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Abstract

Numerical methods are utilised to reproduce the evolution of a system observed in natural

phenomena. Within the area of materials science there is an increase of interest in modelling

techniques that can accurately predict the microstructure of a material subject to various

processing conditions. Recently, there is a requirement of techniques that have the ability to be

applied to systems involving microstructural change in the presence of fluid flow. This presents

a challenge since the forces governing these processes involve those predominately influenced

by thermodynamics as well as those influenced by hydrodynamics.

The phase-field method, a popular technique used in this area, has been shown to have the

ability to cope with phase transformation dynamics such as solidification and solid-state phase

transformations. However, its predictive capabilities mainly apply to a flow free environment

where flow effects are minimal compared to other effects. Other techniques such as smoothed

particle hydrodynamics exist that are more than capable of describing the mechanisms of flow

demonstrating superiority in many complex flow problems. The thermodynamic quantities

related to the evolution of a system to which this method is applied must then be consistent

in order to be translated between models.

This thesis develops the tools necessary to deal with phase growth and microstructural change

within the presence of flow. This is done by developing phase-field models that can efficiently

deal with displacive transformations in steels as well as diffusive, and SPH models with the

ability to be coupled with thermodynamics. The phase-field models are developed to be applied

to structure growth observed at relatively low temperatures within steels, namely martensite

and bainite growth. The SPH method is analysed in order to assess and provide solutions for

consistency when considered for coupling with models mainly dependent on thermodynamics.
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ā - vdW parameter

b̄ - vdW parameter

βΠ - antipenetration parameter

αΠ - artificial viscosity parameter

b - equation of state constant

χ - equation of state constant



Chapter 1

Introduction

1.1 Steel processing

Steels are iron-based multicomponent alloys and are utilised in many industries such as au-

tomotive, machining, construction and transport. The steel industry involves many complex

processes from extraction of iron to manufacturing of components. The steel process may

be summarised in steps as: ironmaking, steelmaking, casting, thermomechanical treatment and

plastic deformation. Ironmaking is the process of extracting iron from iron ore. In blast furnace

ironmaking, iron ore reacts with coke and limestone and eventually forms immiscible liquid iron

and liquid slag. Complex fluid flow (e.g. CO and CO2 gases flow through a packed bed formed

by iron ore, coke and limestone) and chemical reactions (e.g. Fe2O3 + CO = 2FeO + CO2,

Fe3O4 + CO = 3FeO + CO2 and FeO + CO = Fe+ CO2) are the major issues to be consid-

ered in ironmaking in order to improve the productivity and energy efficiency. The resulting

liquid iron from ironmaking is called hot metal and contains a much higher than required

carbon content. The hot metal is then refined in oxygen converters in order to adjust its

carbon content, together with the chemical compositions of other elements to their desirable

levels. Oxygen gas is pumped into the converter with supersonic speed which generates vig-

orous flow in the converter. The reactions between elements in liquid metal and oxygen (e.g.

C + O2 = CO2, Si + 2O = SiO2) are required to be managed precisely to produce steels with

5



6 Chapter 1. Introduction

the desired compositions. The reacting zone is usually an emulsion consisting of gas bubbles

(e.g. CO2 and O2), liquid droplets (e.g. Fe and slag) and small oxide particles (e.g. SiO2

and Al2O3). Complex fluid and chemical reactions are again the most important processes to

be controlled in steelmaking. During this step, the liquid steel is often treated by mechani-

cal/electromagnetic/bubbling stirrings and/or adding elements to adjust its composition or to

remove impurities depending on the requirement of the final product. In continuous casting,

flow of liquid steel in the tundish, ladle and casting mould affect the cleanliness, porosity, solute

segregation and quality of the slab/billet/ingot. The continuous casting process is shown in

Figure 1.1. The flow behaviour in the casting mould is also affected by the moving solid-liquid

interface during solidification. Flow behaviour and phase transition are the two most important

processes to be controlled in casting. In thermomechanical processing, heat and mechanical

deformation (rolling) are implemented to alter the microstructure and mechanical properties of

steels. The solid-solid phase transition and strain-stress distribution are important factors to be

considered in this processing step. Displacive phase transformations are affected by the strain-

stress field. After the thermomechanical processing, the steel products are frequently coated

with metallic elements (e.g. Zn galvanization) and polymers to improve the surface properties

such as corrosion and wear resistance. Free surface flow and thin film complex flow are the

phenomenon that need to be considered in this step. Plastic deformation in the manufacturing

of the steel product to the engineering component is also an important scientific topic. This is

sometimes not classified as steel processing but manufacturing.

