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Abstract

The economic impact of the pharmaceutical industry is incontestable. The to-

tal drug bill across OECD countries has continuously risen over the last decades

(OECD, 2011), and, consequently, healthcare payers are increasingly implement-

ing stricter policies that promote access to cheaper treatments. These policies,

however, may hinder incentives to innovate, especially in diseases of substantial

public health importance for which there is either under-investment or where in-

novation is difficult.

Therefore, it is fundamental that health systems design policies that strike

the right balance between promoting the development of affordable drugs, and

allowing sufficient rents to innovators in order to incentivise R&D investment.

The debate on this balance has never been more pertinent, with a slowdown

in the number of drugs in the pipeline for potential market launch. Around 90%

of drug candidates do not successfully complete the mid-stage of drug discovery

(Paul et al., 2010; Mestre-Ferrandiz et al., 2012), contributing to the escalation of

R&D costs with potentially significant social welfare consequences.

The aim of this thesis is to contribute to this debate by exploring the nature of

the R&D process, and assessing the factors associated with decreased productivity

across disease areas and its equity implications.

We survey the literature on the determinants of pharmaceutical innovation

and critically appraise the evidence on factors that influence innovation of new

therapies. We identify gaps and contribute conceptually to the understanding of

the determinants of innovation. We depart from the existing literature in three

significant ways. The major contribution is the analysis of failure for all stages of

the R&D process, using a unique global panel dataset built by merging data on

the lifecycle of industry innovation processes with global health data (Chapter 4).

Secondly, we have used methodological approaches that model the dynamic nature

of R&D decisions to forecast drug availability in the coming decades (Chapter 5).

Thirdly, we are the first to assess the global impact of innovation on equity of

access to new therapies (Chapter 6).

Acknowledging the implications of data limitations (Chapter 3) we produce in-

sight that contributes to understanding the determinants of failure in innovation

and its implications for future availability of new therapies. Results suggest those
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determinants differ across the R&D stages. Furthermore, market competition may

intensify the level of failure if too many young drugs are competing in the market,

whilst collaboration between firms has an unclear effect on innovation. Moreover,

the distribution of the R&D activity and disease burden have not changed sig-

nificantly over the last two decades with a concentration of innovation in more

commercially attractive disease areas associated with high mortality in the richest

countries. Finally, that those equity concerns are likely to persist unless new pol-

icy interventions are designed to address inequalities in R&D and access to new

therapies.
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A bondade que não tem prazo -

Tudo isso excede este rigor
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Chapter 1

Introduction

The economic impact of the pharmaceutical industry is incontestable. The industry generated more than

$500 billion in sales in 2010, and the total drug bill across OECD countries in 2009 accounted for approx-

imately 19% of total health care spending (OECD, 2011). The last two decades of sustained expenditure

growth signal a continuous increase in future spending in pharmaceuticals, given the ”increased drug

insurance benefit coverage” across the world (Berndt, 2002).

As a consequence, health care payers are more aware of the need for cheaper treatments than ever.

Payers are thus increasingly eager to impose stricter regulations on drug price, market entry and reim-

bursement, decreasing the profitability of pharmaceutical companies. The squeeze on profits, together

with the high levels of risk associated with the nature of the R&D investments, can potentially reduce

innovation incentives, possibly, reducing worldwide access to novel treatments in the future.

The pharmaceutical sector, one of the most research-intensive industries, has experienced a slowdown

in the number of drugs in the pipeline for potential market launch. Indeed, the R&D process is risky,

time-consuming and costly. Many factors affect the performance of this process, including the stricter

policy framework that regulates the sector. Around 90% of drug candidates do not successfully complete

the mid-stage of drug discovery (Paul et al., 2010; Mestre-Ferrandiz et al., 2012). This contributes to the

escalation of the R&D costs1. Given the economic and health related impact associated with pharmaceu-

tical innovation and the need for access to new therapies in the future, the slowdown in innovation is of

tremendous importance to the society.

The slowdown in innovation does not equally affect all disease areas associated with high burden

of disease. Indeed, this slowdown more strongly affects disease areas that are less profitable, riskier or

scientifically more complex. Therefore, it is fundamental for health systems to design policies susceptible

of promoting innovation in disease areas of substantial public health importance but for which there is

either under-investment by the industry or where innovation is difficult. These policies must strike the

right balance between promoting the development of drugs with substantial health improvement that are

affordable for health systems, and allowing sufficient rents to the industry to incentivise R&D investment.

Achieving this balance is not a trivial exercise. The innovation process is complex and lengthy and

involves the interaction of multiple stakeholders. Understanding the complexity of the pharmaceutical

R&D process, often considered and analysed as a ”black box”, is a first step into the design of those

1Some estimates suggest that the process from the early steps of basic research until a product is licensed and ready to
be marketed can take approximately 14 years (Paul et al., 2010). Most recent estimates find an average cost of over $1bn to
bring a new compound to the market (DiMasi and Grabowski, 2007).
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policies.

The aim of this thesis is to contribute to this debate by exploring the nature of the R&D process,

assessing the factors affecting innovation across disease areas and its equity implications. We propose

to measure and characterise failure within all stages of the global pharmaceutical R&D activity, as well

as the implications for equity of access to drugs and the future availability of new therapies across the

different disease areas.

We discuss the existing literature that fails to analyse these points in Chapter 2. We survey the

literature on the determinants of pharmaceutical innovation and critically appraise the evidence on the

factors that influence the scientific discovery and development of new therapies. The chapter identifies

gaps in the current literature that are addressed in the subsequent chapters.

We explore how the existing literature lacks theoretical and empirical analysis that consider simulta-

neous interactions between demand-side, supply-side and policy-shaping factors affecting the innovation

process, taking the R&D process thoroughly and considering the equity and welfare implications of cur-

rent policies to the pharmaceutical innovation. These are indeed the issues to which this thesis makes

several contributions explained in detail in Chapter 2.

We depart from the existing literature in three significant ways. The major contribution is the analysis

of failure for all stages of the R&D process, making use of a unique global panel dataset built by merging

data on lifecycle of innovation processes in the industry with global health data. Secondly, we are the first

to assess, at global level, the impact of innovation on equity of access to new drug therapies. Thirdly, we

have used methodological approaches that model the dynamic nature of R&D decisions to forecast drug

availability in the coming decades.

The remainder of this thesis is organised as follows. In Chapter 3, we describe in detail the data

and empirical methods that are an important contribution of this thesis. In Chapter 4, we analyse the

factors associated with failure of projects during the different stages of R&D. In particular, we assess how

competition and alliances between firms correlate with the likelihood of project failure considering the

duration of the R&D projects, the specificities of the product being developed, and the characteristics of

the relevant market. In Chapter 5, we develop a dynamic micro-simulation model forecasting the stock

of new drug launches in the market in the coming decades in the absence of further policy interventions.

In Chapter 6, we assess the inequalities of access to new therapies, by measuring inequalities in global

drug R&D activity and market launches in terms of population health needs in the last two decades.

Finally, in Chapter 7 we present and discuss the main results of the thesis, debating the potential policy

implications and future avenues for research.

16



Chapter 2

The determinants of pharmaceutical innovation: a critical review of the literature

I. Introduction

Population health has improved considerably over the past century. Pharmaceutical innovation has been

one of the key factors at the heart of this improvement. New drugs have substantially contributed to

better healthcare and prevention, resulting in significant improvements in life expectancy and quality of

life (Acemoglu and Johnson, 2006). Nevertheless, innovation still falls short of societal needs. Especially,

many health needs such as neglected diseases endemic in low- and middle-income countries, chronic and

mental health conditions in high-income countries remain un-addressed (Kremer, 2002; Pecoul et al., 1999;

Trouiller et al., 2002).

Even though the pharmaceutical industry has a proven track record in the development of innovative

treatments, it has been reported that pharmaceutical innovation was experiencing a productivity crisis

by the end of 2009 (Munos, 2009; Paul et al., 2010; Dhankhar, 2012). This was reflected in the declining

number of new chemical entities (NCEs) approved and simultaneous escalating R&D costs by the end of

2010 (PWC, 2011b).

Indeed, drug innovation is a long complex and costly research intensive process with many factors

impacting on its performance. It has been reported that it takes around 14 years from the early steps

in basic research until a product is licensed and brought to the market (Paul et al., 2010). Estimates

per approved biopharmaceutical product find that the ”average capitalised pre-tax costs bringing a new

compound up to the point of initial US marketing approval” are over $1bn (DiMasi and Grabowski,

2007). Furthermore, not all investment translates into successful R&D projects. Ninety percent of drug

candidates do not go successfully through Phase II trials (Paul et al., 2010).

In this chapter, to further explore the determinants of innovation within the pharmaceutical industry,

we propose to assess the literature on pharmaceutical innovation by exploring theoretical and empirical

contributions in the literature. This review focuses on both the determinants of successful innovation and

the factors affecting innovation expressed in terms of R&D effort and investment by big and small firms,

spin-offs and start-ups, research centres, and academic departments.

In line with the Oslo Manual from OECD innovation involves ”new or significantly improved char-

acteristics of a product [, process or method of production,] to existing innovations. Because of this,

innovation necessarily involves a certain degree of novelty (Manual, 2005). This degree of novelty is in-

trinsically related to the ”concept of new to the market and new to the world” translating the idea of

”whether or not a certain innovation has already been implemented by other firms, or whether the firm
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is the first in the market or industry or worldwide to have implemented it” (Manual, 2005).

Those innovations that are new to the market are considered radical or disruptive. These are the

innovations that are ”new to the world for all markets and industries, domestic and international” and

contrast with the incremental innovations, those that are significant improvements of the existing products

(Manual, 2005). Both types, radical and incremental, are necessarily present in the R&D process in the

pharmaceutical industry and are part of this literature review and the analyses performed in this thesis.

Furthermore, innovation activities include three types, that are namely: i) the ones that are successful

in having resulted in an implementation; ii) the ongoing, work in progress, innovations that are uncertain

implementation; and, iii) the abandoned ones before the implementation Manual (2005). These three

dimensions are entirely considered in this review when assessing the determinants of such intricate and

complex pharmaceutical R&D process. These are, indeed, the focus of the analysis performed in Chapter

4 and Chapter 5.

As we shall see, although the existing literature suggests numerous factors that explain how the

performance achieved in the drug innovation is determined, there are many flaws and gaps in the literature.

These stem from a variety of sources. Some are related to the approaches chosen to consider different

factors affecting R&D performance. Others are methodological issues regarding the measurement of

innovation performance, the econometric robustness of the estimation strategies, or even the confounders

used to control for many different factors that compete to explain innovation. These problems are key

areas of further research that will be the focus of this thesis.

This review is organised as follows. In the following section we describe the method and scope of the

review. In section III we present the framework of our analysis, whereas section IV provides a careful

examination of the theoretical contributions found in the literature. Section V assesses the empirical

evidence in detail. Section VI presents the discussion of the key messages from the review as well as the

concluding remarks.

II. Method and scope of the review

We perform a narrative review in line with standard practice in Economics that aims to identify the

determinants of drug innovation. We have conducted a search in July 2011 and included the following

databases: PubMed from 1966 to 2011, EconLit from 1968 to 2011 (via EBSCO), and Web of Knowledge

from 1900 to 2011. We have also identified grey literature, such as the reports from the Office of Health

Economics, and other publications through cross-referencing with the screened publications resulting from

the search. We describe below the search strategy, selection and inclusion criteria, and search results of

the search.

The review is concerned primarily with the determinants of innovation within the biopharmaceutical

industry, by exploring theoretical and empirical contributions of existing literature. We are, in this

perspective, interested in innovative results generated by the R&D process. This way, we are particularly

focused in ’useful’ R&D, either incremental innovations or scientific breakthroughs. Because of the long

R&D process, with early stages’ knowledge serving as input to next ones, innovation is presented in

multiple modes along the drug pipeline: molecules, new chemical combinations, tissues, and final products,
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such as new drugs, combinations of existing drugs, vaccines and other biologic compounds. Therefore,

successful drugs reaching the market approval phase are just a part of the innovation created.

As the literature uses different proxies to measure innovation, the use of a strict definition would

needlessly restrict the scope and findings of this review. Therefore, we have opted for using a Boolean

search applying criteria that combined a series of terms to identify publications to the defined scope. The

keywords used in the search can be found in Figure 2.1.

Table 2.1. Keywords used in the Boolean search

Publications were identified matching the following key-
words as part of the full text of the articles:

(a) (”R&D” OR ”research and development” OR ”innova-
tion”) AND (field TX all field)

(b) (Pharma* OR drug* OR medicin*) AND (field TX all
field)

(c) (determinant* OR explanat* OR factor* OR cause*)
AND (field TX all field)

(d) (data OR model OR theor*) (field TX all field)

A. Selection and inclusion criteria of the search

Two groups of criteria were defined and used in the two-stage selection strategy we carried out. In the

first stage, the first set of four criteria included studies:

1. Related to determinants of biopharmaceutical research and development activity

2. Published in peer-reviewed scientific journals

3. Written in English

4. Original articles excluding comments, reviews, letters, editorials and other similar papers

Study titles, abstracts and publication type were sequentially evaluated against these four inclusion

criteria (and duplicates were excluded). Articles meeting all four inclusion criteria were retrieved. The

eligibility was limited to published studies in English. Although this may lead to a risk of publication

bias, it is unlikely that any major contribution to this enquire is not reported in the published literature.

Moreover, studies must bring conceptual and empirical validation to the analysis of pharmaceutical R&D

determinants. For this reason, comments, reviews, opinions and editorials are not contemplated in this

review.

After being shortlisted in the first stage, full texts of all the articles meeting the first set of inclusion

criteria were further examined. In a second stage, selected studies were classified according to whether

they explored the determinants of biopharmaceutical research and development from a theoretical per-

spective or through an empirical approach. The second set of inclusion criteria included:
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5. Theoretical studies: original and significant contribution

6. Empirical studies: methodological robustness, use of econometric techniques, exclusion of purely de-

scriptive statistics studies

The check of eligibility, in the second stage, meant that only papers that offered an original and

significant theoretical contribution were selected. These offer new theoretical insight (rather than being

simple applications of existing theories) and that contribute to understand how the different demand,

supply and policy factors affect R&D activity and innovation performance in the pharmaceutical industry.

Regarding empirical studies, only articles employing a methodology supported by econometric tech-

niques were retrieved. Studies were excluded if they performed an analysis of descriptive statistics, trends

or average numbers.

B. Results from the search

Figure 2.2 shows the PRISMA flow chart (Moher et al., 2010) of information through the different phases

of the review. The search identified 1680 articles and six duplicates were removed. Titles and abstracts

of 1674 unique records were sequentially analysed against the first set of eligibility criteria. The selection

at the first stage resulted in 1622 exclusions. Most of the excluded studies did not refer to the object of

this study, i.e. they did not examine the determinants of R&D in the biopharmaceutical industry (1593).

Most of the PubMed papers excluded on this basis examined the biochemical characterization of new

chemical entities (NCEs) prior to the development of a new drug, whereas most of EconLit exclusions

were related to non-pharmaceutical studies or articles on the political point of view and economics of

innovation. The examination of the other three eligibility criteria resulted in the exclusion of 21 papers

for not being published in peer-reviewed journals, five for being written in languages other than English,

and three studies that were not original. The second stage analysis resulted in 30 exclusions. Sixteen

articles were not considered given the lack of original contribution to the theoretical modelling of the

determinants of R&D in the biopharmaceutical sector. For the most part, these articles asserted normative

statements and points of view when analysing factors impacting R&D decision-making. Additionally, 14

empirical studies presented only trends and average numbers analysis. Ultimately 22 articles were selected

for full assessment. Of these, and based on the stages of screening and eligibility checks, five papers

offered major theoretical contributions with their respective empirical validation. The remaining 19 were

studies assessing empirical evidence alone, and although some explored their theoretical background or

implications, they did so in a limited way and always within the context of one of the five theoretical

contributions previously identified.

By cross-referencing these 22 articles, we have identified 24 additional articles for the narrative review.

The following critical appraisal of the literature focuses on the 46 articles.
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III. What determines R&D? An overview framework

Since the seminal contribution of Schumpeter’s visions to the economics of innovation (Schumpeter, 1942),

the literature has attempted to disentangle the role of the different factors that drive innovation and tech-

nological progress. In particular, the literature as focused on: firm characteristics (size, technological

experience, location, among others) and market power; regulatory environment (such as intellectual prop-

erty (IP) rights, industrial policy in the context of international trade); the nature of the R&D process

(e.g. input spillovers, scale of R&D programs, collaboration between innovators, scientific and clinical

knowledge) and demand-side factors.

For the analysis of the impact of the several factors on pharmaceutical innovation activity, we have

developed a framework that clusters factors into three broad categories: (1) demand-side factors; (2)

supply-side factors; and (3) policy-shaping factors. This overview framework largely contributes to the

analysis of the interactions between the different factors that mostly have been studied separately, and

contributes to the identification of the gaps of the existing literature. We use this framework to review the

theoretical contributions and empirical evidence. Each factor within each category will affect innovation

either directly or indirectly through effects on factors in other categories. Not controlling for these direct

and indirect effects will potentially lead to misleading results. The three categories should be therefore

thought of as complementary and interconnected, as Figure 2.1 suggests. The comments on the literature

will account for these links.

A. Demand-side factors

Underlying the demand-side explanation is the belief that the potential for innovation responds to the ag-

gregate demand for medicines (drugs, vaccines, and other biologic products) because the existing demand

determines the size of the market and, therefore, potential profitability and returns to R&D investment.

Demand can be briefly characterised by the epidemiological profile of the population, and affordability.

The epidemiological distribution of disease prevalence and disease severity would ideally characterise the

medical unmet need of the populations, and for that reason, determine the demand for health care.

However, there are limitations on the measurement of global need that includes all diseases, especially

those that affect the poor countries and analyses may suffer from this measurement bias. Moreover,

affordability is itself directly related to drug prices, income and reimbursement from insurers. All these

define the profit expected to flow from successful innovation and the knowledge needed to fulfil tomorrow’s

scientific challenges. Consequently, firms’ decisions to allocate resources to R&D programs across diseases

internalize today’s and future expectations about the volume and value of demand, defined by disease

prevalence, and willingness- and ability-to-pay for medicines.

However, in the health care sector, a complete examination of the demand requires a multi-agent

perspective: patients, health care providers, governments, insurance companies, and health care organi-

sations are potential consumers. In countries where the national health system is the main provider and

payer of healthcare, governments demand a large proportion of drugs and decide on the reimbursement

level to the general public, with direct effects on the affordability of patients’ drugs. On the other hand,
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Figure 2.1. Framework of complementary factors explaining R&D allocation

in countries where the private sector plays a central role in the delivering and funding of healthcare,

insurance companies and managed care organisations have implemented drug prescription lists to exer-

cise bargaining power over the pharmaceutical industry to get cheaper prices, and contain moral hazard

behaviour.

Lastly, demand affects and is affected by the policy context and regulatory framework, with potential

strong implications to the dynamics of the market competition and allocation of R&D resources. Condi-

tions that cause high disease burden to population health drive the need for new public health policies

that improve access to new treatments. This need changes the interplay between health systems and

innovators by shaping the incentive structure for innovation. On the one hand, increased need puts public

budgets under pressure, leading to cost-containment efforts that can potentially reduce the prospects of

profitability of new innovators. Many of these policies have indeed been targeted at fostering competi-

tion between branded and generic drugs, restricting drug prices and reimbursement levels with strong

implications for the size and value of a product in the market. On the other hand, unmet health needs

drive health systems to implement policies to facilitate drug innovation such as priority-drug approval
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processes on areas as cancer and rare diseases (e.g. The Orphan Drug Act1), less restrictive rules on IP

(such as patent flexibility and compulsory licensing as the TRIPS2 Agreement contemplates), as well as

public money available for R&D public-private partnerships.

B. Supply-side factors

On the supply-side, two levels of forces can affect innovation: firm-individual level characteristics, and

industrial dynamics.

On the one hand, it is plausible to presume that innovation performance heterogeneity arises from

differences in firms’ characteristics and strategies. Different types of innovators compose the biopharma-

ceutical industry: biotechnology firms, laboratories, big-multinational pharmaceutical companies, small-

specialised firms, laboratories, private-public consortia, and the general scientific community, placed in

teaching hospitals or research centres. They perform differently accordingly to their individual character-

istics as well as the capability and financial constraints they face. In particular, performance is likely to be

affected by technological conditions, such as experience on disease-specific versus broad R&D programs,

size, distance from inputs, alliances with other firms, access to external capital and internal funds.

On the other hand, supply-side factors relate to the industrial dynamics and the way organisations

compete and/or collaborate in the market. The degree of competition and scope of collaboration between

brand and generic firms, manufacturers, the scientific community, and laboratories may impose entry bar-

riers and other costs, whilst facilitating alliances, mergers and knowledge spillovers across firms. All these

factors impact on the variety and quantity of medicines available in the market, and impose constraints

on the access to medicines.

Additionally, if evaluated as a pipeline, the R&D activity is potentially affected by other industries.

Biotechnology firms, laboratories and academia play an important role at the level of basic scientific

discovery and development of specialised therapies with molecules, tissues and biological compounds,

benefiting disease-specific drug development. For that reason, the funding directed to life sciences and

biopharmaceutical industry from publicly funded institutions and non-governmental organisations (NGO)

affect the pharmaceutical innovation activity. Public money directed to biomedical and pharmaceutical

R&D generates potential social and private benefits. Universities, research centres and public-private

partnerships potentially impact on technological clusters and knowledge spillovers within the industry.

Laboratories, teaching hospitals, and clinical testing centres may constitute factor endowments to R&D

performance.

1The Orphan Drug Act [hereinafter ODA] of 1983 is an act to amend the Federal Food, Drug, and Cosmetic Act in the
United States to facilitate the development and commercialisation of drugs to treat rare diseases and conditions, termed
orphan drugs, Orphan Drug Act, Pub. L. No. 9714, 96 Stat. 2049 (1983), codified at 21 U.S.C.,xx 360aa60dd (2000)

2Trade Related Aspects of Intellectual Property Rights Agreement [hereinafter TRIPS Agreement] is an international
agreement administered by the World Trade Organisation (WTO), that sets minimum standards for many forms of intellectual
property regulation applicable to nationals of WTO members, Agreement on Trade-Related Aspects of Intellectual Property
Rights, 15 Apr. 1994, Marrakesh Agreement Establishing the World Trade Organization, Annex 1C, Legal Instruments esults
of the Uruguay Round vol. 31, 33 I.L.M. 81 (1994).
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C. Policy-shaping factors

Multiple policies interplay within health systems and may influence the incentives for pharmaceutical

innovation. These policies can be clustered in three broad areas. The first relates to drug approval re-

quirements to ensure safety and clinical effectiveness. The second concerns patenting, including marketing

exclusivity arrangements and fast-track regulations, in the way it affects market and R&D competition.

Finally, the policies regarding price and reimbursement of medicines. These include cost-containment

policies, health technology assessment, and competition policies between branded and generics, as well as

reference pricing between countries in the way they affect RD incentives.

Such policy and regulatory factors impact on the demand and supply of medicines. The pharmaceuti-

cal sector is heavily regulated with non-negligible cost implications for the R&D processes: tighter clinical

safety standards require more data on efficacy and cost-effectiveness of medicines that impose higher RD

costs; patenting and license approvals impact directly on generics versus non-generics competition and

price-setting; price and reimbursement policies determine buyers’ purchasing power and firms’ profitabil-

ity.

A framework for the analysis of the factors that affect innovation

These factors above described can be brought together in a single equation that summarises the forces

that drive innovation:

Innovation = f(D,S, P ) (2.1)

where D represents the demand-side factors, S expresses the supply-side factors, and P evokes the

policy-shaping factors on innovation activity. Interconnections between these three explanations (illus-

trated in Figure 2.1) raise methodological questions when defining this function. Simultaneous effects

bring additional modelling challenges of overcoming collinearity, endogeneity and reverse causality.

With this framework as a background, the sections that follow critically examine the existing literature,

highlighting the potential methodological challenges in the analysis of the determinants of innovation that

arise from this holistic perspective.

IV. Conceptual and theoretical contributions

Methodological considerations

The first challenge encountered in this review regards the inconsistency found in the literature at a

conceptual level in the definition of innovation. Indeed, the terms innovation and R&D are used inter-

changeably, despite being two different concepts. Similarly, the concepts intensity, effort and performance

may constitute different approaches when referring to innovation or R&D. The disputable conceptual

framework gives room for the use of heterogeneous and less uniform use of performance measurements of

innovation activity, as we will explore in section V.
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Literature review

In this section, we provide a detailed analysis of the theoretical contributions following the framework

of analysis presented in section III.

A. Demand-side factors

Three studies explore the effect of aggregate demand on innovation and investigate the role of market size

on the composition of biomedical R&D using disease prevalence as a proxy for demand (Acemoglu and

Linn, 2004; Lichtenberg, 2005; Bhattacharya and Packalen, 2011). Theoretical predictions from the three

studies indicate that greater R&D effort is associated with more lucrative therapeutic areas (Acemoglu

and Linn, 2004; Lichtenberg, 2005; Bhattacharya and Packalen, 2011). Optimal R&D effort is found to be

intrinsically related to anticipated profitable market segments (Acemoglu and Linn, 2004). Furthermore,

even at the academic level, when disease prevalence is used as a proxy for market size, basic scientific

funded research is also found to respond to changes at the market level (Bhattacharya and Packalen,

2011).

The studies, however, are not entirely comparable.

Two studies have limitations by not incorporating supply-side and policy-shaping factors. Lichtenberg

(2005), on the one hand, assumes that increases in the disease burden affect only the marginal social

benefit but not the marginal cost of innovation, while Bhattacharya and Packalen (2011) model the

socially optimal allocation of research according to the disease prevalence and the distribution of funding

granted to the different diseases.

The study by Acemoglu and Linn (2004), however, simultaneously models demand and supply of

drugs. They assume a competitive monopolistic model with product differentiation which allows for

different R&D strategies and innovation rates across disease areas (Acemoglu and Linn, 2004). The study

models exogenous demographic and income changes by age group in the United States in order to address

two methodological challenges: (i) reverse causality problems at income and demand level (endogeneity);

and (ii) cross-correlation with the past (autocorrelation).

B. Supply-side factors

Two studies investigated theoretically whether the profitability of market segments, price levels, and

financial constraints are main determinants of innovation direction (Grabowski and Vernon, 2000a; Giac-

cotto et al., 2005). Both studies find a positive effect of expected returns and cash flows on R&D intensity

(Grabowski and Vernon, 2000a; Giaccotto et al., 2005), reinforcing the expected profitability of the R&D

projects a crucial factor in firms’ R&D decisions. Most of the empirical studies use these theoretical

contributions as a baseline.
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C. Policy-shaping factors and regulatory framework

The impact of policies on innovation is assessed by controlling for supply-side determinants only in one

study (Giaccotto et al., 2005). The predicted effect of two dummy-type policy changes are: (i) ambiguous

effects of changes in drug price competition regulation3 on firms’ expected returns and cash flow levels;

and (ii) negative effects of tighter drug approval rules4 on firms’ profitability. Ambiguous effects of

the Waxman-Hatch Act are anticipated, given the lower entry barriers created for generic products and

increased patent lives for branded ones. Regarding the later, stronger Food and Drug Administration

(FDA) requirements for clinical testing are suggested to negatively affect R&D intensity levels due to

additional R&D costs.

Table 2.2. Gaps of the existing theoretical literature

Publications addressing the three category of
factors

existing evidence

Demand-side factors including supply-side factors existing literature

Demand-side factors including policy-shaping factors ambiguous

Supply-side factors including demand-side factors ambiguous

Supply-side factors including policy-shaping factors existing literature

Policy-shaping factors including demand-side factors ambiguous

Policy-shaping factors including supply-side factors ambiguous

Table 2.2 identifies the gaps in the theoretical literature by listing the types of studies following

the three clusters and the main approach taken in the study (e.g. studies with demand-side factors

including supply-side factors are studies which have as main focus the demand-side factors and potentially

may include supply-side factors, whereas studies with supply-side factors including demand-side factors

are studies that focus primarily on supply-side factors but that contemplate demand-side factors in the

analysis).

To summarise, the theoretical literature confirms market profitability as a significant determinant of

the current R&D effort. Also, the literature provides insight into the incentives underpinning academic

R&D that are also determined by demand and research funding. This supports the consolidated idea

of absence of incentives to pursue R&D projects targeted at markets and diseases with relatively low

expected future returns.

However there are substantial gaps in the literature (see Table 2.2), in particular there are relatively

few studies that simultaneously assess the role of demand, supply and policy factors in incentivising

innovation. Furthermore, there is a lack of theoretical insight on the effects of policy instruments such

3It refers to the Waxman-Hatch Act Introduced in 1984, the Drug Price Competition and Patent term Restoration Act
that extended the effective patent life of a new drug by a maximum of 5 years. Drug Price Competition and Patent Term
Restoration Act of 1984, Pub. L. No. 98-417, 98 Stat. 1585 (codified at 15 U.S.C. xx 68b-68c, 70b (1994); 21 U.S.C. xx 301
note, 355, 360cc; 28 U.S.C. xx 2201 (1994); 35 U.S.C. xx 156, 271, 282 (1994)).)

4It refers to the Kefauver-Harry amendment is The Food, Drug and Cosmetic Act of 1962 instituted the regulatory
requirements to bring a pharmaceutical product to market, through FDA approval.
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as clinical guidelines, drug prescription list, price regulation, reimbursement policies, and international

agreements on pharmaceutical innovation (Table 2.2).

V. Empirical evidence

Methodological considerations

The empirical studies analyse the determinants of pharmaceutical R&D in seven individual countries

(US, Canada, Sweden, Denmark, Japan, Netherlands and France). However, many of them present an

international examination, performing analysis at OECD and EU levels.

The studies are, however, not comparable since they use different levels of data aggregation and, be-

cause of that, cannot give definite conclusions about the impact of the different factors on pharmaceutical

innovation. The data used varies significantly. In general, three types of data are used: (i) cross-country

data; (ii) aggregated market-level data at research project, drug or research phase level; (iii) micro-data

at the firm level, both by aggregation and disaggregation at either drug or molecule level. Moreover,

data sources vary with the purpose of the studies: those that investigate determinants of R&D linked

to firms’ characteristics such as financial situation or knowledge spillovers, commonly use voluntary and

self-reported information provided by firms or agency institutions (for example, Henderson and Cockburn

(1996) or Arundel and Kabla (1998)). Studies with an aggregate market-level drug and research phase

analysis use private information compiled by pharmaceutical consultancy firms (for instance, Danzon

et al. (2005a) or Lichtenberg (2005)).

How to measure innovation?

Outcome variables also present an important source of heterogeneity. Studies lack uniformity when

measuring innovation effort and R&D productivity. Most of the studies focus on the quantification of

R&D intensity, proxied either by the level of R&D investment or the number of scientific publications

and patents. Table 2.3 describes and groups the variety of outcome variables considered by the different

studies.

[Table 2.3 here]

This raises issues regarding the comparability of these studies. In principle, studies that use measures

of R&D intensity, such as R&D expenditure per sales or R&D investment do not accurately reflect its

productivity. Also, the use of the number of scientific articles as a proxy for innovation performance

suffers from disguised publication bias and could potentially be distorted by academic interests, thus not

capturing private sector performance as a whole.

Additionally, the use of patents as a measure for scientific discovery can also be of concern. Indeed,

using the number of patents biases the analysis towards successful compounds that effectively pass the

drug approval and licensing requirements. Other factors have an impact on successful patenting. We could

speculate how much of the propensity rate of being patented is explained by the value of the invention

itself and by the firm specificities and competition dynamics. The same rational applies to drug launch
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measures. The portions of FDA approvals or new drugs launched do not comprehensively capture the

performance of a long, complex and multi-inputted R&D process. They may be biased towards the more

profitable and less competition-deterred technologies.

To overcome such limitations, three studies (Danzon et al., 2005a; Abrantes-Metz et al., 2004; Aharon-

son et al., 2007) consider the probability of success rates across R&D phases, by evaluating what happens

at molecular level (NCEs). This way, the bias from marketing, patenting or publishing is minimised.

Literature review

In the section that follows we provide a detailed analysis of the empirical evidence following the

framework of analysis presented in section V.

A. Demand-side factors: market size and epidemiological distribution

Market size

The existing literature unanimously confirms the theoretical predictions of the aggregate market size as a

significant determinant of R&D direction (Acemoglu and Linn, 2004; Lichtenberg, 2005; Civan and Mal-

oney, 2006; Bhattacharya and Packalen, 2011; Dubois et al., 2011). Furthermore, this effect is significantly

dependent on the income distribution (Acemoglu and Linn, 2004; Lichtenberg, 2005; Civan and Maloney,

2006; Bhattacharya and Packalen, 2011). On top of that, one of these studies finds the US market as a

worldwide R&D driver (Civan and Maloney, 2006). But the analysis in this study is limited by the use of

mortality and person-years lost due to disease proxies for potential market size. Consequently, the study

does not consider conditions such as chronic and neglected tropical diseases with high comorbidity levels

and low mortality.

With the epidemiological distribution being the most commonly used proxy for market size, prob-

lems of endogeneity and reverse causality between health and wealth arise. Some authors employ cancer

incidence (Lichtenberg, 2007); and burden of disease measured in terms of DALYs across diseases (Lichten-

berg, 2005) but do not tackle the arising methodological issues. Others go one step further using exogenous

demographic (Acemoglu and Linn, 2004) and epidemiological shocks (Bhattacharya and Packalen, 2011)

to deal with the endogenous effect of wealth on health and demand for drug innovation. However, they

are not necessarily equally able to measure R&D performance: Acemoglu and Linn (2004) uses both the

number of NCEs and number of FDA approvals, while Bhattacharya and Packalen (2011) subscribes the

publication bias when considering the number of scientific articles per disease.

Acemoglu and Linn (2004) explores partially the multi-agent function of demand, illustrated in Figure

2.1. To explain the effect of the multi-agent function on drug innovation, this study uses US drug

prescription data on ambulatory and private consultancy services to give a measure of market size from

the healthcare system’s point of view.

Nevertheless, demand-side factors are limited by not controlling for supply-side and policy-shaping

factors, covering biases from reverse causality, endogeneity and confounding effects.
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B. Supply-side factors

With the exception of a few cases below mentioned, no supply-side factors are incorporated in the anal-

yses of the studies reviewed. Policy-shaping effects are also far from being explored, and inappropriate

methodological strategies show how logistic regressions or Ordinary Least Squares are unable to disentan-

gle policy from supply or demand effects as possible determinants of innovation. We provide a detailed

analysis of each factor within the supply-side category considered by the literature, namely industrial and

firm level factors.

The existing literature exhaustively explores the impact of forces such as technological specialisation

and experience of firms, several other firm’s characteristics, and access to capital in drug innovation.

Firm technological conditions

While two studies find evidence of a negative effect of diversification of knowledge across diseases on

phase-specific success rates (Danzon et al., 2005a; Aharonson et al., 2007), two other studies suggest

evidence of a positive effect of spillovers across firms with related research projects on patents granted

by disease-type (Henderson and Cockburn, 1996) and the existence of economies of scope within a firm’s

R&D portfolio (Henderson and Cockburn, 1996). These results are not, however, entirely comparable

since they use different measures to proxy innovation: patents granted by disease area (Henderson and

Cockburn, 1996) do not necessarily measure the same as the phase-specific success rates (Danzon et al.,

2005a; Aharonson et al., 2007).

Additionally, knowledge stock is regarded to benefit innovation creation. More experienced firms

generally present a higher number of patents and R&D success rate, whether experience is measured by

looking at retrospective R&D expenditures on sales (Alexander et al., 1995; Arundel and Kabla, 1998),

patent stock (Ulku, 2007), firms’ overall experience (Danzon et al., 2005a; Henderson and Cockburn,

1996; Pisano, 1990) or therapeutic category-specific experience (Danzon et al., 2005a). Several firm-level

and industrial-level covariates are considered here, but they commonly lack policy relevant considerations

with potential impact on industrial clusters, IP issues and public R&D spending. This may complicate

the comparability of results amongst countries with different policy settings at these levels.

Lastly, Danzon et al. (2005a) find that experience is particularly relevant at the early stages of research

(Phase I) for smaller firms, but shows to be not significantly important on clinical trials to large firms.

This study presents an extensive analysis by considering data on 1910 compounds, developed by 900 US

firms in the period between 1988 and 2000. They analyse, across time, the role of alliances on R&D

phase-specific success rates by exploring a multilevel analysis at compound and firm level.

Firm specific characteristics

Geography and nationality are explored as determinants of the number of patented compounds (Alexander

et al., 1995; Arundel and Kabla, 1998; Hirai et al., 2010; Pisano, 1990). Positive effects are found to be

related to firms headquartered in dynamic markets such as Germany (Alexander et al., 1995) and the US

(Arundel and Kabla, 1998). Non-Japanese firms are shown to have higher entry barriers to launch drugs

in the Japanese market (Hirai et al., 2010). However, one study reports no R&D productivity differences

in firms based in the US and Europe (Pammolli et al., 2011).
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Furthermore, firm’s age is found to have a negative impact on the number of patented compounds

(Kim et al., 2009).

Two studies report that firm size has a negative effect on the number of patented compound (Alexan-

der et al., 1995; Kim et al., 2009), whilst three other studies find that large firms are more successful

in originating technical change (Vernon and Gusen, 1974) and in launching new drugs in the market

(Abrantes-Metz et al., 2004; Carpenter and Turenne, 2001).

These studies, however, differ in terms of robustness of the analysis. Three of them present more

robust analyses, given the covariates considered to control for inventor’s characteristics, firms’ time-

varying features (Kim et al., 2009), therapeutic area specificities and drug approval requirements (Hirai

et al., 2010; Abrantes-Metz et al., 2004). However, they do not incorporate demand-side factors and

policy-shaping factors. For this reason, the effect of firm’s size is rather unclear. The impact of the firm

size on the R&D performance might be contaminated by the effects of the demand-side and policy factors.

Firm financial expectations

The literature seems to provide homogeneous evidence when supporting the theoretical predictions of the

importance of expected returns and availability of internal funds in determining innovation performance

(Grabowski and Vernon, 2000b; Giaccotto et al., 2005; Mahlich and Roediger-Schluga, 2006; Vernon

et al., 2010; Mahlich and Roediger-Schluga, 2006; Vernon, 2005; Jensen, 1987). Capital intensity, whether

measured in spending or capital-labour ratio, also contributes to better performance at patenting level

(Kim et al., 2009; Boasson et al., 2005). The data used, however, suffers from potential self-report and

sample bias: the studies report privately owned information of a small sample of firms, not greater than

14.

Additionality, only one study addresses possible endogeneity issues related to access to capital and

more innovation. Vernon (2004) consider non-pharmaceutical cashflows as an instrument for accessibil-

ity to capital but lacks robustness in measuring innovation as it considers aggregated figures of R&D

investment at the firm-level.

Apart from firm characteristics, aggregate forces at the industrial level determine how firms compete

and collaborate in the innovation activity.

Alliances and mergers

The literature is not conclusive when evaluating the effect of alliances and mergers on innovation. Three

studies demonstrate significant positive effects of alliance status on phase-specific R&D success rates

(Danzon et al., 2005a), drug launch times (Hirai et al., 2010) and firm’s internal productivity (Higgins

and Rodriguez, 2006), whilst a study concludes on prejudicial effects of alliances with academia on R&D

success rates (Aharonson et al., 2007).

The divergence in conclusions may derive from data comparability: the later is a firm-level study, while

the former three studies refer to compound-level analysis; also, different countries are analysed in these

studies: US, Japan/US/EU, and Canada, respectively. Likewise, control variables diverge significantly

across studies: some are more focused on technological conditions of the R&D process, such as the propor-

tion of clinical trials pursued, or quality of compounds tested (Danzon et al., 2005a) and therapeutic area

30



specificities (Hirai et al., 2010); while others focus on firm characteristics, access to supportive resources

and the intensity of competition (Aharonson et al., 2007; Hirai et al., 2010; Higgins and Rodriguez, 2006).

Furthermore, two other studies suggest possible adverse effects of large horizontal mergers on the R&D

investment and availability of new drugs (Comanor and Scherer, 2013; Graves and Langowitz, 1993).

Knowledge spillovers

Two studies find significant evidence of geographical distance (as a measure of technological distance) as a

determinant of innovation performance: geographic distance between the firm and the nearest neighbour

(Boasson et al., 2005), and competitors’ output in the same research area (Henderson and Cockburn,

1994) show positive effects upon the number of patents. Nevertheless, the former provides a more detailed

analysis per disease-specific research programme (Henderson and Cockburn, 1994).

Lastly, the difference between private-private versus public-private spillovers is also explored (Boasson

et al., 2005; Cockburn and Henderson, 1998; Furman et al., 2006). While geographical and technological

distance are found to have a significantly positive spillover effect in R&D productivity between private

firms, no significant results are found regarding public-private partnerships.

Competition intensity

Intensity of competition is mostly regarded by the empirical literature as a significant determinant of

innovation and it is closely linked with the IP rights’ system and the competition policy in a country.

Two types of competition have been suggested by the literature to affect innovation: market competition,

exerted by the incumbents, and pressure from peers in the R&D process that race to innovate in a specific

target.

In what concerns market competition, the studies are divergent in terms of data sources, methodology

and estimation strategies, and they also differ in the conclusions about the effect of competition on

innovation. Most of the studies suggest a significant positive effect (Alexander et al., 1995; Arundel

and Kabla, 1998; Grabowski and Vernon, 2000b; Danzon et al., 2007; Giaccotto et al., 2005; Mahlich

and Roediger-Schluga, 2006; Aharonson et al., 2007), whilst Kyle (2006) finds that market competition

is negatively correlated with the likelihood of entry, and that this effect is higher when the number of

competitors is low. Indeed, the impact of drugs longer established in the market seems to be greater than

that of more recently introduced drugs.

