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Abstract

A new method for the triple decomposition of a multiscale flow, which is based

on the novel optimal mode decomposition (OMD) technique, is presented. OMD

provides low order linear dynamics, that fits a given data set in an optimal way and

is used to distinguish between a coherent (periodic) part of a flow and a stochastic

fluctuation. The method needs no external phase indication since this information,

separate for coherent structures associated with each length scale introduced into

the flow, appears as the output. The proposed technique is compared against two

traditional methods of the triple decomposition, i.e. bin averaging and proper or-

thogonal decomposition (POD). This is done with particle image velocimetry (PIV)

data documenting the near wake of a multiscale bar array. It is shown that both

traditional methods are unable to provide a reliable estimation for the coherent

fluctuation while the proposed technique performs very well. The crucial result

is that the coherence peaks are not observed within the spectral properties of the

stochastic fluctuation derived with the proposed method however these properties

remain unaltered at the residual frequencies. This proves the method’s capability
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of making a distinction between both types of fluctuations. The sensitivity to some

prescribed parameters is checked revealing the technique’s robustness. Additionally,

an example of the method application for analysis of a multiscale flow is given, i.e.

the phase conditioned transverse integral length is investigated in the near wake

region of the multiscale object array.

1 Introduction

The Reynolds decomposition is commonly used in studies on turbulence to extract a

stochastic fluctuation of a given quantity, which forms a basis for various subsequent

analyses. This approach is justified as long as turbulence is the only source of fluctuations,

however this is not necessarily the case in each situation. In a near wake region, for

instance, there exists a well organized coherent large scale motion in addition to stochastic

fluctuations. Treating these two as one can lead to a significant overestimation of the

stochastic part of the flow.

A suitable idea for a flow decomposition in such cases was introduced by Hussain and

Reynolds [1]. The authors studied an evolution of a perturbation introduced to a turbulent

boundary layer at a distinctive frequency and its influence on turbulence properties. They

proposed a triple decomposition having the following form:

a(x, t) = a(x) + ã(x, φ(t)) + a′(x, t) (1)

were a is an arbitrary fluctuating quantity, a is its mean value, ã is the phase dependent

part (with φ denoting the phase angle) and a′ corresponds to the stochastic part of a.

Distinguishing between the two types of fluctuation is, however, nontrivial. The way

Hussain and Reynolds achieved this was straight forward due to the fact that they knew

the instantaneous value of the phase angle (a priori) in their experiment. Therefore they
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were able to sample only at specific phase positions (say φ0 = φ(t0 + nτ) where τ is the

period) and to define ã as:

ã(x, φ0) = lim
N→∞

1

N

N∑
n=1

a(x, t0 + nτ)− a(x) (2)

where N is the number of samples. This approach, sometimes referred to as point condi-

tional averaging, is only possible when sampling can be aligned with the phase position,

which is not the case in most situations. Because of that several other techniques for the

extraction of ã have been developed since the triple decomposition was first introduced.

One of the simplest ideas for the generalization of phase averaging described above is

the so called interval averaging or bin averaging introduced by Cantwell and Coles [2].

Having an external phase signal, Cantwell and Coles [2] were able to assign the phase value

to each piece of data they gathered and regroup it into several subsets corresponding to

different phase ranges. By performing averaging within each of those bins the authors

derived an estimate for ã. The procedure can be written down in the following form:

ã(x, φ0) = mean
φ(t)∈B

{a(x, t)− a(x)} (3)

where B is a phase bin bounded by φ0 − ∆
2

and φ0 + ∆
2

. Obviously this technique is

better resolved the smaller ∆ becomes but a sufficient bin width is needed to converge the

statistics on the other hand. It is also important to note that large ∆ causes overestimation

of a′ and underestimation of ã. Some improvement can be achieved by following a method

given in Sonnenberger et al. [3] in which ã, estimated with either of the described methods,

is replaced by its truncated Fourier expansion. Since ã is a periodic signal by definition

no windowing is required. Sonnenberger et al. [3] showed that adopting a filtering-based

method improves the convergence by a significant extent, especially when only few data

points are available in each phase bin.
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A conceptually different way of decoupling ã and a′ is presented in Brereton and

Kodal [4]. The authors assumed the shape of the a′ spectrum and then applied iterative

frequency domain filtering to derive the ã signal that minimizes the cross correlation

between the two fluctuation components. Importantly, no phase reference is required for

this method. Coherent structures represented in (1) by ã can also be revealed by means of

a proper orthogonal decomposition (POD) as presented by Perrin et al. [5]. The authors

studied the near wake region behind a circular cylinder with both bin averaging and POD

showing that similar structures, namely the von Kármán vortex street, can be extracted

with either of these methods. However it was also noted, that phase averaging seems to

overestimate the stochastic part of flow in comparison to POD. Perrin et al. [5] explains

this feature with the tendency of large structures to disperse from one cycle to another,

which is taken into account by POD estimation if a sufficient number of modes is used

for a field reconstruction.

There are a number of other decomposition methods apart from these mentioned

above (e.g. stochastic estimation by Adrian [6], wavelet analysis Grossmann and Morlet

[7], empirical mode decomposition Huang et al. [8], mixed methods, etc.) but as this paper

is not intended to be an exhaustive review of various triple decomposition methods, no

further details will be given. One general comment ought to be made that applies to

the majority of previous studies. The triple decomposition is usually considered in the

case of a single scale flow (e.g. a near wake of a cylinder, single wave excitation in a

turbulent boundary layer etc.). Nevertheless, bin averaging and POD are used hereafter

for reference, as they are the most common triple decomposition techniques.

The focus of this paper is on multiscale flows and thereby novel in the context of the

triple decomposition. Such flows can be easily recognized in nature, flow past a forest
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or an atmospheric boundary layer are good examples. There are certain phenomena

coupled with some natural multiscale flows, like extremely quick forest fire propagation,

that indicate their unusual properties. Recent studies on fractal generated turbulence

(FGT, e.g. Hurst and Vassilicos [9] or Laizet and Vassilicos [10]) support this point as

well reporting, for instance, an observation of regions of the flow in which the traditional

dissipation scaling is not valid extending over considerable distances in space or a huge

enhancement of turbulent mixing. One of the most noticeable features of mulitscale flows

is that different coherent structures appear at different scales, each of them having their

own phase and frequency, at the same instant in time. The standard triple decomposition

cannot possibly account for this since it treats the coherent fluctuations as a whole. It

seems though that it is crucial to make that distinction, as the coexistence and interactions

of these structures are the very essence of multiscale flows. Tracking them and their

evolutions can provide a significant insight into the nature of these flows, bringing us

closer to an understanding of the aforementioned phenomena.

