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Abstract 
 
The atomistically-detailed molecular modelling of petroleum fluids is challenging, 
amongst other aspects, due to the very diverse multicomponent and asymmetric nature of 
the mixtures in question. Complicating matters further, the time scales for many 
important processes can be much larger that the current and foreseeable capacity of 
modern computers running fully-atomistic models. To overcome these limitations, a 
coarse grained (CG) model is proposed where some of the less-important degrees of 
freedom are safely integrated out, leaving as key parameters the average energy levels, 
the molecular conformations and the range of the Mie intermolecular potentials employed 
as the basis of the model. The parametrization is performed by using an analytical 
equation of state of the statistical associating fluid theory (SAFT) family to link the 
potential parameters to macroscopically observed thermophysical properties. The 
parameters found through this top-down approach are used directly in molecular 
dynamics simulations of multi-component multi-phase systems. The procedure is 
exemplified by calculating the phase envelope of the methane-decane binary and of two 
synthetic light condensate mixtures. A procedure based on a discrete expansion of a 
mixture is used to determine the bubble points of these latter mixtures, with an excellent 
agreement to experimental data. The model presented is entirely predictive and an 
abridged table of parameters for some fluids of interest is provided. 
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1. Introduction 
 
A typical crude oil consists of several thousands of distinct chemical species, all of them 
roughly similar in chemical nature, but with an important spread in terms of their 
molecular size, morphology, and thermophysical behaviour. Furthermore, being a natural 
product, the particular properties of the mixture vary widely from reservoir to reservoir 
and can even change with time and during the extraction and processing stages1. While 
the lighter ends can be characterized individually, e.g. by gas chromatography or mass 
spectrometry, as the molecular weight increases the number of closely-related structures 
and their complexity increase combinatorially as their number or mass fraction decreases. 
As the heavier end of the spectrum is approached, only very general descriptions of these 
fractions can be obtained, usually expressed in terms of some general characteristics as 
the aromatic character, the percentage of heteroatoms, etc. 
 
It is ludicrous to postulate that one could model these highly complex systems by 
explicitly taking into account each and every distinct molecule present in the system, 
even if such information could ever be obtained. As a consequence, in the pursuit of the 
theoretical modelling of these mixtures, historically two schemes have become the 
mainstream tools of petroleum engineering; either the description as a continuum 
distribution2 or the description as a discrete but finite set of pseudo-components3. Pseudo-
components are artificial assignments of a cut or fraction of the mixture to values of 
critical properties, densities and acentric factors which on average represent the bulk 
behaviour, obtained from measured oil bulk properties, light ends analysis, distillation, or 
other characterization methods. The concept brings back simplicity into the description of 
a mixture and the number of pseudo-components usually employed to describe a crude is 
in the order of dozens. There are a number of empirical ways to perform this mapping, 
and no consensus of an optimal procedure exits4. Related approaches map the behaviour 
of a crude to a mixture of real components5 or characterize pseudo-components based on 
13C NMR and other analytical data subsequently applying group contribution methods6,7 
to obtain the corresponding equation of state (EoS) parameters. Whichever the procedure 
employed, the mapping of the mixture to a finite set of constituents allows the use of 
analytical EoS to be used as fitting tools, as they are mostly built with a discrete mixture 
in mind. The number and diversity of the EoS available for this purpose is staggering and 
their review is removed from the scope of this manuscript. The reader is referred to recent 
monographs8,9 for further details.  
 
A more modern approach to study thermophysical properties of fluid mixtures is by 
means of classical molecular simulations. The recent perspectives by Maginn10,11 and 
Palmer and Debenedetti12 give the reader some insight on the currently accepted views. 
However, it is important to not to raise false expectations on the capabilities of computer 
simulations and particularly to understand the present and future limitations. Fully 
atomistic modelling, where the individual molecules are described in terms of their 
constituent atoms and the bonds between them, cannot currently be used to explore more 
than several nanoseconds of time (in the case of Molecular Dynamics) and a few 
thousands of individual molecules. Even with modern advances in parallel processing, 
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the use of graphical processing units and the reduction in the costs of hardware, these 
limits are bound to remain essentially unchanged (see for example the comments made 
during a recent Faraday Discussion13 on the topic). This is not to say that both massively 
large systems14, 15 and/or long time frames16 have not been explored, but they are far from 
the norm; furthermore one extreme usually precludes the other. Unfortunately, this 
scenario is incompatible with the apparent need for modelling crudes with hundreds or 
thousands of different species, each in a discrete composition and for reasonably long 
times (e.g. to study asphaltene aggregation; freezing of waxes; solubility of gases, etc.). 
An immediate corollary of the above comments is that in the present and immediate 
future a detailed atomistic description of a crude oil is essentially unfeasible. It is thus 
natural to consider that the atomistic modelling will follow the EoS modelling approach, 
i.e. it is compulsory to describe a crude oil as a mixture of a relatively small number of 
prototypical species or surrogate real molecules17. Some key questions still remain to be 
answered as to the number and nature of discrete elements necessary for a trustworthy 
representation, the level of fidelity required from the models and the strategies employed 
to represent the more “unknown” fractions present in heavier crudes. 