Despite that, some of these studies make conclusions using poor measures for innovation productivity

when evaluating the effect of industrial margins on R&D investment per sales (Grabowski and Vernon,

2000b; Giaccotto et al., 2005; Mahlich and Roediger-Schluga, 2006) and foreign sales (as percentage

of total sales) (Giaccotto et al., 2005). A cross-industry analysis for 604 Dutch and French firms was

performed to evaluate the effect of exports to USA and Japan (Arundel and Kabla, 1998). A more robust

longitudinal approach is used by Aharonson et al. (2007) to evaluate the entry of Canadian firms in the

sector over 9 years. However, the study is focused on measuring the reverse causality of R&D intensity

geographical rings co-location on firms’ entrance. Additionally, one study finds positive effect of firm

global market share on patent application propensity rates (Alexander et al., 1995).

Moreover, inconclusive results are found in a study that considers the ratio of drug prices between
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Japan and US to explain the median time lag of drug approvals between Japan and the US/EU (Hirai

et al., 2010). With apparently solid data at drug level, this study takes a more comprehensive analysis

by controlling for firms’ demographic characteristics and some regulatory effects, such as category of drug

approval process (standard, priority, and orphan status). Also, drug approval requirements are explored

by controlling for the use of a bridging strategy by Japanese firms5. Such covariates have potentially

strong effects on faster and costless drug launches, and may constitute a main difference between US/EU

and Japanese markets.

Kyle (2006) presents the most robust study when analysing the effect of market competition on

innovation. The author analyses all drugs developed in the 28 largest pharmaceutical markets between

1980 and 2000 and finds that several of the characteristics of entrants and incumbents are positively

associated with the time-to-entry in the G7 markets. Kyle (2006) uses duration models to model time-to-

entry when accounting for country-specific demand, therapeutic area specificities and the collaboration

behaviour between firms.

Moreover, the effect of competition from R&D peers is found, in contrast to market competition,

to positively affect drug innovation in two studies. Indeed, Cockburn and Henderson (1994) and Kyle

(2006) have found that the race to innovate is associated with a higher R&D productivity between rivals

(Cockburn and Henderson, 1994) and a positive effect on the likelihood of entry (Kyle, 2006).

Additionally, a phase-specific approach is explored by a third study which finds inconclusive results

(Danzon et al., 2005a). By constructing a Herfindahl-Hirschman Index (HHI) on the proportion of a

firm’s compounds in each therapeutic category, the authors intend to capture a scale-scope effect with

potential beneficial spillovers amongst firms, across therapeutic groups. HHI is found to have a positive

effect on the number of success compounds in the Phase I trials but an inverse effect on the number of

compounds in the late stages of research (Phase II and III) (Danzon et al., 2005a). This study uses R&D

project-level across OECD countries, which allow the exploration of firm, projects and therapeutic class

fixed effects simultaneously.

Finally, the existing literature has not adequately addressed the effect of parallel trade on innovation

and has been reporting unclear consequences on price convergence across countries. One study reports that

entry by parallel traders resulted in price reduction by originators in Sweden (Ganslandt and Maskus,

2004), whereas three other studies suggest that parallel trade imports have neither resulted in price

convergence across countries nor lower prices (Kanavos and Costa-Font, 2005; Kanavos and Vandoros,

2010; Kyle et al., 2008).

With the exception of one study that speculates on the effect of declining drug prices (ensured by

import policies) on the elasticity of drug development (Lichtenberg, 2007), the consequences of parallel

trade on innovation, access to medicines and social welfare have not been addressed in the literature and

require further research.

In the next section we examine the various levels of market competition that derive from IP system

and patent rights that regulate the pharmaceutical industry.

5this consists in the use of data originated from Randomised Control Trials for Phase III carried out in other countries
than where the drug application is being processed.
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C. Policy-shaping factors: drug approval, patenting, price regulation and trade policy

A few number of studies account for the impact of policy settings on innovation. Some evidence is given

at four levels of policy context: patent rights, price and reimbursement policies, and safety and efficacy

requirements for drug approval.

Patent rights

The literature reports various effects on the role of patent rights on innovation in the pharmaceutical

industry, and the issues raised by differences across countries in terms of IP rights.

When looking at the overall effect of patenting on R&D effort, one study finds no significant effect of

sales on the R&D intensity (Giaccotto et al., 2005), whereas two other studies suggest positive benefits

of stronger IP regulation and appropriation returns from licensing on the number of drugs and patent

application propensity scores (Arundel and Kabla, 1998; Civan and Maloney, 2006). Stronger results using

a quasi-experiment methodology with a case-control approach are drawn from a study that evaluates a

Danish patenting policy in the academic sector applied to Danish scientists (Valentin and Jensen, 2007).

A substitution effect between domestic nationals and non-nationals inventors is found to occur by avoiding

stricter IP rights of the Danish scientists.

Furthermore, Kyle (2006) has shown that intermolecular competition affects the likelihood of entry.

Competition pressure from products established in the market and enjoying from the patent status is

negatively correlated with the likelihood of entry, and that this effect is higher when the number of

competitors is low.

Developed versus developing world

Two studies have looked to the effect of the TRIPS agreement on the R&D effort. The TRIPS agreement

increased the levels of patent protection around the world but has not been found to affect R&D investment

in the diseases that are most prevalent in developing countries (Kyle and McGahan, 2012; Scherer and

Watal, 2002). The existing literature proposes policy changes that encourage ramsey pricing and contain

parallel exports from low-income countries (Scherer and Watal, 2002), or a regime in which firms could

opt for patents in either developed or developing countries (Lanjouw and Cockburn, 2001).

Price and reimbursement policies

The optimal design of price regulation is complex and has not been fully addressed by the literature. The

available literature does provide some evidence on the general trade-off between stricter price regulation

and innovation (Hirai et al., 2010; Giaccotto et al., 2005; Vernon, 2005), but the results lack robustness

as they do not consider time trends, and other demand and policy effects.

Across the different pricing and reimbursement policies, there is some evidence on the effect of external

reference pricing and launch of new drugs (Danzon et al., 2005c; Kyle, 2007; Lanjouw, 2005; Danzon and

Epstein, 2012). The external reference pricing compares the price of the new drug to the prices of products

that are bio-equivalent in other countries. As a comparator, it uses the mean, median or minimum

price of the same drug in a designated set of countries. The literature has suggested that the effects of

price differentials across countries are associated with the convergence of firms’ pricing strategies across
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countries, and potential launch delays and non-launches on smaller markets and low-income countries

(Danzon et al., 2005c; Kyle, 2007; Lanjouw, 2005; Danzon and Epstein, 2012).

Indeed, and because of the existence of global price differentials, an arbritage opportunity is given by

the fact that countries with relatively low prices are allowed to resell drugs to countries where prices are

high, without authorisation of the firm that owns the IP rights over the product.

Finally, no investigation on the impact on innovation of reimbursement policies, clinical guidelines or

lists of prescription drugs is referred to in the existing studies.

Safety and efficacy requirements for drug approval

Several studies have shown that countries with stricter drug approval criteria experience higher R&D

costs and higher delays in launch of new drugs (Wiggins, 1981, 1983; Baily, 1972; DiMasi et al., 2003;

Grabowski et al., 1978; Vernon et al., 2010; Hirai et al., 2010; Giaccotto et al., 2005), although significant

variation is reported across therapeutic categories. For instance, Danzon et al. (2005b) shows that both

regulatory requirements and competition have contributed to the exit of vaccine manufacturers, as the

duration of trials in order to detect adverse events has increased considerably.

At the same time, more relaxed rules at drug approval level, such as fast-track approval policies for

important drugs and the use of comparable data used in regulatory processes in other countries, are

reported to be associated with faster launch of drugs and less costly R&D processes (Hirai et al., 2010;

Dranove and Meltzer, 1994; Yin, 2008).

However, the existing literature insufficiently assigns a causal relationship when assessing the impact

of these regulations on market launch of new drugs and in terms of social welfare across time. Many other

factors potentially contribute to the rising R&D costs and the decrease in the number of new drugs being

launched in the market. These include changes in the R&D landscape provoked by firm’s investment

decisions, population health needs, payers’ willingness-to-pay and other regulatory frameworks at the

patenting level.

VI. Discussion and final remarks

Results from the theoretical contributions are, to a large extent, validated by empirical evidence. The

literature finds robust evidence on the effect of several determinants of innovation: at an aggregate level,

epidemiological and aggregate income distributions in more dynamic economies as proxies for market

size (Acemoglu and Linn, 2004; Lichtenberg, 2005; Bhattacharya and Packalen, 2011; Dubois et al.,

2011); at the industrial level, the intensity of competition between pharmaceutical companies in the R&D

process (Kyle, 2006; Cockburn and Henderson, 1994), the presence of economies of scale and technological

specialisation (Cockburn and Henderson, 1994; Danzon et al., 2007; Aharonson et al., 2007; Boasson et al.,

2005) and at the firm level, the future commercial profitability and cash flows (Grabowski and Vernon,

2000b; Giaccotto et al., 2005; Mahlich and Roediger-Schluga, 2006; Aharonson et al., 2007; Giaccotto

et al., 2005; Vernon et al., 2010), and firm characteristics such as size (Alexander et al., 1995; Kim et al.,

2009; Abrantes-Metz et al., 2004; Carpenter and Turenne, 2001), age (Kim et al., 2009), location and

nationality (Alexander et al., 1995; Arundel and Kabla, 1998; Hirai et al., 2010; Pisano, 1990).
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We can denote these on Equation 2.2 based on the evidence above as:

Innovationj = f(D(mj), S(cj , tij,, fi, xi)) (2.2)

where Demand D is a function of market size per disease j denoted by mj , Supply S is a function of

competition intensity between firms within a disease-specific category j represented as cjt, technological

conditions such as scale and scope within each disease category j of firm i given by tij , financial expec-

tations of each firm i which invests in disease-category j denoted by fij , and firm-specific characteristics

xi, such as size and location. Nonetheless, there are missing Policy-shaping factors P in the equation

revealing a lack of consolidated effects of policies on innovation. Indeed, the search has not focused on

the policy aspects of innovation and, because of that, it has only identified a few studies with policy

considerations.

In other cases, findings of empirical studies have been inconclusive. This is specially the case for the

effect of market competition and intensity of alliances (private-private and public-private), mergers, and

technological distance in same therapeutic areas.

Furthermore, the current literature is scarce in providing a theoretical approach on simultaneous

interactions between demand-side, supply-side and policy-shaping factors, as Figure 2.1 illustrates. Here

we present three limitations found in the existing literature addressed by contributions made in this thesis.

The first issue refers to the lack of a dynamic analysis of demand on R&D decisions made by the

industry. On the one hand, buyers’ decisions are affected by the competition dynamics and supply-side

conditions. On the other hand, the volume of demand and expected returns of industry are affected by (i)

aggregate changes in the epidemiological profiles of the population, and (ii) the organisation of healthcare

systems with potential long-term decisions on R&D investments and public policy implications. Finally,

there is need to consider the interactions between demand and supply when assessing the impact of

policies on pharmaceutical innovation. The existing empirical studies do not help to disentangle the

policy effects from industrial trends, demand behaviour and firm characteristics. Following from this lack

in the literature, we aim at developing a dynamic model that simulates the future R&D landscape by

considering the impact of demand factors, industrial factors and firms’ characteristics on R&D decisions,

and that can further be applied to evaluate the impact of policy changes on the R&D landscape and

availability of new therapies (Chapter 5).

In particular, further research is needed on the impact of drug approval requirements, patent rights,

price regulation and clinical guideline policies on pharmaceutical innovation. Policy frameworks, such as

health technology assessment and price regulation, have been implemented to contain an escalation of drug

spending, by imposing guidelines for health professionals and by restricting patient choice at the retail

level. However, little is known about the effect of these policy measures on pharmaceutical innovation.

Healthcare systems, such as that of the UK, have implemented cost-effectiveness orientations on drug

prescription lists to the National Health System. At the same time, the current coalition government is

currently changing reimbursement and market access policies with potential significant consequences on

R&D investment allocation in the UK, with potential spillover effects on the whole industry (Claxton

et al., 2008). In the US, on the other hand, insurers have fixed drug formularies to restrict patient choices
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and contain moral hazard but results remain unclear (Huskamp et al., 2000, 2003; Berndt, 2001). These

policies have potentially a strong impact on the intertemporal trade-off between innovation and access

to value-for-money medicines, not only within the countries where the policy changes have been set, but

also in other jurisdictions, given the relevance of these markets for the pharmaceutical industry.

The second issue relates to the need to analyse the R&D process thoroughly, when assessing the factors

that are impacting on the performance of the industry at innovation level. The innovation process in the

pharmaceutical industry is long and shows high levels of heterogeneity across the different R&D stages.

Most of the studies do not consider such level of heterogeneity when measuring R&D productivity and,

because of that, lack understanding on what factors are imposing stronger influence on the performance

of the innovation activity in the industry. By developing robust methodologies that account for the

heterogeneity and time as important dimensions of the R&D process, we give further insight on the

factors associated with project failure across the different stages of the R&D process in order to help

designing policies that promote efficiency of the R&D process (Chapter 4).

Finally, there is insufficient research on the welfare implications of current policies to the pharma-

ceutical innovation. The evaluation of current policies and the design of better incentive mechanisms

that promote innovation need to consider welfare and population health consequences. The literature is

poor when including such consequences in a global perspective. It is true that to further discuss global

health issues in the developing world we need intrinsically to address what happens in the most dynamic

pharmaceutical markets, at demand, supply and policy level. However, the pharmaceutical innovation is

characterised by being a multinational activity, causing significant spillovers across companies and regu-

latory jurisdictions. Because of that, it is needed a global perspective on the innovation activity of the

industry, and their implications to the global population health. We propose to assess the inequalities

of the access to new therapies, by measuring inequalities in global drug R&D activity in terms of global

health needs in the last two decades (Chapter 6). This may inform the policy evaluation on the welfare

and health implications, resulting from the current R&D process.
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Table 2.3. Heterogeneity of outcome variables in the literature

Outcome variables to measure innovation performance Existing studies

Intensity R&D expenditure, in terms of sales (Grabowski and Vernon 2000; Vernon 2004; Giac-

cotto, Santerre et al. 2005; Vernon 2005; Mahlich and

Roediger-Schluga 2006; Vernon, Golec et al. 2009)

Post-merger R&D investment (Danzon, Epstein et al. 2007)

Number of disease-specific scientific publications (Bhattacharya and Packalen 2011)

Market entry of firms (Aharonson, Baum et al. 2007)

Probability of discovery Number of New Chemical Entities (NCEs) (Acemoglu and Linn 2004)

Phase-specific success rates (Danzon et al. 2005; Abrantes-Metz et al. 2004)

Launch of medicines Number of new drugs launched (Acemoglu and Linn 2004; Lichtenberg 2005)

Probability of market launch (Kyle 2006)

FDA approvals (Acemoglu and Linn 2004)

Number of disease-specific drugs in the pipeline (Civan and Maloney 2006)

Number of existing disease-specific treatments, sold in

the USA

(Lichtenberg 2005)

Number of chemotherapy regimens (Lichtenberg 2007)

Number of ”priority-review drug” (Lichtenberg 2005)

Patents Number of drug patents (Boasson and MacPherson 2001; Kim, Lee et al. 2009)

Number of patented compounds in the pipeline to be

market registered

(Alexander, Flynn et al. 1995)

Number of ”important” drug patents (in US, Europe

and Japan jurisdictions)

(Henderson and Cockburn 1996)

Number of inventions patented (Valentin and Jensen 2007)

Patent application propensity rates (Arundel and Kabla 1998)

Successful patent applications (Ulku 2007)
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VIII. Appendix: Figures

Identification 

Eligibility 

Included 

Screening 

1680 articles identified through EconLit (126), PubMed (1554) and Web 
of Knowledge (0) databases 

Six (6) articles excluded 

1674 titles and abstracts were 
screened 1622 articles excluded: 

1.  1563 did not examine R&D determinants 
in biopharmaceutical industry 

2.  21 were not peer-reviewed journal articles 
3.  Five (5) were not written in English 
4.  Three (3) were not original articles 

52 articles fully-text articles were 
assessed for eligibility 

30 articles excluded: 
5.  17 Lack of original theoretical contribution 
6.  14 No  methodological robustness 

22 articles included in the qualitative 
synthesis 

Theoretical contributions 
from 5 records 

All records with empirical 
evidence 

Add 24 
additional 

references? 

Add IO  
bunch of 

literature? 

First step 

Second step 

Figure 2.2. Preferred reporting Items for Systematic reviews and Meta-Analyses (PRISMA) flowchart
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Chapter 3

Data and empirical methods of this thesis

In view of the fact that this thesis consists of a series of empirical essays on global pharmaceutical

innovation, we have devoted this chapter to describe in detail the data and empirical methods that are

an important contribution of this thesis. Indeed, the empirical work performed in the following chapters

relies on a unique dataset that has required a large commitment on the management of several data

sources, including its extraction, cleaning, merging and shaping. This large investment has been crucial

to the econometric and quantitative analysis performed. In the following section, we have described the

data sources and types of information used, including issues regarding the quality of data. In section II

we have outlined the several assumptions considered in the construction of the dataset and application

to the methods used in the different analyses. Finally, in section III we have presented the caveats

and limitations drawn from the data and methods used. A more detailed outline and discussion of the

empirical methods is presented in each chapter.

I. Description of data sources

We have built a unique panel dataset by merging five different sources of information that characterise

globally pharmaceutical R&D activity and health outcomes. These are namely: (1) IMS R&D Focus

from IMS Health (IMShealth, 2012); (2) Global Burden of Disease (GBD) study from the Institute of

Health Metrics and Evaluation (IHME) (IHME, 2014); (3) ICD-10 codes from International Statistical

Classification of Diseases and Related Health Problems (ICD) from WHO (WHO, 2014); (4) ranking

of top pharmaceutical companies from ScripIntelligence (ScripIntelligence, 2014) and Fortune (Fortune,

2014); and (5) macroeconomic data from World Bank (WorldBank, 2014). We describe below the five

data sources, the type of information provided and the issues regarding the quality of data involved.

Pharmaceutical R&D activity from IMS R&D Focus

IMS R&D Focus (IMShealth, 2012) is our major dataset and contains information on global pharmaceu-

tical R&D activity from 1980 until 2012 (date of extraction). It is updated weekly and is typically used

by pharmaceutical companies to monitor R&D activities of the competitors. The information is compiled

from patent and regulatory filings, presentations at medical conferences, press releases, and information

disclosed to financial analysts.

The dataset contains 34 051 pharmaceutical projects across all countries developing new compounds

with information on the starting and ending dates of each R&D stage, namely early discovery, phase

1, phase 2, phase 3, pre-registration and registration, market launch and failure when it occurs. The

dataset provides detailed information at six levels: (1) product (i.e. product name, trade name, generic

name, laboratory code, CAS (Chemical Abstracts Service registry) number, substance origin, among
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others); (2) drug indication/action fields (Anatomical Therapeutic Classification (ATC) code, therapeutic

indication(s) (amongst 493), pharmacological activity, and the mode of administration), (3) companies

involved in the R&D process of each project (including parent companies, academic research centres,

hospitals, philanthropic organisations, and joint-ventures); (4) phase development history (namely the

chronological record of R&D phases, the country assigned to each R&D phase, and the latest phase of

development); and, (5) patent/franchise information (i.e. patentee and patentee nationality, the licensor

and licensee).

Projects of new compounds consist of new molecular entities (NME) including small molecules, mon-

oclonal antibodies, proteins, gene therapies, vaccines and immunotherapies, as well as fixed combination

products, biosimilars, in vivo imaging agents, and specialized delivery systems (IMS, 2011). Therefore,

’me-too’ drugs or other chemical generics are not recorded in this dataset and are not part of our analysis.

Moreover, the compound projects can scientifically target several therapeutic indications simultaneously

and consequently present several ATC codes.

Despite being a very rich dataset standardly used in research and for benchmark industry studies,

there are potentially several issues surrounding the representativeness of the dataset with regards to R&D

activity. The potential data quality issues relate to sample selection of the compound projects recorded

and under-reporting of negative results of clinical trials. Data quality issues are plausible to exist due to

three reasons. First, there tends to be secrecy at early stages of discovery when innovators, for strategic

reasons, have an incentive to hide information about the novelties being tested (Scotchmer, 2004). This

ceases when innovators have the incentive to protect their discoveries through patenting and information

becomes public (Cohen and Levinthal, 1989; Scotchmer, 2004). This trade-off between the incentives

of disclosure of information is more pronounced in the discovery and pre-clinical stage before any legal

requirement imposes the registry of the ongoing investigational studies. Therefore, our data might fail to

fully measure activity at early stages of the R&D process.

Second, and related to the above, some projects are firstly observed in the database at an R&D stage

different from basic discovery and we do not observe the entire lifetime of the project. This could be

partially related with the incentives of disclosure of information discussed above as well as the nature of

the pre-clinical research that entails more scientific uncertainty and, sometimes, is not indication-specific.

This is one of the reasons for the limited literature on success probability for preclinical stages (Paul et al.,

2010). Therefore, we require the use of appropriate modelling options that account for left-censored data

in the context of the duration models and the semi-parametric proportional hazard models.

Finally, the legal requirements of public registry of the ongoing investigational and clinical trials

are relatively recent. The US Food and Drug Administration Modernization Act of 1997 (FDAMA or

Public Act 105-115 (FDA, 2015b)) amended FDA Cosmetic Act to create a public information resource

”ClinicalTrials.gov” (ClinicalTrials.gov, 2015) to track drug efficacy studies that was only made mandatory

with the FDA Amendment Act (FDAAA) of 2007 (FDA, 2015a). In Europe, trial registration in the

European Register (EudraCT) has been implemented since 2004 within the scope of the EU Clinical

Trials Directive (EMA, 2015). Consequently, under-reporting of R&D activity data recorded by the

industry is not uniform across the last 32 years.

While we can use appropriate methodologies (such as specification models that consider the use of

left- and right-censored data (Chapter 4 and Chapter 5)) to mitigate the issues with left-censored data,

there is little we can do to deal with under-reporting of R&D activity. However, we expect the data to

be more affected by the problems of disclosure of information before the new regulations take place and
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at the early stages of the R&D process. We will discuss in each relevant analysis how this caveat could

influence our results.

Global Burden of Disease (GBD) study from IHME

The GBD study (IHME, 2014) contains up-to-date evidence on levels and trends for cause-specific mortal-

ity and disease burden readily available for 187 countries and facilitates studies that require cross-country

comparisons. We detail more information about these measures in Chapter 6. The GBD study esti-

mates yearly deaths and DALYs between 1990 and 2010 for a list of 291 diseases and injuries (IHME,

2009). However, the group of causes of death that relates to ”external causes” for car accidents, falls,

injuries, war, conflicts and intentional self-harm conditions were excluded from the dataset as these are

not typically addressed by pharmaceutical R&D activity.

IHME uses the International Classification of Diseases (ICD) (WHO, 2014)1 coding system to produce

disease level estimates of global health outcomes. With this coding we merge global health outcomes with

pharmaceutical R&D activity. The merged dataset of R&D activity with global health outcomes supports

the analysis performed in Chapter 6 when measuring the dispersion of global R&D activity in terms of

unmet health need.

International Statistical Classification of Diseases and Related Health Problems (ICD)

ICD data (WHO, 2014) contains codes for diseases, symptoms, and external causes of injury medically

classified by the WHO. The coding set entails more than 14,400 different codes and allows tracking many

new diagnoses. We have used ICD database2, to merge the corresponding therapeutic indications of the

compound projects in the IMS R&D Focus dataset with the GBD data. However, this correspondence

is not always unique, given that each specific therapeutic indication may target more than one disease.

This reflects the multi-usage of a drug in several health conditions and this fact imposes assumptions in

the construction and management of the dataset that we will discuss in subsection II of this Chapter.

Fortune and ScripIntelligence

Fortune (Fortune, 2014) and ScripIntelligence (ScripIntelligence, 2014) are used to identify the ranking

of the top100 pharmaceutical companies (in terms of revenues and profits) by Fortune in 2007 and by

ScripIntelligence in 2011 (Fortune, July 2009; ScripIntelligence, 2013).

World Bank economic indicators

World Bank (WorldBank, 2014) provides us with a long time-series (1980-2014) of country level population

and GDP data (US$ 2005 PPP).

II. Assumptions on the construction of the datasets

A. Unit of analysis - Innovation at therapeutic indication level

Since compounds often target several indications simultaneously, we have considered all therapeutic in-

dications targeted. Therefore, our unit of analysis results to be at compound-indication project level.

1The ICD is the international standard classification of medical conditions for all general epidemiological, health manage-
ment and clinical purposes. This coding system provides the basis for the compilation of national mortality and morbidity
statistics by WHO member states.

2version 2010 available in http://apps.who.int/classifications/icd10/browse/2010/en
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Moreover, the same compound project might be in the R&D pipeline in several countries simultaneously.

This happens most likely when firms run multi-centre clinical trials. Because of this, we have considered

all countries where the same compound-project has been developed as one observation. Consequently,

our dataset expands to 65,845 country-compound-indication projects. Each country-compound-indication

project is assigned to one of the 17 anatomical main groups (for example, dermatological conditions) and

one of the 199 more specific classes (such as anti-psoriasis treatments) using the Anatomical Therapeutic

Chemical (ATC) classification system used by the European Pharmaceutical Market Research Associa-

tion EphMRA (2013) and that is standardly used in datasets such as the IMS R&D Focus to classify

the different compounds. This is the basis for the definition of the relevant market that we explain in

subsection C.

B. The construction of the datasets

Time-to-event data panel (Chapter 4 and Chapter 5)

We have constructed a time-to-event panel data that supports the analysis of Chapter 4 and Chapter 5 (for

the estimation of the parameters that inform the micro-simulation model) by merging the five different

datasets described in section I. This time-to-event panel data contains information for each compound-

indication project for the time (in years) spent within each R&D phase (state duration), and the dates

of the occurrence of all events, including transition between states, market launch or failure.

Each observation is a country-compound-indication-year project, reflecting the country, stage of de-

velopment in the R&D pipeline and the time spent (duration) in that stage. For each R&D stage, a

project is ’at risk’ of failure from the year of its first entry into that R&D stage. If failure happens, then

the project ceases being considered at risk in our analysis. Also, if a project moves to the subsequent

R&D stage, then it ceases being considered within the risk set for that R&D phase.

To perform this analysis we have considered solely projects that do not present any biological compo-

nent. Industry reports (PWC, 2011a) show crucial differences between the R&D process of non-biologics

and biologics. Also, comparison between these must be cautious given the differences in sample sizes, pro-

duction costs, development times and regulatory framework (DiMasi and Grabowski, 2007). The original

18 252 NCEs expand to 81 142 compound-indication year observations.

We have further information about the variables used in this analysis including failure, duration,

market level, firm level and project level characteristics of each observation that we describe in section D

and we discuss the assumptions taken for the definition of the product market in section C.

R&D portfolio in 2011 (Chapter 5)

The baseline dataset that is used as the base year for the simulations of Chapter 5 corresponds to the

R&D portfolio in 2011 (that consists of the last full year extracted). The total number of projects in 2011

is 728 consisting of 667 NCEs and 61 biologicals.

We have defined market as the region-compound indication where a specific product will be at risk

of being launched. For the therapeutic classification, and as used in Chapter 4, we classify the projects

making use of the therapeutic categories presented by the EPhRMA3 3rd level ATC Classification.

For the definition of region, we have grouped countries into five main regional markets worldwide. We

have done these for three main reasons: i) firms’ strategy on market launch tends to be at regional level due

to the similarities of health systems within regions and their strict and specific regulatory requirements;

3European Pharmaceutical Market Research Association
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ii) countries that are part of each region are shown to be similar in the relevant characteristics, namely

regulatory environment, IP rights, and technological conditions; iii) considering countries rather than

regions would entail larger amount of missing information given that in many countries there is no R&D

activity in many therapeutic areas. The five different regions are respectively: (1) USA; (2) the EMA

members, which include the 28 European Union Member States as well as countries that belong to the

European Economic Area (including Norway, Iceland and Liechtenstein), Canada, and Switzerland; (3)

Japan; (4) Emerging Markets and Asia-Pacific (EMAP), including Brazil, India, Russia (and former Soviet

Union), China, South Korea, Mexico, Nigeria, Israel, Vietnam and Taiwan ; and (5) the rest of the world.

Global R&D and global health need in 1990 and 2010 (Chapter 6)

The merging of IHME and IMS R&D Focus data consists of linking therapeutic indication(s) of the

compound projects to a disease using the ICD-10 code as we explain above. The final dataset includes a

total of 59,301 country-compound-indication projects after matching non-missing therapeutic indications

and ICD-10 codes (dropping 6,544 (0.099%) records with missing therapeutic indication). This dataset

aggregates information at disease-level on the R&D activity, global health need and affordability. We

have information about the variables used to measure these three dimensions in section D.

C. Product market definition

With the ATC classification system, products are classified into groups at five different therapeutic levels.

The first level of the code indicates the anatomical main group. The second level of the code indicates the

therapeutic main group. The third level of the code indicates the therapeutic/pharmacological subgroup.

The fourth level of the code indicates the chemical/therapeutic/pharmacological subgroup. Finally, the

fifth level of the code indicates the chemical substance.

We have used ATC code as the basis for market definition since it has been regularly used by com-

petition authorities in the US and Europe (Backhaus, 2012) as well as in academic research (see, for

example, Kyle (2006) and Backhaus (2012)). Within ATC the ATC 3rd level is the one commonly used in

the definition of relevant market. ATC 3rd level identifies the therapeutic/pharmacological subgroup of

medicines with the same therapeutic properties for a given disease or family of diseases (Backhaus, 2012)

and indicates one from the total 262 therapeutic pharmacological subgroups to define the relevant market.

This implies that medicines clustered in other therapeutic classes are not considered to be substitutes.

D. Variables

A complete list of observable characteristics of the compound-indication projects can be found in Table

4.1. They include the variables of occurrence of events, duration of the compound projects and three

other levels of variables that characterise the compound projects that are respectively: i) market-level

characteristics; ii) firm-level characteristics; and iii) project-level characteristics.

[Table 4.1 here]

R&D activity

Events: failure, transition to the next R&D stage and market launch

Failure occurs whenever the R&D activity for a project is interrupted. While we denote it as a failure

there are many possible reasons why projects are abandoned. Failure of innovation may be due to a
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combination of regulatory pressures, scientific/clinical non-achievements, or even strategic decisions of

firms that withdrawal the project. Failure is the central topic of the analysis performed in Chapters 4

and 5, and therefore requires the construction of variables that identify the occurrence of failure. We

have constructed a variable failure which identifies the occurrence of failure of a project that is R&D

stage-specific. We have assumed that failure is a permanent condition that prevents future progression

to any subsequent R&D phase (i.e. there is no resurrection). Given this, we have four variables that take

the value ’1’ if failure happens in one of the phases {discovery, Phase1, Phase2, Phase3}, respectively

{fdiscovery, fPhase1, fPhase2, fPhase3}, and the value for ’0’ to the non-occurrence of such an event (nothing

happens, i.e. the project remains in the same R&D stage as in the previous period).

The successful progression to the next R&D phase is mutually exclusive of the occurrence of failure and

is captured by the construction of four other R&D stage-specific variables. That means that for each of the

R&D phases {discovery, Phase1, Phase2, Phase3} we constructed a variable success that takes the value

’2’ if there is a successful progression to the next R&D stage, respectively {sdiscovery, sPhase1, sPhase2, sPhase3}.
For the particular case of the value ’2’ in phase 3 indicates a successful transition of the drug project

to the market. We have assumed that there is no regression in the R&D progress, i.e., a project cannot

revert back from Phase 3 to Phase 2 of clinical trials, for instance. This is a plausible assumption given

the strong level of regulation in place at each R&D phase as well as the nature of the process itself.

The above implies that our data is inherently right-censored since we do not necessarily observe the

occurrence of an event. It may be the case, and that happens surely for the compound projects in the

R&D pipeline that are current R&D investments, that a project neither fails nor progresses to the next

R&D stage. The ’nothing happens’ scenario is captured by the value ’0’ in the variable failure and it is

one of the reasons for using duration models in the analyses performed in Chapters 4 and 5.

R&D activity: total and market launches

For the analysis performed in Chapter 6, we have measured pharmaceutical R&D activity over two

dimensions: (i) the overall R&D activity accomplished, by counting the disease-specific total number of

projects (as done in the existing literature, for instance, Civan and Maloney (2006)); and (ii) the successful

R&D activity, i.e. projects that are translated into new medicines (disease-specific market launches), by

counting the disease-specific market launches (as in Acemoglu and Linn (2004) and Lichtenberg (2005)).

With these, our analysis accounts for both the dispersion of total R&D activity and the dispersion at

market launch level.

Duration

We have constructed a variable duration that captures the time dimension of the R&D process and

is equal to the length of development of a compound project. The duration is equal to the time elapsed

between the starting of the project (since it is observed in the dataset) and the occurrence of one of two

definitive events: failure and progression to the next R&D stage (market launch in case the project is in

Phase 3 trials). In the first case, and for the compound projects that fail to succeed in the R&D process,

we observe the time elapsed until failure occurs (time-to-failure), whilst for the second case we observe

the duration in the different R&D stages (i.e. the sum of the durations in the different R&D stages) in

case progression in the R&D process occurs. For the projects we do not observe any of these events, the

duration is equal to the time elapsed between the starting of the project in the dataset and the last year

of data (2012). The duration is a critical piece when modelling hazard functions, as we do in Chapters 4

and 5, since it translates the risk of occurrence of an event of interest per unit of time.

Market-level characteristics
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The empirical analyses performed in Chapters 4 and 5 consider the effect of market-level characteristics

at three levels, namely: (i) competition; (ii) market size and affordability; and (iii) country-specific

regulatory and technological environment.

Competition

Since we are interested in the effect of competition in the risk of failure of compound projects, we have

constructed two levels of competition variables building on the existing literature (as outlined in Chapter

2 and explored empirically in Chapter 4): (i) competition in the final product market, and (ii) competition

within the R&D process. Product market competition for each year is measured by: (i) the number of

new drugs, i.e. established in the market in the last five years (new drugs) (ii) the number of old drugs,

i.e. established in the market for more than five years for each relevant market (old drugs). We have used

a five year cut-off point since it corresponds to the number of years of market exclusivity granted by FDA

when extending the patent for innovators. Competition in the R&D process for each year is measured by

the number of potential entrants in the same market (potential competitors), i.e., the number of projects

being developed for the same market in each calendar year.

Market size and affordability

A measure of market size is incorporated in the model specifications of Chapters 4 and 5, and is used

to proxy affordability in Chapter 6 when assessing R&D inequalities. This measure of market size and

affordability is constructed by merging IMS Health R&D with country-level World Bank data on GDP

per capita ($US 2005 PPP) (GDPpc) and population data from 1980 to 2012 (population).

Moreover, and for the inequality analysis performed in Chapter 6, we have measured country-disease

specific health outcomes to proxy health need and we constructed a measure of national affordability. To

do this we have merged the recently released 1990-2010 GBD data at disease-country level from IHME to

gather information on the disability-adjusted life years (DALYs) and mortality levels (deaths) and rates

for each disease at national level. To develop a measure of affordability, we have constructed a measure

of country specific ability-to-pay by combining country specific health need (’DALYs’,’deaths’ ) and a

measure of country specific income, using World Bank statistics on national Gross Domestic Product per

capita (GDPpc).

Country-specific regulatory and technological environment

The country-specific fixed effects capture systematic differences across countries such as differences in the

regulatory and policy framework, and specificities of the technological environment. For this we have

constructed country-specific dummies that identify the country where the compound project has been

developed (targetcountry). Moreover, time trends have been considered in the analysis performed in

Chapter 4 and time dummies have been constructed to control for time differences in the R&D process

and likelihood of failure of R&D projects (time dummies).

Firm-level characteristics

We have controlled for the nature of the parties involved in the R&D process using two variables: i)

the participation of a big firm in the R&D project by characterising a big firm as one of the TOP100

firms (big firm), using Fortune’s ranking in 2007 and ScripIntelligence’s ranking in 2011 to identify top100

Pharmaceutical companies (in terms of revenues and profits) (Fortune 2009; SCRIP Intelligence 2013);

and (ii) the participation of academia, namely universities, hospitals, research centres, philanthropic and

other non-profit organisations and public initiatives in the R&D process (academic participant).
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Project-level characteristics

Projects have been characterised at two levels, namely: (i) intensity of alliances; and (ii) therapeutic

specificities of the R&D projects.

To characterise alliances, we have measured alliances by considering the logarithm (to consider non-

linearities on the effect of the number of collaborators) number of firms collaborating in the R&D project

(intensity of alliances). We have constructed therapeutic indication dummies (therapeutic specificities)

to control for systematic differences between therapeutic classes, and different technological and scientific

specific conditions in each therapeutic category that could influence effort and the probability of failure

(Mestre-Ferrandiz et al., 2012).

III. Implications of data limitations

There are mainly four caveats driven by the quality of our data.

First, data is not necessarily representative of the whole R&D activity due to lack of disclosure by firms

and potential selection bias in terms of the type of projects being recorded. Indeed, as discussed above,

it is plausible that for strategic reasons firms keep secrecy at early stages of discovery in order to hide

information from competitors. This could imply under-representation of number of projects developed

as well as under-recording of failure. If this is likely to exist it is plausible to presume that it is more

pronounced in early stages of discovery before the incentive to patent happens. Also this caveat is more

likely to affect the early years of our data corresponding to the years in which there was no compulsory

regulation on the publication of data on clinical trials (before 2004 in Europe and 2007 in the USA).

The under-reporting of activity might also lead to selection bias. Indeed, in early discovery, firms

are less likely to disclose information about compounds with a high likelihood of success since secrecy is

important at this stage. While firms could also have a strategic incentive to non-disclose failure of projects

it could be argued that the incentive for non-disclosure is more likely to happen for successful projects.

Indeed, there have been over the years a number of initiatives in which pharmaceutical companies disclose

failure projects4.

For this reason, the recorded failures may be systematically different in nature from the ones that

succeed, and this nature cannot be captured by the observable characteristics of the projects (for instance,

we do not have information about the level of complexity of each project). This means that unobserved

characteristics of the projects may be correlated with the observables, and the estimates in Chapters 4

and 5 may present some bias. Another issue relates to the left-censored nature of the data, related with

late recording in the IMS dataset and presents incomplete information about transition between the R&D

stages. While this issue should be taken into consideration in the interpretation of the results, we have

adopted proper econometric methodologies to mitigate the issues arising in left-censored data discussed

in Chapter 4.

Secondly, and because we have considered the different indications targeted by a compound as a

different project, there is a potential estimation bias of failure. This is particularly true if multiple

indications can be contained in one drug (and so one indication would be enough to characterise the

project in terms of complexity and market), and we might be inaccurately estimating all the effects of

variables of interest on failure. However, we believe that compound projects targeting simultaneously

several indications are operating in different markets. In that case, our analysis makes sense to be

4GSK initiative is a good example: http://www.thesgc.org/about/whatisthesgc.
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indication-specific.

On the other hand, if the same compound project is being developed in more than one country, and

because we are considering these as separate projects, we might be over-estimating failure. Indeed, we

might be under-estimating the positive network spillovers that these type of projects might generate given

their multinational nature. Nevertheless, there are pretty strong documented locational effects on R&D

that are captured by the country where R&D is taking place which supports our country specific analysis.

Thirdly, the use of country-specific measures (gdppc, population and country-specific died effects)

might not suffice to measure market size for new therapies. Ideally, we would have market size proxied by

some measure of affordability constructed with global disease burden weighted by ability-to-pay at country

level. However, there is no time-series data for country-specific disease burden. The only information we

have available for the time period of the analysis (1980-2012) is country-cause-specific mortality. However,

mortality is a very crude proxy for health need. Mortality would over-represent conditions that affect

low- and middle-income countries, and would under estimate need related to non-fatal conditions (such

as chronic conditions) that are top drivers of burden of disease in high-income countries. Since most

profitable markets are those disease areas that affect quality-of-life of the most developed countries5

using mortality would entail a misrepresentation of the true market size. Moreover, there is no disease

burden data at indication level. We would definitely misrepresent the market size of conditions by using

a disease-grouped level estimate. Also, definitely there is lack of information about rare diseases and

other under-represented conditions. The use of disease burden data to proxy market size would be biased

towards more prevalent and most profitable diseases.

Therefore, we have used GDP per capita as a measure for buying power of the relevant market. We

do not only consider the GDP per capita of all countries where the drug has been launched, but also

the countries where the R&D process has taken place to have a measure of the markets where failure is

more likely to happen. The location of the R&D activity translates most likely the country to which the

therapy is aiming at being launched, since our data shows very low proportion of relocation of projects.

It is plausible to consider country-specific measures at R&D level because of several reasons. First,

the location of the R&D and the first market launch (and before CROs have become relevant in the

global R&D context) seems to be strategically chosen to recoup the investment made. Even if companies

launch products in multiple markets it seems plausible to presume that the first market they choose is

the most profitable one to allow them recouping the investment made. Also, and in the EU context in

particular, given the inter-linkages of price regulations and strategic sequential launching we can expect

that companies launch drugs in markets where they can price at higher levels. Despite the harmonisation

at regulation level between the US, Europe and Japan, these price regulations are country specific, and

associated with patenting, regulation of clinical trials and market registration. Secondly, the public funds

targeting scientific and investigational discoveries in life sciences are national and dependent on domestic

R&D policies. The National Institute of Health in the US, and Wellcome Trust and Cancer Research

in the UK are examples of nationally designed institutes with a large impact on the domestic research

capacity. This results in R&D investments being affected by country specific economic and technological

contexts.

