distance. Thus, the Visual L2 measure

identified subtle changes in gene expression between the cell types that did not rely
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Figure 9.2: Venn diagram showing the overlap of significant probes identified by the
L2 (dL), Visual L2 (dV ) and Curvature (dC) distance measures. While many probes
are identified by the same distances, many probes are also identified uniquely by each
distance measure.

on large differences in amplitude across time-points.

The biological significance of the results were also considered by looking at RAB

GTPases, which are a subset of genes involved in intracellular trafficking. They are a

family of small guanosine triphosphatases found on the surface of intracellular mem-

branes that play integral roles in regulating their movement around the cell (Brumell

and Scidmore, 2007). The retention of RAB5 and the failure to recruit RAB7 has

been used to characterize the stalled development of the M.tuberculosis-containing

phagosome (a phagosome is a compartment surrounding the given cell in which for-

eign bodies are digested and killed) (Brumell and Scidmore, 2007). Genes encoding

RAB7A and RAB7L1 were identified to be differentially regulated between M/DCs

using multiple measures (RAB7A with all measures, and RAB7L1 with the L2 and

Visual L2 measures). Figure 9.3 displays the mean M/DC expression profiles for a

selection of genes, of which RAB7A is the first. We see that there is a large difference

in area between the two curves (L2 distance), large scale-invariant differences in shape

(Visual L2 distance), and the macrophage curve changes shape much faster than the

dendritic curve (Curvature distance).

RAB5B and RAB5C were only revealed to be divergently expressed using the L 2

distance, as was also the case for RAB22A (Figure 9.3 (b)) which has been implicated
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Figure 9.3: Mean macrophage (solid) and dendritic (dashed) expression profiles for
genes identified by the DBF test with different distances. (a) RAB7A, identified
with the L2, Visual L2 and Curvature distances. (b) RAB22A, identified with the L2

distance. (c) RAB13, identified with the Visual L2 distance. (d) RND1, identified
with the Curvature distance.

in the reprogramming of M.tuberculosis-phagosome trafficking (Brumell and Scidmore,

2007). The differential expression of RAB13 (Figure 9.3 (c)) and RAB21 were only

detected when considering the differences in the scale-invariant expression profiles as

determined by the Visual L2 distance. For these genes, the divergent pattern of gene

expression over time indicates that distinct processes are impacting upon intracellular

trafficking in macrophages compared to dendritic cells after mycobacterial infection.

This therefore highlights pathways of interest for further investigation. RND1 (Figure

9.3 (d)) and RND3, Rho family GTPases, were only identified when considering the

Curvature distance between the expression profiles. Here, large differences in the speed

with which the profiles changed over time were captured, whereas the direct time-point

comparisons of the L2 distances did not detect significant differences in amplitude.

9.3 eQTL Mapping Studies

eQTL mapping refers to GWA studies in which gene expression phenotypes are used.

Gene expression represents the phenotype ‘most immediately connected to DNA se-

quence variation’ (Rockman and Kruglyak, 2006), since gene expression is directly

regulated by the DNA sequence (see, for instance, Gibson and Muse (2004)). Gene

expression is therefore the bridge between an individuals genotype and phenotypes

such as case-control status of disease or imaging-derived quantitative traits.

An eQTL is a SNP that influences the expression of a given gene, or set of genes.
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The gene expressions are typically observed using microarrays, and hence thousands of

probes can be used as quantitative traits. Due to the large number of genes represented

by these traits which combine together in different ways to perform specific biological

processes, eQTL mapping can yield insights into the genetic effects on the biological

mechanisms underlying susceptibility to complex disease (Cookson et al., 2009).

9.3.1 A Brief Review of Existing Methods

Many traditional approaches to eQTL mapping, such as those described by Stranger

et al. (2005), DeCook et al. (2006) and Quigley et al. (2011), adhere to the ‘single-SNP,

single-trait’ paradigm of GWA analysis. Association is inferred for each SNP-probe

combination individually by using linear regression models in which the SNP is the

independent variable and the probe is the dependent variable. These methods suffer

from two main limitations. Firstly, genes, and therefore their respective expression

traits, are known to function together in networks or pathways (Wessel et al., 2007;

Li et al., 2010). Altered expression levels of a single gene can therefore induce altered

expression in many of the genes within the same pathway, and single-trait analyses

are unable to capture such combined actions. Secondly, considering SNPs individually

ignores joint effects of multiple SNPs, and in particular, interactions between them

cannot be captured (Stranger et al., 2005).

Ad-hoc approaches have been adopted to account for multiple genes working in tan-

dem. For instance, having performed the traditional single-SNP, single-trait analysis,

clustering approaches have been used to group together probes/genes which appear to

be influenced by the same SNP (Morley et al., 2004; Quigley et al., 2011). These ap-

proaches use either Pearson’s correlation or the Euclidean distance applied to sample

gene expressions as the notion of similarity/dissimilarity in the application of cluster-

ing. Thus the consideration of multiple genes is not considered in the actual GWA

analysis.

This limitation has been highlighted by Wessel et al. (2007) and Li et al. (2010). In

both cases, multiple genes are grouped together into pathways, and pathway analyses

are described using the distance-based pseudo F test. The Euclidean distance matrix

is obtained for sampled expressions of all genes in the pathway, and variation in this

distance matrix is modeled in terms of a single SNP or multiple SNPs. Permutations
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are used to assess significance. For the case of a single SNP, Li et al. (2010) also

propose using traditional MANOVA techniques when the number of samples exceeds

the number of probes. Here the sampled gene expressions are treated as vectors coming

from different groups defined by the unique genotypes.

The effect of multiple SNPs on individual traits has also received much attention;

so-called ‘multiple-SNP, single-trait’ GWA analyses are described by Storey et al.

(2005a), McClurg et al. (2006) and Wu et al. (2008). In Storey et al. (2005a), a

linear model is used where the variation in a single trait is explained by the additive

effects of a pair of SNPs in addition to an interaction effect between them. The pairs

of SNPs are selected across the genome using a stepwise procedure designed to be

computationally efficient; using all possible pairs of SNPs yields a number of tests in

the millions, even for a relatively small number of SNPs. In McClurg et al. (2006) and

Wu et al. (2008), a sliding window approach is adopted to select multiple SNPs for

analysis. Each window is comprised of 3 contiguous SNPs, and an ANOVA model is

used where the observations of each trait are grouped based on the unique observations

across the SNPs.

The distance-based pseudo F test with permutations has also been used to model

the variation in a SNP distance matrix in terms of gene expression (Wessel and Schork,

2006). The gene expressions are treated as explanatory variables in the pseudo F re-

gression framework, which may be deemed unintuitive since gene expression is influ-

enced by DNA sequence variation rather than vice-versa. However, it indicates the

utility of SNP distances in eQTL mapping, and this is in addition to separate studies

which apply distance measures to gene expression.

It is clear that approaches are tending towards the paradigm of ‘multiple-SNP,

multiple-trait’ GWA analysis. It is understood that SNPs within a SNP set can have

joint effects and may interact, and it is also understood that many probes/genes can

orchestrate a combined effect. SNPs and probes can be grouped together either as sets

arising from a sliding window or by their existence in the same pathway. Throughout

the literature there is evidence that applying distances to the samples of multiple

SNPs and multiple probes, albeit in separate analyses, can be beneficial in yielding

interesting biological insights.

To our knowledge, no such studies have been performed where distances are simul-
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taneously applied to both data types. Where they are applied in the literature, it is

clear that they offer a way to capture the variation in the given dataset without explic-

itly modeling complex behaviour (such as interactions of SNPs, or the combined effect

of probes/genes in a pathway). Applying distances to both data types will therefore

allow such complex behaviour to be accounted for when seeking associations.

9.3.2 An eQTL Pathway Analysis of Ovarian Cancer with the GRV

Test

A major area of research in understanding ovarian cancer is determining the biological

mechanisms underpinning the development of malignant and chemo-resistant cancer

cells (Chapman-Rothe et al., 2012). In this section we describe an eQTL pathway

analysis of ovarian cancer using the GRV test. This is the first known eQTL pathway

analysis in which distances are applied to both SNP and gene expression data.

The ovarian cancer data used for this analysis is described in Chapman-Rothe et al.

(2012) and was obtained from the Cancer Genome Atlas (TCGA; http://cancergenome.nih.gov/).

The dataset consists of 494 tumour samples, each genotyped at 906 , 600 SNPs across

chromosomes 1 to 22 of the genome, and mRNA samples have been obtained for

each at 22, 277 probes across the genome (after pre-processing). The SNPs and

gene expression probes were independently mapped to genes using annotation infor-

mation obtained from the BioMart database (http://www.ensembl.org/), then sep-

arately grouped into 4, 119 pathways taken from the Consensus Pathway Database

(http://cpdb.molgen.mpg.de/). The interest is in detecting the pathways for which

there is an association between SNPs and gene expression traits (probes).

On using the IBS, Sokal and Sneath and Rogers and Tanimoto I distances for

the SNP data, and the Euclidean and Pearson’s correlation distances for the gene

expression data, we use the GRV test in two ways. An overall pathway analysis was

first conducted, followed by individual pathway analyses. These separate analyses are

described in turn below.

For the overall pathway analysis the objective was to obtain an overall view of

association between all SNPs and all probes. For the SNP data the three genetic

distance matrices were obtained, and for the gene expression data the two gene ex-

pression distance matrices were obtained. On obtaining the corresponding centered
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inner product matrices, the GRV test was applied to the six combinations of SNP

and gene expression distances. Each test was significant, with p-values being below

10−14. We plot the scatter plots of the normalized centered inner product matrices for

each combination in Figure 9.4, showing the associations detected. The superimposed

black lines are the regression lines whose gradients equal the respective GRV statistic

values. All combinations yield association between the SNPs and gene expressions,

suggesting that many of the pathways will also exhibit association.

Figure 9.4: Scatter plots of the elements of the normalized centered inner product
matrix arising from the gene expression distance matrix against the elements arising
from the SNP distance matrix (gray points). The linear regression lines (black lines)
indicate the strength of correlation between the values. The gradient of these lines
equals the respective GRV statistic values. (a)-(c) Euclidean distances applied to
the sampled gene expressions with the IBS, Sokal and Sneath (SS) and Rogers and
Tanimoto I (RTI) distances applied to the observed SNPs. (d)-(f) Pearson’s correlation
(PC) distance applied to the sampled gene expressions with the IBS, Sokal and Sneath
and Rogers and Tanimoto I distances applied to the observed SNPs.

