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Analytical solutions are given for the stress fields,
in both compression and far-field shear, in a two-
dimensional elastic body containing two interacting
non-circular pores. The two complex potentials
governing the solutions are found by using a
conformal mapping from a pre-image annulus with
those potentials expressed in terms of the Schottky–
Klein prime function for the annulus. Solutions
for a three-parameter family of elastic bodies with
two equal symmetric pores are presented and the
compressibility of a special family of pore pairs is
studied in detail. The methodology extends to two
unequal pores. The importance for boundary value
problems of plane elasticity of a special class of
planar domains known as quadrature domains is also
elucidated. This observation provides the route to
generalization of the mathematical approach here to
finding analytical solutions for the stress fields in
bodies containing any finite number of pores.

1. Introduction
There is a rich tradition in the field of linear plane
elasticity of making use of analytic function theory,
coupled with conformal mapping techniques, to find
the stress distributions in two-dimensional elastic
media. The monographs by Muskhelishvili [1] and
Sokolnikoff [2] provide detailed accounts of the scope of
such mathematical methods in these fields. A more recent
treatment was given by England [3].

One application of this methodology is to the study
of the stress distribution around pores or voids [4], a
problem of particular significance for rock mechanics [5],
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elastic body

Figure 1. The geometry under consideration: a two-dimensional infinite elastic body with two symmetric, equal-area,
non-circular pores.

ceramics [6] and bones [7]. It is a problem of classical interest [8]. An extensive study of single
two-dimensional pores of various shapes was performed by Zimmerman [9].

Zimmerman used conformal mapping to find the two complex potentials determining the
stress distribution in the elastic medium around an isolated pore with special interest in the
so-called pore compressibility, that is, the change of the hole area under a hydrostatic stress.
He focused there on the case of hypotrochoidal holes. In more recent extensions of that work,
Ekneligoda & Zimmerman have studied the compressibility [10] and the shear compliance [11]
of a generalized family of isolated non-circular pores with n-fold rotational symmetry including
those exhibiting high curvature, or near-cuspidal, boundary regions. The idea of the latter work
is to include more terms in a series expansion of a conformal mapping function from a unit
disc pre-image domain. In view of the highly irregular geometrical structure of pores as viewed
from scanning electron micrographic images, there is great interest in determining the stress
distribution around such non-circular pores. Other contributions in this vein have been made
by Jasiuk et al. [12] and Kachanov et al. [13]. A prevailing feature in much of this work is the
consideration of special classes of elasticity domains whose shapes are encoded in conformal
mappings having a functional form conducive to finding analytical solutions of the boundary
value problem for the associated stress field potentials.

Similar problems for the stress fields around multiple interacting pores in an unbounded
elastic medium have also been studied, especially in the two-pore case, but the literature is much
more limited. Analytical solutions are known for the case of two pores: Ling [14] found the stress
distribution around two equal circular pores; Haddon [15] generalized to the case of unequal
circular pores (see [16]). A useful review of the literature associated with the two-pore problem
has been given by Panasyuk & Savruk [17].

This paper shows how to derive analytical solutions for the stress distribution around two non-
circular pores; the geometry is depicted in figure 1. We produce a three-parameter family of non-
circular, but equal-sized, pores in an unbounded elastic medium where the complex potentials
determining the stress distribution can be written down explicitly in terms of a special function
known as the Schottky–Klein prime function associated with a pre-image annulus.

While we focus here on a specific class of shapes, our approach is very general and is extendible
to much wider families of shapes including two pores of unequal sizes.

More generally, the doubly connected region exterior to the family of pore pairs considered
here has mathematical significance: they are examples of doubly connected quadrature domains.
Quadrature domains have been studied for their abstract mathematical properties [18], but they
have also been found to have application in a diverse array of physical problems such as the so-
called Hele–Shaw problem of fluid mechanics [19]. Indeed, the author has surveyed the many
other areas of fluid dynamics, beyond the Hele–Shaw problem, where quadrature domains play
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a role [20]. The present work appears to be the first to point out, and showcase, the role of
quadrature domains in problems of plane elasticity. Importantly, our methodology also extends
to finding the stress distributions around any finite number of pores in an unbounded medium.
This matter is discussed in more detail in §7.

2. Function theory in an annulus
To solve the linear elasticity problems of interest here, we need to introduce some convenient
functions in the annulus ρ < |ζ |< 1. All those needed can be constructed from the basic function

P(ζ ) ≡ (1 − ζ )P̂(ζ ), P̂(ζ ) ≡
∞∏

k=1

(1 − ρ2kζ )(1 − ρ2kζ−1). (2.1)

Standard techniques [21] can be used to confirm that this infinite product is convergent for all
finite ζ �= 0 and 0<ρ < 1. It is easy to verify directly from the definition (2.1)—see appendix A for
details—that

P(ρ2ζ ) = −ζ−1P(ζ ), P(ζ−1) = −ζ−1P(ζ ). (2.2)

An important feature of the function P(ζ ) is that it vanishes when ζ = 1, and also at all points
ζ = ρ2n, where n is any non-zero integer.

We also introduce

K(ζ ) ≡ ζP′(ζ )
P(ζ )

, (2.3)

which is the logarithmic derivative of P(ζ ) multiplied by ζ , and the prime notation denotes
differentiation with respect to ζ . It has a simple pole at ζ = 1 with residue +1, that is, near ζ = 1,

K(ζ ) = 1
(ζ − 1)

+ locally analytic function. (2.4)

From (2.2), it follows that

K(ρ2ζ ) = K(ζ ) − 1, K(ζ−1) = 1 − K(ζ ). (2.5)

Finally, it is also useful to consider a second derivative of P(ζ ) in the form of

L(ζ ) ≡ ζ
dK(ζ )

dζ
. (2.6)

Properties (2.5) can be used to verify that

L(ρ2ζ ) = L(ζ ), L(ζ−1) = L(ζ ). (2.7)