Let us propose the following formulation as an extension of the triple decomposition

into multiscale flows:

a(x, t) = a(x) +
∑
n

ãn(x, φn(t)) + a′(x, t) (4)

This is similar to (1), except that the coherent fluctuation is split further into components

belonging to different length scales introduced into the the flow. In this work we provide

a suitable method of performing this decomposition (in the case of a spatiotemporal data

set) based on the novel optimal mode decomposition (OMD) technique introduced by

Wynn et al. [11]. OMD is the procedure of deriving low order linear dynamics that

represents a given data set in an optimal way (in a sense). One can argue that it is not

conceptually consistent to approximate turbulent flow with a linear model of any kind.
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This however is not our aim. The ultimate goal is to perform the triple decomposition to

distinguish between the coherent (periodic) and stochastic fluctuations. Let us then use

OMD purely to extract the periodic parts of the flow, namely ãn.

The crucial feature of our method is that no phase reference is required, moreover,

the phase evolution signal, separate for each the of the considered scales, appears as the

output. Traditionally, external phase indication is utilized (e.g. pressure measurement at

the cylinder surface in the study of Perrin et al. [5]) to assign a value of the phase angle to

each snapshot, although there are some works, where a velocity field is used to derive this

quantity (see Sung and Yoo [12] for instance). In those cases however either a velocity

signal at a single point is used as the reference (a lot of arbitrariness is thus introduced) or

an integral quantity, e.g. circulation around the entire investigated domain, is employed.

Note that this cannot be adopted in the multiscale case easily since boundaries between

flow structures corresponding to different scales would be required. Our method handles

the extraction of the phase information directly from the velocity field well, taking into

account both phase and frequency jitter. The need for additional measurements is thereby

diminished.

The proposed technique is introduced here in the context of experimental data gath-

ered by means of particle image velocimetry (PIV), although there is no restriction for the

method to experimental data. Note that all the mean fields presented hereafter need to

be considered in terms of temporal averaging, i.e. no results for averaging across different

experimental runs are given.
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2 Experimental setup

The experiments have been carried out in the open water flume facility of the Department

of Aeronautics at Imperial College London. The side walls of the facility are made out

of glass and therefore allow observation of the flow. The cross section of the flume has

size of 600× 600 mm. The background turbulence intensity is of the order of 0.9 % at the

center part of the flow (value normalized with local mean velocity), which was quantified

in a preliminary experiment.

(a) (b) (c)

Figure 1: Grid design: a) grid I, b) grid II, c) general overview

The flow behind two different 1D grids (bar arrays), of which schematic views are

presented in figure 1, has been examined. It can be seen that grid I represents a multiscale

design while only one scale is present in the case of grid II. The bars are fixed in the outer

frame (see figure 1c) having the same outer dimension as the facility’s cross section.

Additionally, some streamlining elements are attached to the frame in order to minimize

disturbances caused by the frame, except for the X0 station (see figure 2) where those

elements would obstruct the light sheet. The blockage σ, is comparable for both grids

and equals 26.7 % and 27.9 % respectively, based on the inner cross section of the frame

(the overall blockage ratios that take into account both the grid and the mounting frame

relative to the flume cross section are 38.6 % and 39.6 % accordingly). A ratio between
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the thickness of the thickest and the thinnest bar is equal to tr = 8 for grid I. All

the measurements have been taken at the same value of free stream velocity equal to

U∞ = 0.2 m s−1 which results in a global Reynolds number (based on the cross section

width) of Re = 120000 and the Reynolds numbers based on bar thickness in the range of

Ret = 1900− 15000.

(a) (b)

Figure 2: The experimental setup: a) general overview, b) all the measurement stations
presented in the paper; they are referred to hereafter with the location labels Xi and/or
the camera field of view labels Ci

A sketch of the setup is presented in figure 2a. Cameras and optical systems have been

placed at a fixed position, 4.5 m downstream from the beginning of the test section of the

facility. The grid was mounted to a traverse that could slide in the streamwise direction.

Its position was adjusted during the experiment in order to document the flow field at

different downstream positions. Data corresponding to the measurements taken at the

first four stations is presented in this paper (see figure 2b). The initial conditions at the

extreme grid location change only slightly, i.e. a difference in background turbulence level

is negligible and the boundary layer grows by 10 % at that distance (as revealed by the

preliminary experiment). The value of boundary layer thickness at the camera location

is of the order of 75 mm.

Two component planar PIV measurements have been carried out. At each station

images have been captured simultaneously by two cameras in a side by side arrangement,
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covering an area between the floor and the centerline. Approximately 20 mm of overlap

between the cameras’ fields of view has been introduced (see figure 2b). Measurements

have been taken below the centerline in order to minimize the free surface influence on

the results. Both Phantom Miro M310 cameras which provide images having a resolution

equal to 1280 × 800 px, were fitted with Sigma 70mm f/2.8 lenses. The cameras were

run at an acquisition frequency of 50 Hz in double frame mode (with a time delay of

δt = 4 ms between frames) grabbing 1200 pairs of images at each downstream position

(the acquisition time equals 48 s). The flow was illuminated with an Nd:YLF laser, run at

a frequency of 250 Hz throughout the experiment. The optical system formed a collimated

laser sheet of width 190 mm (limited by the diameter of plano-convex lens) and thickness

at the waist of order of 1 mm.

The flow was seeded with Polyamide 12 particles having an averaged diameter of 7µm

and a specific gravity equal to 1.1. The response time (τp) was estimated by considering

Stokes flow to be 3µs. Making the conservative assumption that the Kolmogorov length

scale in our flow is equal to 0.1 mm we arrive at the corresponding time scale τη = 10 ms.

Therefore the Stokes number St = τp
τη

= 3 · 10−4 � 1 ensures that the particles behave as

tracers and track the smallest scale motions of the flow.

Cross correlation calculations were performed with the commercial software of LaVi-

sion GmbH: Davis 8.2. An interrogation window of 24×24 px with 75 % overlap has been

applied with a multipass approach and a median filter to replace spurious vectors (less

then 3 %). The resulting resolution is equal to 3.2 mm with a vector spacing of 0.8 mm.