The GRV test was then applied to each pathway individually, using all six combi-

nations of SNP and gene expression distance measures. This resulted in 4 , 119 p-values

for each of the six combinations of distances. On applying the Benjamini-Hochberg
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multiple-testing correction and controlling the false discovery rate at 0 .1%, many path-

ways were identified for each combination of distance measures; see Table 9.1. Of these

pathways, 575 were identified by all combinations, and each combination uniquely

identified a much smaller subset of pathways (shown in brackets in Table 9.1). This

demonstrates that the GRV approach applied with different distance combinations

captures different types of association.

Table 9.1: Number of pathways identified for each SNP-gene expression distance com-
bination on applying the GRV test to the ovarian cancer data. The number in the
brackets refers to the number of pathways which were uniquely identified by the given
combination of SNP and gene expression distance.

HHHHHHHHHHHHHHH

Gene
expression
distance

SNP
distance

IBS Sokal and Sneath Rogers and Tanimoto I

Euclidean 1015 (1) 1976 (19) 1982 (29)
Pearson’s correlation 662 (0) 1532 (2) 1550 (6)

Many of the pathways implicating genes or biological processes as being associated

with ovarian cancer identified via the GRV test have been previously identified in

other studies. Of the 575 pathways identified by all measures, for instance, the VEGF

signaling pathway is well-known (Trinh et al., 2009; Dhillon et al., 2007). It promotes

ovarian cancer progression, and has been the target of successful chemotherapeutic

agents such as Bevacizumab (Burger et al., 2007). The MAPK signaling pathway

is also well-known (Trinh et al., 2009; Dhillon et al., 2007), in addition to the JAK

STAT pathway (Liongue et al., 2012), which is of clinical importance in ovarian cancer;

STAT1 has been shown to control chemotherapy resistance of ovarian cancer cells

(Stronach et al., 2011). Other well-known pathways identified include gap-filling DNA

repair synthesis and ligation in GG-NER and TC-NER (Shuck et al., 2008). The

uniquely identified pathways for the distance combinations have also been previously

identified. For instance, for the Euclidean and IBS distance a pathway involving the

ErBb2 gene was identified, which is a well-known gene associated with cancer (Yu and

Hung, 2000). For the Euclidean and Sokal and Sneath combination, BMP signalling
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and regulation has been identified (Shepherd et al., 2010). The well-known FGFR4

gene (French et al., 2012) was identified with the Euclidean and Rogers and Tanimoto

I distances. On using Pearson’s correlation distance with the Sokal and Sneath and

Rogers and Tanimoto I distances, the IL-9 signalling pathway and point mutants of

the FGFR1 gene have been been previously identified (Hodge et al., 2005; Rand et al.,

2005). These results therefore suggest the validity of the GRV approach in eQTL

pathway analysis.

9.4 Summary

The level of mRNA abundance for a given gene represents its expression level, and the

expression level of thousands of genes can be simultaneously obtained using microar-

rays. This has allowed researchers to conduct a range of exploratory studies, of which

two have been discussed in this chapter; longitudinal microarray time course studies

and eQTL mapping studies.

Longitudinal microarray time course studies were discussed in Section 9.2. The

interest is in detecting genes exhibiting differential expression between populations or

treatments, and this can be framed as a test of the null hypothesis of equality between

curves for each gene. Traditional approaches to this problem have been reviewed in

Section 9.2.1, detailing approaches used in non-parametric statistics, and in Section

9.2.2, detailing methods used in the microarray literature. The inherent limitation that

all methods only detect L2 distances between curves is highlighted in Section 9.2.3,

where we demonstrate that the L2 distance can miss shape-related differences which

can be captured by other distances such as the Visual L2 and Curvature distances.

This observation is also supported by the differential analysis of the human immune

cell M.tuberculosis data presented in Section 9.2.4. The results demonstrate that the

deployment of shape-based distances in the DBF test can lead to meaningful biological

insights. Such distances may be desired in scenarios where large changes in amplitude

of gene expression, as captured by the L2 distance, are not a prerequisite, or where

the differential actions of expression profiles are of interest.

eQTL mapping studies were described in Section 9.3. In such studies the aim is

to identify eQTLs, or SNPs, which are associated with gene expression; essentially,

gene expression phenotypes are used in GWA studies. Traditional approaches are
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described in Section 9.3.1, where it has been highlighted that SNPs can exhibit joint

effects on the expression level of a single probe/gene and multiple probes/genes. In

the literature distances have been adopted for gene expression and SNPs separately,

demonstrating the usefulness of distances in eQTL mapping. For the paradigm of

identifying association between multiple SNPs and multiple probes/genes, however,

no studies have been performed where distances are applied to both SNPs and gene

expressions simultaneously. We have presented the first study of this kind in Section

9.3.2, using the GRV test to identify pathways for which SNPs and gene expression are

associated in ovarian cancer. The findings overlap with previous studies, suggesting

the validity of the fully distance-based GRV approach in eQTL mapping.



195

Chapter 10

Conclusions and Further Work

In this thesis we have considered three statistical problems arising in the bioinformatics

literature, and have focused on the distance-based setting for each. These problems

and existing approaches have been reviewed in Chapters 2, 3 and 4, where limitations

of distance-based methods have been highlighted. A recurring limitation is that in

application to real datasets, computationally expensive permutation testing procedures

are used. Such procedures yield p-value estimates which are plagued by sampling errors

introduced by the relatively small number of permutations typically applied. The

overall contribution of this thesis is the proposal of approximate null distributions for

tests of these problems which allow computationally cheap estimation of p-values for

a variety of distance measures and data types. We summarize marginal contributions

for each problem below.

For the problems of detecting differences between groups and detecting associa-

tion between variables, we have proposed new statistics, the DBF and GRV statistics

(Chapters 5 and 7, respectively), with corresponding permutation procedures for esti-

mating p-values. For each we have proposed approximations to the permutation dis-

tribution which would be obtained by enumerating all permutations, and have demon-

strated the applicability of the resulting approximate null distributions for a range of

distances and data types. Furthermore, competitiveness with existing approaches for

the respective problems have been demonstrated. Finally, we have demonstrated that

the proposed distributions facilitate the effective implementation of each test in bioin-

formatics applications. In Chapter 8 both tests have been applied to GWA studies

of Alzheimer’s disease, and in Chapter 9 the GRV test has been applied to an eQTL
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mapping study of ovarian cancer.

For the problem of detecting predictive relationships between variables, we have

reviewed the distance-based pseudo F test in Chapter 3, which is routinely used in

bioinformatics applications. In Chapter 6 we have proposed an approximation to the

permutation distribution which would be obtained by enumerating all permutations.

This required the analytical derivation of the moments of this permutation distribu-

tion, and simulations were used to show the resulting approximate null distribution is

applicable for a range of distance measures and data types. In Chapter 8 the pseudo

F test with the approximate null distribution has been applied to a GWA study of

Alzheimer’s disease.

This thesis has provided a snapshot of the way distance-based approaches can be

applied effectively in bioinformatics. However, the full potential of such methods has

yet to be realized, as each specific biological problem brings with it new challenges

requiring specialized uses of the distance-based testing procedures. To illustrate this,

we provide some suggestions for further work which require extending the methods

described:

(i) Distance metric learning within the DBF, pseudo F and GRV tests: Distance

metric learning is an area of machine learning concerned with finding an optimal

distance measure for a given problem (see, for instance, Xiang et al. (2008) and

Ying and Li (2012)), such as clustering microarray gene expression data (Xiong

and Chen, 2006).

The problem is typically considered for N Q-dimensional vector-valued obser-

vations {yi}N
i=1, and the interest is in finding the symmetric Q × Q weighting

matrix A such that using the Mahalanobis-like distance measure

d(yi, yj) =

√
(yi − yj)

T A (yi − yj)

maximizes a given objective function. Seeking the optimal weights in A provides

a method of incorporating relationships between variables which is data-driven.

For vector-valued observations, an objective function to be maximized for clus-

tering can be formulated from the DBF statistic by using the above distance,

and numerically solving for the optimal weighting matrix. This involves using
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optimization methods such as those described in Kiers (2002), Boyd and Van-

denberghe (2004) and Xiang et al. (2008). The testing procedure can then be

applied to assess the significance of the observed statistic obtained on finding the

optimal weighting matrix. Similarly, objective functions can be derived from the

pseudo F and GRV statistics to find optimal distances which maximize predictive

effects, and association, respectively.

(ii) Accounting for the effects of population stratification in case-control GWA stud-

ies within the pseudo F testing framework: In case-control GWA studies, pop-

ulation stratification refers to the confounding effect where differences in allele

frequencies of SNPs observed on case and control individuals are due to ethnic-

ity, for instance, instead of association with disease risk (Thomas and Witte,

2002; Price et al., 2010). This leads to increased type I errors in GWA studies,

since SNPs can be identified as causative of disease when in fact they are due to

underlying structures within the cohort (Li et al., 2009).

Li et al. (2009) propose an adjusted pseudo F test to identify causative SNPs

while accounting for population stratification effects, given the genetic distance

matrix ΔY and predictor variables including possible confounding variables and

case-control status. Let the M predictor variables be partitioned such that X =

(X 1;X 2) = (X1, . . . ,XM1 ;XM1+1, . . . ,XM) with M1+M2 = M , where the interest

is in testing for no effect of X 2 on response variable Y (with distances in ΔY),

while adjusting for the effects of X 1. In Li et al. (2009), X 1 is vector-valued and

comprised of the possible confounding variables, such as self-declared ethnicity

etc., and X 2 is the scalar-valued case-control status variable.