Notwithstanding some of the above warning signs, some “heroic” efforts have been made 
to atomistically describe complex oil mixtures by simulations. Notable is the seminal 
work of Lagache et al.18 captured in extenso in a book19, that a decade ago described the 
modelling of naturally occurring high-pressure high-temperature hydrocarbon gas 
mixtures using 18 discrete representative molecules. Other examples are the work of 
Maldonado et al.20 who have presented a molecular dynamics (MD) simulation of 25 
discrete n-alkanes from C6 to C30 using atomistic models. They considered a very low 
density system and the adsorption behaviour of this mixture onto graphite surfaces. Other 
authors have considered discrete mixtures of a handful of small molecular weight 
hydrocarbons to mimic a crude, analysing, for example the accumulation of aromatics at 
the oil−water interface 21 the interfacial properties of gases and brine22 and the diffusion 
of gases 23 . Recently, Li and Greenfield 24  employed a system composed of a dozen 
representative molecules to describe asphalt systems. The use of proxy molecules to 
represent a cut or family of homologous molecules is a natural progression in the 
simplification of the problem. Mixtures of a small number of discrete model molecules, 
each representing a family of molecules (e.g. resins, asphaltenes) have been employed to 
discuss bitumens25,26 while binary mixtures of heptane (or toluene) plus a model molecule 
are routinely employed to study the effects of asphaltene aggregation27,28,29,30  in spite the 
fact that pure heptane (or toluene) are clearly deficient models of a complex crude. Wax 
deposition is also commonly studied using representative few-component alkane 
mixtures31, 32,33,34,35,36.  
 
All of the above approaches encounter the technical problem associated with the fact that 
molecular simulations are based on the a priori specification of pairwise potentials 
amongst the N atoms that constitute the mixture and that the time required to solve the 
problem scales in principle as N2. The recently observed increased proliferation of 
atomistically-based studies is a reflection of both reduction in the cost of high 
performance computer hardware and the increased confidence in the quality of the 
predictive power of classical atomistic force-fields. However, the crux of the matter is 
that even the speedup provided by advanced algorithms which decrease the scaling of the 
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problem and/or the steady historical increase in computational power implicit in Moore’s 
law37 are not enough to provide the baseline for fully atomistic modelling of crudes. A 
way forward is to recognize that the level of detail incorporated into the existing 
atomistic models is far too great for the needs of this problem, more so if one recognizes 
the large uncertainties surrounding the detailed characterization of the actual crudes. The 
use of simplified versions of the potentials, generically called coarse grained (CG) 
models becomes the immediately obvious route.  
 
Coarse graining is a term that refers to the use of simplified molecular models, where the 
atomistic detail is removed and substituted by the description of molecules in terms of 
“super-atoms” which represent, typically, a small number of heavy atoms. For example, 
in a standard CG representation, a propane molecule could be modelled as an isotropic 
spherical bead where all the electronic details, the intramolecular vibrations, bond 
bendings and molecular topology are incorporated within a point pair-wise interaction 
model. Coarse graining techniques have been extensively used in computational 
biology38,39 where the self-assembly of large molecules is the main point of interest, but 
have become a mainstream technique for the study of complex fluids, materials and soft 
matter. One of the key issues in developing CG force fields is the methodology used to 
parameterize the intermolecular potential. Although not uniquely, most CG approaches 
start with an atomistically detailed model and integrate out the degrees of freedom not 
deemed to be relevant40. This procedure, by its own nature, removes information and the 
resulting force field is inherently deficient, especially in terms of transferability. In the 
case of interest here, a bottom up coarse graining makes no sense, as the initial 
components are not well defined to start with. More aggressive CG of this type inevitably 
ends up losing the link to the parent models, with the corresponding loss in robustness. 
Dissipative Particle Dynamics (DPD), for example has been employed to model crude oil 
systems41,42,43,44, borrowing the idea that the properties of soft repulsive beads may mimic 
“lumps” of fluid. DPD is appropriate for qualitative studies, but is challenging to use as a 
predictive tool45.  
 
A fundamentally different “top-down” approach is used herein, where the CG potential 
parameters are optimized to reproduce the macroscopically observed thermophysical 
properties (instead of integrating high fidelity atomistic models). This change in 
paradigm is achieved by employing an equation of state (an analytical representation of 
the free energy) as the link between the molecular-level interaction potential and the 
macroscopic experimental data that relates to it. We seek to perform the search for 
effective potential parameters in an average sense capturing the thermophysical 
properties of a molecule, e.g. its density over a wide temperature range, its vapour 
pressure, etc. with a single set of parameters. The idea of using an EoS to obtain 
parameters to be used in molecular simulations is not new; for example Cuadros et al.46 
used a cubic equation of state to fit Lennard-Jones (LJ) spherical parameters to a series of 
fluids. The fact that the LJ model does not have the required flexibility to model a wide 
range of fluids, its inability to model non-spherical geometries and in some cases, the 
weak link between the equation of state and the intermolecular potential have hampered 
the popularity of these approaches. These limitations are removed if one employs a 
molecular-based equation of state; e.g. Müller and Gubbins47 used a decorated LJ sphere 
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with association sites to obtain an intermolecular potential for water by linking it to an 
appropriate EoS while Vrabec et al. 48  used an accurate equation of state to successfully 
parameterize a two center LJ bead model with central dipoles and quadrupoles and used 
the approach to develop force fields for a large range of small molecules with an 
accuracy that rivals experimental measurements. This is the essence of our approach49: to 
employ a molecular-based EoS to parameterize a force field that can be employed 
directly in molecular simulations, details provided in the next section.  
 
