
 

 

 

 How does big data affect GDP? 
Theory and evidence for the UK 

 
Peter Goodridge, Jonathan Haskel 

Discussion Paper 2015/06 

July 2015 
 



1 
 

How Does Big Data Affect GDP? Theory and Evidence for the 

UK* 

 
Peter Goodridge 

Imperial College Business School 
 

Jonathan Haskel 
Imperial College Business School; CEPR and IZA 

 

July 2015 

 

Abstract 

We present an economic approach to measuring the impact of Big Data on GDP and GDP growth. We 
define data, information, ideas and knowledge.  We present a conceptual framework to understand 
and measure the production of “Big Data”, which we classify as transformed data and data-based 
knowledge. We use this framework to understand how current official datasets and concepts used by 
Statistics Offices might already measure Big Data in GDP, or might miss it. We also set out how 
unofficial data sources might be used to measure the contribution of data to GDP and present 
estimates on its contributions to growth.  Using new estimates of employment and investment in Big 
Data as set out in Chebli, Goodridge et al. (2015) and Goodridge and Haskel (2015a) and treating 
transformed data and data-based knowledge as capital assets, we estimate that for the UK: (a) in 2012, 
“Big Data” assets add £1.6bn to market sector GVA; (b) in 2005-2012, account for 0.02% of growth 
in market sector value-added; (c) much Big Data activity is already captured in the official data on 
software – 76% of investment in Big Data is already included in official software investment, and 
76% of the contribution of Big Data to GDP growth is also already in the software contribution; and 
(d) in the coming decade, data-based assets may contribute around 0.07% to 0.23% pa of annual 
growth on average.   
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1. Introduction 

This paper sets out, and implements using UK data, a conceptual framework for measuring economic 

activity in and around ‘Big Data’, or more broadly, data and data analytics.  Our primary aim is to 

measure how Big Data has affected GDP and productivity growth and might affect it in the future.   

 

There is of course a burgeoning literature on Big Data.  Perhaps the best known framework is the “3 

Vs” approach (volume, velocity and variety) set out in, for example, Mayer-Schönberger and Cukier 

(2013)).  On volume, Google’s Eric Schmidt is commonly quoted as stating that as much 

data/information is being created every two days as was created from the dawn of civilisation to 2003 

(Wong 2012).  Other work has described the variety and velocity of data that is being generated in 

today’s digital economy, highlighted applications of knowledge gleaned from data analytics, 

speculated around potential future applications (see Manyika, Chui et al. (2011)) and discussed issues 

around privacy and regulation (see for example Mayer-Schönberger and Cukier (2013)).   

 

Our work follows those who have asked whether Big Data might boost productivity growth, a 

question particularly important in the light of concern over stagnating productivity (Gordon 2012; 

Mokyr 2014).  Micro work such as Brynjolfsson, Hitt et al. (2011), Bakhshi, Bravo-Biosca et al. 

(2014) and Tambe (2013) suggests a correlation between knowledge gleaned from data analytics to 

productivity.  Macro estimates have estimated the possible gains to GDP: for example, CEBR (2012) 

estimate that in 2011 the aggregate economic benefits derived from data and data-based knowledge 

were £25.1bn.1. Manyika, Chui et al. (2011) also emphasise the potential for large efficiency gains 

contributing to future productivity growth.   

 

We assume in this paper that if we are to measure the impact of Big Data on productivity and GDP we 

need a coherent framework that (a) isolates the mechanism by which productivity is raised and (b) is 

measureable.  To assert for example that Big Data produces a lot of volume does not indicate how it 

would raise productivity, whilst to assert that it will allow costs to be reduced does not take account of 

the point that the gathering and processing of Big Data will itself likely incur costs.  

 

Our basic approach is straightforward.  We assume that it is not Big Data per se that affects output, 

but the knowledge gleaned from Big Data.  Thus we treat (a) the knowledge from Big Data as an 

intangible asset that contributes to output and (b) spending on the curation and knowledge-generation 

as investments in that intangible asset.   

 

                                                      
1 CEBR (2012) define aggregate economic benefits as the sum of estimated benefits from “business efficiency, 
business innovation and business creation” 
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This intangible asset-based approach to analysing Big Data has, we believe, a number of advantages.  

First, although there are significant problems in measuring intangibles, the framework is at least fairly 

well-established and indicates clearly what is needed to be measured.  Since there are a number of 

“guesstimates” of how Big Data will contribute to growth and prosperity in the future we think that an 

explicit framework of how Big Data affects GDP will help better inform such estimates.   

 

Second, a production function type framework makes the analysis of Big Data and its effects on GDP 

more amenable to Economists who are perhaps less comfortable with, for example, the “3 Vs” 

framework.  Take for example, the question of whether it is “Big” or “Small” data that matters or 

whether Big Data is a new phenomenon in firms.   The intangible assets approach suggests that there 

is nothing new in the use of Big Data, in the sense that firms have been investing in using data to 

glean knowledge for as long as they have had profitable opportunities to do so.  If such knowledge 

can be gained more efficiently then the “asset” price of Big Data will have fallen and the effective 

knowledge stock from a given amount of investment will have risen, all of which is potentially 

measureable.  Similarly, it is likely not the size of the data that matters, but the knowledge insights 

that can be gained (although one might argue that larger data sets allow more knowledge to be 

generated e.g. about a heterogeneous population).2  In general then, our hope is to set out how Big 

Data fits into the extensive research programme on the information/knowledge economy, since data 

must be related in some way to information and knowledge.   

 

Finally, our work should provide a road map for investigators and statistical agencies for what we 

need to measure to understand Big Data’s effect on the macro economy.  Indeed, the OECD (2014) 

specifically encourages business, statistical and research communities to “measure and value 

digitised data as an intangible asset, and analyse its contribution to productivity and business 

performance”.   

 

To preview the paper, we present first our framework.  We start by arguing that investment in Big 

Data can be thought of as having two stages (a) data-building and (b) knowledge creation.  In the first 

stage raw records are transformed into “information”, that is, data in a usable format.  In the second, 

analysis of such data produces “knowledge”, that is, useful insights from that information.  That 

knowledge asset is then used as an input in final production of goods and services, along with other 

intangible knowledge (e.g. from scientific R&D), and tangible assets and labour.  

 

                                                      
2 Similar assertions or questions that we can examine include “Big Data is the new input to the economy in the 
21

st
 Century in the way that oil was in the 20

th
 Century” (see for example Helbing (2014) or Schwab, Marcus et 

al. (2011)); the nature of the information value chain; and how data is used to create and capture value.  
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Next we implement the framework on UK data.  As with other intangible assets, some assets are 

bought in and some generated in-house.  In the absence of Big Data investment surveys (with some 

exceptions, see below), we follow the software method and generate investment via spending on 

workers who are producing knowledge assets based on Big Data.  We do this via survey information 

on data analytics skills (e.g. ability to programme Hadoop etc.).   

 

On this basis we obtain a figure for Big Data employment and investment.  But we have, what we 

believe is an important additional, finding.  As a matter of statistical practice, (in-house) software 

investment is also counted via the occupations judged to be producing knowledge assets based on 

software.  We find that, not surprisingly, many workers with Big Data skills are already counted as 

part of software (some are not as we show below).  This means that, in the UK data at least, much of 

the contributions of Big Data to GDP is already counted in the contribution of software (we find 76% 

of investment in Big Data is already counted in official software measures and similarly, in 2005-12, 

76% of the contribution of Big Data to growth is already in the contribution of measured software).    

 

To measure the contribution of Big Data to GDP using our framework we also conduct a sources of 

growth decomposition for the UK market sector over the period 1990 to 2012,3 integrating our 

measures of investment into wider national accounts data, adjusting data on output and inputs where 

necessary, and estimating their contribution to UK growth.  In doing so we compare with 

contributions from other knowledge-based capital (KBC) already capitalised in the national accounts4 

as well as measures of traditional tangible capital.  We also examine the robustness of such measures 

to changing a wide variety of assumptions. 

 

Our main findings are as follows.  First, we document that in 2010, UK businesses invested £5.7bn in 

the transformation of data and extraction of data-based knowledge.  Of that, we estimate that $4.3bn is 

already counted within GDP, as part of official investment in software and databases, leaving £1.4bn 

uncounted.  We estimate that by 2013, total investment in data grew to around £7.1bn in the UK 

market sector.  Second, we estimate that in terms of growth in value-added, the total contribution of 

data-based capital in the period 2005-2012 was on average 0.015%pa, of that, 0.012%pa is already 

captured by existing national accounts measures of capital for software and databases.  Third, we 

document that some of the existing estimates of the GDP impacts of Big Data are likely overstated. 

Fourth, we provide some estimates of possible future contributions as Big Data grows.  

 

                                                      
3 The dataset used is based on the UK national accounts as published in Blue Book 2013.   
4 Types of intangible or knowledge capital already capitalised in the national accounts are computerised 
information (software and databases), mineral exploration, artistic originals and most recently R&D.   
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The plan of the rest of this paper is as follows.  Section two sets out definitions to be applied in the 

rest of the paper, and introduces our conceptual framework.  Section three presents a formal economic 

model.  Section four discusses the justification for treating transformed data and data-based 

knowledge as assets, including a discussion of recommendations and criteria in the SNA and how 

activities in and around data and data analytics fit into that, as well as detail on official practice.  

Section five sets out our data and section six our results. Finally, section seven concludes.   

 

2. Definitions and process framework 

2.1. Definitions: data, information, knowledge and ideas 

Current literature on the subject of data and information, and other literature on data and data 

analytics, uses terms in a variety of ways.  It will therefore be useful to set out some definitions of 

these terms.  Further, in what follows we try to distinguish between (a) different properties of data, 

knowledge, ideas etc. and (b) whether or not they are differentially rival and/or excludable.  The 

dimension of rivalry/excludability will matter when it comes to considering mark-ups in production.  

 

We start with different properties of the concepts.  On data, we define two kinds of data: raw records 

and transformed data.  Raw records are raw data not yet cleaned, formatted or transformed ready for 

analysis.  They can include, for instance, data scraped from the web, data generated by transactions 

between agents, data generated by sensors embedded in machines or equipment (the “internet of 

things”), or data generated as a by-product of some other business operation or process.  Transformed 

data are those that have been cleaned, formatted, combined and/or structured such that they are 

suitable for some form of data analytics.   

 

Turning to information, Shapiro and Varian (1998) take information to mean anything that can be 

digitised, thereby implicitly defining information as digitised data.  We consider information in a 

similar vein and treat it as synonymous with transformed data. For example, analysable data on two 

variables, such as the prices and quantities of goods sold, constitutes information.   

 

We define knowledge as connections made between pieces of information, supported by evidence, to 

form a coherent understanding.  Knowledge cannot exist without information, and knowledge is 

required to fully understand and interpret information.5  Knowledge can therefore include theories, 

hypotheses, correlations, or causal relationships observed in data.  To continue with the same 

example, the observed correlation between the price of a good and the quantity sold constitutes 

                                                      
5 Boisot and Canals (2004) distinguish between data and information, arguing that information is regularities in 
data which agents attempt to extract, and that this extraction comes with a cost. Regularities in data for us 
constitute knowledge.  In turn they define knowledge as an agent’s set of expectations that are modified by new 
information (Arrow 1984). Using that definition, information is extracted from raw data and used to build 
knowledge, which is in line with the schematic we present below.   



6 
 

knowledge.  Note that different pieces of knowledge can be formed from the same piece of 

information (Fransman 1998), suggesting that information can be used repeatedly in the formation of 

new knowledge, as is explicit in the framework we present below. 

 

How does this relate to the current literature?  First, the model developed in Bakhshi, Bravo-Biosca et 

al. (2014) follows a similar reasoning.  They argue that, in order to generate value, raw data must be 

processed and structured into information (which they define as “meaningful statements about the 

state of the world”) and knowledge (defined as “models of the relationship between different 

variables, such as behaviour and outcomes, that can be used to inform action”).   

 

Second, Mokyr (2003) also distinguishes between information and knowledge, and further, between 

different types of knowledge.  For him, “knowledge differs from information in that it exists only in 

the human mind”.  Therefore for Mokyr, as for us, knowledge constitutes an understanding, or the 

connections made between fragments of information, whereas information is something that has been 

recorded or digitised, and can be analysed.   

 

Mokyr (2003) also introduces a distinction between what he terms propositional and prescriptive 

knowledge.  Propositional knowledge catalogues natural phenomena and regularities, and so includes 

knowledge of nature, properties, and geography (i.e. “science” or discoveries).  Prescriptive 

knowledge has some base in propositional knowledge, but prescribes actions for the purposes of 

production, and can be thought of in terms such as “recipes”, “blueprints” or “techniques”.  

 

Third, a common distinction in R&D questionnaires is between “basic” and “applied” R&D.  This 

might be thought of as describing features of knowledge, corresponding perhaps to Mokyr’s 

propositional and prescriptive knowledge.  Or it might describe whether the knowledge is excludable 

or not.  So for example it might be that basic knowledge is freely available6 to all agents (calculus or 

economic theory for example), but commercial knowledge that is produced or acquired by firms (for 

example, estimates of price elasticities that are used to price discriminate and increase sales revenue) 

is not.  Of course, as Mokyr notes, the two are linked.  Commercial knowledge can derive from freely 

available knowledge, and in turn, commercial knowledge can feed back and enhance or expand the 

epistemic base, creating a positive feedback loop between science and technology/innovation.7   

 

                                                      
6 Although we model such knowledge as freely available, acquisition of knowledge almost always requires 
some prior knowledge to be built upon, and acquiring such knowledge is of course in some way costly in terms 
of time and/or resources (i.e. education).  
7 There are examples of prescriptive knowledge being developed in situations where the propositional 
knowledge had not yet been discovered.  For example, in 1795 it was discovered that the storing of food in 
champagne bottles, heating and then sealing, thus creating a vacuum, prevented food from spoiling.  The science 
of why food spoils was developed later by Pasteur, in the 1860s.   
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Fourth, Mokyr’s definition of prescriptive knowledge therefore approximately aligns with what 

Romer (1991) describes as “instructions” or “blueprints”, and what Romer (1993) and Jones (2005) 

refer to as ideas.  Indeed, Jones p.18 refers to a “stock of knowledge or ideas”.  Finally, regarding 

tacit and codified knowledge, tacit can be considered to align more with what Mokyr (2003) defines 

as propositional knowledge or basic knowledge.  Codified knowledge is more prescriptive in nature.8   

 

We turn now to what is rival/excludable. Since the use of some knowledge would not seem to deny 

others using it, it seems preferable to stick with the notion that data/information/knowledge is indeed 

non-rival, but that it might differ in its excludability.  Thus for example, a database might be protected 

by privacy, a design by copyright, trademark or patent.  Thus we define commercialised 

data/information/knowledge/ideas as being (at least partially) excludable.  This is similar to Romer 

(1991) who assumes that blueprints, when sold to firms, are patented so that the designer can earn 

some (in this case monopoly) return.  Thus as mentioned above, basic and applied knowledge is often 

held to be (in our terms) non-commercial and commercial respectively.  

 

Commercial knowledge is therefore that knowledge that is invested in by firms and applied in the 

process of production.  The economics literature has long considered private expenditures on R&D as 

constituting investment (e.g. Abramovitz (1956)).  In this paper, we shall consider expenditures on the 

transformation and analysis of data in a similar vein, and using growth-accounting techniques, 

estimate the contribution those investments make to economic growth.  This is not to deny that there 

is not non-excludable knowledge, rather, it is an attempt to incorporate excludable knowledge as part 

of paid-for factor inputs and so delegate to TFP that which is freely available.   