L(ζ ) has a second-order pole at ζ = 1 with strength −1, that is, near ζ = 1,

L(ζ ) = − 1
(ζ − 1)2 + locally analytic function. (2.8)

L(ζ ) is an example of a loxodromic function [22]: a function H(ζ ) is defined to be a loxodromic
function if it is meromorphic everywhere inside (and on the boundary of) some fundamental
annulus ρ ≤ |ζ |<ρ−1 and satisfies the functional relation

H(ρ2ζ ) = H(ζ ). (2.9)

The annulus ρ ≤ |ζ |<ρ−1 is called fundamental because, given the singularity structure of H(ζ )
in this annulus, its singularities in all other annuli filling out the complex ζ -plane follow from
(2.9). For L(ζ ), because its only singularity in the fundamental annulus (or, strictly speaking, on
its boundary) is a second-order pole at ζ = 1, and because it satisfies (2.9), then L(ζ ) qualifies as a
loxodromic function.
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Figure 2. Locations of the three poles (crosses) and three zeros (small circles) for the conformal mapping (3.1). In the annulus
ρ < |ζ |< 1, which is the pre-image of the elastic body, the mapping has a pole at

√
ρ and a zero at−√

ρ . It also has two
simple poles, at

√
ρ

−1 e±iθ , in the unphysical annulus 1< |ζ |<ρ−1 as well as two simple zeros at±√
ρ

−1.

The function K(ζ ) in (2.3), although not itself loxodromic, will be our main tool later in
constructing loxodromic functions having simple pole singularities.

3. Conformal mapping from an annulus
Consider the special class of unbounded elastic bodies exterior to two finite area pores described
by conformal maps from the annulus ρ < |ζ |< 1 having the form

z = z(ζ ) = R
[

P(−ζ/√ρ)P(−ζ√ρ)P(ζ
√
ρ)

P(ζ/
√
ρ)P(ζ

√
ρ eiθ )P(ζ

√
ρ e−iθ )

]
, (3.1)

where R, θ and ρ are real constants. (There is a minor abuse of notation here in that z is taken to
denote both the complex coordinate in the physical plane and the conformal mapping function,
but this should not cause confusion.) From its form as a ratio of products of P functions, the poles
and zeros of the function (3.1) are clear: because P(ζ ) vanishes simply when ζ = 1 then, restricting
to the poles and zeros in the annulus ρ < |ζ |< 1/ρ, we see that there are three simple zeros at
−√

ρ, ±√
ρ−1 and three simple poles at

√
ρ,

√
ρ−1 e±iθ . Figure 2 shows a schematic illustrating

the pole and zero locations of (3.1) in the annulus ρ < |ζ |<ρ−1.
Under the mapping (3.1), the circle |ζ | = ρ (called C1) and the circle |ζ | = 1 (called C0) are

transplanted to the pore boundaries, the point ζ = √
ρ maps to z = ∞ and ζ = −√

ρ maps to the
origin z = 0. Not all choices of parameters are physically admissible though: we must restrict to
parameter choices for which the image of the annulus ρ < |ζ |< 1 under the mapping is one-to-
one. A necessary (but not sufficient) condition is that z′(ζ ) �= 0 for ρ < |ζ |< 1.

For all choices of admissible parameters, it can be verified that the images of the circles
|ζ | = ρ, 1 are rotations of each other by angle π about the origin. To see this, note that properties
(2.1) of P(ζ ) can be used to show that, for all ζ �= 0,

z(ρ/ζ ) = −z(ζ ), (3.2)

implying that for each point ζ on the circle |ζ | = 1, there is a point on the circle |ζ | = ρ having the
negative image under the mapping.

For any analytic function h(ζ ), its Schwarz conjugate function h̄(ζ ) is defined by

h̄(ζ ) ≡ h(ζ̄ ). (3.3)
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(a) (b)

Figure 3. (a,b) Typical two-pore shapes described by the mapping (3.1) for θ = π/3 (a) and θ = 2π/3 (b) andρ = 0.005,
0.05, 0.1 and 0.2 (superposed) with centroids fixed. The elastic body is the unbounded doubly connected region exterior to the
pores. For small area and θ = 2π/3, the pores are near ellipses with semi-axis ratio 1 : 3.

It is easy to check that, owing to the reflectional symmetry of its pole and zero locations about the
real ζ -axis, the conformal mapping (3.1) satisfies

z̄(ζ ) = z(ζ ), (3.4)

which is consistent with the reflectional symmetry of the image domain about the real z-axis.
Of crucial importance for our development is the observation that, on use of (2.2), it can be

checked that (3.1) satisfies the functional relation

z(ρ2ζ ) = z(ζ ) (3.5)

for all choices of the parameters R, θ and ρ. Because (3.1) can also be seen to be meromorphic
for all ζ �= 0 then z(ζ ) is a loxodromic function. It is this feature of the conformal mappings that
causes the domains whose images they represent to be called quadrature domains (see §7 for more
discussion). Given that z(ζ ) satisfies (3.5), it should be clear that, if z(ζ ) is meromorphic, it is
enough to study its poles and zeros in the annulus ρ < |ζ |<ρ−1 because its poles and zeros in
all other annuli will then follow from (3.5). In this way, the poles and zeros depicted in figure 2
are the only ones with which we need be concerned (even though, in fact, the function z(ζ ) has a
countable infinity of zeros and poles).

The analysis to follow pertains for any choices of the three real parameters ρ, θ and R. However,
in the example calculations given later, we focus on the particular choice

θ = 2π
3

. (3.6)

This restriction reduces the pore shapes studied to a two-parameter family. Even more, we will
normalize the domains to be such that the centroid of the two pores are at ±1 on the real axis,
thereby further reducing the class of shapes to a one-parameter family. This condition on the
centroids fixes R as a function of ρ and θ . Mathematically, ρ then serves as the natural governing
parameter; altering it corresponds physically to varying the area of the two symmetric pores.
As ρ→ 0, the pore areas tend to zero; as ρ increases, the area of each grows and the separation
between closest points on the pores decreases.