Fourth, while this is widely used in policy, regulation and academic research, product market definition

5in 2013 ScriptIntelligence reports the four drugs with largest sales in the US market: 1st is antipsychotic; 2nd Nexium is
used to treat symptoms of gastroesophageal reflux disease; 3rd Humira (adalimumab) is used to treat rheumatoid arthritis,
juvenile idiopathic arthritis, psoriatic arthritis, ankylosing spondylitis, and plaque psoriasis; 4th Crestor ”statins”, reduces
levels of ”bad” cholesterol.
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using within ATC codes might misrepresent the market where a specific compound is operating. Indeed,

there are two potencial caveats arising from this market definition. The first relates to the fact that there

are products clustered simultaneously in several ATC-3 codes because they can treat several diseases.

A second caveat arises from the fact that medicines clustered in the same ATC-3 code are not always

competing since medicines potentially present a high level of differentiation and target very different

and unrelated conditions6. While acknowledging these caveats, the lack of research on the definition of

relevant markets in the pharmaceutical sector combined with the common usage of this definition renders

it sensible its usage in our analysis.

Indeed, the definition of the relevant market in pharmaceutical products requires further research

(Mihaescu and Rudholm, 2013) however given the existing literature and the practice of competition

authorities we assume the same ATC3 code level for the market definition.

Besides these limitations, this thesis provides insightful analyses explored into detail in the following

Chapters. Moreover, it gives room to an avenue of future research seeding from these analyses and that

can be improved with additional data at firm and project level. We explore these in detail in each of the

following Chapters.

6An anecdotal example from competition law reports the use of crude market definitions by the European Commission
to assess market investigation of Teva/Barr (Case No COMP/M.5295 - TEVA / BARR REGULATION (EC No 139/2004)
about several products including Tamoxifen. Tamoxifen is mainly used in the treatment of post-menopausal breast cancer
(ATC L02), and also to treat infertility in women with anovulatory disorders (ATC G03), gynecomastia (abnormally large
mammary glands in men) (ATC G,L), bipolar disorder (ATC N05) and angiogenesis (development of new blood vessels)
(ATC C1X)
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Table 3.1. Definition of variables across the datasets

Variable Definition Frequency Chapter

failure {fdiscovery, fPhase1, fPhase2, fPhase3} = 1 if oc-
currence of failure

R&D stage-specific
compound project

Chapters 4 and 5

success {sdiscovery, sPhase1, sPhase2, sPhase3} = 2 if there
is a successful progression to the next R&D stage

R&D stage-specific
compound project

Chapters 4 and 5

total disease-specific R&D ac-
tivity

number of disease-specific compound-projects drug compound project Chapter 6

disease-specific market
launches

number of disease-specific market launches drug compound project Chapter 6

duration Length of time elapsed from the start of the com-
pound project

Therapeutic class-year Chapters 4 and 5

new drugs Count of drugs in the market launched for less
than 5 years

Therapeutic class-year Chapters 4 and 5

old drugs Count of drugs in the market launched for more
than 5 years

Therapeutic class-year Chapters 4 and 5

potential competitors Count of R&D projects in the same market Therapeutic class-year Chapters 4 and 5

population, total Population in 10s of millions Country Chapters 4 and 5

GDPpc GDP per capita in US$1000s (constant 2000
US$)

Country Chapters 4, 5 and 6

DALYs disease-country disability-adjusted life years Country Chapter 6

deaths disease-country mortality Country Chapter 6

affordability combination of national health need
(DALYs,deaths ) and a measure of national
income, (GDPpc)

Country Chapter 6

targetcountry Country-specific regulatory and technological
environment where R&D is based

Country Chapters 4 and 5

time dummies time dummies year Chapters 4 and 5

big firm Project has at least one TOP100 firm collabo-
rator (dummy variable)

drug compound project Chapters 4 and 5

Academia participation Project has at least one academia collaborator
(dummy variable)

drug compound project Chapters 4 and 5

intensity of alliances Log of total number of collaborators Therapeutic class-Year Chapters 4 and 5

therapeutic specificities Therapeutic class that the project targets Drug compound project Chapters 4 and 5
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Chapter 4

The determinants of failure in drug development: a duration analysis

I. Background

Product innovation in the pharmaceutical industry is costly, risky and time-consuming. With a decreased

number of NCEs being discovered, and research and development (R&D) costs representing a high pro-

portion of the revenues of the industry, the pharmaceutical industry is facing unprecedented challenges

to its R&D model (PWC, 2011a,b; Paul et al., 2010). The industry’s profitability and growth prospects

are also under pressure as the finance of healthcare systems comes under increasingly intense scrutiny.

Two of the key determinants of drug R&D activity costs are success rates and development times. Given

the long, uncertain and multi-stage process of developing a new drug, understanding failure rates is key

to better understand pharmaceutical industry performance, the magnitude of the long-term investments

involved in R&D, and improving investment activity in the future (see, for instance DiMasi et al. (2003)

or Mestre-Ferrandiz et al. (2012)).

The multi-stage nature of the drug R&D process is characterised by the regulatory criteria established

by policy makers to ensure safe, efficacious and accessible drugs for consumers. These regulations imply

that the successful completion of each development stage requires different amounts of resources, diver-

sified scientific knowledge, and distinct competences from firms. The stages of R&D are therefore very

heterogeneous in duration, scope, investment requirements and probability of success (Mestre-Ferrandiz

et al., 2012).

Despite the evident heterogeneity across the different stages, the vast majority of the literature in this

area tends to consider the R&D process as a ”black box” when evaluating the determinants of failure of

research projects. We believe, however, that it is important to unpack the R&D process by analysing the

key success factors of each stage of the development process in order to design more focused policies and

incentives that foster successful R&D. In this chapter, we measure the association of the probability of

failure in the different R&D phases with the potential factors that can affect innovation (as outlined in

Chapter 2 and briefly summarised below) with special focus on the role of competition and alliances. We

do so by modelling the probability of failure of a project in each stage of the R&D process as a function

of its R&D history considering the timing, duration and country of that stage.

Literature on the determinants of pharmaceutical innovation

There are three strands of literature that relate to our analysis. The first consolidates the following

as determinants of innovation: at an aggregate level, epidemiological and income distributions in more

dynamic economies matter for innovation given the extent to which they determine market size (see,

for instance, Acemoglu and Linn (2004) or Lichtenberg (2005)); at the industrial level, the intensity of

competition between pharmaceutical companies (see Giaccotto et al. (2005), Grabowski and Moe (2008) or
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Mahlich and Roediger-Schluga (2006)), the presence of economies of scale and technological specialisation

(Henderson and Cockburn, 1996), and alliances between firms (Aharonson et al., 2007); and at the firm

level, the future commercial profitability of the drug project (Giaccotto et al., 2005; Grabowski and

Vernon, 2000a; Vernon et al., 2010), and firm characteristics such as size (Alexander et al., 1995), age

(Kim et al., 2009), location and nationality (see, for instance, Hirai et al. (2010)).

In all this literature, the process of R&D process is considered a ”black box” and the different stages

of the R&D process are not assessed separately.

A second strand of literature focuses on the measurement of success rates for the various stages of

the R&D process using a diversity of methods and datasets (Adams and Brantner, 2006, 2010; DiMasi

et al., 2010, 2003, 1991; Kola and Landis, 2004), with only one study providing detailed information on

discovery success rates (Paul et al., 2010). These contributions show that drug success rates differ across

the different stages of the R&D process and that the failure rates of the clinical stages have been increasing

over time. For example, the most comparable studies report success rates for Phase 1 to be 71% (DiMasi

et al., 2003) and 65% (DiMasi et al., 2010); for Phase 2 to be 44% (DiMasi et al., 2003) and 40% (DiMasi

et al., 2010); and for Phase 3 to be 69% (DiMasi et al., 2003) and 64% (DiMasi et al., 2010).

Even though these studies provide valuable insight regarding the heterogeneity of the R&D process

they do not address the factors associated with the success of each phase of the process.

The determinants of success in the different stages of the R&D process are assessed by a third strand

of the literature that accounts for the project history and characteristics in the analysis of phase-specific

success rates.

Danzon et al. (2005c) analyse the effect of alliances and firm experience on the phase-specific proba-

bility of success of projects for 1,910 compounds developed by US biopharmaceutical firms between 1988

and 2000. They find evidence of diminishing returns of firm experience in late stages of the R&D process;

diseconomies of scale in Phase 3; a positive effect of alliances on the probability of success in Phases 2

and 3; and evidence of knowledge spillovers across firms in Phase 1.

Kyle (2006) analyses all drugs developed in the 28 largest pharmaceutical markets between 1980 and

2000 and finds that several of the characteristics of entrants and incumbents are positively associated with

the time-to-entry in the G7 markets. When accounting for country-specific demand factors, competition

appears to be negatively correlated with the likelihood of entry. Indeed, the impact of drugs that have

been for longer in the market seems to be greater than that of more recently introduced drugs. Also,

markets with many drugs being developed in the pipeline experience more entry.

Pammolli et al. (2011) examine the association between phase-specific R&D productivity and portfolio

composition and regional location of R&D investments using more than 28,000 compounds investigated

since 1990 in the US and Europe. They find that lower probability of success is associated with reorien-

tation of R&D investments to riskier and highly uncertain therapeutic areas. Also, no productivity gap

is found between companies based in the United States and Europe. They also present the most recent

estimates of failure rates for Phase 1, Phase 2 and Phase 3 that are 25%, 52% , and 29% , respectively.

Finally, the Federal Trade Commission (FTC) uses information of all drugs that initiated the regis-

tration process through the US Food and Drug Administration for the first time between 1989 and 2002

to analyse the association of drug’s observable characteristics (such as therapeutic group, route of admin-

istration and originator size) with its pathway through the three stages of clinical trials (Abrantes-Metz

et al., 2004). The authors find that the duration of the R&D process has decreased from 1995 to 2002;

drugs with longer durations are less likely to succeed, as well as drugs developed by smaller firms.
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Our analysis relates to these contributions in that we i) measure failure rates in each stage of the

R&D process and ii) analyse the characteristics associated with project failure across the different stages

of the R&D process by estimating how phase-specific R&D failure rates correlate with competition and

alliances. However, our analysis departs from these studies in two significant ways.

First, in contrast with some earlier contributions, we use two different semi-parametric proportional

hazard models to estimate the impact of market structure and alliances on the phase-specific failure rates

by considering the history of the R&D process, and the duration of the drug projects in each phase of the

process. In line with Kyle (2006) and Abrantes-Metz et al. (2004), we believe this methodology fits more

closely the dynamic and lengthy nature of the R&D process than the logistic regression models used by

Danzon et al. (2005c) and Pammolli et al. (2011), which do not consider project duration as a potentially

relevant part of the failure process.

Secondly, we use a much richer dataset with global data from 1980 to 2012 across all therapeutic

areas, and we analyse the influence of competition and alliances on the failures rates in each phase of

the entire R&D process from discovery to market launch. Kyle (2006) focuses on the market conditions

that affect the probability of launching a drug into the market whereas Abrantes-Metz et al. (2004) and

Pammolli et al. (2011) assess the role of drug observable characteristics (i.e., therapy category, route of

administration) and company size and location on the success of transition in clinical phases. Danzon

et al. (2005c) focuses on the role of alliances and firm experience on the success of clinical trials.

We are primarily interested in modelling the association between the probability of failure of the

projects in any R&D phase and industrial level determinants, namely competition and alliances. The

nature and timing of competition and alliances between firms, manufacturers, scientific community, lab-

oratories and academia may foster or hinder innovation. Indeed, measures of competition and alliances

have been widely used to explain success and launch of new drugs in the market and are, therefore, likely

to also influence the other stages of the R&D process.

A further step, however not part of the scope of this chapter, would be to find causal relationships

between these variables. However, this analysis is out outside the scope of this Chapter given the data

limitations related with sample selection and few information at firm and project level.

The role of competition

Economic theory has explored the unstable relationship between competition and innovation (Aghion

et al., 2005; Scherer, 1967). On the one hand, competition may increase firms’ incentives to innovate in

order to ”escape competition” ((Aghion et al., 2005), p. 3) and maximise the future expected profits. On

the other hand, competition may exert an extra pressure on firms and discourage innovation (Aghion and

Howitt, 1992; Romer, 1990).

The evidence explores this ambiguous relationship between market competition and innovation. Some

studies find a significant positive effect of competition on drug innovation (Aharonson et al., 2007; Alexan-

der et al., 1995; Giaccotto et al., 2005; Arundel and Kabla, 1998; Grabowski and Vernon, 2000a; Mahlich

and Roediger-Schluga, 2006), whereas one study reports a negative significant effect of market competition

on drug time-to-entry in the market (Kyle, 2006).

These contributions focus on two types of competition: i) competition in the final product market

and ii) competition within the R&D process. Competition in the final product market is proxied by

sales outside a company’s headquarters’ country (as percentage of total sales) (Arundel and Kabla, 1998;

Giaccotto et al., 2005), firms’ global market share (Alexander et al., 1995) and number of drugs established

in the market (Kyle, 2006). Competition within the R&D process is proxied by industrial margins on
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R&D investment per sales (see for instance Giaccotto et al. (2005) or Grabowski and Vernon (2000a)),

and the number of drugs launched anywhere in the world in the same market (Kyle, 2006).

To the best of our knowledge, Kyle (2006) is the only contribution that explores simultaneously

competition in the final product market as well as competition within the R&D process. The study

demonstrates that competition within the R&D process stimulates entry, whereas competition in the

product market has a negative significant impact on entry. Competition from drugs longer established

in the market appears to a have a greater impact than that from more recently introduced ones. Also,

markets with many potential competitors (number of drugs launched anywhere in the world) experience

more entry.

Following Kyle’s results on the role of competition on market launch, we hypothesize that both types

of competition can also impact success of the different stages of the R&D process (Kyle, 2006).

Our hypothesis is that if competition within the R&D process influences market entry (i.e. the

transition from Phase 3 to the market) then it is plausible to presume that it could also have a significant

impact on the strategic decisions within the R&D process and, in particular, the decision to abandon a

drug project. By testing this hypothesis we expect to identify important and significant differences of

the effect of competition in different stages of the R&D process. In assessing the role of competition, we

assume that current projects in a given market take market structure, as well as competitors’ strategies

within the R&D process, as given and compete simultaneously in time t.

The role of alliances

Though not conclusive, the literature suggests an important effect of alliances (private/public) in the

drug R&D productivity. Two studies demonstrate significant positive effects of alliance on phase-specific

R&D success rates (Danzon et al., 2005c) and drug launch times (Hirai et al., 2010), whilst a study

concludes on negative effects of alliances with academia on R&D success rates (Aharonson et al., 2007).

To the best of our knowledge, only Danzon et al. (2005c) demonstrate a positive effect of alliances on

phase-specific probability of success of projects. In particular, they show that alliances have a positive

effect on the probability of success in Phase 2 and Phase 3. Building on this literature we will investigate

the role of alliances on the failure of R&D projects at each stage of the R&D process. We expect a positive

effect of alliances on R&D success, which may be offset by a negative impact of some types of alliances,

i.e. with a public institution/university as some literature suggests (Aharonson et al., 2007).

The remainder of this chapter is organised as follows. In section II we present the specification model

and estimation strategy. In section III we describe the data. In section IV we discuss the descriptive

statistics and non-parametric analysis, and we present the main results from the semi-parametric analysis.

Finally, in section V we provide a discussion of the results and conclusions.

II. Specification model and estimation strategy

Failure expresses the opposite situation of keeping open the option of investment in the future on a

particular R&D project, and there are many possible reasons why failure happens. Failure of innovation

may be due to a combination of regulatory pressures, scientific/clinical non-achievements, or even strategic

decisions of firms that withdrawal the project. There are therefore technical and economic risks that

impact on the likelihood of failure of a R&D project (Pennings and Sereno, 2011).

Studying the option of deferring a decision of keeping investing or abandoning a project is part of

the nature of R&D investments. These investment decisions involve a substantial degree of uncertainty

56



about the future and an enormous level of irreversibility. This means that the timing of investment is

critical under these circumstances and represents one the main dimensions of R&D decisions, impacting

on development times and R&D costs (Palmer and Smith, 2000; Dixit, 1994).

Duration models focus on the analysis of time duration and the occurrence of events to statistically

infer on the relationship between some factors and the probability of non-occurrence (survival) of a certain

event. We use duration models to model R&D failure and to account for the dynamic nature of sequencing

R&D process. In each R&D stage a project, which represents a compound for a particular indication, is

at risk of failure since the first year the project entered in that R&D stage and it ceases being at risk of

failure if one of two things happens: (i) it transits to the next R&D stage, including the market launch

(anywhere in the world); (ii) it is discontinued by the firm. We assume that once failed the project may

not be reactivated by the firm.

The probability of failure of a new drug component in the short interval of time dt after t, can be

represented by the hazard function h(t) (Lancaster, 1992) given by:

h(t) = P (failure at time t | R&D until time t) =
P (failure at time t)

P (R&D until time t)
(4.1)

The hazard function h(t) can be rewritten as

h(t) = lim
dt→0

P (t ≤ T < t+ dt) | T ≥ t)
dt

=
P (t ≤ T < t+ dt) | T ≥ t)

P (T ≥ t)
(4.2)

If we represent the duration distribution function as P (T < t) = F (t)1, where t ≥ 0 at point in time t,

and letting the probability density function to be f(t), then the hazard function h(t) at time t is given

by:

h(t) =
F (t+ dt)− F (t))

(1− F (t)
= lim

dt→0

F (t+ δt)− F (t))

dt
· 1

1− F (t)
=

= F ′(t) · 1

1− F (t)
=

f(t)

1− F (t)
(4.6)

This is the hazard rate of failure, and represents the instantaneous rate of failure per unit of time at t,

conditional on the fact that the project has been in development up to time t. The hazard function can

1In the context of duration models,
F (t) = 1− S(t) (4.3)

where S(t) represents the survivor function. S(t) gives the fraction of projects that stayed at least t years in the R&D
process. It can be written in terms of an integral involving the hazard function t equals the exponential of the negative
integral of the hazard function between on the interval [0, t]:

S(t) = e
∫ t
0 h(u)δu

Similarly, the hazard function h(t) can be written in terms of a derivative involving the survivor function:

h(t) = −
δS(t)
dt

S(t)
(4.5)

See T. Lancaster, 1992, pp. 6-10.
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be rewritten as a function of X systematic observable characteristics of our interest:

h(t,X) = h0(t)θ(X) (4.7)

where h(t,X) is a function of θ(X), and X represents a set of relevant observable characteristics, that vary

across calendar time. This enables us to model the association between failure rates and X covariates of

interest, in our case, competition and alliances. We are interested in modelling the relationship between

competition and alliances and the rate at which a project fails the R&D process after t, given that the

project did not fail before t. In order to do so, we model the failure rates hji from state i to state j, with

j = failure and i ∈ {d, p1, p2, p3}, where d denotes discovery, p1 denotes Phase 1, p2 represents Phase 2,

and p3 denotes Phase 3 trials.

The advantages of separately modelling the phases are that the covariates of interest may be more

important in some phases than others, that some covariates change at the beginning of each phase,

and that the quality of the data may differ throughout the different stages. For example, clinical trials

conducted in patients must be registered in most national regulatory bodies, whereas data regarding at

pre-clinical stages may be somewhat self-selected by companies that choose to share information. This

means that we also may expect differences in the quality of the data across the different R&D stages as

we have discussed in Chapter 3.

Given the supportive literature we expect a positive effect of potential market size on drug innova-

tion, provided that we also control for market size. We seek to control for country-specific regulatory

characteristics that, among others, capture systematic differences in regulatory and policy framework,

and specificities of the technological environment. Moreover, given that the firm size is reported to have

mixed effects on R&D productivity we also control for the size of company (Abrantes-Metz et al., 2004).

We adopt two modelling strategies: (i) the single risk hazard model; and (ii) the independent com-

peting risks model. For both of them, we use the Proportional Hazard (PH) (Van den Berg, 2001)

specification as the estimation strategy, with the assumption that there is no unobserved heterogeneity

(τ = 1).

Single risk hazard model

In the single risk hazard model, we consider the transition to success or failure as the process of interest:

hji (t,X, τ) = h0(t)θ(X)τ = h0(t)θ(X) (4.8)

where hji (t,X) is the hazard rate for failure from state i, where i ∈ {d, p1, p2, p3}, and X a set of relevant

observable characteristics, that vary across calendar time. Also, h0(t) denotes the baseline hazard and

θ(X) the systematic part of the hazard. The hazard function is allowed to differ across projects through

the systematic part θ(X). This means that the population of projects is assumed to be homogeneous with

respect to the systematic factors that affect the distribution of T . θ(X) gives the shape of the hazard

function for any given project and can be specified as:

θ(X) = exp(X′β) (4.9)

It is possible to consistently estimate β in the exponential part of the model, even though the baseline

hazard function h0(t) is left unspecified. This ensures that the fitted model will always give estimated
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hazards that are non-negative. The interpretation of the coefficient of β is that it measures the effect

on the log hazard of a unit change in the value of X at time t. The PH specification model allows for

a non-parametric baseline hazard h0(t). The latter is a function representing the duration dependence

through which the probability of failure changes with the elapsed duration of one unit of time t.

We are interested in estimating θ(X), i.e. the systematic part of hji (t,X). hji (t,X) measures the

instantaneous rate of failure of the projects active at time t that fail in the short interval from t to t+ dt,

in a large population of projects that are homogeneous with respect to X. The β parameters are estimated

consistently by maximization of a partial likelihood function that does not depend on the baseline hazard

function, which can be estimated non-parametrically (Lancaster, 1992). Further detail on this can be

found in the VI.Appendix at the end of this Chapter.

Competing risks model

Even though the single risks model provides a good baseline analysis, the nature of the R&D process

is such that a project in a given state can either remain in that state, move on to the next state or be

abandoned. The possibility of the project progressing to the next R&D phase impedes the occurrence of

failure and can be considered a competing event. Progression to the next R&D phase is not considered

as a censoring event (such as censoring due to loss to follow-up or no event at all). For example, consider

a project in discovery showing a progression to Phase 1 after three years. The single risk hazard model

considers this project as being at risk of failing, even though it succeeds in progressing to the next R&D

phase. In this model progression to Phase 1 is indistinguishable from loss of follow-up in discovery, and

then considered censoring. In reality, though, a proportion of the projects that are considered censored

in the first model, have progressed to another R&D phase (competing event), and therefore, should not

be considered at risk of failing in that specific R&D phase. The single risk hazard model described above

fails to mirror accurately this more realistic formulation of the R&D process. To address these issues, we

have considered as a second modelling strategy, the competing risks model.

In the competing risks model, we consider two possible, mutually exclusive, destination states for each

R&D project: failure and progression to the subsequent R&D phase. In other words, observations are

simultaneously exposed to several competing risks. This model imposes two assumptions. First, that

failure is a permanent condition that prevents future progression to any subsequent R&D phase (there is

no resurrection). Secondly, that we do not observe regression in the R&D progress, i.e., a project cannot

revert back from Phase 3 to Phase 2 of clinical trials. This is a plausible assumption given the strong

level of regulation in place at each R&D phase.

Let Tj denote the time to the event of interest (failure), Tk, denote the time to the competing event

(transition to subsequent R&D phase), and Tc the time to no event. Then the observed time-to-event T

is given by

T = min{Tc, Tj , Tk} (4.10)

Because we only observe one (the first) event, and so the minimum T , the joint distribution of {Tc, Tj , Tk}
cannot be identified by the data. Therefore, the probability of failure in t+ dt is given by:

h(t) = P (failure at time t | t+ dt) =

= P (t ≤ Tj < t+ dt | survival to t and all other {Tc, Tk} ≥ t+ dt) (4.11)
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Formally, we model the transition rates θji (tj | X, τj) from state i to state j, with j= failure and

i ∈ {d, p1, p2, p3}, and the transition rates θki (tk | X, τk) from state i to state k, with k 6= i, j and k ∈
{p1, p2, p3,m}, being the subsequent R&D stage after stage i. The total number of projects that remain

in the R&D pipeline at t which depart to one of the two destinations is given by:

θi(t,X, τj) = θji + θki (4.12)

which gives us the sum of transition intensities over both destination states - failure j and subsequent

R&D phase k. From there, we can calculate the contribution of each destination stage to the hazard

function.

Analogously to the single risks model, we model transition rates with the MPH specification:

θi =

{
λj(tj)× θ0,j(X)τj , if j happens

λk(tk)× θ0,k(X)τk , if k happens
(4.13)

Where X stands for the set of observed project characteristics that differ across calendar time, and

{tj , tk} the unobserved project characteristics. Conditional on X, the variables tj and tk are assumed to

be dependent only if τj and τk are dependent. So, in the case of independence of τj , τk, the model reduces

to two unrelated ordinary PH models of tj and tk where the baseline transition rates λj(tj) and λk(tk)

are left unspecified.

We considered two specifications of the baseline hazard in the competing risks model: i) the first

assumes that the baseline hazard for both types of risks (failure and progressing to next R&D phase)

is identical; ii) the second assumes proportionality of both baseline hazards. The advantage of using

additional information about the competing risk comes at a price, in the form of the assumptions needed

to consistently estimate the β parameters. First, we assume that both risks are independent, after

controlling for observed characteristics (Cameron and Trivedi, 2005). When assuming state independency

and mutually exclusivity of the destination states, we can estimate β by maximising the overall log

likelihood of the two events parts. Details about the specification of the log-likelihood can be found in

the VI.Appendix at the end of this Chapter. Secondly, we are assuming that {tj , tk} are project-specific

effects and distributed independently of the regressors (exogeneity). Finally, the effects of the covariates

X are assumed to be proportional (Van den Berg, 2001).

We run several specification tests after choosing which specifications are economically relevant, and

those that minimize the Akaike criterion (Akaike, 1974) (See Appendix for more details). This criterion

statistic is commonly used to compare the quality of different models and/or models with different numbers

of parameters by assessing the trade-off between the goodness of fit and the complexity of the model. We

estimate the goodness-of-fit and test for the proportionality assumption, which is a central assumption for

our methodology (See Appendix). We use the linktest that tests the proportionality-hazard assumption2

by interacting time with the covariates and verify that the effects of these interacted variables are not

2The proportional assumption is vital to the interpretation and use of a fitted proportional hazards model. The propor-
tional hazards model has a log-hazard function of the form

lnh(t,X, β) = lnh0(t) +X′β (4.14)

It assumes that a plot of the log-hazard over time would produce two continuous curves, one for X = 0, that would be equal
to ln[h0(t)], and the other for X = 1, which is lnh0(t) + β. The difference between these two curves at any point in time are
β, regardless of the shape of the baseline hazard function (Hosmer et al., 2011; Cleves et al., 2010).
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different from zero. We expect that the effects are not different from zero because the proportionality-

hazards assumption states that the effects do not change with time except in ways that we already

parametrized (with the semi-parametric function of the baseline hazard). This is the nucleus of the

proportional hazard diagnostics (Hosmer et al., 2011) (See Appendix).

We also check for data outliers when evaluating the fit of the model. We use the method of the

efficient score residuals to identify observations with disproportionate influence on the fit of the model

and unusual configuration of covariates (Hosmer et al., 2011) .

III. Data and variables

To perform this analysis we have built a unique time-to-event panel dataset that is extensively described

in Chapter 3. We have merged IMS Health R&D Focus of pharmaceutical compound projects with

World Bank data on country level macroeconomic data. We also use the Fortune ranking in 2007 and

ScripIntelligence in 2011 to identify top100 Pharmaceutical companies (in terms of revenues and profits)

(Fortune, July 2009; ScripIntelligence, 2013).

The IMS Health R&D Focus contains information on global pharmaceutical R&D activity from 1980

until 2012. The dataset contains all compound projects across all countries and therapeutic areas with

information on the starting and ending dates of each R&D stage, namely early discovery, Phase 1, Phase

2, Phase 3, and market/registration (states). Additionally, the dataset contains information for each

project for the time (in years) spent within each R&D phase (state duration), including the time elapsed

if and until a firm abandons a project (which we label failure), and the dates of transition between states.

Compound projects are broadly defined to include small molecules, monoclonal antibodies, proteins,

gene therapies, vaccines and immunotherapies, as well as fixed combination products, biosimilars, in vivo

imaging agents, and specialized delivery systems (IMS Health, 2011). For this analysis we have considered

only the projects that do not present any biological component. Industry reports (PWC, 2011a) show

crucial differences between the R&D process of non-biologics and biologics. Also, comparison between

these must be cautious given the differences in sample sizes, production costs, development times and

regulatory framework (DiMasi and Grabowski, 2007).

Since compounds often target several therapeutic indications simultaneously, we have considered all

indications targeted by each compound. Moreover, the same compound project might be in the R&D

pipeline simultaneously in several countries. Because of this, we have considered all countries where the

same compound-project has been developed.

This results in the fact that the effective unit of analysis is a compound-indication project, reflecting

the therapeutic indication, the country, stage of development in the R&D pipeline and the time spent in

that stage. For each R&D stage, a project is ’at risk’ of failure from the year of its first entry into that

R&D stage. If failure happens, then the project ceases being considered at risk in our analysis. Also, if a

project moves to the subsequent R&D stage, then it ceases being considered within the risk set for that

R&D phase.

Moreover, each observation is assigned one of the total 262 therapeutic pharmacological subgroups

(third level of ATC code) to define the relevant market. To define the relevant market, and similarly

to the competition authorities and other papers in the literature (see, for example, Kyle (2006)) we use

the third level of the ATC code defined by the European Pharmaceutical Market Research Association

(EphMRA, 2013).
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We have a total of 18 252 projects of NCEs that expand to 81 142 country-compound-indication year

observations.

Finally, as explained in detail in Chapter 3, some projects are first observed in the database at a

R&D stage different from basic discovery. This is related with the disclosure of information about the

pre-clinical research. We accommodate this issue by using appropriate modelling options in our semi-

parametric models to account for the left-censored data as we have explained in the section II.

We have further information about the variables used in this analysis including failure, duration,

market level, firm level and project level characteristics of each observation that we describe in the next

section.

Variables

A complete list of variables labels and description can be found in Table 4.1. Our dependent variable

captures the occurrence of a failure for each project, conditional on the R&D stage. Because we are

separately modelling the R&D phases, four dependent variables are constructed with the value of 1 if

failure happens in one of the phases respectively {fdiscovery, fPhase1, fPhase2, fPhase3}, and the value for

’0’ to the non-occurrence of such an event (nothing happens, i.e. the project remains in the same R&D

stage as in the previous period).

The successful progression to the next R&D phase is mutually exclusive of the occurrence of failure and

is captured by the construction of four other R&D stage-specific variables. That means that for each of the

R&D phases {discovery, Phase1, Phase2, Phase3} we constructed a variable success that takes the value

’2’ if there is a successful progression to the next R&D stage, respectively {sdiscovery, sPhase1, sPhase2, sPhase3}.
For the particular case of the value ’2’ in phase 3 indicates a successful transition of the drug project

to the market. We have assumed that there is no regression in the R&D progress, i.e., a project cannot

revert back from Phase 3 to Phase 2 of clinical trials, for instance. This is a plausible assumption given

the strong level of regulation in place at each R&D phase as well as the nature of the process itself.

[Table 4.1 here]

We have considered several explanatory variables. In particular, to proxy industrial forces, we include

competition in the final product market, competition within the R&D process, intensity and type of

alliances. To measure market size, we consider population and GDP per capita. Finally, we have also

included country fixed effects to control for regulatory and technological environment country-specific

characteristics.

As described in Chapter 3, market is defined using the third level of the ATC code that characterises

a compound-indication project, which indicates one from the total 262 therapeutic pharmacological sub-

groups to define the relevant market, similarly to other papers in the literature (see, for example, Kyle

(2006)) and the competition authorities in the US and Europe (Backhaus, 2012).

To measure competition we have followed Kyle (2006) by considering competition in the final product

market and within the R&D process. In particular, market competition for each year is measured by: (i)

the number of new drugs, i.e. established in the market in the last five years (ii) the number of old drugs,

i.e. established in the market for more than five years for each relevant market. The five-year period

captures the exclusivity period that a NCE is granted by FDA that protects it from new competition in

the marketplace3. This is because we believe that the market exclusivity affects firms’ R&D decisions

since it determines the period in which the incumbents have been granted protection to set higher prices.

3New Drug Product Exclusivity provided by the Food, Drug and Cosmetic Act under section 505(c)(3)(E) and
505(j)(5)(F), also known as the Hatch-Waxman exclusivity amendments
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After that protected period is expired, candidates in pipeline will revise their potential market profitability

since there are no longer exclusivity rights for price setting.

Competition in the R&D process for each year is measured by the number of potential entrants in

the same market, i.e., the number of projects being developed for the same market in each calendar year

(potential competitors).

To measure alliances we construct three variables to characterise the intensity and type of alliances at

project-level. Namely we consider: (i) the log number of firms collaborating in the R&D project; (ii) the

participation of a big firm in the R&D project by characterising a big firm as one of the TOP100 firms

(Big firm); and (iii) the participation of academia in the R&D process (Academia participant).

To proxy market size one would, in principle, use global pharmaceutical sales data by broad therapeutic

area or disease level incidence rates as discussed in Chapter 3. However, global pharmaceutical sales data

is prohibitively costly. And, disease incidence levels are difficult to find across all therapeutic areas

and countries for the time span considered in this analysis. Therefore, and following Kyle (2006), we

have used population size and GDP per capita (GDPpc) at country level from World Bank data as

proxies for demand. We have considered the GDP per capita (GDPpc) and population (Population)

of the country in which the R&D process takes place. This is a plausible assumption, given the R&D

distribution: concentrated in high-income countries (US, EU and Japan account for more than 90% of the

total projects) in all R&D phases, and the almost negligible levels of relocation of the projects between

R&D phases (1.1% maximum of projects are relocated in our data). We also explore non-linearity in

population and GDP per capita to account for decreasing returns to scale.

We further control for other covariates that can influence the R&D process. In particular, we control

for two relevant observable time-invariant attributes that have been used in the R&D literature that char-

acterise systematic differences between the projects, namely: (i) the target therapeutic class (therapeutic

class); and (ii) the home country for the R&D of the project (targetcountry).

By considering systematic differences between therapeutic classes, we allow for different technological

and scientific specific conditions in each therapeutic category that could influence effort and the probability

of failure (Mestre-Ferrandiz et al., 2012).

The country-specific characteristics capture, among others, systematic differences in regulatory and

policy framework, and specificities of the technological environment.

IV. Results

A. Descriptive statistics and nonparametric analysis

Our sample consists of 18,252 projects, 4,230 of which have failed. Table 4.2 summarises the descriptive

statistics across the years between 1980 and 2012 for failures (i.e. compound-indication projects that were

disrupted or abandoned) and successes (i.e. compound-indication projects that successfully progressed to

the next R&D phase), duration of the projects, competition, alliances and market size proxies.

[Table 4.2 here]

The data is consistent with the most recent estimates on failure rates by Pammolli et al. (2011). It

shows a relatively higher proportion of failure (29.9%) for projects in the preliminary stage of discovery

than projects at later stages of the process. This proportion decreases to around 14% in Phase 1 and

Phase 2 of clinical trials. And, around 10% of the projects that are in Phase 3 trials fail to be launched in
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the market. These numbers vary over time: higher annual percentage rates of failure in the 1980s, mainly

driven by the unsuccessful experience of the non-US projects, and a declining trend in the late decade of

2000 (Figure 4.1). This may be partially due to more ”births” of new projects: Figure 4.2 shows relatively

higher annual percentage rates of start-ups between 1980 and mid-1990s driven by the number of new

projects in the US.

[Figure 4.1 and Figure 4.2 here]

Also, when looking across ATCs, we observe that general systemic anti-infectives (ATC code J) account

for roughly 26.3% of the total cases of failure in the entire R&D process. Moreover, looking closely at more

refined 3rd ATC level categorisation, three ATCs concentrate the highest proportions of total failures:

(i) antineoplastics (ATC code L: Antineoplastic and immonumodulating agents) account for more than

4.6% of total R&D failures; (ii) other central nervous system drugs account for roughly 2% of total R&D

failures ( ATC code N: Nervous system); and (iii) antivirals for systemic use represent more than 1.8% of

total R&D failures (ATC code J: general anti-infectives) (Table 4.3).

[Table 4.3 here]

The mean duration of failures (5.82 years in discovery, 4.78 years in Phase 1, 5.52 years in Phase

2 and 5.59 years in Phase 3) is more than twice the mean duration of successes (3.66, 2.22, 3.08, and

2.70 respectively). Also, failures face on average fiercer competition than the average of successes: this

is more pronounced when looking at the mean number of new drugs in the market and competitors in

the R&D process. Moreover, failures experience on average lower degree of alliances in all phases of the

R&D process except in Phase 3 (1.43 against 1.69 firms in discovery, 1.43 against 2.08 firms in Phase 1,

1.65 against 2.46 firms in Phase 2 and 2.46 against 1.78 in Phase 3). The participation of a big firm and

academia is relatively higher in failures in early stages of development, when comparing to the successes.

The population and GDP per capita of countries with more failures are, on average, higher than those

with more successes.

We run log-rank tests to test for the differences in the relative survival experiences of distinct groups

that can be constructed by looking at different levels of each covariate. The logrank test statistic compares

estimates of the hazard functions of these different groups at each observed event time (Cleves et al., 2010).

For instance, it compares the true hazard function of projects facing no market competition with the true

hazard function of projects facing competition at some level (for example, 1 competitor). Our results

suggest that we can reject the null hypothesis that assumes no difference between the true survivor

functions for the different groups of drug projects that face different intensities of competition, as well as

intensities and type of alliances. Results from the non-parametric analysis support many of the descriptive

statistics results and anticipate our conclusions. The several Kaplan-Meier (KM) survivor functions show

survival estimates of projects that face different levels of competition and experience different levels of

alliances, across the R&D phases.

The KM estimates suggest that projects facing higher levels of market competition fail more quickly

in the discovery and Phase 1 stages when competing with newer or drugs longer established in the market

(Figure 4.3). Also, projects tend to fail less in the discovery stage when facing more competition within

the R&D process (Figure 4.4). Results are less clear when looking at the other R&D stages.

[Figure 4.3 and Figure 4.4 here]

The survivor functions of all R&D phases are clearly inconclusive when depicting the survival experi-

ence of projects with different intensities and types of alliances. Projects with more than two collaborators
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fail more quickly but not as quick as the projects that are developed solely by one company or by a large

number of collaborators (Figure 4.5). This suggests that there is an ”optimal” number of collaborators.

Moreover, projects in late stages of clinical trials survive more when involve alliances with at least one big

company (Figure 4.6). Also, academic partners seem to linked with more successful projects in pre-clinical

stages of development.

[Figure 4.5 and Figure 4.6 here]

These data and results form the basis for the semi-parametric analysis that follows.

B. Semi-parametric analysis

According to the efficient score residuals analysis criterion, we identify 17 drug projects from a total of

18,270 projects, with disproportionate influence on the fit of the model. These 17 drug projects correspond

to 11 antineoplastic and immunomodulating agents, four drugs targeting the nervous system, one project

relating to anti-infectives and one for the musculoskeletal system. These correspond to 235 project-year

observations from a total of 102,935 project-year observations. We have excluded these from our analysis.

However, we have run the final analysis without excluding these observations and results do not change

qualitatively when incorporating the omitted observations.

We run several specifications allowing for all possible combinations of time-invariant and time-varying

characteristics. The results for the several specifications remain qualitatively the same and are available

from the authors upon request. All models include year dummies and three levels of covariates we are

interested in exploring: (i) competition proxies (final product market competition from new and old drugs

and competition within the R&D process from potential competitors); (ii) alliances (log of the number of

firms collaborating, Big firm, and academia); and market size (proxied by population and GDPpc, and

nonlinearities of both).

We discuss the results of a specification model that introduces an interaction term between the log

number of firms and the presence of a big firm in the alliance, controlling for year and therapeutic level

fixed effects. This model does not fail the linktest and respects the proportionality assumption.

Table 4.4 reports estimation results of single risk hazard model for all R&D phases, whilst Table 4.5

shows estimation results of the competing risks model. Two specifications of the baseline hazard are

considered in the competing risks model: the first assumes that the baseline hazard for both types of risks

is identical; the second assumes proportionality of both baseline hazards. The results are robust across

the different models of the baseline hazard. However for presentation purposes we present the results of

the second specification of the hazard. All model specifications and robustness checks are available upon

request.

[Table 4.4 and Table 4.5 here]

Competition

The results of the single risk model show that more competition from new drugs established in the

market is associated with a significantly higher risk of failure of projects before they reach Phase 3 of

clinical trials. This result is robust across all specifications except in two cases: when omitting the

number of old incumbents or the number of potential entrants. The effect seems to weaken when the

project reaches Phase 3 of clinical trials. The results of the competing risks model are analogous to these;

however they are only statistically significant in the discovery stage. This seems to suggest that pressure
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from young incumbents is not significantly different in influencing failure or success after the project

passes the discovery stage.

Experiencing competition from drugs that have been longer established in the market (old drugs)

seems not to be correlated with the risk of failure of projects across the R&D process. This is a robust

result across the single and competing risks model in all specifications.

Exposure to potential entrants in the market (competition within the R&D process) is associated with

lower risk of failure of drug projects in discovery and Phase 1 of clinical trials. This result is robust to all

model specifications and both modelling strategies. The same result is also found for Phase 2 but only for

the single risks model. Competition within the R&D process is not significantly associated with failure

or success in late stages of development.