Flow affects chemical distribution and heat transfer. In turn, these influence phase transition

and subsequently microstructure formation in steels. The mechanical properties of steels are de-

termined by the corresponding microstructure. The processing-structure-property relationship

indicates the importance of processing conditions when it comes to the final quality of steels.

It is apparent that the mechanisms involved in steel processing are governed by complex fluid

flow and phase transformations, either distinctly or in parallel. In order sufficiently to model

and simulate these processes, models must be developed which can deal with mechanisms such

as the effects of stirring on transport properties, the effect of adding alloying elements on phase



1.1. Steel processing 7

Figure 1.1: A diagram describing the continuous casting process and the important processes
involved. As seen in the diagram, hydrodynamic/fluid flow effects are important in the initial
stages of the continuous casting process. As the steel solidifies, phase transformations begin to
occur. Phases such as martensite and bainite are able to form after the steel solidifies and can
form during the deformation stage as well.



8 Chapter 1. Introduction

transformations, phase transformations during heat treatment and solidification. It turns out

this is not a simple task.

1.2 Multiscale models for steel processing

1.2.1 Multiscale fluid flow models

When it comes to using numerical methods to describe or predict the evolution of a fluid sys-

tem, there is a notion of scale, say, microscale, mesoscale and macroscale. The smallest of

these, the microscale (e.g. ab initio, density functional theory and molecular dynamics), is

mostly concerned with thermodynamics and intermolecular forces and enables the calculation

of the most fundamental mechanisms which the larger scales can not. One such method is

molecular dynamics (MD). MD focuses on the properties and evolution of individual atoms or

molecules. While useful for determining properties for use in larger scale modelling [GLAR15],

MD is not suitable for describing the evolution on a larger scale such as microstructure evo-

lution and hydrodynamic effects. The length scale for MD simulations is usually less than 10

nm. Macroscale modelling is the largest of the three scales and can be described by the popular

computational fluid dynamics (CFD) method. Concerned mostly with hydrodynamics, tradi-

tional CFD models have a hard time dealing with free surface flows and due to its application

on a large scale, sometimes fail to capture small scale effects [Bes14]. It is particularly difficult

to use this method to deal with systems containing phase transitions where the volume of each

phase and the total area of the interface are not conserved. The method is suitable for systems

with characteristic length larger than 1 mm. Mesoscale computation bridges the gap between

microscale and macroscale calculations, and is particularly suitable for the simulation of a sys-

tem where both flow dynamics and phase transitions are equally important. Of the mesoscale

hydrodynamic models, the three prominent methods are dissipative particle dynamics (DPD),

Lattice Boltzmann equation (LBE) and Smoothed particle hydrodynamics (SPH). DPD is a

particle based off-lattice method and has been known to be unable to deal with fluid with high

Reynolds numbers and complex boundary conditions. This means its application to the pro-



1.2. Multiscale models for steel processing 9

duction of steel is limited due to the complex boundaries formed by phase transitions. While

LB is a method reliant on a mesh and is superior to conventional methods when considering

systems with irregular interfaces, it is restricted by the requirement of a uniform temperature

field which is clearly not true for steel processing as well as being unsuitable for thermodynamic

consistency [YL03, HBTQ04]. Continuous casting is one example of applying a temperature

gradient during cooling. An extreme example is that of the growth of a single crystal for use in

turbines. A large temperature gradient is encouraged in order to result in a single orientation-

single crystal growth. The flows involved in steel processing are often turbulent and have high

Reynolds numbers, i.e. with large inertial forces compared to viscous forces, as high as over

20,000 making it difficult to provide a numerical method description [ZTVO05]. DPD is unable

to deal with such high Reynolds numbers with its accuracy restricted to flows with a Reynolds

number of around 100 and below [KP04, MDPPTK13, PPTMDK13]. SPH however, does not

share these difficulties. In fact, SPH is renowned for its ability to deal with complex interfaces

and boundaries and has no trouble describing free surface flows.