To give an idea of the broad class of two-pore shapes described by formula (3.1), figure 3 shows
a superposition of possible pore shapes for the values ρ = 0.005, 0.05, 0.1 and 0.2 and for the two
choices θ = π/3 and θ = 2π/3. For the latter choice of θ the transition, as ρ increases from zero,
from small elliptical pores (having semi-axes in the ratio 1 : 3) to near-touching pores exhibiting
several high curvature boundary portions is clear. Figure 4 shows the pore configuration for
ρ = 0.5 and θ = 2π/3. An interesting feature is that the two ‘outer’ boundaries of the two pores,
when considered together, appear to make up an almost closed circumscribing curve that is very
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Figure 4. Pore shapes withρ = 0.5 and θ = 2π/3. The pores are close to touching at three near cusps. The two ‘outer’ pore
boundaries together appear to form a single circumscribing circular boundary (but with two small gaps).

close to circular. As ρ increases further, the three near-cusps on each pore boundary draw closer
together until they almost touch.

It should be emphasized that, while we focus here on the special choice (3.6), generalizing the
following analysis to any other value of θ is completely straightforward.

The special family of shapes we have just chosen affords us an opportunity to study stress
interaction effects between two highly non-circular pores. Remarkably, those stress fields can be
found in explicit analytical form for the two physically interesting scenarios examined in §§5
and 6.

4. Complex potentials in plane elasticity
The stresses and displacements under plane strain or plane stress conditions of a two-dimensional
material can be expressed in terms of two complex potentials φ(z) and ψ(z). The displacements
are given by

2G(u + iv) = κφ(z) − zφ′(z) − ψ(z), (4.1)

where the displacement components are denoted by (u, v), G is the shear modulus of the host
material, and the so-called Kolosov constant [1] κ = 3 − 4ν (for plane strain) and κ = (3 − ν)/(1 + ν)
(for plane stress), with ν being the Poisson ratio. The potentials φ(z) and ψ(z) can be found
by solving boundary value problems of different type involving the surface tractions. We now
consider two such problems separately.

5. Two uniformly pressurized pores
Consider an infinite elastic body containing two pores, with no stresses acting at infinity, and with
a uniform hydrostatic pressure of magnitude p = 1 acting along the pore boundaries. We will find
the stress distribution around the pores subject to this uniform hydrostatic loading. Our results
are a generalization, to two non-circular pores, of the work of Ekneligoda & Zimmerman [10] who
studied single isolated pores.

In [10], it is shown that for problems in which the traction is specified along the contour then

φ(z) + zφ′(z) + ψ(z) = fx + ify ≡ F, (5.1)

where F equals i times the integral, starting from some arbitrary boundary point, of the complex
traction along the boundary. For hydrostatic pressure of unit magnitude the relevant F = −z [2,10],
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so that the boundary condition takes the form

φ(z) + zφ′(z) + ψ(z) = −z. (5.2)

For us, there is an important difference to the treatment in [10] arising from the fact that the
elastic medium we consider is doubly connected; the analysis of multiply connected geometries
is discussed in detail in the standard texts [1,2]. Owing to some additive freedoms in the
specification of the potentials φ(z) andψ(z), a constant of integration that would ordinarily appear
in (5.2) has there been set to zero with impunity. However, for problems with multiple boundaries,
only one such constant can be taken to vanish leaving others to be determined.

For the problem of two symmetric pores considered here, it turns out that the relevant
conditions on the pore boundaries can be taken to be

φ(z) + zφ′(z) + ψ(z) = −z + γ , on pore 1

and φ(z) + zφ′(z) + ψ(z) = −z − γ , on pore 2,

⎫⎬
⎭ (5.3)

where γ is some real constant to be found and, clearly, neither of the integration constants have
been set equal to zero here (unless it turns out that γ = 0—the determination of γ is discussed
below). This is because the symmetry of the geometrical configuration with respect to rotation by
π around the origin can be used to argue that φ(z) and ψ(z) can be chosen to be odd functions:

φ(−z) = −φ(z), ψ(−z) = −ψ(z) (5.4)

with simple zeros as z → ∞. (5.4) requires that

φ(0) = 0, ψ(0) = 0 (5.5)

which fixes all additive degrees of freedom in φ(z) and ψ(z) and necessitates the appearance of
±γ in (5.3). The fact that the two constants are negatives of each other follows from (5.4) and the
symmetry of the pores.

We now introduce the functions

Φ(ζ ) ≡ φ(z(ζ )), Ψ (ζ ) ≡ψ(z(ζ )). (5.6)

Because it is a one-to-one conformal mapping, z(ζ ) is analytic everywhere in the annulus
ρ < |ζ |< 1 except for the required simple pole at ζ = √

ρ which maps to z = ∞. But because φ(z)
and ψ(z) are analytic in the elastic medium, and decay as z → ∞, the composed functions Φ(ζ )
and Ψ (ζ ) turn out to be analytic everywhere in the annulus ρ < |ζ |< 1.

In terms of the functions (5.6), the complex conjugate of the first boundary condition in (5.3)
takes the form

Φ̄(1/ζ ) + z̄(1/ζ )
Φ ′(ζ )
z′(ζ )

+ Ψ (ζ ) = −z̄(1/ζ ) + γ̄ , on C0, (5.7)

where we have used the fact that ζ̄ = 1/ζ on C0. The complex conjugate of the second boundary
condition in (5.3) becomes

Φ̄(ρ2/ζ ) + z̄(ρ2/ζ )
Φ ′(ζ )
z′(ζ )

+ Ψ (ζ ) = −z̄(ρ2/ζ ) − γ̄ , on C1, (5.8)

where we have used the fact that ζ̄ = ρ2/ζ on C1. On use of property (3.5) of the conformal
mapping function, (5.8) becomes

Φ̄(ρ2/ζ ) + z̄(1/ζ )
Φ ′(ζ )
z′(ζ )

+ Ψ (ζ ) = −z̄(1/ζ ) − γ̄ . (5.9)
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Subtraction of (5.7) and (5.9) now leads to

Φ̄(ρ2/ζ ) − Φ̄(1/ζ ) = −2γ̄ or Φ(ρ2ζ ) =Φ(ζ ) − 2γ . (5.10)

This is a key observation that underlies the success of our approach. It should be clear from the
sequence of steps above that (5.10) is a consequence of the condition (3.5) pertaining to the class
of quadrature domains to which we have restricted attention.

