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Abstract

The current work studies the fracture mode partition in beam-like geometries as a function of cohesive
properties. It is observed that the mode mixity exhibits a unique dependence on the cohesive zone length
scale, where the lower and upper bounds are given by the local and global partitioning. Based on this
observed unique dependency, a new semi-analytical cohesive analysis (SACA) is proposed for partitioning.
This partitioning method is applied to previously conflicting experimental data in the literature, and phys-
ically consistent results are obtained in each case, suggesting that this novel SACA method can be used to
obtain accurate mixed mode partitioning now always.
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1. Introduction

It has been widely documented that the toughness of adhesive joints and composite laminates can vary
considerably depending on the mode of loading [1, 2, 3, 4]. In many of these cases, the mode I energy release
rate (ERR), GIC , is shown to be the most critical, and hence is a conservative value when used in design.
However, Dillard et al. [3] highlighted a number of cases where the lowest measured ERR, GC , occurs at
a certain mixed mode I/II loading. To eliminate the risk of non-conservative design, and also avoid over
design, it is important to characterise joint toughness over a full range of mixed mode loadings ranging
from pure mode I (tensile) to pure mode II (in-plane shear). Test methods for fracture characterisation of
the pure modes I and II have been well established [5, 6]. However, while a number of options exist for
mixed mode I/II testing [7, 8, 9], it is an area of considerable contentiousness and uncertainty, in particular
regarding the mode decomposition of asymmetric specimens.

Beam-like geometries as shown in fig.1 have been the main basis for the development of analytical mixed
mode partitioning theories, and will be the focus of the current study. The mode mixity (GII/G) is defined
here as the ratio of the energy release rate in mode II (GII) to the total energy release rate (G), where
G = GI +GII . Williams [10] proposed a fully analytical approach for decomposing ERRs into mode I and
mode II components based on classical beam theory, without considering the details of local stress and strain
distributions at the crack tip. This approach is often referred to as the global approach. Yin and Wang [11]
and Suo and Hutchinson [12] proposed a solution based on the decomposition of stress intensity factors (SIFs)
by considering local conditions at the crack tip. Thus, in contrast to the Williams [10] global partitioning
approach, this approach assumes the presence of a K dominant region and is commonly referred to as the
local partitioning approach. The predicted mode partition from both the local and global approaches are
independent of material properties and depend only on γ and k, where γ is the ratio of beam heights and
k is the ratio of applied moments as defined in fig 1. The predicted partitions from both methods agree
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only when the crack is located centrally (h1 = h2), as shown in fig. 2(a) where the predicted mixed mode
partitions (GII/G) from the local and global approaches are plotted as a function of the applied moment
ratio k for symmetric specimens. In cases where h1 6= h2, the differences between the local and global
approaches are significant, as is evident in fig. 2(b) where the predicted mixed mode partition (GII/G) from
both approaches are plotted as a function of the beam heigh ratio γ for k = 0.

Numerous experimental studies have investigated the accuracy of both the local and global approaches.
Hashemi et al. [1] carried asymmetric tests on carbon epoxy composite and applied both local and global
partitioning. It was found that the global approach produced a more physical failure locus and it was
proposed that this was likely due the fracture process zone being larger than the relatively small K dominant
region (often ≤ 1% of smallest beam thickness [13]). Davidson et al. [14] also carried out asymmetric tests on
carbon epoxy composite and compared the resulting failure loci, obtained via local and global partitioning,
to the already measured true failure locus obtained using symmetric specimens. It was found that neither
the local nor global approach predicted the mode partition adequately. Ducept et al. [15] undertook a similar
study on glass reinforced epoxy composite and found that the local partitioning accurately predicted the
symmetrically measured failure locus.

It is evident that considerable uncertainty still surrounds the area of mixed mode partitioning. The
goal of the current work is to numerically simulate fracture in common asymmetric fracture test geometries
with the use of a cohesive zone model and then carry out a parametric study on the effect of cohesive
and substrate properties on the mode mixity. As all of the substrate and cohesive properties are linked to
the numerical cohesive zone length, lcz, the effect of the size of the developed cohesive zone length on the
mode mixity (GII/G) is of particular interest and is studied in detail. Based upon the numerical findings
from this study, a new semi-analytical cohesive analysis (SACA) scheme is proposed for partitioning mixed
mode fractures. The novelty of this SACA scheme is that it accounts for damage state at the crack tip by
incorporating a cohesive length scale parameter, lnd. This damage dependent partitioning scheme is then
applied to previously conflicting experimental data [1, 15] and the success of the new partitioning scheme is
critically assessed.