Given N observations of X , the predictor matrix is given by X = (X1; X2)

where X1 ∈ RN×M1 and X2 ∈ RN×M2 . The following regression model is then

defined,

Ỹ = X1B1 + X2B2 + E,

where Ỹ is the N × N principal coordinate matrix arising from a principal

coordinate analysis of ΔY , B1 and B2 are the M1 × N and M2 × N matrices of

regression coefficients, respectively, and E is the N × N matrix of errors in the
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model. The null hypothesis to be tested is expressed as

H0 : B2 = 0,

and the adjusted pseudo F statistic used to test this is defined as

F (X 2|X 1) =
tr ((H − H1) GY)

tr ((IN − H) GY)
,

where GY = −CΔ2
YC/2, H = X

(
XT X

)−1
XT , and H1 = X1

(
XT

1 X1

)−1
XT

1 .

Larger values of this statistic provide evidence against the null since the term

tr ((H − H1) GY) in the numerator quantifies the variability in GY explained

after accounting for the effects of X1.

Given an observed value of the test statistic, F̂ (X 2|X 1), inference is performed us-

ing permutations. For Nπ Monte Carlo permutations π ∈ Π, the set {F̂π(X 2|X 1)}π∈Π

is generated where

F̂π(X 2|X 1) =
tr ((H − H1) GY,π)

tr ((IN − H) GY,π)

=
Ĥπ − Ĥ1,π

tr (GY) − Ĥπ

,

where Ĥπ = tr (HGY,π) and Ĥ1,π = tr (H1GY,π) are the permuted values of

H = tr (HGY) and H1 = tr (H1GY), respectively. The p-value is then computed

as the proportion of the Nπ permuted statistics greater than or equal to the

observed F̂π(X 2|X 1), i.e.,

#
(
F̂π(X 2|X 1) ≥ F̂ (X 2|X 1)

)

Nπ

.

Li et al. (2009) use O(103) permutations for N > 2000 samples to estimate these

p-values, which is extremely low.

The methodology derived in Chapter 6 can be applied to approximate the null

distribution of F (X 2|X 1), such that p-values can be estimated without permuta-

tions. The approximate null distributions of H and H1 can be obtained separately
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by applying the proposed results for the permutational moments and using the

Pearson type III approximation. The problem then consists of combining these to

approximate the null distribution of F (X 2|X 1), and this is encompassed within

the vast problem of obtaining the distribution of algebraic manipulations of ran-

dom variables (Springer, 1979).

(iii) Distance-based variable selection within the pseudo F regression framework: A

common problem in linear regression consists of identifying the subset of predictor

variables that ‘best’ explains variation exhibited by the response variable. In

candidate-phenotype GWA studies, such an approach can highlight the subset of

causative SNPs of a given set of SNPs which best explains the variation in the

quantitative phenotype (see, for instance, Vounou et al. (2010)).

A traditional technique used where the response variable is scalar-valued is the

iterative ‘stepwise procedure’ (see, for instance, Rencher (2002)), which uses

the classical F statistic in addition to the partial F statistic (the F statistic

adjusted to account for the effects of a given predictor variable or set of predictor

variables). As a first attempt at a distance-based variable selection method,

we can directly generalize the stepwise regression approach to work within the

pseudo F regression framework, since the pseudo F statistic is a generalization

of the classical F statistic and the adjusted F statistic is a generalization of the

partial F statistic.
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Appendix A

Proof Regarding Hat Matrix in

Regression Setting

Consider the N×M predictor matrix X with N = M , and assume it is of full rank, i.e.,

rank(X) = N . We prove that the corresponding hat matrix H = X
(
XT X

)−1
XT

equals the N × N identity matrix IN .

To proceed we require the following well-known properties of H = {hij}N
i,j=1:

(i) rank(H) = rank(X)

(ii) the N eigenvalues of H , {λi}N
i=1, are either 0 or 1

(iii) rank(H) equals the number of non-zero eigenvalues of H

(iv) 0 ≤ hii ≤ 1 (follows from the fact that H is idempotent)

(v) h2
ij ≤ hii(1 − hii) for i 6= j

(Hoaglin and Welsch, 1978; Dodge and Hadi, 1999). From (i) we have that rank(H) =

N , and using this with (iii) we have that all {λi}N
i=1 are non-zero. Therefore, from

(ii) we have that λi = 1 for all i = 1, . . . , N . Now, from matrix theory we have that

tr (H) =
∑

i=1 λi, so that tr (H) = N . But we also have that tr (H) =
∑N

i=1 hii, so

that
∑N

i=1 hii = N . Using this with (iv), we observe that hii = 1 for all i = 1, . . . , N .

Substituting hii = 1 into (v) yields hij = 0 for all j 6= i. Therefore H = IN , as

required.
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Examples of Distance Measures

Here we present a selection of distance measures which can be applied to measure the

dissimilarities between objects of different types.

B.1 Distance Measures for Vectors

Assume two P -dimensional real-valued vectors x = (x1, . . . , xP )T and y = (y1, . . . , yP )T .

Many measures exist (see, for example, Pekalska and Duin (2005)), of which a few are

provided in Table B.1, along with their ranges and properties, i.e., whether they are

metric or semi-metric. These include the Euclidean, Manhattan, Maximum, Bray-

Curtis, Mahalanobis, Pearson’s correlation and the Cosine angle distances.

Each distance captures a different aspect of dissimilarity between vector-valued

objects. For example, the Euclidean distance provides the length of the line segment

connecting x to y in P -dimensional Euclidean space, which is the shortest distance

between the two points. The Manhattan distance on the other hand, considers the

length between the points with respect to only their projections on the P orthogonal

axes.

The Bray-Curtis measure is of interest in ecological applications (Legendre and

Legendre, 1998), where it was originally proposed for data comprised of integer-valued

counts. It is a weighted Manhattan distance which provides a measure of the propor-

tion of difference between the values of two vectors across all P values.

A greater Pearson’s correlation distance between x and y indicates a weaker pos-

itive linear relationship between the vectors. This is also highlighted by the Cosine
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Table B.1: Commonly encountered distance measures for vector-valued objects. The
(M) or (SM) by each distance name indicates whether it is metric or semi-metric.

Distance Notation Definition Range

Euclidean (M) dE(x, y)
√

(x − y)T (x − y) [0,∞)

Manhattan (SM) dMAN (x, y)
∑P

p=1 |xp − yp| [0,∞)

Maximum (SM) dMAX(x, y) max
p

{|xp − yp|} [0,∞)

Bray-Curtis (SM) dBC(x, y)

∑P
p=1 |xp − yp|

∑P
p=1 (xp + yp)

[0,∞)

Mahalanobis (SM) dMAH(x, y)

√
(x − y)T S−1 (x − y),

S a P × P covariance matrix, P < N
[0,∞)

Pearson’s
correlation (SM)

dPC(x, y) 1 −

∑P
p=1 (xp − x̄) (yp − ȳ)

∑P
p=1 (xp − x̄)2∑P

p=1 (yp − ȳ)2 , [0, 2]

x̄ = 1
P

∑P
p=1 xp, ȳ = 1

P

∑P
p=1 yp

Cosine
angle (SM)

dPC(x, y) 1 −
xT y

||x|| ||y||
, [0, 2]

||x|| =
√∑P

p=1 x2
p, ||y|| =

√∑P
p=1 y2

p

angle distance, which considers the cosine of the angle between the two vectors. If the

vectors ‘point’ in opposite directions, their Cosine angle dissimilarity is greatest. That

is, the are negatively correlated.

A weakness of Pearson’s correlation distance is that Pearson’s correlation coeffi-

cient is sensitive to outliers in the data. A version of this coefficient which has been

proposed to overcome this limitation is Spearman’s correlation. The idea is to apply

Pearson’s correlation to the ranks of the elements of the vectors, rather than the ac-

tual values. In particular, let xr = (xr1, . . . , xrP )T and yr = (yr1, . . . , yrP )T be the

vectors containing the ranks of the elements of x and y, respectively in ascending

order (highest value given rank 1). That is, xrp is the rank of xp, and similarly for

yrp. If several elements of a given vector are equal, they are assigned a rank equal
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to the mean of their respective positions in the list of ascending values. For exam-

ple, for vector (0.1, 0.4, 0.4, 0.5,−31)T , their respective positions are (4, 3, 2, 1, 5)T or

(4, 2, 3, 1, 5)T , so that the ranks are given by (4, 2.5, 2.5, 1, 5)T . Spearman’s correlation

distance between x and y is thus given by

dSC(x, y) = dPC(xr, yr),

which ranges between 0 and 2 and is semi-metric.

Distances like Pearson’s correlation, Spearman’s correlation and the Cosine angle

can only detect linear relationships between vectors. A distance which can detect

any type of dependence between the vectors, not just linear, would be more widely

applicable. Such a distance is provided by using the information-theoretic notion of

normalized mutual information (NMI).

NMI is a measure of dependence between two random variables. In our setting, the

P elements of x and y are considered to be observations of the random variables X and

Y , respectively. NMI uses the idea of information entropy, or entropy, of a random

variable, which is a measure of the uncertainty associated with it. The entropy of

a random variable can be estimated by using the probability mass function (PMF)

found by considering a histogram of the observations. For example, let pX (∙) denote

the PMF of x found by considering the histogram of the elements of x with M bins.

That is, pX (i) gives the proportion of the elements {xp}P
p=1 in the ith bin. We follow

Priness et al. (2007) and use the integer value of
√

P as M . Then the entropy of X is

estimated as

E(X ) = −
M∑

m=1

pX (m)log (pX (m)) ,

and similarly for Y with PMF pY(∙). The joint entropy of X and Y is found by consid-

ering the joint PMF, denoted {pXY(i, j)}M
i,j=1, found by considering a two-dimensional

histogram of x and y. It is then estimated by

E(X ,Y) = −
M∑

m=1

M∑

n=1

pXY(m,n)log (pXY(m,n)) .
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The mutual information (MI) between X and Y is then estimated by

MI(X ,Y) = E(X ) + E(Y) − E(X ,Y),

and is bounded from below by 0 but not from above. The NMI is therefore used

to achieve an upper bound of 1, found by dividing the MI by the larger of the two

individual entropies, that is,

NMI(X ,Y) =
E(X ) + E(Y) − E(X ,Y)

max {E(X ), E(Y)}
,

(Michaels et al., 1998). Thus, NMI(X ,Y) takes the value of 0 if there is no dependence

between X and Y , and the value of 1 if there is maximum dependence. The NMI

distance measure is then defined as

dNMI(x, y) = 1 − NMI(X ,Y),

so that maximum dependence equates to minimum distance. This distance is bounded

by 0 and 1 and is semi-metric. An advantage of this distance over others is that it is

robust with respect to missing values (Priness et al., 2007).

