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Abstract

Large-angle Coulomb collisions allow for the exchange of a significant proportion of
the energy of a particle in a single collision, but are not included in models of plasmas
based on fluids, the Vlasov-Fokker-Planck equation, or currently available plasma
Monte Carlo techniques. Their unique effects include the creation of fast ‘knock-
on’ ions, which may be more likely to undergo certain reactions, and distortions to
ion distribution functions relative to what is predicted by small-angle collision only
theories. We present a computational method which uses Monte Carlo techniques
to include the effects of large-angle Coulomb collisions in plasmas and which self-
consistently evolves distribution functions according to the creation of knock-on ions
of any generation. The method is used to demonstrate ion distribution function
distortions in an inertial confinement fusion (ICF) relevant scenario of the slowing
of fusion products.

Keywords: Monte Carlo, large-angle collisions, knock-ons, reaction-in-flight,
inertial confinement fusion, plasma

1. Introduction

Large-angle Coulomb collisions affect the distribution of energy in plasmas by al-
lowing the transfer of a significant proportion of the energy of a particle in a single
collision. It is well known that their importance relative to the small-angle Coulomb
collisions which dominate interactions in classical plasmas is O(1/ ln Λ) [1], where
ln Λ is the Coulomb logarithm.

Their effects are therefore expected to be important in the 2 . ln Λ . 5 regime,
which includes high intensity laser-plasma interactions at solid density [2], degenerate
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plasmas [3], and stellar cores [4, 5]. This regime also includes inertial confinement
fusion (ICF) [6, 7], as an igniting ICF hotspot will have conditions [8] of areal density
and temperature of ∼0.3 g/cm2 and ∼10 keV respectively, which correspond to small
values of ln Λ for a typical hotspot radius of tens of microns.

Wide ranging experimentally detectable consequences of large-angle collisions
have been described; for the shape and evolution of distribution functions [9, 10, 11,
12], for fusion reactivities or as a diagnostic in both ICF and magnetic confinement
fusion (MCF) [13, 14, 15, 16, 17, 18, 19, 20], for plasma properties such as parti-
cle stopping and temperature equilibration [21, 22, 23], and for ‘athermal’ fusion
[24, 25]. Non-Maxwellian distributions caused by large-angle collisions have been
experimentally observed on JET (the Joint European Torus) [26].

A consequence of the inclusion of large-angle collisions is the generation of high
energy ‘knock-on’ ions; these are fast particles generated by collisions between high
energy fusion reaction products and thermal ions in the plasma in which the thermal
ions can gain many times their initial kinetic energy, distorting the fuel ion distribu-
tions from thermal equilibrium in the process. The knock-ons may be more likely to
fuse themselves (in what are known as reaction-in-flight fusion events), and can go
on to generate further knock-ons. These processes must be fully understood in order
to use Coulomb collision-induced knock-ons as a diagnostic.

The inclusion of the effects of large-angle Coulomb collisions in plasmas is a long-
standing challenge [1, 27, 28], and we present a new method which applies to plasmas
with ln Λ & 2. Although there are other methods which can include the effects of
large-angle collisions and knock-ons, the approach presented has unique strengths
as it self-consistently evolves ion distribution functions under the influence of large-
angle collisions, but is less computationally intensive than molecular dynamics (MD)
simulations.

Large-angle collisions involve a large transfer of energy or momentum per colli-
sion, as opposed to small-angle collisions. These two types of collision are also known
as ‘close’ and ‘remote’ collisions respectively due to the relationship between impact
parameter, b, and scattering angle, θ, of b = b⊥ cot

(
θ
2

)
. Here, b⊥ =

qiqj
4πε0

1
mijv2ij

and q

is the charge, mij is the reduced mass, vij is the relative velocity, and the species are
denoted by i and j.

The most commonly used plasma theories are based on the Vlasov-Fokker-Planck
(VFP) equation, and are only applicable in classical plasmas with ln Λ� 1 as they
either ignore large-angle Coulomb collisions [12], approximate them by over-counting
the effects of small-angle collisions in ln Λ [27], or have to be expanded to higher
orders to recover some of their effects [29, 22]. Current computational methods
invoke the small-angle approximation [30, 31, 32, 33], and are not applicable to
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large-angle collisions.
Though small-angle collisions are important for the overall exchange of energy

in plasmas with 2 . ln Λ . 5, the impact of fewer large-angle collisions with larger
transfers of energy per collision can distort distribution functions. This can indirectly
change the rate of exchange of energy between two plasma species as the rate of
energy transfer is dependent upon their distribution functions. That the changes in
energy per collision are discontinuous is also important; continuous loss models fail
for large-angle scattering [34]. These problems typically manifest when one species
has a much higher average energy than another, as is the case with the slowing down
of alpha particles during burn in fusion plasmas.