As a point of interest, meromorphic functions satisfying the second of the functional relations
in (5.10)—which reduces to (2.9) when γ = 0—are sometimes called quasi-loxodromic functions.

In view of (5.10), the analyticity properties of Φ(ζ ) throughout the complex plane will be
determined by its analyticity properties in the annulus ρ < |ζ |< 1/ρ. From the complex conjugate
of (5.7), we find

Φ(ζ ) = −z(ζ ) − z(ζ )
Φ̄ ′(1/ζ )
z̄′(1/ζ )

− Ψ̄ (1/ζ ) + γ . (5.11)

But, Φ(ζ ) and Ψ (ζ ) are both known to be analytic in ρ < |ζ |< 1, so that

Φ̄ ′(1/ζ )
z̄′(1/ζ )

, Ψ̄ (1/ζ ) (5.12)

are analytic in the annulus 1< |ζ |< 1/ρ (recall also that, for a one-to-one conformal mapping,
z′(ζ ) �= 0 for ρ < |ζ |< 1). Hence, in the annulus 1< |ζ |< 1/ρ, (5.11) implies that the only possible
singularities of Φ(ζ ) are those inherited from z(ζ ). However, (3.1) reveals that z(ζ ) has just two
simple pole singularities there at the points e±iθ /

√
ρ. It is then natural to propose that

Φ(ζ ) = AK(ζ
√
ρ eiθ ) + BK(ζ

√
ρ e−iθ ) + C, (5.13)

for some constants A, B and C and where K is the function defined in (2.3). This form has the
required simple poles at e±iθ /

√
ρ forced there by the presence of the two K-functions. On use of

the first of the properties (2.5) of K(ζ ), Φ(ζ ) satisfies (5.10) provided that

− A − B = −2γ . (5.14)

A and B can be found by equating the residues of the simple poles at e±iθ /
√
ρ on each side of

equation (5.11). Indeed, it is found that

A = −
[

L(ρ) + L(ρ e−2iθ )
X

+ eiθ
√
ρā

]−1

, B = A, γ = A, (5.15)

where a is such that near ζ = e−iθ /
√
ρ,

z(ζ ) ∼ a
ζ − e−iθ /

√
ρ

+ analytic function, (5.16)

(a formula for a is found in appendix B) and where X = √
ρ e−iθ z′(√ρ e−iθ ) or, explicitly,

X = RP(−eiθ )P(ρ eiθ )P(−ρ eiθ )
P(eiθ )P(ρ e2iθ )P(ρ)

[K(−eiθ ) + K(ρ eiθ ) + K(−ρ eiθ ) − K(eiθ ) − K(ρ e2iθ ) − K(ρ)], (5.17)

where we have used the fact that

ζz′(ζ ) = z(ζ )[K(−ζ/√ρ) + K(ζ
√
ρ) + K(−ζ√ρ) − K(ζ/

√
ρ) − K(ζ

√
ρ eiθ ) − K(ζ

√
ρ e−iθ )]. (5.18)

The constant C follows from ensuring that φ(0) = 0 as required in (5.5) is satisfied. Because
ζ = −√

ρ is the pre-image of z = 0, then

C = −A[K(−ρ eiθ ) + K(−ρ e−iθ )]. (5.19)
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Finally, with Φ(ζ ) given by (5.13), Ψ (ζ ) follows from (5.7):

Ψ (ζ ) = −z̄(1/ζ ) − Φ̄(1/ζ ) − z̄(1/ζ )
Φ ′(ζ )
z′(ζ )

+ A. (5.20)

In summary, we have found that the complex potentials for two pores under hydrostatic
loading are

φ(z(ζ )) =Φ(ζ ) = A[K(ζ
√
ρ eiθ ) + K(ζ

√
ρ e−iθ ) − K(−ρ eiθ ) − K(−ρ e−iθ )]

and ψ(z(ζ )) =Ψ (ζ ) = −z̄(1/ζ ) − Φ̄(1/ζ ) − z̄(1/ζ )
Φ ′(ζ )
z′(ζ )

+ A,

⎫⎪⎬
⎪⎭ (5.21)

where A is given in (5.15).
With the stress fields determined in this way, it is possible to compute the pore compressibility

Cpc [10] defined by

Cpc = Cpp + 1 − 2ν
G

, (5.22)

where

Cpp = 
A
A ≡ 1

A

∮
pore 1

u.n ds = 1
ARe

[∮
|ζ |=1

(u − iv)iz′(ζ ) dζ
]

, (5.23)

and

A= 1
2i

∮
pore 1

z̄ dz = − 1
2i

∮
|ζ |=1

z̄z′(ζ ) dζ , (5.24)

is the initial area of pore 1 in figure 1 (taken to be the image of |ζ | = 1). These quantities were found
in [10] for the class of isolated pores studied there. For plane strain, it is preferable to consider the
non-dimensionalized quantity

GCpc

1 − ν
(5.25)

because this turns out to be purely a function of the pore geometry. Zimmerman [9] showed this in
the single pore case using algebraic manipulations based on a conformal mapping representation,
but it pertains to the multiple pore case too as we show in appendix C using more general
arguments. Appendix C gives details of how, on substituting for Ψ (ζ ) from (5.20) and use of
the fact that κ + 1 = 4(1 − ν) for plane strain, to establish that

Cpc = 
A
A + 1 − 2ν

G
= (1 − ν)

G

[
2
A Im

[∮
pore 1

Φ̄ dz

]
+ 2

]
(5.26)

implying that the quantity of interest (5.25) is

GCpc

1 − ν
= 2 + 2

A Im

[∮
pore 1

Φ̄ dz

]
. (5.27)

The right-hand side of (5.27) is purely a function of the pore geometry and is independent of the
Poisson ratio.