B.2 Distance Measures for Curves

Assume two time-dependent curves x(t) and y(t) defined over the same time-range τ .

The L2 distance represents the area between the curves, and hence the magnitude

of the difference between them (Ferraty and Vieu, 2006; Salem et al., 2010). It is

defined by

dL(x, y) =

(∫

τ

(x(t) − y(t))2 dt

) 1
2

,

is metric and is bounded from below by 0.

The curvature distance quantifies the difference in the rate of change between two

curves (Ferraty and Vieu, 2006), and is defined by

dC(x, y) =

∣
∣
∣
∣

∫

τ

(x′′(t))
2
dt −

∫

τ

(y′′(t))
2
dt

∣
∣
∣
∣ ,
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where x′′(t) denotes the second derivative of x(t), and similarly for y(t). This distance

is semi-metric, and is bounded from below by 0. It is not dependent on magnitude, as

with the L2 distance, but solely on the rate of change of the curves.

The Visual L2 distance quantifies the difference in the scale-invariant shape be-

tween curves, analogously to the difference detected by the human eye (Marron and

Tsybakov, 1995). Whereas the L2 distance compares the vertical distance between

curves, the Visual L2 distance considers both vertical and horizontal comparisons.

The curves are initially scaled both in time and magnitude, so that their values range

between 0 and 1 in time-range τ = [0, 1]; denote these by xs(t) and ys(t) where

t ∈ [0, 1]. They are then represented as infinite sets of points in the two-dimensional

plane, denoted px = {(t, xs(t)) | t ∈ [0, 1]} and py = {(t, ys(t)) | t ∈ [0, 1]}. The visual

L2 distance is then defined by

dV (x, y) =

(∫ 1

0

d2
xy(t)dt +

∫ 1

0

d2
yx(t)dt

) 1
2

,

where dxy(t) is the minimum Euclidean distance between the point xs(t) and all points

py representing ys, and dyx(t) is the minimum Euclidean distance between the point

ys(t) and all points px. Note that dxy(t) is not necessarily equal to dyx(t). This distance

is semi-metric and bounded from below by 0.

Other distances include procedures based on landmarks, such as comparing the

location of the maxima of the curves as in Cerioli et al. (2003). A rank correlation be-

tween two curves has also been defined which is equal to 1 if and only if the curves are

similar (Heckman and Zamar, 2000), which can be converted into a distance measure.

Halima et al. (2005) propose a distance measure which extends this rank correlation

idea by combining it with the locations of the maxima of the curves. Some measures

have also been proposed based on ideas from mathematical morphology which is a

branch of mathematics based on set theory, integral geometry and lattice algebra used

to analyze spatial structures. Dissimilarity measures include comparing morpholog-

ical covariance (Epifanio, 2008) and morphological spatial size distributions (Ayala

et al., 2008). Parui and Majumder (1983) define a range of dissimilarities based on

considering open curves, a finite sequence of equally-spaced points on the curves, and

use notions such as the length of the curves etc. Curves can also be represented by a
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vector of their moments (Epifanio, 2008), so that multivariate distances such as the

Euclidean distance can be applied to these vectors in order to compare the curves.

B.3 Distance Measures for SNPs

Assume two P -dimensional vectors x = (xi, . . . , xP )T and y = (yi, . . . , yP )T with

discrete-valued elements representing minor allele counts at P SNPs.

The identity-by-state (IBS) distance measure is commonly used (Wessel and Schork,

2006; Wu et al., 2010; Mukhopadhyay et al., 2010), giving a summary measure of the

difference in proportion of risk alleles shared across the SNPs. It considers each indi-

vidual SNP directly, and is defined as

dIBS(x, y) = 1 −
1

2P

P∑

p=1

s(xp, yp),

where s(xp, yp) = 0 if xp = 0 and yp = 2, or if xp = 2 and yp = 0, s(xp, yp) = 1 if

xp = 1 and yp 6= 1, or if yp = 1 and xp 6= 1, and s(xp, yp) = 2 if xp = yp. This distance

takes values between 0 and 1 and is semi-metric. Weighted versions of this distance

exist where a weight is attached to each of the P SNPs depending on properties such

as functional significance or frequency of the minor allele (Wessel and Schork, 2006;

Li et al., 2009).

Genetic distances have also been proposed based on the contingency table contain-

ing the frequency that each combination of minor allele counts occurs over the SNPs

(Selinski and Ickstadt, 2005); see Table B.2.

Table B.2: Contingency table containing the frequency of a given combination of minor
allele count between x and y over the P SNPs. mkl is the frequency of x having k
minor alleles and y having l minor alleles.

HHHHHHx
y

0 1 2

0 m00 m01 m02

1 m10 m11 m12

2 m20 m21 m22
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The key statistics in this table are the number of complete matches of the minor

allele counts, m+ =
∑2

k=0 mkk, and the number of mismatches, m− = P − m+, where

the total number of possible matches is P . Based on these quantities, the following

‘matching coefficient’ distance measures can be defined; the Simple Matching distance

dSM (x, y) = 1 −
m+

P
,

the Sokal and Sneath distance

dSS(x, y) = 1 −
m+

m+ + 1
2
m−

,

and the Rogers and Tanimoto I distance

dRTI(x, y) = 1 −
m+

m+ + 2m−
.

There is also the Hamman I similarity measure

sHI(x, y) =
m+ − m−

P
,

which can be transformed into a distance measure as follows. Assume N P -dimensional

minor allele count vectors {xi}N
i=1; this is required in order to normalize the magnitude

of the similarities to the range [0, 1]. The Hamman I distance between xi and xj is

then given by

dHI(xi, xj) = 1 −
s∗(xi, xj)

max
i,j

{s∗(xi, xj)}
,

where s∗(xi, xj) = sHI(xi, xj) + |min
i,j

{sHI(xi, xj)}|. This takes values between 0 and

1 and is semi-metric.

Each of these distance measures focuses on a different aspect of the SNP data. The

Simple Matching distance, for instance, considers only the proportion of direct matches

across the SNPs. The Sokal and Sneath and Rogers and Tanimoto I distances quantify

a ratio of mismatches to matches. The Hamman I distance takes a different approach,

and considers the difference between the matches and mismatches as a proportion of

the number of SNPs.
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B.4 Distance Measures for Graphs

Assume two undirected graphs G1 = (V1, E1) and G2 = (V2, E2) defined with the same

vertex set such that V1 = V2 = V . Each graph can be represented by the symmetric

|V | × |V | matrix A(i) =
{

a
(i)
kl

}|V |

k,l=1
, for i = 1, 2, called the adjacency matrix, which

contains binary elements representing the presence of an edge between any pair of

vertices. That is, the (k, l)th element equals 1 if an edge connects the kth and lth

vertices, and equals 0 if there is no edge between them. The diagonal values are 0,

since no vertex is connected to itself by an edge.

The Hamming distance (Hamming, 1950) captures the number of edges not shared

by graphs G1 and G2. It can be quantified in terms of the adjacency matrices as

dH(G1, G2) =

|V |∑

k=1

|V |∑

l=1

∣
∣
∣a(1)

kl − a
(2)
kl

∣
∣
∣ .

This takes values greater than 0 and is semi-metric.

The Graph Edit distance is obtained by applying the Levenshtein distance (Lev-

enshtein, 1966), initially proposed for strings of symbols or letters, to capture the

minimum number of edits required to transform G1 into G2. The edits include edge

deletions, insertions, and substitutions. A substitution involves simultaneously delet-

ing an edge and inserting an edge, and is considered to be one edit (note that some

variations of the distance count substitutions as two edits, since it is comprised of a

deletion and an insertion). The distance is formulated via a recursive algorithm, which

we define in terms of a(1) =
{

a
(1)
k

}|V |2

k=1
and a(2) =

{
a

(2)
k

}|V |2

k=1
, the vectorized adjacency

matrices, as follows. Define the (|V |2 + 1) × (|V |2 + 1) matrix W = {wkl}
|V |2+1
k,l=1 such

that {wk1 = k − 1}|V |2+1
k=1 and {w1l = l − 1}|V |2+1

l=1 . Then for k, l = 2, . . . , |V |2 + 1,

wkl = min
{

wk−1,l + 1, wk,l−1 + 1, wk−1,l−1 +
∣
∣
∣a(1)

k−1 − a
(2)
l−1

∣
∣
∣
}

,

where | ∙ | is the absolute operator. The graph edit distance is given by dGE(G1, G2) =

w|V |2+1,|V |2+1, that is, the (|V |2 +1, |V |2 +1)th element of W . This takes values greater

than 0 and is semi-metric.

The Maximum Common Subgraph (MCS) distance (Bunke and Shearer, 1998;

Fernández and Valiente, 2001) considers the MCS between two graphs. A subgraph
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which is common to G1 and G2 is a graph whose vertices and edges are contained

within the vertex and edge sets of each graph. The MCS of G1 and G2 is the subgraph

of largest size contained within both graphs, where the size of a graph G = (V,E) is

defined as |G| = |V | + |E|, that is, the total number of vertices and edges comprising

the graph. There exist many algorithms for finding the MCS of two graphs (Bunke

et al., 2002), but since graphs G1 and G2 are assumed to have the same number of

vertices we use a simple procedure to locate the common edges from the adjacency

matrices. The MCS distance is then defined as

dMCS(G1, G2) = 1 −
|MCS(G1, G2)|

max {|G1| , |G2|}
.

This takes values between 0 and 1 and is semi-metric.
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Permutational Moment Results for

the Trace of a Matrix Product

Here we describe the results of Kazi-Aoual et al. (1995) which give the closed form

expressions for the first three permutational moments of the trace of a matrix product.