Analytical theories which include the effects of large-angle collisions via the
Coulomb logarithm for plasmas in thermal equilibrium have been developed, includ-
ing those of Baalrud [35], Brown, Preston, and Singleton (BPS) [36], and Gericke,
Murillo, and Schlanges [37]. These have been benchmarked against MD simulations
[38, 39, 40], and produce the correct results for properties such as temperature equi-
libration [41]. The MD simulations used to benchmark these theories do not include
quantum mechanical effects ab initio, so electron interactions are usually modified
at short distances [42, 39, 43, 41] to prevent them becoming infinitely bound to ions.
However, Dimonte and Daligault [38] presented purely classical results, using only the
assumption of like charges in a neutralising background, and found agreement with
the classical BPS theory for temperature equilibration [36]. This is strong evidence
that these analytical theories are including the effects of classical ion-ion large-angle
collisions. However, they involve an integration over assumed Maxwell-Boltzmann
distribution functions, and are not designed to give any information about the cre-
ation of knock-ons due to large-angle collisions, or the distortion to ion distribution
functions caused by them.

Several semi-analytical approaches to calculating the effects of large-angle col-
lisions for non-thermal distributions have been developed. In one, which shall be
referred to as the Ryutov theory, the Rutherford cross-section is directly integrated,
and a source term for knock-on ions found [10, 44, 19, 16]. This requires assumptions
about the initial ion distribution functions, and uses a cut-off in impact parameter
between close and remote collisions which is either a multiple of b⊥, or is imposed by
computational limits. An initial non-Maxwellian fuel ion distribution is calculated
from the knock-on source term, and is subsequently evolved according to a small-
angle-only VFP equation. Knock-ons of higher order are ignored, so the Ryutov
theory only includes the first generation of knock-on ions. Other semi-analytical ap-
proaches only model the athermal part of the distribution function. This approach is
usually limited by the assumption that there is no feedback on the bulk distribution
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function [24], or by the assumption of a steady state athermal distribution [25].
MD simulations are able to model any distribution function, and can resolve

the hard collisions which are responsible for knock-on ions. Though MD calcula-
tions make few assumptions, they are computationally intensive and typically use a
maximum of tens of thousands of particles [39, 45]. We find that millions of simu-
lation particles are required to resolve the distortion to the tails of ion distribution
functions caused by large-angle Coulomb collisions, and that an alternative method
of calculation of their effects, adopting a Coulomb logarithm benchmarked by MD
simulations, is therefore desirable.

In the Monte Carlo based method developed here, a cut-off in impact parameter
is used to separate out large- and small-angle Coulomb collisions and all ion-ion
interactions have a chance of generating knock-ons. The rate of generation of knock-
on ions is benchmarked against Ryutov’s theory.

The strength of the approach presented is that it includes knock-ons of any gen-
eration, and it allows distribution functions to evolve self-consistently according to
those knock-ons and to other changes due to fusion reactions. As a demonstration
of the application of this method, the effects of the distortions to ion distribution
functions on the source neutron spectra of the hotspot in a burning ICF capsule are
calculated.

Large-angle collisions between electrons and ions, and electrons and electrons,
are omitted from the analysis presented as the dynamics of these interactions are
modified at the short ranges relevant to large-angle scattering by quantum mechan-
ical effects [46, 47]. These effects would not be included by the classical approach
presented. Furthermore, the large mass difference between electrons and ions means
both that energy exchange between electrons and ions is much less effective than
between different species of ion, and that electrons are less likely to maintain a non-
Maxwellian distribution function for timescales long enough to significantly change
the evolution of plasmas for which this method is likely to be useful.

2. Theory of large-angle Coulomb collisions

We take large-angle collisions to be true binary collisions, where the full post-
collision trajectory is followed according to the Rutherford cross-section. This is
different to ‘multiple’ small-angle scattering in which a particle is deflected due to an
ensemble of particles within its Debye sphere (a sphere of radius the plasma Debye
length λD). Multiple small-angle scattering is described using the binary collision ap-
proximation, but particles undergoing this scattering do not follow the post-collision
trajectory of two particles interacting with the Rutherford cross-section. There are
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two equivalent pictures of the origin of large-angle, and multiple small-angle, colli-
sions.