The noise level of the rms values of velocity has been evaluated according to the procedure

provided in Romano et al. [13] to be equal to 0.5 %.
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3 Triple decomposition: the traditional approach

Let us focus on the mean flow topology behind the multiscale grid first. The averaged

streamwise velocity and turbulence intensity are presented in figure 3. The wakes of

different bars are clearly distinguishable close behind the grid and become merged at some

point further downstream. The initial intersection point can be intuitively recognized

during visual inspection of the figure as:

• being located within the second downstream station in the case of the smallest and

the medium bar

• being located within the fourth downstream station in the case of the medium and

the biggest bar

(a) (b)

Figure 3: The results for grid I: a) mean streamwise velocity (numbered circles indicates
PSD evaluation positions), b) turbulence intensity

The near wake can be naturally split with the intersection point into two regimes,

each of them interesting. This distinction is important from the method validation point

of view since extracting spatially separated coherent structures is a qualitatively different

task to extracting merged patterns. It is worth evaluating the method efficiency in both

cases. It seems, that the interaction of the smallest and the medium bar is better suited
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for further analysis because both regions are gathered within our data, therefore we stick

to this example hereafter.

(a)

(b)

Figure 4: Normalized power spectral density evaluated for the transverse velocity fluctu-
ation behind: a) the small bar, b) the medium bar (see figure 3a for exact location)

Coherent structures in a flow past a cylinder are well recognized in the literature.

The regular vortex street, shed at a narrow frequency band, forms behind the body and

breaks down into turbulence further downstream (if the Reynolds number is sufficient).

In order to avoid major concerns in the following sections, let us highlight the discrepancy

between such a classical situation and our case. The power spectral density (PSD) has

been evaluated for the transverse velocity component (see figure 4) at four different points

whose positions are denoted in figure 3a by numbered circles. The points are located at

the wakes’ centerlines within the first two measurement stations. The resulting shedding

parameters are summarised in table 1. The Strouhal number based on inlet velocity and

bar thickness is significantly higher (see table 1) compared to the usually reported values

(Okajima [14] for instance), however this can be linked to the blockage effect reported

by West and Apelt [15]. A simple blockage ratio correction applied to the velocity value
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Table 1: Parameters of the shedding of the medium and the small bar (see figure 1a), AR
stands for aspect ratio of a bar cross section and δ for bar thickness

small bar medium bar

X0 X1 X0 X1

AR 0.63 1.68

Ret 1900 5100

fsh [Hz] 5.70 6.54 2.40 2.32

St = fsh·δ
U∞

0.27 0.31 0.30 0.29

St
(1−σ)

0.17 0.19 0.19 0.19

produces Strouhal numbers much more consistent with accepted values (' 0.15).

The most striking fact however is that there is a considerable drop in the shedding

frequency of the smaller bar between the sampling points (the change is of the order of

15%). This feature is noticeable in all the spectral data presented hereafter. It is a result

of the rear streamlining elements being detached during measurements at the X0 station

which can be seen as an increase in the blockage ratio due to pronounced areas of detached

flow behind the frame bars. The higher shedding frequency observed at this position is

therefore consistent with West and Apelt [15] results.

3.1 Bin averaging method

In our case there are two wakes (behind the small and the medium bar) enclosing distinc-

tive coherent structures and, as indicated by (4), we are aiming to extract them separately.

Let us apply the bin averaging procedure, similar to the one used in Cantwell and Coles

[2] or Perrin et al. [5] (although single scale cases are considered there), for this purpose

first. This method requires a reference phase signal or, being more precise, an individual
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(a) (b)

Figure 5: The normalized bin averaging results based of the phase signal evaluated at the
points marked with x signs: a) the simple method, b) the truncated Fourier series method

reference for each wake. In the previously mentioned studies pressure measurements on

a cylinder surface are taken as such but in our case the PIV data is the only available.

Therefore the velocity signal at an arbitrary point within a certain wake is utilized to

produce the reference signal. The Hilbert transform (a convolution of the signal with

a function h(t) = 1
πt

, see Perrin et al. [5] for reference) has been used to recover the

instantaneous phase value from the transverse velocity fluctuation.

The example results of bin averaging are shown in figure 5a (wake behind the smallest

bar for an arbitrary phase value). The reference points are marked with the x symbol

(one for each downstream station). The bin size has been set to 0.2 rad, which results

in approximately 35 images per bin over which the statistics can be calculated hence the

mean values are rather poorly converged. In order to improve the results a truncated

Fourier expansion has been used (see Sonnenberger et al. [3]) with the cutoff frequency

set to double that of the shedding frequency. This output is depicted in figure 5b.

It can clearly be seen in figure 5 that the part of the transverse velocity fluctuation

conditioned on the smallest bar shedding phase reaches significant values within the wake

of the medium bar. This effect is more pronounced in the case of figure 5a. In order
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Figure 6: An interface between wakes’ areas and wakes’ centerlines, local extrema of the
mean streamline velocity field, utilized hereafter to quantify results

to quantify this effect fields of view were split with a line following local maxima of the

mean velocity field (localized between the wakes, see figure 6) into two areas associated

with each of the wakes. The coherent fluctuation’s energy corresponding to either bar

can be thus decomposed at each downstream station, based on the field of view division,

into a share that falls into the associated region, denoted by Es, and the remaining part

(this is summarised in the table 2). Additionally, let us define a length scale z that is a

second moment of the energy around a wake’s centerline (e stands for the local coherent

fluctuation energy and yc for the centerline coordinate). This is a measure of variance of

the coherent fluctuation’s energy distribution around the centerline averaged across the

field of view.

z =

√∑
x

∑
y[y − yc(x)]2e(x, y)∑
x

∑
y e(x, y)

(5)

The initial observation is supported by the presented metrics. More than half of the

small bar shedding energy at the X1 station is contained in the area associated with the

other wake. On the other hand, a significant amount of the medium bar shedding energy

is missing at the X0 station. Another problem is that z evaluated for the medium wake

decreases with the downstream position which is nonphysical, as structures are observed

to grow in size with a downstream position (e.g. Cantwell and Coles [2], Perrin et al. [5]).
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Table 2: Parameters of an energy distribution of the coherent fluctuation of transverse
velocity extracted with bin averaging (δ stands for bar thickness)

Es
z
δ

X0 X1 X0 X1

small bar 91.8 % 46.3 % 2.02 4.71

medium bar 74.6 % 90.0 % 1.43 0.78

It is thus justifiable to state that the simple bin averaging procedure cannot be applied

to decouple coherent structures belonging to different sized bars.