 

Above we have defined some key terms commonly used in the literature.  The following table 

summarises our definitions for each of those terms.   

 

 

 

 

 

 

 

 

 

                                                      
8 However, some element of prescriptive (or commercial) knowledge is always likely to remain tacit, so that 
some prior understanding is required to execute the instructions, hence the complementarities that exist between 
intangible capital and skilled labour (human capital).   
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Table 1: Definitions of key terms 

 

 

2.2. Framework: the Big Data supply chain 

We use these terms to summarise the process of producing transformed data (information) and 

commercial data knowledge, and the use of that knowledge in final production.  The following 

diagram illustrates how these concepts fit into that process. Figure 1 shows that we consider the 

process of creating, and using, data-based knowledge, as consisting of three stages.  In the more 

formal model below, we actually consider these as three distinct sectors, although we just note for 

now that the three stages (sectors) can either exist in-house, that is within the same firm, or within 

distinct specialist firms.9   

 

 

                                                      
9 Currently one might imagine that the three stages predominantly exist in-house.  However, as the field 
develops, it is likely that more companies will specialise at different points in the chain/process (i.e. provision of 
raw records, producers of information, producers of data-based knowledge, etc.).  As an example, Google are a 
case where all three stages exist in-house.  As a by-product of providing search services, Google automatically 
generate raw records on the search histories of users. They then employ labour and capital to manage, clean and 
transform those data into an analytical format, producing information.  Google then use that transformed data 
(i.e. it rents from the Google stock of transformed data) to produce commercial knowledge.  As a trivial 
example, this may be the knowledge that users that search for product X (say, flights) also consume product Z 
(say, hotel accommodation).  In the downstream, Google sell advertising services to other firms.  In doing so 
Google rents from its stock of commercial knowledge to sell advertising that can be targeted at specific 
consumers e.g. in this example, hotels in a region advertise to those searching for aeroplane flights to that area.  
Alternatively, consider a firm such as Experian.  They operate in the knowledge creation stage, buying or 
acquiring transformed data from numerous sources, and using that information to produce data-based 
knowledge which they sell to other firms.  The credit scores they sell to banks are just one example of the data-
based knowledge services they provide. 

Term: Including (but not exclusively): Definition:

Data

Raw records,                                                                      

Structured/unstructured,                                             

Digitised data,                                                                   

Tranformed data,                                                             

Exhaust data                                                                      

We define two forms of data: 1) Raw records; 2) Transformed data 

(information).  Either can be structured or unstructured.  The former may 

or may not be exhaust data (generated as a by-product of some other 

process).

Raw records Exhaust data

Raw data, that may be generated as a by-product of some other process, 

not in an analytical format. It could include data generated as a by-

product of transactions between suppliers and consumers, or data 

emitted from sensors embedded in machines. Alternatively it could be 

records in printed or digital form, such as those in books or on social 

media.

Information Transformed data

Data in a digitised and analytical format that may have been transformed 

from raw records. Information provides the building blocks of knowledge. 

Knowledge 

(ideas)

Prescriptive/Propositional,                                         

Basic/Applied,                                                                  

Comercial/Non-commercial,                                      

Ideas                                                                                     

Connections made between fragments of information. We distinguish 

between different forms of knowledge according to whether or not it has 

a degree of excludability. 

Propositional 

Knowledge

Freely available knowledge,                                      

Non-commercial knowledge                                      

The epistemic base of knowledge/science/discoveries, freely available to 

all agents.

Prescriptive 

Knowledge

Ideas (recipes/blueprints/techniques),                 

Data-based knowledge,                                                

Commercial data knowledge                                      

Knowledge acquired from investments by firms and applied in the 

process of production. In the context of data-based capital, it could 

include an observed correlation or an identified pattern of causation. 

Different pieces of knowledge can be created from the same piece of 

information. 
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Figure 1: The Big Data “Value Chain” 

 

Note to figure: Commercialisation is the embodiment of knowledge into the output of goods and services, which 
may be sold for profit or made freely available.  We therefore use the term commercialisation as our focus is on 
the market sector, but note that the framework can also be applied to the non-market sector.   

 

2.2.1. Data-Building (Transformation) 

Starting at the top of the diagram, we first consider the data-building or transformation (D) process, 

which transforms raw records into information of a format ready for analysis.  Thus data building may 

involve digitising, structuring, aggregating, formatting, and/or cleaning.  This process is sometimes 

referred to as “data management”, “data acquisition” or “data warehousing”.  The literature on data 

warehousing and data analytics commonly describes this as the ETL process, ‘Extract, Transform, 

Load’.  Using the above definitions: ‘Extract’ is the extraction of raw records; ‘Transform’ refers to 

the transformation of raw records into data, often of improved quality, of a format ready for analysis; 

and ‘Load’ to the loading of the data into the database or data warehouse.  The linking, matching and 

aggregation of datasets may take place in this stage, or later in the knowledge creation stage.   

 

Initially one might expect the costs in this stage to be relatively low, particularly in cases where raw 

records are generated automatically for free (or almost free).  However, firms devote a lot of resources 

to the management of their data, in particular to integrate it with other data sources and also to 

improve its quality, for instance, in terms of consistency or the removal of duplicates.  It has been put 
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to us that the “acquisition” or data-building process actually represents around 60-80% of the total 

costs of producing data-based knowledge.10,11   

 

2.2.2. Knowledge creation 

The next stage is the knowledge creation (N) process, more commonly referred to as ‘data analytics’.  

This stage takes the output of the data-building stage, and uses that data/information to conduct 

analysis.  That analysis could take a number of forms.  It will include activities commonly referred to 

in the literature as ‘data science’, ‘data/text mining’, ‘knowledge recovery’, ‘business intelligence’ 

and ‘machine learning’, with the latter referring to the use of artificial intelligence to discover 

correlations in data.  Whatever the method, the output of the analytics process is a piece of 

commercial knowledge formed from the analysis of information, and used to construct advice to be 

implemented in the final production of goods and services.   

 

2.2.3. Downstream production of final goods and services 

The final stage incorporates the application of knowledge in the production of final goods and 

services, in the downstream production (operations) sector.  We emphasise that the downstream is a 

pure operations sector, that does not invest or create any form of capital, but just employs labour and 

(tangible and intangible) capital to deliver final goods and services.  Therefore, use of data-based 

knowledge in the downstream does not equate to investment in the downstream.  The downstream is a 

pure using sector, with all investment occurring in the upstream.  

 

However, implementation of data-based knowledge in downstream production may require co-

investments in other forms of intangible capital such as organisational (business process change) or 

reputational (brand) capital.  There are of course other upstreams that create other forms of intangible 

capital also used in downstream production.  But we do not seek to measure those here.  Rather, our 

focus is on the measurement of the data-building and data-based knowledge creation upstreams. For 

estimates of a fuller range of intangible investment by industry, see Goodridge, Haskel et al. (2014).   

 

As noted above, the upstream stages may either be situated in-house or in specialist firms operating 

along the value chain presented in Figure 1. In the case where these stages exist in-house, the 

downstream operations unit will receive advice from the upstream knowledge creation unit, located in 

the same firm, for which it must pay an implicit but unobserved rental, just as the knowledge creation 

                                                      
10 We thank Rashik Parmar of IBM and Christopher Royles of Oracle for insights around the process of data 
transformation and data-based knowledge creation, and discussion around the value chain presented in Figure 1.  
11 For instance, consider the spellchecker and autocomplete functions developed by Google, based on the 
searches entered by users.  The raw data is provided for free by users, but transforming that raw data into 
information and ultimately knowledge is a costly process: a Google engineer claims that the system likely cost 
more to develop than the Microsoft system, which is based on records in dictionaries (Mayer-Schönberger and 
Cukier 2013).   
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stage must pay a rental for the use of transformed data.12.  In the case where these stages exist in 

distinct firms, the knowledge (or advice) could be sold to the downstream firm for an explicit fee, just 

as plant and machinery is typically sold for an observed price.  Alternatively a firm may buy in data 

but conduct its own analytics, or generate its own data but outsource the analytics.   

 

The downstream therefore receives advice formed on the basis of knowledge and takes action to 

implement that knowledge in final production.  For instance, it could be the knowledge that the cross-

promotion of goods results in increased sales, or it could be a re-optimisation of downstream 

processes to improve productivity, based on say knowledge acquired from data emitted from sensors 

embedded in machines.  We refer to this implementation as the commercialisation of knowledge.  The 

term commercialisation obviously has connotations with the market and a profit motive.  That is 

because our primary focus here is on knowledge creation in the market sector.  We emphasise 

however that the framework can be applied more generally to the application of knowledge in non-

market production, such as in the delivery of public services.   

 

2.3. Application of framework 

2.3.1. Value in collection or use? 

The literature around Big Data and data analytics frequently emphasises that the “value” of data lies 

not in its collection but in its use.  The framework makes clear that the demand for data is a derived 

demand from the downstream production sector via the knowledge sector, just as the demand for oil is 

a derived demand from the energy and transport sector.  And the impact (or contribution) of data 

occurs in the downstream delivery of goods and services.  But data can potentially command a price 

at any stage of the process, just as oil can.  The question of what price is set out below.   

 

2.3.2. Data versus knowledge  

The framework suggests that data, and the knowledge gleaned from data, benefits downstream 

productivity only if that knowledge is commercialised and applied in final production.  The results of 

Bakhshi, Bravo-Biosca et al. (2014) are supportive of this.  They find that it is data analytics that has 

the strongest link with firm performance and productivity, rather than just the collection of data.  In 

our model, it is the application of commercial data-based knowledge that contributes to downstream 

productivity.  Therefore we would only expect a productivity benefit if firms invest in knowledge 

creation (analytics) as well as data-building (data management/acquisition).   

 

 

                                                      
12 The treatment is therefore perfectly symmetrical with purchased tangible capital (i.e. buildings, machinery 
etc.), for which a firm pays an implicit but unobserved annual rental for use of the asset. 
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2.3.3. Big data .vs. Little data 

Above we have defined ‘data’, ‘information’, ‘ideas’ and ‘knowledge’.  It may have been noticed that 

we have not defined ‘Big Data’.  Commonly used definitions of Big Data typically refer to the “3 

V’s”, that is the large volume, variety and velocity of data that is being created, largely as a result of 

the spread of the digital economy.  But in this paper we are primarily concerned with investments in 

data-building and data analytics that generate knowledge to be used in final production.  The volume, 

source, variety and type of data employed, or the speed with which it is generated, is less of a concern.  

It therefore does not seem helpful to introduce a distinction between ‘big’ and ‘little’ data, after all, 

each are based on the same foundations, that is mathematics, statistics, computer science etc.  Further, 

data and data analytics have been around for many years, and were making contributions to final 

production long before the term ‘Big Data’ became so widespread, even if some of the techniques, 

tools, technologies and approaches are new.  For example, the major supermarket chains have been 

collecting data on their customers purchasing patterns and preferences for some time.  That activity 

has just been made easier and richer with the new types of data that are becoming available and which 

they can link to.  Similarly insurance companies, who seek to create risk profiles of actual or potential 

customers, and banks who use credit scores to assess customer applications for their products.   

 

What matters then in this framework are the applicable business insights from analysing data. We 

therefore see the emergence of the field of Big Data analytics as growth in an activity that has long 

existed. The 3 V’s mean many more raw records are available and more information can be created, 

facilitating growth in the data-building and knowledge creation sectors. This is not a change to the 

process in the diagram, but rather a possible change to the underlying technical progress and 

economies of scope and scale that might be available.13  Therefore we need to develop a framework 

that allows us to analyse such changes which we do below.   

 

3. Economic Framework 

The previous section defined the terms that underlie our framework and presented an informal 

exposition of the processes of data transformation, knowledge creation and commercialisation.  In this 

section we present a model of the payments and productivity underlying that process.  The model 

explicitly treats transformed data (information) and data-based knowledge as capital assets in a 

national accounting and growth-accounting framework.  For a justification of their treatment as 

capital goods, please see Goodridge and Haskel (2015a).  

 

                                                      
13 For instance, new techniques in data management imply technical progress in the data-building stage.  New 
techniques in analytics imply technical progress in the knowledge creation stage.  New tools, such as various 
forms of open-source software freely available to upstream investors (e.g. Hadoop, R etc.) imply technical 
progress in both upstream stages.  
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3.1. A formal model 

The framework presented here is analogous to the upstream-downstream framework presented in 

Corrado, Goodridge et al. (2011).  The main difference is that here we consider two upstream sectors: 

the data-building (transformation) sector (“D”) and the knowledge creation sector (“N”).  We 

emphasise that the upstream can of course exist in-house.  We show how various statistics on Big 

Data fit into the framework, and further how we can apply the framework to the measurement of 

investment in data transformation and data analytics and the contribution they make to growth.   

 

In equation (1) we present the production function and income accounting identity for the three 

sectors.  For simplicity, we set out our exposition on the basis of value-added but note that estimation 

will be on the basis of gross output.   

  
( , , , );

( , , , , );

( , , , );

D D D D D D D L D K D

t t t t

N N N N N N N N L N K N B N

t t t t t

Y Y Y Y Y Y L Y K Y R Y

t t t t

D F L K R t P D P L P K

N F L K B R t P N P L P K P B

Y F L K R t P Y P L P K P R




  
   
   

   (1) 

 

Taking each sector in turn.  The upstream data-building sector ( tD ) manages data and transforms raw 

records (
D

tR ) into data (information) of a format ready for analysis.  Real transformed data output is 

thus a function of primary factors, labour (
D

tL ) and capital (
D

tK ), raw records (
D

tR ), and sectoral 

technical progress (
Dt ).  The income identity shows that nominal sector output (

DP D ) is equal to the 

sum of factor payments multiplied by a factor, 
D .  Note that there are no factor payments for raw 

records.  This is because we do not model raw records as an asset, but rather as a raw material that 

may either be generated for free or almost free, where data comes as exhaust data, or paid for in the 

same way as other material/intermediate inputs.  

 

The factor 
D  enters the output identity because the D sector might be able to mark up prices over 

competitive costs.  First, it might either have access to a unique type of raw records or be in a position 

to generate unique information assets.  Second, it might be able to patent its information asset.  Third, 

there might be increasing returns14 in the sector (for example, if data is non-rival and can be shared in 

the production of goods e.g. mistakes from Google searches are also used for Google’s spellchecker): 

this is the mechanism in Romer (1991) for example.  In practice, the value of the mark-up will differ 

for each individual information asset, dependent on the degree of product market competition, the 

                                                      
14 As shown in a series of papers from Basu and Fernald (e.g. Basu, Fernald et al. (2001)) mark-ups and 
increasing returns to scale are linked, mark-up greater than one imply that factor elasticities sum to more than 
one, which is the definition of increasing returns to scale.  
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scarcity of that information, and its commercial value to ultimate users.  Of course the acquisition and 

maintenance of this market power provides a further incentive for the upstream to exist in-house. 15   

 

From (1), the data-building sector produces information assets ( tD ) which evolve into a stock of 

(bytes of) information according to the perpetual inventory method (PIM): 

1(1 )B

t t tB D B              (2) 

 

Where tB  are accumulated bytes of information and 
B is a geometric rate of depreciation.  One 

might think that provided it is stored, information does not physically depreciate since it is not subject 

to wear and tear.  But, as noted in Mayer-Schönberger and Cukier (2013), data/information assets do 

depreciate economically. For example, a retailer may retain customer transaction histories.  However, 

as consumers age, their tastes and preferences typically change.  As a result, firms actively test their 

data to separate the useful data from that which has become less useful, with the latter culled.  CEBR 

(2013) also emphasise that data does not have an infinite life, and some data can quickly become 

outdated, for instance social media and financial trading data.  Some might have to be deleted as well 

due to regulation.  Therefore information (like other intangible) assets, do depreciate, not due to wear 

and tear, but rather due to obsolescence and decay in the profile of revenues they earn.  This concept 

of depreciation applicable to intangible assets was first introduced in Pakes and Schankerman (1984).   