 
SAFT-J force field for coarse graining oils and gases 
 
The Statistical Associating Fluid Theory (SAFT) is a well-developed perturbation theory 
used to describe quantitatively the volumetric properties of fluids. The reader is referred 
to several reviews on the topic which describe the various stages of its development and 
the multiple versions available50,51,52,53. The fundamental difference between the versions 
is in the underlying intermolecular potential employed to describe the unbounded 
constituent particles. Hard spheres, square well fluids, LJ fluids, argon, alkanes have all 
been employed as reference fluids in the different incarnations of SAFT. For the purpose 
of this work we will center on a particular version of the SAFT EoS, i.e. the SAFT-VR 
Mie recently proposed by Laffitte et al. 54  and expanded into a group contribution 
approach, SAFT-J, by Papaioannou et al.55. This particular version of SAFT provides a 
closed form EoS that describes the macroscopical properties of the Mie potential56, also 
known as the (m,n) potential; a generalized form of the LJ potential (albeit predating it by 
decades). The Mie potential has the form   
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where C is an analytical function of the repulsive and attractive exponents, Oa and Or 
respectively,�V� is a parameter that defines the length scale and is loosely related to the 
average diameter of a Mie bead; H� defines the energy scale and corresponds to the 
minimum potential energy between two isolated beads; expressed here as a ratio to the 
Boltzmann constant, kB. The Mie function, as written above, deceivingly suggests that 
four parameters are needed to characterize the behaviour of a isotropic molecule, 
however the exponents Oa and Or are intimately related, and for fluid phase equilibria, one 
needs not consider them as independent parameters57. Accordingly, we choose herein to 
fix the attractive exponent to Oa = 6 which would be expected to be representative of the 
dispersion scaling of most simple fluids and refer from here on to the repulsive parameter 
as O = Or . The potential simplifies to 
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In the CG application of the SAFT models one considers spherical elements that 
correspond to a chemical moiety comprised of several heavy atoms; i.e. “super-atom” 
beads. Furthermore, the SAFT theory lends itself naturally to consider chain molecules 
made of tangentially-bonded beads. This adds to the model an additional parameter, m, 
which quantifies the number of elements in a chain molecule. SAFT also has a built-in 
provision for embedding associating sites unto the models, which has not yet been 
employed in CG models, although there is no fundamental limitation for this. In 
summary, the CG model for an arbitrary molecule is sketched in figure 1 and corresponds 
to a chain of m tangent spherical segments, each of them characterized by a triad of 
parameters, (H��V��O). 

 

 
 

Figure 1: Cartoon of a SAFT CG molecule composed of m beads bonded at a characteristic 
distance V. H� is the energy scale corresponding to the minimum in the intermolecular potential, 
while the range of the potential is determined by the repulsive exponent O�. Values for common 
substances are given in Table 1.  

 
 
Fitting of parameters 
 
The key requirement for an EoS model to be used in a top-down CG approach is its 
accuracy in representing the underlying Hamiltonian, e.g. the question is: how well do the 
simulations of the potential agree with the description made by the EoS? Figure 2 shows 
an example of such a fit for the SAFT-VR-Mie EoS, where the properties of the (34.29,6) 
potential (a model of propane) obtained both by simulations and theory are compared. 
The same set of parameters are used in both the theory and the simulations. The 
agreement of the two routes is excellent. The correspondence between theory and 
simulations makes it possible to invert the procedure, i.e. to use the EoS to fit the 
parameters (H��V��O) to match experimental data and then to use the same parameters 
obtained with the theory in a simulation. The agreement shown in figure 2 is not 
fortuitous, it is seen for a wide range of fluids, including, but not limited, to small polar 
molecules, refrigerants, chain-like fluids, etc.49  
 
Having established that the EoS is capable of representing the underlying potential 
accurately, there are several plausible alternatives for obtaining the parameter sets for 
pure components. The obvious one is to perform a least square minimization between 
target experimental data sets and those predicted by the EoS. Using as a target both the 
saturated liquid densities and vapour pressures along the extent of the fluid region is a 
classical approach which leads to the most consistently robust parameters. Arguably it 
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does require coding of the EoS and an appropriate optimization routine. While tedious, 
the process is aided by the fact that commercial software packages58 are starting to 
include the SAFT-J models alongside optimization tools. To circumvent and streamline 
the fitting procedure, Mejia et al. 59 expressed the SAFT-VR-Mie EoS in terms of reduced 
units and found there was a direct association between the value of the repulsive 
exponent in the Mie potential and slope of the vapour pressure curve in a pressure-
temperature diagram. This observation suggested that an empirical correlation could be 
made between the Pitzer acentric factor, Z, which for a spherical molecule is related to 
said slope, and the repulsive exponent, O. A similar, and possibly more obvious link can 
be made between the value of the critical temperature and the energy scale of the model, 
H, and between the size parameter V, and a characteristic liquid density. The resulting 
correlation, known light-heartedly as the M&M correlation, allows the determination of 
parameters for the SAFT CG force fields solely from the knowledge (or estimation of) 
critical properties. Table 1 shows a very abridged collection of parameters of interest in 
the oil and gas industry obtained using this methodology. As an example, the 
experimental densities and pressures for propane (m = 1) are plotted in figure 2 alongside 
the EoS and the simulation results. The agreement between theory, simulations and 
experiments for the densities, critical temperature and pressures are all excellent and 
typical of what is seen for all other compounds studied. It underpins the idea that one can 
use the theory to fit parameters for the equation of state, with the understanding that the 
theory has the required degrees of freedom to appropriately reproduce the data, but even 
more importantly, that the molecular simulations that are performed with these 
parameters will reproduce the theoretical results and, by extension, the experimental data. 
This three-pronged agreement is not always possible; e.g. most EoS will not faithfully 
reproduce the properties of the underlying potential due to inherent approximations made 
throughout the theoretical derivation. Similarly, not all potential functions have the 
flexibility to reproduce the properties of real fluids as a consequence of the reduced 
degrees of freedom within their functional form, e.g. the LJ model shown in figure 2 will 
be incapable of fitting simultaneously the densities and vapour pressures of propane 
regardless of the choice of parameters (H��V) employed.  
 