3.2 POD method

Let us move on to the triple decomposition based on proper orthogonal decomposition

(POD). The general formula of this decomposition is given below:

a(x, t) =
N∑
n=1

cn(t) · ΦPOD
n (x) (6)

were ΦPOD
n is the n-th POD mode and cn is its corresponding time dependent coefficient.

Extraction of the POD modes is done by considering an eigenvalue problem for the velocity

fluctuation correlation matrix. As a result of such an approach the POD modes are ranked

by their energy content. POD is an optimal decomposition in a sense that it minimizes

the number of modes required to reconstruct a set of data for a given error level. For

more details on POD see the extensive review of Berkooz et al. [16].

The triple decomposition (1) and the POD formula (6) are quite different, however

it was reported in the past (by Perrin et al. [5] for instance) that in the case of a flow

behind a cylinder at a sufficiently high Reynolds number the first few POD modes can

be directly linked to the von Kármán vortex street. Usually, in a single cylinder study,

the first two modes carry the essential information (e.g. 60 % of total fluctuation’s energy
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in the case of Perrin et al. [5]). Since a vortex street is a phase dependent structure we

would like to extract, it seems that POD analysis may fit our needs.

The POD approach has proven to be efficient in separating the shedding pattern of

the medium bar (calculations were done separately for each station), as the first two POD

modes clearly correspond to the vortex street of the medium bar. Contrary to what has

been observed in the case of bin averaging, the wake area of the smallest bar is not occupied

by structures belonging to the shedding of the medium bar which can be confirmed by

the high energy contained in the medium wake area (see table 3). On the other hand,

POD has not been able to separate the shedding of the small bar. There is no indication

for which modes contain the associated pattern. Our intuition was that the third and the

fourth modes would carry this information since the smaller wake is less energetic than

the medium one but still contains a significant proportion of the total energy. This has

turned out to be the case at the first station, where the wakes are clearly separated (see

figure 7). Both the shape of those modes and associated PSD clearly point to the shedding

pattern. In the case of the X1 station however the aforementioned intuition has failed.

None of modes 3 − 6, presented in figure 7, can be directly linked to the shedding and

further modes do not bring any additional insight. Modes 4 and 6 resemble a shedding

pattern to a large extent, however the associated spectra contain multiple peaks which

should not occur in the case of properly extracted shedding fluctuations. If one were to

treat them as such the corresponding energy share falling into the proper wake area would

be low (see table 3).

The given example pushes us towards the belief that POD is not well suited for

triple decomposition in multiscale flow either. It is a well known fact (see Graham and

Kevrekidis [17]), that POD deemphasizes flow features that carry relatively little energy
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Figure 7: The 3rd to the 6th POD modes of the transverse velocity component with the
spectra of corresponding coefficients

Table 3: Parameters of an energy distribution of the coherent fluctuation of transverse
velocity extracted with POD (δ stands for bar thickness, parameters of the small bar
shedding at X1 stations evaluated with modes 4 and 6)

Es
z
δ

X0 X1 X0 X1

small bar 99.5 % 64.5 % 0.77 3.58

medium bar 98.3 % 90.9 % 0.47 0.76

17



regardless of their dynamical importance. It seems, therefore, that the failure in our case

can be linked to a significant difference in energy content between the two wakes. Treat-

ing the results for the first station as the reference for such a comparison, the medium

wake contains 30.8% of total fluctuation energy while the small one only 6.5% (additional

information, based on the developed method, is given in section 6). On the other hand,

there is no strict premise for treating the energy content as a proper filter for making a

distinction between coherent structures associated with different scales. The actual reason

for the POD failure is, however, of the secondary matter here because a technique well

suited for the task is presented below.

4 Triple decomposition: the DMD/OMD approach

A new decomposition technique called dynamic mode decomposition (DMD) was proposed

recently by Schmid [18]. Similar to POD, DMD is a snapshot based method. The author

aimed to develop an approach that allows better insight into the dynamics of a process

than POD does. The fundamental idea behind DMD is that there is a linear dependency,

approximately constant throughout the sampling period, between successive snapshots.

This can be written as:

vn+1 = Avn

A ∈ Rp×p

(7)

where vn stands for an arbitrary snapshot (having length denoted by p) while A represents

the underlying linear system. Evidently, vn is a 1D vector, nevertheless it represents a 2D

snapshot and the straight forward transformation between both forms exists. The DMD

procedure estimates the dynamic properties of A and its successful adaptation relies on

having a sufficiently large ensemble of snapshots. It is worth noting that in a usual
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application (say to PIV data) the matrix A is of a considerable size hence its analysis is

nontrivial. The standard least square approach results in the following expression for A

(N is the number of available snapshots):

min
A

∣∣∣∣∣∣[v2, . . . ,vN ]−A · [v1, . . . ,vN−1]
∣∣∣∣∣∣2 (8)

(8) is an ill-posed problem since the number of unknowns exceeds the number of the

matrix’s elements for which the norm is to be minimized. Assuming that an arbitrary

snapshot is a linear combination of the remaining ones Schmid [18] was able to overcome

this difficulty and restated the problem in the following way:

min
S

∣∣∣∣∣∣[v2, . . . ,vN ]− [v1, . . . ,vN−1] · S
∣∣∣∣∣∣2

S ∈ RN−1×N−1

(9)

where S is the companion matrix of significantly lower rank. Nevertheless, the eigenvalues

of S approximate those of A.

A generalized form of DMD, called optimal mode decomposition (OMD), was intro-

duced by Wynn et al. [11]. The OMD method approaches (8) in a more straight forward

way, replacing A with its low rank approximation LMLT . The problem then takes the

form:

min
L,M

∣∣∣∣∣∣[v2, . . . ,vN ]− LMLT · [v1, . . . ,vN−1]
∣∣∣∣∣∣2

LTL = I

L ∈ Rp×r M ∈ Rr×r

(10)

where both L and M are treated as independent variables in an optimization process

with an arbitrary rank constraint r (r = rank(M) = rank(LMLT )). L can be seen as a

low dimensional subspace of the flow field while M gathers the corresponding dynamics.

Wynn et al. [11] proved that OMD turns into DMD if one sets L to the POD modes
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explicitly which is the major limitation of DMD, since POD modes do not necessarily

form the optimal basis for dynamic information extraction.