 

Consider now the knowledge creation ( tN ) sector, which uses transformed data to create commercial 

data knowledge ( tN ), employing capital (
N

tK ) and labour (
N

tL ), and freely available knowledge (

N

tR ) (propositional knowledge in the Mokyr (2003) nomenclature).  Factor payments include those 

paid for the use of bytes of information (
B NP B ).  Note, just as with tangible capital, these payments 

could be explicit rental payments (i.e. licence fees) for the use of transformed data, or they could be 

implicit in the case where the information asset is owned in-house.  Again the cost of resources 

devoted to producing knowledge consists of the payments to each factor, and the value of sector 

output (commercial data knowledge assets) incorporates a product mark-up, N , to account for the 

market power acquired by the owners of unique data-based knowledge assets.  Again, that potential to 

appropriate a mark-up provides an incentive for the knowledge creation upstream to exist in-house.  

 

Just as with information, the stock of commercial knowledge ( tR ) can be modelled as evolving 

according to the PIM: 

                                                      
15 Of course, if there is a mark-up, the PK in the D and N sectors are to be understood as competitive returns to 
capital.   
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1(1 )R

t t tR N R              (3) 

 

The knowledge creation sector therefore gleans knowledge and insights from information.  Note that 

multiple pieces of knowledge can be generated from the same stock (or even piece) of information.  

Therefore information can be used repeatedly in the production of knowledge, and knowledge can be 

used repeatedly in the production of downstream output.   

 

Finally, data-based knowledge is ultimately employed in final production in the downstream sector     

( tY ).  The downstream is a pure operations sector that produces final goods and services, employing 

labour (
Y

tL ), tangible capital (
Y

tK ), and commercial data-based knowledge capital (
Y

tR ).  Nominal 

downstream output (
YP Y ) is thus the sum of factor payments, where payments include implicit or 

explicit payments for data-based knowledge.  Note that there is no mark-up in the downstream since it 

is assumed competitive, a reasonable assumption if we consider market power to derive from features 

associated with intangibles such as unique knowledge, designs, superior technology or branding. 16  

 

In this model, all production of knowledge-based capital (KBC) takes place in the upstream.  We note 

that there are of course other upstream sectors for various other knowledge assets.  For instance, an 

upstream marketing sector that builds reputational capital, an upstream design sector, an upstream 

software sector, an upstream scientific research sector etc..  Here, for simplicity of exposition, we just 

model the data-building and knowledge production upstreams, and the downstream.   

 

It was mentioned above that data-based information/knowledge assets can either be created in-house 

or purchased via market transactions.  However those assets are acquired has no impact on the model. 

Consider the case of a manufacturer that employs tangible capital with embedded sensors that monitor 

their performance and output.  Those sensors generate raw records which are then transformed, in-

house, into information assets.  In turn those information assets are used in the production of 

commercial knowledge, which is in turn used to optimise downstream operational (manufacturing) 

business processes.  In that case, the output of this hypothetical firm is the sum of output(s) from each 

sector: 
DP D , 

NP N  and 
YP Y .  

NP N  includes implicit annual payments for the use of transformed 

data (
B NP B ), and 

YP Y includes implicit annual payments for the use of commercial knowledge        

(
R YP R ).  Thus we model the firm as a producer of information and knowledge assets as well as a 

                                                      
16 Therefore what look like mark-ups in the downstream are actually returns to intangible capital which we can 
explicitly account for in this framework.  Excess returns to intangible capital therefore flow back to the relevant 
knowledge upstream e.g. to the producers of information or knowledge, which may or may not be located in the 
same firm/industry. 
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producer of manufactured final goods.  The output of assets (here 
DP D  and 

NP N ) are related to the 

factor payments for their use via the Hall-Jorgenson user costs relation (Hall and Jorgenson 1967): 

( )

( )

B D B D

R N R N

P P r

and

P P r

 
 

  
  

         (4) 

 

Where r is the economy-wide nominal net rate of return to capital and   accounts for capital 

(holding) gains/losses from changes in the asset price.  Asset-level factor payments (or capital 

compensation) therefore consist of a net return to capital plus depreciation, minus any holding gain, 

with all these components directly proportional to the nominal value of the stock (
D NP B  or 

N YP R ).   

 

3.1.1. Relation with GDP  

Total value-added is the sum of value added earned in each sector. With no intermediates, this is then 

the sum of each sector’s output i.e. the output of final consumer and (tangible/intangible) investment 

goods, or equivalently from the income side, the sum of factor payments to labour and all forms of 

capital.  Therefore in this economy of three sectors, value-added can be written as:17  

Q D N Y

L K B R

P Q P D P N P Y

P L P K P B P R

  
            (5) 

Where: 

L L D L N L Y

K K D K N K Y

P L P L P L P L

P K P K P K P K

  
           (6) 

 

Before moving onto the measurement of real output, it is worth saying a little more about upstream 

inputs in (1).  Of course there is labour input (
LP L ) from the kinds of occupations that are receiving 

more and more attention, such as ‘data scientists’, ‘data engineers’ and ‘business intelligence 

analysts’.  In the data-building (D) sector, we would expect to find occupations such as ‘data 

administrators’, ‘data managers’, ‘data engineers’ and workers in ‘data control’.  The knowledge 

creation (N) sector is more likely to include occupations such as ‘data scientists’, ‘business 

                                                      
17 Note, there is a slight complication here.  In the above framework (e.g equation (1)) the PK term represents the 
competitive cost of capital were it observed.  Since, in practice, capital compensation is estimated residually, 
then (5) holds but the cost of capital incorporates mark-ups which manifest as above-competitive returns to 
capital.   
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intelligence’ and ‘data/statistical analysts’.18  In practice, the roles of some workers/occupations could 

include some aspects of both data-building and knowledge creation.  

 

There is also capital input (
KP K ), which might include buildings and computer hardware for 

instance.  Upstream capital will also include software, used intensively in the creation of information 

and the gleaning of data-based knowledge.  However, a noted feature of data warehousing and data 

analytics is the widespread use of various forms of open-source software, such as Hadoop, NoSQL 

and R.  Since there are typically no payments for the use of such software, their contribution does not 

appear in the nominal data.  Rather they act to increase upstream TFP and real upstream output.  The 

measurement of real upstream output and TFP are discussed in the next sub-section.   

 

3.2. Contribution to growth in theory 

With the exception of the PIM, most of the above identities are based on nominal flows.  But to say 

something about the contribution of (transformed) data and data-based knowledge to growth in output 

or productivity, we need to work in real terms.  Dropping time subscripts, real output growth in each 

sector can be written as: 

ln ln ln ln

ln ln ln ln ln

ln ln ln ln ln

D D D D D D D

L K

N N N N N N N N N N

L K B

Y Y Y Y Y Y Y

L K R

D s L s K TFP

N s L s K s B TFP

Y s L s K s R TFP

 
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     
       
       

    (7) 

 

Where, note, input contributions in the upstreams are multiplied by the product mark-up, µ. There is 

implicitly a capital and intermediate goods sector as well which we omit for simplicity.  This 

describes growth in each sector.  What of growth in GDP as a whole?  True growth in GDP in this 

framework can be defined as:  

ln ln ln ln ,

/ , , ;

D N Y

Q Q Q

X X Q Q D N Y

Q

Q s D s N s Y

where

s P X P Q X D N Y P Q P D P N P Y

      

     
     (8) 

Thus we can write:  

   
ln ln ln ln

ln ln ln ln

ln ln ln ln

D D D D D D D D

Q L K

N N N N N N N N N N N

Q L K B

Y Y Y Y Y Y Y Y

Q L K R

Q s s L s K TFP

s s L s K s B TFP

s s L s K s R TFP

 
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      
      
      

   (9) 

                                                      
18 In Chebli, Goodridge et al. (2015) we document work by e-skills UK (2013b) which estimates employment in 
the following occupations: ‘data engineers’, ‘data administrators’, ‘data analysts’, ‘data scientists’ and ‘other 
data-focused’.    
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Which after rearrangement can be written as follows:       
 

ln ln ln ln ln ln ln

ln ln

( 1) ln ln

( 1) ln ln ln

ln ln ln

D N Y D N Y

N Y
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   
    
      
     

(10) 

Which says that output growth is a function of (a) cost-share weighted conventional labour and capital 

input growth, (b) data (information) and knowledge inputs, (c) a term reflecting imperfect competition 

in the production of information, (d) a similar term reflecting imperfect competition in the production 

of knowledge and (e) sectoral TFP.  

 

What then is the role of Big Data (BD) in productivity growth?  In this model where BD is 

capitalised, BD contributes via the standard routes of capital inputs and (upstream) TFP.  Regarding 

capital input, BD investment builds a capital asset from which capital services flow.  Similarly, if 

there is TFP in the upstream BD sectors, that contributes, via the extent to which BD is an input into 

other sectors.   

 

3.3. Contribution to growth in practice 

If we are to work out the contribution of BD to growth in practice, we need to take a number of steps 

to relate the measured data to the theoretical model above.  First, as a matter of data and as discussed 

in Goodridge and Haskel (2015a), some of the DN goods are already capitalised into the asset 

category of software and databases (which we usually refer to as software or measured software for 

short19) in the national accounts.   

 

Second, payments to intangible capital thus consist of a) payments to software which, as mentioned 

above, includes some payments to DN already capitalised, plus b) payments to the additional DN not 

currently capitalised, plus c) payments to other (non-software/data) intangibles. Thus we have:  

 

 

 

                                                      
19 As discussed in Goodridge and Haskel (2015a), the methodology used by the ONS in measuring investment is 
primarily designed for the measurement of software.   
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Measured software capital services

DN capital services within software Additional DN capital services

ln ln ln lnSOFT DN SOFT DN SOFT DN SOFT DN DN DN Othe

R R R RR R R R                lnrINTAN OtherINTANR
            (11) 

Where: R denotes the share of total payments to intangible capital (R); SOFT=DN refers to DN 

goods already incorporated into official measurement of software; DN+ refers to additional production 

of DN not so measured20; and SOFT≠DN refers to remaining software that is not DN.  

 

Third, since software is already capitalised, measured GDP, 
( )MQ  includes some production of DN, 

so that true GDP only needs to be adjusted for the additional non-capitalised DN, so we can write:  

( )

( ) ( )

( )

( ) ( )

( )
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






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    
    
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     (12) 

 

Where Q’ is GDP excluding the DN implicitly measured within software.   

 

Combining (10), (11) and (12) we can write the relation between measured GDP growth and its 

components as follows.  
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 

 
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   (13) 

We are now in a position to see what impact Big Data might have on measured GDP growth. In the 

first line of (13), we have the usual growth accounting contributions of inputs L and K, weighted by 

their factor shares.  The second and third rows are likewise the contribution of R, where R includes 

other knowledge capital such as software and R&D.  The fourth and fifth rows show the additional 

contributions of inputs in the D and N sectors, which, if imperfectly competitive, are weighted by

                                                      
20 For full details on estimation of DNSOFT=DN and DN+, please see Goodridge and Haskel (2015a).  
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( 1)  . The sixth term is true TFP in each sector weighted by sectoral shares in output, and the final 

term the bias to measured GDP growth if additional DN investments (DN+) are not capitalised.  

3.3.1. Effect on TFP 

From (13) we are also able to see the impact of Big Data on measured TFP.  Noting that measured 

TFP is: 

( ) ( ) ( ) ( )

( ) ( ) , ( ) ( ) , ( ) ( )ln ln ln ln ln lnM M M M

M M L K R SOFT M SOFT M R OtherINTAN M OtherINTAN M

Q Q Q Q
TFP Q s L s K s R s R          

           (14) 

 

And noting that RSOFT(M) consists of RSOFT≠DN and RSOFT=DN, we may write: 
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      `     (15) 

 

What does equation (15) say?  Measured TFP reflects the respective lines on the right. First, there is 

underlying true TFP (weighted average in each sector).  Second, the conventional inputs, L and K, are 

weighted with the wrong shares i.e. shares of 
( )MQ  whereas they should be weighted with shares of 

Q.  Third, the existing measures of software, which includes some DN assets, and other intangibles21 

are also weighted at the wrong shares.  Fourth, the contribution of additional DN goods (DN+) is 

omitted from measured output, so that it is implicitly within measured TFP.  Fifth and sixth, the D and 

N sector share-weighted inputs make an additional contribution due to the mark-up, so that will also 

be implicit within measured TFP. Seventh, since DN is not fully capitalised, value added is 

incorrectly measured and hence measured TFP growth is too high if DN+ is growing faster than 
( )MQ  

 

3.3.2. Mark-ups 

a) In theory 

                                                      
21 In the national accounts, and in this paper, other capitalised intangibles are R&D, mineral exploration and 
artistic originals.   
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In the above model, we incorporated product mark-ups in both the data-building (D) and knowledge 

creation (N) sectors. It could be argued that, in the context of data, any mark-up is earned from unique 

access to raw records or information, since the analytics can be replicated elsewhere. If so, then 

market power will exist in the D sector and that sector can price such that it appropriates those excess 

returns.  Alternatively, Mayer-Schönberger and Cukier (2013) and Bertino, Bernstein et al. (2011) 

make the point of value being generated through the combination and linking of data from different 

sources, which could be done in either the D or the N sector.  On the other hand, Helbing (2014) 

argues that as more data becomes available, then the ability to “keep secrets” becomes more limited 

and so excess profits will be earned from algorithms and analytics, in the N sector in our framework.  

Therefore it seems plausible that mark-ups could be earned in the D sector, N sector or both.   

 

b) In practice 

From (1) it is clear that the product mark-up is a key parameter in estimating the true value of 

upstream output, in either the data-building sector or the knowledge creation sector.  However, little is 

known about actual values of  , either in the context of data and data analytics, or indeed other 

intangible assets such as scientific R&D, design, artistic originals or brands.  The reason is that, with 

some exceptions, most intangibles are created on a firms’ own-account (i.e. the upstream intangibles 

sector is situated in-house).  Therefore little data on actual market transactions exists, making 

comparisons between the value of output and its cost of production difficult.   

 

What work has been done on estimating mark-ups for intangibles has mostly been in the context of 

R&D.  Hulten and Hao (2008) estimate a mark-up for the additional profit earned by R&D assets 

using the share of R&D in current expenditure to allocate a proportion of operating surplus to R&D.  

Using data for six pharmaceutical companies, they estimate a mark-up of 1.5 for the year 2006.   

 

In the US R&D satellite account, the costs of R&D exchanged between R&D establishments 

classified in a different industry to the parent/owner firm are also marked up (Robbins and Moylan 

2007). The mark-up is estimated using the ratio of net operating surplus to gross output for 

miscellaneous professional, scientific, and technical services, which for the US averages about 0.15, 

implying an average mark-up of 1.15 (Corrado, Goodridge et al. 2011).  