In particular, consider the statistic T = tr(AB) where the N × N matrices A =

{aij}N
i,j=1 and B = {bij}N

i,j=1 are centered, symmetric, and real-valued. For all N !

permutations Π where each π ∈ Π is a one-to-one mapping of the set {1, . . . , N}

to itself, Tπ = tr(ABπ) where Bπ denotes the matrix B with rows and columns

simultaneously permuted by π. The set {Tπ}π∈Π then contains all N ! permuted values

of T , and has a mean, variance and skewness given by

μT =
1

N !

∑

π∈Π

Tπ, σ2
T =

1

N !

∑

π∈Π

T 2
π − μ2

T , and γT =
1

N !

∑
π∈Π T 3

π − 3μT σ2
T − μ3

T

σ3
T

,

respectively.

The closed form expressions of these quantities are retrievable via the analytical
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results of Kazi-Aoual et al. (1995), given as follows. Define the quantities

A1 = tr (A) B1 = tr (B)

A2 = tr (AA) B2 = tr (BB)

A3 = tr (A2) B3 = tr (B2)

A4 = tr (AAA) B4 = tr (BBB)

A5 = tr (A3) B5 = tr (B3)

A6 =
∑

A3 B6 =
∑

B3

A7 = dT
AdAA B7 = dT

BdBB

A8 = dT
AAdA B8 = dT

BBdB,

where Ak = {ak
ij}

N
i,j=1 for k > 1,

∑
A3 =

∑N
i=1

∑N
j=1 a3

ij , dA = (a11, . . . , aNN )T ,

dAA = ((AA)11, . . . , (AA)NN )T and similarly for B. The mean and variance are then

given by

μT =
A1B1

N − 1
and σ2

T =
2 ((N − 1) A2 − A2

1) ((N − 1) B2 − B2
1)

(N − 1)2(N + 1)(N − 2)

+

[
(N(N + 1)A3 − (N − 1) (A2

1 + 2A2))

(N + 1)N(N − 1)(N − 2)(N − 3)

×
(
N(N + 1)B3 − (N − 1)

(
B2

1 + 2B2

))]
,

respectively. For the skewness we first provide the expression for the third moment of

T , i.e., 1
N !

∑
π∈Π T 3

π , which is given by
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(N − 6)!

N !

[
N2(N + 1)

(
N2 + 15N − 4

)
A5B5 − 8 (A4B8 + A8B4)

(
3N2 − 15N + 24

)

+4
(
N4 − 8N3 + 19N2 − 4N − 16

)
A6B6 + 24

(
N2 − N − 4

)
(A6B8 + A8B6)

+6
(
N4 − 8N3 + 21N2 − 6N − 24

)
A8B8 + 12

(
N4 − N3 − 8N2 + 36N − 48

)
A7B7

+12
(
N3 − 2N2 + 9N − 12

)
(A1A3B7 + B1B3A7)

+3
(
N4 − 4N3 − 2N2 + 9N − 12

)
A1B1A3B3

+24
((

N3 − 3N2 − 2N + 8
)
(A7B6 + A6B7)

+
(
N3 − 2N2 − 3N + 12

)
(A7B8 + A8B7)

)

+12
(
N2 − N + 4

)
(A1A3B6 + B1B3A6)

+6
(
2N3 − 7N2 − 3N + 12

)
(A1A3B8 + B1B3A8)

−2N(N − 1)
(
N2 − N + 4

)
((2A6 + 3A8) B5 + (2B6 + 3B8) A5)

−3N(N − 1)2(N + 4) ((A1A3 + 4A7) B5 + (B1B3 + 4B7) A5)

+2N(N − 1)(N − 2)
((

A3
1 + 6A1A2 + 8A4

)
B5 +

(
B3

1 + 6B1B2 + 8B4

)
A5

)

+A3
1

((
N3 − 9N2 + 23N − 14

)
B3

1 + 6(N − 4)B1B2 + 8B4

)

+6A1A2

(
(N − 4) B3

1 +
(
N3 − 9N2 + 24N − 14

)
B1B2 + 4(N − 3)B4

)

+8A4

(
B3

1 + 3(N − 3)B1B2 +
(
N 3 − 9N2 + 26N − 22

)
B4

)

−16
(
A3

1B6 + A6B
3
1

)
− 6 (A1A2B6 + B1B2A6)

(
2N2 − 10N + 16

)

−8 (A4B6 + A6B4)
(
3N 2 − 15N + 16

)
−
(
A3

1B8 + B3
1A8

) (
6N2 − 30N + 24

)

−6 (A1A2B8 + B1B2A8)
(
4N2 − 20N + 24

)
− (N − 2)

{
24
(
A3

1B7 + B3
1A7

)

+6 (A1A2B7 + B1B2A7)
(
2N 2 − 10N + 24

)
+ 8 (A4B7 + A7B4)

(
3N2 − 15N + 24

)

+
(
3N2 − 15N + 6

) (
A3

1B1B3 + B3
1A1A3

)

+6 (A1A2B1B3 + B1B2A1A3)
(
N2 − 5N + 6

)

+48 (A4B1B3 + B4A1A3)}] .

The skewness is then given by

γT =
1

N !

∑
π∈Π T 3

π − 3μT σ2
T − μ3

T

σ3
T

.
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Appendix D

Proof of CDF Results for the DBF

Statistic

D.1 Derivation of the CDF of DBF for Positive Skewness

First consider the case where −∞ < f < −1. By inspection of Figure 5.4 (a), we see

that we need only consider the relationship between FΔ and Bs
Δ where Bs

Δ > β. We

thus have that

FFΔ
(f ; μB, σB, γB) = P (FΔ ≤ f ; μB, σB, γB)

= P
(
β < Bs

Δ ≤ h−1(f); γB

)

= P
(
Bs

Δ ≤ h−1(f); γB

)
− (Bs

Δ ≤ β; γB)

= FBs
Δ

(
h−1(f); γB

)
−FBs

Δ
(β; γB) .

Now consider the case where α ≤ f < ∞. From Figure 5.4 (a) we see that we

must consider the relationship between FΔ and Bs
Δ for Bs

Δ < β, while adding the
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cumulative component of all values of FΔ for which Bs
Δ > β. That is,

FFΔ
(f ; μB, σB, γB) = P (α ≤ FΔ ≤ f ; μB, σB, γB) + P (−∞ < FΔ < −1; μB, σB, γB)

= P

(
−2

γB

≤ Bs
Δ ≤ h−1(f); γB

)

+ P
(
β < Bs

Δ < h−1(−1); γB

)

= FBs
Δ

(
h−1(f); γB

)
−FBs

Δ

(
−2

γB

; γB

)

+ P (β < Bs
Δ < ∞; γB)

= FBs
Δ

(
h−1(f); γB

)
−FBs

Δ

(
−2

γB

; γB

)

−FBs
Δ

(β; γB) ,

and since −2/γT ≤ Bs
Δ < ∞, we have FBs

Δ
(−2/γB; γB) = 0 and FBs

Δ
(∞; γB) = 1, so

that

FFΔ
(f ; μB, σB, γB) = 1 + FBs

Δ

(
h−1(f); γB

)
−FBs

Δ
(β; γB) .

Thus we have that the CDF of FΔ is given by

FFΔ
(f ; μB, σB, γB) =






FBs
Δ

(h−1(f); γB) −FBs
Δ

(β; γB) −∞ < f < −1

1 + FBs
Δ

(h−1(f); γB) −FBs
Δ

(β; γB) α ≤ f < ∞

for γB > 0, as required.

Next we show that this is a valid CDF by showing that the following conditions

are satisfied:

(i) The limit of FFΔ
(f) as f tends to −∞ from the right is 0, and as f tends to ∞

from the left is 1. That is

lim
f→−∞+

[FFΔ
(f ; μB, σB, γB)] = 0 and lim

f→∞−
[FFΔ

(f ; μB, σB, γB)] = 1.

These follow because

lim
f→−∞+

[FFΔ
(f ; μB, σB, γB)] = lim

b→β+

[
FBs

Δ
(b; γB)

]
−FBs

Δ
(β; γB)

= FBs
Δ

(β; γB) −FBs
Δ

(β; γB)

= 0,
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and

lim
f→∞−

[FFΔ
(f ; μB, σB, γB)] = 1 + lim

b→β−

[
FBs

Δ
(b; γB)

]
−FBs

Δ
(β; γB)

= 1 + FBs
Δ

(β; γB) −FBs
Δ

(β; γB)

= 1.

(ii) FFΔ
(f) is a monotone, non-decreasing function of f . That is, for f1 < f2,

FFΔ
(f1) ≤ FFΔ

(f2).

For −∞ < f1 < f2 < −1, we have that

FFΔ
(f1; μB, σB, γB) = FBs

Δ

(
h−1(f1); γB

)
−FBs

Δ
(β; γB)

FFΔ
(f2; μB, σB, γB) = FBs

Δ

(
h−1(f2); γB

)
−FBs

Δ
(β; γB) ,

so that FFΔ
(f1; μB, σB, γB) −FFΔ

(f2; μB, σB, γB) is equal to

FBs
Δ

(
h−1(f1); γB

)
−FBs

Δ

(
h−1(f2); γB

)
.

This is negative since h−1(f1) < h−1(f2) and FBs
Δ

(b; γB) is a non-decreasing,

monotone function of b (as it is a valid CDF). Hence FFΔ
(f1) ≤ FFΔ

(f2), as

required.

For α ≤ f1 < f2 < ∞, we have that

FFΔ
(f1; μB, σB, γB) = 1 + FBs

Δ

(
h−1(f1); γB

)
−FBs

Δ
(β; γB)

FFΔ
(f2; μB, σB, γB) = 1 + FBs

Δ

(
h−1(f2); γB

)
−FBs

Δ
(β; γB) ,

so that FFΔ
(f1; μB, σB, γB) −FFΔ

(f2; μB, σB, γB) is equal to

FBs
Δ

(
h−1(f1); γB

)
−FBs

Δ

(
h−1(f2); γB

)
.

As before, this is negative since h−1(f1) < h−1(f2) and FBs
Δ

(b; γB) is non-

decreasing and monotone. Hence FFΔ
(f1) ≤ FFΔ

(f2), as required.
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Finally, let f1 = −1 and f2 = α. Then

FFΔ
(f1; μB, σB, γB) = 1 −FBs

Δ
(β; γB)

FFΔ
(f2; μB, σB, γB) = 1 + FBs

Δ

(
−2

γB

; γB

)

−FBs
Δ

(β; γB) ,

and since FBs
Δ

(−2/γB; γB) = 0, we have that FFΔ
(f1) ≤ FFΔ

(f2) holds at the

discontinuity.