In one, described by Cohen, Spitzer, and McRoutly [27], and others [1, 48], it
is the long range of the Coulomb force which causes remote particles to dominate
interactions in classical plasmas. These long-range forces are cut off at b = λD in
order to avoid the divergence in the cross-section. However, they note that there
must be some finite distance bc ≤ λD where the interaction with one other particle
becomes dominant, that if there were no large deflections then plasmas would be
fully described by VFP, and that the omission of large-angle encounters introduces
a larger error as λD/b⊥ and ln Λ become smaller. The other view, from Sivukhin
[28], is that the divergence arises because Rutherford implicitly assumes infinite
interaction times, but the time for remote interactions must be constrained. This is
because deflection angles in remote collisions must both be small, and increase with
interaction time. Large-angle collisions are effectively instantaneous by comparison,
thus particles follow the ‘full’ Rutherford collision trajectory.

These authors that we refer to [27, 1, 48, 28] recommend approximating large-
angle collisions by using bc = 0 in the absence of simple methods to include a bc > 0,
with Sivukhin adding that “Such an approach... cannot pretend to give a completely
adequate description of the true situation.” Both interpretations suggest the use of
an impact parameter b = bc which defines the cross-over between large- and small-
angle scattering, so that the former is restricted in angle to |θc(bc)| ≤ |θ| ≤ π, and
the latter to 0 ≤ |θ| < |θc(bc)|.

Previous work has examined the evolution of plasmas under the influence of large-
angle collisions and with bc > 0. Values for bc used include b⊥, 2b⊥ [1], 5.67b⊥ [16],
and values set by computational limits [24]. Given that the parameter bc is unknown,
three representative values of it are adopted in order to examine the effects of varying
it. The choice adopted by many authors of bc = b⊥ is included, and corresponds to a
cut-off in angle of θc = π/2. The value of the cut-off equivalent to considering small-
angle collisions only is also used in simulations, and is given by bc = 0. If bc = 0, no
large-angle collisions are included. Finally, the value of bc = 3b⊥ is used in order to
provide an approximate comparison with theories which take a much smaller angle
than θc = π/2 to be the cross-over angle between large- and small-angle scattering
[16]. These values of bc are used to model the strength of the large-angle collisions in
our combined large- and small-angle collision algorithm. bc plays its most important
role in equations (8), (9), and (10) where it causes the reduction in the strength
of small-angle collisions, appears in the cross-section for large-angle collisions, and
is used to generate large-angle scattering angles respectively. The correct value of
bc remains an open question, and is not addressed here. Too large a cut-off is not
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consistent with the fact that stopping powers are dominated by small-angle collisions,
and no cut-off is not consistent with the well-known phenomenon of Coulomb-induced
knock-on ions, meaning that the true situation is likely to be represented by some
λD � bc > 0.

3. Algorithm including small- and large-angle Coulomb collisions

3.1. Plasma simulations with small-angle collisions only

We begin with a brief review of Monte Carlo based techniques that simulate the
evolution of part or all of a plasma under the influence of multiple, small-angle colli-
sions. These include those by Takizuka and Abe (TA) [30], Nanbu [31], and Sherlock
[32]. They share a similar approach [33], being based on small-angle approximations
of the Boltzmann equation. The Boltzmann equation for interaction of species i is

∂fi
∂t

+ vi · ∇xfi +
F

mi

· ∇vfi =
∑
j

CB(fi, fj) (1)

with

CB(fi, fj) =

∫
R3

dvj

∫
S2

dΩ

(
dσ

dΩ
(vij,Ω)

)
(f ′if

′
j − fifj)

the Boltzmann collision term, primes denoting post-collision distributions, and where
dσ
dΩ

is, for a classical plasma, the pure Rutherford cross-section given by

dσ

dΩ
=

(
qiqj
4πε0

)2
1

m2
ijv

4
ij

1

4 sin4 θ
2

(2)

The force term F hides a lot of complexity; it must include E and B fields both from
external sources and from plasma motion, and those fields must also satisfy Maxwell’s
equations. The most important plasma interactions are dominated by those at long
distances and small deflection angles, and which therefore produce little change in
velocity in each collision. To provide computational methods for simulating plasmas,
it is usual to Taylor expand (1) in ∆v (the change in velocity in a single collision) to
give the small-angle only Landau approximation of the Boltzmann equation. This
results in a collision term of

CL(fi, fj) = −∇v ·
∫
R3

dvj QL
(

1

mj

∂

∂vj
− 1

mi

∂

∂vi

)
fifj (3)

where

QL =
2π

mi

ln Λij

(
qiqj
4πε0

)2(
u2I − uu

u3

)
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is the Landau collision operator, I is the identity matrix and u = |vij|. It is equation
(3), or its equivalent expression as the Vlasov-Fokker-Planck equation [49, 50], which
is implicitly solved by small-angle collision algorithms.