Inherent in the use of a multi-parameter force field such as the Mie potential is the fact 
that there is the need to simultaneously fit several parameters which can, in principle 
have some degree of degeneracy. If one is not careful to include a wide range of 
experimental data, multiple solutions can be found to reproduce the same data with the 
same quality of fit. As an example, Gordon 60  showed how the temperature-density 
diagram of methane could be predicted with accuracy with a wide range of potential 
parameters. It is by taking a look at other properties (in the case presented by Gordon, at 
viscosity) that one could discern between the transferability of the potentials found. In 
our case, we have taken to use simultaneously liquid phase density, vapor pressure and 
critical temperature to bracket the parameter region. In spite of the above, it is clear, from 
an analysis of the behaviour of the parameters, that multiple parameters can be found all 
with a similar performance. While this is an indicative of the robustness of the model, it 
also implies the need for some care to be taken when selecting the particular parameter 
values. Take for example the case of butane. If one were to fit the SAFT-VR-Mie 
equation of state to the experimental vapour-liquid phase equilibrium properties, one 
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obtains54 (m = 1.8514, O�= 13.65, H/kB =273.64 K, V��= 0.40887 nm). The non-integer 
value of m precludes the use of these parameters in CG simulations (i.e. what is a fraction 
of a bead?). This leaves us the choice to arbitrarily choose to model butane as either a 
single sphere (m =1) or as a dimer (m =2). The resulting parameters, obtained through the 
M&M correlation (or through direct fitting to the EoS) are (m = 1, O�= 40.81, H/kB 
=510.63 K, V��= 0.5303 nm) and (m = 2, O�= 13.29, H/kB =256.36 K, V��= 0.3961 nm), 
respectively. Ramrattan et al.57 have noted that the value of the repulsive exponent O has 
a direct relation to the fluid range, i.e. the ratio between the critical and triple point of a 
fluid; and that this metric is a valuable tool to bracket the possible parameter space. For 
the attractive exponent used here, “hard” repulsive exponents, e.g. values larger than 
O� �12 reduce the fluid range and after a value of O� �43 the fluid phase is no longer 
stable being supressed by the presence of the solid phase57. The upshot of this is that hard 
potentials might exhibit premature freezing as compared to the experimental results. In 
the example above, Ramrattan61 predicts a triple point of 331 K for the single sphere 
model of butane and 139.8 K for the dimer model, the latter comparing much better to the 
experimental value of 134.6 K62. 
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Figure 2: MD simulations (closed symbols) and SAFT EoS calculations (solid line) for a 
spherical (34.29,6) fluid. (Top) reduced temperature T vs. reduced density U diagram, (bottom) 
reduced vapor pressure P vs. reduced temperature diagram. The dashed-dotted line shows the 
reduced LJ (12,6) potential, which in this case would not be able to simultaneously provide an 
accurate representation regardless of the size and energy parameters used, as the fundamental 
shape of the curves is dissimilar. The dashed line shows the smoothed experimental data63 of 
propane scaled with respect to values of H�kB� �426.08 K and V� �0.4871 nm, taken from Table 
1. Nav is Avogadro’s number, kB is Boltzmann’s constant. 
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For the case of mixtures, a new set of unknown parameters come into play, namely the 
cross-parameters corresponding to the binary interactions. The best course of action is to 
obtain these parameters by fitting them to reproduce the properties of selected mixtures, 
however this is seldom possible. Lafitte et al.54 suggested the following combination rules 
that can be used as first approximation to describe the interaction between two different 
Mie fluids, labelled with subscripts ii and jj. 
 

 ij =
 ii +  jj

2
  ;   ij =

 ii
3 jj

3

 ij
3  ii jj   ; ( ij  3) = ( ii  3)( jj  3)   (3) 

 
The SAFT coarse grained models do not provide information on the intramolecular 
interactions, as these are all averaged out during the fitting procedure. However, one can 
recognize that both overall shape, intersegment connectivity and rigidity are crucial to 
preserve the quality of the structure prediction64. A limitation of the theory is that the CG 
segments be rigidly bonded at a distance corresponding to that used to evaluate the 
reference radial distribution function. In this work, this distance is taken to be the 
characteristic size, V���i.e.� the CG spheres are bonded at a distance of V� With respect to 
the bending of longer chains, the underlying theory only specifies that on average, the 
molecules should remain extended65. This is a natural configuration for alkanes and 
similar molecules present in crude oils. Within these models, this elongation is biased by 
adding a bond angle bending potential 66 ,  angle , between three consecutive beads, 

 angle = kangle(   0 )2  , where T is the angle subtended by three consecutively bonded 
spheres. The particular values of the angle, T� = 157.6 °, and the constant that restricts the 
distribution, kangle = 3.38 J.mol-1.deg-2  (2.65 kcal.mol-1.rad-2), are obtained by averaging 
over all-atom models of short-length alkanes. . 
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Table 1.  SAFT CG force field parameters for selected compounds. Values are obtained 
from the M&M correlation59 employing the critical constants and densities obtained from 
the NIST webbook63. 