2. Analytical Partitioning

2.1. Global Partitioning

Using beam theory, the total energy release rate for an increment of crack growth in fig. 1 can be shown
to be:
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where E is the beam modulus in the bending direction and B is the out of plane width. Williams [10]
proposed that the applied moments could be decomposed into components which caused pure mode I (MI)
and pure mode II (MII). By proposing that pure mode I occurs when moments are equal and opposite
(−M1 = kM1), and that pure mode II occurs when the beam curvatures are equal (M1/EI1 = kM1/EI2),
it is possible to represent the applied moments as a combination of the decomposed moments as:

M1 = MII −MI

kM1 = ψMII +MI

(2)

where ψ = (h2/h1)3. The resultant mode I and mode II energy release rates can be found directly by
substituting eqs. 2 into eq. 1 as no cross product term containing MIMII is produced. The resulting
decomposed energy release rates are given by:
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2.2. Local Partitioning

In the local approach [12], the partitioning of eq. 1 is carried out by obtaining the singular field stress
distributions at the crack tip and solving for the decomposed stress stress intensity factors KI ,KII . Using
the relation between energy release rate and stress intensity factors for homogeneous isotropic materials i.e.
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(K2

I +K2
II)

E
(4)

the decomposed energy release rates are expressed as:
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where M and P are linear combinations of the applied loads. In the particular case of the loading shown in
fig. 1, these are defined as:
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(1 + k)M1

h1
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and U , V and φ are geometric factors defined by:
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ω, which is a function of γ, can not be obtained analytically and is extracted from a rigorous numerical
solution of the case in which γ → 0, and then linearly approximated over the range 0 ≤ γ ≤ 1. The value of
ω at γ = 1 is known because the mode partition is exact in this case. The proposed linear approximation is
given by:

ω = 52.1− 3γ (8)

3. Numerical Partitioning of Cohesive Zones

Cohesive zone models have been used extensively to simulate fracture process zones since the concept
was first introduced by Dugdale [16] and Barenblatt [17]. A typical fracture process zone is shown in fig. 3.

The fracture process zone consists of a crack tip located at a, where cohesive stresses drop to zero, and
a damage zone tip located at a∗, which occurs when the cohesive strength, tC , is reached. The distance
between a and a∗ is the cohesive zone length (lcz). When the damage region is propagating in a self similar
manner under monotonic loading between linear elastic beams, the concept of energy release rate G can be
related to the path independent J integral proposed by Rice [18], which can be expressed as:

G = JΓext
= JΓcoh

+ JΓtip
(9)

for the fracture process zone shown in figure 3. Γext is a path going continuously from a point on the lower
fully cracked face to the upper fully cracked face around the crack tip and fully encapsulating the cohesive
region, Γcoh corresponds to a path along the upper and lower surfaces of the active cohesive zone and Γtip
corresponds to an infinitely small path surrounding the crack tip. The J integral is computed from:

J =

∫
Γ
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0
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where σij , εij are the components of the stress and strain tensor respectively, ui the displacement vector,
nj the outwards normal to the path, and s is the distance along the path. By calculating the J integral
externally along Γext, it is possible to account for energy contributions from the cohesive surfaces (JΓcoh

)
and crack tip singularity (JΓtip

), and this can be applied regardless of whether there is a cohesive region
present or not. Ishikawa et al. [19] proposed a method for decomposing the J integral into mode I and
mode II components. This is achieved by considering symmetric integration paths about the crack plane.
e.g. paths containing P and P ′ in fig. 3, and decomposing the stress, strain and displacement fields into
symmetric (causing mode I) and antisymmetric (causing mode II) components as:
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These decomposed stresses, strains and displacements are substituted directly into eq. 10 to obtain the mode
decomposed J integral components (JI , JII), which equate to the mode I and mode II ERR components
(GI , GII).
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In cases where the fracture process zone is fully developed and the singularity is fully suppressed i.e. JΓtip
=

0, the mode decomposed ERR components can be found directly by integrating over the cohesive surfaces
as JΓext

= JΓcoh
. The resulting expression can be expressed in terms of known cohesive zone quantities as:

GI =

∫
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ds
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∂δS
∂x

ds

(13)

where tN , tS , δN and δS are the normal and shear cohesive tractions and opening displacements respectively.
Γ+
coh indicates that the integration only needs to be performed over the top surface, which arises due to the

symmetry of stresses on the upper and lower cohesive surfaces.

4. Numerical Solutions

4.1. Test Case Setup

The mode mixity in the asymmetric fixed ratio mixed mode (AFRMM) (fig. 4(a)) and the asymmetric
double cantilever (ADCB) (fig. 4(b)) test geometries are studied as a function of cohesive properties in
this work. In each test case, the beam geometry is meshed with a regular grid of 2D plane strain, 8 node
quadratic elements in Abaqus v 6.11. The beam material is assumed linear elastic and isotropic, with a
Young’s modulus of 50 GPa and a Poisson’s ratio of 0.38. Loading is achieved through a fixed rotation,
which is applied to a rigid surface that is tied to the end of the loaded beam. A rotation boundary condition
is preferred as it induces a pure bending moment and also allows the crack to propagate in a numerically
stable manner when the damage region is fully developed. This boundary condition also mimics the pure
moment loading that is assumed in the local and global analytical analyses. Cohesive elements are inserted
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along the crack plane in the undamaged region as indicated in fig 4. Mesh density is chosen to ensure at
least 10 cohesive elements are present in the fully developed damage region, as recommended by Turon et al.
[20]. Two cohesive zone formulations are used to model the AFRMM test case for comparative purposes.
The first cohesive zone, which is inbuilt into Abaqus, is a coupled linear-softening formulation proposed by
Camanho et al. [21]. The second cohesive zone model is an uncoupled Dugdale formulation developed by
Yang et al. [22], and is implemented as a user element (UEL) subroutine in Abaqus. The cohesive zone
formulations are represented graphically in fig. 5 and the details, along with the explanations of fig. 5, are
given in A. The particular test case properties for both the AFRMM and ADCB test cases are as follows:

4.1.1. AFRMM

The geometry, loading and boundary conditions used in the AFRMM test case can be seen in fig. 4(a).
Three different γ (γ = h1/h2) ratios are simulated corresponding to 0.1, 1, and 10. In each of the test
cases, unless otherwise stated, the mode I and mode II cohesive toughnesses (GIC , GIIC) are set equal (i.e.
GC = GIC = GIIC), as are the normal and shear cohesive strengths (i.e. tC = tNC = tSC). Therefore,
along with the beam height ratio, the only properties which are varied in this study are the cohesive
strength tC and cohesive toughness GC . For each γ ratio, the cohesive toughness is set to values of 200
and 3000 J/m2, and for each of these toughness values, three different cohesive strengths are simulated,
corresponding to 20 MPa, 45 MPa and 95 MPa. For each test geometry, an initial test case is carried
out where the cohesive region is replaced by a perfect bond between the substrates. This allows a K
dominant region to develop at the crack tip and gives a bounding solution corresponding to zero damage
development; this solution is referred to as the elastic solution. Two additional cases are also carried out to
investigate the effect on the mode partition when GIC 6= GIIC . This was only possible with the uncoupled
Dugdale cohesive zone model as the coupled linear-softening cohesive zone suffers from thermodynamic
inconsistencies under variable mixed mode loading when pure mode toughnesses are unequal [23, 24]. The
additional cases correspond to (γ = 0.1, GIC = 500J/m2, GIIC = 3000J/m2, tNC = tSC = 45MPa) and
(γ = 10, GIC = 200J/m2, GIIC = 800J/m2, tNC = tSC = 95MPa).

4.1.2. ADCB

The geometry, loading and boundary conditions used in the ADCB test case can be seen in fig. 4(b).
Two different γ ratios are simulated, corresponding to 0.2 and 5. In this test case, only the linear-softening
cohesive zone is used. As before, two toughness values of 200 and 3000 J/m2 are simulated at each γ ratio,
and for each of these toughness values, three different cohesive strengths are simulated, corresponding to 20
MPa, 45 MPa and 95 MPa.

4.2. Post Processing

For each case, with the exception of the elastic runs, the rotational loading is increased until steady
state fracture occurs. At this point, the mode I and mode II ERR components are obtained by integrating
over the cohesive surfaces using eq. 13. The cohesive zone length, lcz, as defined in fig. 3 and section 3,
is also recorded in each case. For the elastic cases where the cohesive zone is omitted, a fixed rotation is
increased until a moment of 50N/m develops in the loaded arm. At this point the mode I and mode II ERR
components are calculated using the remote decomposed integrals given by eq. 12.

4.3. Results

4.3.1. AFRMM

The numerical partitioning of the AFRMM test case, modelled with the coupled linear-softening CZM,
is presented in fig. 6(a), and compared to local and global partitioning theories. For all height ratios, the
elastic partitioning solution is in close agreement with the local partitioning. This is expected given the
singular nature of the crack tip when no cohesive zone is present. When the cohesive zone is present, the
partition of energies does not in general agree with either the local or the global solution. For γ = 1, both
the local and the global partitioning theories agree and the cohesive zone solutions accurately predict this
partition. When γ 6= 1, the cohesive zone solutions predict that the partition lies in between the local
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and the global partitioning. For high strengths and low toughnesses (i.e. small cohesive zone length),
the predicted mode partition lies closer to the local partitioning solution and for low strengths and high
toughnesses (large cohesive zone length), the predicted mode partition lies closer to the global partitioning
solution. Considering the role of γ in all cases, the solutions lie much closer to the global solution for γ = 10,
compared to γ = 0.1. This shift towards the global solution for γ = 10 may be attributed to two main
factors. Firstly, for γ = 10, the loading is mode II dominant, which results in higher cohesive zone lengths
compared to the mode I dominated loading for equivalent cohesive properties [25]. Secondly, the smallest
characteristic dimension, which is 0.3 mm in the γ = 10 case compared to 3 mm in the γ = 0.1 case,
also plays an important role as the range of the K dominant field scales with the smallest characteristic
dimension. This means that the range of the K dominant field is smaller in the γ = 10 case and therefore
the mode mixity will deviate further away from the local solution in the γ = 10 case for similar cohesive
zone lengths.

The corresponding results from the uncoupled Dugdale CZM are presented in fig. 6(b). The same
combinations of cohesive properties are used in this test case for γ = 1, 10, with the exception of three cases
where convergence was not obtained. These cases occurred at each cohesive strength when GC = 3000J/m2

at γ = 10. Also, an extra case was simulated to examine the effect of unequal toughnesses at each γ ratio.
In cases where GIC = GIIC , a similar trend to the linear-softening cohesive zone is observed. However,
there is an overall shift towards the local solution for each case. This might be explained by the fact that
the developed cohesive zone length will be shorter for a Dugdale type cohesive zone compared to a linear
softening cohesive zone for the same toughness and strength properties, again suggesting that the cohesive
zone length is the critical parameter. In the cases where GIC > GIIC , the predicted partitions also lie
between the local and the global solution.