To compute the values of the right-hand side of (5.27), whose integrand is known explicitly
in terms of the special functions P(ζ ), K(ζ ) and L(ζ ), we can make use of convenient infinite sum
representations of K(ζ ) and L(ζ ) are given in (A 9) of appendix A. Truncated versions of these
can be used for numerical computation. P(ζ ) can similarly be evaluated easily by truncating the
infinite product (2.1) that defines it. The explicit integral in (5.27) can be evaluated, to exponential
accuracy, by the trapezoidal rule.
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Figure 5. Graph of the normalized compressibility GCpc/(1 − ν) against the areaA of a single pore for θ = 2π/3.

Figure 5 shows a graph of GCpc/(1 − ν), computed using (5.27), against pore area A for θ =
2π/3. Here, ρ is used as a parameter: for each ρ, the value of R is chosen that fixes the centroids
of the pores to be at ±1. The centroid position C of pore 1 is readily computed from the formula

C =
∮

pore 1 zz̄ dz∮
pore 1 z̄ dz

=
∮

|ζ |=1 z(ζ )z(1/ζ )z′(ζ ) dζ∮
|ζ |=1 z(1/ζ )z′(ζ ) dζ

, (5.28)

where we have used (3.4). The parameter R can be chosen, as an explicit function of ρ and θ , so
that C = 1 for pore 1. The conformal map (3.1) is then fully determined and the pore area A can be
found from (5.24).

As ρ→ 0, so that the pore area tends to zero, the shapes of the pores to which we have restricted
attention tend to ellipses elongated in the y-direction with major axis three times larger than the
minor axis; this can be seen by simply inspecting plots of the images under the mapping (3.1), or
by analysis of this formula as ρ→ 0. This feature can be seen from figure 3 where the small-area
pores appear to be elliptical in shape. In this limit, the graph tends to the value 10/3 in agreement
with the results of Zimmerman [9] for an isolated ellipse under a hydrostatic loading. He showed
that for the conformal mapping to the exterior of an ellipse of the form

z = h(ζ ) = 1
ζ

+ a1ζ (5.29)

then
GCpc

1 − ν
= 2

(
1 + a2

1

1 − a2
1

)
(5.30)

and, for an ellipse with semi-axes in the ratio 1 to 3, then a1 = − 1
2 . This feature, which serves as

a check on our more general mathematical approach, is to be expected, because in this small area
limit, the typical lengthscale of each pore is small compared with their separation meaning that
they become increasingly unaware of each other’s presence. Then, each pore acts like an isolated
pore under uniform hydrostatic pressure.

As the pore area increases from zero the interaction effects and shape deformations lead to a net
decrease in compressibility. However, eventually, as the pore areas increase further the interaction
effects lead to an increase of the compressibility above the starting value of 10/3 relevant for small
pore areas. The limit ρ→ 1− is a singular mathematical limit and must be treated with care; the
very steep vertical slope of the graph in figure 5 is indicative of this. In particular, it should be

 on August 14, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


11

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150240

...................................................

noted that for the validity of our two-pore analysis, we require ρ to be strictly less than unity on
topological grounds; moreover, the rate of convergence of the infinite product (2.2) deteriorates
as ρ→ 1−. In all calculations used to plot figure 5, we allowed ρ to increase as high as 0.9 and
it is interesting that, as ρ becomes larger, the two pores almost merge in such a way that the
circumscribed boundary tends to that of a single circular pore. Figure 5 shows that the associated
compressibility appears to tend to the value 4 and that behaviour might also be expected: while
the compressibility of a purely circular pore is well known to be 2 [9,10] the apparent factor-
of-2 discrepancy arises only, because we have normalized the pore compressibility with respect
to the area A of a single pore. However, it is clear from the geometry of figure 4 that this is
precisely half the area of the full circumscribed semicircle marked out by the ‘exterior part’ of
each pore boundary.

In both limits ρ→ 0 and ρ→ 1−, the analytical solutions for two pores therefore agree with
the relevant single pore results lending us confidence in the analysis. The compressibility of other
classes of pore shapes can be studied using a similar analysis. This is discussed further in §7.

6. Two pores subject to far-field shear
As a second example of the versatility of our construction, consider the same class of elastic bodies
with two pores but now with an imposed state of pure shear stress at infinity. The following
results generalize, to two non-circular pores, the work of Ekneligoda & Zimmerman [11].

Following Ekneligoda & Zimmerman [11], we consider two problems, called problems 1 and 2.
In problem 1, the far-field shear is taken to be aligned with the real and imaginary axes, so that
τxy = τyx = τ and the relevant complex potentials are simply

φ̃(z) = 0, ψ̃(z) = iτz. (6.1)

The stress state of problem 1 has the required form at infinity, but produces an unwanted traction
on the boundaries of the two pores. Problem 2, which is now defined in the elastic medium
containing the two pores, is taken to have zero stress at infinity and has boundary tractions that,
when added to those of problem 1, cancel them out. By linearity, the solution for a body with two
traction-free pores and the required shear stress at infinity is given by the sum of the solutions to
problems 1 and 2.

The potentials φ̃(z) and ψ̃(z) in (6.1) solve problem 1, but it remains to solve problem 2, whose
potentials will be denoted by φ(z) and ψ(z). In this situation, the boundary conditions on the two
pores boundaries are now

φ(z) + zφ′(z) + ψ(z) = iτ z̄ + γ , on pore 1

and φ(z) + zφ′(z) + ψ(z) = iτ z̄ − γ , on pore 2.

⎫⎬
⎭ (6.2)

Again, we can argue on the basis of symmetry that φ(z) and ψ(z) are odd, and the constants in
(6.2) are chosen to be consistent with this symmetry.