We use a modified version of the TA [30] small-angle collision algorithm in our
combined small- and large-angle algorithm. In the TA scheme, particles are paired
together at every time step independent of vij with the dependence on vij only en-
tering through the cumulative scattering angle between two particles. In the centre
of mass frame, the scattering angles are picked based on the following statistical ar-
gument: since successive collisions are independent events, the central limit theorem
ensures that for a large number of collisions, Ncoll, the distribution in angle will be
approximately Gaussian around the forward direction with a mean square angle〈

Θ2
〉

= Ncoll

〈
θ2
〉

Angular brackets signify an average value. 〈θ2〉 is most often calculated using the
small-angle approximation so that

〈
θ2
〉

=
1

σ

∫
θ2 dσ

dΩ
dΩ =

πb2
⊥

2σ

∫
θ2 sin θ

sin4 (θ/2)
dθ ≈ 8πb2

⊥
σ

∫
dθ

θ
= 8πb2

⊥ ln Λ/σ (4)

This integral is over θ ∈ (0, π). The number of collisions in a distance ∆s is given
by Ncoll = nσ∆s = nσvij∆t with n = min {ni, nj} and ∆t the timestep, so〈

Θ2
〉

= n∆tvij8πb
2
⊥ ln Λ (5)

where

ln Λ =
1

2
ln

(
b2
⊥ + λ2

D

b2
⊥

)
(6)

A number of terms have been omitted in (5) due to the small-angle approximation
but their inclusion makes almost no difference to the value of 〈Θ2〉. Scattering angles
for the particle pairs are then given by θ ∼ N (0, 〈Θ2〉).

There are many alternative formulations of ln Λ, and the one derived in equation
(6) is näıve in the sense that it does not include some effects known to be important
in this regime. These include quantum corrections, λD becoming of similar size
to the inter-ion separation distance, and the O(1/ ln Λ) corrections to scattering
at long distances (small-angles) due to dynamical screening [51, 52]. In order to
account for these effects, we use Gericke, Murillo, and Schlanges’ Coulomb logarithm
No. 6 (GMS6) [37]. This ln Λ has been benchmarked against molecular dynamics
simulations, and is valid for ND & 10 [39], where ND is the number of particles in
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a Debye sphere. In the simulations presented, this condition is satisfied and ion-
ion correlations are negligible. To include the extra physics encoded by the GMS6
logarithm requires the substitution of two of the variables in equation (6); λD is
replaced by bmax, and b⊥ with bmin, where

b2
max ≡ λ2

D + r2
0; b2

min ≡ λ2
dB + b2

⊥ (7)

where the total ion sphere radius is r0 = (4π
∑

i ni/3)−1/3, and λdB is the de Broglie
wavelength. This ln Λ and the usual TA algorithm form the basis for our extension
to large-angles, and a code with these elements has been benchmarked in previous
work [53]. Another small-angle algorithm may be used, as long as it is modified in
the manner described in §3.2.

3.2. Small-angle and large-angle collision algorithm

In order to extend the TA algorithm to include large-angle collisions it is necessary
to split the range of scattering angles between the small- and large-angle algorithms,
to reduce the strength of the small-angle algorithm appropriately, and to introduce
our binary collision based large-angle algorithm. In §2, the cut-off in impact param-
eter bc and its equivalent θc(bc) are introduced. In the multiple-scattering-only TA
algorithm, angles are picked from θ ∼ N (0, 〈Θ2〉) but the domain of integration in
the derivation of the variance, 〈Θ2〉, must now be restricted to θ ∈ (0, θc). Evaluating
(4) for restricted θ, the resulting variance is 〈Θ2〉 = nvij∆t8πb

2
⊥ ln ΛM where ln ΛM is

a modified Coulomb logarithm which only includes small-angle collisions. It is given
by

ln ΛM =
1

2
ln

(
b2

min + b2
max

b2
min + b2

c

)
(8)

Subscripts ‘M’ and ‘L’ henceforth refer to multiple and large-angle scattering respec-
tively. This modification still allows for the use of the replacements in the GMS6
ln Λ. Similarly, any theory restricted in angle and including extra corrections due to
long-distance, small-angle effects could be used in place of equation (8).