4.3.2. ADCB

The results of the ADCB test case, modelled with the coupled linear softening cohesive zone, are presented
in fig. 7. For the ADCB case, global partitioning predicts that the loading is always pure mode I, regardless
of the beam height ratio, and local partitioning predicts a considerable variation in the mode partition as
a function of the beam height ratio. The cohesive zone solution again predicts that partitioning lies in
between the local and the global solution, and shows a similar trend going from local to global for increasing
toughness and decreasing strength. The solutions are again shifted towards the global solution for γ > 1.
As the applied moments are equal in this case, the only difference is the geometrical size, which suggests
that the smallest characteristic dimension does play an important role in determining the mode mixity. The
smallest characteristic dimension is 0.6 mm in the γ = 5 case compared to 3 mm in the γ = 0.2 case.

4.4. Discussion

Based on the numerical findings presented in section 4.3, it is evident that the cohesive zone length (lcz)
plays an important role in determining the mode mixity. In the elastic cases where there is no damage
(i.e. a zero cohesive zone length), the local partitioning solution provides an accurate estimate of the mode
partition and therefore forms a natural lower bound. As the cohesive toughness increases and/or the cohesive
strength decreases, the mode partition deviates away from the local solution and moves towards the global
solution. For very high damage lengths, the global solution provides an accurate prediction of the mode
partition, and hence seems to provide an upper bound. Another important factor in determining the mode
mixity, as is evident in the noticeable shift towards the global solution for γ > 1 in the AFRMM and ADCB
test cases, is the value of the smallest substrate thickness, termed ac (ac = min(h1, h2)). An overall plot of
the normalised mode mixity against the normalised cohesive zone length for all of the test cases is shown in
fig. 8. The mode mixity is normalised with respect to the upper and lower bounds of the global and local
solutions as:

f =
(GII

G )− (GII

G )W

(GII

G )HS − (GII

G )W
(14)

where (GII

G )HS and (GII

G )W are the partitions predicted by the local (eq. 5) and global (eq. 3) analytical
approaches respectively. The measured cohesive zone length is normalised with respect to the smallest

6



characteristic dimension to obtain a normalised damage length parameter (lnd = lcz/ac). Based on the
results in fig. 8, there is strong evidence to suggest a unique dependency exists which describes the normalised
mode mixity as a function of the normalised cohesive zone length, which is independent of applied moment
ratio k, beam height ratio γ and cohesive zone type. A best fit exponential curve is fitted to the data which
results in the relation:

f =

{
1, if lnd ≤ 0.3

0.9682e−0.24lnd + 0.0983e−0.02lnd , otherwise
(15)

Based on this fit, the local partitioning is accurate for cohesive zone lengths up to 30% of the smallest
characteristic dimension. This length is considerably larger than the size of the K dominant region, which is
reported in Becker et al. [13] and Charalambides et al. [26] to be of the order of 1% of the beam thickness in
beam-like geometries subjected to bending. This result is in agreement with Parmigiani and Thouless [27];
though most cohesive zone lengths based on the current properties fall outside of this 30% bracket, which
suggest that the local partitioning will in general not be accurate for partitioning fractures in composites
and adhesive joints. Global partitioning does not in general provide accurate partitioning either, and in
most general cases the actual partition lies between the local and global solutions. In general, the mixed
mode partition is dependent on multiple cohesive zone and substrate properties, all of which are linked
through a cohesive length scale. Taking the unique dependency observed in fig. 8, it is proposed that if a
reasonable estimate of the numerical cohesive zone length can be obtained analytically from known substrate
and cohesive properties, then an accurate estimate of the mode mixity can be obtained directly from the
empirical curve given by eq. 15, and therefore avoiding the need to carry out numerical mixed mode cohesive
zone simulations. This idea forms the basis of the semi-analytical cohesive analysis, which is outlined in the
following section.

5. Semi-Analytical Cohesive Analysis (SACA)

5.1. Introduction

In the previous section, the numerical mode mixity is studied as a function of cohesive properties in
common asymmetric fracture test geometries and it is found that a unique curve defines the numerical
mode mixity as a function of the normalised cohesive zone length (i.e. eq. 15). In this section, a semi-
analytical approach (SACA) is proposed which makes use of this observed unique curve and hence provides
an approximate approach which does not require each individual fracture test to be modelled numerically
with cohesive zones in order to determine the correct mode mixity. This greatly reduces the time required to
analyse mixed mode fractures and eliminates the need to carry out a numerical analysis. The underlying idea
is that if the cohesive zone length can be estimated analytically from the assumed substrate and cohesive
properties, then the mode mixity can be obtained directly from the empirically measured unique curve (eq.
15). The analytical estimation of cohesive zone lengths is presented in the following section.