 
 

  m O  H/kB [K] V (nm) 
n-alkanesa  
  methane 1 16.39 170.75 0.3752 
  ethane 1 27.30 330.25 0.4349 
  propane 1 34.29 426.08 0.4871 
  butane 2 13.29 256.36 0.3961 
  pentane 2 16.06 317.50 0.4248 
  hexane 2 19.57 376.35 0.4508 
  heptane 2 23.81 436.13 0.4766 
  octane 3 16.14 333.70 0.4227 
  nonane 3 18.31 374.21 0.4406 
  decane 3 20.92 415.19 0.4584 
  undecane 4 16.84 348.90 0.4216 
  dodecane 4 18.41 378.56 0.4351 
  tetradecane 5 17.66 363.06 0.4183 
  hexadecane 5 21.20 418.13 0.4432 
  octadecane 6 19.53 393.74 0.4262 
  eicosane 6 24.70 453.10 0.4487 

 
aromatics     
  benzeneb 2 14.23 353.93 0.3978 
  toluene 2 16.95 411.87 0.4266 
  ethylbenzene 3 12.80 309.69 0.3837 
  naphthalene 3 12.84 376.50 0.3932 

 
light gases     
  nitrogen 1 20.02 122.85 0.3653 
  carbon dioxidec 2 14.65 194.94 0.2848 
  oxygen 1 17.93 144.02 0.1295 
  hydrogen sulphide 1 27.38 403.93 0.3801 
  sulphur dioxide 2 16.06 291.10 0.3091 
  carbon monoxide 1 21.49 132.83 0.3687 
  helium 1 14.84 4.44 0.3353 
  argon 1 14.85 132.04 0.3414 

 
heterocyclics     
  pyridine 2 15.52 410.46 0.3899 
  pyrrolidine 2 19.74 426.12 0.3914 
  pyrrole 2 23.30 512.58 0.3771 
  thiolane 2 13.83 391.03 0.4012 
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  thiophene 2 13.58 354.34 0.3832 
 

branched  and cyclo-
alkanes 

    

  isopentane 2 14.92 298.38 0.4236 
  isobutane 2 12.94 241.57 0.3974 
  cyclopropane 1 31.16 447.91 0.4511 
  cyclopentane 2 13.52 312.00 0.3992 
  cyclohexane 2 14.05 345.94 0.4234 

 
unsaturates     
  ethylene 1 25.62 299.49 0.4180 
  propylene 1 33.65 417.60 0.4721 
  1-pentene 2 17.50 328.86 0.4183 
  1-decene 3 18.93 394.49 0.4516 

 
solvents / others     
  waterd 1 8.395 378.87 0.2915 
  tetrahydrofuran 2 14.85 348.92 0.3840 
  dimethyl sulfide 2 13.21 301.76 0.3661 
a A group-contribution model for alkanes, with parameters for –(CH2)3- and –(CH2 CH2 CH3) beads is 
given in ref. 66 

b A more accurate model for benzene corresponds to a trimer in a triangle configuration is given in ref. 64. 
This latter model gives not only satisfactory thermophysical properties but also improves on the structural 
properties thanks to its correct shape and geometrical aspect ratio. 

 c An alternative single-bead model for CO2 with non-conventional attractive exponent is given in ref. 67 

d An alternative model for water consists of a single coarse grained bead representing two water molecules 
with parameters m = 1, O = 8; H/kB = 400 K; V = 0.37467 nm. More faithful models have temperature 
dependent parameters, see ref. 68   
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Methane – decane binary 
 
As an example of the predictive capability of the methodology, we use here the binary 
mixture of methane and n-decane at 363.15 K. This is a particularly asymmetric mixture 
at a temperature which is supercritical for the light component. Methane is modelled as a 
single spherical molecule and decane as a chain of three beads, c.f. Table 1. Cross 
interactions are not fitted to the mixture properties in order to explore the robustness of 
the force field parameters, although it is clear that a binary fit could, in principle produce 
a better match at the expense of predictability.  
 
Molecular simulations were ran for this mixture in the standard canonical (NVT) 
ensemble, where the number of molecules, N, the temperature, T, and the system volume 
V are kept constant. All simulations were run using GROMACS69 software suite and 
correspond to classical molecular dynamics (MD) simulations. Visualizations are 
rendered using VMD 70.  Reported properties are averaged over at least 2x106 steps (Δt = 
0.01 ps) after the equilibration of the simulated system as determined by monitoring its 
total energy, and output pressure. The Nose-Hoover thermostat was chosen for the NVT 
simulations. Periodic boundary conditions and a potential cut-off of 2.0 nm is applied in 
all simulations.  
 
For a binary system, calculating the phase behavior of the mixture is a reasonably simple 
affair, as it amounts to preforming a phase split (isothermal flash) and evaluating the 
resulting pressure. In MD, this is frequently done by quenching isochorically to the 
desired temperature an otherwise well mixed mixture71. We employ a simulation cell 
composed of 3750 decane molecules and 15000 methane molecules corresponding to an 
overall mole fraction of methane of xmethane = 0.8. After equilibration, the system will 
present a liquid slab surrounded by a vapour phase. Analysis of the density distributions 
allows the calculation of the molar phase compositions. The pressure is obtained by 
inspecting the component of the pressure tensor which is normal to the interface ( z  
direction).  
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Figure 3: Fluid phase equilibria of the system methane – n-decane at 363.15K; xmethane is the 
methane mole fraction. CG SAFT force field simulations from temperature quench MD 
simulations (closed circles) as compared to experimental data (open symbols) from.72 Errors in 
the simulation and experiments are comparable to the symbol sizes. 