Alliances

We have found weak evidence of a link between the level of alliances and drug R&D failure. Our

results demonstrate that increasing the number of collaborators in the R&D process is associated with

lower risk of failure in Phase 2 in the single risks model. Still referring the results of the single risks model,

there is some analogous evidence for discovery and Phase 1 though not significant across all specifications.

In the competing risks model however the significance is not robust across all specifications.

This result is in line with the findings from the literature that report ambiguous results regarding

the role of alliances on R&D productivity (Danzon et al., 2005a, 2007; Hirai et al., 2010). In particular,

Danzon et al. (2005a) find the greater the number of firms collaborating in the project the higher the

probability of success of the projects only in Phases 2 and 3.

Ambiguous effects are found when considering the type of alliances. In the single risks model, alliances

with a big firm are related to higher risk of failure in discovery but lower risk of failure in Phase 3 clinical

trials. However in the competing risks model, alliances with a big firm decrease the risk of failure in both

phases.

Finally the introduction of the interaction term between the log number of firms and the dummy that

captures participation of a big firm reveals a nonlinear effect of alliances in decreasing the risk of failure

in Phase 2.

With respect to alliances with academia, in both the single and competing risk models, research

partnerships with academia are associated with a higher risk of failure in discovery, and lower risk of

failure in Phase 3 for the single risks model.

Market size

When looking at the effect of market size in the likelihood of failure, results are qualitatively similar in

both modelling strategies. However, and as in Kyle (2006), neither population nor GDPpc are significantly

associated with failure. The market size of the home country of the project is significantly associated

with its likelihood of failure.

However, when including a non-linear effect of population, by introducing population squared to the

specification model, the results show significantly lower risk of failure in discovery stage in more populated

countries.

The results also show some non-linearity when introducing GDP per capita (GDP per capita square)

as a proxy for affordability at country level. This is more evident when controlling for country-specific

fixed effects. Projects being developed in richer countries present a higher risk of failure in discovery

stage than projects developed in poorer countries. This is indicated by the negative coefficient of GDP
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per capita squared. These results confirm evidence from the existing literature in this field (for instance

see Acemoglu and Linn (2004) or Dubois et al. (2011)).

Additionally, these results are in line with the regional innovation paradox referred to in the innovation

and economic growth literature: there seems to be an apparent contradiction between the comparatively

greater need to spend on innovation in poor regions and their relatively lower capacity to invest in

innovation related activities, compared to more advanced regions (Barro and Sala-i Martin, 1992; Nelson,

1996; Oughton et al., 2002).

These results may be capturing two effects: the relevance of the US on the worldwide R&D activity,

and the saturation of the market in higher income countries. The first is related to the disproportionate

proportion of projects started and failed in the US. The second effect may be related to the fact that

rewards to R&D investment are likely to be higher in richer countries, so it may be more worthwhile

taking the risk of investment in richer rather than in poorer countries.

As a final remark, our results suggest significant effect of competition and alliances on the rate of failure

in two particular phases: discovery and Phase 2. These appear to be two crucial stages of development

where there are systematic differences between failure and progression to next R&D phase, as also shown

by the competing risks model.

V. Discussion and conclusions

This chapter seeks to measure the association of competition and alliances with the probability of failure

in the different R&D phases using semi-parametric duration models to model global R&D data.

Three important results emerge from our analysis. The first is that the determinants of failure differ

across the different phases of the R&D process. In particular, the advocated role of competition and

alliances as platforms for successful innovation is not verified across all stages of the research process.

Consequently, failure is heterogeneous in the different phases and therapeutic areas. Because of that there

are areas needing more investment since projects targeting these areas are more likely to fail. However, in

order to provide more detailed policy recommendations one would need to disentangle the strategic from

the non-strategic abandonment of projects to better identify the key factors associated with failure that

are policy amenable.

Secondly, we show competition to be significantly associated with failure in discovery and Phase 2 in

two ways. Indeed, we find that the probability of failure of a project declines in the number of potential

competitors (competition within the R&D). This may be due to the fact that the number of projects in

a therapeutic area signals a target where there is potential for innovation, or unaddressed health needs

and scientific challenges that motivate further R&D investment. Also, this effect may suggest the positive

pressure to become the first to get patented and launch in the market to recoup the investment in R&D

(the ”escaping competition” mentioned by Aghion et al. (2005)). This is expected to be more pronounced

in the discovery stage. This result suggests a possible policy agenda to boost competition at science level

through programmes that encourage innovation in early discovery and pre-clinical stages. Moreover, firms

might be, not only, benefiting from positive externalities, but also cooperating strategically to differentiate

themselves and therefore strategically abandoning projects in the pipeline in order to focus on areas with

reduced competition in the market.

Furthermore, we find that the risk of failure increases in the number of new drugs in the market

(market competition), i.e. the drugs that are fully enjoying the patent status. Our result is specific to
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Phase 2 clinical trials. If prospect profitability signaled by the number of competitors in the market is low

then it seems natural that firms are keener in abandoning the projects if Phase 2 clinical trials reveal that

the drugs do not offer a substantial advancement when benchmarked in terms of incremental effectiveness

with existing drugs. This result emphasizes the importance of the choice of the relevant comparator in

cost effectiveness and analysis and health technology assessment.

Even though novel, both findings seem to be aligned with Kyle’s results that, by focusing only on

market launch, shows that competition from new incumbents reduces the probability of launching a new

drug in the market; on the other hand, drugs with more potential competitors are more likely to experience

entry (Kyle, 2006).

In our analysis competition does not play any role in project abandonment in Phase 3 clinical trials,

but it is associated with failure in discovery and Phase 2. These two stages indicate two important

milestones for the R&D process. Failing to successfully complete the discovery stage implies that the

drug does not satisfactorily pass the ”first toxicity dose” levels required to support administration to

a human. This is largely a scientific issue. On the other hand, Phase 2 trials are increasingly a large

financial commitment. Indeed, given the increased regulatory requirements in Phase 3 trials, firms have

increasingly expanded the number of individuals in Phase 2 trials in order to predict at an earlier stage

whether it is commercially viable to proceed to Phase 3 (Scannell et al., 2012). Failing to complete Phase

2 trials can reveal at an earlier stage not only the lack of drug efficacy, particularly for therapeutic areas

with animal models of efficacy that are hardly predictive such as oncology (Kola and Landis, 2004), but

also, insufficient commercial differentiation from existing drugs in the market (Arrowsmith and Miller,

2013). Since progressing to Phase 3 implies a substantial financial commitment associated with large-scale

clinical safety and efficacy studies required for the ”launch decision” (Mestre-Ferrandiz et al., 2012) Phase

2 trials can be strategically used to unveil important information regarding the likelihood of success of

Phase 3 trials .

The third result suggests a mixed association between alliances and the probability of failure of the

projects, confirming the ambiguous findings of the literature.

At first sight, our results suggest that the qualitative effect of the number of collaborators on failure

seems to change across the different specifications and the different phases of the R&D process. However,

controlling for the firm size, a closer analysis clearly shows that in Phases 2 and 3: (i) the risk of failure

decreases in the number of collaborators; (ii) the participation of at least one big firm company in the

research project is associated with a lower rate of failure of drug projects, particularly in the transition

from Phase 3 clinical trials to market launch; and (iii) that this participation presents increasing rate of

failure when extending the alliances protocol to a greater number of participants, provided that we interact

the log number of alliances with the participation of a big firm. These results suggest the positive effect

of policies to foster collaboration between private sector and academia in the last stages of development,

and programmes for product launch for academic projects.

These findings are more evident in the scaling up of clinical trials (Phase 3). At this stage of the R&D

process innovators must, not only focus on product development and clinical trials, but also on a series

of functional activities that ultimately lead to a successful launch, including: scaling up manufacturing,

logistics and distribution processes, marketing effort, regulatory compliance, among others. Moreover,

there is a higher financial effort and access to capital required for Phase 3 trials and going through the

market authorisation process. The transition to the market is therefore more likely to be successful with

the alliances with big firms that have established these capabilities over a long period of time. This result
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is consistent with findings reported in the literature (Abrantes-Metz et al., 2004; Mestre-Ferrandiz et al.,

2012).

When looking at the partnerships with academia, we find that alliances with academia are associated

with increased risk of failure of projects in discovery. This may be due to the fact that academia is normally

engaged in exploratory research of riskier targets and consequently areas in which it is harder to innovate,

or even not commercially appealing, normally funded by public money. For example, there is evidence of

academia being involved in various projects on the potential role of genomics in fostering drug discovery

in many tropical diseases (Gardner et al., 2002; Ridley et al., 2006; Rosamond and Allsop, 2000). Other

possible reasons may be linked to the documented divergences of perspectives and interests of academia

and industry researchers that hinder successful collaborative effort (Siegel et al., 2003). These divergences

arise on a trade-off between disclosure and secrecy of knowledge in the process of patenting structure in

drug discovery (Rhoten and Powell, 2007), and unveil the conflicting objectives, work environments and

scientific methodologies of both parties (Munos, 2009; Perkmann and Walsh, 2007; Murray and Stern,

2007). Also, firms might be acting strategically to benefit from positive knowledge spillovers from publicly-

funded R&D projects (Cockburn and Henderson, 1998), while accepting that the academic partner leads

the R&D process and assumes an important share of the risks.

Moreover, firms might have a higher incentive to strategically not reveal information about failure in

R&D projects (Reinganum, 1981; Dasgupta and Stiglitz, 1980; Barzel, 1968), compared with academia,

particularly in early discovery when targets being tested do not need compulsory public registration.

Because of this, policy implications drawn from these results must accommodate the fact that failure

might be under-reported by the industry and academia is more likely to invest in riskier and scientifically

more complex projects.

Moreover, the change in signs across R&D phases when evaluating the role of alliances on failure could

be related to the nature of the alliance that is not captured in our models. There might be attributes

of the alliances not available in our data that may be masking important characteristics of the projects

and/or nature and process of the alliances that can contribute to the likelihood of the failure of the R&D

project.

There are several caveats of our analysis driven by the quality of our data and the lack of detailed

data at firm level and project level as discussed in Chapter 3.

First, there is a potential problem for selection bias: projects that fail may be systematically different

in nature from the ones that succeed, which means that unobserved characteristics of the drug projects

may be correlated with the level and intensity of competition, different type of alliances or even market

size. This means that we might be inaccurately estimating the true effect of competition and alliances

on failure if projects targeting the same therapeutic indication differ substantially in terms of scientific

complexity and expected return on investment.

This relates to the problem of asymmetry of information in early stages of discovery discussed in

Chapter 3. There is a trade-off between the incentives to disclose information in the R&D process and

to hide it from rivals. This is particularly pronounced in the discovery and pre-clinical stage, and before

the legal requirements to register ongoing investigational studies has been imposed since 2004 in Europe

and 2007 in the US. For this reason, the results for the discovery stage might suffer from this limitation.

This sheds light on the need to design policies that promote the publication of negative clinical trials to

reduce the publication bias that affects firmsecisions on R&D investments.

Secondly, we are not modelling failure as a function of strategic behaviour of the firm and its competi-
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tors. Projects may clearly fail to complete a specific R&D phase due to several reasons. Failure may be a

combination of rejection by the market approval bodies, strategic withdrawal by the firm of certain R&D

investments, merger and/or acquisition by a competitor, or even scientific or clinical failure in targeting

a disease. With our data we cannot separately identify the reasons behind project abandonment. Such

analysis would require firm and project level data that is unavailable in our dataset. In particular, in our

data, the majority of the projects are owned by several companies and we cannot identify and measure

the role and effort of each firm in the R&D process. This fact restricts the use of firm-level fixed effects

as a means to incorporate the strategic behaviour of the firms in our analysis.

Thirdly, there is a potential risk of mis-estimating failure given the assumption on the replication of

the compound observations according to the number of indications targeted by each compound. This

is particularly true if multiple indications can be contained in one drug. In that case, we might be

inaccurately estimating all the effects. However, compound projects with several indications can be seen

as several compound projects running in parallel because they target different markets. In that case,

the analysis of the role of alliances and competition on failure shall be indication specific. On the other

hand, if the same compound project is being developed in more than a country, drugs with a higher

probability of success might be those for which there are multiple countries. In that case, we might be

underestimating the likelihood of failure of such type of compound projects. Make it country-specific

undermines the multinational perspective of the project, which might create network spillovers greater

than the sum of the individual countries. Nevertheless, there are pretty strong documented locational

effects on R&D that are captured by the country where R&D is taking place.

Finally, the use of country-specific measures (gdppc, population and country-specific died effects)

might underestimate the true market size for new therapies. Ideally, we would have market size proxied by

some measure of affordability constructed with global disease burden weighted by ability-to-pay. However,

this information is not readily available for a time-series and the GDP per capita gives a proxy for the

total affordability of a country to medicines.

Addressing these caveats requires data at firm and project level to be more readily available for

research. Many of these issues would be potentially solved with more information about pharmaceutical

companies, such as R&D investments, financial accounts, their patenting and licensing activities, and the

clinical and financial risk of their R&D portfolio. This information is not available which restricts our

analysis. Despite these caveats we retain our analysis as a novel and relevant insight into the nature

of the R&D process. This piece of work may contribute to the policy debate on the presumed role of

competition and alliances as platforms for successful innovation.
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VI. Appendix: Tables

Table 4.1. Definition of variables

Variable Definition Frequency

Competition from new drugs Count of drugs in the market launched for less
than 5 years

Therapeutic class-year

Competition from old drugs Count of drugs in the market launched for more
than 5 years

Therapeutic class-year

Potential competitors Count of R&D projects in the same market Therapeutic class-year

Intensity of alliances Log of total number of collaborators Therapeutic class-year

Big firm participation Project has at least one TOP100 firm collabo-
rator (dummy variable)

Drug project

Academia participation Project has at least one academia collaborator
(dummy variable)

Drug project

Population, total Population in 10s of millions Country

GDP per capita GDP per capita in US$1000s (constant 2000
US$)

Country

Regulatory forces Country where R&D is based R&D phase-year

Therapeutic specificities Therapeutic class that the project targets Drug project

71



Table 4.2. Descriptive statistics

Variables(mean) Discovery Phase 1 Phase 2 Phase 3

Total Failures Successes Total Failures Successes Total Failures Successes Total Failures Successes

Duration 3.48 5.82 3.66 2.48 4.78 2.22 2.7 5.52 3.08 2.24 5.59 2.7
New drugs 6.06 13.61 8.04 7.21 18.28 10.18 6.69 17.72 10.37 7.59 21.91 7.65
Old drugs 0.88 2 1.21 0.95 2.22 1.28 1.02 1.86 1.34 1.07 2.07 1
Potential entrants 11.02 22.79 14.21 13.08 30.67 17.98 12.37 30.6 18.37 13.7 39.42 13.78
Population 1.7E+09 2.0E+09 1.8E+09 1.7E+09 1.9E+09 1.8E+09 1.7E+09 1.9E+09 1.8E+09 1.9E+09 2.3E+09 1.8E+09
GDP per capita 29058.1 31988.5 30052.2 29882.4 32233.5 30570.5 30734.4 32398.7 31483.5 30503.2 32320 30037.7
Intensity of alliances 1.65 1.43 1.69 2.05 1.43 2.08 2.24 1.65 2.46 2.87 2.46 1.78
Big firm 0.59 0.56 0.54 0.66 0.64 0.66 0.68 0.67 0.73 0.76 0.69 0.53
Academia 0.12 0.13 0.11 0.09 0.06 0.08 0.08 0.08 0.08 0.08 0.07 0.12

Observations 54600 11109 9644 5789
Drug projects 10952 3277 3257 444 2446 361 1597 148
Failures (%) 29.90% 13.60% 14.80% 9%
Therapeutic classes 78
Years covered 1980-2012
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Table 4.3. R&D activity and failure across therapeutic classes

Total number of

R&D projects

Proportion of failures as a propor-

tion of ATC-specific failures

Proportion of failures as a

proportion of total failures

A: Alimentary tract and metabolism 1583 0.203

Stomatologicals, mouth preparations, medicinal

dentifrices etc

44 0.25 0.0006

Drugs used in diabetes 645 0.203 0.0072

Vitamins 5 0 0

Anabolics, systemic 3 0 0

Appetite stimulants 7 0.143 0.0001

Other alimentary tract and metabolism prod-

ucts

124 0.129 0.0009

Antacids, antiflatulents and anti-ulcerants 128 0.203 0.0014

Functional gastro-intestinal disorder drugs 133 0.128 0.0009

Antiemetics and antinauseants 66 0.167 0.0006

Cholagogues and hepatic protectors 48 0.146 0.0004

Laxatives 7 0.143 0.0001

Antidiarrhoeals, oral electrolyte replacers and

intestinal anti -inflammatories

187 0.156 0.0016

Antiobesity preparations, excluding dietetics 181 0.387 0.0038

Digestives, including digestive enzymes 5 0.2 0.0001

B: Blood and Blood forming organs 653 0.247

Antithrombotic agents 402 0.279 0.0061

Blood coagulation system, other products 113 0.23 0.0014

Anti-anaemic preparations 98 0.143 0.0008

All other haematological agents 40 0.225 0.0005

C: Cardiovascular system 1767 0.239

Cardiac therapy 538 0.251 0.0074

Lipid-regulating/anti-atheroma preparations 302 0.265 0.0044

Cardiovascular multitherapy combination prod-

ucts

3 0.334 0.0001

Antihypertensives 151 0.212 0.0018
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Diuretics 40 0.3 0.0007

Cerebral and peripheral vasotherapeutics 141 0.234 0.0018

Antivaricosis/anti-haemorrhoidal preparations 3 0 0

Other cardiovascular products 208 0.274 0.0031

Beta-blocking agents 44 0.114 0.0003

Calcium antagonists 137 0.182 0.0014

Agents acting on the renin-angiotensin system 200 0.21 0.0023

D: Dermatologicals 631 0.17

Antifungals, dermatological 39 0.051 0.0001

Anti-acne preparations 65 0.138 0.0005

Other dermatological preparations 132 0.227 16437

Wound healing agents 110 0.164 0.001

Anti-pruritics, inc. topical antihistamines,

anaesthetics, etc

21 0.19 0.0002

Nonsteroidal products for inflammatory skin

disorders

188 0.17 0.0018

Topical antibacterials and antivirals 57 0.14 0.0004

Topical corticosteroids 19 0.263 0.0003

G: Genitourinary system and sex hormones 668 0.166

Gynaecological anti-infectives 11 0.182 0.0001

Other gynaecologicals 106 0.189 0.0011

Sex hormones and products with similar desired

effects, systemic action only

198 0.217 0.0024

Urologicals 353 0.133 0.0026

H: Systemic hormonal preparations (exc. sex hormones) 142 0.169

Pituitary and hypothalamic hormones 32 0.125 0.0002

Systemic corticosteroids 6 0 0

Thyroid therapy 5 0.2 0.0001

Other hormones 99 0.192 0.001

J: General anti-infectives (systemic) 2626 0.263

Systemic antibacterials 795 0.258 0.0112

Systemic agents for fungal infections 181 0.309 0.0031

Antimycobacterials 27 0.223 0.0003
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Antivirals for systemic use 1080 0.306 0.0181

Sera and gamma-globulin 56 0.161 0.0005

Vaccines 379 0.071 0.0015

Other anti-infectives 108 0.528 0.0031

L: Antineoplastic and immunomodulating agents 4578 0.236

Antineoplastics 3484 0.243 0.0463

Cytostatic hormone therapy 137 0.212 0.0016

Immunostimulating agents 359 0.12 0.0024

Immunosuppressants 598 0.269 0.0088

M: Musculoskeletal system 970 0.252

Anti-inflammatory and anti-rheumatic products 600 0.272 0.0089

Topical anti-rheumatics 19 0 0

Muscle relaxants 37 0.162 0.0003

Anti-gout preparations 33 0.03 0.0001

Other drugs for disorders of the musculo-skeletal

system

281 0.263 0.0041

N: Nervous system 3184 0.25

Anaesthetics 48 0.21 0.0005

Analgesics 557 0.26 0.0079

Anti-epileptics 158 0.19 0.0016

Anti-parkinson drugs 166 0.188 0.0017

Psycholeptics 520 0.25 0.0071

Psychoanaleptics excluding anti-obesity prepa-

rations

434 0.182 0.0043

Other cns drugs 1301 0.284 0.0202

P: Parasitology 143 0.217

Antiprotozoals and anthelmintics 141 0.22 0.0017

Ectoparasiticides, including scabicides, insecti-

cides and repellents

2 0 0

R: Respiratory system 928 0.209

Nasal preparations 87 0.08 0.0004

Anti-asthma and copd products 575 0.206 0.0065

Cough and cold preparations 23 0.174 0.0002
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Systemic antihistamines 73 0.233 0.0009

Other respiratory system products 170 0.282 0.0026

S: Sensory organs 379 0.135

Ophthalmologicals 362 0.141 0.0028

Otologicals 17 0 0
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Table 4.4. Parameter estimation results: Single Risks Model

Discovery Phase1 Phase2 Phase3

1.008*** 1.012** 1.018*** 1.005
Competition from new drugs

(-0.00152) (-0.00497) (-0.0057) (-0.00796)

1 0.999 0.999 1.006
Competition from old drugs

(-0.00201) (-0.00617) (-0.00716) (-0.00818)

0.996*** 0.994** 0.990*** 0.998
Potential competitors

(-0.000841) (-0.00276) (-0.00312) (-0.00449)

1 1 1 1
Population, total

(-3.71E-10) (-1.05E-09) (-1.17E-11) (-1.83E-11)

1 1 1 1
Population, total squared

(-4.55E-19) (-1.19E-18) (-1.36E-18) (-1.61E-18)

1 1 1 1
GDP per capita

(-2.22E-7) (-6.54E-7) (-4.07E-7) (-7.26E-7)

1 1 1 1
GDP per capita squared

(-3.83E-10) (-1.15E-09) (-7.83E-12) (-1.34E-11)

1.041 0.965 0.471*** 0.85
Intensity of alliances

(-0.0841) (-0.248) (-0.11) (-0.318)

1.282*** 1.107 0.871 0.457***
Big firm participation

(-0.0583) (-0.147) (-0.139) (-0.131)

1.160** 0.928 0.977 0.465*
Academia participation

(-0.0781) (-0.207) (-0.255) (-0.215)

0.807** 0.718 1.37 1.577
Big firm#Intensity of alliances

(-0.0743) (-0.198) (-0.381) (-0.679)

Fixed effects
Year dummies Yes Yes Yes Yes
Therapeutic class Yes Yes Yes Yes
Targetcountry No No No No

#Observations 41502 6990 5995 2817
#Projects 7811 1932 1437 857
#Failures 2856 344 276 102
Log likelihood -20917.4 -1965.3 -1534.7 -480
Akaike’s criterion 41914.8 4014.6 3167.4 1018
Goodness-of-fit 0.344 0.769 0.134 0.986
Proportionality assumption 0.6726 0.4404 1 0.094

Notes. Exponentiated coefficients; Standard errors in parentheses.
* p <. 10, ** p <. 05, *** p <. 01
The results refer to the reference case country USA, year 1990, and therapeutic
category Sensory organs.
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Table 4.5. Parameter estimation results: Competing Risks Model

Discovery Phase1 Phase2 Phase3

1.004*** 1.005** 1.005 1.001
Competition from new drugs

(-0.000976) (-0.00217) (-0.00277) (-0.0075)

1 1.001 1.002 1.001
Competition from old drugs

(-0.00133) (-0.0027) (-0.00398) (-0.00766)

0.998*** 0.997** 0.998 0.999
Potential competitors

(-0.000533) (-0.0011) (-0.00153) (-0.00432)

1.000*** 1 1 1
Population, total

(-2.14E-10) (-3.67E-10) (-4.81E-10) (-1.71E-09)

1 1 1 1
Population, total squared

(-2.45E-19) (-3.59E-19) (-5.45E-19) (-1.57E-18)

1 1 1 1
GDP per capita

(-0.0000097) (-0.0000173) (-0.0000182) (-0.000076)

1 1 1 1
GDP per capita squared

(-1.75E-10) (-3.25E-10) (-3.42E-10) (-1.38E-09)

0.949 1.12 0.826* 0.85
Intensity of alliances

(-0.0436) (-0.0888) (-0.106) (-0.0887)

0.912*** 0.948 0.995 0.610*
Big firm participation

(-0.0255) (-0.0511) (-0.0742) (-0.17)

1.132*** 0.896 1.031 0.946
Academia participation

(-0.0403) (-0.0758) (-0.0975) (-0.367)

1.162*** 1.063 1.454*** 1.389
Big firm#Intensity of alliances

(-0.0662) (-0.11) (-0.174) (-0.524)

3.78E-11 5.22E-23 4.97E-14 6.69E-21
Transition to next R&D phase

() () () ()

Fixed effects
Year dummies Yes Yes Yes Yes
Therapeutic area Yes Yes Yes Yes
Targetcountry No No No No

#Observations 87788 14925 12865 5627
#Projects 9129 2390 1856 1125
#Failures 7314 1741 1197 117
Log likelihood -57104 -11466.6 -7456.9 -553.4
Akaike’s criterion 114303.9 23035.3 15007.8 1188.9

Notes. Exponentiated coefficients; Standard errors in parentheses.
* p <. 10, ** p <. 05, *** p <. 01
The results refer to the reference case country USA, year 1990, and therapeutic
category Sensory organs.
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Estimation strategies

Partial likelihood

In the context of Cox proportional hazard model, we can estimate the relationship between the hazard

rate and explanatory variables without having to make any assumptions about the shape of the baseline

hazard function. This is called a semi-parametric model. When recalling single risks model specification

in Equation (4.8):

hji (t,X, τj) = h0(t) exp(X′β) = h0(t)θ(X) (4.15)

And using proportional hazard assumption together with other assumptions, it is possible to estimate

consistently β using partial likelihood method of estimation, rather than maximum likelihood. Partial

likelihood is used when there is no full information on the form for the joint data distribution (Allison,

1984).

What differs from maximum likelihood is that instead of individuals or projects, we are interested to

model the occurrence of ordered (according to duration time) events i.

We are interested to model the probability distribution of the duration of abandoned projects T , for

any particular drug project and regard ti as a realisation of the random variable Ti for a project with

characteristics of each drug project in the sampleLancaster (1992). The sample Partial Likelihood is given

by:

PL =
S∏
i=1

Li (4.16)

Li = P (project d has event at t = ti conditional on being in the risk set at t = ti )

To work out this probability, we need to use the rules of conditional probability together with the

fact that f(t)=h(t)S(t), and so the probability that an event occurs in the tiny interval [t, t + δt) is

f(t)dt = h(t)S(t)δt. Considering the illustrative dataset in the following table:

Table 4.6. Illustrative dataset

Drug project #d Duration Td Event i

1 2 1
2 4 2
3 9 (no event ensored)
4 11 3
5 13 4
6 14 (no event ensored)

Consider the event i = 4 with risk set d = {5, 6}. We can define{
A = P (event experienced by d=5 and not d=6) = [h5(13)S5(13)δt][S6(13)]

B = P (event experienced by d=6 and not d=5) = [h6(13)S6(13)δt][S5(13)]
(4.17)

The probability of either A or B using the standard conditional probability formula is equal to

L5 =
A

A+B
=

h5(13)

h5(13) + h6(13)
(4.18)
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The survivor function terms cancel out. With this, we can derive all the other Ls. For example,

L1 = h1(2)
(h1(2)+h2(2)h6(2)

.

All projects are in the risk set for the first event. Now let us apply PH model specification, and we

have:

L5 =
h5(13)

h5(13) + h6(13)
=

h5(13)θ5
h5(13)θ5 + h6(13)θ6)

=
θ5

θ5 + θ6
(4.19)

The baseline hazard contributions cancel out. Similarly,

L1 =
θ1

θ1 + θ2 + . . .+ θ6
(4.20)

And so on for all events. Given each Li expression, we can construct the complete PL expression for

the whole sample of events, and then maximise it to derive β. As said before, the baseline hazard function

is completely unspecified (Jenkins, 2005; Lancaster, 1992). Also, to note that each Ls expression does not

depend on the precise survival time at which the sth event occurs, but only the order of events affects the

PL expression.

We also highlight the fact that the PH assumption implies that the hazard function for two different

projects has the same shape, differing only by a constant multiplicative scaling factor that does not vary

with survival time. This assumption may be tested.

Moreover, just to remember that we incorporate time-varying covariates. PL estimates the information

at each event time. This means that covariates are only valuateduring the estimation at event times, and

so it does not matter what happens to their values in between.
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Log-likelihood

In the case of competing risks model, when we consider two possible destination (risk), the overall

model likelihood value is the sum of the likelihood values for each of the destination-specific models, θji
and θki , recalling Equation 4.13. The log-likelihood for the whole sample is the sum of this expression

over all individual records in the sample.

The log-likelihood is given by

lnL = {δj [ln θji ] + lnSj}+ {δk[ln θki ] + ln Sk(T )} (4.21)

Two main assumptions are taken to use this estimation method (Lancaster, 1992).

State independency. The chances of making transition from the current state do not

depend on transition history prior to entry to the current state.

To estimate destination-specific hazard rates, there is a weak identification assumption to hold: risks

independence. This implies that h(t) =
∑
i=j,k

θi(t) or even h(t;X) =
∑
i=j,k

θi(t;X).

That is, h(t | X) = θji (tj | X) + θki (tk | X) i.e. the hazard rate for transition to any destination is

the sum of the destination-specific hazard rates, controlling for X observables. Once failure occurs, the

failure to destination j has probability
θji (t)

θki (t)
.

Independence also means that the survivor function for transition to any destinations can be factored

into a product of destination-specific functions:

S(t) = exp[−
∫ t

0
h(u) du] = exp[−

∫ t

0
[θji (u) + θki (u)] du] =

= exp[−
∫ t

0
[θji (u)] du]× exp[−

∫ t

0
[θki (u)] du] = Sj(t)Sk(t) (4.22)

Destinations are mutually exclusive and exhaust the possible destinations. The indi-

vidual sample likelihood contribution in the independent competing risk model with two

destinations is of three types:

A.1 Lj=transition to j, where Lj = fj(T )Sk(T )

A.2 Lk=transition to k, where Lk = fk(T )Sj(T )

A.3 LC=censored spell, where LC = S(T ) = Sj(T )Sk(T )

Lj , the likelihood contribution summarises the chances of a transition to j combined with no transition

to k, and vice versa in the Lk case. The destination-specific censoring indicators:

δj =

{
1 , if transition to j

0 , otherwise (either exit to k or censored)
(4.23)
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The overall contribution from the individual to the likelihood, L, is

L = (L)δ
j
(Lk)δk(LC)1−δ

j−δk =

= [fj(T )Sk(T )]δ
j
[fk(T )Sj(T )]δ

k
[Sj(T )Sk(T )]δ1−δ

j−δk =

=

[
fj(T )

Sj(T )

]δj
Sj(T )

[
fk(T )

Sk(T

]δk
Sk(T ) =

= [hj ]
δjSj(T )[hk]

δkSk(T ) = {[hj ]δ
j
Sj(T )}{[hk]δ

k
Sk(T )} (4.24)

We can maximise the overall (log) likelihood by maximising the two component parts separately.

The overall model likelihood value is the sum of the likelihood values for each of the destination-specific

models. The log-likelihood for the whole sample is the sum of this expression over all projects in the

sample.

ln L = {δj [ln θji ] + lnSj } + {δk[ln θki ] + ln Sk(T )} (4.25)
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Akaike’s criteria

Akaike’s (AIC) criteria: for each model specification the value is computed as: AIC = −2 ×
(log-likelihood) + 2(p + 1 + s), where p denotes the number of covariates in the model and s = 1 for

the Weibull and log-logistic models (Akaike, 1974; Hosmer et al., 2011).

Testing goodness-of-fit and proportionality assumption

As a specification test and a measure of goodness-of-fit, we use the link test which basically regresses

on and, where now the original model regressors are omitted. It tests whether the coefficient of is zero

under the null hypothesis (Cleves et al., 2010; Hosmer et al., 2011).

We use the link test to interact a function of time on time-varying variables and test whether their

coefficients are zero under the null hypothesis (Hosmer et al., 2011). We carry out the log-rank test that

assumes under the null hypothesis that the different group hazards functions are similar, where the groups

are defined by the different level of covariate X (Cleves et al., 2010).

The preferred method of performing this analysis is to compare the estimated parameter β̂X obtained

from the full data with the estimated parameters β̂iX obtained by fitting the model to the n−1 observations

remaining after the ith observation is removed. If β̂X − β̂iX is close to zero, then the ith observation has

little influence on the estimate (Cleves et al., 2010).

VII. Appendix: Figures
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Figure 4.1. Annual percentage rate of failure of drug projects
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Figure 4.2. Annual percentage rate of start-ups of drug projects
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Figure 4.3. Kaplan-Meier survival function: market competition from young drugs in discovery
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Figure 4.4. Kaplan-Meier survival function: competition from potential competitors in discovery
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Figure 4.5. Kaplan-Meier survival function: intensity of alliances in Phase 3 trials
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Chapter 5

Micro-simulation of future pharmaceutical R&D landscape

I. Introduction

Despite the substantial increase in R&D spending in recent decades, evidence suggests a declining number

of approvals of new molecules developed, amounting from a total of 52 in 1996, to around 20 in 2007,

of new molecular entities and new biologics approved (PWC, 2011b; Bouvier, 2007; Paul et al., 2010;

Strauss, 2010; Reuters, 2009), in spite of sustained increase in R&D spending.

Indeed, development costs are estimated to have increased yearly by 30% in the last two decades due to

increased development times (Reuters, 2009) and higher failure rates amongst R&D phases (DiMasi, 2002;

Paul et al., 2010). Furthermore, there are challenges regarding the true societal value of such investment.

Most new drugs brought to the market are variants of formulations or combinations of existing therapies

(”follow-on drugs”), with few out of the 25 new medicines discovered per year being in effect novel in

modulating targets and disease pathways (EY, 2010; Paul et al., 2010).

This context raises issues of efficiency of allocation of resources as well as equity of access to new

therapies that can offer better quality-of-life for conditions driving the global burden of disease. As

Chapter 6 will explore in more detail, the pharmaceutical R&D investment has targeted the most prevalent

health needs of the richest countries. The disincentives to invest in disease areas that affect the poorest

and, thus financially less attractive markets, and the strategic disengagement from the pharmaceutical

industry to pursue new avenues of discovery in some of the most disabling conditions, put in danger the

prospect of access to new, better and cost-effective therapies in a large number of therapeutic areas.

The pressure from national health systems, insurance companies and other payers of health care to

access more cost-effective drugs contrasts, to a large extent, with the societal interests to encouraging

investment in under-invested research areas. Indeed, health systems have been notably confronted with

trade-offs in promoting the development of drugs with substantial health improvement that are affordable,

while allowing sufficient rents to the industry to incentivise R&D investment.

In the last three decades, there have been profound changes in the design of the incentive mechanisms

in the top global regional innovators, namely, the USA, Europe and Japan to accelerate the innovation

process and deliver novel therapies to the market (Dranove and Meltzer, 1994). These reforms have been

implemented to grant priority review to therapies targeted at serious life-threatening diseases, rare and

neglected conditions and those that pose a public health threat1 and are found difficult to develop.

In spite of these reforms, innovation productivity crisis still persists in many therapeutic and disease

areas such as vaccines, drug resistant infections, rare conditions and neurological disorders. To stimulate

1namely the Orphan Drugs Act in 1983, Fast Track in 1988, Priority Reviews in 1992, Accelerated Approval in 1993,
FDA Modernization Acts in 1997 and 2007, TRIPS agreement in 1994 and lately, the Safety and Innovation Act in 2012. A
full list of legislative and regulatory events can be found in Hwang et al. (2014).
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innovation in these areas, new forms of incentive mechanisms are currently being introduced in health

systems (for instance, value based-pricing in the UK, risk-sharing in Australia), however, there is still

uncertainty regarding their impact on the future landscape of the R&D pipeline and on innovation.

The existing literature has focused on optimal project selection strategies in the pharmaceutical firm

R&D portfolio by using mathematical programming and discrete event system simulation techniques

to model uncertainty in the R&D pipeline (Subramanian et al., 2003; Rajapakse et al., 2005; Rogers

et al., 2002). Even though these approaches explore in detail the stochastic optimisation problem around

decisions given its resource-constraints and performance-oriented targets, the studies lack in general an

economic perspective on the factors that impact R&D success, failing to model the role that market

conditions and project characteristics play on the R&D strategies by the pharmaceutical industry.

Therefore, the aim of this study is to forecast the stock of new therapies to be launched in the market

between 2011 and 2030, by exploring the dynamic effect of market conditions and project characteristics

on the likelihood of market launch of new therapies. Throughout this analysis, it is assumed an absence

of new R&D policies to the existing ones, meaning this analysis captures the ”do nothing” scenario on

what concerns the effect of policy and regulation on the R&D landscape.

The remainder of the paper is organised in three sections. The next section describes the model used

to incorporate market launch, failure and births in the dynamics of the R&D pipeline. The covariates and

parameter estimation are also discussed in full detail in this section. In section II we explain the dynamic

micro-simulation model and the main results. In section III we discuss the results of the micro-simulation

analysis. Finally, in section IV we conclude with a discussion and interpretation of the results.

II. Methodology

The aim of this study is to simulate the number of new therapies that will be launched in the market

from 2011 until 2030 for a specific therapeutic indication and in a specific locational market under a

ceteris paribus assumption of no further policy intervention. We have used historical data to calibrate

the micro-simulation model and to infer about the likelihood of both events failure and market launch,

and to forecast the stock of new drugs in the near future.

The ceteris paribus assumption should not be regarded as a limitation. It is indeed one of the many

possible future scenarios for the simulations but given that it makes use of historical data we believe it

is the most evidence-based scenario we could have chosen. Because of this, it imposes fewer assumptions

on the uncertainty around the likelihood of events we are interested to model and simulate. Many other

scenarios can be analysed in future research but we believe this is the obvious starting point for the

analysis.

We have defined market as the region-therapeutic area where a specific product will be at risk of being

launched. For the therapeutic classification, and as used in Chapter 4, we classify the projects amongst the

therapeutic categories presented by the EPhRMA2 third level Anatomical Therapeutic Chemical (ATC)

Classification.

For the definition of region, given that firms approach the market from a regional perspective due to

the strict and specific regulatory requirements, and because of the larger amount of missing information

for countries where there is no R&D in many therapeutic areas, we have grouped countries into five main

regional markets around the world. The countries that are part of each region are shown to be similar

2European Pharmaceutical Market Research Association
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in terms of regulation environment, IP rights, and technological conditions. The five different regions

are respectively: (1) USA; (2) the EMA members, which include the 28 European Union Member States

as well as the European Economic Area (including Norway, Iceland and Liechtenstein), Canada, and

Switzerland; (3) Japan; (4) Emerging Markets and Asia-Pacific (EMAP), including Brazil, India, Russia

(and former Soviet Union), China, South Korea, Mexico, Nigeria, Israel, Vietnam and Taiwan ; and (5)

the rest of the world.

We simulate the stock of new market entries Ni of category i, given the stock of projects in the global

R&D portfolio in 2011, i.e., Pil,2011. For every calendar year t the sum of new therapies, both New

Chemical Entities (NCEs) and biologics of therapeutic type i in region l is given by:

Ni,t =
∑∑

l,t

NCEsil,t +
∑∑

l,t

biologicsil,t (5.1)

Let Pil,t denote the portfolio of projects in region l at the end of year t (net of births, failures and

market launches occurring in year t), it can be represented by:

Pil,t = Pil,t−1 +Bil,t −Dil,t −Mil,t (5.2)

with Pil,t denoting the past portfolio of projects of type i in region l at the end of year t− 1, Bil,t is

the number of births of type i occurring in region l during the year t, Dil,t is the number of deaths of

type i occurring in region l at the end of year t, and finally, Mil,t the number of product market of type

i launched in region l during the year t.

Therefore, a new cohort of drug projects is added to the starting R&D portfolio (at the start of 2011)

and during the year of 2011, a simulated proportion of projects will leave the R&D portfolio due to

failure and market launch. Analogously, to the projects that survive in the R&D pipeline, a new cohort

of newborn projects is added in the following year (t = 2012) and, similarly, some projects will leave the

R&D pipeline caused by failure or market launch. This process is repeated every year until t = 2030.

In the next section, we specify failure and entry as functions of factors which impact on the life of

pharmaceutical projects. We describe these factors by reviewing the economics and management literature

on entry and failure, and we present the estimation strategy to obtain parameters that will inform the

micro-simulation model on the probabilities of occurrence of these two events of interest, i.e., market

launch and failure. In section B we specify the birth function that models the birth process of projects in

the future. In section C we describe the dynamic micro-simulation model. Finally, in section D we give

details about the data and variables used to measure these factors.

A. Market entry and failure as competing events in the dynamics of the R&D pipeline

Market entry is a function of the carrying stock of projects in the R&D pipeline (that we consider here

to be equal to the stock of projects in the previous year), i.e. Pil,t−1, the transition probability of market

entry of region l of type i at time t, i.e. phmil,t (X), and a vector of factors X. The proportion of drug

projects that are launched in the market at time t is a stochastic process that is given by:

M(X) = Mil,t(p
hm(X), Pt−1) = phmil,t (X)× Pil,t−1 (5.3)

Similarly, the number of failures D(X) is a function of the stock of projects in the R&D pipeline at

t− 1, Pil,t−1, the likelihood of failure of a project of therapeutic type i in region l at time t, phdil,t(X), and
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a vector of factors X. The number of projects in the pipeline that die out at time t is given by:

D(X) = Dil,t(p
hd(X), Pt−1) = phdil,t(X)× Pil,t−1 (5.4)

These two events of interest - market entry and failure - are modelled as competing risks for the

progression of new drugs in pipeline. We can construct a competing risks model with one transient state

(staying alive in R&D pipeline) and two absorbing states (market entry and failure). These two absorbing

states prevent further transitions to occur to other states. We are assuming here that the transient state

”in R&D pipeline” includes the four sequential stages of drug development (Discovery, Phase 1, Phase 2,

Phase 3) as we are particularly interested in modelling the risk of market launch, that imposes that all

the intermediate R&D stages have occurred.