5.2. Analytical estimation of cohesive zone length

Yang and Cox [25] presented analytical expressions for pure mode I (lI cz) and pure mode II (lII cz)
cohesive zone lengths in symmetric slender laminates as:

lI cz = M
(
E

′

I

GIC
(tNC)2

) 1
4

h
3
4 (16a)

lII cz = M

√(
E

′
II

GIIC
(tSC)2

h
)

(16b)
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where M is a scaling factor, which is included here to account for cohesive zone shape, as in [28]; h is half
the specimen height and E

′

I and E
′

II are elastic constants, which are given in [29] for slender orthotropic
specimens as:

1

E
′
I

=

√√√√ 1

2E11E22

((E11

E22

) 1
2

+
2(−v21E22

) + 1
G12

2( 1
E11

)

)
1

E
′
II

=
(1− v12v21)

E11

(17)

where E11 and E22 are the Youngs moduli in the x and y directions respectively for the loading configurations250

presented in fig. 4, G12 is the in plane shear modulus, and v12, v21 are the in-plane Poisson’s ratios. The
accuracy of eq. 16a and 16b are studied in detail in [28] for mid-plane delaminations under pure mode I
and II loadings: it is found that they provide reasonable accuracy for a coupled bilinear cohesive zone when
M = 0.5. To the best of the authors’ knowledge, the accuracy of the expressions have not yet been tested for
asymmetric geometries, or in their ability to predict cohesive lengths under general mixed mode conditions.
Firstly, to deal with the potential asymmetry of geometry and loading, it is proposed that the h term in eq.
16 be defined as:

h =
h1 + |k|h2

1 + max[h1,h2]
min[h1,h2] |k|

(18)

where k is the applied moment ratio as defined in fig. 1 for −1 ≤ k ≤ 1. This proposed definition of h
is based on the observation that the estimated cohesive zone length is dependent only on the thickness of
the loaded arm in the AFRMM test case (k = 0), and is dependent on the minimum arm thickness in the
ADCB test case (k = −1). The mode I and mode II cohesive zone lengths under mixed mode conditions
(l

′

I cz, l
′

II cz) can be estimated by replacing GIC with GI in eq. 16a and GIIC with GII in eq. 16b. This
results in a mode I and a mode II cohesive zone length defined by:

l
′

I cz = M
(
E

′

I

GI
(tNC)2

) 1
4

h
3
4 (19a)

l
′

II cz = M

√(
E

′
II

GII
(tSC)2

h
)

(19b)

The largest of these predicted values is then taken to be the cohesive zone length, as depicted in fig. 3:

lcz = max[l
′

I cz, l
′

II cz] (20)

In order to obtain values of M for the linear softening and Dugdale cohesive zones, the measured cohesive
zone lengths from the numerical test cases carried out in section 4 are plotted against the predicted cohesive
zone lengths obtained from eqs. 17-20: for each case, M is varied until an optimum least squares fit
between the measured vs. predicted data and the theoretical linear prediction (x = y) is obtained. The
measured vs. predicted cohesive zone lengths for the linear softening cohesive zone are plotted in fig. 9(a);
M = 0.65 was found to give the optimum prediction. The measured vs. predicted cohesive zone lengths
for the Dugdale cohesive zone are plotted in fig. 9(b); in this case, M = 0.33 was found to give the best
prediction. Interestingly, Planas and Elices [30] previously reported scaling factors of 0.731 for the linear
softening cohesive zone and π/8 for the Dugdale cohesive zone, based on an analytical study of cohesive
zone lengths in infinite bodies. These values are in line with the current predictions for the scaling factors
in slender specimens. Overall, the proposed equations are shown to give reasonable estimates for both the
linear softening (using M = 0.65) and Dugdale (using M = 0.33) cohesive zones, over a range of cohesive
properties, beam height ratios and moment ratios.
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5.3. Estimating mode mixity

Once a reasonable estimate of the cohesive zone length is obtained analytically, the normalised mode
mixity, f , can be estimated directly from the unique dependency curve (eq. 15). The value of f can then
be substituted directly into eq. 14 to obtain an estimate of the mode mixity (GII

G ). In order to obtain the
mixed mode cohesive zone lengths from eq. 19, GI and GII must first be estimated. In the estimation of
the cohesive zone lengths shown in figs. 9(a) and 9(b), the values of GI and GII were obtained directly
from the numerical results; however, as the mode mixity will not generally be known prior to the analysis
of experimental data, the values of GI and GII must be found iteratively. To do this, an initial guess of f
is made, which gives a mode mixity value from eq. 14. This value of mode mixity is used to partition Gc to
obtain GI and GII . The value of Gc is either known directly from experiments, or can be estimated from a
failure locus, if known. The estimated cohesive zone length is then used to obtain an improved estimate of
f from eq. 15, and the process is iterated until a converged value of cohesive zone length, and hence mode
mixity, is obtained (a tolerance value (tol) of 1e − 5 is used in the current work). This process is outlined
in fig. 10