 
Figure 3 compares the predicted results of the model to the available experimental data. 
Spanning a large range of pressures and skewed compositions, the results are well within 
what one could expect for a purely predictive model. Since the simulations describe the 
two-phase region, one can extract from them information regarding structural transport 
and/or interfacial properties. Particularly, the interfacial tension of the mixture is 
calculated both through the mechanical route and thermodynamic route73, and compares 
well with the available experimental data, as shown in figure 4. This information would 
not be directly available from an EoS and hints at the extent of the transferability and 
representability of the CG models used.  
 

 
Figure 4: Interfacial tension, J, of the methane - n-decane mixture as a function of pressure. CG 
SAFT force field at 366.48K (blue) closed symbols as compared to experimental data74 (open 
symbols) at 366.48 K 

 
In a light crude oil, the modelling of this binary pair is often the most sensitive one, as it 
comprises typically the most abundant compond ( methane ) with one of the most 
dissimilar ones ( decane ) in terms of phase behaviour. The accurate and predictive 
capacity of the simulations based on the SAFT CG force field suggests its potential for 
the description of multicomponent mixtures as considered below.  
 
Light condensate synthetic mixture 
 
Yarborough75 documented a selection of synthetic mixtures of light condensates with 
compositions and phase equilibria in a range of conditions of interest to the reservoir 
engineering community. In particular and with no prejudice we study mixtures labeled 
M4 and M8 which are composed of light alkanes up to n-decane with and without 
toluene. The overall compositions of the mixtures are given in Table 2. 
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A system was set up with 10000 molecules, corresponding to the compositions given in 
Table 2. An NVT calculation from an initial well-mixed system, quenched to 366.48 K 
(200°F) into a rather expanded system (11x11x100 nm3) provides a two-phase liquid 
vapour split, from which the surface tension is calculated as before. Similarly, the vapour 
pressure is determined from the analysis of the z-component of the pressure tensor. Other 
simulation details mirror the conditions used for the methane-decane binary. 
 
Table 2. Overall experimental molar compositions, zi, of the mixtures studied75 and 
corresponding number of molecules included in the simulation ni.  
 

Compound Mixture M4 Mixture M8 
zi ni zi ni 

Methane 0.634 6340 0.810 8100 
Ethane 0.047 470 0.057 570 
Propane 0.023 230 0.031 310 
Pentane 0.105 1050 (x 2 beads) 0.046 460 (x 2 beads) 
Heptane 0.074 740 (x 2 beads) 0.033 330 (x 2 beads) 
Toluene 0.058 580 (x 2 beads) 0.000 580 (x 2 beads) 
Decane 0.059 590 (x 3 beads) 0.024 240 (x 3 beads) 

 
 
 
 
Figure 5 presents a snapshot of an equilibrium condition and an average density profile 
for each component along the z-axis. A further analysis over these profiles was used to 
calculate the average molar fractions in the gas and liquid phases, yi, xi, and their ratio, 
the distribution factors Ki = yi / xi . The agreement (see Table 3) between the experimental 
data and the simulations is very good, considering there are no adjustable parameters. 
The equilibrium pressure is calculated as 29.97 ± 0.06 bar and compares well with the 
experimental75 value of 31.85 bar. The interfacial tension of the mixture at this point is 
calculated as 13.12 ± 0.46 mN/m. Figure 5 shows that the light components (C1 to C5) 
exhibits excess adsorption at the liquid-vapor interface, i.e. they accumulate at the 
interface, with the most noticeable adsorption by methane. The interfacial thickness is 
seen to be considerable (~ 5 nm ) suggesting that rather large system sizes are needed to 
include interfacial effects. The rather elongated length in the z direction, corresponding to 
0.1 Pm, strengthens the idea that for explicit simulations of multicomponent multiphase 
systems, a speed up in the calculations is needed, in this case resulting from the reduced 
number of interactions required from the CG model.  
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Figure 5: (Top) snapshot of an equilibrium configuration of the M4 mixture at 366.48 K and 30 
bar. (Bottom) average density profiles along the z-axis of the simulation box, zoomed in around 
the liquid slab, at the inset. Colour code is methane (black-grey), ethane (purple), propane 
(brown), pentane (blue), heptane (red), toluene (orange) and n-decane (green).  

 
 
 
Table 3. Results from NVT simulations of mixture M4 at 366.48 K as compared to 
experimental results75

. xi and yi correspond to the liquid and vapour mole fractions 
respectively. Values in parenthesis correspond to the system pressure. 
 