In addition to the reduced strength multiple small-angle collisions, the large-angle
collisions must be included in the algorithm. Rather than implicitly solving (3), it
is equation (1) for deflections θ > θc that should be solved. As described in §2,
large-angle collisions are instantaneous, with particles following the full Rutherford
collision trajectory. There has been great success in modelling these types of collisions
in Monte Carlo particle transport [54, 55], where, rather than explicitly solve a
transport equation, the transport process is Markov-like with the probability of the
next interaction depending only upon the current state of the particle. The same
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technique is deployed here to model the binary, large-angle Coulomb collisions within
a plasma. Although we use this technique to provide a general method for simulating
large-angle Coulomb collisions, there is an analytically tractable special case of their
effects on a plasma which is used as a benchmark of the algorithm in §4.1. The
novelty of this approach to large-angle collisions relative to previous work on knock-
on ions is that other plasma evolution problems may be solved without, for instance,
the assumption of a cold background, or that of restricting solutions to a single
generation of knock-on ions.

The small-angle collisions proceed as in §3.1, except with ln ΛM in place of ln Λ.
A separate large-angle algorithm is run in which particle pairs are selected locally
and randomly using the TA particle pairing scheme. Given a pair of particles i and
j, and small ∆t, the probability of a large-angle collision is given by

PL = σLnvij∆t

The total cross-section for a large-angle collision is

σL =
πb2
⊥

2

∫ π

θc

sin θ

sin4
(
θ
2

)dθ = πb2
c (9)

from equation (2). Note that PL = PL(vij), in contrast with the multiple-scattering
methods based on the Vlasov-Fokker-Planck equation [33], in which particles are
always collided at every time step but with a scattering angle dependent upon vij.

Large-angle collisions are carried out for a pair if u ∈ U(0, 1) < PL, otherwise
no collision takes place. In the case that a large-angle collision occurs, a scattering
angle in the centre of mass frame must be selected in accordance with equation (2).
Defining

dσ

dθ
=
πb2
⊥

2

sin θ

sin4
(
θ
2

)
then the large-angle scattering probability density function given that a collision
occurs is defined as

P(θ)dθ =
1

σ

dσ

dθ
dθ

This may be integrated to give CL(x), a cumulative density function in θ for large-
angle Coulomb collisions;

CL(x) =

∫ x

θc

P(θ)dθ = −b
2
⊥
b2
c

[
1

sin2
(
θ
2

)]x
θc
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In order to produce randomly generated values of θ distributed according to the
Rutherford differential cross-section, it is then only necessary to substitute random
numbers u ∼ U(0, 1) into the inverted cumulative distribution function to produce
the centre of mass scattering angles;

θ = C−1
L (u) = 2 sin−1

[(
b2
⊥

b2
⊥ + b2

c(1− u)

)1/2
]

(10)

Note that C−1
L (1) = π and C−1

L (0) = θc.
In Monte Carlo particle transport with only ‘large-angle’ or ‘hard’ scattering

events and no feedback between the particles, the distance to the next collision, ∆s,
may be sampled and particles moved to the point where they undergo a collision. In
this case, there is a continuous energy loss due to collisions in addition to large-angle
collisions and feedback between all particles, so large-angle collisions must occur with
a certain probability per time step in line with the particles’ properties changing due
to the cumulative scattering mechanism. Hence the large-angle algorithm attempts to
collide particles at every time step, but ‘rejects’ those pairings for which no collision
takes place according to PL. With too large a time step, the probability of large-
angle collisions will increase as PL ∝ ∆t and PL > 1 is possible. Choosing ∆t �
1/ (min {ni, nj} 〈vijπb2

c〉) ensures that this happens rarely and defines the time scale
required to resolve the physics. However, as PL = PL(vij), there may be times
when most collisions are resolved, but occasionally there are interactions in which
vij causes PL > 1. This is a natural consequence of the choice of ∆t reflecting an
aggregate property of the plasma. In the small-angle only algorithms, this failure is
typically dealt with by choosing θ ∈ U(0, π) as the scattering angle. In the large-
angle algorithm PL > 1 is turned into an integer, bPLc, and a remainder PD − bPDc.
bPLc is the floor function, which returns the largest integer not greater than PL.
The integer number of collisions is carried out, followed by another collision if u ∈
U(0, 1) < PD − bPDc. u is not re-used as at least one collision occurs if PL > 1, and
the random number comparison is with the non-integer portion of PL, ensuring that
the number of large-angle collisions is insensitive to ∆t. This preserves the O(N)
operations scaling for N computational particles as the number of collisions of both
types is (1 + PL)N , with PL independent of N .