5.4. Numerical Verification

The proposed SACA approach outlined in fig. 10 is tested here in its ability to predict the numerical
damage length and mode partition for general numerical cases using the coupled linear softening cohesive
zone. The AFRMM (fig. 4(a)) test case is used as before but with a number of changes to the substrate and
cohesive properties. The substrate Young’s modulus is set to 75 GPa and the tests are carried out at γ =
0.1, 0.2, 0.5, 2, 5, 10. For each γ ratio, five different cohesive toughnesses are tested corresponding to 250,
500, 1000, 2000 and 3000 J/m2. A linear failure locus is again assumed, with GIC = GIIC . In each case
the cohesive strength is set to tNC = tSC = 45MPa. The test cases are simulated in Abaqus as before and
the mode partition is calculated using the mode decomposed J integral (eq. 13), and the cohesive lengths
are recorded. As an aside, it is possible to check the validity of the unique empirical curve proposed in eq.
15 using the new numerical data; to do this, the normalised mode mixity is plotted against the normalised
damage length for each of the new simulations in fig. 11. It can be seen that the proposed empirical curve
accurately describes the normalised mode mixity as a function of the normalised cohesive zone length for
the new numerical data, and hence further suggests that the measured empirical curve is unique.

Once the cohesive zone lengths and mode partitions are recorded from the numerical solution, the required
parameters are independently input into the SACA analysis in order to estimate the cohesive zone lengths
and mode partitions. The required parameters are: geometry and loading conditions (h1, h2, k); substrate
elastic properties (E11, E22, G12, v12, v23); cohesive strengths (tNC , tSC) and cohesive zone shape (M). In
the SACA partitioning of this numerical case, Gc is found from the assumed failure locus at a given mode
mixity. The SACA predicted damage lengths are plotted against the numerically obtained damage lengths
in fig. 12(a), and the SACA predicted mode partitions are plotted against the numerically obtained mode
partitions in fig. 12(b). There is some small scatter in the prediction of the damage length in fig. 12(a),
though the general trend is accurately predicted. This suggests there may be scope for improvement of the
analytical cohesive zone length estimation. However, the predicted mode partitions in fig. 12(b) are in very
good agreement with the numerically obtained mode partition. This suggests that the mode partition is
not overly sensitive to small scatter in the cohesive length estimation, and that the semi-analytical model is
sufficient to gain a good estimate of the mode partition in the general case. This SACA approach therefore
eliminates the need to numerically model each case individually and makes it feasible to estimate the mode
mix efficiently based on substrate and cohesive properties. In the following section, this semi-analytical
cohesive analysis is applied to a number of experimental case studies taken from literature.

6. Experimental Case Studies

6.1. Hashemi et al.

Two case studies from the literature are analysed in this section. The first is on the AFRMM delamination
tests carried out by Hashemi et al. [1] on uni-directional carbon fibre epoxy composite. In this original work,
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it was found that global partitioning produced the most physical failure locus when applied to partition the
asymmetric test data. It was therefore suggested that global partitioning should be used to partition fractures
in such material systems. Using the data presented in this paper, it was possible to obtain the beam height
ratios and dimensions, and re-partition the data according to the SACA approach. Typical uni-directional
carbon fibre epoxy elastic properties were assumed as they were not presented in the paper. The values
used were E11 = 120 GPa, E22 = 10 GPa, G12 = 4.6 GPa, v12 = 0.3, v23 = 0.38. The values of Gc at
each height ratio are taken directly from the experimental measurements presented in the paper. No data
was available for the cohesive strength, so a typical value of 45 MPa was assumed in normal and shear.
Finally, a value of the shape parameter M must be chosen; Svensson et al. [31] recently measured mode I and
mode II cohesive zone laws in carbon fibre reinforced composite and found that a trapezoidal law accurately
described the stress as a function of opening displacement. Therefore, both the linear softening (M = 0.65)
and Dugdale (M = 0.33) cases are used here in the SACA analysis as they give an upper and lower bound
for the trapezoidal shape. The predicted partitions according to the SACA approach are presented in fig.
13(a) for both the linear softening (L) and Dugdale (D) cohesive zones.

In all cases, the SACA partitioning predicts that the partition lies between the local and the global
partitioning. For γ < 1, the partitioning is closer to the local analysis, and as γ becomes large and mode
II becomes dominant, the partitioning approaches the global solution. As expected, the linear softening
cohesive zone partitioning lies closer to the global partitioning compared to the Dugdale partitioning; this
is due to the larger cohesive zone length prediction in the linear softening case. The predicted failure loci
based on the linear softening and Dugdale partitioning are presented in fig. 13(b). These are also compared
to the local and global partitioning of the data, which were presented in the original paper. In order to
obtain a quantitative assessment of the accuracy of each of the methods, a linear failure locus is assumed
to be correct and the root mean square errors (rmse) are calculated for each partitioning method, where
rmse is defined as:

rmse =

√√√√√ N∑
1

(
Gcurve−Gdata

Gdata

)2
N

(21)

where N is the number of data points. The rmse values are presented in fig. 13(b); it is evident that the
SACA (L) partitioning produces the best fit to the assumed linear failure locus. As previously reported, it is
also evident from the rmse values that the local partitioning does not produce overall accurate partitioning
for this material system. Interestingly, fig. 13(a) indicates that the local partitioning is reasonably accurate
for γ < 1 based on the SACA analysis, but not for γ > 1. While SACA (L) partitioning produces the
best fit, SACA (D) partitioning is also compatible with the experimental results, and also produces a lower
rmse than global partitioning. The ability of the SACA approach to predict a physical failure locus is
promising and provides direct experimental evidence which demonstrates that the cohesive length scale can
be used to predict partitioning based on the numerically observed unique dependency between local and
global partitioning solutions.