 
Simulation 

xi 

 
Exp. 

xi 
Simulation 

yi 

 
Exp. 

yi 

Simulation 
(30 bar) 
Ki=yi/xi 

Exp. 
(31.85)  
Ki=yi/xi 

Methane 0.1274 0.1087 0.8374 0.8406 6.572 7.73 
Ethane 0.0283 0.0242 0.0569 0.0593 2.008 2.45 
Propane 0.0234 0.0226 0.0239 0.0245 1.045 1.13 
Pentane 0.2269 0.2283 0.0507 0.0566 0.250 0.23 
Heptane 0.2190 0.2307 0.0099 0.0148 0.068 0.05 
Toluene 0.1782 0.1829 0.0074 0.0081 0.045 0.04 
Decane 0.1967 0.2026 0.0012 0.0017 0.009 0.003 
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Bubble point determination 
  
The determination of the bubble and dew points of a mixture is a staple of petroleum 
engineering thermodynamics. The bubble (dew) point of a mixture is defined as the 
condition of pressure, P, and temperature, T, where a liquid (vapor) mixture is in 
equilibrium with an incipient second phase, i.e. a coexisting vapor (liquid). In practice, 
the overall composition of a single phase mixture is specified and either the temperature 
and pressure boundary at which the second fluid phase becomes stable is the required 
output. The results are usually expressed in terms of a P-T diagram where the curves 
describe said phase boundaries and may include other curves describing other existing 
phase boundaries, such as fluid-fluid or solid-fluid and/or similar curves at other 
compositions. The practical importance of determining the phase envelope of a gas or 
crude oil cannot be underestimated, as it is crucial knowledge in many aspects of 
reservoir production and transport. 
 
Experimentally, the bubble (or dew) point is obtained by a slow depressurization 
(expansion) of a mixture in a pure state, usually employing a mercury displacement 
pump. At different points during the process, the volume of the mixture is monitored. A 
change in slope of the pressure-volume diagram is indicative of the appearance of a 
second fluid phase, as the compressibilities of the gas and the liquid are often 
significantly different. The phase change point is not normally found experimentally, but 
rather found by the intersection of two lines fitted to the pure phase and mixed phase 
compressibilities. A comprehensive review of the method and its relation with other 
phase equilibria methods is given in standard textbooks76,77 ,78 and detailed in recent 
review79 . In the oil and gas industry, this procedure is a rather standard part of the PVT 
characterization of a crude, however it is expensive and time consuming.  
 
For mixtures described by an equation of state, this calculation amounts to 
simultaneously solving the condition of thermal, mechanical and diffusive equilibria 
(equality of chemical potential) amongst two fluid phases for each component of the 
mixture. The analytical nature of this calculation lends itself to a reasonably rapid 
solution by numerical methods. In its most common form, the composition and 
temperature are fixed and the pressures at either the bubble or the dew point are 
recursively calculated. The reader is referred to the excellent textbooks that describe the 
common algorithms employed80,81,82. The quality of the result is obviously limited by the 
accuracy of the EoS to faithfully represent fluid mixtures. Furthermore, the fact that some 
of the more interesting features of the phase diagram are close to the critical points of the 
mixture, make these calculations particularly challenging for all but the most optimized 
and force-fitted of models.  
 
From the point of view of performing a canonical (NVT) simulation, the determination of 
the bubble (or dew) point is far from trivial. Quenching a one-phase mixture to a 
temperature at which phase separation occurs (flashing) produces two phases with 
usually very distinct compositions. More importantly, the liquid (or vapour) phase 
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composition is an output of the simulation and cannot be fixed a priori. Some algorithms 
have been published for the purpose of obtaining the bubble point calculations from 
simulations using pseudo ensembles83,84 although they are tailored for Monte Carlo and 
Gibbs Ensemble-based simulations.  For the bubble point determination of a mixture, we 
consider a one phase state point similar to the one described above, but at a much higher 
pressure (a much lower total volume) than that expected for the bubble point. The precise 
location of this point is irrelevant to the outcome of the calculation. In this state we 
record both the pressure and the density. We use this state point as the initial condition 
for an NPzzT simulation, where the pressure, P, coupling is isotropic in the x and y 
direction, but different in the z direction. This latter ensemble is useful to achieve 
different pressure levels (with the longest length of the simulation cell properly oriented 
in the z-axis) all at constant temperature and overall composition. The Berendsen 
thermostat and barostat were selected as the coupling algorithms for the NPzzT 
simulations. After equilibration, the system density is recorded and further 
decompression is applied (the pressure is set at a lower value), mimicking the 
experimental procedure. Eventually the system will cross the bubble point and a two 
phase system will evolve. A plot of the pressure as a function of the mass density, U, for 
all the equilibrated states shows a kink in the slope, corresponding to a change in the 
compressibility, ( P /   )T , associated with a change in the nature of the phases that 
compose the system. As expected, the pure liquid phases have a higher compressibility 
and a steeper slope. The bubble point, instead of being simulated is obtained by the 
intercept of the slopes in the pressure-density diagram (Figure 6). The results for mixture 
M4 are plotted alongside the experimental results75, the pressure and the bubble point 
predictions are excellent; 215.1 bar which implies a 0.92% error above the experimental 
value. The densities seem slightly overpredicted by about 2%; the density at the bubble 
point is found to be 401.5 kg.m-3, again, slightly above the experimental value. 
 

 
Figure 6: Bubble point determination for mixture M4 at 366.48 K (200°F). System pressure, P, 
as a function of mass density, U .Open (blue) circles correspond to individual isothermal 
simulations performed at different pressures, solid (blue) circle corresponds to the intercept 
between the straight lines that provide the best fit data at both sides of the bubble point 
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boundary. Open (black) squares are the experimental values corresponding to an isothermal 
expansion at 366.48 K. Solid (red) square corresponds to the calculated experimental bubble 
point75, obtained by the intersection of the solid ( fitted ) trendlines.  