 

In work on estimating UK investment in artistic originals, Goodridge (2014) includes estimates of 

investment in music originals based on the revenues they earn. Invoking assumptions of steady-state 

conditions, aggregate revenues earned by assets equate to the value of investment. In that work, UK 

investment in music originals in 2008 was estimated as £1,331m.  For the same year, a cost-based 

approach yielded an estimate of £224m, implying an innovator mark-up of (1,331/224=)5.9.   
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A similar approach can be taken to estimating a mark-up for broadcasting originals. ITV is a UK 

commercial broadcaster that earns revenues from the sale of advertising carried on its broadcasts. An 

approximate mark-up for ITV originals can be estimated using data on ITV costs of television 

production and the revenues generated through the sale of advertising. Data from OFCOM (2013) 

show that in 2012 ITV costs of production were £814m.  Data from the ITV Annual Report show that 

net advertising revenues were £1,510m (ITV 2013), implying a mark-up of (1,510/814=)1.86.   

 

4. Information and Data-Based Knowledge as assets 

The above framework modelled information and data-based knowledge as assets that make long-lived 

contributions to production.  It is therefore worth saying a little more about the justification for their 

treatment as assets, including a discussion of official capitalisation criteria as set out in the SNA.   

 

4.1. Do information and commercial data knowledge function as assets? 

To assess whether or not (transformed) data and commercial data knowledge ought to be counted as 

assets, and whether the expenditures towards their creation ought to be counted as investments, it is 

worth reminding ourselves of the definitions of capital and investment.   

 

As pointed out in Jorgenson and Griliches (1967) and Hulten (1979), savings and investment are a 

means of sacrificing current consumption in order to increase future consumption, making the 

appropriate definition of economic investment the devotion of current resources to the pursuit of 

future returns (Weitzman 1976; Hulten 1979).  Consistent application of that definition immediately 

makes clear that whether expenditure is on a factory or a virtual data centre for long-term use does not 

matter to the question of what ought to be classified as investment.  What matters for the purposes of 

capitalisation is whether data (information), and data-based knowledge, function as assets that 

generate future returns and make long-lived contributions to production.  As noted in CEBR (2013), 

data that enables firms to derive future economic benefits ought to be regarded as assets  

 

Evidence for the contribution of data and data-based knowledge to productivity can be found in 

Brynjolfsson, Hitt et al. (2011).  Using firm-level data on business practices and controlling for 

traditional capital including ICT, those authors find that the use of data-driven decisionmaking (DDD) 

can explain a 5-6% increase in firm output and productivity and is also associated with significantly 

higher firm profitability and market value, with potential issues around reverse causality addressed 

using instrumental variable techniques.  Similarly, using data from a NESTA survey on data activity, 

Bakhshi, Bravo-Biosca et al. (2014) find that data active firms are on average 8% more productive 

than their counterparts.  The same authors also report strong links between data analytics and firm 
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productivity, with firms that empower employees to implement insights gleaned from data found to be 

16% more productive.  Further support for the capitalisation of data can be found in: Economist 

Intelligence Unit (2012), which reports results of a survey of managers who on average stated that 

(big) data had improved their organisations performance by 26% over the past three years; Davenport 

and Harris (2007), who make the link between use of data analytics and acquiring a competitive 

advantage; and LaValle, Hopkins et al. (2010) who show that firms that employ data analytics are 

twice as likely to be among the industry top performers.   

 

To help underline how data and data-based knowledge function as assets, Goodridge and Haskel 

(2015a) report on case studies for the retail, manufacturing and telecommunications sectors.  Those 

studies provide examples of applications, or potential applications, of data and data analytics in 

market production, as reported in Manyika, Chui et al. (2011) and OECD (2013), where data is used 

to create data-based knowledge which in turn is applied in downstream production, increasing 

productivity by either: a) improving efficiency and reducing costs; or b) by adding to the 

quantity/quality of goods and services produced, thereby increasing output.  

 

4.2. System of National Accounts (SNA) 

SNA investment criteria have the same interpretation as those from the economic literature set out 

above.  If an input contributes to production over more than one accounting period, its acquisition 

ought to be counted as investment.22  The SNA describes intellectual property products (IPPs) as 

assets that are “the result of research, development, investigation or innovation leading to knowledge 

that the developers can market or use to their own benefit in production”, and states that such 

knowledge remains an asset until it is ether no longer protected or becomes obsolete.  We note that 

provided they are repeatedly used over more than one accounting period, transformed data 

(information) and commercial data knowledge meet the SNA definitions for both assets and, more 

specifically, IPPs.  However, some features of data and databases, namely that data is, in national 

accounts nomenclature, a non-produced asset, have implications for measurement. We expand on this 

issue, and SNA criteria in general, in Appendix 1.  

 

5. Growth-accounting 

In this paper we undertake growth accounting for the UK market sector based on a value-added 

production function that incorporates intangible capital, and specifically data-based capital. As 

described in Goodridge and Haskel (2015a), investments in data are defined to include the building 

and transformation of data, and the extraction of knowledge from data.   

                                                      
22 Where acquisition can include the purchase of an asset in a market transaction, or own-account (in-house) 
asset production.  
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( , , )t t t t tQ A F L K R         (16) 

 

Thus market sector value-added is a function of labour (L), tangible capital (K), intangible capital (R) 

and technical progress (A).23  Suppose there is one unit of each type of capital and labour 

(respectively K, R and L) which produce (value-added) output Q.  Thus, we have the following value-

added defined ΔlnTFP 

ln ln ln ln lnK L RTFP Q q K q L q R             (17) 

 

Where the terms in “q” are shares of factor costs in nominal market sector value-added, averaged over 

two periods.  In reality we do not of course have one capital and labour unit, but many.  These are 

aggregated across different types: for labour, see below, we use, education, age (experience), and 

gender; for capital, different types of both tangible assets and intangible assets.  Denoting the capital 

and labour types k, r and l we have the following for each type: 
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Before proceeding to the data, some further theory remarks on the measurement of capital.  As 

pointed out by e.g. Jorgenson and Griliches (1967) the conceptually correct measure of capital in this 

productivity context is the flow of capital services.  This raises a number of measurement problems 

set out, for example, in the OECD productivity handbook (2004).  We estimate the now standard 

measure as follows.  First, we build a real capital stock via the perpetual inventory method whereby 

for any capital asset k or r, the stock of that asset evolves according to: 

, , , 1
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
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           (19) 

 

Where I (N) is real tangible (intangible) investment and  the geometric rate of depreciation.  Real 

investment comes from nominal investment deflated by an investment price index.  Second, that 

                                                      
23 It might be asked, what is the distinction between A and R?  In this framework, A derives from freely 
available, non-excludable, non-rival knowledge.  R is knowledge capital invested in by firms from which they 
appropriate revenues and hence is at least partially excludable.  For instance, the knowledge may be firm-
specific with high degrees of complementarity with firm-specific skills.  Alternatively that knowledge may be 
covered by formal IP protection.   
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investment price is converted into a rental price using the Hall-Jorgenson relation, where we assume 

an economy-wide net rate of return such that the capital rental price times the capital stock equals the 

total economy-wide operating surplus (on all of this, see for example, Oulton and Srinivasan (2003)).  

 

5.1. Data 

5.1.1. Time period 

We work with market sector value-added and use official ONS data up to 2012, consistent with Blue 

Book 2013.  For measures of investment in data and data-based knowledge, we use estimates 

constructed in Goodridge and Haskel (2015a).  Recent editions of the national accounts only go back 

to 1997 so we extend the data back to the 1970s using market sector data from earlier datasets built 

from previous editions of the national accounts (Borgo, Goodridge et al. 2013). 

 

5.1.2. “Market sector” definition 

Our market sector data is built bottom-up from data for nine broad industries.24 As in EUKLEMS, our 

definition of the market sector excludes the public sector, private delivery of public services such as 

education and health, and the real estate sector.  Note this differs from the ONS official market sector 

definition, which excludes some publicly-provided services in SIC section R (galleries and libraries 

for instance), and includes private delivery of education, health and social care. We exclude real estate 

as the majority of sector output is made up of actual and imputed rents.  Since dwellings are not part 

of the productive capital stock, we must also exclude the output generated from dwellings, so that the 

output and capital input data are consistent.  This is standard practice in growth accounting exercises.  

 

For the years where industry level data is available (from 1997), the data are bottom-up, that is 

derived at the industry level and aggregated subsequently.  Aggregation of nominal variables is by 

simple addition.  Aggregates of real variables are a share-weighted superlative index for changes, 

benchmarked in levels to 2010 nominal data.  For years before 1997 data are backcast using data from 

previous work (e.g. Borgo, Goodridge et al. (2013); Goodridge, Haskel et al. (2012)), which were 

similarly aggregated from industry values but based on SIC03.   

 

5.1.3. Tangible and labour inputs, and factor shares. 

                                                      
24 Those industries are, at SIC07 section level: (1) ABDE, Agriculture, Forestry and Fishing (A), Mining and 
Quarrying (B), Electricity, Gas, Steam and Air Conditioning Supply (D), Water Supply, Sewerage, Waste 
Management and Remediation Activities (E); (2) C, Manufacturing; (3) F, Construction; (4) GI, Wholesale and 
Retail Trade, Repair of Motor Vehicles and Motorcycles (G), Accommodation and Food Service Activities (I); 
(5) H, Transportation and Storage; (6) J, Information and Communication; (7) K, Financial and Insurance 
Activities; (8) MN, Professional, Scientific and Technical Activities (M), Administrative and Support Service 
Activities (N); and (9) RST, Arts, Entertainment and Recreation (R), Other Service Activities (S), Activities of 
Households as Employers (T).  
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For labour composition and hours worked we use the ONS Quality-adjusted labour input (QALI) data.  

The labour services data are for 1993-2012 and are based on ONS annual person-hours by industry, 

with persons including the employed, self-employed and those with multiple jobs.  The ONS use these 

data along with LFS microdata on worker characteristics to estimate composition-adjusted person 

hours (or quality-adjusted labour input (QALI)), where the adjustment uses wage bill shares for 

composition groups for age, education and gender.  Data are grossed up using population weights.  

The market sector series is aggregated from industry data using industry shares of labour 

compensation.  Since the data begin in 1993, we backcast our labour input data using EUKLEMS. 

 

Data on labour income, that is compensation of employees (COE) plus a proportion of mixed (self-

employed) income, are from the ONS.  The COE data are consistent with the labour services data. 

Mixed income is allocated to labour and capital according to the ratio of labour payments to market 

sector GVA (MGVA) excluding mixed income, as used in the ONS publication of QALI.  Gross 

operating surplus (GOS) is always computed residually as market sector GVA less COE so that GOS 

+COE =MGVA by construction.  We shall of course amend output and capital compensation to 

incorporate intangible capital assets not already capitalised in the national accounts. The following 

intangibles are capitalised in our data: software and databases; mineral exploration; artistic originals, 

R&D ,and additional investments in data as estimated in Goodridge and Haskel (2015a).   

 

Tangible capital variables are based on Oulton and Wallis (2014). Their estimates combine the latest 

ONS investment series and price deflators, which only go back to 1997, with historic series to 

estimate UK capital stock and capital services growth since the 1950s. The tangible capital data 

distinguishes four asset types, which are: buildings, computer hardware, (non-computer) plant & 

machinery, and vehicles. We also incorporate appropriate tax adjustment factors for all assets, 

tangible and intangible, based on Wallis (2012).25   

 

5.1.4. Details of measurement of intangible assets 

In other work (e.g. Borgo, Goodridge et al. (2013); Goodridge, Haskel et al. (2014)) we work with the 

full range of intangible assets as categorised in Corrado, Hulten et al. (2005). In this paper we work 

with capital definitions as set out in the SNA (United Nations 2008)), therefore only including the 

following intangibles: software and databases; mineral exploration; artistic originals; and R&D. 

Regarding data(bases), estimates are comprised of that part already capitalised in the national 

accounts within software and databases plus estimated additional investments not so measured.   

 

 

                                                      
25 As with own-account software, since firms do not receive any allowances for their investments in data, the tax 
adjustment factor for this asset is simply 1.    
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(1) Computerised information: Software and databases 

(a) National Accounts measure 

Computerised information comprises computer software, both purchased (pre-packaged and custom) 

and own-account, and databases.  This category is already capitalised and thus we use these data as 

our starting point, as described by Chamberlin, Clayton et al. (2007).  Purchased software data are 

based on company investment surveys and own-account based on the wage bill of employees in 

computer software occupations, adjusted downwards for the fraction of time spent on creating new 

software (as opposed to, say routine maintenance) and then upwards for associated overhead costs.  

 

(b) Data-based information and knowledge (DN) 

In Chebli, Goodridge et al. (2015) and Goodridge and Haskel (2015a) we use publically available 

social media data to identify the occupations where workers in Big Data reside.  We show that of the 

identified 190,000 Big Data workers in UK firms, 65% are already counted in the own-account 

computer software occupations described above, with 35% in other occupations.  We therefore use 

that occupational data to estimate the part of data investment already recorded in the national accounts 

and also additional investments in data not already recorded. In 2010, of total investment of £5.7bn, 

we estimate that £4.3bn is already counted within official measures, with £1.4bn of additional 

investment currently uncounted.  Thus we adjust the measured data and effectively separate it into 

components for software and data respectively.  See Goodridge and Haskel (2015a) for full details.  

 

(2) R&D, mineral exploration and artistic originals 

For business R&D we use industry expenditure data derived from the Business Enterprise R&D 

survey (BERD). To avoid double counting of R&D and software investment, we subtract R&D 

spending in “computer and related activities” (SIC 62) since this is already included in the software 

data.26  Since BERD also includes physical capital investments we convert those investments into a 

capital compensation term, using the resulting physical capital stocks for the R&D sector and the user 

cost relation.27  The BERD breakdown also includes R&D performed in the R&D services industry.  

We allocate that spend to purchasing industries using information from the IO tables.  

 

                                                      
26 The BERD data gives data on own-account R&D spending.  Spending is allocated to the industry within 
which the product upon which firms are spending belongs.  That is we assume that R&D on say, pharmaceutical 
products takes place in the pharmaceutical industry. General R&D spending is allocated to professional, 
scientific and technical services.  Thus the BERD data differs from that in the supply use tables, which estimates 
between-unit transactions of R&D where units can be within the same firm.   
27 Ignoring capital gains, PK=PI(ρ+δ), where PK is the rental price of physical capital; PI is the asset price, ρ is the 
net rate of return to capital and δ is the depreciation rate. 
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Mineral exploration, and production of artistic originals (copyright for short) are also already 

capitalised in the National Accounts. Data for mineral exploration here are simply data for Gross 

Fixed Capital Formation (GFCF) from the ONS, valued at cost (ONS National Accounts, 2008) and 

explicitly not included in R&D.  Data for copyright are new estimates recently included in the 

national accounts, based on our own estimates produced with the co-operation of ONS and the 

Intellectual Property Office (Goodridge 2014).  The production of artistic originals covers, “original 

films, sound recordings, manuscripts, tapes etc., on which musical and drama performances, TV and 

radio programmes, and literary and artistic output are recorded.”  

 

5.1.5. Prices and depreciation 

Rates of depreciation and the prices of intangibles are less well established. This is particularly true of 

assets in data and knowledge acquired from data. The R&D literature appears to have settled on a 

depreciation rate of around 15-20%, and OECD recommend 33% for software.  Given the close links 

between software and data, in terms of both measurement and actual investment activity, we use the 

same rate of depreciation for data as for software (33%).  However, we shall explore the robustness of 

our results to depreciation, halving and doubling the depreciation rate for data-based assets, but note 

in passing that intangibles are assumed to depreciate very fast and so are not very sensitive to 

deprecation rates, unless one assumes much slower rates, in which case intangibles are even more 

important than suggested here.  