In order to show that the large-angle collision cross-section has the expected
O(1/ ln Λ) size relative to small-angle collisions in this theory, it is compared to the
small-angle particle slowing cross-section as defined by the first kinetic cross-section,

σ1,M =

∫
(1− cos θ)dσ = 4πb2

⊥ ln ΛM
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Figure 1: The ratio of the large-angle collision cross-section to the multiple small-angle first kinetic
cross-sections for a deuterium-tritium Coulomb collision with bc = b⊥ in a deuterium-tritium-
electron plasma.

with a cut-off applied at b = bc. For the particular case of bc = b⊥, the ratio of the
large-angle collision cross-section σL = πb2

c to σ1,M is shown in Fig. 1 for deuterium-
tritium collisions in a deuterium-tritium-electron plasma and is 1/(4 ln ΛM) ≈ 1/(4 ln Λ)
and so tends to zero for large ln Λ.

4. Benchmarking the algorithm

4.1. Rate of generation of knock-on ions

A benchmark of the method is provided by comparison with Ryutov’s theory,
developed by Ryutov [10] and Helander [44], for the source rate of knock-on ions.
This theory has been successfully used for predictions [15, 16] of the neutron spectra
from magnetic confinement fusion experiments, and found to be in agreement with
experimental data [18]. Given a fast particle α, the source rate of knock-ons of ions
of species i per unit volume per unit time is given by

Qi(E
′
i)dE

′
i = Q(v′i)4πv

′
i
2
dv′i = 8πγ2ni4πv

′
idv
′
i

∫ ∞
γv′i

(
dσ

dΩ

)
fα(vα)vαdvα
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under the assumption that i is cold. γ = mi/(2miα) and
(

dσ
dΩ

)
=
(
qiqα
4πε0

)2 (
1

γmiv′2i

)2

is the Rutherford cross-section. Note that v′i = vα
γ

sin
(
θ
2

)
. In the simple case when

there is a mono-energetic distribution of α particles with speed v∗α,

fα(vα) = nαδ(vα − v∗α)/4πv2
α

then

Qi(E
′
i)dE

′
i =

(
qiqα
4πε0

)2
2πninα
v∗αmiE ′2i

dE ′i (11)

On the assumption that bc = b⊥, the maximum energy transfer is E ′i,max = 4E∗αm
2
iα/(mimα)

(determined by b = 0), and the minimum is E ′i,min = E ′i,max/2 (determined by
bc = b⊥), so that the total rate of knock-ons is

Qtot
i =

(
qiqα
4πε0

)2
πninα

(v∗α)3m2
iα

Fig. 2 shows the rate of generation of knock-on deuterium ions according to
the theory in equation (11) against the results of our Monte Carlo simulation with
large-angle collisions. Both methods assume bc = b⊥ and initial conditions of nα =
nD = 5 × 1031 m−3, with an isotropic, mono-energetic α particle distribution with
E∗α = 3.54 MeV, and cold deuterium. The Monte Carlo simulation with large-angle
collisions is restricted to only producing the first generation of knock-ons, in order to
compare against the Ryutov theory, which makes the same assumption. The simple
scenario of two mono-energetic distribution functions allows for a direct comparison
against an analytical expression. The initial energy of the α particles is indicated
on Fig. 2. The sharp upper cut-off in the final energy of the knock-ons is caused by
the kinematics and that the initial α particle energy is set at a single value. The
sharp lower cut-off is a consequence of using two mono-energetic distributions for the
two colliding species, so that the value of b⊥ is very similar for each collision. The
value of b⊥ then determines the maximum allowed final energy of the knock-on. In a
more physical situation, in which the distributions are not mono-energetic, a range
of initial energies of the colliding species cause a smoother lower cut-off in energy of
the generated knock-on ions. The simulation only includes the interaction between
α particles and deuterons.