Figure 5.1. Illustration of the competing risks model

These multi-state processes are fully described by the transition intensities, i.e., the cause-specific

hazards between states. Let K = (K(t), t ≥ 0, t ∈ T ) be a time stochastic process with three possible

states S = {0, 1, 2}, with K(t) being the state occupied at time t ≥ 0 and T is time interval ∈ [0,τ ]. The

transition intensity or hazard rate, conditional on observable characteristics X, between state h and state

j is equal to

θhj (t|X) = lim
δt→0

Prhj (t, t+ δt)

δt
(5.5)

Where h, j ∈ S, t ∈ T , and the transition probability that is going to inform our simulation is

represented by

Prhj(t, t+ δt|X) = pr{K(t) = j|X(s),Ft−} (5.6)

where s ≤ t with s, t ∈ T and Ft− is a σ-algebra3 generated by the history of process over [0,t),

including state visited and time of transitions. The cumulative incidence function for jth competing risks

Fj is defined as the following this expression:

Fj(t|X) = pr{T ≤ t, J = j} =

∫ t

0
θhj(u;Ft−)× exp

∫ u

0

J∑
j=1

θhj(ν|X) dν

 du (5.7)

3If {A1, A2, A3, is a countable partition of X, then the collection of all unions of sets in the partition (including the empty
set) is a σ-algebra.
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This gives the proportion of projects at time t that left the R&D pipeline from cause j, accounting

for the fact that projects can leave the pipeline because of two reasons (failure and market launch). This

is done by integrating the transition intensity θhj that are modelled as a function of observable factors

X. These observable factors are part of the function of market launch and of the function of failure and

they are described in detail in section D. They contribute to estimate the likelihood of market launch and

failure of a project.

With the estimation of the likelihood of market launch and failure of a project we predict the proportion

of projects that leave the R&D pipeline between a short time interval. The transition probability from

pipeline to the market of a project k belonging to the therapeutic class i and firm-type f , in region l at

time t, is given by phm(t|X), and the competing transition probability to failure is given by phd(t|X), and

they can be written as:

phm(t|X) = f(Yil,t−1, Zifl,t−1,Wki,t−1)

phd(t|X) = g(Yil,t−1, Zifl,t−1,Wki,t−1)
(5.8)

Where Yil,t−1 are the set of market-level characteristics, Zjil,t−1 are the firm-level characteristics and

Wki,t−1 represent the project-level characteristics for t− 1.

After estimating the transition probabilities, the resulting transition matrix for each R&D project is

a square positive matrix with the same number of states at t and t + 1, where 0 ≤ p̂hj ≤ 1, j = {m, d}
that can be written as follows:

 p̂
hh p̂mh p̂dh

p̂hm p̂mm p̂dm

p̂hd p̂md p̂dd

 =

 p̂
hh 0 0

p̂hm 1 0

p̂hd 0 1

 (5.9)

Where p̂mm = p̂dd = 1 and p̂mh = p̂md = p̂dh = p̂dm = 0, due to the absorbing nature of failure and

market entry states.

For the prediction of the parameters included in this matrix we need a flexible parametric model spec-

ification. This is due to two reasons. First, flexible parametric estimation does not impose restrictions on

the shape of the underlying hazard function. The flexible parametric specification approach to competing

risks models has been proved to be statistically identifiable even if both risks have identical predetermined

variables, delivering the advantage of unrestricted correlated across the stochastic disturbances (Han and

Hausman, 1990). Secondly, because the aim of this estimation is to inform the micro-simulation model

on the transition probabilities, we need to estimate a model that allows us to predict the effect of time

(duration) on the transition intensities. And this can only be done with a modelling approach that allows

for time-dependency on the estimated hazard function (Briggs et al., 2006).

We use a spline-based parametric proportional hazard (PH) model to allow for turning points across

time given the fact that the estimated hazard functions not necessarily respond to time in the same way.

This allows for time-dependency in the effect of a covariate on hazard rates through the life course of a

project. The approach taken by Royston and Lambert (2011) is to model the logarithm of the baseline

cumulative hazard function as a natural cubic spline function of log time. A detailed explanation of this
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model is presented in detail in the appendix V. The estimation results are in line with the results found

in Chapter 4 and are briefly explained in the appendix V of this Chapter.

The next section presents in detail the assumptions to model birth of projects in the simulation model.

B. The birth function

Alongside with the market entries and failures, a new cohort of projects Bil,t of type i in region l is born

and added to the pipeline every calendar year t.

Since we assume that new projects are born at random, the expected number of new projects Bil,t of

type i in region l at time t follows a Poisson distribution4. This implies that the probability of a given

number of births occurring in a calendar year can be expressed by a statistical distribution with a known

average rate of birth, which is independent of the time elapsed since the last birth had occurred. Therefore

we are ale to predict, with a Poisson distribution, the (random) degree of spread of births around a known

average rate.

To calculate the average birth rate we have considered the historical information (from 1980 until 2010)

that characterises the process of generation of new projects in the R&D pipeline. We have separated the

analysis between biologics from chemically synthesized projects (here defined as NCEs), and we have

computed the historical average µil of new projects in early discovery of each type i in region l for the

last 30 years.

Therefore, if a birth process bil(X) follows a Poisson model with average rate {µNCEsil , µbioil } for projects

of type i in region l, the expected number of births for NCEs and biologics {BNCEs
il , Bbio

il } for region l

and therapeutic area i satisfies the following equations

BNCEs
il = ENCEsil [p|X] = eb

NCEs
il (X) if NCEs

Bbio
il = Ebioil [p|X] = eb

bio
il (X) if biological

(5.11)

There are three underlying assumptions with this method.

First, the historical average computed from the last three decades reflects the long run birth rate

of R&D projects started in early discovery. This means that the levels of newborn projects, across

therapeutic areas and across regions, show the firms’ response to expected economic profits and losses

4The Poisson distribution may be derived by considering an interval, in time, space or otherwise, in which events happen
at random with a known average number µ. The interval is divided in n subintervals I1, ...In of equal size, such that n > µ.
The probability that an event will fall in the subinterval Ik is for each k equal to µ

n
, and the occurrence of an event in Ik may

be approximately considered to be a Bernoulli trial (Lancaster, 1992; Cameron and Trivedi, 2005). The birth process of drug
projects is a random variable that follows a Poisson distribution with parameter µ > 0, if, for n = 0, 1, 2, the probability
mass function (pdf) of B is given by:

f(n;µ) = pr{b = n} =
µbe−µ

b!
(5.10)

Where e is the base of the natural logarithm and n! is the factorial of n, and µ the parameter that characterises the
expected number of births and its variance. The Poisson distribution specifies how likely it is that the count of births will
be 3, or 5, or 10, or any other number, during one period of observation. This expresses the probability of a given number of
births occurring in one year if these births occur with a known average rate µ and independently of the time since the last
event. The historical average birth rate is going to inform on the stochastic process of generation of new projects of b(x),

i.e. b(x) ∼ Pois(µ), where µij =
∑
il,t

bil,t
Bil

, t = t1, ..., T . Given this, the birth of new projects can be simulated through a

Monte-Carlo process by considering b(x).
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related to the project’s expected likelihood of market entry and/or failure. Since we are estimating these

probabilities with the full data available for the global R&D portfolio, we have opted to use similar

timespan (1980-2010) for the computation of the historical average rates of both NCEs and biologics

{µNCEsil , µbioil } .

Secondly, that the average rate is justifiable to be computed for both cases of NCEs and biologics.

Biologics are distinct from chemically synthesised pharmaceutical products and face different regulation

pathways in some jurisdictions. Since we have not find consistent evidence of differences of in project

births between NCEs and biologics, we have computed {µbioil } with the same full data timespan to calculate

the average rate of birth for both biologics and NCEs.

Thirdly, as the literature suggests (for instance, as shown by Mestre-Ferrandiz et al. (2012)) there are

substantial differences in the R&D effort across regions, and therapeutic areas that characterise the process

of generation of new projects. This is the basis for opting for computing market-level (therapeutic-level

and regional-level) average rates {µNCEsil , µbioil } for projects of type i from region l.

However, the newborn projects need to be fully characterised to be modelled as functions of market

entry and failure, as described in section II. We explain that in detail in the subsection D.

The subsection C describes the micro-simulation model that combines dynamically and over time the

processes of market entry, failure and birth of pharmaceutical projects.

C. The dynamic micro-simulation model

There is established literature on the dynamic micro-simulation models that project population samples

over time, and model life course events under various policy rules. These processes are based on the

creation of transition probabilities to update individual observable characteristics over time, incorporating

Monte Carlo simulation methods to generate a stochastic process that determines individual transition

probabilities (Willekens, 2009).

We use Monte Carlo simulation methods to establish the actual incidence of the transitions of market

launch and failure in consecutive periods of time.

The occurrence and timing of each event are established by comparing, in a first instance, the predicted

probability of survival, p̂ = {p̂no event}, with a random number, r, drawn from an uniform distribution

U ∼ U ∈ [0, 1]. There are two possible outcomes: 1) the project survives to the occurrence of any event,

i.e. the project remains in the R&D pipeline, if r ≤ p̂no event; or 2) there is the possibility of occurrence

of an event if r ≥ p̂no event.
If that is the case that r ≥ p̂no event, then the type of event occurring is established by comparing

the set of predicted probabilities for both transition probabilities p̂ = {p̂hm, p̂hd} with another random

number, u, drawn from an uniform distribution U ∼ U ∈ [0, 1]. There are two possible outcomes: 1) the

transition to market occurs if u ≤ p̂hm; or, 2) the project dies, otherwise.

Figure 5.2 illustrates the simulation process. The baseline portfolio (in January 2011), that is modified

by the transitions incurred by projects at the end of time period t, becomes the input dataset for the

following time period, i.e. t+ 1. This is repeated until the entire simulation cycle is complete (last time

period is reached in t = 2030).

Given the model specifications and the parameter estimates, we can specify the following functions

that characterise the lifetime of projects and the stock of new therapies launched in the market in the

coming years:
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Figure 5.2. Illustration of the micro-simulation model



N̂i,t =
∑∑

l,t

M̂il,t

M̂il,t(X) = p̂hmil,t (X)× P̂il,t−1
D̂il,t(X) = p̂hdil,t(X)× P̂il,t−1
P̂il,t−1 = P̂il,t−2 + B̂il,t−1 − D̂il,t−1 − M̂il,t−1



N̂i,t =
∑∑

l,t

M̂il,t

M̂il,t(X) = p̂hmil,t (X)× P̂il,t−1
D̂i,l,t(X) = p̂hdil,t(X)× P̂il,t−1
P̂il,t−1 = (1− p̂no event(X))× P̂il,t−2 + B̂il,t−1

(5.12)

Where D̂il,t−1 = p̂hdil,t(X)×P̂il,t−2 and M̂il,t−1 = p̂hmil,t (X)×P̂il,t−2, representing respectively the expected

number of failures of type i in region l at time t− 1, and the expected number of market launches of type

i in region l at time t− 1, as functions of the expected portfolio of projects in t− 2, Pil,t−2. B̂il,t−1 is the

expected number of births of project type i in region l during t − 1. Given this, we predict the number

of new therapies of type i at time t, N̂i,t, by summing up the market launches of drugs of type i at time

t, either being of chemical (NCEs) or biological composition, across the different regions and therapeutic

areas.
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We detail in the next section the definition of market and the measurement of the covariates used for

the estimation of the transition probabilities and the simulation process.

D. Data and variables

Economic literature suggests that market entry is a function of market size, the level of competition,

and the fixed costs associated with product launch. Empirical findings prove that the number of entries

increases with the size of the market but at a decreasing rate (Bresnahan et al., 1987; Bresnahan and

Reiss, 1991, 1990; Scott Morton, 1999).

However, and as already discussed in Chapter 4, the literature is scarce in analysing the factors

influencing the exit and, especially, the disruption of R&D. Chapter 4 of this thesis is the first attempt

to measure the association of competition and alliances with the probability of failure across the different

R&D phases. Three groups of factors influencing market launch and failure of R&D projects are discussed

in Chapter 2 and can be briefly outlined here. They are respectively: i) market-level characteristics; ii)

firm-level characteristics; and iii) project-level characteristics.

In this section, we discuss these factors that significantly affect the decision to launch a new drug or

abandon a drug project. For the measurement of the market-level, firm-level and project-level character-

istics, we have followed the same strategy as presented in Chapter 4. These covariates are dynamically

updated at every calendar year in the simulation process.

Market-level characteristics

We incorporate in this analysis the size of the market and competition forces as these have been found

factors to affect significantly the R&D process, as discussed in Chapter 4. Indeed the literature argues

that on one hand, there is a concentration of R&D investment in more lucrative therapeutic areas (as the

literature has suggested, for instance see Acemoglu and Linn (2004)). However, those markets, on the

other hand, also present a higher risk of failure, specifically when projects are in early stages of discovery.

Similarly to Chapter 4, we have used a fixed effect at regional level to proxy market size for the jurisdiction

where the R&D process takes place. To avoid including more complexity in the simulation model, we

have opted to not include forecasts on the GDP per capita and population, and proxy the market size by

controlling for the fixed effects at regional level.

Furthermore, the literature has shown evidence of a two-sided effect of competition on R&D: first, the

negative effect of competition from incumbents on entry of new medicines targeting the same therapeutic

classification; secondly, the positive effect of competition from peers in pipeline on entry, as shown in

Chapter 4 and, for example, in Berndt et al. (1996). To proxy competition we have considered the two

measures presented in Chapter 4: (1) competition at the final product market, and (2) competition from

peers, i.e., within the R&D process. Specifically, final product market competition at time t is measured

by counting: (i) the number of drugs established in the market in the last five years before t − 1 (new

drugs); and, (ii) the number of drugs launched in the market previous to t − 6 (old drugs). Moreover,

competition in the R&D process at time t is measured by counting the number of projects being developed

for the same market in t− 1 (potential competitors).

In addition to size and competition forces in the market, the regulatory environment has been suggested

to significantly affect drug prices (for example Danzon and Chao (2000)) and entry costs (for instance

Djankov et al. (2002)) and, ultimately, to affect market launch of new drugs (Danzon et al., 2005c;

Lanjouw, 2005; Kyle, 2007). Countries with stricter entry regulation and relatively little price regulation,

such as the United States and the United Kingdom, show highly concentrated domestic industries whose
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products diffuse more extensively to foreign markets (Thomas, 1994). Given that, we have included a

regional fixed effect to account for the effect of the regulatory and technological environment on market

entry and failure of projects.

For the market-level characteristics of the newborn projects, we fully characterise the size of the market

and the regulatory environment by identifying the region where they are born. The competition forces,

i.e., the number of young drugs, old drugs, and potential competitors are characterised dynamically by the

microsimulation model. A project being born at time t faces the number of young drugs that a project

of type i in region l has faced in time t − 1. The same dynamic process happens to feed old drugs, and

potential competitors.

Firm-level characteristics

The literature suggests that firm-level characteristics and product-level characteristics matter when ex-

plaining the speed at which a new drug is approved, since the costs of gaining regulatory approval differ

across firms and types of drugs within a regulatory environment (Dranove and Meltzer, 1994; Carpenter,

2004).

The size and type of firm is suggested to significantly impact on market entry and the likelihood of

failure of a R&D project (as presented in Chapter 4 and, for instance, in Abrantes-Metz et al. (2004);

Cockburn and Henderson (1998, 1994)). Following the Chapter 4, we have measured the size of the firm

by identifying the participation of a TOP100 firm in the R&D project (big firm), and the participation of

an academic/public institution in the R&D project (academia participant). The newborn projects have

been attributed an average level of participation of a big firm and academia of projects of type i from

region l, for the two types of products, i.e., NCEs and biologics.

Project-level characteristics

Chapter 4 and the existing literature specify therapeutic novelty, composition of the product (biological

vs chemical), therapeutic indication, duration of the project and collaboration intensity as relevant factors

impacting entry and failure of a drug project (Abrantes-Metz et al., 2004; Kyle, 2006; Mestre-Ferrandiz

et al., 2012).

We have measured alliances, technological specificities and duration of the project using the same

approach as in Chapter 4.

To measure collaborative intensity of the project (alliances), we have calculated the log number of

firms collaborating in each R&D project. We have also included an interaction term which considers the

log number of firms collaborating in each R&D project with the presence of a big firm. The newborn

projects have been attributed an average level of log number of firms collaborating of projects of type i

in region l, for the two types of products, i.e., NCEs and biologics.

We have used a fixed effect at therapeutic area level to control for different technological and scientific

specific conditions in each therapeutic category that influence effort and the probability of failure and

market launch of a particular project.

Finally, we have included in the analysis the duration of the project (duration) by ageing the project

one year if the project survives and stays in the R&D pipeline to the following year of the microsimulation.

For the newborn projects we have been attributed a one-year duration as initial duration.
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III. Results

In this section we discuss the historical trends for the launch of new therapies in the five regional markets,

and report the descriptive statistics for the results of the simulation. In section B we examine the results

of the microsimulation analysis. The results for the parameter estimation that support the simulation

model can be found in the Appendix V.

A. Descriptive statistics

Figure 5.3 presents the historical trends for the (very first) launch of, respectively, NCEs and biologics

in the five regions. For both types of therapies, USA and EMA lead the number of new launches. For

NCEs, and with the exception of the trends between Japan and EMAP, the differences in trends across

the five regions are statistically significant. For the biologics, the only statistical significant differences

happen to be between the USA and EMA, and the EMAP and the rest of the world.

[Figure 5.3 here]

With the exception of EMA’s trend for NCEs, there is a slight decreasing trend of the number of mar-

ket launches in the years preceding 2010 across all regions for both types of products. However, similar

downward trends are found in past periods (Figure 5.3) shedding some light on the debate about produc-

tivity crisis or natural inflection points in the business cycle of the pharmaceutical industry (Cockburn,

2007; Munos, 2009).

With regards to NCEs, there are clearly two important periods for the industry in the USA and EMA

markets: (i) the period between 1992 and 2005, showing a slight uprising trend on the number of new

therapies marketed; and (ii) the period between 2005 and 2010 that shows a steeper increasing trend.

Moreover, the Japanese market shows a different pattern following the year of 1995, when there is a

decreasing number of new therapies being launched. In contrast, the emerging markets and the rest of

the world and other markets show an uprising trend since 2000.

With respect to the biologics, there are three distinctive periods: (i) the period from 1992 to 2001,

showing a steep uprising trend for the number of market launches; (ii) the period between 2001 and 2004,

revealing a drastic fall in the number of new therapies launched; and, (iii) the years following 2004 with

a uprising trend (even though slightly flatter than the trend shown in the nineties). Interestingly, trends

in Japan exhibit a small variation across time in the market launch of biologics, as they show persistent

low numbers during the observed period. This may be related to the fact that, historically, firms have

chosen to first place their products in the European/North American markets (IMS, 2010; IMAP, 2011).

It is interesting the exponential uprising trend of new biological therapies being launched in the emerging

economies after 2000, as the industry reports have been stating (IMS, 2010; IMAP, 2011). The regional

differences are, however, non-significant across regions, with the exception of the difference between the

USA and EMA (p-value=0.0542).

When looking at the historical trends across the main therapeutic groups, there are clearly two domi-

nant groups showing a rapid increase in the number of new therapies over time: ATC category J, general

anti-infectives, and ATC category L, antineoplastic and immuno-modulating agents. These two ATC

categories dominate the number of new therapies in the market for the NCEs (Figure 5.4) and biologics

(Figure 5.5).

[Figure 5.4 and Figure 5.5 here]
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The US and EMA markets lead the market launch of new therapies launched in these two categories.

Figure 5.6 and Figure 5.7 show the historical trends for the NCEs for both regions (with a p-value=0.0000

between both regions). Interestingly, and for the rest of the regions (Japan (Figure 5.8), EMAP (Figure

5.9) and Others (Figure 5.10)), there is a larger number of therapies being launched in the market targeting

the group of the general anti-infectives. Japan presents significantly higher number of new therapies than

the USA (p-value=0.0116) and EMA (p-value=0.0592).

[Figures 5.6 - 5.10 here]

This scenario changes when looking at the market of new biologics. The USA and EMA regional

markets have experienced in the last two decades a larger proportion of new biologics for anti-infectives

compared with the the number of antineoplastic drugs and immunomodulating agents. The Japanese

and EMAP markets show a less consistent trend of new launches on these ATC categories (Figures from

Figure 5.15 to Figure 5.19 showing these trends can be found in the technical appendix IX).

[Figure 5.15 - Figure 5.19 here]

B. Micro-simulation results

We run the model specification presented in section A for NCEs and biologics separately (the results can

be found in the technical appendix V), and we have run 200 repetitions of the Monte-Carlo simulation.

Given the large volume of results, we present in this section aggregated summaries and statistical tests

at regional and main therapeutic level (ATC-2 level), and a few detailed cases that illustrate the results

of the simulation analysis. This is because the differences across ATC-3 level can be captured at ATC-2

level. All detailed results are available upon request.

The model includes three levels of covariates that are dynamically updated with the simulation pro-

cess. These three level of covariates, that are explained in section D, are respectively: (i) market-level

characteristics, including proxies for market competition (new drugs, old drugs and potential competitors),

market size (regional fixed effects) and regulatory and technological environment characteristics (regional

fixed effects); (ii) firm-level characteristics, including a dummy for firm size (big firm) and the type of

organisation that is investing in the R&D project (Academia participant); and finally, (iii) project-level

characteristics that include a measure of the intensity of alliances of the project (log number of firms), an

interaction term between the intensity of alliance and the participation of a big firm in the project (big

firm * log nr of firms), the duration of the project, and therapeutic area fixed effects.

We present in appendix V the descriptive statistics and corresponding t-tests for mean-comparison

testing of the simulated number of new therapies, births, duration of projects, probability of no-event,

transition probability to market and transition probability to failure. Tables 5.2 and 5.3 present, respec-

tively, the regional descriptive statistics and the t-tests for NCEs (Tables 5.4 and Table 5.5 for biologics),

whereas Tables 5.7 and 5.9 present, respectively, the descriptive statistics at therapeutic level and corre-

sponding t-tests for NCEs (Table 5.8 and Table 5.10 for biologics).

The results of the micro-simulation suggest a clear continuation of the global leadership of the USA,

followed by EMA, on the market launches of NCEs and biologics. The USA secures a relatively signifi-

cantly higher number of market launches of NCEs (913.38 and 776.49 with p-value = 0.0303) and biologics

(699.16 and 629.06 with p-value = 0.0324) than the follower, EMA.
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At the same time, the results for both of these regions show consistently comparable numbers for

the R&D activity in NCEs and biologics, as shown in Table 5.3 and Table 5.5. There are no statistical

significant differences between both regions in what relates to the number of new projects (33.90 versus

31.45 with p-value = 0.8644 for NCEs; and, for biologics 1.26 versus 1.31 with p-value = 0.7975). The

same happens to what regards the duration of projects in pipeline (9.79 years versus 9.35 years with

p-value = 0.1782 for NCEs; and, for biologics 9.78 years versus 9.42 years with p-value = 0.4654), and

probabilities of market launch (0.4 versus 0.39 with p-value = 0.2513 for NCEs; and, for biologics 0.37

versus 0.37 with p-value = 0.7975) and failure (0.49 versus 0.50 with p-value = 0.1823 for NCEs; and, for

biologics 0.53 versus 0.53 with p-value = 0.5738). Therefore, both regions are perceived to have similar

R&D landscapes, translating the past trends of similar levels of R&D investment concentrated in these

regional areas (IMS, 2010; IMAP, 2011).

On the other hand, the regional markets of EMAP and Japan show relatively similar future trends

for the market launches for NCEs, with similar average number of new projects being born (202 in Japan

and 199 in EMAP, which are not statistically different from each other (p-value=0.9813)), probabilities

of market launch (0.346 and 0.351, respectively, with p-value = 0.7078) and duration of projects (of

approximately 7.5 years and 7.7 years, respectively, and p-value = 0.6958). The sales growth rates of the

pharmaceutical industry in emerging economies like China, Brazil, Russia, India, and South Korea have

been reporting an explosion and redefinition of the global pharmaceutical business (IMS, 2010).

On top of these regional disparities, there are persistent differences across the therapeutic categories.

For the market for NCEs, the results suggest that the USA will unequivocally lead the market launches

in drugs targeting the nervous system (ATC N, Figure 5.11k). There are significant favourable differences

from EMA market (2nd) on the number of market launches (41.85 versus 27.57 with p-value = 0.0124),

duration in the R&D pipeline (12.6 years versus 9.9 years with p-value = 0.0027), probability of mar-

ket launch (0.45 versus 0.41 with p-value = 0.0107) and probability of failure (0.49 versus 0.51 with

p-value = 0.0308). There is also some evidence of the dominance of the US on the R&D activity on drugs

targeting the musculo-skeletal system (ATC M, Figure 5.11i). The number of market launches in the US is

significantly higher than those launched in the EMA market (27.041 versus 20.562 with p-value = 0.0997),

and the US presents a more mature R&D pipeline (9.55 years versus 9.0 years with p-value = 0.014).

Furthermore, the EMAP regional market will affect greatly the global market for antineoplastic and

immunomodulating agents (Figure 5.11h). The emerging markets are expected to register a significantly

promising number of more than 80 new anticancer chemical therapies per year, contrasting with 58 in

EMA, 75 in the US, 32 in Japan and 16 in the rest of the world (even though the differences are not

shown to be statistically significant with corresponding p-values of 0.7428, 0.9597, 0.3011 and 0.191).

The results suggest a ”catching-up” phenomenon at the level of anti-cancer drugs between emerging

markets and the global leaders, USA and EMA. This is reinforced by the non-significant differences for

the probability of failure across regional markets (0.493 against 0.492 in the US (p-value=0.9064), 0.502

in EMA (p-value=0.2516), and 0.506 in Japan (p-value=0.1805)). As discussed above, this ”catching-up”

phenomenon is in line with the most recent forecasts from the industry reports for the emerging economies

(IMS, 2010).

[Figure 5.11 here]

The market for biologics shows, however, to be regionally more concentrated. The USA, EMA and

Japan will continue to play the main role in most of the therapeutic areas, particularly in those areas

that target the blood and blood forming organs (ATC B, Figure 5.12b), dermatological conditions (ATC
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D, Figure 5.12d), systemic hormonal preparations (ATC H, Figure 5.12f), respiratory systems (ATC R,

Figure 5.12l), and sensory organs (ATC S, Figure 5.12m). EMAP and the rest of the world show no R&D

activity targeting these therapeutic groups.

Furthermore, the US will lead the number of new biologic therapies being placed in the global market

for four main therapeutic groups. These are: alimentary and tract metabolism (ATC A, Figure 5.12b),

blood and blood forming organs (ATC B, Figure 5.12b), genitourinary system and sex hormones (ATC

G, Figure 5.12e) and nervous system (ATC N, Figure 5.12k). The number of new therapies is significantly

higher in the US market than in the second-best placed market (for ATC A, 29.4 versus 20.4 in EMA with

p-value = 0.0118; for ATC B, 12.54 versus 8.29 in EMA with p-value = 0.0038; for ATC G, 6.66 against

2.49 in Japan with p-value = 0.0984; and, finally for ATC N, 26.65 versus 19.52 with p-value = 0.0496).

[Figure 5.12 here]

These aggregate figures disguise some dispersion found in the results at a more refined level. We present

here two cases that depict such variation within main therapeutic groups. For instance, by looking at

specific products, for instance, for the specific case of antineoplastics (ATC code L: antineoplastic and

immunomodulating agents) and vaccines (ATC code J: anti-infectives for systemic use), the results suggest

a clear dominance of other regions on the future production and market launch of new therapies.

The case of antineoplastics

Antineoplastics act to prevent, inhibit or halt the development of tumors or malignant cells, and are used

to treat, for instance, metastatic cancers and other forms of cancer. Some of these chemotherapy drugs

are also used to treat other conditions, including multiple sclerosis, Crohn’s disease, psoriasis, psoriatic

arthritis, systemic lupus erythematosus, rheumatoid arthritis, and scleroderma.

The results of the micro-simulation show that there is a substantial expected number of new antineo-

plastic agents with chemical composition being placed in the EMAP regional market (Figure 5.13(d)). In

2020, the best-scenario forecast for the number of new therapies placed in the USA (Figure 5.13(a)) is

around ten times smaller than the number of new therapies expected to be placed in the EMAP market

(Figure 5.13(d)). Even though the USA, EMA and Japan show higher probability of market entry and

lower probability of failure, there is a much greater number of newborn projects in EMAP compared with

those regional markets (yearly average of 23 versus 1.3 in EMA, 2.9 in Japan, 1.1 in the USA, and 1.3 in

the rest of the world).

[Figure 5.13 here]

The case of vaccines

Vaccines are biological preparations that improve immunity to a particular disease. Vaccines typically

contain an agent that resembles a disease-causing microorganism and are often made from weakened or

killed forms of the microbe5.

When looking at the production and market availability of vaccines in the future, the results suggest

that the pure biological production of vaccines will quite steadily increase to around six vaccines to be

5Vaccines can be prophylactic (example: to prevent or ameliorate the effects of a future infection by any natural or ”wild”
pathogen), or therapeutic (e.g., vaccines against cancer are also being investigated).
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available in each regional market. However, the results clearly suggest more promising numbers when

looking at the vaccines produced with mixed chemicals and other non-biological components6. By 2030,

the regional market EMAP (Figure 5.14(d)) is expected to provide more than three-fold of the number

of new vaccines in the market available in the rest of the world (Figure 5.14).

[Figure 5.14 here]

IV. Discussion and conclusions

This paper aims at forecasting the future global R&D landscape and the market launch of new therapies

with both chemical and biological composition, assuming no major policy changes by governments or

regulators. We do this by developing a micro-simulation model that incorporates three crucial events

of the R&D lifecycle of drug projects: birth, failure and market entry. The micro-simulation model is

dynamically updated over time and uses parameter estimates of a flexible parametric competing risks

model. With this flexible parametric competing risks model we model the likelihood of market entry as a

competing event of failure of projects as a function for market, firm and project-level characteristics, and

time to the occurrence of any of those events.

Three main conclusions arise from this analysis.

First, the results suggest that the historical regional disparities are expected to persist and that the

United States will continue leading the global market launches of new chemical and biologic therapies.

This is shown by the significantly higher number of market launches in the US compared with those in

the EMA market, that comes usually second in the global ranking. These results express the historical

high-value of the US market: the US market in 2011 was valued 31% of the global pharmaceutical sales

(PWC, 2011a).

Specifically, the United States are expected to drive global innovation in new therapies targeting the

nervous system of both chemical and biologic composition, as there are favourable statistically significant

differences from the EMA for this market on the number of market launches, duration in the R&D pipeline,

probability of market launch and probability of failure. The same is true for new chemicals targeting the

musculo-skeletal system, given the significantly higher number of market launches in the US and the more

mature R&D portfolio (higher duration of projects). This is also the case for the markets for biologics,

where the USA will be the established global innovator showing significantly higher number of market

launches in therapies targeting the alimentary and tract metabolism and genitourinary systems, and new

biologic components to produce blood and blood forming organs.

These facts are in line with the past trends and reinforce the business forecasts for the coming decades.

By 2020, the industry reports that the US will represent 27% of the 1.6 trillion USD that the pharma-

ceutical market will globally value (PWC, 2011a; IMAP, 2011). The better performance of the US at the

global market level derives from three reasons. First, the differences in demand growth between the two

regional markets have led to a more attractive market in the United States. Pricing and reimbursement

policies differ across these regions and EMA has been facing large pressures from national health systems

to reduce health spending, having engaged in stricter price and reimbursement regulations, and stricter

health technology assessment requirements (PWC, 2011a; IMS, 2010; Morton and Kyle, 2012). Second,

the US competitive advantage in innovation relies on higher intensity of collaboration between firms and

6Beside the active vaccine itself, there are several other excipients that are commonly present in vaccine preparations,
namely aluminium salts or gels, antibiotics, proteins, amino-acids and chemicals.
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public research centres, especially in pre-clinical stages of discovery (Pammolli et al., 2001). These have

flourished in a sheltered environment by public and philanthropic money devoted to science (Wadman,

2007; Odling-Smee, 2007) that has deepened the US competitive advantage over the ”molecular biology

revolution” (Pammolli et al., 2001). Finally, the US has been perceived as a more secure IP system that

lowers uncertainties about patenting and licensing (PWC, 2011a). Evidence suggests that the US is a

preferred destination of research, including by the European companies, resulting in a higher share of

patents in new biotech fields (Pammolli et al., 2001). In fact, big firms, as Pfizer, have based in both

markets and have strategically decided to relocate their R&D department from the UK to the US in 2011.

Also, the growing economies, which are, nowadays, to some extent competing with the US for market

share at global level, are seen as currently lacking financial and legal power to enforce the international

IP system and reward innovation (PWC, 2011a; Lanjouw, 2005).

Secondly, this analysis suggests comparable R&D productivities between the United States and EMA.

There are no structural differences in the market entry of NCEs and biologics between both regions in

what relates to the duration of projects in pipeline, and corresponding probabilities of market launch and

failure. This is in line with the evidence presented by Pammolli et al. (2011).

In fact, this might be revealing how these markets are similar at several levels. First, both US and

Europe show identical health needs. As the latest disease burden numbers show (Murray et al., 2013),

North America and Western Europe suffer from similar conditions, with ischaemic heart disease, trachea,

bronchus and lung cancer, and chronic obstructive pulmonary disease, representing common main causes

of mortality and disability. Secondly, the regulatory environment of both regions is very similar. The

regulators for marketing approval in both regions, the European Medicines Agency (EMA) and the FDA,

have gone through a harmonisation of requirements for marketing approval, enabling firms to prepare a

common dossier for entry in both markets (Danzon, 2011; Morton and Kyle, 2012). The regulation gaps

found in one region about orphan drugs, biologics and biosimilars have produced translational legislation

on the other jurisdiction (Danzon, 2011; Morton and Kyle, 2012). Furthermore, there is an almost perfect

overlap of the intellectual property rights environment in both regional markets (Morton and Kyle, 2012).

Thirdly, the emerging markets are expected to show noticeable achievements in bringing to the market

promising number of new anticancer drugs, also used in a number of rare diseases, and other specific

products such as vaccines, as a more refined analysis suggests. The emerging economies have been

steadily gaining share at the expense of the US and the top five European countries (France, Germany,

Italy, UK and Spain), accounting for close to 34 percent of global growth in 2009 (IMAP, 2011).

There are a number of reasons why this might be occurring. On the one hand, the emerging economies

are becoming comparably more attractive than the well-established markets of Europe and the US. The

industry reports forecast an explosion for the demand for medicines in growing economies that will, by

2020, represent more than 32% of the world global sales volume (PWC, 2011a). The great wealth of

the richest, and an affluent ”middle-class” in these countries, that present identical health needs to the

developed world (Murray et al., 2013; PWC, 2011a; IMS, 2010), represent greater business opportunities,

that contrast with the pessimistic economic environment in EMA (PWC, 2011a). Moreover, many of

these countries are expanding the coverage of their national health systems, generating large market

opportunities for the industry (Lancet, 2010; Evans and Etienne, 2010). On the other hand, the literature

has been reporting a (re)localisation of R&D (mostly clinical trials) in emerging economies (Berndt

et al., 2007; Thiers et al., 2008). This is regarded as a response to various economic, scientific and

regulatory issues that are deterring successful innovation in the USA and in the EMA market. They
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are namely related to issues around the regulatory approval process in these regions, namely regarding

the comparability and extrapolation of safety and effectiveness data between biologics and chemicals,

and a reference product (Dingermann et al., 2012; Kelly and Mir, 2009; Grabowski, 2008). Finally, the

explosion of R&D activity in these markets might derive from the fact that firms seem to have intensified

their global strategic behaviour in emerging economies. Global pharmaceutical players have acquired

strategically some domestic manufacturing companies to penetrate these markets, accounting for 50% of

the merger and acquisitions between 2008 and 2010 (IMAP, 2011).

There are several caveats to our analysis that relate to the availability and the quality of our data.

First, projects start in a region and are assumed to develop, fail or enter in the market on that specific

region, not taking into account the possible relocation of the project to another region, which might not

be necessarily true. More detailed data at project level in terms of relocation could inform our model on

this possibility. Second, we are relying on the last thirty years of data to give us an accurate picture of

the dynamics and composition of the R&D pipeline. Without more years of information, we had to decide

to use all the information we have available to carry this analysis. However, this means that possible

future unpredictable (from the past trends and numbers) shocks in the pharmaceutical industry are not

captured by this analysis. These shocks might be originated from new players entering in the market,

changes in funding science, new regulatory settings that could change the nature and relocation of R&D

or any other macroeconomic level changes.

Addressing these limitations requires more refined historical data at firm and project level and incor-

poration of random shocks in the analysis. Also, there are potential modeling extensions for this study

to introduce unforeseeable uncertainty to the model. Despite these caveats and possible extensions, we

retain our analysis as a relevant insight for the future of R&D landscape, and a useful tool that can

be extended for the evaluation of policy changes in the global pharmaceutical industry. Many of these

changes might come from challenges around the unmet global health needs, that have been driving the

attention of public health policymakers, governments, the industry, and several private and public donors

on funding more biomedical research and development.
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V. Appendix: Tables

Spline-based parametric PH model

We introduce splines in our flexible parametric PH models to account for time-dependency in the effect

of a covariate on hazard rates through the life course of a project. We take quite literally the lessons

from Royston and Lambert (2011) to apply this model to our case. The approach taken by Royston and

Lambert (2011) is to model the logarithm of the baseline cumulative hazard function as a natural cubic

spline function of log time, so the cumulative general function of the baseline hazard hj(tj) of the previous

Chapter 4 is approximated by a spline function. For a hazard rate such as

θhj(tj |x) = λj(tj)× θ0,j (5.13)

Royston and Lambert (2011) show that the PH spline model with fixed covariate vector x may be

written as

ln θhj(tj |x) = ln
∧
0,j

(t) + β′x = s(zt) + β′x (5.14)

where θhj(tj |x) represents the cumulative subhazard function of jth cause conditional on x observables.

The ln baseline cumulative hazard function ln
∧

0,j(t) can be written as a natural cubic spline function of

log time, where the natural cubic line splines are defined as cubic splines constrained to be linear beyond

boundary knots {kmin, kmax}. Such knots are placed at the extreme observed z-values. In addition, m

internal knots k1 · · · km are specified, with k1 > kmin and km < kmax. For three internal knots (m = 3), ,

Royston and Lambert (2011) suggest that the natural cubic spline may be written as

s(z) = γ0 + γ1z + γ2ν1(z) + γ3ν2(z) + γ4ν3(z) (5.15)

where the ith basis function is defined for i = 1, 3 as

νj(z) = (z − ki)3+ − γi(z − kmin)3+ − (1− γi)(z − kmax)3+ (5.16)

and

γi =
(kmax − ki)

(kmax − kmin)
(5.17)

(z − a)3+ = max{0, (z − a)3} (5.18)

As Royston and Lambert (2011) mention the ”curve complexity is governed by the number of degrees

of freedom, which equals m+ 1”, in this case four since we considered two knots that are placed in the ln

time function at the 33 and 67 centiles of the distribution of the uncensored log survival times.

Results from parametric estimation

We run and discuss results of the model that was discussed in Chapter 4. The model includes three

levels of covariates we are interested in exploring: (i) competition proxies (final product from new and

old drugs and competition within the R&D process from potential competitors); (ii) alliances (log of

the region-therapeutic area average number of firms collaborating, region-therapeutic area average of big
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firm participation, region-therapeutic area average of academia participation, and interaction between

the log number of firms and the presence of a big firm in the alliance); and, (iii) market size (proxied by

region-level fixed effects). The model also controls for therapeutic level fixed effects. This model does not

fail the linktest and respect the proportionality assumption.

We use a flexible parametric function to approximate the baseline hazard by using two modelling

approaches. First, we consider two separate baselines, one for each of the causes - market launch and

failure - to allow the shape of the baseline hazard to vary between these two types of events. Secondly,

we include a non-linear effect of log time on the baseline hazards and their time-dependent effects. We

have used 2 degrees of freedom (d.f.) for the baseline and only 2 d.f. for the time-dependent effects on

the events of interest). The model failed to converge when using more than 2 d.f. for the time-dependent

effects. This failure is likely to be due to there being a small number of projects in some markets with

these events.