 

On prices, in past work we have made extensive use of the implied GDP deflator. The price of 

intangibles is an area where very little is known aside from some very exploratory work by the BEA 

(e.g. Copeland, Medeiros et al. (2007)) and Corrado, Goodridge et al. (2011).  These papers attempt to 

derive price deflators for knowledge from the price behaviour of knowledge intensive industries and 

the productivity of knowledge producing industries.  Two observations suggest that the GDP deflator 

overstates the price for knowledge and so understates its impact on the economy.  First, many 

knowledge-intensive prices have been falling relative to GDP. Second, the advent of the internet and 

computers would seem to be a potential large rise in the capability of innovators to innovate, which 

would again suggest a lowering of the price of knowledge in contrast to the rise in prices implied by 

the GDP deflator.  Thus use of the GDP deflator could understate the importance of intangible assets.  

 

To form estimates of real upstream output of DN we require estimates of the price of those outputs. 

From (1) it is clear that one potential way of estimating would be make use of the dual growth-

accounting identity, using estimates of the prices of upstream inputs, their income shares, and ideally 

some measure of sectoral TFP and the product mark-up.  

ln ln ln ln lnDN DN L L DN K K DN M M DN

DN DN DN DN DN DNP s P s P s P TFP           (20) 
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Indeed a similar approach is taken to the estimation of the price of own-account software in the UK.28   

 

Sometimes people infer something about the price of Big Data by observing the costs of data storage, 

which have fallen dramatically in recent years. For instance, OECD (2013) notes the declining 

average cost per gigabyte of consumer hard disk drives (HDDs), which dropped from $56 in 1998 to 

$0.05 in 2012 (-39% pa), and the even faster rate of decline in new storage technologies such as solid-

state drives (SSDs), which fell from $40 in 2007 to $1 in 2012, -51% pa (OECD 2013).  Similarly in 

data processing, the continuing increase in processing power, usually referred to as Moore’s Law,29 

means that processing tools are becoming ever more powerful and continually falling in terms of price 

per unit.  According to OECD (2013), in genetics, the sequencing cost per genome of DNA gene 

sequencing machines has fallen at an average rate of -60% pa, 2001-2012.   

 

But equation (20) shows that this does not represent the price of data or data analytics directly.  The 

costs of storage and processing reflect the prices of servers and hardware, which are capital items in 

the two upstream sectors (
K

DNP ).  They therefore impact the price of transformed data and commercial 

data knowledge through the contribution of capital prices ( lnK K

DN DNs P ), with the contribution 

depending on the income share of fixed capital (
K

DNs ) in the upstream sectors.  The availability of 

various forms of open-source software (e.g. Hadoop, R etc.) also has implications for the price of D 

and N activity.  Since such software is typically unpaid for (unless bundled with other services or 

modified with additional features), its impact on the price of D and N is through ln DNTFP  in (20).   

 

An alternative method for constructing an appropriate price index would be to collect observed 

market prices where available.  For instance, the price observed from sales of data (for example, 

airlines have been in the practice of selling their data for some time and actively sell the data they 

collect from their frequent flyer programs), or the price observed from the sale of commercial data-

based knowledge (the credit scoring services purchased by financial institutions are an example of a 

data-based knowledge service that has been around for some time).  

 

A number of alternatives are available so we test the robustness of our results using a variety of 

deflators.  First, although we lack data for all the components of (20), in particular the mark-up and 

sectoral TFP, for our baseline we use a wage index built from the reported salaries of the occupations 

                                                      
28 In ONS estimates of capital services, changes in the price of own-account software in the UK are estimated as 
the change in the wages of software writers (ΔlnPL

N) minus an estimate of productivity (based on observed 
labour productivity growth in the wider service sector).  
29 Moore’s Law is the observation and prediction that processing power doubles approximately every 18 
months.  
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that make up Big Data employment ( ln L

DNP ) as estimated in Chebli, Goodridge et al. (2015) and 

Goodridge and Haskel (2015a).  The wage index is a share-weighted index based on the reported 

salaries of sixteen occupations and their shares in estimated Big Data employment.   

 

Second, given the strong links between investments in software and data, particularly own-account 

investments, we use the deflator for own-account software, as used in the ONS Volume Index of 

Capital Services (VICS).  In practice, this is similar to our baseline wage index due to the overlap in 

software and data occupations, with an additional productivity adjustment to at least partially account 

for productivity in the DN sector.  Third, we use an ONS services producer price index (SPPI) that 

includes prices for “data processing services” (Index Number 6200019000).30  Fourth, we experiment 

with an alternative deflator for knowledge-based capital, namely the official UK deflator for private 

R&D investment.  Finally, as a very aggressive option, we experiment with the fast-falling US price 

index for pre-packaged software, on the basis that productivity in data investment activities may have 

been growing similarly fast to that in production of pre-packaged software.   

 

6. Results 

This section sets out our results.  First, in Figure 2, we present time-series’ for total investments in 

DN, separated into the parts already measured (SOFT=DN) and the additional component previously 

unidentified (DN+), as estimated in Goodridge and Haskel (2015a).  That paper shows that some 

occupations engaged in the building of DN assets are the same as those used in the measurement of 

own-account software (SOFT=DN), whilst additional estimates (DN+) are based on estimates of DN 

workers in occupations not traditionally related to the writing of software (e.g. business intelligence, 

economists, statisticians etc.), 

 

Figure 2: Nominal UK market sector investment in DN, £bns current prices, 1997-2013 

0

1

2

3

4

5

6

7

8

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

Total Investment in Data

(DN)

Already measured

(SOFT=DN)

Additional Investment

(DN+)

 

                                                      
30 Since this series begins in 1996, we extend it back using the own-account software deflator.   
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Note to figure: Solid line is total measured investment in data (DN). Dashed line is the component of investment 
that we estimate as already measured in official gross fixed capital formation (GFCF) (SOFT=DN).  Dotted line 
is additional investment not already recorded in official GFCF (DN+).  Data for the UK market sector, defined 
as SIC07 sections: A-K, MN, R-U.  
Source: Goodridge and Haskel (2015a) 

 

To put these estimates into some context, Table 2 presents estimates of nominal investment by asset 

over the period 1990 to 2012, including our estimates of investment in data-building and data-based 

knowledge creation (DN).  A few points to note from Table 2.  First, we note the decline in absolute 

terms of tangible investment over the late 2000s, as shown in row 6 (compare 2005 and 2012).  

Second, we also note the decline in relative terms for certain tangible assets.  In particular we note 

that, of investment as defined by the SNA,31 the proportion made up by plant & machinery (excluding 

IT hardware), row 3, has fallen from 30% in 1990 to 24% in 2012.  Similarly, the proportion made up 

from investment in vehicles, row 4, has fallen from 11% in 1990 to 4% in 2012.  Third, over the same 

period, the proportions made up from intangibles has grown.  For instance, the share accounted for by 

R&D, row 7, has grown from 9% in 1990 to 11% in 2012.  That for artistic originals, row 8, has also 

grown, from 2% in 1990 to 4% in 2012, whilst that for mineral exploration, row 9, has declined from 

2% in 1990 to 1% in 2012.  More dramatic is the rise in measured investment in software (memo 

item, row 15), which have risen from 9% in 1990 to 19% in 2012.  

 

On investments in data-building and data-based knowledge creation (DN),32 row 12, as set out in 

Goodridge and Haskel (2015a), we estimate nominal GFCF to have grown from £1.7bn in 1990 to 

£6.6bn in 2012, total growth of 388% implying average annual growth of 18% pa over that period.   

 

In the context of the UK national accounts, our identification of additional investment means that 

measured investment in software and databases (see row 15) is actually an underestimate of the 

investments made by UK firms.  We estimate actual market sector investment in software and 

databases of £28.4bn in 2012 (row 13), £1.6bn more than measured in the official data (row 15). In 

1990 the difference was just £0.4bn.  However, while actual total (row 13) and measured total 

investments (row 15) are broadly similar, the implication is that the composition of investment is 

                                                      
31 So including tangibles, plus computerised information (i.e. measured software and databases), mineral 
exploration, artistic originals and R&D as intangibles, and not including the additional investments in data 
(DN+) as estimated in Goodridge and Haskel (2015a).  
32 References to DN refer to total investments in the D (data-building or transformation) and N (data-based 
knowledge creation) sectors.  Thus D refers to long-lived information assets from the data-building or data 
transformation process and N refers to long-lived knowledge assets formed from the analysis of information.  
DN is thus comprised of the part of D and N sector activity already capitalised (SOFT=DN) and the additional 
part not currently capitalised (DN+).   
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changing, with some of what was previously considered software actually representing investments in 

data (DN), and with the component covering data growing faster than that which covers software.33   

 

Table 2: UK market sector investment, by asset (nominal, £bns) 

1 UK nominal market sector investment (£bns) in: 1990 1995 2000 2005 2010 2012

2 Buildings 27.0 22.1 38.0 52.8 44.9 46.0

3 Plant & Machinery (excl IT) 25.7 28.4 37.3 30.2 30.4 34.1

4 Vehicles 9.0 9.4 9.1 10.9 13.6 6.1

5 IT Hardware 5.1 6.6 9.4 6.3 5.4 5.9

6=2+3+4+5 Total Tangibles 66.9 66.5 93.8 100.1 94.4 92.1

7 R&D 7.3 8.3 10.7 12.7 14.8 15.5

8 Artistic Originals 1.9 3.0 4.9 7.0 5.7 6.0

9 Mineral Exploration 1.6 1.1 0.5 0.7 0.6 0.9

10 Purchased Software 2.5 5.2 7.3 10.4 10.4 13.6

11 Own-Account Software 3.5 4.2 7.2 8.6 8.7 8.2

12 Data [DN] (D: Data-building; N: Knowledge Creation) 1.7 2.0 3.5 4.4 5.7 6.6

13=10+11+12 Total (adjusted) "Software & Databases" 7.7 11.5 18.0 23.4 24.8 28.4

14 Memo: Measured Own-account "Software & Databases" 4.8 5.8 9.9 11.9 12.9 13.2

15=10+14 Memo: Total Measured "Software & Databases" 7.3 11.0 17.2 22.3 23.4 26.8

16 Memo: Market Sector GVA 411.8 508.2 663.6 844.9 961.0 977.2

Note to table:  UK nominal market sector investment by asset.  Estimates for own-account software exclude the 
component that we assign to investments in data.  Measured investment in own-account software and databases 
is presented as a memo item.  Total adjusted software and databases therefore comprises measured investment 
(presented as a memo item) plus additional investments in data-building and data-based knowledge creation not 
already recorded in the national accounts.   
 

6.1.  Growth-accounting results 

Our growth-accounting results for the UK market sector are set out below in Table 3, which reads as 

follows.  In panel 1 we set out a decomposition of growth in market sector value-added.  In the first 

set of results in panel 1, we only include that part of data investment already capitalised in the national 

accounts within software (DNSOFT=DN).  In the second set of results in panel 1, we add in estimated 

additional investments in DN not currently included in national accounts measured investment (DN+).  

In panel 2 we conduct a decomposition of market sector labour productivity growth (LPG), estimated 

as growth in value-added per hour worked.  Again the first set of results only include the part of 

investment already recorded in the national accounts (DNSOFT=DN), and the second set incorporates our 

estimates of additional investments not officially recorded (DN+).  

 

Columns in Table 3 are as follows, with those in panel 2 in per hour terms.  Column 1 is growth in 

value-added (per hour).  Column 2 is the contribution of labour services (labour composition in panel 

2), namely growth in labour services (per hour) times the share of labour in MGVA.  Column 3 is the 

contribution of computer capital services (per hour), that is growth in computer capital services (per 

                                                      
33 In official measurement, estimates of investment in software and databases cannot be separated into their 
respective components.  However, this is to change in upcoming years following the latest guidance and 
recommendations in the SNA (United Nations 2008).  
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hour) times the share in MGVA.  Column 4 is the contribution of growth in other tangible (buildings, 

plant & machinery, vehicles) capital services (per hour).  Column 5 is the contribution of growth in 

R&D capital services (per hour).  Column 6 is the contribution of growth in capital services (per hour) 

from mineral exploration and artistic originals.  Columns 7 to 11 set out contributions from software 

and data-based assets (DN).  Column 7 is the contribution of growth in measured software capital 

services (per hour). Columns 8 and 9 break the measured software contribution out into two 

components.  The first, column 8, is an adjusted component for software (SOFT≠DN, adjusted in the 

sense that we remove the part of measured investment that we estimate represents investments in 

DN).  Column 9 shows the contribution from the part of measured investment that we assign to DN 

(DNSOFT=DN).  Column 10 is the contribution of additional data-based information and knowledge 

capital (DN+) not recorded in the national accounts.  Column 11 is the total contribution of DN 

capital and is the sum of columns 9 and 10.  Finally, column 12 is growth in TFP, namely column 1 

minus the sum of columns 2 to 7 and column 10.   

 

Consider first the top panel of data for growth in value-added.  Growth in value-added was relatively 

weak in the early 1990s (1.63% pa) since it includes the recession that took place in that period.  

Growth in the late 1990s was much stronger (3.7% pa) before declining in the early 2000s (2.48% pa) 

and being only marginally positive in 2005-12 (0.06% pa), the period of the great recession.  The 

contribution of labour services was negative in the early 1990s, a period where hours worked 

declined, grew strongly in the late 1990s, was weaker in the early 2000s and relatively stronger in the 

2005-12 period.34  The contribution of computer capital input grew quickly in the late 1990s, but fell 

in the 2000s, and more so in the late 2000s so that it stood at just 0.03% pa in 2005-12.  For other 

tangibles (buildings, plant and vehicles) the decline in the contribution is much less dramatic, partly 

due to the much slower depreciation rates for these assets, particularly buildings.  

 

Turning to intangibles, the contribution of R&D rose in the late 1990s, before falling back in the late 

2000s, and the contribution of mineral exploration and copyright grew in the late 1990s and again in 

the early 2000s, before turning negative in 2005-12 when capital services fell.  On measured software, 

that contribution rose strongly in the late 1990s (from 0.17% pa to 0.26% pa) and was maintained in 

the early 2000s (0.27% pa), following the software investment boom that took place in the late 1990s 

and early 2000s, before falling back to a much weaker contribution of 0.05% pa in 2005-12.  The 

relative weakness of investment in this period combined with the relatively high depreciation rates of 

intangible assets has meant that growth in software capital services has been considerably weaker.   

 

                                                      
34 This is a noted feature of the great recession and the period that has followed.  The decline in output growth 
was not matched by a similar decline in employment or hours worked, and since the recession, hours worked 
have grown at a similar rate to growth in output, hence discussion of the UK productivity puzzle.  For an 
analysis of the productivity puzzle, please see Goodridge, Haskel et al. (2014b).  
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Implicitly within the measured software contribution are the contributions of software itself 

(SOFT≠DN) and measured DN (SOFT=DN) activity, which we break out explicitly in columns 8 and 

9.  The pattern for software (SOFT≠DN) is similar to that for measured software, although the 

contribution is slightly less with the component for DN separated out.  On measured DN (DNSOFT=DN), 

the estimated contribution is a bit less than that for scientific R&D, at 0.01% pa in the early 1990s, 

0.02% pa in the late 1990s and early 2000s and 0.01% pa in 2005-12.  Note that this contribution is 

already an implicit part of the measured data in the national accounts.   

 

Thus the overall TFP record was one of strong growth in the early 1990s (1.51% pa), falling back in 

the late 1990s (1.2% pa) and again in the early 2000s (1.07% pa), and a strong decline in TFP in the 

late 2000s (-1.22% pa), largely due to the collapse in TFP during and since the great recession.  