In the Monte Carlo simulation shown in Fig. 2, the rate of generation of knock-
ons is calculated from Qi(E

′
i) = N(E ′i, E

′
i + dE ′i)w/t where t is the time passed in

the simulation, N(E ′i, E
′
i + dE ′i) counts the number of knock-on ions of species i with

energies between E ′i and E ′i + dE ′i, and w is the weighting of particles, defined as
w =

∑
j nj/

∑
j Nj with Nj the total number of simulation particles of type j. The

agreement between the Monte Carlo simulation and the theory is excellent.
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Figure 2: Benchmarking the source rate, QD, of knock-on deuterium ions due to fast α particles
incident on cold deuterium assuming that the cut-off takes the value bc = b⊥. The theory is
described by equation (11). The dashed-dotted vertical line indicates the initial alpha particle
energy.

4.2. Temperature equilibration

In addition to creating knock-on ions at the relevant energy and frequency, the
combined small- and large-angle model should reproduce known results on tem-
perature equilibration in circumstances where the distribution functions of the two
equilibrating ion species remain well-described by a Maxwell-Boltzmann distribu-
tion. Such a scenario is represented by the equilibration of deuterium and tritium
at solid density with initial temperatures of 2 and 2.5 keV respectively. Fig. 3 shows
the equilibration of these two species over time with bc = 0, b⊥, 3b⊥ and the rate of
equilibration based on the GMS6 Coulomb logarithm [37]. Also included in all mod-
els are the collisions between electrons and electrons, and electrons and ions, all of
which occur via small-angle collisions only. The electrons have an initial temperature
of 2.5 keV.

Note that, in this scenario, it is unlikely that distortions would occur to ion
distribution functions, as the average energies of the two species are close. This
is confirmed by the excess kurtosis, defined by κ =

∫
(E − µ)4 f(E)dE − 3 with
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Figure 3: The equilibration of two ion species over time with, and without, large-angle collisions
in a regime in which they are expected to be unimportant. Also shown is the theoretical rate of
equilibration.

µ the mean, which provides a metric for the deviation from a Maxwell-Boltzmann
distribution, and satisfies |κ| < 0.1 for all simulations considered, demonstrating that
the addition of the large-angle Coulomb collisions make no difference to distribution
functions, or equilibration, when the energy transfers are small.

5. Application to generation of knock-ons in an ICF hotspot

We apply the model to a simplified inertial confinement fusion hotspot [56] in
conditions which favour the generation of knock-on ions in order to demonstrate
the distortions to ion distribution functions which can result. The hotspot contains
deuterium, tritium, and electrons (in charge balance) initiated in thermal equilibrium
at T = 3 keV and nD = nT = 4.52× 1031 m−3. 5% alpha particles are added at the
deuterium-tritium fusion production energy of E = 3.54 MeV. Fusion of deuterium
and tritium is enabled, but the less likely deuterium-deuterium and tritium-tritium
fusion reactions are omitted. The fusion routine has been benchmarked against other
work [57]. Hotspot energy loss mechanisms, such as thermal conduction, radiation,
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Figure 4: Deuterium excess kurtosis, κ, over time; this demonstrates the departure from thermal
equilibrium caused by fast α-particles ‘knocking-on’ background deuterons to many times their
initial energy.

and α escape, are not included. As described in §1, large-angle collisions are only
modelled between ion species; a summary of the included interactions is given in
Table 1.

Three models for bc are simulated, and the excess kurtosis of the deuterium ions
for these simulations are plotted as a function of time as shown in Fig. 4. As no loss
mechanisms are included in these hotspot simulations, the increases in yield feed back
into higher temperatures, and further fusion reactions. The timescales examined, of
a few hundred fs, are short relative to the burn time of an ICF capsule of 20-50 ps.

Species Electron Ion
Electron Small-angle, bc = 0 Small-angle, bc = 0
Ion Small-angle, bc = 0 Large- and small-angle, bc

as labelled

Table 1: Summary of the enabled interactions for the hotspot simulations
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As κ = 0 in thermal equilibrium, the two simulations using bc 6= 0 in Fig. 4
show that the deuterium distribution function has been distorted by the slowing of
the α-particles when large-angle Coulomb collisions are accounted for. In the case
without large-angle Coulomb collisions, the energy loss of the αs is more evenly
spread over the background ions. Because faster particles have an energy deposition
time τ ∝ 1/v3, depositing the α energy in fewer, more energetic deuterium and
tritium ions when including large-angle collisions means that the ion distribution
functions take longer to equilibrate than when that energy is deposited more evenly.
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Figure 5: Deuterium and α distributions from the Monte Carlo simulation for bc = 3b⊥ after
t = 590 fs. Also shown is a Maxwell-Boltzmann distribution fitted with a temperature TD =
2〈ED〉/3 = 8 keV. The probability density functions are normalised to unity.