(iii) FFΔ
(f) is continuous from the right, that is

lim
ε→0+

[FFΔ
(f + ε; μB, σB, γB)] = FFΔ

(f ; μB, σB, γB) .

For −∞ < f < −1 we have that

lim
ε→0+

[FFΔ
(f + ε; μB, σB, γB)] = lim

ε→0+

[
FBs

Δ

(
h−1(f + ε); γB

)]
−FBs

Δ
(β; γB)

= FBs
Δ

(

lim
ε→0+

[
h−1(f + ε)

]
; γB

)

−FBs
Δ

(β; γB) .

Since

h−1(f + ε) =
(TΔ − μB) (f + ε) − μB

σB (1 + f + ε)

=
(TΔ − μB) f − μB

σB (1 + f + ε)
+

(TΔ − μB) ε

σB (1 + f + ε)

⇒ lim
ε→0+

[
h−1(f + ε)

]
= lim

ε→0+

[
(TΔ − μB) f − μB

σB (1 + f + ε)
+

(TΔ − μB) ε

σB (1 + f + ε)

]

=
(TΔ − μB) f − μB

σB (1 + f)

= h−1(f),

it follows that

lim
ε→0+

[FFΔ
(f + ε; μB, σB, γB)] = FBs

Δ

(
h−1(f); γB

)
−FBs

Δ
(β; γB)

= FFΔ
(f ; μB, σB, γB) ,
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and for α ≤ f < ∞ a similar argument yields

lim
ε→0+

[FFΔ
(f + ε; μB, σB, γB)] = 1 + lim

ε→0+

[
FBs

Δ

(
h−1(f + ε); γB

)]
−FBs

Δ
(β; γB)

= 1 + FBs
Δ

(
h−1(f); γB

)
−FBs

Δ
(β; γB)

= FFΔ
(f ; μB, σB, γB) ,

as required.

Thus FFΔ
(f ; μB, σB, γB) is a valid CDF for γB > 0.

D.2 Derivation of the CDF of DBF for Negative Skewness

First consider the case where −∞ < f ≤ α. By inspection of Figure 5.4 (b), we see

that we need only consider the relationship between FΔ and Bs
Δ where Bs

Δ > β. We

thus have that

FFΔ
(f ; μB, σB, γB) = P (FΔ ≤ f ; μB, σB, γB)

= P
(
β < Bs

Δ ≤ h−1(f); γB

)

= P
(
Bs

Δ ≤ h−1(f); γB

)
− (Bs

Δ ≤ β; γB)

= FBs
Δ

(
h−1(f); γB

)
−FBs

Δ
(β; γB) .

Now consider the case where −1 < f < ∞. From Figure 5.4 (b) we see that we

must consider the relationship between FΔ and Bs
Δ for Bs

Δ < β, while adding the

cumulative component of all values of FΔ for which Bs
Δ > β. That is,

FFΔ
(f ; μB, σB, γB) = P (−1 < FΔ ≤ f ; μB, σB, γB) + P (−∞ < FΔ ≤ α; μB, σB, γB)

= P
(
−∞ < Bs

Δ ≤ h−1(f); γB

)
+ P

(

β < Bs
Δ ≤

−2

γB

; γB

)

= FBs
Δ

(
h−1(f); γB

)
−FBs

Δ
(−∞; γB) + FBs

Δ

(
−2

γB

; γB

)

−FBs
Δ

(β; γB) ,

and since −∞ < Bs
Δ ≤ −2/γB, we have FBs

Δ
(−∞; γB) = 0 and FBs

Δ
(−2/γB; γB) = 1,

so that

FFΔ
(f ; μB, σB, γB) = 1 + FBs

Δ

(
h−1(f); γB

)
−FBs

Δ
(β; γB) .
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Thus we have that the CDF of FΔ is given by

FFΔ
(f ; μB, σB, γB) =






FBs
Δ

(h−1(f); γB) −FBs
Δ

(β; γB) −∞ < f ≤ α

1 + FBs
Δ

(h−1(f); γB) −FBs
Δ

(β; γB) −1 < f < ∞

for γB < 0 and α < −1, as required.

We now show that this is a valid CDF by showing that the three required properties

are satisfied.

(i) This is the same as in Appendix D.1.

(ii) As discussed in Appendix D.1, FBs
Δ

(b; γB) is a valid CDF and so it is a non-

decreasing, monotone function of b. Since FΔ is an increasing function of Bs
Δ

on both sides of β, i.e., for the ranges −∞ < f ≤ α and −1 < f < ∞,

FFΔ
(f ; μB, σB, γB) is also a non-decreasing, monotone function in these ranges.

Let f1 = α and f2 = −1. Then

FFΔ
(f1; μB, σB, γB) = FBs

Δ

(
−2

γB

; γB

)

−FBs
Δ

(β; γB)

FFΔ
(f2; μB, σB, γB) = 1 −FBs

Δ
(β; γB) ,

and since FBs
Δ

(−2/γB; γB) = 1, we have that FFΔ
(f1) ≤ FFΔ

(f2) holds at the

discontinuity.

(iii) This is the same as in Appendix D.1.

Therefore FFΔ
(f ; μB, σB, γB) is a valid CDF.
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Appendix E

Cubic Smoothing Spline Smoothing

Assume N objects have been observed at S time-points t1, . . . , tS over time-range

τ = [t1, tS], giving rise to the longitudinal observations {yi = (yi1, . . . , yiS)T}N
i=1 where

yis represents the observation of the ith object at time-point ts. We wish to model the

longitudinal observations as noisy realizations of curves {zi(t)}N
i=1 defined for t ∈ τ via

the regression model yi = zi(t) + ε, where ε = (ε1, . . . , εS)T with εs ∼ N(0, σ2) for

s = 1, . . . , S where σ2 is unknown.

Cubic smoothing spline smoothing describes the approach whereby the curves are

represented as a linear combination of K B-spline basis functions {φk(t)}K
k=1 and the

resulting curve estimate is penalized via its roughness. The roughness of zi(t) is

quantified by its curvature,
∫

τ
(z′′i (t))2dt, where z′′

i (t) denotes the second derivative of

zi(t). Under basis function expansion, zi(t) = φ(t)T ci, where φ = (φ1(t), . . . , φK(t))T

and ci = (ci1, . . . , ciK)T , and the curvature can be written in matrix form as cT
i Rci

where R =
∫

τ
φ′′(t)φ′′(t)T dt. R is a K×K matrix with (i, j)th element

∫
τ
φ′′

i (t)φ
′′
j (t)dt,

that is, the inner product of the second derivative of the basis functions φi(t) and φj(t).

The optimal ĉi is then found by solving the penalized least-squares optimization

min
ci,λi

{
(yi − Φci)

T (yi − Φci) + λic
T
i Rci

}
,

where Φ = (φ(t1), . . . , φ(tS))T is the S×K design matrix containing the values of the

basis functions evaluated at the observation time-points and λi is a positive smoothing
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parameter. From standard least-squares theory, the minimizing ĉi is found as

ĉi =
(
ΦTΦ + λiR

)−1
ΦT yi,

and λi is chosen optimally via procedures such as generalized cross-validation in order

to trade-off the curve of best fit of the data with the smoothest curve (Ramsay and

Silverman, 2006). This leads to curve estimates {ẑi(t) = φ(t)T ĉi}N
i=1, where each

longitudinal observation is represented by a curve which is as smooth as possible while

capturing the exhibited variational patterns.
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Appendix F

Derivations for the Permutational

Moments of H

Here we give all the quantities required for the permutational moments of H. Note

that where the distinct index patterns refer to the indices of two or three matrices

being multiplied, a comma is used to separate every two which refer to one matrix.

Table F.1: Expressions for the quantities associated with the ith component of the

decomposition of the rth permutational moment of H, with r = 1, 2, 3. Here,

Gk = {gk
ij}

N
i,j=1 and

∑
Gk =

∑N
i=1

∑N
j=1 gk

ij for k = 2, 3, dG = (g11, . . . , gNN )T ,

w =
(∑N

i=1 g2
1i, . . . ,

∑N
i=1 g2

Ni

)T

, Hk = {hk
ij}

N
i,j=1 for k = 2, 3,

∑
H =

∑N
i=1

∑N
j=1 hij ,

∑
H3 =

∑N
i=1

∑N
j=1 h3

ij , dH = (h11, . . . , hNN )T , d2
H = (h2

11, . . . , h
2
NN )T ,

v1 =
(∑N

i=1 h1i, . . . ,
∑N

i=1 hNi

)T

, v2
1 =

((∑N
i=1 h1i

)2

, . . . ,
(∑N

i=1 hNi

)2
)T

, v2 =

(∑N
i=1 h2

1i, . . . ,
∑N

i=1 h2
Ni

)T

,
∑

Hv1 =
∑N

i=1 (Hv1)i and
∑

H (v2
1) =

∑N
i=1 (H (v2

1))i.

r i p
(r)
i w

(r)
i EΠ

(
p

(r)
i (G)

) ∑(
p

(r)
i (H)

)

1 1 ii 1 (N−1)!
N !

tr (G) M

2 ij 1 − (N−2)!
N !

tr (G)
∑

H − M

2 1 ii, ii 1 (N−1)!
N !

tr (G2) tr (H2)

2 ii, ij 4 − (N−2)!
N !

tr (G2) dT
Hv1 − tr (H2)

3 ii, jj 1 (N−2)!
N !

(
tr (G)2 − tr (G2)

)
M2 − tr (H2)

Continued on next page
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Table F.1 – Continued from previous page

r i p
(r)
i w

(r)
i π

(r)
i (G) σ

(r)
i (H)

4 ij, ij 2 (N−2)!
N !

(tr (GG) − tr (G2)) M − tr (H2)

5 ii, kj 2 (N−3)!
N !

(
tr (G2) − tr (G)2 M

∑
H − M 2 − 2dT

Hv1

+2tr (H2)) +2tr (H2)

6 ij, kj 4 (N−3)!
N !