Since DMD is the restricted version of OMD, the following remarks apply equally to

both methods. The OMD eigenvalues are defined as

λOMD
n =

log λn(M)

∆t
(11)

where λn(M) are eigenvalues of the matrix M and ∆t is a reversal of the sampling

frequency. The OMD modes associated with λOMD
n values follow the formula:

ΦOMD
n (x) = Lzn (12)

where zn is an eigenvector corresponding to the λn(M). A flow field can be reconstructed

(up to the error due to the linear modeling) in the following manner:

a(x, t) '
r∑

n=1

cnΦOMD
n (x)eλ

OMD
n t (13)

where cn are coefficients associated with the OMD modes. The coefficients appear in (13),

since ΦOMD
n are given in a normalized form (||ΦOMD

n ||2 = 1). |cn| is referred to as the

DMD spectrum hereafter. The important note is that both DMD and OMD methods

produce pairs of conjugate modes since we deal with real data. Presenting OMD/DMD

results hereafter we make no distinction between them (i.e. when we refer to a single

mode we mean a conjugated pair of modes in fact).

4.1 Application of the DMD

Let us start with the classical DMD, as described by Schmid [18]. The technique has been

applied to the data gathered at stations X0C1 and X1C1 (see figure 2b). DMD spectra for

both stations are presented in figure 8 together with transverse velocity spectra enveloped
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across the entire field of view denoted by Fv (referred to as enveloped spectra hereafter).

The latter is defined as follows:

Fu(f) = max
x

û(x, f) (14)

where û is PSD of an arbitrary signal u = u(x, t) (f stands here for frequency). Both

spectra appear to be similar, although the shedding peak of the small bar is less pro-

nounced in the case of the DMD spectrum. Frequencies corresponding to the local max-

ima of the DMD spectra within the previously recognised (see figure 4) shedding bands

are highlighted and the associated DMD modes are depicted in figure 9. A great deal of

improvement is achieved in the vortex street pattern recognition compared to previously

tested methods; concerning the small bar modes in particular, the coherent fluctuations’

energy share in the associated area reaches 95.7 % at the X1 station (see table 4). On the

other hand results seems to be better at the X0 station in the case of POD (decreased

energy content and increased z scale), which is due to a high level of noise that can be

observed in the medium wake area.

(a) (b)

Figure 8: Normalized DMD spectra (above) and corresponding enveloped transverse ve-
locity spectra for: a) station X0C1, b) station X1C1
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(a) (b)

Figure 9: DMD modes corresponding to the local maxima of the DMD spectra (high-
lighted in figure 8) localised in: a) the shedding band of the medium bar, b) the shedding
band of the small bar

Table 4: Parameters of an energy distribution of the coherent fluctuation of transverse
velocity extracted with DMD (δ stands for bar thickness)

Es
z
δ

X0 X1 X0 X1

small bar 97.4 % 95.7 % 1.28 1.82

medium bar 98.4 % 92.3 % 0.46 0.78

Although the aforementioned results are promising, no direct link to ãn has been shown

so far. It is clear from figures 4 and 8 that shedding peaks are of considerable width

rather than limited to distinctive frequencies. Therefore the simplest idea for extracting

the coherent parts is to apply (13) and perform the summation over only those modes

with corresponding frequencies that fall into the shedding bands. There are two major

drawbacks to this approach:

• The spectra of stochastic fluctuations would be almost entirely suppressed within

those frequency bands (up to the decomposition error)

• Only a few of the considered modes can be directly linked to the shedding
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(a) (b)

Figure 10: DMD modes corresponding to frequencies slightly off the local maxima of the
DMD spectra (highlighted in figure 8) localised in: a) the shedding band of the medium
bar, b) the shedding band of the small bar

The first issue is particulary hard to address. Some kind of distinction between the

coherent and stochastic fluctuations share within each mode shall be introduced but this

is simply a step back to the initial problem. The second matter is also worrisome. Modes

presented in figure 9, despite some secondary features, can be clearly associated with

shedding. This however can’t be said about the modes shown in figure 10 for instance

although their frequencies fall into the shedding bands as well (but are towards the sides).

It is clear that some strong non shedding events infect these modes, especially those

belonging to the small bar (the energy share in the associated area is limited to 81.3 %

at the X1 station and the z scale increases almost twice). This indicates the fact that

an additional selection is required in order to filter only ”true” shedding modes. Such

selection would introduce a great deal of arbitrariness into the method, which is highly

undesirable.

4.2 Application of the OMD

The OMD method, by its very definition, requires the rank constraint to be set to a certain

value explicitly. In the DMD approach this is done implicitly by posing the problem in the
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form (9), which introduces the constraint r = N − 1. Since the OMD procedure is much

more computationally expensive and both size and number of snapshots are large in our

case, the subspace rank for the OMD approach has to be significantly lower. Moreover,

it is assumed that choosing a comparable r value will result in a similar output. Given

that, it was decided to set the rank constraint at a level of 20 ≤ r ≤ 30.

(a) (b)

Figure 11: Real part of OMD eigenvalues with the enveloped transverse velocity spectra
in the background for: a) station X0C1, b) station X1C1

(a) (b)

Figure 12: OMD modes corresponding to the local maxima of < {λOMD} localised in: a)
the shedding band of the medium bar, b) the shedding band of the small bar

The case investigated with DMD in the previous section is analysed here with OMD.

OMD eigenvalues, derived with r = 24 (the method’s sensitivity to this parameter is
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investigated in section 5.1), are given in figure 11 (presented in frequency - damping

space), with the transverse velocity spectra enveloped across the field of view shown in

the background. There are distinctive OMD modes appearing at the shedding frequencies

in which the associated damping (equal to |< {λOMD
n }|) is recognizably low. Shapes of

those modes are presented in figure 12. Again, it is clear from visual inspection that they

correspond to shedding patterns. Compared to figure 9, the considered modes are less

noisy which can be confirmed by the data gathered in table 5. It can be seen that OMD

recovers the largest amount of the small bar shedding energy within the corresponding

area compared to other methods and that it makes the small bar shedding the most

confined (the smallest z values).

Table 5: Parameters of an energy distribution of the coherent fluctuation of transverse
velocity extracted with OMD (δ stands for bar thickness)

Es
z
δ

X0 X1 X0 X1

small bar 99.6 % 97.2 % 0.76 1.62

medium bar 98.2 % 90.6 % 0.47 0.75

As in the case of the DMD based investigation, there are other OMD modes occurring

at the frequencies falling into shedding bands. Therefore a doubt rises, that parts of

coherent structures are carried by those modes as well. In order to address this issue the

neighbours of the modes given in figure 12 are examined here. The corresponding shapes

are given in figure 13. Although the frequencies of some of the presented modes are located

well within the shedding bands, none of the shapes recall primary vortex street features.