 

In the second set of results in panel 1, we incorporate additional investments in data-based 

information and knowledge not already included in the national accounts (DN+), thus increasing the 

contribution of DN assets (total contribution of DN in column 11) in the late 1990s, to 0.03% pa, and 

in the late 2000s, to 0.02% pa.  Thus, as a share of growth in value-added, we estimate that the total 

contribution of DN explains 0.8% of ΔlnQ in the 1990s, 0.9% of ΔlnQ in the early 2000s and 22.6% 

of ΔlnQ in the late 2000s, with the latter being a period of exceptionally weak growth in output.  Note 

in column 1 that accounting for these additional investments in DN raises output growth in 2005-12 

from 0.06% pa in the first set of results to 0.07% pa in the second set.  

 

Note also that, in particular when we fully account for all investments in DN, the contribution of data-

based information and knowledge is comparable to that of R&D.  Although this obviously does not 

consider the role of spillovers, which R&D is widely considered to generate (see e.g. Hall, Mairesse et 

al. (2009) for a survey), given the attention devoted to R&D this is clearly a significant finding.    

 

Results in panel 2 present a similar exercise but this time using a decomposition of LPG so that 

estimated contributions are all in per hour terms.  Again the first set of results only include measured 

national accounts investments in DN (DNSOFT=DN), and the second set incorporates additional 

investments (DN+).  From column 1 we see that LPG has been on a downward trajectory since the 

early 1990s, estimated at 3.12% pa in 1990-95, 2.73% pa in 1995-00, 2.46% in 2000-05 and just 

0.10% pa in 2005-12.  In column 2 we see that the contribution of labour composition rose in the late 

1990s, declined in the early 2000s before rising to a very high contribution of 0.56% pa in the 2005-

12 period.  As noted in Franklin and Mistry (2013), labour composition has improved quite 

dramatically since the recession, with firms upskilling, that is increasing the hours of their more 

skilled and/or experienced workers, and reducing the hours of the less skilled/experienced.  In 
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particular, there has been strong growth in the hours worked, and the share of hours worked, by 

workers with higher education qualifications over the period 2007 to 2012.  At the same time, hours 

worked by workers with low levels of education has fallen (Franklin and Mistry 2013).35  Since it is 

education that predominantly drives the QALI data, labour composition has risen strongly.   

 

Table 3: Growth-accounting for UK market sector, with and without additional investments in 

data (DN), DN capitalised 

1 2 3 4 5 6 7=8+9 8 9 10 11=9+10 12

DlnQ sDlnL

sDlnK 

cmp

sDlnK 

othtan sDlnR rd

sDlnR 

min&cop

sDlnR 

soft 

(MEAS)

sDlnR 

DN+ sDlnR DN DlnTFP

Of which:

sDlnR 

SOFT ≠DN

sDlnR 

SOFT=DN

National Accounts

1990-95 1.63% -0.82% 0.20% 0.57% 0.00% 0.01% 0.17% 0.16% 0.01% - 0.01% 1.51%

1995-00 3.70% 0.86% 0.41% 0.92% 0.03% 0.02% 0.26% 0.24% 0.02% - 0.02% 1.20%

2000-05 2.48% 0.19% 0.13% 0.75% 0.03% 0.04% 0.27% 0.25% 0.02% - 0.02% 1.07%

2005-12 0.06% 0.55% 0.03% 0.66% 0.02% -0.02% 0.05% 0.04% 0.01% - 0.01% -1.22%

Including all 'big data' (D & N)

1990-95 1.63% -0.82% 0.20% 0.57% 0.00% 0.01% 0.17% 0.16% 0.01% 0.00% 0.01% 1.50%

1995-00 3.70% 0.86% 0.41% 0.92% 0.03% 0.02% 0.26% 0.24% 0.02% 0.01% 0.03% 1.20%

2000-05 2.48% 0.19% 0.13% 0.75% 0.03% 0.04% 0.27% 0.25% 0.02% 0.01% 0.02% 1.07%

2005-12 0.07% 0.55% 0.03% 0.65% 0.02% -0.02% 0.05% 0.03% 0.01% 0.00% 0.02% -1.21%

DlnQ/H sDln(L/H)

sDln(K/H) 

cmp

sDln(K/H) 

othtan

sDln(R/H) 

rd

sDln(R/H) 

min&cop

sDln(R/H) 

soft 

(MEAS)

sDln(R/H) 

DN+

sDln(R/H) 

DN DlnTFP

Of which:

sDln(R/H) 

SOFT ≠DN

sDln(R/H) 

SOFT=DN

National Accounts

1990-95 3.12% 0.15% 0.22% 1.00% 0.03% 0.02% 0.19% 0.18% 0.01% - 0.01% 1.51%

1995-00 2.73% 0.28% 0.40% 0.60% 0.01% 0.01% 0.24% 0.22% 0.02% - 0.02% 1.20%

2000-05 2.46% 0.18% 0.13% 0.74% 0.03% 0.04% 0.27% 0.25% 0.02% - 0.02% 1.07%

2005-12 0.10% 0.56% 0.03% 0.68% 0.02% -0.02% 0.05% 0.04% 0.01% - 0.01% -1.22%

Including all 'big data' (D & N)

1990-95 3.12% 0.15% 0.22% 1.00% 0.03% 0.02% 0.19% 0.18% 0.01% 0.00% 0.02% 1.50%

1995-00 2.74% 0.28% 0.39% 0.60% 0.01% 0.01% 0.24% 0.22% 0.02% 0.01% 0.03% 1.20%

2000-05 2.46% 0.18% 0.13% 0.73% 0.03% 0.04% 0.26% 0.25% 0.02% 0.01% 0.02% 1.07%

2005-12 0.10% 0.56% 0.03% 0.67% 0.02% -0.02% 0.05% 0.04% 0.01% 0.00% 0.02% -1.21%

1) Baseline Results: Value-added growth

2) Baseline Results: Labour Productivity growth

Note to table: Data are average growth rates per year for intervals shown, calculated as changes in natural logs.  
Contributions are Tornqvist indices. Panel 1 is a decomposition of output; panels 2 is a decomposition of labour 
productivity growth in per hour terms. First column is growth in output (per hour).  Column 2 is the contribution 
of labour services (per hour), namely growth in labour services (per hour) times share of labour in MGVA.  
Column 3 is growth in computer capital services (per hour) times share in MGVA. Column 4 is growth in other 
tangible capital services (buildings, plant, vehicles) (per hour) times share in MGVA.  Column 5 is growth in 
R&D capital services (per hour) times share in MGVA.  Column 6 is growth in capital services from mineral 
exploration and artistic originals (or copyright) (per hour) times share in MGVA. Column 7 is growth in 
measured software capital services (per hour) times share in MGVA.  Columns 8 and 9 break the measured 
software contribution out into the part estimated as software (SOFT≠DN) and the part estimated as data 
(SOFT=DN).  Column 8 is growth in adjusted software capital services (per hour) times share in MGVA, 

                                                      
35 Similarly, since the recession, the hours of younger (less experienced) workers have also declined by more 
than the middle, and older, cohorts.  
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adjusted in the sense that the part assigned to data has been removed.  Column 9 is growth in measured data 
(SOFT=DN) capital services (per hour) times share in MGVA.  Column 10 is growth in additional data (DN+) 
capital services (per hour) times share in MGVA. In each of panels 1 and 2, the first set of results only include 
measured data investment, thus column 10 is blank, and the second set incorporate additional investments not 
recorded in the national accounts.  Column 11 is the total contribution of DN capital services and is thus column 
9 plus column 10.  Column 12 is TFP, namely column 1 minus the sum of columns 2 to 7 minus column 10.  
Contributions may not sum exactly due to rounding.   

 

In columns 3 to 11 we present the contributions from capital deepening (i.e. capital services per hour) 

for our various assets and some aggregations.  The pattern here is broadly similar to that in the 

decomposition of value-added, including for DN assets.  Using the national accounts model in the top 

half of panel 2, the estimated contribution for DNSOFT=DN capital deepening (column 9) rose in the late 

1990s and was maintained in the early 2000s before falling back in the late 2000s.  Once we 

incorporate additional investments, DN+, as in the lower half of panel 2, we find that the total 

contribution (column 11) is higher, rising from 0.02% pa in 1990-95, to 0.03% pa in 1995-00, and 

then remaining at 0.02% pa throughout the 2000s.  Thus we find that once we account for all 

investments in DN, as a share of Δln(Q/H), the contribution of DN capital deepening can explain 0.6% 

of labour productivity growth in the early 1990s, 1% in the late 1990s, 0.9% in the early 2000s, and 

15.1% in the late 2000s, when LPG was very weak.   

 

6.2. Growth-accounting: further details and robustness checks 

So far our main findings are that, first, the contribution of data-based information and knowledge 

(DN) is comparable to that of R&D, and second, most of that contribution is already measured as an 

implicit part of the official data on software.  We necessarily make a number of assumptions when 

implementing the growth accounting exercise. How robust are our findings to key assumptions?  This 

is shown in Table 4. 

 

Table 4 is set out as follows.  Data are averages for 2005-12.  Row 1 is growth in market sector value-

added with DN fully capitalised.  Row 2 is the measured software contribution.  Rows 3 and 4 break 

row 2 out into the contribution of software (SOFT≠DN) and the contribution of DN already implicit 

in the measured data (SOFT=DN).  Row 5 is the contribution of additional investments in DN not 

already measured in official data (DN+).  Row 6 is the total contribution of DN assets and so is the 

sum of rows 5 and 4.  Finally row 7 is the total contribution of software and databases and is thus the 

sum of rows 2 and 5, or alternatively the sum of rows 3 and 6.  In each column we test the robustness 

of these terms to various assumptions on the depreciation rate and DN price index.  Column 1 are our 

baseline estimates, based on a depreciation rate of 0.33 and using a share-weighted wage index for 

DN workers (see Goodridge and Haskel (2015a) for more details) as the deflator.  In columns 2 and 3 

we halve and double the depreciation rate respectively.  In column 4, we revert to a depreciation rate 

of 0.33, but use the own-account software price index to deflate DN investment, note this price index 
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includes an adjustment to account for productivity growth in asset production.  In column 5 we deflate 

using the ONS SPPI for ‘Data processing’ services.  In column 6 we use the UK R&D deflator.  

Finally in column 7, we use the US pre-packaged software deflator, implicitly assuming very fast 

productivity growth in production of DN assets.   

 

Let us first consider the depreciation rate.  In column 1 we apply the same depreciation rate as 

commonly used for software, based on the strong links between investments in DN and software in 

both concept and measurement practice, as outlined in Goodridge and Haskel (2015a) and this paper, 

namely a rate of 0.33.36  In column 2 we halve that rate to 0.167.  The impact on the estimated 

contribution (row 6) is however small – with rounding, there are no changes to the estimated 

contributions.  In column 3 we double the depreciation rate to 0.67.  The impact is to increase the 

contribution of DN assets.37  The contribution of SOFT=DN (row 4) is raised from 0.01% pa to 0.02% 

pa and that from DN+ (row 5) is raised from 0.00% pa to 0.01% pa. However, with rounding, the total 

contribution of DN (row 6) remains at 0.02% pa.   

 

In the remaining columns we test the robustness of our assumptions on the price of DN assets.  Whilst 

a great deal has been done to improve estimates of investment in knowledge assets, including in 

official national accounting, less has been done on estimation of their prices.  Such estimation is 

difficult as a feature of these assets is that they are rarely acquired via market transactions.  Indeed 

one of the benefits of ownership is the sole right or access to knowledge unavailable to market 

competitors.  Therefore much investment takes place in-house, and no market price can be recorded.  

For this reason, in much academic work the standard approach has been to use an implied value-added 

or GDP deflator, implicitly assuming that knowledge prices closely follow a weighted average of 

prices in the rest of the economy.  An alternative, often used in national accounting, is to use an input 

price index based on the inputs to asset production.  For instance, in the case of own-account 

software, the ONS deflate investment using a wage index of the salaries of software-related 

occupations and an assumed adjustment for productivity based on LPG in the wider service sector.  In 

the case of R&D, the UK price index is a share-weighted index based on the price of labour and 

intermediate inputs to R&D and their share in R&D investment, with no adjustment for productivity.   

 

                                                      
36 Assuming a double-declining balance rate where δ=2/T, a rate of depreciation of 0.33 implies a life-length for 
data-based information and knowledge of 6 years.  This should be considered as an average across all DN 
assets.  Some DN assets will have longer service lives and others shorter.  Halving and doubling the 
depreciation rate implies average life-lengths of 12 years and 3 years respectively.  
37 This seems somewhat counter-intuitive.  It might be expected that increasing the depreciation rate would 
reduce the contribution of DN assets.  However, raising the depreciation rate also lowers the level of the DN 
capital stock in earlier years such that the growth rate is raised in later years, thus in this case raising the 
contribution.   
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Table 4: Growth-accounting with DN capitalised: Robustness checks: varying DN depreciation 

rate and deflator 

Note to table: Data are average growth rates per year for intervals shown, calculated as changes in natural logs.  
Contributions are Tornqvist indices. Row 1 is growth in market sector value-added, adjusted with DN fully 
capitalised.  Row 2 is the measured software contribution.  Rows 3 and 4 break row 2 out into the contribution 
of software (SOFT≠DN) and that of DN already implicit in the measured data (SOFT=DN).  Row 5 is the 
contribution of additional investments in DN not already measured in official data (DN+).  Row 6 is the total 
contribution of DN assets and so is the sum of rows 4 and 5.  Finally row 7 is the total contribution of 
‘computerised information’ (software and databases) and is thus the sum of rows 2 and 5, or alternatively the 
sum of rows 3 and 6.  In each column we test the robustness of each of term to various assumptions on the 
depreciation rate and price index for DN assets.  Column 1 are our baseline estimates, based on a depreciation 
rate of 0.33 and using a share-weighted wage index for DN workers (see Goodridge and Haskel (2015a)) as the 
deflator.  In columns 2 and 3 we halve and double that depreciation rate.  In column 4, we revert to a 
depreciation rate of 0.33, but use the own-account software price index to deflate DN investment, which 
includes an adjustment to account for productivity growth in asset production.  In column 5 we use the ONS 
SPPI for ‘Data processing’ services to deflate DN investment.  In column 6 we use the UK R&D deflator.  
Finally in column 7, we use the US pre-packaged software deflator, implicitly assuming very fast productivity 
growth in production of DN assets.   

 

However, using a GDP or input price deflator without an appropriate productivity adjustment may 

overstate price growth for knowledge assets.  Given the links between investments in software and 

DN, in practice and measurement, in particular the overlap in occupations that build these assets, in 

column 4 we deflate DN investment with the UK deflator for own-account software.  However, the 

impact on estimated contributions is small.  As a consequence of the productivity adjustment implicit 

in the price index, the contribution of SOFT=DN (row 4) is raised from 0.01% pa to 0.02% pa, and 

that of DN+ (row 5) is raised from 0.00% pa to 0.01% pa.  Due to rounding, the total contribution of 

DN (row 6) remains at 0.02% pa, but the total contribution of software and databases (row 7) is raised 

from 0.05% pa to 0.06% pa.  The similarity to the baseline is not surprising, with both deflators made 

up of a wage index for professional and technical, in some cases overlapping, occupations.   