 
Following the above-mentioned methodology, figure 7 shows the results of the bubble 
point determination for mixture M8. Here, only one experimental point (in red) is 
reported and is compared with several simulations points and a standard fit using an 
optimized cubic equation of state; the Peng-Robinson EoS85 with the Peneloux volume 
translation86 . The EoS calculations are based on the use of binary interactions parameters 
which allow the theory to match, in as much as possible, the available experimental point. 
In addition, we plot the prediction from the multi-parameter GERG-2008 reference 
EoS87; an engineering EoS tailored specifically for these type of systems. Although no 
clear conclusion can be obtained, as the EoS results are conflicting and there is only one 
data point to compare to, the trends of the simulations seem in reasonable agreement with 
the expected results. The simulations allow for the prediction of the full phase envelope 
including the retrograde condensation and the low pressure dew point with no mixture 
adjustable parameter whatsoever; i.e. it is a full prediction of the experimental curve. 
 
 

 
Figure 7: Pressure – Temperature (P,T) diagram for the mixture M8. Solid (blue) squares 
correspond to simulation results using the SAFT force field, solid (red) circle corresponds to the 
experimental value from ref. 75. Solid line is the GERG 2008 EoS87, dashed line is the 
optimized Peng Robinson85 with Peneloux86 volume correction EoS. 

 
 
Figure 8 shows a typical configuration at conditions of an impending appearance of the 
bubble point. An interesting observation is even at such conditions is not visually evident 
that a phase separation will occur. The emerging vapour phase is predominantly methane 
(white-gray beads in figure 8) and there is no qualitative indication of a nucleating phase 
or clustering. Configurations very close, but below the bubble point show roughly the 
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same characteristics. The bubble point is seen to be a macroscopic property which even at 
these very large system sizes would be hard to detect directly.  
 
 
 
 

 

 
Figure 8: Typical configuration of the system corresponding to the mixture M4 at 366.48 K 
(200°F). Periodic boundary conditions are imposed in all thee Cartesian directions. The system 
is at 215 bar, essentially at the bubble point (215.1 bar). Colour code is methane (white-grey), 
ethane (purple), propane (brown), pentane (blue), heptane (red), toluene (orange) and n-decane 
(green).  
 
 

Conclusions and outlook 
No level of foreseeable technological prowess will suffice to allow the commonplace 
atomistic modelling of complex crudes. On the other hand, an appropriate coarse graining 
model can allow for the quantitative calculation of fluid phase properties of fluid 
mixtures of interest to the oil and gas sectors.  
 
The correspondence between the theory and simulations makes it possible to use the 
SAFT-J EoS to fit the parameters (H��V��O) to match experimental data and use these same 
calculated parameters in a molecular simulation. This apparently cyclic argument 
becomes useful when the simulations are employed to gain information otherwise 
inaccessible from simulations. The robustness of the force fields allows the predictions of 
adsorption88, transport and interfacial properties89 which are not part of the original fit.  
 
The level of CG described here is different from that understood in the oil and gas 
industry when approximations are made to reduce the degrees of freedom by considering 
solvent-free models90 and effective averaging of potentials91. The Mejia et al. M&M 
correlations59 have a real potential for developing models in this field, as they are 
particularly well suited for calculating intermolecular potentials of effective pseudo-
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components and similarly undefined fractions, which can then be modelled in classical 
MD programs without loss of fidelity. All that is needed as an input is the 
characterization by means of an acentric factor, a critical temperature and a density. This 
is a key aspect of the methodology which can be exploited to model poorly defined crude 
mixtures.  
 
The SAFT CG simulations are able to predict the phase behaviour of light crude oil 
mixtures and allow the simulation of reasonably large systems (we have explored 
elsewhere systems with up to 300 000 particles, corresponding to millions of atoms). This 
is enough to observe complex dynamics, including, but not limited to cluster formation 
and phase segregation. While we used here a seven-component mixture, there are no real 
limitations to expand this number. Similarly, we have spanned several million time steps. 
A point to note is that for these coarse grained models, the time scale changes in an 
unclear way. In an all-atom simulation, these timesteps have a direct relationship with a 
well-defined time scale, as they link atomic masses and the distance parameters with 
time. In a coarse grained simulation, both the masses and the energy and distance 
parameters are changed, and each step represents a different “time”. More crucially, 
however, by eliminating the details and “roughness” of the molecules, their diffusion and 
mobility is significantly enhanced. The molecules explore a larger part of phase space, 
reaching equilibrium states and overcoming energy barriers much before they would in 
an atomistic model. Unfortunately, there is no clear recipe for this scale up38. In fact, it 
has been suggested 92  that the distribution of, for example, characteristic timescales, 
should correspond to appropriately weighted average of distributions from the different 
dynamics under consideration. If one compares the self-diffusion of small molecules, e.g. 
alkanes, in a liquid state from both an atomistic and a CG model, one sees66 a speedup in 
the latter of at least an order of magnitude. Using this rough guide, the simulations 
presented correspond to effective times of up to 10 x 20 ns = 0.2 μs, which are enough to 
observe phase separation and clustering of even the most complex systems.  
 
The model presented here corresponds to homonuclear molecular models. An 
improvement can clearly be made if one employs the theory to its fullest, and considers 
heteronuclear models, i.e. chains made of different type beads. An expanded version of 
the theory93 allows for this to be done, which is most useful when considering complex 
polyphilic molecules such as surfactants 94 , 95  , transferrable models for paraffins and 
waxes66, and larger hetronuclear molecules and will be valuable when extending the 
model to the heavier fractions, including resins and asphaltenes96. Work is under progress 
in this area.  
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