6.2. Ducept et al.

The second case study is based on experimental data of Ducept et al. [15]. In this paper, ADCB and
asymmetric mixed mode bend (AMMB) test cases were carried out on glass fibre reinforced epoxy composite
for a number of different height ratios and moment ratios respectively. AMMB cases are those in which
unequal moments are applied to the substrate arms. The asymmetric tests were then partitioned according
to the global and local approaches, and the resulting failure loci were compared to the true failure locus,
which was measured using symmetric specimens. It was found that local partitioning accurately predicted
the symmetrically measured failure locus, while the global partitioning did not perform well in predicting the
true failure locus. It was therefore deemed that local partitioning provided the most accurate partitioning
for this material system. The ADCB and AMMB data of Ducept et al. [15] are re-partitioned here using the
SACA approach. The glass fibre reinforced epoxy composite elastic properties are given as E11 = 25.7 GPa,
E22 = 6.5 GPa, G12 = 2.5 GPa, v12 = 0.32 and v23 = 0.38. The values of Gc for each test case are reported
in the paper. There was no data given on the cohesive strength, so a typical value of 45 MPa was again
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assumed in normal and shear. As before, both the linear softening (M = 0.65) and Dugdale (M = 0.33)
cohesive zone shapes are used, as they give upper and lower bound results for various trapezoidal cohesive
zone shapes. The predicted SACA partitioning, for both linear softening and Dugdale cohesive zones, are
presented in fig. 14(a) for the ADCB test cases, and in fig. 14(b) for the AMMB test.

It is evident that the SACA partitioning for both the ADCB and AFRMM, for linear softening and
Dugdale cohesive zones, is very close to the local partitioning for this material system. The predicted failure
loci based on these partitioning results are presented in fig. 15. Also presented in fig. 15 are the predicted
failure loci according to the local and global partitioning, and the symmetrically measured failure locus.
As outlined in Ducept et al. [15], the local partitioning produces a failure locus close to the symmetrically
measured locus, while it is evident that the global partitioning is not compatible with the results. The
SACA partitioning, using both the linear softening and Dugdale cohesive zones, are also compatible with
the experimental results. The local partitioning and SACA(D) perform best when comparing the root mean
square error (eq. 21). However, there are only relatively small differences between the resulting failure
loci between SACA(D) and SACA(L) partitioning in this case. It is believed that due to the relatively low
substrate modulus in this case (25.7 GPa), the resulting cohesive length scales are small and hence the
predicted SACA partitioning is in good agreement with local partitioning. This prediction, which again is in
agreement with the experimental results, further demonstrates that the cohesive zone length scale approach
can be used to accurately predict mode partitioning.

7. Conclusions

In the first part of this paper, the numerical mixed mode partition in common asymmetric fracture test
geometries is studied as a function of varying cohesive properties. The numerical mixed mode partition is
calculated using the mode decomposed J integral approach [19]. The main conclusions drawn from this
study are:

• When the fracture process zone is small, the resulting value of the numerical mode partition is close
to the local partitioning solution. Also in a number of cases where no damage is allowed to develop,
the local solution is also recovered, suggesting that this forms a lower bound.

• As the cohesive zone size grows, the values of the numerical mixed mode partition deviate away from
the local solution, and in all cases moves towards the global solution which seems to form the upper
bound.

• It is found that in most cases the numerical mixed mode partition lies between the local and global
solutions, suggesting limited applicability of both the local and global approaches in their current form.

• When the normalised cohesive length for all cases are plotted against the normalised mode mixity, a
unique dependency is observed which is independent of test geometry, cohesive properties, and cohesive
zone type.

Based on this observed unique dependency, the semi-analytical cohesive analysis (SACA) is proposed
for calculating mixed mode partitions. This approach eliminates the need to carry out a numerical analysis
and therefore greatly reduces the time and effort required to calculate mixed mode partitions. The method
utilises the analytical estimations of cohesive zone length [25] to determine the mode mixity directly from
the numerically obtained unique dependency curve (i.e. eq. 15). The method is found to work well in
predicting mixed mode partitions when compared to numerically obtained values in a verification test case
using the coupled linear softening cohesive zone. The proposed unique dependency curve is also found to
hold true for this verification test case.

In the final part of this paper, the proposed SACA method is used to re-partition AFRMM and
ADCB/AMMB test data from previously contrasting reports in the literature [1, 15]. Both linear soft-
ening and Dugdale cohesive zone shape factors are used as they give an upper and lower bound to the
trapezoidal law. It is found that the SACA partitioning (Linear softening and Dugdale) could be used to

11



explain the results from both cases, based on the estimated cohesive length scale parameter. Two main
conclusions can be drawn from this:

• The SACA approach captures the experimentally observed shift from the local towards the global
partitioning as the level of damage increases.