(2tr (G2) − tr (GG))
∑

H − M − 2dT
Hv1

+2tr (H2)

7 ij, kl 1 (N−4)!
N !

(
2tr (GG) + tr (G)2 (

∑
H)2 + 8dT

Hv1

−6tr (G2)) − (
∑

H) (2M + 4)

−6tr (H2) + M (2 + M)

3 1 ii, ii, ii 1 1
N

tr (G3) tr (H3)

2 ii, ii, ij 6 − (N−2)!
N !

tr (G3) (d2
H)

T
v1 − tr (H3)

3 ii, ii, jj 3 (N−2)!
N !

(tr (G) tr (G2) Mtr (H2) − tr (H3)

−tr (G3))

4 ii, ij, ij 12 (N−2)!
N !

(
dT

Gw − tr (G3)
)

dT
Hv2 − tr (H3)

5 ii, ij, jj 6 (N−2)!
N !

(
dT

GGdG − tr (G3)
)

dT
HHdH − tr (H3)

6 ij, ij, ij 4 (N−2)!
N !

(
∑

G3 − tr (G3))
∑

H3 − tr (H3)

7 ii, ik, ij 12 (N−2)!
N !

(
2tr (G3) − dT

Gw
)

2tr (H3) − dT
Hv2

8 ii, ii, kj 3 (N−3)!
N !

(2tr (G3) 2tr (H3) − 2 (d2
H)

T
v1

−tr (G) tr (G2)) +tr (H2) (
∑

H − M)

9 ii, ik, jj 12 (N−3)!
N !

(
2tr (G3) − dT

GGdG M
(
dT

Hv1 − tr (H2)
)

−tr (G) tr (G2)) −dT
HHdH − (d2

H)
T

v1

+2tr (H3)

10 ik, ij, ij 24 (N−3)!
N !

(
2tr (G3) − dT

Gw vT
1 v2 + 2tr (H3)

−
∑

G3) −dT
Hv2 −

∑
H3

− (d2
H)

T
v1

11 ii, kj, ij 24 (N−3)!
N !

(
2tr (G3) − dT

Gw dT
HHv1 + 2tr (H3)

−dT
GGdG

)
− (d2

H)
T

v1 − dT
Hv2

−dT
HHdH

12 ii, jj, kk 1 (N−3)!
N !

(
tr (G)3 + 2tr (G3) 2tr (H3) + M (M2

−3tr (G2) tr (G)) −3tr (H2))

Continued on next page
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Table F.1 – Continued from previous page

r i p
(r)
i w

(r)
i π

(r)
i (G) σ

(r)
i (H)

13 ii, jk, jk 6 (N−3)!
N !

(
2tr (G3) − 2dT

Gw 2tr (H3) − 2dT
Hv2

+tr (G) (
∑

G2 − tr (G2))) +M (M − tr (H2))

14 ij, ik, kj 8 (N−3)!
N !

(tr (GGG) + 2tr (G3) M + 2tr (H3) − 3dT
Hv2

−3dT
Gv2

)

15 ii, ij, kl 12 (N−4)!
N !

(−6tr (G3)
∑

H
(
dT

Hv1 − tr (H2)
)

+2dT
Gw + 2dT

GGdG −2dT
H (v2

1) + 6 (d2
H)

T
v1

+tr (G2) tr (G)) −2dT
HHv1 + 2dT

HHdH

+M
(
tr (H2) − dT

Hv1

)

+2dT
Hv2 − 6tr (H3)

16 ij, ik, il 8 (N−4)!
N !

(
−6tr (G3) + 3dT

Gw
∑

H (v2
1) − 6tr (H3)

+2
∑

G3) −3vT
1 v2 − 3dT

H (v2
1)

+6 (d2
H)

T
v1 + 3dT

Hv2

+2
∑

H3

17 ii, jj, kl 3 (N−4)!
N !

(−6tr (G3)
∑

H (M2 − tr (H2))

+5tr (G2) tr (G) +M
(
5tr (H2) − 4dT

Hv1

+2dT
GGdG − tr (G)3) −M2) + 4 (d2

H)
T

v1

−6tr (H3) + +2dT
HHdH

18 ii, jk, jl 12 (N−4)!
N !

(
−6tr (G3) + 3dT

Gw 2M
(
2tr (H2) − dT

Hv1

)

tr (G) (2tr (G2) −
∑

G2) +M (
∑

Hv1 − M)

+2dT
GGdG

)
+3dT

Hv2 + 2dT
HHdH

−2dT
HHv1 − 6tr (H3)

−dT
H (v2

1) + 4 (d2
H)

T
v1

19 ij, ij, kl 6 (N−4)!
N !

(
−6tr (G3) + 4dT

Gw
∑

H (M − tr (H2))

+tr (G) (tr (G2) −
∑

G2) −6tr (H3) + 4 (d2
H)

T
v1

∑
G2) −4vT

1 v2 + 4dT
Hv2

+M (tr (H2) − M)

+2
∑

H3

20 ik, ij, lj 24 (N−4)!
N !

(
−6tr (G3) + 5dT

Gw vT
1 Hv1 − 6tr (H3)

+dT
GGdG − tr (GGG) +4 (d2

H)
T

v1 + 5dT
Hv2

Continued on next page
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Table F.1 – Continued from previous page

r i p
(r)
i w

(r)
i π

(r)
i (G) σ

(r)
i (H)

+
∑

G3) −2dT
HHv1 + dT

HHdH

+
∑

H3 − M − dT
H (v2

1)

−2vT
1 v2

21 ii, jk, lp 3 (N−5)!
N !

(
24tr (G3) − 8dT

Gw
∑

H
(
M
∑

H − 4dT
Hv1

+2tr (G) (
∑

G2 − 5tr (G2)) +4tr (H2) − 2M2)

−8dT
GGdG + tr (G)3) +8dT

H (v2
1) − 24 (d2

H)
T

v1

−8dT
Hv2 + 8dT

HHv1

−8dT
HHdH + 12MdT

Hv1

+M2(2 + M) + 24tr (H3)

−10Mtr (H2)

−4M
∑

Hv1

22 ij, ik, lp 12 (N−5)!
N !

(
24tr (G3) − 16dT

Gw
∑

H
(∑

H − 2dT
Hv1

−4dT
GGdG + 2tr (GGG) −M + 2tr (H2))

+tr (G) (
∑

G2 − tr (G2)) +10dT
H (v2

1) − 24 (d2
H)

T
v1

−4
∑

G3) −16dT
Hv2 + 8dT

HHv1

−4dT
HHdH − 2Mtr (H2)

−2
∑

H (v2
1) + 10vT

1 v2

−4tr (H3) − 4vT
1 Hv1

+M
(
2dT

Hv1 + M + 2

−
∑

Hv1) + 24tr (H3)

23 ij, kl, pq 1 (N−6)!
N !

(
−120tr (G3) + 72dT

Gw
∑

H
(
(
∑

H)2 + 24dT
Hv1

+6tr (G) (3tr (G2) −
∑

G2) +3M(M + 2) − 18tr (H2)

+24dT
GGdG + 16

∑
G3 −3

∑
H (M + 4))

−8tr (GGG) − tr (G)3 +144 (d2
H)

T
v1

−72dT
H (v2

1) + 72dT
Hv2

+24dT
HHdH + 16

∑
H3

−48dT
HHv1 + 24vT

1 Hv1

+M (12
∑

Hv1

−24dT
Hv1 − M2 − 6M

Continued on next page
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Table F.1 – Continued from previous page

r i p
(r)
i w

(r)
i π

(r)
i (G) σ

(r)
i (H)

−8 + 18tr (H2))

−48vT
1 v2 + 16

∑
H (v2

1)

The quantities given in Table F.1 were checked empirically on simulated datasets

for N = 7, 8, 9 as they were derived. That is, all N ! permutations were enumerated

to ensure the expressions for the expected values with respect to G were correct, in

addition to all summations with respect to H .

We also demonstrate how certain quantities are derived for the second permuta-

tional moment of H = tr (HG), where H = {hij}N
i,j=1 and G = {gij}N

i,j=1 are N × N

matrices satisfying the following properties: H is the projection matrix arising from

the N × M regressor matrix X of full rank, i.e., it is symmetric, not centered and

tr (H) = M , and G is symmetric and centered.

We begin by considering how the weights w
(2)
2 and w

(2)
4 are derived. Weight

w
(2)
2 corresponds to pattern p

(2)
2 = ii, ij, for which EΠ

(
p

(2)
2 (G)

)
= EΠ (giigij) and

∑(
p

(2)
2 (H)

)
=
∑

i 6=j hiihij . Due to symmetry of G and H , we have

EΠ

(
p

(2)
2 (G)

)∑(
p

(2)
2 (H)

)
= EΠ (giigij)

∑

i 6=j

hiihij

= EΠ (giigji)
∑

i 6=j

hiihji

= EΠ (gijgii)
∑

i 6=j

hijhii

= EΠ (gjigii)
∑

i 6=j

hjihii.

Each of these summations is distinct, because swapping the indices of any given sum-

mation, i.e., setting i → j and j → i, does not yield any other summation. For in-

stance, swapping i and j in the first summation variation EΠ (giigij)
∑

i 6=j hiihij yields

EΠ (gjjgji)
∑

i 6=j hjjhji, which is not equal to any of the other three summation varia-

tions. Thus the corresponding weight, w
(2)
2 , is 4.

Weight w
(2)
4 corresponds to pattern p

(2)
4 = ij, ij, for which EΠ

(
p

(2)
4 (G)

)
= EΠ

(
g2

ij

)
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and
∑(

p
(2)
4 (H)

)
=
∑

i 6=j h2
ij . Due to symmetry we have

EΠ

(
p

(2)
4 (G)

)∑(
p

(2)
4 (H)

)
= EΠ (gijgij)

∑

i 6=j

hijhij

= EΠ (gijgji)
∑

i 6=j

hijhji

= EΠ (gjigij)
∑

i 6=j

hjihij

= EΠ (gjigji)
∑

i 6=j

hjihji,

In this case, however, only the variations

EΠ (gijgij)
∑

i 6=j

hijhij and EΠ (gijgji)
∑

i 6=j

hijhji

are distinct, since the other two variations are found from these by swapping i and j.