Table 5.1 reports estimation results for the subhazard rates of the semi-parametric competing risks

model for NCEs and biologics. The results refer to the reference case region USA, year 1990, and thera-

peutic main group of otologicals and ophthalmologicals. The magnitude of the estimations is not different

from estimation results for the hazard of failure in Chapter 4, in what regards to the covariates of in-

terest competition, alliances and market size. However, individual parameters are almost impossible to

interpret, and so we use predictions to infer about the effect of our characteristics of interest.
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Table 5.1. Parameter estimation results: Competing risks model with spline function

Covariates Parameter estimates

NCEs Biologics

Market launch 1.342 0.65

(-0.411) (-0.354)

Failure 0.602* 0.257**

(-0.185) (-0.142)

Young drugs 1.003** 0.993

(-0.00148) (-0.0041)

Old drugs 0.996* 0.999

(-0.00191) (-0.0062)

Potential competitors 0.998** 1.003

(-0.00077) (-0.0022)

ln firms 0.946 1.025

(-0.0663) (-0.199)

Big firm 1.105* 1.12

(-0.12) (-0.121)

Academia participant 1.026 1.127

(-0.0573) (-0.169)

Big firm ∗ ln firms 0.742*** 0.620**

(-0.0558) (-0.128)

Restricted cubic spline (rcs) function used for the baseline hazard rate

rcs market1 3.138*** 3.420***

(-0.0566) (-0.2)

rcs market2 1.119*** 1.112***

(-0.0101) (-0.0307)

rcs failure1 3.846*** 4.078***

(-0.147) (-0.407)

rcs failure2 0.992 0.901**

(-0.0169) (-0.0379)

Time-dependent effects

d rcs market1 3.138*** 3.420***

(-0.0566) (-0.2)

d rcs market2 1.119*** 1.112***
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(-0.0101) (-0.0307)

d rcs failure1 3.846*** 4.078***

(-0.147) (-0.407)

d rcs failure2 0.992 0.901**

(-0.0169) (-0.0379)

Fixed effects: region, therapeutic areas

Notes. Exponentiated coefficients; Standard errors in parentheses.

* p <. 10, ** p <. 05, *** p <. 01

The results refer to the reference case country USA,

year 1990, and category of otologicals and ophthalmologicals.

Therapeutic level parameter estimates available upon request.
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Table 5.2. Simulated NCEs across regional markets - descriptive statistics

Region NCEs Births Duration Prob(no event) Prob(market launch) Prob(failure)

mean sd mean sd mean sd mean sd mean sd mean sd

USA 913.38 33.90 251.67 15.70 9.791372 1.741007 0.11097 0.029486 0.400754 0.038463 0.499816 0.006404
Japan 405.61 22.40 202.70 13.85 7.493668 0.955991 0.201202 0.055379 0.345777 0.024121 0.502513 0.006029
EMA 776.49 31.45 255.36 15.80 9.350002 1.930296 0.109543 0.037549 0.393139 0.043657 0.503527 0.009827

EMAP 419.13 25.45 198.95 15.85 7.701065 1.008116 0.135431 0.036781 0.35098 0.026472 0.499643 0.00537
Others 517.38 27.25 246.38 18 7.385184 0.505511 0.107732 0.032101 0.346431 0.016456 0.502914 0.008871

Notes. Average and standard deviations calculated from 200 Monte-Carlo simulations.
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Table 5.3. Simulated NCEs across regional markets - Testing mean pairwise differences (t-tests)

NCEs Births

Region Japan EMA EMAP Others Japan EMA EMAP Others

USA 0.0019 *** 0.0303 ** 0.0009 *** 0.0405 ** 0.3696 0.8644 0.6311 0.9324
Japan 0.0009 *** 0.8827 0.6008 0.1982 0.9813 0.6852
EMA 0.0059 *** 0.1707 0.5058 0.9091

EMAP 0.7634 0.7768

Duration Prob(no event)

Region Japan EMA EMAP Others Japan EMA EMAP Others

USA 0.0005 *** 0.1782 0.0001 *** 0.0001 *** 0 *** 0.7777 0.0003 *** 0.589
Japan 0.0014 *** 0.6958 0.6904 0 *** 0 *** 0 ***
EMA 0.001 *** 0.0008 *** 0 *** 0.7793

EMAP 0.1905 0 *** 0.0006 ***

Prob(market launch) Prob(failure)

Region Japan EMA EMAP Others Japan EMA EMAP Others

USA 0.0001 *** 0.2513 0 *** 0 *** 0.3468 0.1823 0.9526 0.4103
Japan 0.0003 *** 0.7078 0.9203 0.8044 0.0439 ** 0.8523
EMA 0.0004 *** 0.0002 *** 0.4469 0.9013

EMAP 0.48 0.0961 *

Notes. * p <. 10, ** p <. 05, *** p <. 01
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Table 5.4. Simulated Biologics across regional markets - descriptive statistics

Region Biologics Births Duration Prob(no event) Prob(market launch) Prob(failure)

mean sd mean sd mean sd mean sd mean sd mean sd
USA 699.16 29.23 1.26 1 9.777629 2.016145 0.18241 0.064694 0.373276 0.051612 0.529728 0.015211

Japan 563.34 50.05 1.14 1.15 7.511153 1.00361 0.165529 0.068542 0.315059 0.023823 0.532519 0.011875
EMA 629.06 19.20 1.31 1.2 9.419939 2.217615 0.169516 0.058415 0.367424 0.061007 0.531979 0.012952

EMAP 302.76 59.79 1.10 0.8 7.567262 0.977185 0.147579 0.066156 0.316199 0.024876 0.529573 0.010635
Others 350.27 45.15 1.78 0.7 7.334253 0.696551 0.207292 0.05392 0.311137 0.02533 0.539259 0.013113

Notes. Average and standard deviations calculated from 200 Monte-Carlo simulations.
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Table 5.5. Simulated Biologics across regional markets - Testing mean pairwise differences (t-tests)

Biologics Births

Region Japan EMA EMAP Others Japan EMA EMAP Others

USA 0.0094 *** 0.0324 ** 0.0144 ** 0.0126 ** 0.0003 *** 0.7975 0.0013 *** 0.0406 **
Japan 0.0066 *** 0.0322 ** 0.4512 0.0098 *** 0.0584 * 0.3928
EMA 0.011 ** 0.0042 *** 0.0144 ** 0.0042 ***

EMAP 0.1324 0.1344

Duration Prob(no event)

Region Japan EMA EMAP Others Japan EMA EMAP Others

USA 0.0029 *** 0.4654 0.0089 *** 0.0018 *** 0.0677 * 0.2631 0.1966 0.0625 *
Japan 0.0369 ** 0.6194 0.4346 0.3814 0.5585 0.0229 **
EMA 0.0561 * 0.0065 *** 0.4867 0.0425 **

EMAP 0.553 0.0093 ***

Prob(market launch) Prob(failure)

Region Japan EMA EMAP Others Japan EMA EMAP Others

USA 0.002 *** 0.6451 0.0072 *** 0.0013 *** 0.9825 0.5738 0.8454 0.1084
Japan 0.032 ** 0.546 0.2963 0.6196 0.9284 0.2953
EMA 0.0528 * 0.004 *** 0.2995 0.442

EMAP 0.4778 0.2292

Notes. * p <. 10, ** p <. 05, *** p <. 01
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Table 5.6. Main therapeutic groups: Anatomical Therapeutic Chemical Classification

ATC code Description

A Alimentary tract and metabolism
B Blood and blood forming organs
C Cardiovascular system
D Dermatologicals
G Genito-urinary system and sex hormones
H Systemic hormonal preparations, excluding sex hormones and insulins
J Antiinfectives for systemic use
L Antineoplastic and immunomodulating agents
M Musculo-skeletal system
N Nervous system
P Antiparasitic products, insecticides and repellents
R Respiratory system
S Sensory organs
V Various

Notes. EphRMA classification
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Table 5.7. Simulated NCEs across regions and therapeutic groups - descriptive statistics

Therapeutic group Region NCEs Births Duration Prob(no event) Prob(market) Prob(failure)

mean sd mean sd mean sd mean sd mean sd mean sd

A USA 54.949 30.207 1.725 1.135 8.930 3.057 0.122 0.083 0.385 0.084 0.508 0.063

Japan 30.037 20.807 1.477 0.750 7.167 2.928 0.193 0.111 0.339 0.105 0.504 0.100

EMA 51.282 30.455 1.689 1.443 8.208 3.182 0.110 0.080 0.369 0.093 0.509 0.072

EMAP 24.957 17.037 1.979 1.266 7.339 2.933 0.145 0.094 0.344 0.103 0.502 0.100

Others 18.689 11.967 1.170 0.143 7.487 3.081 0.083 0.072 0.348 0.108 0.500 0.104

B USA 19.498 11.225 1.812 0.758 9.659 2.584 0.118 0.054 0.399 0.062 0.504 0.031

Japan 10.924 7.517 1.339 0.200 7.474 2.763 0.204 0.093 0.349 0.091 0.509 0.074

EMA 17.112 9.876 1.614 0.497 9.460 3.144 0.109 0.047 0.394 0.072 0.504 0.040

EMAP 6.124 4.089 1.442 0.402 7.831 2.824 0.162 0.087 0.355 0.097 0.499 0.091

Others 4.303 3.098 1.113 0.162 6.749 2.915 0.116 0.081 0.326 0.115 0.494 0.122

C USA 84.428 55.409 3.905 4.835 8.348 3.433 0.166 0.095 0.360 0.102 0.497 0.091

Japan 32.001 23.080 1.907 1.779 7.393 2.873 0.253 0.109 0.342 0.100 0.502 0.095

EMA 66.327 45.306 3.206 2.312 7.239 2.802 0.166 0.089 0.341 0.100 0.503 0.092

EMAP 31.937 22.427 2.288 1.097 7.554 2.696 0.189 0.089 0.346 0.092 0.504 0.086

Others 128.431 91.771 13.049 15.533 6.838 2.901 0.123 0.070 0.330 0.110 0.499 0.111

D USA 24.962 14.714 1.390 0.346 8.490 3.270 0.067 0.058 0.370 0.097 0.502 0.083

Japan 33.517 23.570 2.051 2.031 6.838 2.903 0.121 0.104 0.330 0.109 0.501 0.108

EMA 33.048 19.055 1.567 1.178 8.370 2.893 0.057 0.051 0.375 0.085 0.508 0.065

EMAP 7.670 5.379 1.224 0.202 6.878 2.906 0.066 0.067 0.332 0.108 0.502 0.104

Others 15.621 10.315 1.423 0.429 7.411 2.659 0.061 0.059 0.347 0.093 0.500 0.090

G USA 12.536 7.889 1.334 0.415 7.916 3.293 0.098 0.093 0.357 0.104 0.503 0.089

Japan 4.483 2.990 1.060 0.048 7.660 2.691 0.090 0.095 0.348 0.095 0.495 0.100

EMA 14.430 9.452 1.630 0.824 7.247 2.860 0.097 0.081 0.344 0.100 0.505 0.091

EMAP 7.428 5.118 1.212 0.105 7.308 2.794 0.103 0.102 0.341 0.103 0.495 0.107

Others 9.058 6.321 1.470 0.367 6.939 2.889 0.081 0.082 0.335 0.107 0.500 0.103

H USA 12.982 8.283 1.911 1.063 7.953 3.321 0.127 0.085 0.358 0.109 0.500 0.101

Japan 2.134 1.681 1.207 0.053 6.740 2.968 0.268 0.114 0.323 0.117 0.496 0.125

EMA 10.759 6.175 1.313 0.224 8.321 3.082 0.150 0.077 0.373 0.085 0.515 0.045

Others 12.034 8.536 2.984 1.122 7.198 2.761 0.120 0.074 0.338 0.103 0.497 0.105
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J USA 51.508 26.031 1.317 0.353 10.742 4.356 0.107 0.081 0.422 0.094 0.495 0.065

Japan 8.930 6.714 1.253 0.245 6.756 2.897 0.248 0.131 0.325 0.115 0.496 0.122

EMA 45.828 24.098 1.927 1.580 9.324 3.519 0.117 0.082 0.394 0.089 0.505 0.061

EMAP 19.795 13.776 1.992 1.564 7.208 2.991 0.152 0.102 0.339 0.110 0.498 0.110

Others 16.642 10.778 1.486 0.453 7.591 2.899 0.129 0.086 0.353 0.096 0.506 0.082

L USA 75.787 37.121 1.482 0.505 12.134 4.058 0.096 0.066 0.449 0.075 0.492 0.048

Japan 32.340 21.719 3.811 1.317 7.364 2.890 0.217 0.107 0.345 0.100 0.506 0.090

EMA 58.446 29.090 2.533 1.365 10.787 3.472 0.100 0.060 0.427 0.070 0.502 0.038

EMAP 80.132 53.522 9.335 8.215 8.637 4.048 0.132 0.094 0.370 0.116 0.493 0.102

Others 16.309 8.858 1.326 0.206 8.031 3.907 0.103 0.082 0.359 0.121 0.498 0.110

M USA 27.041 13.048 1.222 0.280 9.547 3.837 0.127 0.087 0.400 0.096 0.503 0.073

Japan 15.670 11.194 2.022 1.593 6.941 2.855 0.230 0.123 0.331 0.109 0.499 0.111

EMA 20.562 10.391 1.075 0.055 9.000 4.239 0.131 0.102 0.381 0.119 0.495 0.099

EMAP 8.322 5.402 1.251 0.127 8.070 3.235 0.147 0.104 0.355 0.106 0.495 0.101

Others 6.212 3.716 1.239 0.232 7.826 2.999 0.140 0.096 0.359 0.100 0.507 0.089

N USA 41.845 20.738 1.111 0.115 12.578 3.351 0.097 0.054 0.455 0.058 0.489 0.041

Japan 13.616 9.844 1.187 0.149 7.047 2.877 0.237 0.105 0.336 0.106 0.503 0.103

EMA 27.565 14.296 1.185 0.183 9.958 3.034 0.126 0.073 0.406 0.071 0.510 0.040

EMAP 9.878 6.239 1.074 0.069 7.736 2.938 0.153 0.078 0.356 0.098 0.505 0.089

Others 15.912 10.633 1.247 0.168 7.300 2.803 0.123 0.068 0.346 0.096 0.507 0.080

P USA 23.052 12.242 1.215 0.171 12.699 4.580 0.082 0.060 0.466 0.077 0.491 0.054

Japan 2.681 1.605 1.029 0.012 8.872 2.600 0.175 0.075 0.387 0.065 0.517 0.022

EMA 16.023 9.989 1.062 0.018 14.621 4.627 0.038 0.040 0.508 0.068 0.475 0.066

EMAP 3.878 1.948 1.009 0.006 10.364 2.906 0.091 0.050 0.424 0.057 0.511 0.032

Others 3.928 2.301 1.361 0.067 8.417 3.026 0.081 0.049 0.386 0.072 0.529 0.031

R USA 15.913 8.891 1.094 0.108 8.298 3.496 0.157 0.115 0.370 0.099 0.505 0.073

Japan 11.650 8.572 1.261 0.177 7.083 2.813 0.241 0.129 0.335 0.104 0.501 0.103

EMA 19.490 10.070 1.219 0.230 8.479 4.153 0.151 0.118 0.369 0.113 0.502 0.087

EMAP 8.253 6.079 1.099 0.100 6.752 2.901 0.178 0.126 0.325 0.115 0.495 0.122

Others 9.829 7.292 1.735 0.896 6.765 2.915 0.173 0.105 0.325 0.115 0.495 0.122

S USA 14.488 7.315 1.732 0.570 9.994 3.182 0.078 0.037 0.417 0.067 0.509 0.037

Japan 5.862 3.361 1.025 0.014 10.080 2.293 0.139 0.055 0.405 0.056 0.504 0.024

EMA 9.311 4.753 1.046 0.030 10.536 3.415 0.071 0.042 0.430 0.065 0.512 0.042
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EMAP 2.281 1.673 1.151 0.035 6.738 2.940 0.106 0.064 0.325 0.116 0.495 0.124

Others 3.070 2.061 1.414 0.197 7.456 2.760 0.067 0.038 0.351 0.092 0.506 0.072

Notes. Average and standard deviations calculated from 200 Monte-Carlo simulations.
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Table 5.8. Simulated Biologics across regions and therapeutic groups - descriptive statistics

Therapeutic group Region Biologics Births Duration Prob(no event) Prob(market) Prob(failure)

mean sd mean sd mean sd mean sd mean sd mean sd

A USA 29.347 16.084 8.865 0.072 9.239 3.393 0.202 0.147 0.365 0.095 0.544 0.070

Japan 5.475 3.622 2.443 0.061 7.580 3.078 0.106 0.064 0.325 0.102 0.541 0.098

EMA 20.443 11.802 6.857 0.070 8.619 3.469 0.171 0.109 0.353 0.098 0.544 0.076

EMAP 4.890 3.254 2.116 0.026 7.716 3.157 0.130 0.086 0.329 0.105 0.537 0.098

Others 4.503 3.090 2.122 0.026 7.657 3.067 0.186 0.107 0.323 0.102 0.544 0.098

B USA 12.539 7.156 4.561 0.056 10.144 2.805 0.211 0.146 0.382 0.070 0.533 0.034

Japan 4.111 2.925 2.174 0.041 7.783 2.799 0.288 0.163 0.325 0.091 0.553 0.045

EMA 8.285 4.793 3.288 0.040 9.888 3.034 0.250 0.103 0.374 0.076 0.534 0.034

C USA 21.744 12.783 7.410 0.139 10.282 3.541 0.170 0.110 0.385 0.087 0.527 0.068

Japan 2.225 1.471 1.066 0.019 10.019 1.754 0.125 0.059 0.359 0.052 0.507 0.095

EMA 25.217 17.427 12.519 0.157 8.365 3.278 0.186 0.114 0.339 0.103 0.539 0.080

EMAP 2.602 1.917 1.364 0.046 7.327 2.761 0.143 0.063 0.315 0.093 0.545 0.057

Others 16.600 13.787 10.644 0.256 6.764 2.969 0.314 0.124 0.286 0.116 0.534 0.134

D USA 13.480 8.151 5.193 0.082 9.410 2.858 0.219 0.118 0.366 0.075 0.541 0.041

Japan 4.581 3.439 2.496 0.055 7.009 3.043 0.218 0.159 0.309 0.101 0.542 0.106

EMA 14.158 9.422 6.422 0.072 8.262 2.963 0.229 0.124 0.338 0.092 0.548 0.069

Others 2.587 1.751 1.212 0.037 8.213 2.573 0.153 0.057 0.340 0.079 0.545 0.036

G USA 6.657 4.482 3.170 0.037 8.236 3.315 0.318 0.131 0.331 0.102 0.549 0.084

Japan 2.492 1.839 1.364 0.053 8.211 2.226 0.282 0.097 0.329 0.075 0.532 0.083

EMA 1.790 1.443 1.066 0.021 6.740 2.962 0.220 0.104 0.290 0.115 0.529 0.133

EMAP 1.909 1.387 1.015 0.009 8.422 2.211 0.251 0.089 0.335 0.070 0.533 0.074

H USA 3.931 3.136 2.372 0.045 6.751 2.919 0.228 0.104 0.289 0.113 0.531 0.132

Japan 1.793 1.402 1.033 0.014 6.754 2.959 0.171 0.088 0.293 0.115 0.527 0.132

EMA 4.210 3.235 2.366 0.051 7.067 2.889 0.218 0.093 0.303 0.105 0.541 0.099

J USA 44.747 22.917 7.811 0.058 10.594 4.300 0.155 0.132 0.396 0.107 0.524 0.079

Japan 7.034 5.484 4.155 0.034 6.745 2.902 0.163 0.138 0.292 0.112 0.527 0.130

EMA 30.939 16.336 7.623 0.057 9.627 4.041 0.160 0.125 0.374 0.107 0.534 0.077

EMAP 3.547 2.773 2.123 0.018 6.742 2.918 0.178 0.151 0.292 0.113 0.528 0.131

Others 6.011 4.591 3.540 0.067 6.824 2.970 0.211 0.176 0.297 0.110 0.530 0.132
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L USA 75.931 35.509 9.046 0.140 10.914 4.196 0.103 0.093 0.406 0.096 0.520 0.066

Japan 6.996 4.883 3.456 0.042 7.243 3.045 0.091 0.093 0.315 0.106 0.536 0.109

EMA 48.786 24.251 6.691 0.107 10.786 4.148 0.096 0.087 0.407 0.095 0.529 0.062

EMAP 5.068 3.074 2.123 0.019 9.268 3.458 0.028 0.020 0.356 0.101 0.511 0.094

Others 6.945 5.349 4.004 0.077 6.754 2.906 0.138 0.112 0.294 0.112 0.526 0.130

M USA 14.645 7.385 2.611 0.063 9.407 4.600 0.162 0.122 0.368 0.132 0.529 0.112

Japan 3.029 1.988 1.268 0.042 8.524 2.627 0.098 0.039 0.353 0.075 0.545 0.028

EMA 10.360 5.536 2.104 0.022 9.675 4.597 0.157 0.115 0.371 0.129 0.523 0.107

EMAP 2.021 1.592 1.174 0.035 6.744 2.957 0.152 0.082 0.293 0.114 0.527 0.132

Others 5.315 3.596 2.471 0.045 7.900 3.169 0.202 0.107 0.328 0.105 0.543 0.099

N USA 26.649 16.631 5.308 0.049 12.016 4.164 0.107 0.100 0.421 0.101 0.507 0.079

Japan 4.257 3.277 2.395 0.057 6.760 2.935 0.096 0.098 0.297 0.113 0.524 0.130

EMA 19.518 11.560 6.931 0.078 9.250 3.211 0.122 0.122 0.362 0.093 0.535 0.067

EMAP 1.925 1.501 1.102 0.023 6.751 2.963 0.151 0.081 0.293 0.115 0.527 0.132

Others 3.363 2.687 2.052 0.020 6.756 2.926 0.243 0.108 0.289 0.113 0.532 0.132

P USA 17.349 9.724 1.101 0.024 14.307 4.764 0.074 0.089 0.487 0.095 0.497 0.094

EMA 15.061 8.939 1.004 0.005 13.862 4.756 0.065 0.075 0.484 0.095 0.499 0.092

Others 2.847 1.789 1.022 0.011 8.381 3.315 0.175 0.123 0.354 0.089 0.569 0.054

R USA 6.014 4.681 3.469 0.044 6.959 2.892 0.227 0.098 0.298 0.108 0.538 0.111

Japan 1.916 1.501 1.128 0.026 6.759 2.958 0.171 0.088 0.292 0.114 0.529 0.133

EMA 5.818 4.419 3.224 0.043 6.985 2.960 0.224 0.106 0.301 0.107 0.542 0.110

Others 2.267 1.845 1.369 0.054 6.758 2.970 0.243 0.110 0.289 0.115 0.531 0.133

S USA 2.532 1.619 1.053 0.017 8.848 2.610 0.196 0.063 0.357 0.073 0.546 0.030

Japan 1.832 1.451 1.064 0.023 6.747 2.954 0.177 0.089 0.292 0.115 0.528 0.133

EMA 1.399 0.555 0.000 0.000 13.333 5.916 0.107 0.168 0.481 0.129 0.519 0.129

Notes. Average and standard deviations calculated from 200 Monte-Carlo simulations.
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Table 5.9. Simulated NCEs across regions and therapeutic areas - Testing mean pairwise differences (t-tests)

Therapeutic group Region NCEs Births

Japan EMA EMAP Others Japan EMA EMAP Others

A USA 0.0146 ** 0.8133 0.0197 ** 0.0032 *** 0.1774 0.8643 0.2033 0.0211 **

Japan 0.0833 * 0.5822 0.0426 ** 0.38 0.5378 0.0314 **

EMA 0.1106 0.0062 *** 0.309 0.0401 **

EMAP 0.4496 0.3787

B USA 0.1264 0.6113 0.0136 ** 0.0233 ** 0.4159 0.7706 0.0517 * 0.033 **

Japan 0.0455 ** 0.2865 0.1167 0.3708 0.2589 0.1195

EMA 0.0801 * 0.6869 0.2641 0.0557 *

EMAP 0.2795 0.7469

C USA 0.135 0.6113 0.1445 0.4623 0.1846 0.6952 0.1905 0.4101

Japan 0.1339 0.9962 0.2784 0.186 0.8795 0.2903

EMA 0.0559 * 0.4608 0.0597 * 0.4444

EMAP 0.2569 0.2596

D USA 0.5283 0.3968 0.0035 *** 0.1104 0.2976 0.4784 0.0269 ** 0.3648

Japan 0.9791 0.0654 * 0.2035 0.6272 0.057 * 0.1684

EMA 0.0101 ** 0.0312 ** 0.0166 ** 0.0833 *

EMAP 0.0452 ** 0.0586 *

G USA 0.0928 * 0.6292 0.0755 * 0.206 0.1862 0.3147 0.2237 0.4686

Japan 0.2331 0.2777 0.2878 0.2141 0.3063 0.307

EMA 0.2389 0.259 0.2117 0.2577

EMAP 0.3139 0.3599 0.3136

H USA 0.1871 0.805 0.102 0.9305 0.2485 0.6843 0.1359 0.9667

Japan 0.1986 0.391 0.1921 0.175 0.391 0.1952

EMA 0.1109 0.8649 0.065 * 0.5781

J USA 0.0496 ** 0.594 0.1887 0.0596 * 0.0426 ** 0.4107 0.8822 0.4609

Japan 0.0967 * 0.203 0.2044 0.181 0.281 0.3441

EMA 0.2854 0.1765 0.6579 0.3527

EMAP 0.7323 0.5744

L USA 0.4483 0.4868 0.9597 0.3261 0.0212 ** 0.1215 0.2063 0.7157

Japan 0.4223 0.3011 0.0768 0.0306 ** 0.3491 0.0586 *

118



EMA 0.7428 0.25 0.2822 0.2595

EMAP 0.191 0.186

M USA 0.1182 0.0997 * 0.1199 0.0487 ** 0.6824 0.3638 0.285 0.1512

Japan 0.389 0.3144 0.1217 0.5378 0.3005 0.1321

EMA 0.1463 0.0406 ** 0.3512 0.1283

EMAP 0.5388 0.4396

N USA 0.0136 ** 0.0124 ** 0.0153 ** 0.0203 * 0.6373 0.0998 * 0.0978 * 0.8286

Japan 0.0227 ** 0.2954 0.1547 0.3795 0.0598 * 0.6217

EMA 0.0252 ** 0.0537 * 0.0725 * 0.5315

EMAP 0.1939 0.0928 *

P USA 0.3139 0.2092 0.2995 0.2988 0.4882 0.5033 0.4788 0.6394

Japan 0.5 0.5 0.5 0.5 0.5 0.5

EMA 0.5 0.5 0.5 0.5

EMAP 0.5 0.5

R USA 0.356 0.2968 0.3063 0.5157 0.1997 0.4364 0.376 0.9294

Japan 0.3008 0.2615 0.7416 0.8056 0.2124 0.6933

EMA 0.28 0.4025 0.1699 0.7325

EMAP 0.7371 0.7334

S USA 0.4642 0.5422 0.4437 0.4883 0.4039 0.425 0.4814 0.5556

Japan 0.3052 0.3894 0.553 0.5 0.517 0.7288

EMA 0.3498 0.4358 0.5495 0.7058

EMAP 0.5 0.5

Therapeutic group Region Prob(no event) Prob(market launch)

Japan EMA EMAP Others Japan EMA EMAP Others

A USA 0.113 0.9404 0.1728 0.0292 ** 0.016 ** 0.7595 0.0029 *** 0.0077 ***

Japan 0.031 ** 0.0029 *** 0.0014 *** 0.0425 ** 0.0348 ** 0.1005

EMA 0.0979 * 0.0108 ** 0.0016 *** 0.0052 ***

EMAP 0.202 0.5321

B USA 0.012 ** 0.6817 0.3846 0.0755 * 0.048 ** 0.8611 0.0974 * 0.1122

Japan 0.025 ** 0.0106 ** 0.0132 ** 0.1063 0.2009 0.1656

EMA 0.5466 0.2763 0.1062 0.0866 *

EMAP 0.6102 0.9264

C USA 0.0077 *** 0.916 0.1378 0.0116 ** 0.1334 0.1982 0.0549 * 0.0025 ***
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Japan 0.005 *** 0.001 *** 0.0014 *** 0.3318 0.2053 0.0217 **

EMA 0.1227 0.007 *** 0.0949 * 0.0082 ***

EMAP 0.088 * 0.2756

D USA 0.0045 *** 0.8547 0.1631 0.0715 * 0.8998 0.2532 0.0122 ** 0.0669 *

Japan 0.0033 *** 0.0145 ** 0.0012 *** 0.0034 *** 0.0113 ** 0.1127

EMA 0.1846 0.0667 * 0.0027 *** 0.0238 **

EMAP 0.5 0.1368

G USA 0.4647 0.956 0.4831 0.2004 0.1357 0.6014 0.2739 0.2558

Japan 0.35 0.5989 0.7711 0.2053 0.3909 0.4178

EMA 0.484 0.144 0.354 0.3217

EMAP 0.1925 0.3849

H USA 0.5255 0.7802 0.1011 0.2165 0.186 0.9402 0.0624 * 0.2893

Japan 0.4894 0.391 0.8807 0.1632 0.391 0.3876

EMA 0.078 * 0.3066 0.06 * 0.2626

J USA 0.3768 0.2666 0.9268 0.3736 0.0239 ** 0.0739 * 0.08 * 0.0466 **

Japan 0.5511 0.2436 0.1896 0.0274 ** 0.2654 0.2595

EMA 0.669 0.1728 0.0917 * 0.0595 *

EMAP 0.4901 0.9024

L USA 0.0097 *** 0.5143 0.0829 * 0.5495 0.0057 *** 0.0476 ** 0.0219 ** 0.0185 **

Japan 0.0043 *** 0.0096 *** 0.0025 *** 0.0023 *** 0.3834 0.5666

EMA 0.0726 * 0.6715 0.0517 * 0.0298 **

EMAP 0.0263 ** 0.194

M USA 0.2537 0.5999 0.3935 0.0975 * 0.1516 0.2725 0.109 0.0304 **

Japan 0.2251 0.0933 * 0.0363 ** 0.2491 0.4944 0.221

EMA 0.3506 0.0846 * 0.1401 0.0459 **

EMAP 0.1254 0.3421

N USA 0.0117 ** 0.0174 ** 0.7187 0.6027 0.0187 ** 0.0107 ** 0.0179 ** 0.0249 **

Japan 0.0307 ** 0.0151 ** 0.001 *** 0.0718 * 0.2683 0.0775 *

EMA 0.2729 0.1322 0.033 ** 0.0983 *

EMAP 0.5441 0.2322

P USA 0.9736 0.4826 0.7452 0.6975 0.3157 0.4929 0.3678 0.3138

Japan 0.5 0.5 0.5 0.5 0.5 0.5

EMA 0.5 0.5 0.5 0.5
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EMAP 0.5 0.5

R USA 0.0142 ** 0.1206 0.4089 0.0025 *** 0.1981 0.9323 0.2816 0.1483

Japan 0.0168 ** 0.0534 * 0.0068 *** 0.3292 0.3275 0.1538

EMA 0.5752 0.002 *** 0.3161 0.1537

EMAP 0.0196 ** 0.3763

S USA 0.0131 ** 0.0307 ** 0.0151 ** 0.001 *** 0.5315 0.1898 0.408 0.4441

Japan 0.2729 0.1322 0.5442 0.226 0.401 0.439

EMA 0.0122 ** 0.1179 0.3873 0.4223

EMAP 0.0356 ** 0.5

Therapeutic group Region Duration Prob(failure)

Japan EMA EMAP Others Japan EMA EMAP Others

A USA 0.0009 *** 0.0031 *** 0.0201 ** 0.0353 ** 0.2885 0.5672 0.0151 ** 0.0302 **

Japan 0.1221 0.0007 *** 0.0029 *** 0.1397 0.0347 ** 0.0756 *

EMA 0.4997 0.0001 *** 0.0058 *** 0.0131 **

EMAP 0 *** 0.5925

B USA 0.044 ** 0.0833 * 0.1927 0.235 0.6062 0.995 0.1868 0.1662

Japan 0.1618 0.0802 * 0.049 ** 0.6945 0.1633 0.1671

EMA 0.8767 0.4074 0.1797 0.1821

EMAP 0.0241 ** 0.9904

C USA 0.0359 ** 0.0007 *** 0.4432 0.2233 0.3969 0.1945 0.096 * 0.0152 **

Japan 0.0121 ** 0.1236 0.0055 *** 0.3266 0.1759 0.0335 **

EMA 0.213 0.0498 ** 0.084 * 0.0128 **

EMAP 0.2125 0.3316

D USA 0.0089 *** 0.0318 ** 0.0059 *** 0.0113 ** 0.3563 0.2992 0.0289 ** 0.1568

Japan 0.1444 0.0012 *** 0.0133 ** 0.2275 0.0112 ** 0.0739 *

EMA 0.1207 0.0203 ** 0.0096 *** 0.0642 *

EMAP 0.0059 *** 0.1711

G USA 0.2109 0.1803 0.2514 0.4043 0.1795 0.6798 0.3547 0.372

Japan 0.5028 0.3898 0.2967 0.1684 0.3923 0.3737

EMA 0.3773 0.6133 0.3457 0.3621

EMAP 0.6132 0.4302

H USA 0.07 * 0.2362 0.1665 0.391 0.1819 0.9604 0.0577 * 0.3815

Japan 0.3892 0.0646 * 0.2097 0.1708 0.391 0.3916
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EMA 0.1828 0.609 0.0577 * 0.3589

J USA 0.0627 * 0.0253 ** 0.0222 ** 0.2322 0.0677 * 0.1517 0.1592 0.1918

Japan 0.2481 0.075 * 0.0253 ** 0.0644 * 0.3418 0.3172

EMA 0.8772 0.3388 0.1522 0.1728

EMAP 0.1622 0.9608

L USA 0.0197 ** 0.0145 ** 0.0127 ** 0.332 0.3726 0.0091 *** 0.9064 0.6636

Japan 0.4896 0.0574 * 0.024 ** 0.7677 0.1805 0.2272

EMA 0.192 0.3111 0.2516 0.6824

EMAP 0.2178 0.4586

M USA 0.0842 * 0.014 ** 0.2059 0.6861 0.3607 0.2537 0.18 0.0785 *

Japan 0.2471 0.1297 0.0335 ** 0.3994 0.3613 0.1832

EMA 0.2611 0.0019 *** 0.1831 0.0802 *

EMAP 0.3029 0.3977

N USA 0.0055 *** 0.0027 *** 0.0206 ** 0.3321 0.4559 0.0308 ** 0.0934 * 0.4857

Japan 0.066 * 0.0135 ** 0.0297 ** 0.3221 0.1824 0.4697

EMA 0.2862 0.14 0.0762 * 0.3441

EMAP 0.0551 * 0.1751

P USA 0.2173 0.1255 0.5 0.5 0.5552 0.5033 0.5479 0.5694

Japan 0.5 0.5 0.5 0.5 0.5 0.5

EMA 0.5 0.5 0.5 0.5

EMAP 0.5 0.5

R USA 0.2761 0.1538 0.3773 0.2919 0.5122 0.6706 0.3244 0.1575

Japan 0.1342 0.3224 0.1753 0.9012 0.3677 0.174

EMA 0.3763 0.8837 0.3235 0.1518

EMAP 0.72 0.3732

S USA 0.3761 0.4162 0.4897 0.3495 0.6336 0.7342 0.4807 0.4944

Japan 0.39 0.3599 0.3975 0.0058 *** 0.4768 0.4908

EMA 0.5 0.5 0.4666 0.4804

EMAP 0.3975 0.5

Notes. * p <. 10, ** p <. 05, *** p <. 01
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Table 5.10. Simulated Biologics across regions and therapeutic areas - Testing mean pairwise differences (t-tests)

Region Japan EMA EMAP Others Japan EMA EMAP Others

A USA 0.0011 *** 0.0118 ** 0.0004 *** 0.0129 ** 0.0096 * 0.2646 0.0035 *** 0.0031 ***

Japan 0.0089 *** 0.8392 0.8659 0.0533 * 0.842 0.9

EMA 0.005 *** 0.0557 * 0.031 ** 0.0182 **

EMAP 0.9423 0.9978

B USA 0.3708 0.0038 *** 0.1315 0.3456

Japan 0.1896 0.3639

EMA

C USA 0.0046 *** 0.7813 0.0021 *** 0.765 0.0504 * 0.5344 0.0124 ** 0.7364

Japan 0.1209 0.3739 0.4525 0.1929 0.3739 0.4315

EMA 0.0875 * 0.7254 0.147 0.9

EMAP 0.3739

D USA 0.0229 ** 0.2851 0.0417 ** 0.1461 0.351 0.0375 **

Japan 0.1746 0.7015 0.5236 0.6276

EMA 0.3465 0.4024

G USA 0.0984 * 0.1896 0.0292 ** 0.3328 0.1549 0.1837

Japan 0.868 0.4226 0.9005 0.4226

EMA 0.9739 0.9802

EMAP

H USA 0.5321 0.4242 0.5113 0.1738

Japan 0.4624 0.5132

EMA

J USA 0.0607 ** 0.1215 0.0403 ** 0.0581 * 0.0628 * 0.6931 0.0086 *** 0.0597 *

Japan 0.052 * 0.1835 0.6169 0.0445 ** 0.1776 0.6013

EMA 0.0295 ** 0.0538 * 0.0101 ** 0.063 *

EMAP 0.2766

L USA 0.2661 0.2964 0.2491 0.2656 0.2795 0.38 0.173 0.2716

Japan 0.2459 0.3624 0.4993 0.2256 0.2474 0.3632

EMA 0.2186 0.2451 0.082 * 0.2144

EMAP 0.3592 0.12

M USA 0.3658 0.4399 0.4986 0.5214 0.4523 0.021 ** 0.465 0.833
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Japan 0.3164 0.8746 0.5231 0.6057 0.9755 0.6034

EMA 0.5252 0.5767 0.5978 0.5979

EMAP 0.4244 0.34

N USA 0.0206 ** 0.0446 ** 0.018 ** 0.0264 ** 0.0352 ** 0.3772 0.0121 ** 0.0501 *

Japan 0.024 ** 0.3739 0.6679 0.054 * 0.3739 0.61

EMA 0.0173 ** 0.044 ** 0.0256 ** 0.0777 *

EMAP 0.4661 0.4268

P USA 0.5203 0.2988 0.5774 0.1756

EMA 0.9955 0.5

R USA 0.7259 0.3739 0.3756 0.3427 0.6169 0.2766 0.3627 0.21

Japan 0.1821 0.2851 0.1746 0.1825 0.1748 0.1746

EMA 0.7015 0.1982 0.2661 0.2964

S USA 0.391 0.2227 0.2459 0.3624

Japan 0.1486 0.2451

EMA

Therapeutic group Prob(no event) Prob(market launch)

Region Japan EMA EMAP Others Japan EMA EMAP Others

A USA 0.0117 ** 0.2887 0.0135 ** 0.0308 ** 0.0007 *** 0.0621 * 0.0003 *** 0.0011 ***

Japan 0.0287 ** 0.83 0.6396 0.0178 ** 0.986 0.9958

EMA 0.028 ** 0.0654 * 0.0136 ** 0.0353 **

EMAP 0.7601 0.9869

B USA 0.2936 0.0265 ** 0.0969 * 0.3971

Japan 0.5073 0.2179

EMA

C USA 0.0554 * 0.1912 0.012 ** 0.0663 * 0.0046 *** 0.0638 * 0.0001 *** 0.0126 **

Japan 0.0397 ** 0.3739 0.6322 0.011 ** 0.3739 0.8935

EMA 0.0098 *** 0.0622 * 0.0002 *** 0.0152 **

EMAP 0.3739 0.3739

D USA 0.208 0.4489 0.0938 * 0.0673 * 0.323 0.0553 *

Japan 0.386 0.5346 0.2208 0.6828

EMA 0.2963 0.3713

G USA 0.1719 0.1798 0.1393 0.113 0.1888 0.1189

Japan 0.8993 0.4226 0.9483 0.4226
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EMA 0.9466 0.9416

EMAP

H USA 0.1064 0.0008 *** 0.5086 0.4712

Japan 0.5 0.4509

EMA

J USA 0.4062 0.0108 ** 0.1848 0.0644 * 0.0196 ** 0.0206 ** 0.0038 *** 0.012 **

Japan 0.1833 0.9423 0.0057 * 0.0297 ** 0.1742 0.3769

EMA 0.1376 0.0883 * 0.0048 *** 0.0187 **

EMAP 0.0732 * 0.3362

L USA 0.0974 * 0.0866 * 0.9811 0.2862 0.2266 0.8774 0.1726 0.1792

Japan 0.2643 0.105 0.1097 0.2141 0.5159 0.349

EMA 0.8376 0.1965 0.1569 0.1706

EMAP 0.4432 0.6542

M USA 0.5211 0.0644 * 0.3695 0.5115 0.2984 0.3819 0.5058 0.4953

Japan 0.8644 0.3389 0.1054 0.2893 0.9416 0.4675

EMA 0.2863 0.1739 0.5045 0.4887

EMAP 0.3389 0.5081

N USA 0.1837 0.1584 0.8766 0.099 * 0.0045 *** 0.0762 * 0.0045 *** 0.0089 ***

Japan 0.3739 0.2521 0.0834 * 0.0064 *** 0.3739 0.3818

EMA 0.4328 0.2313 0.0065 *** 0.0371 **

EMAP 0.5899 0.3825

P USA 0.1826 0.2715 0.7813 0.1206 0.1209 0.3739 0.4525 0.7254

EMA 0.3759 0.3427 0.1821 0.2851

R USA 0.1746 0.1982 0.7015 0.3465 0.7015 0.3465 0.391 0.2227

Japan 0.391 0.2227 0.2079 0.2079 0.1658 0.1486

EMA 0.2079 0.1486 0.1869 0.866

EMAP 0.1896 0.4226

S USA 0.868 0.4226 0.9739 0.4229

Japan 0.9739 0.1089

EMA

Therapeutic group Duration Prob(failure)

Region Japan EMA EMAP Others Japan EMA EMAP Others

A USA 0.0003 *** 0.0307 ** 0.0001 *** 0.0008 *** 0.0027 *** 0.1764 0.0025 *** 0.0027 ***
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Japan 0.0141 ** 0.9794 0.9927 0.0331 ** 0.9924 0.9969

EMA 0.021 ** 0.465 0.0329 ** 0.0328 **

EMAP 0.833 0.9917

B USA 0.0615 * 0.3966 0.2085 0.3762

Japan 0.1531 0.4542

EMA

C USA 0.002 *** 0.0936 * 0.0009 *** 0.0151 ** 0.0196 ** 0.4788 0 *** 0.0171 **

Japan 0.0176 ** 0.3739 0.8203 0.0127 ** 0.3739 0.975

EMA 0.0006 *** 0.0179 ** 0 *** 0.0136 **

EMAP 0.3739 0.3739

D USA 0.0205 ** 0.2338 0.0634 * 0.1979 0.4475 0.054 *

Japan 0.1536 0.7154 0.3791 0.6408

EMA 0.36 0.3845

G USA 0.0058 *** 0.0959 * 0.0743 * 0.177 0.1826 0.1781

Japan 0.082 * 0.0198 ** 0.9979 0.4226

EMA 0.4226 0.9975

EMAP

H USA 0.5774 0.5774 0.4955 0.5232

Japan 0 *** 0.4701

EMA

J USA 0.0282 ** 0.028 ** 0.0166 ** 0.0237 ** 0.0701 ** 0.0838 * 0.0067 *** 0.0279 **

Japan 0.0043 *** 0.0111 ** 0.0286 ** 0.0609 * 0.1712 0.3655

EMA 0.1726 0.3752 0.0065 *** 0.0237 **

EMAP 0.3466

L USA 0.0271 ** 0.0804 * 0.1868 0.7873 0.4103 0.3604 0.1549 0.3765

Japan 0.2091 0.1532 0.1786 0.379 0.3354 0.4711

EMA 0.7352 0.3858 0.1461 0.3452

EMAP 0.3666

M USA 0.4355 0.7038 0.1911 0.4858 0.5217 0.455 0.4951 0.4877

Japan 0.5003 0.5018 0.154 0.5341 0.9891 0.4881

EMA 0.9216 0.45 0.4959 0.4789

EMAP 0.4997 0.4948

N USA 0.4999 0.4999 0.0045 *** 0.0983 * 0.0186 ** 0.1387 0.0185 ** 0.0987 *
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Japan 0.0044 *** 0.0028 *** 0.0064 *** 0.0141 ** 0.3739 0.3699

EMA 0.3739 0.3749 0.014 ** 0.06 *

EMAP 0.0063 *** 0.3692

P USA 0.1001 0.3659 0.4624 0.5

EMA 0.5231 0.1746

R USA 0.4244 0.5214 0.4986 0.5214 0.2656 0.2456 0.3615 0.4992

Japan 0.4986 0.3164 0.5756 0.2186 0.2451 0.3592

EMA 0.5767 0.5214 0.2815 0.2801

EMAP 0.6679 0.1616

S USA 0.6679 0.4661 0.6101 0.3133

Japan 0.1039 0.4399

EMA

Notes. * p <. 10, ** p <. 05, *** p <. 01
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VI. Appendix: Figures

Figure 5.3. Historical regional trends in the number of market launches

Figure 5.4. NCEs, historical trends in the number of market launches at therapeutic level
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Figure 5.5. Biologics, historical trends in the number of market launches at therapeutic level

Figure 5.6. NCEs, historical trends in the number of market launches at therapeutic level in the USA
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Figure 5.7. NCEs, historical trends in the number of market launches at therapeutic level in the EMA region

Figure 5.8. NCEs, historical trends in the number of market launches at therapeutic level in Japan
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Figure 5.9. NCEs, historical trends in the number of market launches at therapeutic level in the EMAP region

Figure 5.10. NCEs, historical trends in the number of market launches at therapeutic level in the rest of the world
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Figure 5.11. Simulated number of market launches for NCEs across regions
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Figure 5.12. Simulated number of market launches for biologics across regions
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(a) USA (b) Japan

(c) EMA+Canada+Switzerland (d) EMAP

(e) Others

Figure 5.13. Simulated number of market launches for new antineoplastic agents
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(a) USA (b) Japan

(c) EMA+Canada+Switzerland (d) EMAP

(e) Others

Figure 5.14. Simulated number of market launches of new vaccines across regions
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Figure 5.15. Biologics, historical trends in the number of market launches at therapeutic level in the USA

Figure 5.16. Biologics, historical trends in the number of market launches at therapeutic level in the EMA region
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Figure 5.17. Biologics, historical trends in the number of market launches at therapeutic level in Japan

Figure 5.18. Biologics, historical trends in the number of market launches at therapeutic level in the EMAP region
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Fig-
ure 5.19. Biologics, historical trends in the number of market launches at therapeutic level in the rest of the world
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Chapter 6

Measuring inequalities in pharmaceutical innovation in terms of unmet health need

I. Introduction

Pharmaceutical innovation has been concentrated in a small number of therapeutic categories. Since

2000, R&D investment has mainly targeted five therapeutic areas: (i) cancer, which accounts for more

than half of the total industry’s R&D spending (53.2%), followed by (ii) antibacterials and antimycotics

(18.4%), (iii) treatments targeting the central nervous system (15.5%), (iv) therapies targeting metabolism

conditions (8.8%) and, finally, (v) those to treat cardiovascular diseases (6.2%) (Pammolli et al., 2011).