This shows that, unlike in the DMD case, only one mode can be directly linked to each

shedding. This is a significant improvement compared to the DMD technique, since no
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additional mode selection is necessary and the correct mode can be easily selected based

on < {λOMD} local maxima.

(a) (b)

(c) (d)

Figure 13: Neighborhood of OMD modes corresponding to local maxima of < λOMD: a)
previous to 12a, b) previous to 12b, c) subsequent to 12a, d) subsequent to 12b

OMD appears to be the most capable method of identifying coherent structures occur-

ring simultaneously at different frequencies in a multiscale flow. Nevertheless, extracting

the phase dependant part of the flow is still nontrivial because it turns out that the

straight forward way, namely utilizing (13), leads to a solution that vanishes in time. The

damping associated with the 2.4 Hz mode, for instance, is of the order of 0.29 s−1. Since

the sampling time is equal to 48 s, the final gain corresponding to this particular mode is

of order of 10−6 (or even less in other cases). This result indicates a conclusion that the

coherent structures of the near wake region are strongly damped which is in clear contra-
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diction to the physical knowledge (a vortex street is known to be periodic throughout the

flow time if all the parameters are fixed). Therefore its obvious extraction method can’t

be directly applied.

5 Triple decomposition: the proposed approach

In order to overcome the difficulty with utilizing OMD for the triple decomposition a

new approach has been established. It is proposed to perform a projection of the original

snapshots onto OMD modes. This can be written as:

min
d1,...,dr

∣∣∣∣∣∣[v1, . . . ,vN ]− [ΦOMD
1 , . . . ,ΦOMD

r ] · [d1, . . . ,dr]
T
∣∣∣∣∣∣2

dn ∈ CN×1

(15)

where dn is a vector of coefficients corresponding to the ΦOMD
n . In order to reconstruct

the phase dependent part of flow one can write:

ã(x, φ(t)) =
∑

shedding
modes

dn(t) · ΦOMD
n (x) (16)

This simple idea recalls the POD approach, except that instead of the standard POD

modes, the OMD modes are used to calculate the corresponding coefficients and to recon-

struct the field later on.

In order to examine the proposed method on a certain case, let us focus on the wake

of the small bar at the X1C1 station. The index of the OMD mode corresponding to

the considered coherent structure is denoted by sh (i.e. n = sh) hereafter. The shape

of ΦOMD
sh is shown in figure 12b while a spectrum of dsh is presented in figure 14. The

spectrum has a peak at the shedding frequency, however it is also spread among an entire

frequency band, which is rather undesirable because shedding should be localized in the

frequency domain. (16) has been applied in order to recover ṽsh. Enveloped spectra of
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the transverse velocity fluctuation and its residual stochastic part (namely v − v and

v− v− ṽsh) are compared in figure 14. The shedding peak has been cancelled out entirely

from the residual spectrum. Moreover, no artificial suppression of the residual, stochastic

fluctuations in the shedding band has been introduced. The second peak, located at

4.6 Hz, hasn’t been altered by the procedure which is appreciated since it does not belong

to the shedding (see figure 13b for the associated mode). It is an evidence of the method

being highly selective although one might have expected that, since the peaks are not well

separated in the frequency domain, the method would fail to distinguish between them.

(a) (b) (c)

Figure 14: Normalized spectra: a) dsh coefficient spectrum, b) enveloped velocity spectra
(original and residual), c) Difference between original and residual enveloped velocity
spectrum

Some differences between the original and residual spectra can be seen at all the

frequencies, which is a natural consequence of the broad spectrum of dsh. This is revealed

by subtracting the residual spectrum from the original one. It turns out also, that this

procedure clarifies the shedding peak (see figure 14c). In order to limit discrepancies

between spectra to a certain frequency interval only a bandpass filter has been applied

to dsh. The subtracted spectrum signal has been used as the band indicator, i.e. the
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Gaussian curve has been fitted into it and the filter band has been set to the resulting

µ − 3σ < f < µ + 3σ interval. The filtered coefficients are referred to as dfilsh later

on. A comparison of spectra produced with dfilsh , given in figure 15, reveals obviously no

differences except those in the prescribed shedding range. The discussed filtering approach

is treated as an integral part of the method hereafter, however even with no filter applied

the method performs well in terms of distinguishing ã and a′.

(a) (b)

Figure 15: Normalized spectra: a) dfilsh coefficient spectrum, b) enveloped velocity spectra
(original and residual)

It has already been stated that the method does not introduce an artificial suppres-

sion at the shedding frequency. This can be explained by the fact that there is motion

happening at this frequency having a spatial topology that is different to the one of the

corresponding OMD mode and therefore it cannot be removed by subtracting the mode

base reconstructed field. The situation can be illustrated with a simple example of a field

composed of two sinusoidal spatial modes, e.g. a(x, t) = [sin(x) + sin(5x)] · sin(2πf0 · t).

Projecting this field onto either of the modes, say Φ(x) = sin(x)
|| sin(x)|| , and then reconstructing
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it one gets:

ã(x, t) = ΦTa · Φ =
[
1 +

sin(5x)T sin(x)

|| sin(x)||2
]
· sin(x) sin(2πf0 · t) (17)

Obviously the exact value of the second term in the bracket depends on x, however if x

is wide enough, 0 < x < 2π in this case, the second term vanishes. This leads to the

conclusion that the residual field a − ã is washed out of the big scale motion associated

with the f0 frequency but the small scale one is not affected.

The proposed technique has proven to be successful in extracting the smallest bar

shedding at X1C1 station, that has been previously recognized as the hardest case within

the presented ensemble. Some other results, confirming the method’s capability, are

presented below. It is worth noting, that the approach provides an instantaneous phase

angle value for each wake separately; arg (dfilsh ) can be used for recovering this information.

Additionally, the method can be employed in the bin averaging approach as the phase

indicator in addition.

5.1 Sensitivity to prescribed parameters

There are two parameters, which can be set arbitrarily, within the described method: the

subspace rank and the filter band. Since there are no strict indications for how to chose

either of them, the desired situation is that their influence on the results is weak. The

impact of both parameters is briefly presented in this section.

The subspace rank has been arbitrarily limited to 20 ≤ r ≤ 30 in the previous section.