A snapshot of deuterium and α distribution functions is provided in Fig. 5. The
fitted Maxwell-Boltzmann distribution for deuterium, also shown, has a temperature
such that 3TD/2 = 〈ED〉 and provides a good fit for the bulk of the distribution
function. However, it underestimates the low energy part of the distribution relative
to the simulated distribution function, and, importantly, overestimates the region
which contributes most to the deuterium-tritum fusion reactivity. A high energy tail
is clearly present due to the knock-on effect, and its probability density is orders of
magnitude higher than the tail of the Maxwell-Boltzmann distribution. The small-
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angle-only, bc = 0 deuterium and tritium distribution functions remain Maxwellian,
while the bc = b⊥ distribution shows less distortion than bc = 3b⊥ and more than
bc = 0 as expected.
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Figure 6: The time-integrated neutron spectrum at t = 150 fs after the start of the simulation,
when the ion temperature has reached 4 keV.

The strong dependence of the fusion cross-section on collision energy ensures
that even small distortions to the high energy portion of the fusing ions’ distribution
functions can have consequences for the neutron spectrum. These effects are shown
in Fig. 6, which is the time-integrated neutron spectrum at t = 150 fs. Though
the primary neutron spectra, from thermal deuterium and tritium fusion, are in
agreement, the spectra due to knock-on ions fusing are dependent on the value of
bc. The fusion of knock-on ions with background ions cause the tails to form in the
neutron spectra. The tails have an intensity which is orders of magnitude lower than
the primary neutron spectrum.

In this scenario, the change to distribution functions does result in a change to
yield over the time scales of 100s of fs considered. For initial ion temperatures above
1 keV, we find that the effect of the inclusion of large-angle Coulomb collisions is to
take probability density from the peak of the fusion cross-section and re-distribute
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Figure 7: The ratio of a Maxwell-Boltzmann distribution to the simulated probability density
function of deuterium at t = 590 fs for bc = 3b⊥. Also shown is the fusion cross-section. The
simulated distribution function is depleted at the peak of the cross-section, with the probability
density shifted to higher energies.

it above the peak, so as to reduce the reactivity and therefore reduce the yield. This
can be seen clearly in Fig. 5, and is made explicit in Fig. 7 which shows that the
simulated deuterium distribution function is depleted relative to a fitted Maxwell-
Boltzmann distribution around the peak of the fusion cross-section, but has more
probability density as the cross-section decreases at energies above the peak. Despite
the large difference at the peak of the fusion cross-section, the reactivity is dominated
by the bulk distribution and the effects on yield relative to the small-angle only case
are small, giving a less than 8% reduction for the values of bc considered.

It should be noted that experimental neutron spectra are the product of other
effects in addition to Coulomb collision charged-particle induced knock-ons; these
include the down-scattering of produced neutrons and neutron-induced knock-ons,
nuclear elastic scattering [16, 58], inelastic scattering processes and light nuclei break-
up reactions [20], capsule anisotropies and consideration of the scattering in the cold
fuel and ablator, and detector sensitivity. There is a possibility that the correct model
for bc could be determined from data obtained from ICF experiments, but this would
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require neutron spectra accurate over many orders of magnitude and self-consistent
inclusion of these other processes.

6. Conclusion

We have provided a new technique to evaluate the effects of large-angle Coulomb
collisions in plasmas with ln Λ & 2, and shown that their inclusion has a demonstrable
effect on the tails of ion distribution functions when a source of fast particles is
present. This technique allows for the self-consistent evolution of ion distribution
functions under the influence of large-angle Coulomb collisions, and includes knock-
on ions of all generations. In the context of ICF, the strong dependence of the
fusion reactivity on the tails of the ion distribution functions means that the neutron
spectrum is significantly changed by the inclusion of large-angle Coulomb collisions.
The effects included by our method cannot be predicted by fluid or Vlasov-Fokker-
Planck models, which are incapable of reproducing the large jumps in particle energy
which occur due to large-angle collisions, and the generation of ion knock-ons is
treated to all orders with self-consistent evolution of species’ distribution functions.
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