Some of these therapeutic areas represent the most profitable markets for the industry (Acemoglu

and Linn, 2004; Lichtenberg, 2005; Civan and Maloney, 2006; Bhattacharya and Packalen, 2011), as they

target disease areas that affect mostly the high-income countries. The latest figures of global disease

burden suggest an overlap of the industry R&D decisions and the main causes of disability in Europe,

North America and Japan. They are respectively: cardiovascular and circulatory diseases, cancer, mus-

culoskeletal diseases and mental disorders (Murray et al., 2013).

However, these are not necessarily the disease areas presenting the highest global health need. The

majority of the world population lives in developing countries, for whom disease burden is mostly driven

by infectious diseases, such as diarrhoeal diseases and lower respiratory infections, and neonatal conditions

(Murray et al., 2013). However for these the market has sub-optimally delivered innovation (Trouiller

et al., 2002). There are also diseases affecting the developed world for which there is lack of dynamic

incentive mechanisms to promote the innovation. Some examples of neglected conditions are, namely, the

thyroid disease (Lancet, 2012b), tuberculosis (Lancet, 2012c), viral, fungal and bacterial infections facing

antimicrobial resistance (Smith and Coast, 2002; ECDC, 2013; DoH, 2012), and neurological diseases such

as Parkison’s disease and multiple sclerosis (Lancet, 2012a).

Therefore, there is a clear mismatch between the disease areas that have received more R&D investment

from the pharmaceutical industry and global health needs.

This mismatch derives from two main reasons detailed in Chapter 4. The first reason relates to the

intrinsic complexity of innovating in certain disease areas that consequently present higher level of failure

in the discovery process. Therapies targeting these diseases are scientifically challenging, pose substantial

safety and toxicity issues for the clinical development, and, compete with safe, cheaper, and readily

available drugs established in the market for a long time.

The second reason relates to the strategic behaviour of firms when pursuing R&D investment decisions.

These R&D strategies target areas that provide higher expected return on investment, larger market

opportunities and lower uncertainty (DiMasi et al., 1991; Joglekar and Paterson, 1986; BCG, 2008; PWC,

2011b). This results in a lack of investment in new medicines targeting diseases prevalent in less profitable

markets. These markets are unattractive to the industry because of lower willingness-to-pay and/or
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affordability of the patients, or the low number of cases that demand a new medicine (Trouiller et al.,

2002; Dukes, 2002; Drummond et al., 2007; Pecoul et al., 1999).

As a consequence, in the absence of optimal incentive mechanisms targeted at promoting innovation

in riskier or less profitable disease areas, the current model has failed to deliver innovations in therapeutic

areas with potentially large economic impact (Kremer, 2002; Kremer and Glennerster, 2004; Morton and

Kyle, 2012).

It is then crucial to understand the extent to which the current R&D investments translate into health

improvements and to assess who is benefiting from global innovation. It matters to understand whether

investment strategies bring value-for-money to health systems or if there is a more efficient and more

equitable allocation of resources that maximise the health and welfare benefits to populations. These

concerns are not only pertinent to health systems but also to both private and public R&D investment

initiatives, such as the Melinda and Bill Gates Foundation, Global Alliance for TB Drug Development,

and International AIDS Vaccine Initiative, and to the pharmaceutical industry.

In order to inform policies to better promote R&D incentives in neglected areas and address these

issues, it is critical to first identify the mismatches between pharmaceutical R&D strategies and the global

health needs over time.

Therefore, in this Chapter we propose to measure inequalities in global drug R&D activity in terms

of population health needs using measurement tools used in the vast literature in health inequalities.

This Chapter is organised in seven sections. The next section outlines the background literature. In

section III we explain the methods used for the empirical analysis. In section IV we describe the data

and variables used in the empirical analysis, and in section V we present the descriptive statistics. This is

followed by a section that examines the results of concentration curves and concentration indices. Finally,

section VII concludes with a discussion and interpretation of the results.

II. Background and literature

The meaning of ”health need” is quite debatable and subject to considerable discussion in the literature.

This debate is rooted in the various philosophical theories of social justice on the way in which welfare

economists appraise the distribution of health benefits across populations (Culyer and Wagstaff, 1993;

Wagstaff and Van Doorslaer, 2000; Williams and Cookson, 2000).

For policy purposes, however, it matters to define and measure ”need” with a comparable and general

health outcome indicator. It is desirable to have health outcome indicators that reflect the general health

status of the individuals, and, at the same time, comprehensively characterise all health dimensions of a

particular health condition (Gold et al., 1996).

Given this challenging task, there is substantial debate in the literature about what relevant measures

should be used to assess health interventions from the perspective of the policy makers (as an example

please see Drummond et al. (2005); Harris (2005); Claxton and Culyer (2007); Barker and Green (1996))

as the standardly used health outcome measures (avoidable deaths, health adjusted life years outcomes,

number of deaths, amongst others) may not be desirable to use when assessing R&D priorities. Given this

gap in the literature, we intend with this analysis to bring this debate closer to the issue of the usefulness

of these measures to the distributional perspective of pharmaceutical R&D decisions.

To provide background to our study and address the gap of the literature, a narrative literature review

was carried out related to ascertaining the studies that have measured dispersion of innovation in terms
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of unmet global health need. A broad literature search was conducted in Medline, Embase and Cochrane

Library and additional records were identified from grey and established literature discussing the topic

namely the book byKremer and Glennerster (2004).

As we found, most of the literature explores anecdotally the idea of unequal distribution of biomedical

innovation activity but fails to present measures of relative dispersion when referring to unmet health

needs (Cicciò, 2004; Kremer and Glennerster, 2004; Finkelstein and Temin, 2008; Cohen et al., 2010; Fisk

et al., 2011).

Nevertheless, there are three studies in the literature that measure the dispersion of innovation activity

in terms of unmet health need (Catalá-López et al., 2011; Neumann et al., 2005; Viergever et al., 2013).

Two of them compare disease burden with the number of economic evaluations in Spain (Catalá-López

et al., 2011) and in the US and other developed countries (Neumann et al., 2005).

Catalá-López et al. (2011) identify the most common disease causes (cardiovascular diseases, infectious

diseases, malignant neoplasms and neuropsychiatric conditions) addressed by 477 economic evaluations

of healthcare interventions published in Spain between 1983 and 2008. They find an unclear statistical

relationship between the number of economic evaluations and the overall disease burden, whether disease

burden is measured as the years of lost life, years lived with disability or disability-adjusted life years.

Neumann et al. (2005) examine 512 published cost-utility analyses (CUAs) in the US and in other

developed countries, between 1976 and 2001, and compare rankings of the most common diseases covered

by the CUAs to the rankings of US disease burden. They find no complete overlap between these

two dimensions. They suggest that the leading causes of disease burden are mismatched by an over-

representation of studies focusing on cerebrovascular diseases, diabetes, breast cancer and HIV/AIDS,

and an under-representation of studies in depression and bipolar disorder, injuries, and substance abuse

disorders.

A third study explores the mismatch between disease burden and the number of clinical trials recorded

in the World Health Organisation (WHO) International Clinical Trials Registry Platform (ICTRIP)

(Viergever et al., 2013). They find evidence of a large concentration of health R&D on non-communicable

diseases (52.4 versus 7.4 trials in communicable, maternal, perinatal and nutritional conditions per million

disability-adjusted life years (DALYs)), when exploring 2,381 records of trials.

Our study relates closely to these contributions in that it measures the dispersion of pharmaceutical

innovation activity in terms of disease burden.

However, we depart from these contributions in several significant ways. First, we use global data

on pharmaceutical R&D activity, and we merge it with global health data from the Global Burden of

Disease Study (GBD) by the Institute of Health Metrics and Evaluation (IHME) (Murray et al., 2013).

Secondly, we use tools commonly used in the inequalities literature (LeGrand, 1978; Wagstaff et al., 1989,

1991; O’Donnell et al., 2008) to quantify the mismatch between unmet health need and pharmaceutical

R&D activity. Thirdly, we evaluate the dispersion of pharmaceutical R&D activity at three levels: i)

unmet health need measured by disease burden, ii) unmet health need measured by mortality, and iii)

willingness-to-pay/affordability. Lastly, we assess differences in this dispersion over time, i.e. between

1990 and 2010.

Based on the existing literature, we hypothesise that pharmaceutical R&D activity is concentrated

on more commercially attractive, not necessarily more needy, disease markets. We test how dispersion in

total R&D activity differs from the dispersion in the number of market launches, and how these relate to

global health needs and affordability over time.
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III. Methods for the measurement of inequalities

We use two tools that are referred to as the ”workhorse in health inequalities” (Fleurbaey and Schokkaert,

2009): concentration curves and concentration indices. In the next three sections we discuss the methods

used in the analysis and its application to the context of the pharmaceutical innovation. We do not

intend to construct an extensive exposition of these methodologies. For a comprehensive discussion and

guideline see Erreygers and Van Ourti (2011). In particular, in section A we discuss the concentration

curve, statistical significance testing and its potential limitations in the context of pharmaceutical R&D

activity, while in section B we outline the family of concentration indices discussed in the literature and

applied to this context.

A. The concentration curve

We develop a framework of analysis that looks at the share of drug R&D activity ri that corresponds to

the cumulative proportion of two variables: (i) health need di, by disease i; and (ii) market attractiveness

for disease i, mi.

Diseases i are ranked according to need from the less needy to the neediest diseases. A concentration

curve Lr(di) represents the cumulative proportion of R&D activity targeted at disease i, and di captures

the cumulative distribution of health need, that ranks diseases accordingly. The unit of analysis is the

disease area, meaning that di, mi and ri are measured and grouped at disease level.

The representation of an equality line at 45-degrees highlights the idea of inequalities ”in favor” of

the less needy (or neediest) if the curve lies everywhere above (under) the equality line. With this, we

can plot more than one curve in the same plane and perform comparisons over time.

However, graphical representation may be inconclusive since curves may cross the equality line several

times (Lambert, 2001). This may also be true for simultaneous curves plotted against each other. Given

that, we need robust decision rules to infer statistical dominance which are referred by the literature as

dominance testing rules (O’Donnell et al., 2008).

Dominance testing rules

The statistical significance of the differences between curves, and between them and the equality line,

can be inferred using dominance testing1. This feature is due to the relaxation of the restriction of in-

creasing monoticity, contrary to the Lorenz curve representation (Van Doorslaer and Van Ourti, 2011).

(O’Donnell et al., 2008). We will use two decision rules that have been theoretically presented and em-

pirically used to infer statistically significant differences between concentration curves. One decision rule

is named the multiple comparison approach (mca). It considers a curve is dominant if all the points are

statistically significantly different from those in another curve in one direction and with no statistically

significant difference in the other. The second decision rule requires statistically significant difference

between ordinates at all quantile points in order to assign dominance. This is consistent with the inter-

section union principle and reduces the probability of erroneously rejecting non-dominance at the cost

of reducing the power of detecting dominance when true (O’Donnell et al., 2008)2. However, we have

1Owen Oonnell developed a dominance test that can be freely accessed through World Bank website:
http://web.worldbank.org/ wbsite/external/topics/exthealthnutritionandpopulation/extpah/.

2Testing dominance when curves are dependent requires standard errors between ordinates allowing for dependence. A
variance-covariance matrix between curves has been derived to allow for dependence between curves Bishop, J. A., K. V.
Chow and J. P. Formby (1994). ”Testing for marginal changes in income distributions with Lorenz and concentration curves.”
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only performed the intersection union principle because of limitations about number of observations. It

should be remarked that our conclusions about dominance of concentration curves might be sensitive to

the type of dominance test used. For this reason, the discussion of our results include the results from

concentration curves and concentration indices.

B. The family of rank-dependent concentration indices

Concentration curves do not give a measure of the magnitude of inequality and dominance testing may

be inconclusive. In particular, when curves cross the equality line the analysis becomes inconclusive.

Therefore, a family of concentration indices has been developed to measure the magnitude of inequalities

when the analysis performed with concentration curves is inconclusive.

The concentration index I(r) can be generally defined as:

I(r) = f(ri)
n∑
i=1

ziri withf(ri) = (ar, br, µr, n) (6.1)

where ar and br correspond, respectively, to lower and upper bounds of the pharmaceutical R&D

activity variable, n and µr denote the population and population mean of R&D activity ri.

There are three main possible measures for concentration indices: (i) the Kakwani concentration index

C(r); (ii) the modified concentration index Ĉ(r); and the Erreygers index E(r).

The Kakwani index, C(r), equals twice the area between the concentration curve and the diagonal, and

reflects offsetting inequalities in different parts of the distribution (Wagstaff et al., 1991). It is represented

as:

C(r) =
2

(n2µr)

n∑
i=1

γiri (6.2)

This concentration index ranges from -1 to 1, with the sign of the ranking γi separating pro-needy from

pro-less needy pharmaceutical R&D effort: positive values (those observations with ranks γi smaller than
(n+1)

2 ) indicate inequalities in favour of needy disease groups. Similarly, in the case of the measure for

market attractiveness, positive values indicate inequalities in favour of the more commercially attractive

markets. This is given by
n∑
i=1

γiri that denotes the rank-dependent weighted sum of all ri levels. ri is

weighted by γi which ranks observations according to need variable di or variable market attractiveness

mi.

However, C(r) imposes some restrictions on the properties of the variables that can be used in the

analysis (Erreygers and Van Ourti, 2011). Not complying with these properties has profound implications

for the use and interpretation of the concentration index. These are properties that relate to the level of

independence of the numbers, cardinal invariance and mirror of the numbers that measure our variables of

interest. These properties have three characteristics. First, that C(r) can only give a measure of relative

inequality if variables are measured on a ratio scale, as the index must remain unchanged regardless of

possible transformations of the variables (Erreygers and Van Ourti, 2011). Secondly, when health variables

are bounded (in many cases are left bounded) it is difficult to compare populations with different mean

values that affect the bounds of the concentration index. Consequently, the concentration index must

International Economic Review: 479-488, Davidson, R. and J. Y. Duclos (1997). ”Statistical Inference for the Measurement
of the Incidence of Taxes and Transfers.” Econometrica 65(6): 1453-1465.
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reflect the lower and upper limits of the variables used. Finally, the degree of inequality of a variable is

expected to mirror the same inequality of its opposite sign (for instance, health/ill health variable). This

condition is only satisfied using unbounded variables (Erreygers and Van Ourti, 2011).

By construction, and as we will discuss further in section IV, our proxies for pharmaceutical R&D

activity and health need variables are left-bounded and fixed-scaled/ratio-scaled, meaning that the mea-

surement scale is unique with the zero point corresponding to a situation of complete absence (we are

assuming non-negative R&D activity).

This implies that we need to use a transformed concentration index that considers the boundeness

of variables (Clarke et al., 2002; Erreygers, 2009; Erreygers and Van Ourti, 2011). The modified con-

centration index Ĉ(r) (Wagstaff, 2005) and Erreygers index E(r) (Erreygers, 2009) are suggested by the

literature as the appropriate indices when variables do not comply with the properties discussed above

(Erreygers and Van Ourti, 2011). Given this, we devote particular attention to the results of Ĉ(r) and

E(r) that can be written respectively as:

Ĉ(r) =
2

n2(µr − ar)

n∑
i=1

γiri (6.3)

E(r) =
8

n2(br − ar)

n∑
i=1

γiri (6.4)

Ĉ(r) incorporates upper br and lower ar bounds of the measure of R&D activity ri in the index calcu-

lation to remedy the issues with the bounds and measurement scale of the variable (Wagstaff, 2005). E(r)

presents a slightly modified version of the standard concentration index Ĉ which satisfies all measurement

properties, including the mirror property.

We present in section VI the results for the standard Kakwani concentration index C(r), the modified

concentration index Ĉ(r) and the Erreygers index E(r).

IV. Variables and data

We have fully described the dataset that supports this analysis in Chapter 3. As explained, three key

variables at disease level are used in this analysis: (i) global pharmaceutical R&D activity, (ii) global

health need and (iii) global market attractiveness. The following section describes the measures chosen

to proxy global pharmaceutical R&D activity. In section B we detail the challenges and approaches to

proxy global health need. In section C we discuss the construction of a measure for disease global market

attractiveness to test the hypothesis of concentration of pharmaceutical R&D activity into more profitable

markets. Finally, in section D we describe the data sources used for this analysis.

A. Global pharmaceutical R&D activity

Ideally, we would measure pharmaceutical R&D activity with yearly research expenditures at disease level

and for each specific development phase of a project. However, pharmaceutical companies do not report

R&D spending at such detailed level. Also, many of the firms are not publicly traded and do not disclose

any financial information about their R&D spending.
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Despite these limitations, and given the available information, we measure pharmaceutical R&D ac-

tivity in two dimensions: (i) the overall R&D activity accomplished, by counting the disease-specific total

number of projects (as used in existing literature, for instance, (Civan and Maloney, 2006)); and (ii) the

successful R&D activity translated into new medicines, by counting the disease-specific market launches

(as used by Acemoglu and Linn (2004) and Lichtenberg (2005)). With these, our analysis accounts for

both the dispersion of total R&D activity and the dispersion at market launch level.

B. Global health need

The definition of health need imposes challenges, as exhaustively discussed in the literature (Culyer and

Wagstaff, 1993; Wagstaff and Van Doorslaer, 2000; Williams and Cookson, 2000), and ultimately rests on

value judgments (Gravelle et al., 2006).

In principle, it would be desirable to have measures of population health needs evaluated through

health losses attributable to fatal and non-fatal diseases, injuries and associated risks (Lopez and Murray,

1998; Mathers et al., 2008). Preferably, this measure would aggregate clinical and patient-reported health

in several domains thus accounting for all forms of disability (physical, psychological, mobility, functioning,

and wellbeing).

To address this, a number of different standardized self-assessment measurement instruments have

been developed to measure disability (Quality of Well-Being Scale, McMaster Health Index, EuroQoL

EQ-5D, WHO DAS-II). However, these are criticised for several reasons, including being incomplete on

the health dimensions contemplated, redundancy, prone to societal bias, and presenting huge practical

constraints in data collection, which undermine cross-population comparability (Salomon et al., 2003).

Due to such limitations we use two measures of health outcomes that allow performing the analysis

by considering the global nature of the pharmaceutical R&D activity.

As a first measure, we use cause-specific mortality to proxy health need. Mortality levels are readily

available from IHME for 187 countries for 291 diseases and injuries for the years 1990 and 2010 (IHME,

2013). They have the advantage of objectively measuring the number of deaths caused by a certain

condition across the globe, facilitating any study that requires cross-country comparisons.

This crude measure of health need presents, however, some drawbacks.

On the one hand, death registration is reported to be poor in some countries, with inaccurate defini-

tions of the cause of death, raising issues about the harmonisation of the death coding for cross-country

studies. Most recently, many efforts have been directed by the IHME initiative on the GBD study to

use verbal autopsies as an additional source of information on causes of death in the least developing

countries (IHME, 2013).

On the other hand, this is regarded as a one-dimensional measure that does not capture any non-

fatal dimension that may impact on the health of populations. There are conditions that, not being

mortal, persistently affect the quality of life of individuals and therefore ought to be captured in the

analysis of the burden of disease. Therefore, measures such as disability-adjusted life years (DALYs) have

been standardly used to quantify the burden of diseases, injuries and risk factors on human populations

in international cost-effectiveness studies. DALYs are a general composite comparable measure that

aggregate information at mortality and morbidity levels. DALYs are time-based measures that combine

years of life lost (YLL) due to premature death, and years of life lost due to time lived in states of poor

health or disability (YLD). One DALY can be interpreted as one lost year of ”healthy” life, and the

disease burden can be thought of as a measure of the gap between current health status and perfect
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health. YLL are calculated using the number of deaths at each age multiplied by an age specific global

standard life expectancy. YLD for a particular cause, in a particular time period, are estimated as the

number of incident cases in that period multiplied by the product of the average duration of the disease

and a weight factor3 (Murray and Acharya, 1997; Gold et al., 1996).

DALYs have been however criticised for the economic and ethical assumptions that are made in

the parameters used in the calculations. There are parameters related to the discounting factors, age

weighting, and the social preferences assumed to estimate disability weights (Mathers et al., 2006; Gold

et al., 1996; Barker and Green, 1996).

Despite this criticism, we have used DALYs for the readily available data for 187 countries for 291

diseases and injuries (IHME, 2013) and given the importance that DALYs play on the global health

agenda and policy development.

C. Disease market attractiveness

To develop a measure of disease market attractiveness, we construct a measure of national ability-to-pay

mi for each disease market i by combining national health need and a measure of national income, using

World Bank statistics on national Gross Domestic Product (GDP) per capita (measured in purchasing

power parity terms at 2005 constant US$), and aggregating national ability-to-pay as:

mij =
∑
ij

needijGDPj (6.5)

where needij = {deathsij , DALY sij} denotes ”need” for disease i in country j and GDPj refers to the

GDP per capita for country j. This measure assumes that all resources devoted to improving the health

of a country are diverted to a single disease. This is unrealistic as resources are scarce and allocated

according to policy decisions incorporated in national health programmes. However, we do not have

information on the distribution of resources across diseases. We assume resources could be distributed

in accordance to the health need related to a specific disease i of a particular country. Nonetheless, it

is likely that the distribution of resources across diseases and health need are correlated. Therefore, we

construct a second disease market attractiveness measure mij that is adjusted by the proportion of ”need”

of disease i on the total need of country j, needij =
∑
ij

needij∑
i
needi

. This is expressed by:

mij =
∑
ij

needijGDPj (6.6)

D. Sources of Information

We have built a unique dataset that matches data from three sources as explained in detail in Chapter 3:

(i) IMS Health R&D Focus database that provides information on global pharmaceutical R&D activity;

3The weight factor reflects the severity of the disease on a scale from 0 (perfect health) to 1 (death) (weights used for the
Global Burden Disease (GBD) study 2004 are listed in Annex Table 3.A6 of Mathers et al Mathers, C. D., A. D. Lopez and
C. J. L. Murray (2006). ”The burden of disease and mortality by condition: data, methods, and results for 2001.” Global
burden of disease and risk factors 1: 45-93). The GBD 2004 study used the following formula: W = 0.1658Y e−0.04Y where
Y is the age in that year and W is the value assigned to it relative to an average value of 1. Future years were discounted
at a 3% rate, so that a weighted year of life saved next year is worth 97% of a year of life saved this year.
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(ii) the GBD study from IHME that includes the most recent global estimates on cause and country-

specific DALYs and mortality levels for 1990 and 2010; and (iii) World Bank statistics on national GDP

per capita (measured in purchasing power parity terms at 2005 constant US).

IMS Health R&D Focus database is updated weekly and is typically used by pharmaceutical companies

to monitor R&D activities of the competitors. It provides a history of all global projects known to be

in development from the early-1980s to the present, compiling information from patent and regulatory

filings, presentations at medical conferences, press releases, and information disclosed to financial analysts

(IMS, 2011). This dataset registers the progress of compound projects across R&D development phases

(i.e., early discovery, Phase 1, Phase 2, Phase 3, and market/registration), and records the successful

compounds, which followed an approval process by the regulatory body and reached the market, as well

as the discontinued compounds that for several reasons failed to successfully go through the development

process (i.e., technological failure due to toxicity and efficacy tests, or economic failure due to profitability

issues or commercial risk).

Our data consists of 65,845 country-compound-indication projects at the date of extraction (October

2011) (please refer to Chapter 3 for complete explanation of the unit of analysis). Since compounds often

target several indications in more than one country simultaneously simultaneously, we have considered all

therapeutic indications targeted and all countries where the R&D is taking place, resulting that our unit

of analysis is at country-compound-indication level. We used GBD data to inform estimates of burden

of disease and mortality to proxy global population health need. This data is publicly available for 1990

and 2010 at disease-country level. IHME uses the International Classification of Diseases (ICD)4 coding

system to produce disease level estimates of burden and mortality for a list of 291 diseases and injuries

(IHME, 2009). The group of causes of death that relates to ”external causes” for car accidents, falls,

injuries, war, conflicts and intentional self-harm conditions were excluded from this analysis as these are

not typically addressed by pharmaceutical R&D activity.

Both datasets were matched by corresponding therapeutic indications to the ICD disease categories,

using the ICD-105 code system and online medical dictionaries. The final dataset includes a total of 59,301

country-compound-indication projects after matching non-missing therapeutic indications and ICD-10

codes (dropping 6,544 (0.099%) records with missing therapeutic indication). With this match and using

the categorisation of diseases and injuries used by the IHME, we measure the dispersion of global R&D

activity in terms of unmet health need.

V. Descriptive statistics

In this section, and before introducing the results in section VI, we describe how the data on health

need and pharmaceutical R&D activity is dispersed across the different diseases. We first start by de-

scribing how DALYs and mortality levels spread over the diseases. Then we examine the dispersion of

pharmaceutical R&D activity across diseases.

Unmet health need across the globe

If we plot mortality across disease areas ranking the five main global causes of death for 2010, respectively:

4The ICD is the international standard classification of medical conditions for all general epidemiological, health manage-
ment and clinical purposes. This coding system provides the basis for the compilation of national mortality and morbidity
statistics by WHO member states.

5version 2010 available in http://apps.who.int/classifications/icd10/browse/2010/en
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ischaemic heart disease (IHD), stroke, chronic obstructive pulmonary disease (COPD), lower respiratory

infections and lung cancer. However, DALYs show that diahrrea and HIV/AIDS present more disability

than COPD and lung cancer, representing two of the five main global causes of disease burden in 2010

(Table 6.1). These are findings of the most recent evidence on distribution of mortality and morbidity

across the globe (Murray et al., 2013).

When looking at these figures at regional level, the GBD study finds large variations in the numbers

and differences in terms of the causes of death and disability across high-income and low-income regions.

In high-income countries, such as North America and Western Europe, non-communicable diseases are the

major causes of death and disability, namely conditions related with the cardiovascular and circulatory

system (e.g. ischaemic heart disease, COPD, cerebrovascular diseases), mental health disorders (e.g.

major depressive disorder) and trachea, bronchus and lung cancers; whilst the low-income countries

(namely in Southeast Asia and Sub-Saharan Africa) commonly suffer from infectious and parasitic diseases

such as tuberculosis and lower respiratory infections. In the case of Sub-Saharan Africa, the three main

causes of death are respectively: HIV/AIDS, Malaria and Diahrrea (Table 6.2).

[Table 6.1 and Table 6.2 here]

However, there are regions showing structural changes in the epidemiological profile in the last two

decades. In Southeast Asia, Latin America and Caribbean, and North Africa and Middle East a larger

proportion of disease burden is nowadays attributable to NCD traditionally prevalent in the high-income

settings. In the Southeast Asia, diseases such as LRI, diarrheal diseases, tuberculosis and malaria that

were prevalent in the region 1990 were replaced by cerebrovascular diseases, IHD and COPD as main

causes of disease burden in 2010. In Latin America and Caribbean, diabetes emerges as the fifth cause

of death and MDD the fourth cause of disease burden in 2010. The epidemiological transition to NCD

is also clear in North Africa and Middle East, where IHD, MDD, stroke and low back pain prove to be

the four main causes of disease burden in the region in 2010, contrasting with LRI and diarrheal diseases

that were the first two causes of disease burden in the region in 1990 (Murray et al., 2013).

[Table 6.3 here]

Dispersion of R&D across diseases

R&D activity is markedly dispersed across diseases. Figure 6.1 suggests an inverse relationship between

disease burden and pharmaceutical R&D activity, when taking a snapshot of the R&D landscape in 2010.

Conditions with larger disease burden and higher mortality (red diamonds in the figure) receive barely a

few dozen pharmaceutical projects targeting such diseases (left-hand side figure). In 2010, for conditions

with higher mortality such as hemorrhagic and other non-ischaemic stroke (3,043,326 and 62 843 000

DALYs per million people), trachea, bronchus, lung cancers (2,835,852 and 33 405 000 DALYs per million

people), and diabetes mellitus (1,282,553 and 46 823 000 DALYs per million people), the total number of

pharmaceutical projects was approximately 167, 370 and 174, respectively.

At the same time, conditions associated with higher R&D activity present relatively lower mortality

and disease burden (green diamonds in the figure): other neoplasms are targeted in around 8,030 projects

(16 615 000 DALYs per million of people and 608,658 deaths); other endocrine and immune disorders are

targeted in approximately 3,388 projects, brain and nervous system cancers are targeted in around 2,100

projects, but present a negligible number of deaths and DALYs.

The same dispersion occurs for the number of new medicines that reach the market (right-hand side

figure). Outliers such as other neoplasms with 2,929 new therapies, other mental and behavioural disorders
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with 1,075, and other endocrine and immune disorders with 1,225 show incomparably low number of deaths

and DALYs, in relation to the large numbers for mortality and disability presented by hemorrhagic and

other non-ischaemic, trachea, bronchus, lung cancers, and diabetes mellitus.

At the end of the spectrum of dispersion of pharmaceutical R&D activity, there is a group of 53

disorders for which no novel therapies have been launched in the market in the last two decades, despite

the level of R&D activity and the relatively high disease burden (full list presented in technical appendix

V Table 6.4). In particular, no new therapies were developed to target preterm birth complications,

congenital heart, rheumatic heart disease, polycystic ovarian syndrome and acute glomerulonephritis,

and several neglected tropical diseases6.

Finally, the dispersion of pharmaceutical R&D activity is also clearly shown in the concentration of

R&D investments in fewer than 178 rare diseases. Amongst 6,800 rare and genetic diseases (including

neglected tropical diseases) listed by the Genetic and Rare Diseases Information Centre (GARD) of the

US National Institute of Health, data shows a concentration of R&D investment in approximately 178

disorders in the last two decades.

Less than twenty of those account for more than 52.5% of the total number of R&D projects targeting

rare diseases7 (list presented in Table 6.5). Among these, the conditions exhibiting the highest level of

R&D activity are retinopathy, lupus nephritis, dengue fever and li-fraumeni syndrome, and melanoma.

The dispersion illustrated by the descriptive statistics is clearly shown by the results for the concentration

curves and concentration indices, as we present in the next section.

VI. Results from concentration curves and concentration indices

In the following section, we examine the concentration curves and concentration indices for the two proxies

of R&D activity we use in this analysis: i) the total disease-specific number of R&D projects; and (ii) the

disease-specific number of market launches.

We have performed three types of analysis. In the first we have measured the dispersion of drug

innovation and R&D activity for the broad disease groups, i.e. CD and NCD (Section A). In the second we

have used as unit of analysis disease subcategories by selecting the four disease subcategories causing more

deaths and the four disease subcategories with higher disability in developed and developing countries

(Section B).8. We follow the burden of disease cause classification list presented by the GBD study9.

Additionally, and within the analysis for CD, we also present the special case of NTDs, given its public

health relevance. Finally, we have looked at the evolution of inequalities between 1990 and 2010 for

6such as food-borne trematodiases, trichuriasis, ascariasis and yellow fever have no therapies.
7Rare diseases are generally considered to be diseases that affect fewer than 200,000 people. This definition was included

by United States Congress in the Orphan Drug Act of 1983.
8For the developed countries: the top 4 causes of death are cardiovascular and circulatory diseases, neoplasms, chronic

respiratory diseases, and diarrheal diseases and LRI; the top 4 causes of disease burden are cardiovascular and circulatory
diseases, neoplasms, musculoskeletal disorders, and mental and behavioral disorders. For the developing countries: the top
4 causes of death are the same as the developed countries; the top 4 causes of disease burden are diahrreal diseases and LRI,
neonatal disorders, cardiovascular and circulatory diseases, and nutritional deficiencies. (Murray et al., 2013)

9The GBD 2013 Study classifies disease and injury causes using a tree structure. The first level of disaggregation comprised
three broad cause groups: Group I: Communicable, maternal, perinatal, and nutritional conditions; Group II: Noncommuni-
cable diseases; and Group III: Injuries. Each Group is divided into major subcategories. For example, cardiovascular diseases
and malignant neoplasms (cancers) are two major cause subcategories of Group II. Beyond this level, there are two further
disaggregation levels. The major cause sub-categories are closely based on the chapters of the ICD, with a few significant
differences (IHME, 2013)
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both the broad disease groups and disease subcategories causing highest mortality and morbidity, and

the particular case of NTDs.

We depict concentration curves that illustrate the cumulative percentage of R&D activity (y-axis)

against the cumulative percentage of DALYs, mortality and market attractiveness (x-axis). Dominance

testing (Table 6.6 and Table 6.7) and concentration indices (Table 6.8 and Table 6.9) are calculated ac-

cordingly, with special attention paid to the Kakwani C(r), modified concentration index Ĉ and Erreygers

index E. Detailed results are presented below.

In section C we investigate possible statistically significant changes between 1990 and 2010.

A. The two broad disease groups

There is a general concentration of pharmaceutical activity towards more needy disease areas.

This can be clearly seen when splitting the analysis into CD and NCD. These results are in line

with those found in the analysis of the dispersion of pharmaceutical R&D activity against DALYs and

mortality levels. Figures for both groups of diseases illustrate a concentration of R&D activity towards

more disabling/more fatal diseases over the period 1990-2010 - concentration curves for both years (1990

and 2010) lie under the equality line (Figure 6.2 and Figure 6.3).

[Figure 6.2 and Figure 6.3 here]

These figures also suggest different levels of inequality when comparing communicable diseases and

non-communicable diseases. The pro-disabling/pro-fatal concentration of R&D activity is more pro-

nounced in the group of communicable diseases than in the group of non-communicable diseases. These

conclusions apply to both measures of R&D activity, i.e. for the: (i) cumulative share of the total disease-

specific number of R&D projects (Figure 6.2), and the (ii) cumulative share of the disease-specific number

of market launches (Figure 6.3).

Regarding affordability, as suggested by the literature, pharmaceutical R&D activity is concentrated on

more commercially attractive disease groups (Acemoglu and Linn, 2004; Dubois et al., 2011; Lichtenberg,

2005). Interestingly, this inequitable distribution is only significantly different from the equality line

when mortality is used as a measure of health need (Figure 6.10 and Figure 6.11). This means that

R&D activity is more attracted by more pro-fatal than pro-needy diseases. Disability seems not to be

significantly correlated with the dispersion of R&D and affordability.

[Figure 6.10 and Figure 6.11 here]

This is shown by the 45-degree-line dominating the concentration curves for both years, presenting

larger concentration indices (Table 6.8). Indeed, these inequalities are more pronounced for Communicable

diseases than for NCD, as suggested by the larger values of the concentration indices for the group of CD

(Table 6.8).

[Table 6.8 here]

B. Disease subcategories

R&D activity has been concentrated on disease subgroups with higher mortality levels for the ranked

top four causes of death. The positive concentration indices (Table 6.7) confirm an unequal distribution

of R&D activity towards pro-fatal diseases, namely for the number of market launches. The exceptions
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are the chronic respiratory diseases, diarrheal diseases, lower respiratory infections and other infectious

diseases where insufficient observations are available to compute concentration indices. Concentration

curves cross the equality line. The figures with the corresponding concentration curves that depict the

distribution of pharmaceutical R&D activity across the TOP4 most global fatal diseases are provided in

the technical appendix IX (Figure 6.6 and Figure 6.7).

[Table 6.6 and Table 6.7 here]

[Figure 6.6 and Figure 6.7 here]

The pro-needy distribution of R&D activity is also suggested by the concentration curves (Figure 6.4

and Figure 6.5) and concentration indices (Table 6.9) for the disease subgroups that are the four highest

causes of disease burden10.

[Figure 6.4 and Figure 6.5 here]

For the disease subcategories of cardiovascular and circulatory diseases (1st cause of disease burden in

developed countries and 3rd in developing countries), neoplasms (2nd cause of disease burden in developed

world), musculoskeletal disorders (3rd cause of disease burden in developed countries), and diarrheal, lower

respiratory infections and other infectious disorders (1st cause of disease burden in developing countries),

there is a clear concentration of R&D activity on conditions with higher disease burden, as the curves

lie below the 45-degree-line (Figure 6.4 and Figure 6.5) and as confirmed by the positive concentration

indices (Table 6.9). For example, within the disease subgroup of musculoskeletal disorders, there are

more new therapies placed in the market for osteoarthritis compared with those for juvenile rheumatoid

arthritis. The same result is found for the total number of pharmaceutical projects and can be seen in

the technical appendix IX (Figure 6.8 and Figure 6.9).