Let us therefore investigate results for r ∈ R = {20, 24, 28, 32}. The first comparison

involves mode shapes. Again, the example of the small bar at the X1C1 station is em-

ployed. Figure 16 presents modes corresponding to different rank values. Except for 16b

and 16c, the modes looks different due to different phase position so the comparison is
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(a) (b) (c) (d)

Figure 16: OMD modes corresponding to the small bar shedding evaluated for: a) r = 20,
b) r = 24, c) r = 28, d) r = 32

(a) (b) (c) (d)

Figure 17: Snapshots reconstructed with OMD modes corresponding to the small bar
shedding evaluated for: a) r = 20, b) r = 24, c) r = 28, d) r = 32

hard to conduct. In order to overcome this situation the reconstructed snapshots corre-

sponding to the same instant of time are attached as well (see figure 17). The similarity

is strong, especially in the first three cases. In order to quantify the divergence between

the reconstructed snapshots the following parameter has been established:

v̂r.rms = [v̂1
r.rms, . . . , v̂

p
r.rms]

T

v̂kr.rms =

√√√√ 1

N · |R|

N∑
n=1

∑
r∈R

(
v̂kn,r −

1

|R|
∑
r∈R

v̂kn,r

)2
(18)

in which v̂rn stands for 1D representation of n-th snapshot reconstructed with the rank r

OMD approach and v̂kn,r for its k-th element.
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The associated contour map is showed in figure 18. One can observe that v̂r.rms, which

can be understood as a standard deviation of fluctuations of fields reconstructed with

different r values around the r averaged field, is one order of magnitude lower compared

to the rms value of the transverse velocity field in the wake area (averaged across all the

r values).

(a) (b)

Figure 18: a) the value of v̂r.rms, b) transverse velocity rms averaged for all considered r
values

The discrepancies between phase angle evolution, defined as (19), can be seen in

figure 19a. The rms of the angle differences is below 3◦ for each r value, almost an

order of magnitude less then an usual bin width used in the bin averaging technique

(e.g. 22.5◦ in the case of Cantwell and Coles [2]), which is important in the context

of using the proposed method as a phase indicator. Figure 20 presents the enveloped

transverse velocity spectra associated with different ranks, that turn out to be very similar.

The coefficient of variance, showed in the same figure, is of the order of 4 % within the

5.2 < f < 5.8 Hz range (the shedding band).
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∆φr(t) = φr(t)− φfit(t)

φfit(t) = min
φ

∑
r

[φr(t)− φ]2
(19)

(a)

(b)

Figure 19: a) Discrepancies in the small bar shedding phase angle evaluated for different
r values, b) χ∆k evolution for different ∆k values

(a) (b)

Figure 20: a) transverse velocity spectra of the reconstructed field evaluated for different
r values, b) normalized standard deviation of spectra

The second prescribed parameter is the filter band width. The assumption has been

made that the Gaussian fit into the difference between the spectra (see figure 14) is a base

for the band definition, i.e. it has been set to µ± kσ where k is chosen arbitrarily (k = 3

in the case of our analysis). Employing a standard deviation as a cutoff measure is well

33



established in scientific research, nevertheless it is worth checking how the assumed band

width affects the results.

It has been observed that the phase angle signal is significantly altered by changing

the k value. In order to quantify this effect the following parameter is introduced (the

phase signal is treated here as a function of k and denoted by φk):

χ∆k(k) = std (φk+∆k − φk−∆k) (20)

In the ideal case, χ∆k would converge to 0 at a sufficient k value which would mean

that φ doesn’t depend on k any longer. This point would define the proper band width.

The actual χ∆k evolution, calculated for three different ∆k values, is presented in figure

19b. The quantity drops significantly with increasing band width, reaching a plateau

for k > 2.5 which is established at a level of ' 5◦ in the presented cases. The plateau

starting point forms the suitable indication for the band width selection. The value of

k assumed in our calculations seems to be a good choice from this perspective. On the

other hand, χ∆k doesn’t reach 0 as desired. This is a direct consequence of dsh having a

broad spectrum because the φk+∆k − φk−∆k signal depends on the spectrum part banded

by µ± (k −∆k)σ < f < µ± (k + ∆k)σ, which is nonzero regardless of k and ∆k values.

A certain plateau level is, therefore, unavoidable, however this is not a major issue since

the level is low compared with typical bin widths in the bin averaging technique

The above analysis indicates the robustness of the method, at least with respect to

the parameter r. The filter band may raise some doubts but the ±3σ cutoff seems to be

a reasonable choice nevertheless.
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6 Application examples

Some interesting results derived with the proposed method are presented here. Let us

start with velocity spectra. These are given for both grid I and grid II at four different

positions (see figure 21). Shedding peaks have been successfully subtracted in each of the

presented situations and the recognizable residual peak is present only in the case of grid

II at the X1C2 station. Common features of the presented spectra are little side peaks

(e.g. at the X1C2 station for grid I) remaining after the phase dependent part subtraction

however these can be effectively suppressed if one increased the filtering band. Apart from

this the spectra appear to be efficiently decoupled. The shedding peaks are quite close

to each other in the cases of grid II at stations X0C2 and X1C2 (1.8 Hz, 2.2 Hz, different

frequencies correspond to the bars of the same size as in Yen and Liu [19]). Despite this

both peaks have been extracted separately. This can be seen as another benchmark for

the proposed method.

The extracted coherent modes can be used to estimate shedding intensity for different

bars, i.e. the share of each mode in the total fluctuations energy can be given. This is

presented in table 6. In order to take into account the fact that the reconstructed coherent

part ṽ and the residual velocity field v − v − ṽ are not orthogonal, the energy content is

calculated based on both separately, however the differences are negligible. These results

support the comment about wakes separation in the energy domain made while discussing

the POD approach, since the energy of the small bar shedding now appears to be smaller

by an order of magnitude. It also highlights the OMD capability of capturing a multiscale

flow’s dynamics.