 

2005-12: 

Baseline: δDN 

= 0.33 & P
DN 

= 

wage index 

for DN 

workers Halve δDN Double δDN

Own-

account 

software 

deflator

ONS SPPI 

for 'Data 

processing'

R&D 

deflator

US pre-

packaged 

software 

deflator

1 ΔlnQ 0.07% 0.07% 0.07% 0.07% 0.07% 0.07% 0.07%

2=3+4 s
RΔlnRSOFT,MEAS

0.05% 0.05% 0.05% 0.05% 0.05% 0.04% 0.07%

of which: 

3 s
RΔlnRSOFT≠DN 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03%

4 s
RΔlnRSOFT=DN

0.01% 0.01% 0.02% 0.02% 0.02% 0.01% 0.04%

5 s
RΔlnRDN+

0.00% 0.00% 0.01% 0.01% 0.01% 0.00% 0.01%

6=5+4 s
RΔlnRDN

0.02% 0.02% 0.02% 0.02% 0.03% 0.01% 0.05%

7=2+5=3+6 s
RΔlnRTOTAL COMP. INF.

0.05% 0.05% 0.06% 0.06% 0.06% 0.05% 0.08%

Vary DN depreciation 

rate (δDN
): Using alternative deflators (P

DN
):
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As discussed, there are two aspects to DN investment that we have sought to measure.  The first is 

investment in the data-building (D) stage, which captures the resources devoted to the transformation 

of raw records into analysable information.  Therefore in column 5 we apply the ONS SPPI for data 

processing services.  Relative to the baseline, the contribution of SOFT=DN (row 4) is raised from 

0.01% pa to 0.02% pa and that of DN+ (row 5) is raised from 0.00% pa to 0.01% pa.  Thus the total 

contribution of DN (row 6) is raised from 0.02% pa to 0.03% pa, and the total contribution of 

software and databases (row 7) is raised from 0.05% pa to 0.06% pa.   

 

The second aspect of DN investment is the resources devoted to the extraction of knowledge (N) from 

data/information.  Therefore in column 6 we apply a price index designed to measure the price of 

extracting knowledge from R&D.  Relative to the baseline, the contributions of SOFT=DN (row 4) 

and DN+ (row 5) are unchanged, but due to rounding, the total contribution of DN (row 6) is reduced 

from 0.02% pa to 0.01% pa.  The total contribution of software and databases (row 7) is unchanged.  

 

Finally in column 7, we use the US BEA deflator for pre-packaged software. This is by far the most 

aggressive of all the alternatives presented in Table 4.  The index falls at a rate of around -5% pa over 

the period 1990 to 2012, reflecting strong growth in the quality of pre-packaged software and 

implying strong productivity growth in their production. Therefore, in applying this index we 

speculate on the contribution of DN if productivity growth in the upstream DN sectors is comparable 

to that in the production of pre-packaged software. Relative to the baseline, the contribution of 

SOFT=DN (row 4) is raised four-fold, from 0.01% pa to 0.04% pa.  The contribution of DN+ (row 5) 

is raised from 0.00% pa to 0.01% pa.  Thus the total contribution of DN (row 6) is more than doubled, 

from 0.02% pa to 0.05% pa, and the total contribution of software and databases (row 7) is raised 

from 0.05% pa to 0.08% pa.   

 

Overall we conclude that our results are fairly robust to various assumptions on depreciation and 

prices, unless one takes the view that productivity growth in data-based asset creation has been 

particularly strong, as in the production of pre-packaged software.  In that case the estimated 

contribution is more than double that in our baseline results.  Full growth-accounting results, based on 

a decomposition of LPG, using each of the alternative deflators, are presented in Appendix Table A2.  

 

6.3. The contribution of Big Data to measured output growth 

The above data were constructed with DN fully capitalised in output (Q).  In equation (13) we set out 

how DN affects measured growth (ΔlnQM), including the various biases if DN is not fully capitalised.  

Thus in Table 5 we show the impact of Big Data on ΔlnQM (column 1).  As set out in (13), the effect 

of DN on ΔlnQM depends on the overall income share for intangibles (
R

Qs , column 2), the shares for 
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DN within 
R

Qs (
SOFT DN

R 
and 

DN

R 
, columns 4 and 5) and the growth rates of RSOFT=DN and RDN+ 

(column 8).38  Income shares and capital service growth rates for other intangibles are shown in 

columns 3, 6, 7 and 9.  The final three columns show estimates for the final term in (13), namely the 

bias due to non-capitalisation of DN+ in QM.  Note that we do not show estimates for the terms in (13) 

that include 
D  and 

N .  With a lack of information we follow national accounting convention and 

assume  =1, in which case those terms are zero.  Note, even if  >1, upstream factor payments as a 

share of Q (e.g. 
DL

Qs ) will be tiny, and smaller still after multiplying through by (  -1).   

 

The top panel presents data for each term using our most conservative option for a deflator, that is the 

unadjusted wage index for DN workers.  The bottom panel uses our most aggressive option, that is the 

US price index for pre-packaged software.  Other options for price indices used in Table 4 lie 

somewhere in between these estimates.  In the first row of each panel we present averages for the 

2000-05 period.  In the second row, for 2005-12.  Since the latter is such an unusual period, with 

measured output growth of essentially zero, in the third row we present averages for 2000-12.   

 

First, let us consider the direct output bias if DN is not fully capitalised, 
( )( ln ln )DN M

Qs DN Q
  

in (13).  In 2000-05, 
( )ln MQ  was 2.51% pa.  In panel 1 we estimate that in this period, ln DN 

=1.8% pa.  The output share for DN+  (
DN

Qs


) was 0.14%.  Since 
( )ln MQ > ln DN  , the bias term 

is negative, at -0.001% pa, that is measured output growth is too high.  In the second period, 2005-12, 

( )ln MQ =0.06% and ln DN  =4.38%.  The output share is similar.  Thus in this period the bias 

term is positive, since real investment in DN+ is growing faster than measured output, meaning that 

( )ln MQ  is under-estimated by 0.006% pa.  Over the full 2000-12 period, we estimate that failure to 

fully capitalise DN means that 
( )ln MQ  is underestimated by 0.003% pa.   

 

In the second panel we use a much more aggressive deflator which results in much higher growth 

rates in real DN+.  Now, in the first period, ln DN  =9.64% meaning that 
( )ln MQ is 

underestimated by 0.01% pa.  The growth rates for the second period, and the period as a whole, are 

similar such that the output bias over the whole period is 0.011% pa. 

 

Next we consider capital services which combined with income shares form estimates of the 

contribution of capital.  In panel 1, using our baseline index we estimate growth in DN capital 

                                                      
38 In practice, the methodology used for measurement means that ΔlnRSOFT=DN and ΔlnRDN+ are equal.  Hence 

they are shown together in one column (column 8).   
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services of 3.79% pa in 2000-05, 2.27% pa in 2005-12 and 2.91% pa over the whole period. 

Combining with data on the income shares, presented in columns 2 to 6, we show the contribution of 

DN in each period using the alternative deflators.  From column 2, in 2000-12 the income share for all 

intangibles is 0.06.  From columns 4 and 5, the capital shares for DN of the total income share were 

0.08 for SOFT=DN and 0.03 for DN+.  Thus, in panel 1, in 2000-12, the contribution of all DN was 

(0.06*(0.08+0.03)*2.91%=)0.02% pa.  In panel 2, growth in total DN capital services are estimated as 

much higher, due to the use of a more aggressive deflator.  In that panel the same calculation yields an 

estimate of (0.06*(0.08+0.02)*9.11%=)0.06% pa, three times higher than in panel 1.   

 

Table 5: Capital services, contribution of capital and bias to measured output (i.e. DN not 

capitalised) 

Note to table:  Column 1 is growth in measured market sector output.  Column 2 is the income share for 
intangible capital, defined as that for software, all data (DN), mineral exploration, artistic originals and R&D.  
Columns 3 to 6 are the shares of the intangible capital share in column 2 and sum to one.  Column 3 is that for 
software not including data (SOFT/=DN).  Column 4 is that for the part of data already measured in software 
(SOFT=DN).  Column 5 is that for the additional part of data not recorded in software (DN+).  Column 6 is that 
for other intangible capital, namely mineral exploration, artistic originals and R&D.  Columns 7 to 9 are growth 
in intangible capital services.  Column 7 is growth in software capital services excluding the part of DN already 
in the measured data (SOFT/=DN).  Column 8 is growth in DN capital services where DN=(SOFT=DN)+(DN+)  
Growth in capital services for SOFT=DN and DN+ are the same.  Column 9 is growth in other intangible capital 
services, where other intangibles are those already capitalised in the national accounts, namely mineral 
exploration, artistic originals and R&D.  Column 10 is the share of non-capitalised DN investment (DN+) in 
adjusted/true value-added.  Column 11 is the growth rate in additional uncapitalised DN output (DN+).  Finally 
column 12 is the bias to measured output when DN+ are not capitalised.   

 

Finally, what of equation (15), the bias to measured TFP? The essential point is that ( )( )M

R R

Q Q
s s  is 

0.00166 in 2012.39  Thus the bias to measured TFP due to biases in the income shares is very small.  

 

6.4. Growth-accounting: a comparison with other estimates 

a. Comparison with current estimates 

From Table 3 we estimate that in 2005-12, the contribution of DN assets to UK growth was 0.02% pa.  

What does this mean in value terms?  In 2012, nominal market sector value-added was £977.2bn, 

                                                      
39 In 2012, with DN+ capitalised, sR

Q is 0.06127.  With DN+ uncapitalised, SR
Q(M) is 0.059615. Thus the bias to 

the share is 0.00166.  On average for 2005-2012, the bias to the share is 0.001494.  

of which: With capital services: Bias to ΔlnQ(M)
:

ΔlnQ(M)
s

R
Q σSOFT/=DN

R σSOFT=DN
R σDN+

R σOtherINTAN
R ΔlnRSOFT/=DN ΔlnRSOFT=DN, DN+ ΔlnROtherINTAN

s
DN+

Q ΔlnDN+
Bias

2000-05 2.51% 0.06 0.45 0.08 0.02 0.45 9.03% 3.79% 2.62% 0.0014 1.80% -0.001%

2005-12 0.06% 0.06 0.43 0.08 0.03 0.46 1.30% 2.27% 0.03% 0.0013 4.38% 0.006%

2000-12 1.08% 0.06 0.44 0.08 0.03 0.45 4.52% 2.91% 1.11% 0.0014 3.30% 0.003%

2000-05 2.51% 0.06 0.45 0.08 0.02 0.45 9.03% 11.76% 2.62% 0.0014 9.64% 0.010%

2005-12 0.06% 0.06 0.44 0.08 0.03 0.46 1.30% 7.22% 0.03% 0.0013 8.38% 0.011%

2000-12 1.08% 0.06 0.44 0.08 0.02 0.45 4.52% 9.11% 1.11% 0.0014 8.91% 0.011%

Panel 1: Baseline: Wage index for D and N workers

Panel 2: US pre-packaged software deflator
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implying that the flow of DN capital services contributed a value of around 

((0.0155/100)*977.2=)£0.152bn or £152m to UK market sector growth 2012.40  How does this 

compare to other results in the literature? Estimates of the contribution of Big Data to the UK 

economy are uncommon.  However, CEBR (2012) estimate that in 2011, the aggregate economic 

benefits derived from Big Data were £25.1bn pa.41  Performing a similar calculation to above suggests 

that, according to CEBR, the contribution of Big Data was around (25.1/975.7=)2.57% pa, 

considerably more than actual growth in value-added (1.49% pa) in that year.  Therefore, whilst the 

contribution of data-based information and knowledge might grow in the coming years, the results 

reported in this paper suggest that some statements made on the current and potential future 

contribution of data and data analytics seem very much like overstatements of reality.   

 

The reason for why estimates such as those in CEBR (2012) are unrealistic, is that the income share 

for data is relatively small.  At just 0.007 it is a third of that for R&D and a quarter of that for 

software.  Therefore in 2000-12, whilst growth in DN capital services at 2.27% pa is higher than those 

from R&D (1.11% pa), software (1.30% pa), plant & machinery (1.38% pa) and indeed all assets in 

total (2.03% pa), the contribution is small. (Data on income shares, capital services and contributions 

by asset are presented in Appendix Table A3).  

 

b. Future projections 

Data transformation and data analytics are growing activities so we would expect higher growth in 

capital services in future.  The higher stock will also mean a higher income share for data which will 

also act to raise the estimated contribution.  So what might we expect the future contribution to be? In 

the following chart we compare the DN income share with that for (adjusted) software.  In 2012, the 

DN income stood at 0.71%, similar to that for software in the mid-1980s.  However, as investment in 

software continued, growth in the software capital stock meant that the income share grew 

considerably, peaking at 3% following the software investment boom of the late 1990s and early 

2000s, and settling at around 2.6% in recent years.  Just as with software in the 1970s and 1980s, Big 

Data is an emerging and growing field.  If we assume a similar pattern for DN, then a gradually 

growing income share will raise the estimated contribution of data in the coming years and decades.  

 

 

 

                                                      
40 This calculation is based on an estimate for UK market sector value-added.  A similar calculation on the basis 
of whole economy GDP (at basic prices) would yield an estimate of ((0.0155/100)*1593.9=)£0.247bn or 
£247m.  Note, this implicitly assumes that the returns from, and the contribution of, DN in the non-market 
sector is the same or similar to those in the market sector.   
41 CEBR (2012) define aggregate economic benefits as the sum of estimated benefits from “business efficiency, 
business innovation and business creation” 
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Figure 3: Shares of market sector income: software and data 

 

Note to figure: Estimated ex-post rental payments as a share of market sector income for software and data-
based assets.  Tornqvist averages for periods t and t-1. “shavg_wi_soft” refers to the Tornqvist share for 
(adjusted) software and “shavg_wi_bd” refers to the Tornqvist share for DN or Big Data (bd).  

 

Using the observed pattern for software and making some assumptions, we will make some 

projections on the potential contribution of DN in the upcoming decade, again testing robustness to 

alternative assumptions on its price, PDN.  First we note that the DN income share is estimated as: 

DN DN
DN R
Q Q

P R
s

P Q
          (21) 

 

Allowing us to estimate the change in the natural log of the income share as: 

ln ln ln ln lnDN DN DN Q

Q Rs P R P Q           (22) 

 

Thus with some assumptions for these parameters we can estimate the logarithmic change in the DN 

income share and make some projections for the future contribution of DN, as set out in Table 6.  In 

what follows we apply (22).  For ln QP and lnQ  we assume growth rates of 1.8% and 1.08% pa, 

based on observed growth rates in 2000-07, the period before the great recession.  We make different 

assumptions on ln DN

RP  and ln DNR  as follows.   

 

First, we note that using the DN occupational wage index, mean ln DN

RP in 2000-12 was 3.08% pa 

and mean ln DNR 2.91% pa.  Combining these parameters and assuming DN capital services 

continue to grow at this 2000-12 rate, we estimate annual growth in the income share of 1.4% pa such 

0
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that it grows from 0.007 in 2012 to 0.009 in 2025.  In this scenario, the mean pa contribution for 

2012-25 would stay at 0.02% pa, as shown in column 1.  Recall that the mean annual contribution 

would be   ln 1/ 2 0.01 0.05 0.0291
DN DN
Qs R   .   

 

Second, using the own-account software deflator gives mean estimates for ln DN

RP  and ln DNR  of 

0.79% and 5% pa respectively.  Thus we estimate ln DN

Qs  of 1.21% pa, resulting in 
DN

Qs  rising from 

0.007 in 2012 to 0.009 in 2015, and a mean contribution of DN of 0.04% pa, as in column 2.   

 

Third, we test the scenario of fast falling DN prices, using the US deflator for pre-packaged software.  

Using that deflator gives falling ln DN

RP of -3.4% pa and growth in ln DNR  of 9.11% pa.  This 

results in an estimate of ln DN

Qs  of 1.14% pa, such that the income share is raised from 0.007 in 

2012 to 0.008 in 2025, and the projected mean contribution is raised to 0.07% pa.   