• The SACA approach proves an efficient and accurate method for predicting mixed mode partitions.
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Appendices
A. Cohesive Zone Models

A.1. Coupled Linear-Softening CZM [32]

The coupled linear-softening cohesive zone, which is inbuilt into Abaqus, is shown graphically in fig.
5(a). The cohesive zone is based on the formulation proposed by Camanho et al. [21]. Up to the point
of damage initiation, the response of the cohesive zone is linear and uncoupled in opening and shear and
governed by the pre-damage stiffness matrix:[

tN
tS

]
=

[
kyy 0
0 kxx

] [
δN
δS

]
(22)

where tN and tS are the normal and shear tractions respectively acting across the cohesive zone, δN and δS
are the relative displacements of the cohesive zone in the normal and shear directions respectively, and kyy
and kxx are the initial penaltly stiffnesses in the normal and shear directions respectively. The initial penalty
stiffnesses are set at a value of 1e15 Pa/m for all simulations. The cohesive tractions increase linearly with
displacement according to eq. 22 until they satisfy the quadratic initiation criterion, which is given by:( 〈tN 〉

tNC

)2

+
( tS
tSC

)2

= 1 (23)

where tN and tS are the normal and shear tractions respectively acting across the cohesive zone, and tNC
and tSC are the chosen pure mode cohesive strengths in normal and shear respectively. The quadratic stress
criterion (eq. 23) has been used previously to accurately predict delamination onset in composite laminates
[33, 34]. After damage initiation, a linear softening law is effected using an overall damage variable D,
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which is incremented from zero to one as a function of the overall effective displacement, δeff , where

δeff =
√
δ2
N + δ2

S , as:

D =
δfeff (δmax

eff − δ0
eff )

δmax
eff (δfeff − δ0

eff )
(24)

where δfeff is the effective displacement at final failure, δ0
eff is the effective displacement at damage initiation,

and δmax
eff is the maximum effective displacement that has occurred up to that point in time. The cohesive

tractions in the softening regime, which are coupled through D, are then computed from

tN =

{
(1−D)t̄N , if t̄N ≥ 0

t̄N , otherwise

tS = (1−D)t̄S

(25)

where t̄N and t̄S are the tractions predicted by the pre-damage stiffness matrix (eq. 22) at the current
displacements. Along with pure mode cohesive strengths and penalty stiffnesses, it is also required to
specify the mixed mode failure locus. The following linear criterion is used( GI

GIC

)
+
( GII
GIIC

)
= 1 (26)

where GI and GII are the energies dissipated in mode I and mode II respectively up to that point in time
(as represented by the red and blue shaded regions respectively in fig. 5(a)), and GIC and GIIC are the
prescribed pure mode cohesive toughnesses, as indicated in fig. 6(a). The linear failure criterion has been
used extensively to describe mixed mode failure loci [35, 36] in composites.

A.2. Uncoupled Dugdale (constant traction) CZM [22]

The uncoupled Dugdale CZM, which is developed by Yang et al. [22], is shown in fig. 5(b). Prior to
damage initiation, the response of the element is equivalent to the coupled linear softening cohesive zone (i.e.
eq. 22), and the penalty stiffnesses are also both set to 1e15 Pa/m in each case. In this formulation, the
stresses remain uncoupled and constant as they follow the prescribed pure mode Dugdale type laws exactly
until the failure criterion is satisfied, at which point the stress is dropped suddenly to zero in both modes.
The linear failure criterion (eq. 26) is also used in this formulation.
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Figure 1: Beam-like geometry subjected to pure bending moments (M1, kM1).
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Figure 2: Local and Global Partitioning for (a) symmetric specimens, and (b) asymmetric specimens.
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Figure 4: Beam Geometries and Loading Conditions.
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Figure 6: Numerical mode partitions from cohesive zone analysis of the Asymmetric Fixed Ratio Mixed Mode for (a) Coupled
Linear-Softening Cohesive Zone and (b) Uncoupled Dugdale Cohesive Zone.
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Figure 9: Numerically obtained damage length plotted against analytically predicted damage length for (a) Coupled Linear-
Softening Cohesive Zone (M = 0.65) and (b) Uncoupled Dugdale Cohesive Zone (M = 0.33).
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Figure 10: Program flowchart for the proposed semi-analytical cohesive analysis (SACA).
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Figure 12: Numerically obtained (a) cohesive zone length, and (b) mode mixity, plotted against SACA predicted damage length
and mixed mode partition, respectively, for the AFRMM verification test cases using the linear softening cohesive zone.
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Figure 13: (a) SACA partitioning (L-linear softening, D-Dugdale) and (b) Predicted failure loci resulting from this partitioning
of the AFRMM data obtained in Hashemi et al. [1]
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Figure 14: SACA (L-linear softening, D-Dugdale) partitioning for (a) ADCB test data and (b) AMMB test data obtained from
Ducept et al. [15].
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ADCB and AMMB data obtained in Ducept et al. [15]. The predicted failure loci are compared to the symmetrically measured
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