Three cases of probability density functions (PDF) of the transverse velocity fluctu-

ations are presented in figure 22, all of them derived with the results for grid I at X0C1
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(a)

(b)

Figure 21: Enveloped transverse velocity spectra of the original and stochastic (residual)
data evaluated for: a) grid I, b) grid II

station. The plot correspond to the following locations: outside the wake region, at the

centerline of the wake of the small bar and at the centerline of the wake of the medium

bar. In the cases of points within wakes the M-shaped PDFs appear for the original data,

which is generally expected (the PDF of a sinusoidal signal is M-shaped). Importantly,

the residual PDFs (the stochastic part of the fluctuations) recall the sub-Gaussian shaped

PDF of turbulent flow (see Wilczek et al. [20] for instance) much more in both cases. On

the other hand, the original PDF was only slightly altered by the procedure in the case

of the point outside the wake. This is another proof of the capability of the proposed

method.
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Table 6: The relative energy (based on transverse velocity) of sheddings of grid I bars
(the medium and the small bar indexes are 1 and 2 respectively) calculated at different
downstream stations

E(ṽ1) 1− E(v − v − ṽ1) E(ṽ2) 1− E(v − v − ṽ2)

X0C1 21.6 % 22.8 % 5.2 % 5.2 %

X1C1 35.1 % 37.0 % 3.2 % 3.2 %

(a) (b) (c)

Figure 22: PDFs of the transverse velocity fluctuations evaluated for the original, recon-
structed (coherent) and residual (stochastic) data at: a) point outside a wake, b) point
inside the wake of the small bar, c) point inside the wake of the medium bar

An example of a more sophisticated analysis is given here. The transverse integral

length scale has been studied as a function of the phase angle of the vortex shedding of

the small bar. The following formulation has been utilized:

Lv(x0, y0, φ) =

∫ +∞

−∞
R̃21(x0, y0, ξ, φ)dξ

R̃21(x0, y0, ξ, φ) =
u′(x0, y0, t(φ+ 2πk)) · u′(x0, y0 + ξ, t(φ+ 2πk))

u′(x0, y0, t(φ+ 2πk))2

(21)

where Lv is the phase specific transverse integral length scale, R̃21 is similar to the compo-

nent of a correlation tensor and u′ stands for stochastic longitudinal velocity fluctuation.

The difference between R̃21 and a proper correlation tensor element R21 is that the aver-

aging procedure present in the tensor definition is applied over instants of time associated
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with the same phase position of the corresponding coherent part only. Since the assump-

tion of u′ being isotropic and homogeneous doesn’t hold in our case, R̃21 is a function

of the spatial position (x0, y0) and there is also no reason for R̃21 to be symmetric with

respect to the points’ separation distance (denoted by ξ). This implies a necessity of

integrating R̃21 in [−∞,+∞] bounds rather than the commonly employed [0,+∞].

Since the direct application of (21) requires a huge number of snapshots, the bin

averaging approach has been employed to evaluate R̃21, i.e. averaging over distinct phase

positions has been replaced with averaging over the corresponding phase bins (the bin size

was set to 0.2 rad in our case). The proposed OMD approach has been used to extract

u′ and to provide the phase reference. The presented results correspond to the stations

X0C1 and X1C2 so wakes of both bars appear there but R̃21 has been conditioned on the

phase angle of the small bar shedding only. Obviously, integration with infinite bounds

is numerically impossible, so it has been replaced with integration up to the first zero

crossing.

(a) (b) (c)

Figure 23: Transverse integral length scale as a function of the phase angle of the shedding
of the small bar evaluated at (positions normalized with the small bar thickness): a)
X
δ

= 3.1, b) X
δ

= 5.2, c) X
δ

= 10.4

Results at three separate downstream locations are presented in figure 23. The first
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observation is that the properties of the stochastic part (the transverse integral length

scale in this case) depend on the coherent part of the fluctuation. Otherwise there would

be no evolution in the presented plots along the phase direction. Figure 23a corresponds

to the location where the wakes have not yet intersected (see figure 3). The sinusoidal

valley of the small bar wake of approximately constant width is clearly distinguishable.

Lv
δ

is of order of 0.63 (normalized with the small bar thickness) there which is approxi-

mately 3 − 4 times smaller than the wake width. On the other hand there is almost no

dependance on the phase angle within the second wake. It is expected since the averaging

was conditioned on the smaller wake phase. The integral scale measured between wakes

oscillates reaching 25 mm for phase angles {0, 2π, . . . } up to 30 mm for {π, 3π, . . . }. These

are almost precisely the values of separation between wakes corresponding to those phase

positions. This is again an expected result since there is the region of potential flow (i.e.

v′ ≈ 0) bounded by wakes at the early downstream positions and the integral scale in the

laminar flow is infinite or, as in this case, is of order of the size of the domain.

Figures 23b and 23c correspond to the locations slightly upstream and downstream

of the wakes’ intersection point. The interesting result, which is better established in the

last plot, is that some structure seems to appear in the bigger wake (tagged with a dashed

line in the figure). This means that some phase locking between the wakes takes place.

A satisfactory explanation for this phenomenon is not yet available. Perhaps it can be

linked to the shedding frequency shift observed for the small bar or maybe it is a form

of manifestation of the space scale unfolding (SSU) mechanism postulated by Hurst and

Vassilicos [9]. Further research is planned in order to properly document and explain this

effect. Despite the mentioned lack of knowledge, it is clear that the proposed method is

a useful tool in the study of multiscale flow.
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7 Conclusions

It has been shown that the triple decomposition in the form postulated for a multiscale

flow, namely (4), can be effectively applied to DNS/experimental data by means of the

proposed OMD based approach. The coherent structures corresponding to different scales,

ãn, can be directly linked to particular OMD modes. The efficiency of the decomposition

is reflected in the spectra of the turbulent fluctuations, whose peaks due to coherence seem

to be almost perfectly leveled in the presented cases while the stochastic fluctuations stay

almost unaffected. The method is capable of providing a phase reference signal for each

structure separately, which is a non-trivial task in the case of a multiscale flow. This is

done purely based on the velocity field without relying on any additional measurements

which is beneficial in many ways (it saves time and effort, limits the jitter impact on the

results, avoids phase lags, takes into account the fact that coherent events are represented

by frequency modulation in certain bands rather than by peaks at distinctive frequencies,

etc.). The method can be thus used as a phase indication technique in the bin averaging

or in various types of phase conditioned studies. It is worth noting that the method is

not limited to a velocity field, as it can be equally applied to other fields (e.g. vorticity,

scalar concentration), either separately or simultaneously.

The robustness of the method has also been investigated. The arbitrary value of the

subspace rank has been found to affect the results only slightly within the scanned range.

The filtering procedure remains to be a minor issue since the resulting phase angle is

altered when the band is changed, although the effect is small for a suitably chosen band

width. Nevertheless, the proposed method performs the decomposition according to (4)

in a multiscale flow in a relatively easy and reliable way which is of major significance.
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