The corresponding weight of pattern p
(4)
4 , w

(4)
4 , is therefore 2.

Now we show how the four quantities
∑(

p
(2)
2 (H)

)
, EΠ

(
p

(2)
2 (G)

)
,
∑(

p
(2)
6 (H)

)

and EΠ

(
p

(2)
6 (G)

)
are derived. Consider first the two quantities associated with pat-

tern p
(2)
2 . We have

∑(
p

(2)
2 (H)

)
=

∑

i 6=j

hiihij

=
N∑

i=1

N∑

j=1

hiihij −
N∑

i=j=1

hiihij

=
N∑

i=1

hii

(
N∑

j=1

hij

)

−
N∑

i=1

h2
ii

= dT
Hv1 − tr

(
H2
)
,

where dH = (h11, . . . , hNN )T , v1 =
(∑N

i=1 h1i, . . . ,
∑N

i=1 hNi

)T

and H2 = {h2
ij}

N
i,j=1,
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and

EΠ

(
p

(2)
2 (G)

)
= EΠ (giigij)

=
(N − 2)!

N !

∑(
p

(2)
2 (G)

)

=
(N − 2)!

N !

∑

i 6=j

giigij

=
(N − 2)!

N !

(
N∑

i=1

gii

(
N∑

j=1

gij

)

−
N∑

i=1

g2
ii

)

= −
(N − 2)!

N !
tr
(
G2
)
,

since G is centered, where G2 = {g2
ij}

N
i,j=1. Now consider the two quantities associated

with the pattern p
(2)
6 = ij, kj. We have

∑(
p

(2)
6 (H)

)
=

∑

i 6=j 6=k

hijhkj

=
N∑

i=1

N∑

j=1

N∑

k=1

hijhkj −
N∑

i=1

h2
ii −

∑

i 6=j

h2
ij − 2

∑

i 6=j

hiihji,
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where

N∑

i=1

N∑

j=1

N∑

k=1

hijhkj =
N∑

j=1

(
N∑

i=1

hij

)(
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hkj

)

= vT
1 v1
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(HH)ij
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i=1

N∑
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hij

=
∑

H ,
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i=1

h2
ii = tr

(
H2
)
,

∑

i 6=j

h2
ij =

N∑

i=1

N∑

j=1

h2
ij −

N∑

i=1

h2
ii

= tr (HH) − tr
(
H2
)

= tr (H) − tr
(
H2
)

= M − tr
(
H2
)
,

∑

i 6=j

hiihji = dT
Hv1 − tr

(
H2
)
,

so that
∑(

p
(2)
6 (H)

)
=
∑

H − M − 2dT
Hv1 + 2tr

(
H2
)
,

as required. Lastly, we have

EΠ

(
p

(2)
6 (G)

)
= EΠ (gijgkj)

=
(N − 3)!

N !

∑(
p

(2)
6 (G)
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g2
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)

,

where
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N∑

i=1

N∑

j=1

N∑
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gijgkj = 0,
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(
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(
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(
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− tr (GG)
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,

as required.
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Table G.1: Significant SNPs and genes identified for each genetic distance measure on
using the GRV test with a sliding window of length 3 and familywise error and false
positive rates controlled at 5%. The chromosome in which the SNPs were identified are
given, in addition to the p-value of the sliding window containing each SNP. Where
SNPs are present in more than one selected window, the minimum p-value of the
windows is given. The columns B (for Bonferroni), BH (for Benjamini-Hochberg) and
Q (for q-value) indicate with which p-value correction the SNPs were identified.

Distance
measure

SNP Gene
Chromo-
some

P-value
of window

P-value
correction

B BH Q

apoe4 APOE 19 1.131 × 10−9 X X X
rs439401 APOE 19 1.131 × 10−9 X X X
rs5167 APOC4 19 1.131 × 10−9 X X X

IBS rs405509 APOE 19 8.201 × 10−9 X X X
rs157580 TOMM40 19 1.764 × 10−7 X X
rs2075650 TOMM40 19 1.764 × 10−7 X X
rs8106922 TOMM40 19 1.764 × 10−7 X X

rs157580 TOMM40 19 3.438 × 10−9 X X X
rs2075650 TOMM40 19 3.438 × 10−9 X X X
rs8106922 TOMM40 19 3.438 × 10−9 X X X
apoe4 APOE 19 1.676 × 10−8 X X X

Sokal and rs439401 APOE 19 1.676 × 10−8 X X X
Sneath rs5167 APOC4 19 1.676 × 10−8 X X X

rs405509 APOE 19 1.769 × 10−7 X X
rs9352023 6 2.575 × 10−7 X
rs7774274 6 2.575 × 10−7 X
rs9446996 6 2.575 × 10−7 X

rs157580 TOMM40 19 1.582 × 10−7 X X
rs2075650 TOMM40 19 1.582 × 10−7 X X

Rogers rs8106922 TOMM40 19 1.582 × 10−7 X X
and apoe4 APOE 19 1.947 × 10−7 X X
Tanimoto I rs439401 APOE 19 1.947 × 10−7 X X

rs5167 APOC4 19 1.947 × 10−7 X X
rs405509 APOE 19 2.130 × 10−7 X X
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Table G.2: Significant SNPs and genes identified for each genetic distance measure on
using the GRV test with a sliding window of length 5 and familywise error and false
positive rates controlled at 5%. The chromosome in which the SNPs were identified are
given, in addition to the p-value of the sliding window containing each SNP. Where
SNPs are present in more than one selected window, the minimum p-value of the
windows is given. The columns B (for Bonferroni), BH (for Benjamini-Hochberg) and
Q (for q-value) indicate with which p-value correction the SNPs were identified.

Distance
measure

SNP Gene
Chromo-
some

P-value
of window

P-value
correction

B BH Q

rs157580 TOMM40 19 1.272 × 10−9 X X X
rs2075650 TOMM40 19 1.272 × 10−9 X X X
rs8106922 TOMM40 19 1.272 × 10−9 X X X
rs405509 APOE 19 1.272 × 10−9 X X X
apoe4 APOE 19 1.272 × 10−9 X X X

IBS rs439401 APOE 19 1.372 × 10−9 X X X
rs5167 APOC4 19 4.850 × 10−9 X X X
rs10413089 19 4.850 × 10−9 X X
rs3760627 CLPTM1 19 1.867 × 10−7 X
rs12124893 1 3.936 × 10−7 X
rs2526839 1 3.936 × 10−7 X
rs6695214 1 3.936 × 10−7 X
rs7538876 1 3.936 × 10−7 X
rs1204897 1 3.936 × 10−7 X

rs157580 TOMM40 19 3.615 × 10−10 X X X
rs2075650 TOMM40 19 3.615 × 10−10 X X X

Sokal and rs8106922 TOMM40 19 3.615 × 10−10 X X X
Sneath rs405509 APOE 19 3.615 × 10−10 X X X

apoe4 APOE 19 3.615 × 10−10 X X X
rs439401 APOE 19 2.928 × 10−9 X X X
rs5167 APOC4 19 9.262 × 10−8 X X X

rs157580 TOMM40 19 1.879 × 10−9 X X X
rs2075650 TOMM40 19 1.879 × 10−9 X X X

Rogers and rs8106922 TOMM40 19 1.879 × 10−9 X X X
Tanimoto I rs405509 APOE 19 1.879 × 10−9 X X X

apoe4 APOE 19 1.879 × 10−9 X X X
rs439401 APOE 19 4.317 × 10−9 X X X
rs5167 APOC4 19 1.948 × 10−7 X X
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Table G.3: Significant SNPs and genes identified for each genetic distance measure on
using the GRV test with a sliding window of length 7 and familywise error and false
positive rates controlled at 5%. The chromosome in which the SNPs were identified are
given, in addition to the p-value of the sliding window containing each SNP. Where
SNPs are present in more than one selected window, the minimum p-value of the
windows is given. The columns B (for Bonferroni), BH (for Benjamini-Hochberg) and
Q (for q-value) indicate with which p-value correction the SNPs were identified.

Distance
measure

SNP Gene
Chromo-
some

P-value
of window

P-value
correction

B BH Q

rs157580 TOMM40 19 4.276 × 10−10 X X X
rs2075650 TOMM40 19 4.276 × 10−10 X X X
rs8106922 TOMM40 19 4.276 × 10−10 X X X
rs405509 APOE 19 4.276 × 10−10 X X X
apoe4 APOE 19 4.276 × 10−10 X X X

IBS rs439401 APOE 19 4.276 × 10−10 X X X
rs5167 APOC4 19 4.276 × 10−10 X X X
rs10413089 19 7.581 × 10−10 X X X
rs6859 PVRL2 19 3.127 × 10−9 X X X
rs387976 19 4.206 × 10−9 X X X
rs3760627 CLPTM1 19 1.881 × 10−7 X

rs157580 TOMM40 19 5.948 × 10−10 X X X
rs2075650 TOMM40 19 5.948 × 10−10 X X X
rs8106922 TOMM40 19 5.948 × 10−10 X X X
rs405509 APOE 19 5.948 × 10−10 X X X

Sokal and apoe4 APOE 19 5.948 × 10−10 X X X
Sneath rs439401 APOE 19 5.948 × 10−10 X X X

rs5167 APOC4 19 5.948 × 10−10 X X X
rs387976 19 3.529 × 10−9 X X X
rs6859 PVRL2 19 3.399 × 10−9 X X X
rs10413089 19 2.100 × 10−8 X X X

rs157580 TOMM40 19 1.813 × 10−9 X X X
rs2075650 TOMM40 19 1.813 × 10−9 X X X
rs8106922 TOMM40 19 1.813 × 10−9 X X X
rs405509 APOE 19 1.813 × 10−9 X X X

Rogers and apoe4 APOE 19 1.813 × 10−9 X X X
Tanimoto I rs439401 APOE 19 1.813 × 10−9 X X X

rs5167 APOC4 19 1.813 × 10−9 X X X
rs10413089 19 3.035 × 10−9 X X X
rs387976 19 3.610 × 10−9 X X X
rs6859 PVRL2 19 3.610 × 10−9 X X X
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