On introduction of the functions defined in (5.6), the complex conjugate of the first boundary
condition in (6.2) is

Φ̄(1/ζ ) + z̄(1/ζ )
Φ ′(ζ )
z′(ζ )

+ Ψ (ζ ) = −iτz(ζ ) + γ̄ , on C0, (6.3)

where we have used the fact that ζ̄ = 1/ζ on C0. The complex conjugate of the second boundary
condition in (6.2) is

Φ̄(ρ2/ζ ) + z̄(ρ2/ζ )
Φ ′(ζ )
z′(ζ )

+ Ψ (ζ ) = −iτz(ζ ) − γ̄ , on C1, (6.4)

where we have used the fact that ζ̄ = ρ2/ζ on C1.
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On use of the key property (3.5) of the conformal mapping function, (6.4) becomes

Φ̄(ρ2/ζ ) + z̄(1/ζ )
Φ ′(ζ )
z′(ζ )

+ Ψ (ζ ) = −iτz(ζ ) − γ̄ . (6.5)

Hence, (6.3) and (6.5) again lead to the result

Φ(ρ2ζ ) =Φ(ζ ) − 2γ . (6.6)

The complex conjugate of (6.3) implies that

Φ(ζ ) = −z(ζ )
Φ̄ ′(1/ζ )
z̄′(1/ζ )

− Ψ̄ (1/ζ ) + iτ z̄(1/ζ ) + γ . (6.7)

By inspection, we see thatΦ(ζ ) now inherits the singularity structure of both z(ζ ) and z̄(1/ζ ) in the
annulus 1< |ζ |< 1/ρ: it, therefore, has three simple poles located at 1/

√
ρ, e±iθ /

√
ρ. It is natural

to pose that

Φ(ζ ) = AK(ζ
√
ρ) + BK(ζ

√
ρeiθ ) + CK(ζ

√
ρ e−iθ ) + D (6.8)

for some complex constants A, B, C and D that satisfy

− A − B − C = −2γ . (6.9)

The appearance of the three K-functions means that Φ(ζ ) has the required simple pole
singularities; the constraint (6.9) derives from the requirement that Φ(ζ ) satisfies (6.6). The
constants A, B and C are determined by equating residues of the left- and right-hand sides of (6.7)
at the three poles at 1/

√
ρ, e±iθ /

√
ρ. After some straightforward algebra to compute residues, it is

found that

A = iτ
√
ρb, B = iτρab[ā

√
ρ(L(ρ) − L(ρ e−2iθ )) + eiθX]

|X − ā
√
ρ e−iθL(ρ e−2iθ )|2 − |a|2ρL(ρ)2 , C = −B̄, (6.10)

where b is such that near ζ = 1/
√
ρ we have

z̄(1/ζ ) ∼ b
ζ − 1/

√
ρ

+ analytic function, (6.11)

(a formula for b is given in appendix B) and X is the same quantity defined in (5.17). From (6.9),
we find

γ = A
2

+ B − B̄
2

(6.12)

which is purely imaginary.
With A, B and C determined in (6.10), D is determined from (5.5):

Φ(−√
ρ) = AK(−ρ) + BK(−ρ eiθ ) + CK(−ρ e−iθ ) + D = 0. (6.13)

Finally, with both Φ(ζ ) and z(ζ ) now known explicitly, Ψ (ζ ) is given by (6.3):

Ψ (ζ ) = −iτz(ζ ) − γ − Φ̄(1/ζ ) − z̄(1/ζ )
Φ ′(ζ )
z′(ζ )

. (6.14)

In summary, we have found the stress fields for Problem 2 associated with two pores with an
imposed state of pure shear at infinity to involve the two complex potentials

Φ(ζ ) = A(K(ζ
√
ρ) − K(−ρ)) + B(K(ζ

√
ρ eiθ ) − K(−ρ eiθ )) − B̄(K(ζ

√
ρ e−iθ ) − K(−ρ e−iθ ))

and Ψ (ζ ) = −iτz(ζ ) − Φ̄(1/ζ ) − z̄(1/ζ )
Φ ′(ζ )
z′(ζ )

− A
2

− B − B̄
2

,

⎫⎪⎬
⎪⎭

(6.15)
with A and B given explicitly in (6.10).
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With the stress fields determined explicitly in this way, the shear compliance of the various
pore configurations can be studied in the spirit of the single pore analysis of Ekneligoda &
Zimmerman [11].

7. Quadrature domains
Where did formula (3.1) come from? And how can other formulae, describing other pore shapes,
be derived for which the analysis of this paper also works?

To answer these questions, we remark that the foregoing analysis has implicitly demonstrated
the role played, in problems of linear plane elasticity, by a special class of doubly connected
planar domains produced as the images of conformal mappings of the loxodromic form (3.1). This
family of elastic bodies is just one example of a much broader class of planar domains known
as (multiply connected) quadrature domains [18,20]. Other quadrature domains will similarly
give rise, in principle, to solutions for the elastic stress problems considered here that are
expressible in closed form. The question of how to construct multiply connected quadrature
domains has been a topic of much recent research interest [18,20]. That constructive theory led
to formula (3.1).

To explain this in more detail, note that we have focused here on the example of two pores
as this case affords the clearest insights into the associated function theory. But, all the same
mathematical ideas pertain to the case of any finite distribution of pores. If M + 1 pores are
present, with M> 1, then to generalize our analysis the surrounding elastic medium should
be taken to be an unbounded (M + 1)-connected quadrature domain. Then, for the conformal
mapping, a suitable choice of pre-image ζ domain is the unit ζ -disc now with M smaller
circular discs excised [23,24]; the annulus ρ < |ζ |< 1 used here is the unit disc with just a
single, concentric, circular disc excised. It is possible to associate, to any such circular pre-image
domain, a function called the Schottky–Klein prime function [23], often denoted as a function
of just two variables, ω(ζ ,α), even though it also depends on the choice of the circular pre-
image domain (i.e. the geometry of the pre-image circles). To within a constant of proportionality,
the function P(ζ/α), which has clearly played a crucial role in our analysis, is exactly the
Schottky–Klein prime function [23] associated with the concentric annulus ρ < |ζ |< 1. Crowdy &
Marshall [24] have given a detailed account of how to construct conformal mappings to multiply
connected quadrature domains using the Schottky–Klein prime function as a building block.
Those conformal mappings have the property of being automorphic functions; in the two-pore case,
those automorphic functions are precisely the loxodromic functions considered here.