 

Table 6: Projections on the future contribution of ‘Big Data’: 2012-25 

 

Note to table: Row 1 is the projected income share for DN assets in 2025.  Row 2 is the projected mean 
contribution of DN assets over the period 2012-25.  Rows 3 to 5 are memo items.  Row 3 is the income share for 
DN assets in 2012.  Row 4 is the mean contribution of DN capital services in 2000-12.  Row 5 is the mean 
contribution of software capital services (SOFT≠DN) in 2000-12.  Columns 1 to 4 present results using 
alternative assumptions on the price of DN assets and growth in DN capital services.  Column 1 is based on the 
occupational wage index for DN workers and growth in DN capital services for the 2000-12 period based on 
that deflator (2.91% pa).  Column 2 is based on the own-account software deflator which includes a productivity 
adjustment, and growth in DN capital services for the 2000-12 period based on that deflator (5% pa).  Column 3 
is based on the US deflator for pre-packaged software and growth in DN capital services for the 2000-12 period 
based on that deflator (9.11% pa).  Finally, column 4 is also based on the US deflator for pre-packaged software 
but assumes growth in capital services based on those observed for software on the 1985-1995 period (16.26% 
pa).   

 

Alternatively we may ask how this changes were DN capital services to grow at a much faster rate.  

We have noted that the DN income share in 2012 is at a similar level to that for software in 1985.  In 

1985-95, mean growth in software capital services was 16.26% pa.  Applying that growth rate to

ln DNR , but holding other parameters constant, as in column 4, results in the income share growing 

Deflator: (1): Wage index 

for DN workers

(2): Own-account 

software deflator 

(incl. prod. adj.)

ΔlnRDN (2000-12) ΔlnRDN (2000-12) ΔlnRDN (2000-12) ΔlnRDN (SOFT, 1985-95)

2.91% 5.00% 9.11% 16.26%

Income share: s
DN (2025)

0.01 0.01 0.01 0.02

Mean contribution of DN (2012-25) 0.02% 0.04% 0.07% 0.23%

Memo items:

Income share: s
DN (2012)

0.01 0.01 0.01 0.01

Mean contribution of DN (2000-12) 0.02% 0.03% 0.06% 0.06%

Mean software (SOFT ≠DN) contribution (2000-12) 0.12% 0.12% 0.12% 0.12%

(3): US pre-packaged software 

deflator
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to 0.02.  Thus the projection for the average contribution of DN is 0.23% pa, a large contribution 

around twice as high as software in the 2000-12 period.  We note however that a ln DNR of 16.26% 

would require significantly higher growth rates in nominal DN investment. 

 

Thus Table 6 shows that projections on the future contribution of DN crucially depend on what 

happens to prices, and therefore ultimately, the path of upstream TFP.  Results in column 3 and 4 are 

based on the assumption of fast-falling prices for DN, or put another way, high TFP in DN 

production.  If this is the case, the contribution of DN may rise strongly.  Alternatively, if prices do 

not fall but instead grow moderately, as in columns 1 to 2, a large growth in the contribution will 

require extremely high growth in nominal DN investment.  Therefore we settle on a central projected 

contribution of 0.04% to 0.07% pa over the coming decade, slightly higher than the typical 

contribution from R&D.   

 

7. Conclusions 

This paper has set out an economic framework for the measurement of activity in Big Data (and Big 

Data analytics) embedded in national accounting and growth-accounting frameworks in a consistent 

way to eliminate double-counting. In it we define data, information, ideas and knowledge.  As part of 

our framework, we show how some investments in data are already measured in GDP, but some are 

missed.  In implementing our framework we apply the official methodology for estimating investment 

in software, that is by identifying occupations engaged in asset production.  The implication of this is 

at least some part of investments in Big Data activity are already counted in the measurement of 

software.  Our findings are as follows.  First, we estimate total investment in data-based information 

and knowledge as £6.6bn in 2012.  Second, of that £6.6bn, £5bn is already counted in the 

measurement of software.  Thus capitalisation adds £1.6bn to measured GDP.  Third, incorporating 

those measures into a growth-accounting framework, we estimate that in 2005 to 2012, data-based 

information and knowledge contributed 0.02% pa of growth in UK market sector value-added, which 

in value terms translates to around £152m.  We therefore regard other estimates in the literature, such 

as those in CEBR (2012), that Big Data is currently adding in the order of £25bn of annual benefits to 

the UK economy as over-estimates, although we do expect the contribution of data-based assets to 

grow in coming years.  Finally, we use various parameters from our framework to form some 

projections on the likely contribution of Big Data over the upcoming decade, forming a central 

estimate of a mean contribution of around 0.07% to 0.23% pa in the period 2012-25, with the lower 

bound of this range being slightly higher than the typical contribution from R&D.   
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Appendix 1: System of National Accounts (SNA) investment criteria 

Generally, according to the SNA (2008), assets are “entities that must be owned by some unit…, from 
which economic benefits are derived by their owner(s) by holding them or using them over a period of 

time” (United Nations 2008).  Intermediate consumption is the consumption of goods or services in 
production, such that those goods are used up in the course of the accounting period (one year).  
Intermediates not used up in the accounting period form inventories, which are part of Gross Capital 
Formation (GCF) but not Gross Fixed Capital Formation (GFCF) since they do not meet asset criteria.  
Gross fixed capital formation (GFCF) is investment in produced assets that are used repeatedly in 
production over more than one accounting period.  The distinction between GFCF and intermediate 
consumption therefore depends on whether or not the good in question is used up in the course of one 
year, termed the “asset boundary” in the SNA, with the key feature of an asset being its repeated use 
in production over a period longer than one year. 
 
Further, the SNA describes intellectual property products (IPPs) as assets that are “the result of 
research, development, investigation or innovation leading to knowledge that the developers can 

market or use to their own benefit in production”, and states that such knowledge remains an asset 
until it is ether no longer protected or becomes obsolete.  We note that provided they are repeatedly 
used over more than one accounting period, transformed data (information) and commercial data 
knowledge meet the SNA definitions for both assets and, more specifically, IPPs.   
 
Current national accounting convention capitalises the following types of produced intangible assets 
(or IPPs): computerised information (software and databases); entertainment, literary and artistic 
originals; mineral exploration; and, most recently, R&D.  The latest revision of the SNA (2008) 
places increased emphasis on databases as assets, with databases defined as “files of data organized in 
such a way as to permit resource-effective access and use of the data”.  The latest revision also 
mandates that databases are to be explicitly included as a separate sub-component of ‘software and 
databases’, and the SNA recommends that estimates of GFCF in databases be estimated separately.  In 
the 1993 revision to the SNA, only “large” databases were considered assets.  The 2008 revision 
correctly recognises that all databases, regardless of size, that provide an economic benefit to their 
owner and with a useful service life greater than one year, should be treated as fixed assets.  To help 
indicate whether this is so, the OECD Handbook on Deriving Capital Measures of Intellectual 
Property Products (OECD 2010) recommends that “a database should be recorded as a fixed asset if 
a typical datum is expected to be stored on the database, or archived on a secondary database, for 

more than one year.” 
 
However, measurement of investment in databases is complicated by the fact that, like land, data is a 
non-produced asset.  Therefore, according to the SNA, while expenditures on what we term data 
transformation ought to be recorded as investments, expenditures on acquiring that data ought not.  
We note that this fits with our measurement framework in the sense that we aim to count the 
investments made in the data-building process, with raw records modelled as non-produced assets that 
are either generated for no cost, or paid for in the same way as intermediate inputs.   
 
Conceptually, and in common with R&D, mineral exploration and indeed all other assets, all 
investment in transformed data or data-based knowledge should be recorded as GFCF, regardless of 
whether or not it is successful i.e. whether or not it generates some useful knowledge to be used in 
production.  Failed investments can also generate the knowledge to make subsequent investments a 
success.  It is also expected that investors/owners consider the chance of failure in their investment 
decision, and that successful investments provide benefits that compensate for those that are 
unsuccessful.  Only counting those investments that are successful would result in over-estimation of 
the returns to those investments.  Failure should be accounted for in the applied rate of depreciation, 
which accounts for the rate of obsolescence and discard/retirement.  Whilst the value of data and data-
based knowledge does not decline due to deterioration (or ‘wear and tear’), it may decline due to 
obsolescence.  Measurement of data-based capital therefore requires some estimate of its productive 
service life and the appropriate rate of depreciation.  
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Appendix 2: Growth-accounting robustness checks 

Appendix Table A2: Growth-accounting results using alternative deflators 

1 2 3 4 5 6 7=8+9 8 9 10 11=9+10 12

Dln(Q/H) sDln(L/H)

sDln(K/H) 

cmp

sDln(K/H) 

othtan

sDln(R/H) 

rd

sDln(R/H) 

min&cop

sDln(R/H) 

soft 

(MEAS)

sDln(R/H) 

DN+

sDln(R/H) 

DN DlnTFP

of which:

sDln(R/H) 

SOFT/=DN

sDln(R/H) 

SOFT=DN

Including all 'big data' (D & N)

1990-95 3.12% 0.15% 0.22% 1.00% 0.03% 0.02% 0.19% 0.18% 0.01% 0.00% 0.02% 1.50%

1995-00 2.74% 0.28% 0.39% 0.60% 0.01% 0.01% 0.24% 0.22% 0.02% 0.01% 0.03% 1.20%

2000-05 2.46% 0.18% 0.13% 0.73% 0.03% 0.04% 0.26% 0.25% 0.02% 0.01% 0.02% 1.07%

2005-12 0.10% 0.56% 0.03% 0.67% 0.02% -0.02% 0.05% 0.04% 0.01% 0.00% 0.02% -1.21%

Including all 'big data' (D & N)

1990-95 3.12% 0.15% 0.22% 1.00% 0.03% 0.02% 0.19% 0.18% 0.01% 0.00% 0.02% 1.50%

1995-00 2.74% 0.28% 0.39% 0.60% 0.01% 0.01% 0.24% 0.22% 0.02% 0.01% 0.03% 1.20%

2000-05 2.46% 0.18% 0.13% 0.73% 0.03% 0.04% 0.28% 0.25% 0.03% 0.01% 0.04% 1.05%

2005-12 0.10% 0.56% 0.03% 0.67% 0.02% -0.02% 0.05% 0.04% 0.02% 0.01% 0.02% -1.22%

Including all 'big data' (D & N)

1990-95 3.12% 0.15% 0.22% 1.00% 0.03% 0.02% 0.19% 0.18% 0.01% 0.00% 0.02% 1.50%

1995-00 2.74% 0.28% 0.39% 0.60% 0.01% 0.01% 0.25% 0.22% 0.03% 0.01% 0.04% 1.19%

2000-05 2.46% 0.18% 0.13% 0.73% 0.03% 0.04% 0.28% 0.25% 0.03% 0.01% 0.04% 1.05%

2005-12 0.10% 0.56% 0.03% 0.67% 0.02% -0.02% 0.06% 0.04% 0.02% 0.01% 0.03% -1.22%

Including all 'big data' (D & N)

1990-95 3.12% 0.15% 0.22% 1.00% 0.03% 0.02% 0.19% 0.18% 0.01% 0.00% 0.02% 1.50%

1995-00 2.74% 0.28% 0.39% 0.60% 0.01% 0.01% 0.24% 0.22% 0.02% 0.01% 0.03% 1.20%

2000-05 2.46% 0.18% 0.13% 0.73% 0.03% 0.04% 0.27% 0.25% 0.02% 0.01% 0.03% 1.06%

2005-12 0.10% 0.56% 0.03% 0.67% 0.02% -0.02% 0.04% 0.04% 0.01% 0.00% 0.01% -1.21%

Including all 'big data' (D & N)

1990-95 3.13% 0.15% 0.22% 1.00% 0.03% 0.02% 0.23% 0.18% 0.06% 0.02% 0.07% 1.46%

1995-00 2.75% 0.28% 0.39% 0.60% 0.01% 0.01% 0.27% 0.22% 0.06% 0.02% 0.07% 1.16%

2000-05 2.47% 0.18% 0.13% 0.73% 0.03% 0.04% 0.30% 0.25% 0.05% 0.02% 0.07% 1.03%

2005-12 0.11% 0.56% 0.03% 0.67% 0.02% -0.02% 0.07% 0.04% 0.04% 0.01% 0.05% -1.24%

1) Baseline: occupational wage index for D and N workers

2) UK own-account software deflator

5) US pre-packaged software deflator

3) ONS SPPI for 'Data processing'

4) UK R&D deflator

Note to table: Data are average growth rates per year for intervals shown, calculated as changes in natural logs.  
Contributions are Tornqvist indices. Panel 1 deflates data investment using a share weighted wage index for Big 
Data occupations, see Goodridge and Haskel (2015a) for more details.  Panel 2 uses the own-account software 
deflator.  Panel 3 uses an ONS SPPI for data processing services.  Panel 4 uses the UK deflator for R&D 
investment.  Panel 5 uses the US pre-packaged software deflator sourced from the BEA. First column is growth 
in output per hour.  Column 2 is the contribution of labour services per hour, namely growth in labour services 
per hour times share of labour in MGVA.  Column 3 is growth in computer capital services per hour times share 
in MGVA. Column 4 is growth in other tangible capital services (buildings, plant, vehicles) per hour times share 
in MGVA.  Column 5 is growth in R&D capital services per hour times share in MGVA.  Column 6 is growth in 
capital services from mineral exploration and artistic originals (or copyright) per hour times share in MGVA. 
Column 7 is growth in measured software capital services per hour times share in MGVA.  Columns 8 and 9 
break the measured contribution in column 7 out into software (SOFT/=DN) and the part of DN already implicit 
in the measured data (SOFT=DN).  Column 10 is growth in additional DN capital services (DN+) per hour 
times share in MGVA.  Column 11 is the total contribution of DN assets and is the sum of columns 9 and 10.  
Column 12 is TFP, namely column 1 minus the sum of columns 2 to 7 minus column 10.   
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Appendix 3: Capital contributions 

Appendix Table A3: Capital: Contributions, capital services and income shares 

2005-12 / Asset: Buildings Computers P&M (excl IT) Vehicles Minerals & Copyright R&D Software Data All Capital

Income share: sK 0.16 0.01 0.10 0.03 0.01 0.02 0.03 0.01 0.36

Growth in capital services: DlnK 3.87% 3.09% 1.38% -4.29% -2.03% 1.11% 1.30% 2.27% 2.03%

Contribution to value-added: sK.DlnK 0.61% 0.03% 0.15% -0.10% -0.02% 0.02% 0.03% 0.02% 0.73%

Note to table: Average values for: estimated ex-post rental payments as a share of market sector income (row 1); growth in capital services (row 2); and the contribution 
(estimated as the income share times growth in capital services) to growth in value-added, all by individual asset.  Note, figures for software are adjusted so that the part of 
investment estimated as representing investments in data are removed and assigned to data.   

 

Appendix Table A3 presents data on various parameters for the measurement of capital in the 2005-12 period, by asset and then aggregated for all assets in 
the final column.  In the first row we provide data on the asset income share, that is estimated ex-post capital rental payments for each asset as a share of 
market sector income, estimated as Tornqvist averages of shares in periods t and t-1.  The income share for all assets is the sum of those by asset.  In the 
second row we provide estimates of growth in capital services for each asset, where growth for all assets is the weighted sum of capital services for each asset 
weighted using Tornqvist shares of asset rental payments as a share of gross operating surplus.  In the final row we show the contribution of that asset to 
growth in value-added by asset, estimated as the income share times growth in capital services, where the contribution for all assets is the sum of 
contributions for individual assets.   
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