[Table 6.8 and Table 6.9 here]

Concentration curves are unclear when assessing the direction of the inequality in two of the disease

subcategories with the highest burden of disease: mental and behavioural disorders (4th cause of disease

burden in developed countries) and neonatal disorders (2nd cause of disease burden in developing world)

as they cross the equality line. However, the positive concentration indices suggest a marked pro-needy

concentration of the R&D activity (Table 6.9). This is true for both the R&D activity measures of total

number of projects and number of new therapies in the market. These results hold when considering the

measure of affordability.

The particular case of Neglected Tropical Diseases11

Results suggest a clear concentration of innovation towards Neglected Tropical Diseases (NTD) with

higher mortality, whether measuring innovation by the number of total projects or available therapies in

10the top four diseases with the highest burden of disease (measured in DALYs): musculoskeletal discarders and mental and
behavioural disorders in the developed world; neonatal disorders and nutritional deficiency in the developing world (Murray
et al., 2013).

11The NTD are a group of parasitic and bacterial diseases that cause substantial illness and are endemic amongst the poorest
countries. According to the Centre for Disease Control and Prevention (CDC) and WHO, 17 diseases are part of this group,
including: Buruli ulcer, Chagas disease, Cysticercosis, Dengue fever, Dracunculiasis, Echinococcosis, Fascioliasis, African
Sleeping Sickness, Leishmaniasis, Leprosy, Lymphatic filariasis, Onchocerciasis, Rabies, Schistosomiasis, Soil-transmitted
helminthes, Trachoma, and Yaws. For the purpose of this analysis we also included Malaria in the group of NTD.
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the market. This is suggested by the dominance testing (Table 6.7) and the positive concentration indices

(Table 6.7).

However, the results are inconclusive when using DALYs. This seems to be because of two reasons.

First, mortality is a poor measure of need for the NTD affecting by far the developing world. The

ranking of the NTD in terms of associated DALYs does not overlap with the ranking of NTD in terms of

associated mortality. Lymphatic filariasis and Trichuriasis present 0% of global deaths but are responsible

for 0.11% and 0.026% of global DALYs in 2010, respectively. Second, results from dominance tests (Table

6.7) suggest that there is not necessarily a concentration of drug innovation and R&D activity in more

disabling diseases. This is expressed by the concentration curve (Figure 6.12) crossing the 45-degree line

showing a shift of the dispersion of innovation and R&D activity from relatively more disabling conditions

(Malaria, Leishmaniasis and Rabies) to relatively less disabling ones (Schistosomiasis and Filariasis). This

shows that the pharmaceutical industry has been targeting significantly more fatal, but not necessarily

more disabling NTD. Indeed, the industry has not been taking into account disability in the R&D decisions

targeting NTD or that mortality might more accurately predict the way the industry looks at this market.

[Figure 6.12 here]

These results emphasise the need for further discussion about the R&D decisions to target NTDs that

can deliver health improvements to populations.

C. What changed from 1990 to 2010?

When looking at the broad disease categories, for CD results suggest no significant changes over the last

two decades on the dispersion of innovation and R&D activity against need as suggested by the dominance

tests between the concentration curves of 1990 and 2010 (Table 6.6). These results hold when we measure

need with both DALYs and deaths. For NCD, however, results suggest there has been an increase over

time in the concentration of drug innovation and R&D activity towards more needy diseases (Table 6.6).

This change over time is explained by the increased burden of disease associated with NCD in developing

countries. Indeed, a closer look into the analysis reveals that the ranking of diseases according to disease

burden has significantly changed between 1990 and 2010, with the top disease burden drivers in developing

countries coinciding with those diseases that affect richer countries in 2010 (as illustrated in Table 6.2).

Therefore, while the strategy of the industry might still be purely driven by financial considerations,

the convergence in causes of mortality and morbidity between developing and developed countries is a

probable explanation behind the increased concentration towards pro-needy conditions over time.

When looking at the subcategory analysis, there are no significant changes over time (Table 6.7) as

confirmed by the non-statistically significant difference between the concentration curves depicting the

dispersion of innovation and R&D activity between 1990 and 2010. This also holds for the specific case

of the NTD.

VII. Discussion and conclusions

This paper is the first to measure inequalities in global drug R&D activity in terms of population health

needs. We have examined the distributional dimension of pharmaceutical R&D activity across diseases

using concentration curves and indices explored in the vast literature in health inequalities.

Three important conclusions are drawn from this analysis.
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First, the mismatch between need and innovation and affordability shows an inequality of innovation

in disease areas that have higher affordability and high mortality. The results are similar when assessing

inequalities in terms of DALYs. That said, the additional information on morbidities incorporated in the

measure of disease burden does not alter the results. This may imply that the industry does not account

for disease burden in the R&D decisions or that mortality might more accurately predict the way the

industry looks at the market.

The exception goes to the subcategory of diseases composed by the NTD to which conclusions change

depending on the measurement of need considered. There is an inequality of innovation favouring the

most fatal but not necessarily the most disabling NTD.

Second, inequalities have been unchanged in the last two decades. The significant redistribution of

innovation found in the group of NCD towards more profitable and most fatal NCD is masking a relatively

immutable dispersion of innovation between the nineties and 2010, when we consider the subcategories of

CD and NCD.

Third, disparities are unevenly distributed across diseases. Disparities are larger in the group of

CD that represent the biggest disease burden in LIC, and are relatively ”more needy” conditions in the

world panorama of health needs. In the last two decades, novel therapies were absent in 53 disorders,

some of them presenting high levels of mortality. For example, preterm birth complications accounts

for more than 77 thousand deaths; congenital heart anomalies for more than 225 thousand deaths and

rheumatic heart disease for about 300 thousand deaths. Disorders with high burden of disease such as

some musculoskeletal disorders, and several NTDs are still unresolved. This is because of the low ability

to pay for new therapies in low-income countries that suffer from these conditions (Acemoglu and Linn,

2004; Kremer, 2002; Lichtenberg, 2005), and the already effective (and cheap) treatment alternatives

available (schistosomiasis and soil transmitted helminths can be effectively controlled by drugs such as

praziquantel)12. At the other end of the spectrum of the distribution of the R&D activity, cancer receives

more than a half of global R&D investment. There are signals of a market expansion of these therapies in

the developed world. This could be associated with the redefinition of health technology assessment rules

for cancer therapy drugs in several European countries (Drummond and Mason, 2007), and with more

private health insurances advertising the inclusion of cancer drugs on the reimbursement formularies.

In conclusion, these results show evidence of profound disparities of pharmaceutical R&D activity in

terms of unmet health need across diseases. Further research is required to assess its determinants. These

disparities could be associated with multiple factors including the peculiarities of the disease pathways and

their clinical and scientific complexity, or the market conditions and strategic behaviour of pharmaceutical

companies. It could also be the result of policies and interventions targeted at the sector. These policies

comprise, among others, incentives to invest in research in certain diseases, through patenting, privileged

and fastest regulatory process (e.g. the orphan drug act), purchase commitments (such as the case of

pull-push commitment incentives for neglected diseases, cost-effectiveness rules for approval of drugs),

and safety regulatory rules. It seems pertinent to bring the policy debate towards the urgency for the

evaluation of the impact of these policies on the level of disparities acknowledged in the pharmaceutical

R&D activity (please see Chapter 2 for an insightful discussion on these factors).

With all these conclusions it should be remarked that equal distribution of R&D activity is not

necessarily desirable or expected. It is important to bear in mind that pharmaceuticals are a part of the

12Also, other external factors, namely sanitation conditions and hygiene conditions, are essential to the efficacy of new
therapies targeting, for instance, tetanus and hookworm diseases . Others, like diphtheria, depend on the efficacy of public
health interventions
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health production function, where other determinants are similarly important for the provision of health.

Nevertheless, examining discrepancies at this level helps to shed light on the discussion of how effective

R&D decisions have been in promoting better health outcomes across the world, and whether current

global public/private initiatives are focusing attention on health interventions that could generate the

most impact.

There are several caveats to our analysis. It is out of the scope of this analysis to assess structural

or causal relationships between the different dimensions assessed in this analysis. Further work on the

determinants of drug R&D activity may help inform the policy debate on more effective incentive schemes

to boost R&D in certain disease areas. A promising avenue of research is to consider the dynamic and

sequencing nature of the drug development by using the past history of R&D stages. By controlling

for R&D determinants extensively explored in the literature, this approach may help examining how

different determinants may affect the performance of the R&D activity, with important equity and welfare

implications.

As a last remark, it should be mentioned that among the caveats of this analysis, the measures

we use to quantify health need are controversial and may raise some issues about their international

comparability.

First, using mortality as a measure for health need assumes perfectly comparable death and diagnostic

records across the globe. Second, it disregards the large disease burden of disabling conditions such as

long-lasting conditions that include diabetes, mental health disorders, asthma, and epilepsy, as well as

non-fatal but, nonetheless, hugely debilitating diseases such as human african trypanosomiasis, lymphatic

filariasis and malaria.

Furthermore, composite measures like DALYs have not overcome the limitations around parameter

assumptions in their calculation, including the value judgments around choices for discount rates, and

the role of experts and local communities on the measurement of time preferences. Moreover, there is the

need for careful consideration of the role of DALYs in relation to equity and distributional concerns. The

use of the DALYs approach, in an attempt to target the use of resources to maximise the benefits gained,

is likely to help those who can most benefit, those whose their conditions are quantifiable, over and above

those who are in greatest need (Barker and Green, 1996). There is clear scope for further research on

measurement of health outcomes and improvements to measures like DALYs.

It would make sense to consider more refined measures of need, for instance at therapeutic indication

or sub-indication level to measure more accurately unmet need. However, and because global health

outcomes data is constructed and measured at disease level, there is no such data available. In order

to use so we would have to weigh the relative importance of each indication in explaining the burden

of disease of a disease group. Because there is no such one-to-one relationship between diseases and

indications (as the ICD-10 codes show), that attempt would always be arbitrary and so we have chosen

to structure our analysis at disease level.

Finally, this analysis could be enriched by assessing inequality in other dimensions, namely access and

distribution of therapies across regions and within countries.
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VIII. Appendix: Tables

Table 6.1. IHME, Top5 disorders with higher global mortality and disease burden in 1990 and 2010

Global DALYs - TOP5 disorders 2010 GBD IHME study

1990 2010

1. Lower respiratory infections 1. Ischaemic heart disease

2. Diahrrea 2. Lower respiratory infections

3. Preterm birth complications 3. Stroke

4. Ischaemic heart disease 4. Diarrhea

5. Stroke 5. HIV/AIDS

Global deaths - TOP5 disorders 2010 GBD IHME study

1990 2010

1. Ischaemic heart disease 1. Ischaemic heart disease

2. Stroke 2. Stroke

3. Lower respiratory infections 3. COPD

4. COPD 4. Lower respiratory infections

5. Diahrrea 5. Lung cancer
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Table 6.2. IHME, Regional Top5 disorders with higher global mortality and disease burden in 2010

High-income countries: DALYs 2010

High-income Asia High-income North America Western Europe

1. Cerebrovascular diseases 1. Ischaemic heart disease 1. Low back pain

2. Low back pain 2. COPD 2. Ischaemic heart disease

3. Ischaemic heart disease 3. Low back pain 3. Cerebrovascular diseases

4. Other musculoskeletal diseases 4. Trachea, bronchus and lung cancers 4. Major depressive disorders

5. Self-harm 5. Major depressive disorders 5. Trachea, bronchus and lung cancers

High-income countries: Deaths 2010

1. Cerebrovascular diseases 1. Ischaemic heart disease 1. Ischaemic heart disease

2. Ischaemic heart disease 2. Trachea, bronchus and lung cancers 2. Cerebrovascular diseases

3. Self-harm 3. Cerebrovascular diseases 3. Trachea, bronchus and lung cancers

4. Trachea, bronchus and lung cancers 4. COPD 4. Colon and rectum cancer

5. Lower respiratory infections 5. Road injury 5. COPD

Low-income countries: DALYs 2010

Southeast Asia Southern Sub-Saharan Africa Central Sub-Saharan Africa

1. Cerebrovascular diseases 1. HIV/AIDS 1. Malaria

2. Tuberculosis 2. Lower respiratory infections 2. Diahrrea

3. Ischaemic heart disease 3. Diahrrea 3. Protein-energy malnutrition

4. Lower respiratory infections 4. Tuberculosis 4. Lower respiratory infections

5. COPD 5. Interpersonal violence 5. HIV/AIDS

Low-income countries: Deaths 2010

1. Cerebrovascular diseases 1. HIV/AIDS 1. Malaria

2. Tuberculosis 2. Lower respiratory infections 2. Diahrrea

3. Lower respiratory infections 3. Diahrrea 3. Protein-energy malnutrition

4. Ischaemic heart disease 4. Interpersonal violence 4. Lower respiratory infections

5. Road injury 5. Tuberculosis 5. HIV/AIDS
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Table 6.3. IHME, Regional Top4 disorders with higher global mortality and disease burden in 1990 and 2010

DALYs Deaths

1990 2010 1990 2010
North America
1. IHD 1. IHD 1. IHD 1. IHD
2. TBLC 2. COPD 2. Stroke 2. TBLC
3. COPD 3. Low back pain 3. Lung cancer 3. Cerebrovascular diseases
4. MDD 4. TBLC 4. COPD 4. COPD
Southern Sub-Saharan Africa
1. Diahrrea 1. HIV 1. LRI 1. HIV
2. LRI 2. LRI 2. Diahrrea 2. LRI
3. HIV 3. Diahrrea 3. Tuberculosis 3. Diahrrea
4. Tuberculosis 4. Tuberculosis 4. HIV 4. Interpersonal violence
Latin America and Caribbean
1. Diahrrea 1. Disasters 1. IHD 1. IHD
2. LRI 2. IHD 2. Stroke 2. Stroke
3. Preterm birth complications 3. Violence 3. LRI 3. LRI
4. IHD 4. MDD 4. Diahrrea 4. Disaster
North Africa and Middle East
1. Diahrrea 1. IHD 1. IHD 1. IHD
2. Congenital anomalies 2. MDD 2. Stroke 2. Stroke
3. IHD 3. Stroke 3. LRI 3. LRI
4. Preterm birth complications 4. Low back pain 4. Diahrrea 4. Road injury
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Table 6.4. List of of conditions with zero novel therapies between 1990 and 2010

Main disease groups diseases

Cardiovascular and circulatory diseases Rheumatic heart disease, Endocarditis

Chronic respiratory diseases Pneumoconiosis

Diabetes, urogenital, blood, and endocrine dis-
eases

Genital prolapse, Polycystic ovarian syndrome,
Acute glomerulonephritis, Chronic kidney dis-
ease due to hypertension, Chronic kidney dis-
ease due to diabetes mellitus, Uterine fibroids,
Other hemoglobinopathies and hemolytic ane-
mias, G6PD deficiency

Digestive diseases (except cirrhosis) Paralytic ileus and intestinal obstruction with-
out hernia, Appendicitis, Inguinal or femoral
hernia

Mental and behavioral disorders Idiopathic intellectual disability, Other drug use
disorders

Musculoskeletal disorders Gout Low back pain, Neck pain

Neglected tropical diseases and malaria Food-borne trematodiases, Trichuriasis, On-
chocerciasis, Trachoma, Ascariasis, Echinococ-
cosis, Cysticercosis, Yellow fever, Hookworm
disease

Neonatal disorders Preterm birth complications, Other neonatal
disorders

Neoplasms Cancer of other part of pharynx and orophar-
ynx, Mouth cancer, Nasopharynx cancer, Lar-
ynx cancer

Nutritional deficiencies Other nutritional deficiencies, Vitamin A
deficiency, Iodine deficiency, Protein-energy
malnutrition

Other communicable, maternal, neonatal, and
nutritional disorders

Sexually transmitted chlamydial diseases

Other n on-communicable diseases Dental caries, Viral skin diseases, Sudden in-
fant death syndrome, Fungal skin diseases, Con-
genital heart anomalies, Cellulitis, Edentulism,
Neural tube defects, Abscess, impetigo, and
other bacterial skin diseases, Scabies, Other
sense organ diseases, Cleft lip and cleft palate,
Down’s syndrome, Refraction and accommoda-
tion disorders
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Table 6.5. List of rare and genetic diseases with higher proportion of pharmaceutical R&D activity

Diseases %R&D activity of total R&D in rare
diseases

t-cell leukemia 0.019

scleroderma 0.019

crohn disease 0.020

allan-herndon-dudley syndrome 0.021

myelodysplastic syndrome 0.026

pulmonary fibrosis 0.026

autism 0.028

multiple sclerosis 0.028

barrett esophagus 0.035

intraepithelial neoplasia 0.035

hirsutism 0.036

psoriasis 0.036

melanoma 0.038

li-fraumeni syndrome 0.039

dengue fever 0.039

lupus nephritis 0.039

retinopathy 0.040

others 0.475
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Table 6.6. Dominance tests I

Total number of projects Number of new therapies in the market

DALYs Deaths DALYs Deaths

Communicable diseases

1990 against 2010 non-dominance non-dominance non-dominance non-dominance

1990 against 45-degree non-dominance non-dominance non-dominance non-dominance

2010 against 45-degree non-dominance non-dominance non-dominance non-dominance

Non-communicable diseases

1990 against 2010 non-dominance 2010 dominates 1990 2010 dominates 1990 2010 dominates 1990

1990 against 45-degree non-dominance non-dominance 2010 dominates 1990 2010 dominates 1990

2010 against 45-degree non-dominance non-dominance 2010 dominates 1990 2010 dominates 1990

Note: results for intersection union principle (iup). Please check section 2.1 for more details.
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Table 6.7. Dominance tests II

Total number of projects Number of new therapies in the market

DALYs Deaths DALYs Deaths

Cardiovascular and circulatory disease

1990 against 2010 non-dominance non-dominance non-dominance non-dominance

1990 against 45-degree 45-degree 45-degree 45-degree 45-degree

2010 against 45-degree 45-degree 45-degree 45-degree 45-degree

Neoplasms

1990 against 2010 non-dominance non-dominance non-dominance non-dominance

1990 against 45-degree 45-degree 45-degree 45-degree 45-degree

2010 against 45-degree 45-degree 45-degree 45-degree 45-degree

Musculoskeletal disorders

1990 against 2010 non-dominance non-dominance non-dominance non-dominance

1990 against 45-degree non-dominance non-dominance non-dominance non-dominance

2010 against 45-degree non-dominance non-dominance non-dominance non-dominance

Mental and behavioral disorders

1990 against 2010 non-dominance non-dominance non-dominance non-dominance

1990 against 45-degree non-dominance non-dominance non-dominance non-dominance

2010 against 45-degree non-dominance non-dominance non-dominance non-dominance

Chronic Respiratory diseases

1990 against 2010

1990 against 45-degree

2010 against 45-degree

Diarr+LRI+OTH

1990 against 2010 non-dominance non-dominance non-dominance non-dominance

1990 against 45-degree 45-degree 45-degree 45-degree 45-degree

2010 against 45-degree 45-degree 45-degree 45-degree 45-degree

Neonatal disorders

1990 against 2010 non-dominance non-dominance non-dominance non-dominance

1990 against 45-degree 45-degree 45-degree 45-degree 45-degree

2010 against 45-degree 45-degree 45-degree 45-degree 45-degree

Nutritional deficiencies
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1990 against 2010

1990 against 45-degree

2010 against 45-degree

Neglected tropical diseases + Malaria

1990 against 2010 non-dominance non-dominance non-dominance non-dominance

1990 against 45-degree non-dominance 45-degree non-dominance 45-degree

2010 against 45-degree non-dominance 45-degree non-dominance 45-degree

Note: results for intersection union principle (iup). Please check section 2.1 for more details.
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Table 6.8. Concentration indices I

Kawkani C(r) Modified Wagstaff Ĉ(r) Erreygers E

(1) (2) (1) (2) (1) (2)

Communicable diseases

DALYs 1990 0.221 0.230 0.229 0.235 0.006 0.003

DALYs 2010 0.219 0.228 0.227 0.233 0.006 0.003

Deaths 1990 0.213 0.224 0.220 0.228 0.006 0.003

Deaths 2010 0.213 0.224 0.220 0.228 0.006 0.003

m̄ DALYs 1990 0.113 0.039 0.117 0.045 0.006 0.051

m̄ DALYs 2010 0.107 0.037 0.111 0.042 0.006 0.052

m̄ Deaths 1990 0.136 0.122 0.141 0.125 0.006 0.003

m̄ Deaths 2010 0.125 0.112 0.129 0.115 0.006 0.003

Non-communicable diseases

DALYs 1990 0.022 0.046 0.023 0.046 0.001 0.001

DALYs 2010 0.022 0.046 0.023 0.046 0.001 0.001

Deaths 1990 0.022 0.046 0.023 0.046 0.001 0.001

Deaths 2010 0.022 0.046 0.023 0.046 0.001 0.001

m̄ DALYs 1990 -0.056 -0.055 -0.058 -0.056 0.001 0.001

m̄ DALYs 2010 -0.051 -0.050 -0.053 -0.051 0.001 0.001

m̄ Deaths 1990 -0.043 -0.042 -0.045 -0.043 0.001 0.001

m̄ Deaths 2010 -0.034 -0.034 -0.035 -0.034 0.001 0.001

(1)Total number of pharmaceutical projects

(2) Number of new therapies in the market
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Table 6.9. Concentration indices II

Kawkani C(r) Modified Wagstaff Ĉ(r) Erreygers E

(1) (2) (1) (2) (1) (2)

Cardiovascular and circulatory disease

DALYs 1990 0.242 0.318 0.331 0.368 0.071 0.541

DALYS 2010 0.240 0.316 0.329 0.365 0.072 0.541

Deaths 1990 0.230 0.309 0.315 0.358 0.072 0.541

Deaths 2010 0.230 0.309 0.315 0.358 0.072 0.541

Neoplasms

DALYs 1990 0.309 0.311 0.325 0.327 0.203 0.195

DALYS 2010 0.312 0.315 0.329 0.331 0.203 0.195

Deaths 1990 0.294 0.298 0.310 0.314 0.203 0.195

Deaths 2010 0.290 0.295 0.306 0.311 0.203 0.196

Musculoskeletal disorders

DALYs 1990 0.215 0.320 0.467 0.433 0.035 0.954

DALYS 2010 0.215 0.320 0.467 0.433 0.035 0.954

Deaths 1990 0.342 0.467 0.744 0.633 0.014 0.943

Deaths 2010 0.342 0.467 0.744 0.633 0.014 0.943

Mental and behavioural disorders

DALYs 1990 0.082 0.113 0.090 0.119 0.335 0.222

DALYS 2010 0.082 0.112 0.089 0.119 0.335 0.222

Deaths 1990 0.531 0.576 0.580 0.610 0.333 0.221

Deaths 2010 0.511 0.557 0.558 0.590 0.333 0.221

Chronic Respiratory diseases

DALYs 1990 0.107 0.127 0.155 0.158 0.237 0.775

DALYS 2010 0.107 0.127 0.155 0.158 0.237 0.775

Deaths 1990 0.107 0.127 0.155 0.158 0.237 0.775

Deaths 2010 0.107 0.127 0.155 0.158 0.237 0.775

Diarr+LRI+OTH

DALYs 1990 0.328 0.358 0.350 0.397 0.245 0.383

DALYS 2010 0.328 0.360 0.350 0.398 0.245 0.383

Deaths 1990 0.298 0.344 0.318 0.381 0.245 0.383
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Deaths 2010 0.313 0.354 0.334 0.392 0.245 0.383

Neonatal disorders

DALYs 1990 0.333 0.184 0.667 0.283 0.350 0.350

DALYS 2010 0.333 0.184 0.667 0.283 0.350 0.350

Deaths 1990 0.333 0.184 0.667 0.283 0.350 0.350

Deaths 2010 0.333 0.306 0.667 0.471 0.350 0.331

Nutritional deficiencies

DALYs 1990

DALYS 2010

Deaths 1990

Deaths 2010

Neglected tropical diseases + Malaria

DALYs 1990 0.054 0.092 0.066 0.099 0.566 0.301

DALYS 2010 0.089 0.136 0.109 0.148 0.565 0.301

Deaths 1990 0.149 0.193 0.181 0.209 0.564 0.300

Deaths 2010 0.193 0.241 0.236 0.261 0.563 0.300

(1)Total number of pharmaceutical projects

(2) Number of new therapies in the market
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IX. Appendix: Figures

Figure 6.1. Dispersion of pharmaceutical R&D activity in terms of global disease burden
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Figure 6.2. Total R&D activity and health need: communicable and non-communicable diseases

Figure 6.3. Market launches and health need: communicable and non-communicable diseases
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Figure 6.4. Developed countries TOP4 causes of disease burden and market launches

Figure 6.5. Developing countries TOP4 causes of disease burden and market launches
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Figure 6.6. Developed and developing countries TOP4 causes of death and total R&D activity

Figure 6.7. Developing and developed countries TOP4 causes of death and market launches
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Figure 6.8. Developed countries TOP4 causes of disease burden and total R&D activity

Figure 6.9. Developing countries TOP4 causes of disease burden and and total R&D activity
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Figure 6.10. Total number of pharmaceutical projects and disease market attractiveness

Figure 6.11. Number of new therapies and disease market attractiveness
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Figure 6.12. Neglected Tropical Diseases and health need
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Chapter 7

Concluding remarks

In the last century, biomedical and pharmaceutical innovation have contributed considerably to improve-

ments in population health through increased life expectancy and improved quality-of-life (Acemoglu and

Johnson, 2006). These sustained effects have further contributed to improvements in living conditions and

social welfare. Therefore, investment in drug innovation is crucial in shaping the distribution of future

disease burden and promoting economic growth and wellbeing.

Despite these achievements, investment in R&D is still scant in many disease areas associated with

high levels of morbidity and mortality (Kremer, 2002; Kremer and Glennerster, 2004; Pecoul et al., 1999;

Trouiller et al., 2002). It is often said that part of the explanation for the lack of investment in these

areas is the lack of appropriate incentive mechanisms aligning private sector interests with societal needs.

Another explanation that has been put forward is the proliferation of policies across health systems

that fail to reconcile short term cost containment with mechanisms that promote long term incentives

for innovation (Morton and Kyle, 2012; OECD, 2014; Refoios Camejo et al., 2011). Health technology

assessment is an example of an increasingly used approach to contain drug spending that potentially

fails to provide the appropriate incentives for innovation to the pharmaceutical industry. If it fails to

provide right incentives, health systems aiming to contain health care costs may unintentionally affect

the investment in under-researched disease areas that could contribute to the reduction of global burden

of disease.

At the same time, the pharmaceutical industry has argued that the increase in market competition, the

complexity of scientific targets, the level of financial commitment required for sustaining a lengthy R&D

process that potentially ends in failure, combined with market access regulation, makes it increasingly

difficult to innovate in several disease areas (Dhankhar, 2012; PWC, 2011b).

In this context, it is therefore important to understand the determinants of pharmaceutical innovation

and the value it brings to society.

This thesis contributed to the conceptual understanding and empirical analysis of the determinants

of pharmaceutical innovation.

The conceptual contribution of this thesis is presented in Chapter 2, where we critically appraise the

literature on the determinants of pharmaceutical innovation and constructed a framework overview of the

factors associated with scientific discovery and development of new therapies. The review unveiled the

gaps in the literature that need further research, and allowed the identification of factors to be considered

in the empirical contributions in Chapters 4, 5 and 6.

The current literature is scarce in providing evidence at three levels that guided the analyses performed

in Chapters 4, 5 and 6 respectively.

First, there is need to analyse the R&D process thoroughly when assessing the factors determining

the innovation performance of the industry. Most of the studies do not consider the level of heterogeneity
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of the R&D process or focus solely on the market launch stage of the innovation process. We gave further

insight to this in Chapter 4 by modelling with robust methodologies the factors associated with project

failure across the different stages of R&D.

Secondly, there is lack of a dynamic analysis of demand on firms’ R&D decisions, taking into market

competition and other supply-side conditions, and the organisation of healthcare systems and public

policies. We developed in Chapter 5 a dynamic model that simulates the future R&D landscape by

considering the impact of demand factors, industrial factors and firm-specific characteristics on R&D

decisions under no further policy intervention. This can be further applied to evaluate the impact of

policy changes on the future R&D landscape and availability of new therapies.

Thirdly, there is insufficient research on the welfare implications of current policies to the pharmaceu-

tical innovation. In Chapter 6 we have assessed the inequalities of the access to new therapies and R&D

activity, by measuring dispersion of global drug R&D activity and market launches in terms of global

health need in the last two decades.

When outlining the results, and in particular in Chapter 4, we measured the association of competition

and alliances between firms with the probability of failure in the different R&D phases as a function

of the duration of R&D projects. This empirical contribution focuses on the analysis of the factors

associated with project failure across the different stages of the R&D process, by estimating how R&D

phase-specific failure rates correlate with competition and alliances between firms, taking into account

the specificities of the product being developed and the relevant market. With the limitations driven

by data constraints explored extensively in Chapters 3 and 4, there are three main results arising from

this analysis. First, results suggest that the determinants of failure differ across the different stages of

R&D. Second, competition is significantly associated with failure in discovery and Phase 2 in two ways.

On one hand, the likelihood of failure declines in the number of potential competitors, and, on the other

hand, it increases with fiercer competition from drugs established in the market for less than 5 years

when projects are in Phase 2. Third, there is mixed association between alliances and the probability

of failure. However, results are clear for the participation of at least one big firm in Phase 3 trials that

is associated with a lower risk of failure of projects, and with the participation of academia in discovery

that is associated with higher risk of failure.

In Chapter 5, we developed a dynamic micro-simulation model that forecasts the stock of new drug

launches in the market in the next decades in the absence of any further policy intervention. This empirical

contribution focuses on the prediction of drug availability in the market in the absence of further policy

interventions and consists of the design of a policy evaluation tool that can be further explored in the

analysis of other policy scenarios.

Using historical data to calibrate the microsimulation model and assuming a no-policy intervention

scenario, there are three main results suggested by the analysis. First, that the regional disparities in

terms of pharmaceutical innovation are going to persist. There is a relatively significant higher number of

launches of NCEs in USA, event though the model specification and forecast show relatively similar R&D

landscapes between USA and EMA given the non-significant differences between both regions in terms

of number of new projects, duration of projects in pipeline, probabilities of market launch and failure.

EMAP and Japan with relatively similar trends for the market launches for NCEs, similar average number

of new projects being born, probabilities of market launch and duration of projects. Second, there are

significant disparities at therapeutic level. For the market for NCEs, USA leads significantly the market

launches in drugs targeting the nervous system and the musculoskeletal system. Moreover, EMAP is
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predicted to have a large impact over the launch of antineoplastic and immunomodulating agents. Third,

for the market for Biologics, USA, EMA and Japan lead the market launch for blood and blood forming

organs, dermatological conditions, systematic hormonal preparations, respiratory systems and sensory

organs, whereas EMAP and rest of the world show negligent innovation activity.

Finally in Chapter 6, we measured inequalities in global drug R&D activity in terms of population

health needs. This chapter contributes to the first analysis on the equity implications of drug innovation

in the last two decades. The results suggest that over the last twenty years, R&D activity has been

concentrated in more commercially attractive disease areas associated with high mortality in the richest

countries. The results show that the distribution of the R&D activity and disease burden have not

changed significantly over the last two decades. This suggests that morbidity, as measured in terms of

DALYs, seems not to influence firms’ R&D decisions. Although this distribution of innovation effort may

be considered efficient given the current income distribution, it is surely debatable from an equity point of

view, and certainly socially undesirable. Moreover, analysis of Chapter 5 suggests that these inequalities

will persist in the next decades if no policy intervention is implemented.

For the purpose of these analyses we have built a rich global panel dataset that uniquely links data

on the lifecycle of R&D processes with global health data, and modelled the dynamic nature of R&D

decisions using advanced statistical methods. The contribution of the construction of this dataset is

explained in detail in Chapter 3.

Overall, this thesis focused on the analysis of the factors affecting the failure of pharmaceutical R&D

activity, taking a global perspective on health needs and the decisions of firms, and the implications for

the future R&D landscape and the access to new therapies for populations. Three key messages emerge

from this thesis that are discussed in the following section.

I. Policy implications and value for decision makers

The first key message relates to the efficiency concerns of the current global pharmaceutical R&D model,

and the potential consequences for the future distribution of health gains and socioeconomic benefits

across populations (Munos, 2009; Paul et al., 2010; Morton and Kyle, 2012; Refoios Camejo et al., 2011).

The vast majority of innovation in new therapies relies on market incentives to invest in long and uncertain

projects that present a high likelihood of failure. The lack of dynamic incentive mechanisms to promote

the optimal rate and level of innovation can lead to inefficiencies that might generate distortions in the

potential health gains and welfare distribution (Vallerie Paris, 2013; OECD, 2014; Morton and Kyle,

2012). Furthermore, from a societal perspective, we might be paying a high price for innovations to

compensate for the large number of failures that the industry faces. The availability of value-for-money

therapies might be compromised and depends, to a large extent, on efficiency gains in the R&D process.

Therefore, understanding the causes of failure is crucial to designing optimal incentive mechanisms

that result in efficiency gains, while promoting innovation in areas of need. This insight is supported by the

results on the role of market and innovation competition, and collaboration between innovators presented

in Chapter 4. Market competition may exert a harmful pressure that can intensify the level of failure in

innovation if too many young drugs are competing in the market. This suggests that policies regulating

market entry potentially affect the future incentives for firms to innovate. Evaluations of these policies

should take the costs related with the potential future sub-optimal levels of innovation into consideration.

On the other hand, the negligible effect of competition by incumbents on failure questions the adequacy
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of current reimbursement policies and health technology assessment tools in establishing the relevant

drug comparators for the cost-effectiveness analysis of new drugs. This means that, not only clinical and

efficacy criteria are important to consider in the design of these policies, but also the novelty and market

exclusivity of the products that are designated as the benchmark for the cost-effectiveness analyses. On

the other hand, there is scope to reduce failure levels by promoting more competition between innovators

in the R&D pipeline. Indeed, our results suggest that within therapeutic areas that exhibit substantially

higher levels of failure, the promotion of multiple investments may generate significant positive spillover

effects across innovators.

The second main insight that emerges from this thesis regards the equity concerns posed by the current

global pharmaceutical R&D model. In the absence of optimal incentive mechanisms targeted at promoting

innovation in riskier or less profitable disease areas, the current model has failed to deliver innovations in

therapeutic areas with potentially large economic impact (Kremer, 2002; Kremer and Glennerster, 2004;

Morton and Kyle, 2012). Results from Chapter 6 suggest a mismatch between unmet global health needs

and the pharmaceutical R&D strategies. Over the last twenty years, R&D activity has been concentrated

in more commercially attractive disease areas associated with high mortality in the richest countries. The

results show that the distribution of the R&D activity and disease burden have not changed significantly

over the last two decades. This suggests that morbidity, as measured in terms of DALYs, seems not to

influence firms’ R&D decisions. Although this distribution of innovation effort may be considered efficient

given the current income distribution, it is surely debatable from an equity point of view, and certainly

socially undesirable.

Results from Chapter 5 suggest that such equity concerns are likely to persist unless new policy

interventions to address inequalities in R&D and access to new therapies are introduced. Indeed, our

results suggest that historical trends will persist with the USA, followed by the EMA region, leading

the global market launches of new chemical and biologic therapies, and driving the global innovation in

new therapies targeting the nervous system of both chemical and biological composition, and chemicals

targeting musculoskeletal conditions.

The third key message relates to challenges posed by the expected increasing role of emerging mar-

kets on the innovation process and launch of new therapies in areas traditionally led by the established

economies (IMS, 2010; Danzon et al., 2013). Results from Chapter 5 suggest that emerging economies are

expected to launch a promising number of new anticancer drugs in the market, as well as other products

such as vaccines. The increasing role of emerging markets can potentially affect the global R&D invest-

ment and the policy environment. The alleged ”free riding” on innovation and access to drugs from less

developed countries has often been of concern to the most innovative countries (Danzon, 2011). Differen-

tials in national legislations at the level of IP rights, price regulation and safety and clinical surveillance

have caused a number of arbitrage opportunities (Danzon, 2011; Phill et al., 2012; OECD, 2014). Because

of these opportunities, firms and regulators in the US and Europe have questioned the sustainability of

such global differences in legislation given the supposedly relatively higher innovation costs and drug

prices imposed by stricter regulation policies in these countries.

Economic analysis has provided insight on some of these issues, but many fundamental questions

remain. Further research is needed to assess the effects of these arbitrage opportunities on R&D decisions

and innovation. Indeed, there is a need for further research on how to address parallel trade of drugs

while maintaining the incentives to innovate. Furthermore, more research is required on how to design

optimal IP rights that consider these arbitrage opportunities and promote innovation in drugs that target
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the less developed world.

The methodological contribution of this thesis has been to show how duration models and dynamic

micro-simulation models can inform policy design to promote innovation with great impact on population

health and social welfare. The application of these methods should not be seen as an end in itself but

a starting point that provides a rich domain for further research towards understanding the flaws of the

current pharmaceutical R&D process and the opportunities for optimally designing incentive mechanisms

for drug innovation that can promote population health and welfare benefits.

Our results also highlight some other potential areas for further research.

The first is to examine the impact of organisational models of the innovation process in the pharma-

ceutical industry, in terms of efficiency and equity.

The waste of resources that failure causes may, in fact, be caused by the way markets strategically

operate. Failure of innovation may be due to a combination of regulatory pressures, scientific/clinical non-

achievements, or strategic decisions of firms to withdraw projects. Firms’ strategic decisions may have

significant efficiency and equity implications. Indeed as shown in Chapter 4, as competition from peers

in the R&D process is associated with lower levels of failure, firms might be, not only, benefiting from

positive externalities, but also cooperating strategically. This strategic cooperation could be related with

firms wanting differentiate themselves in order to focus on areas with reduced competition in the market.

In future research, this analysis can be extended to explore to what extent firms adopt differentiation

strategies at target level to reduce competition, and the impact of such strategies on availability of new

therapies and social welfare.

Furthermore, it is increasingly pertinent to examine the impact of organisational models of R&D

initiatives that have been targeting low-income country diseases. A number of R&D initiatives by not-

for-profit organisations and the industry have been encouraging innovation in disease areas that are not

economically attractive for the industry but for which there is large health un-met need. However, these

types of initiatives tend to be financially dependent on public and philanthropic sponsorship, and are often

criticised for, on one hand, not being sufficiently dynamic in interacting with the private sector, because of

difficulties in sharing knowledge between the different stakeholders and, on the other, not being sufficiently

efficient in delivering large scale technologies (Siegel et al., 2003; Perkmann and Walsh, 2007). A crucial

step in promoting the availability of drugs in such disease areas involves measuring the performance of

these organisational models within the R&D process. It is natural to extend the analysis from Chapter

6 to examine how the incentives of different organisational models determine the decision to invest in

those areas and the performance throughout the innovation process. Another potential research avenue is

the assessment of the performance of different organisational models when not-for-profit institutions are

leading the R&D process. Policy making would indeed benefit from further insight in the optimality of

organisational models for innovation that promote efficiency and equity in health systems.

The second future research avenue draws from the previous point and relates to the need of optimal

policy design in disease areas that generate large public health costs and social welfare losses across the

globe. This is urgent in many disease areas, where the market sub-optimally delivers innovation. The

market has shown difficulties particularly in innovation and development of new vaccines and drugs to

address drug resistant infections.

Vaccination is traditionally an area where firms decide not to invest given its low profitability (Trouiller

et al., 2002; Acemoglu and Linn, 2004). Even when considering the prevention and the therapeutic use

of vaccines, the sales volume is low in comparison to other medicines because people are vaccinated only

177



once, while, for example, patients with chronic conditions are frequently dependent on using of drugs

for the rest of their lives. Also, profit margins are lower because governments, being larger buyers of

prevention often exert their countervailing power in negotiating low prices in bulk acquisitions. This

results in a lack of R&D investment in new vaccines by pharmaceutical companies (Kremer and Snyder,

2003).

Also, in the area of antimicrobials, the industry has shown difficulties in innovating by developing new

drugs to address drug resistant infections. In the past, companies have relied on a standard blockbluster

business model to generate mass sales volumes which has led to a large use and demise of existing

antibiotics (Smith and Coast, 2002). Partly due to over-utilization of these treatments, antimicrobials

are increasingly less effective leading to antimicrobial resistance (Smith and Coast, 2002; Rosamond and

Allsop, 2000). However, to some extent, the incentives to invest in new antibiotics are relying on large

scale repeated prescription of these drugs, while recent governmental initiatives have restricted the use of

antibiotics. These restrictions thus pose a challenge to the profitability of investment in new antimicrobials

(ECDC, 2013; DoH, 2012). Therefore, the design of new organisational models that accommodate the

particular market conditions of these areas need further theoretical and empirical insight.

The third future area of research relates to the necessity of policy evaluations that consider the simul-

taneous interactions between the different agents that play a role in the drug innovation process. These

agents include firms, payers and providers of healthcare, regulators, and patients. The current literature

lacks policy evaluation at the pharmaceutical innovation level that considers the dynamic analysis of

demand and supply of R&D decisions, and their interaction with third-parties intervening in the R&D

process. The level of regulation in this industry provides an abundance of examples. However, given

the frequent use of clinical guidelines and reimbursement policies in Europe, Australia and, increasingly

in the United States (Vallerie Paris, 2013; Morton and Kyle, 2012), the analysis of the impact of these

policies on drug R&D decisions is an area with a particular need for further research (Claxton, 2007;

Danzon and Towse, 2003). The analysis in Chapter 5 could be extended in order to accommodate these

objectives. This could be done by incorporating policy options and evaluation in the micro-simulation

model, while considering the simultaneous interactions between demand and supply for drug innovation,

and unpredictable shocks originated by changes in the industry and economy.
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