Indeed, Crowdy & Marshall [25] have shown that the very same class of mappings (3.1)
explored here for these plane elasticity problems also provide analytical solutions of the two-
dimensional Euler equations of fluid dynamics describing two rotating vortex patches. They
also showed how that work can be extended to the case of any number of co-rotating vortex
patches in equilibrium [26]; to do so, use is made of multiply connected quadrature domains
and the function theory based on the Schottky–Klein prime function just described [23,24]. In the
same way, the mathematics of Crowdy & Marshall [26] can be exploited to solve plane elasticity
problems for elastic bodies with multiple pores by extension of the methodology of the present
paper. This is left as the topic for future work.

It is important to point out a significant mathematical fact: Gustafsson [27] has shown that
the class of multiply connected quadrature domains is dense (in an appropriate sense [27]) in the
class of all multiply connected planar domains (with sufficiently smooth boundary components).
To get a flavour of this in the doubly connected case, we note that generalizations of (3.1) that are
also loxodromic functions (and, therefore, correspond to doubly connected quadrature domains)
are given by (see [24] for more details):

z = z(ζ ) = R
[

P(ζ/α)
P(ζ/β)

] N∏
k=1

P(ζ/sk)
P(ζ/rk)

, (7.1)
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where α maps to z = 0, whereas β maps to z = ∞ (with ρ < |α|, |β|< 1) and, in order that the
function is loxodromic, the other poles {rk|k = 1, . . . , N} and zeros {sk|k = 1, . . . , N} of the mapping
(7.1) must be in the annulus 1< |ζ |< 1/ρ and satisfy the single condition

α

N∏
k=1

sk = β

N∏
k=1

rk. (7.2)

By taking N sufficiently large, and by appropriate choices of the parameters R, ρ,α,β, {rk, sk|k =
1, . . . , N}, approximate conformal mappings of this type to any unbounded doubly connected
region can be found, in principle. Then, the analysis of this paper can be repeated for the new
mappings (7.1) to find, also in terms of the Schottky–Klein prime function, analytical expressions
for the complex potentials for the stress fields.

In this way, it is possible, in principle at least, to find approximating analytical solutions to the
stress problems of plane elasticity in any multiply connected region by identifying a satisfactory
quadrature domain approximant and generalizing the solution scheme laid out here. Of course, as
quadrature domains with greater numbers of poles are needed to approximate the domains this
becomes less feasible in practice. Nevertheless, a broad class of new analytical solutions to the
basic problems of plane elasticity is essentially available. Certainly, elastic bodies corresponding
to low order quadrature domains—that is, those with associated conformal mappings which are
meromorphic functions with a small number of poles—can be studied explicitly, as we have
done here.

8. Discussion
The stress fields around a family of two-pore configurations in an elastic body have been found
in analytical form by invoking some novel mathematical ideas from quadrature domain theory.

One parameter in the description of the shapes studied here is the so-called conformal
modulus ρ [23], which governs the degree of ‘interaction’ of the two pores. Our class of solutions,
and its various generalizations, affords an opportunity to study, in an explicit way, how pore
interactions affect quantities of physical interest such as compressibility, shear compliance and
other measures of excess strain in a body owing to the presence of a pair of cavities. For
illustration, we have investigated in detail the compressibility of a particular family of two pore
configurations.

An alternative approach to the two-pore problem considered here is via purely numerical
schemes, such as boundary integral methods. However, such methods would have difficulty
in accurately resolving the stress fields in the vicinity of the high curvature, close-to-touching
regions exhibited by the family of pore shapes studied here. Our analytical solutions should serve
as valuable benchmarks for any such numerical formulations.

Finally, it is not without import to remark that the mathematical approach expounded here
also works, of course, for simply connected quadrature domains. It is a basic fact [18,28] that the
boundaries of simply connected quadrature domains can be parametrized by rational function
conformal mappings. The function theory in that case becomes significantly easier with the
solutions for Φ(ζ ) and Ψ (ζ ) also being rational functions. But then the approach we have
demonstrated here reduces to ideas that are already well known in solid mechanics; see, for
example, the review on the bending of thin plates using the so-called ‘rational function method’
by Hasebe & Wang [29]. What we have shown here is that if one wants to extend the rational
function method to multiply connected regions, then the natural mathematical generalization is to
consider the class of multiply connected quadrature domains; the boundaries of those domains
can be parametrized by so-called automorphic functions [23,24,26] (i.e. the loxodromic functions
of this paper) which are the natural generalizations of rational functions to higher-genus Riemann
surfaces. The ideas of this paper therefore form the basis of what one might call the ‘loxodromic
function method’ for doubly connected regions or the ‘automorphic function method’ for higher
connected regions approximated by multiply connected quadrature domains.
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Appendix A. Properties of P(ζ )
For completeness, we show how to derive equations (2.2), (2.5) and (2.7). The definition (2.1) of
P(ζ ) implies

P(ρ2ζ ) = (1 − ρ2ζ )
∞∏

k=1

(1 − ρ2kρ2ζ )(1 − ρ2kρ−2ζ−1). (A 1)

On use of the identities

∞∏
k=1

(1 − ρ2kρ−2ζ−1) = (1 − ζ−1)
∞∏

k=1

(1 − ρ2kζ−1)

and (1 − ρ2ζ )
∞∏

k=1

(1 − ρ2kρ2ζ ) =
∞∏

k=1

(1 − ρ2kζ ),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A 2)

it can be shown that the right-hand side of (A 1) becomes

(1 − ζ−1)
∞∏

k=1

(1 − ρ2kζ−1)(1 − ρ2kζ ) (A 3)

and the first identity of (2.2) follows.
The second identity in (2.2) is a direct consequence of the following invariance:

P(ζ )
1 − ζ

= P(ζ−1)
1 − ζ−1 . (A 4)

Differentiation of the first of the identities (2.2) with respect to ζ yields

ρ2P′(ρ2ζ ) = ζ−2P(ζ ) − ζ−1P′(ζ ) (A 5)

which, on division by the equation

ζ−1P(ρ2ζ ) = −ζ−2P(ζ ), (A 6)

leads to the first of the identities in (2.5). Differentiation of the second of the identities (2.2) with
respect to ζ , we find

− ζ−2P′(ζ−1) = ζ−2P(ζ ) − ζ−1P′(ζ ) (A 7)

which, on division by the equation

− ζ−1P(ζ−1) = ζ−2P(ζ ), (A 8)

yields the second of the identities in (2.5).
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Finally, the identities (2.7) follow by differentiating (2.5) with respect to ζ .
It can be shown, directly from their definitions and the infinite product (2.2), that convenient

infinite sum expressions for K and L are

K(ζ ) = − ζ

1 − ζ
+

∞∑
n=1

(
− ρ2nζ

1 − ρ2nζ
+ ρ2n/ζ

1 − ρ2n/ζ

)

and L(ζ ) = −
∞∑

n=0

ρ2nζ

(1 − ρ2nζ )2 −
∞∑

n=1

ρ2n/ζ

(1 − ρ2n/ζ )2 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A 9)

As a final remark, by employing appropriate transformations of the parameters and of the
independent variable, the functions P(ζ ), K(ζ ) and L(ζ ) can be identified with the Weierstrass-σ ,
Weierstrass-ζ and Weierstrass-P functions, respectively [22,23].

Appendix B. Formulae for a and b
Equation (3.1) implies that we can write

z(ζ ) = R

[
P(−ζ/√ρ)P(−ζ√ρ)P(ζ

√
ρ)

(̂1 − ζ
√
ρ eiθ )P̂(ζ

√
ρ eiθ )P(ζ/

√
ρ)P(ζ

√
ρ e−iθ )

]
. (B 1)

Hence, near ζ = e−iθ /
√
ρ,

z ∼ a
ζ − e−iθ /

√
ρ

, (B 2)

where

a = − R√
ρ eiθ

[
P(−e−iθ /ρ)P(e−iθ )P(−e−iθ )

P̂(1)P(e−iθ /ρ)P(e−2iθ )

]
. (B 3)

Similarly, near ζ = eiθ /
√
ρ,

z ∼ ā
ζ − eiθ /

√
ρ

. (B 4)

Similarly, (3.1) implies that

z̄(1/ζ ) = R

[
P(−1/[ζ

√
ρ])P(−√

ρ/ζ )P(
√
ρ/ζ )

(1 − 1/[ζ
√
ρ])P̂(1/[ζ

√
ρ])P(

√
ρ eiθ /ζ )P(

√
ρ e−iθ /ζ )

]
(B 5)

or

z̄(1/ζ ) = R

[
ζP(−1/[ζ

√
ρ])P(−√

ρ/ζ )P(
√
ρ/ζ )

(ζ − 1/
√
ρ)P̂(1/[ζ

√
ρ])P(

√
ρ eiθ /ζ )P(

√
ρ e−iθ /ζ )

]
. (B 6)

Hence, near ζ = 1/
√
ρ, we have

z̄(1/ζ ) ∼ b
ζ − 1/

√
ρ

, (B 7)

where

b = R

[
P(−1)P(−ρ)P(ρ)

√
ρP̂(1)P(ρ eiθ )P(ρ e−iθ )

]
. (B 8)
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Appendix C. Expression for pore compressibility Cpc
Consider a situation in which an elastic medium contains M ≥ 1 pores each under uniform
hydrostatic pressure of unit strength. Let the boundary of the jth pore be ∂Dj and let its area
be Aj. Then, on ∂Dj, we have

φ(z) + zφ′(z) + ψ(z) = −z + γj, on ∂Dj (C 1)

for some set of constants {γj|j = 1, . . . , M}. By definition [10], the compressibility C(j)
pp of the jth

pore is

C(j)
pp = 1

Aj

∮
∂Dj

u.n ds = 1
Aj

Re

[∮
∂Dj

(u − iv)(−i dz)

]
(C 2)

and

C(j)
pc ≡ C(j)

pp + 1 − 2ν
G

, (C 3)

where

u − iv = 1
2G

[κφ(z) − z̄φ′(z) − ψ(z)], Aj = 1
2i

∮
∂Dj

z̄ dz. (C 4)

Hence,

C(j)
pc = 1

Aj

{
Re

[∮
∂Dj

1
2G

[κφ(z) − z̄φ′(z) − ψ(z)](−i dz)

]
+ (1 − 2ν)

G
1
2i

∮
∂Dj

z̄ dz

}
. (C 5)

On substituting for −z̄φ′(z) − ψ(z) from (C 1), it follows that

C(j)
pc = 1

Aj

{
Re

[∮
∂Dj

1
2G

[(κ + 1)φ(z) + z̄ − γ̄j](−i dz)

]
+ (1 − 2ν)

G
1
2i

∮
∂Dj

z̄ dz

}

= 1
Aj

{
Re

[∮
∂Dj

(κ + 1)
2G

φ(z)(−i dz)

]
+ (2 − 2ν)

G
1
2i

∮
∂Dj

z̄ dz

}
.

(C 6)

For plane strain κ = 3 − 4ν, so that
κ + 1

2G
= 2(1 − ν)

G
(C 7)

and

C(j)
pc = (1 − ν)

G

{
2
Aj

Im

[∮
∂Dj

φ(z) dz

]
+ 2

}
. (C 8)
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