1.2.2 Multiscale phase transition models

The treatment of computational microstructure evolution also comes in multiple scales. There

are significant efforts on using ab initio, density functional theory and molecular dynamics to

calculate nucleation and early stage crystal growth. Microscopic methods are also applied to

calculate the interface property and its kinetics. In engineering, macroscopic computation of

the phase transition includes the application of computational phase diagrams to predict the

fraction of individual phases and precipitates. In mesoscopic simulations, the phase-field (PF)

method has proven to be very popular and capable [MBW08]. The PF method has been applied

successfully to microstructure evolving via diffusion [NC11, MMSV06], including solidification

and high temperature solid-solid phase transitions [CYY01, TA98]. Another type of phase

transformation has a displacive nature, forming via a coordinated movement of atoms. Dis-

placive transformations, specifically martensite and bainite, have become increasingly popular

and sought after for applying the PF method [MZE13]. The general approach is usually from
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microscopic theory and satisfactory results have been obtained by the addition of multiple or-

der parameters and governing equations for these order parameters and the strain [MZE13].

These put great strain on computational resources especially when applied to large systems and

jointly with other models for competing structures. Bainite has hardly been studied using the

PF method and requires much more attention. Therefore, further study on the PF modelling

of these transformations which are not as computationally demanding are required.

Other mesoscopic phase transition models include the classical sharp-interface model (Stephan

model). The typical description of the Stefan problem involves a diffusion equation governing

heat transport for each phase separately with additional equilibrium equations over the inter-

face acting as boundary conditions. There are very few cases with an analytical solution. Direct

computation of these equations is very tedious and time consuming.

Suppose Ω is the set of points corresponding to the entire simulation domain and ΩS(t),

ΩL(t) and Γ(t) are subsets corresponding to the solid, liquid and interface regions at time

t respectively. Then the Stefan problem takes the form of the heat diffusion equation, the

equation for the normal velocity of the interface and the Gibbs-Thomson condition:



























T,t(r̃) = DT∆
2T

chDTT,n|LS = −Lvn

T = TM − σ̃s(θ)TMκc/L− vn/M(θ)

r̃ ∈ Ω\Γ(t)

r̃ ∈ Γ(t)

r̃ ∈ Γ(t)

, (1.1)

where T,t ≡ ∂T
∂t

and DT , L, ch, vn, TM and κc is the thermal diffusivity, the latent heat of

fusion, the heat capacity, the normal velocity of the interface, the melting temperature and the

curvature of the interface respectively. M(θ) is the interfacial mobility while σ̃s(θ) is a function

of the surface tension. T,n is the rate of change of temperature in the normal direction to the

interface and the notation |LS denotes the solid-liquid interface. In addition to heat diffusion,

for a general non-pure material one may include equations governing solute diffusion to the

equations for the Stefan problem which have been omitted for simplicity.
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To begin the evolution of such a system, one must place an initial seed with a temperature

below the melting temperature presenting a metastable state. This will create an inhomogeneity

in the liquid and heat can begin to diffuse from the solid seed to the liquid. The morphology

of the seed with time depends on the preference to increase or decrease the surface area. The

interface between two domains naturally serves to increase the free energy thus reducing surface

area is preferable. However, the diffusion of heat from the solid is aided by a larger surface area

prompting a requirement to increase the interfacial area. This usually results in anisotropic

growth in the shape of a dendrite.

1.3 Numerical simulation methods

Simulation methods give us a means to the discretization of natural phenomena. It enables

the numerical solving of the mathematical equations representing the problem at hand, which

may not even be possible analytically without an extensive number of assumptions. In cases

where hands-on experiments are not feasible, or the costs for experimental investigation are too

high, numerical simulation is a worthy substitute. It is also often the case where simulations are

used to verify theoretical considerations as well as discover new phenomena or to observe how

a particular development occurs where in reality this would not be detectable due to technical

problems.

Before any numerical simulation can take place, one must first obtain or develop a mathe-

matical model (governing equations) representing the physical phenomena. It is then necessary

to determine how these equations are to be solved, which method is best suited to deal with this

type of problem, the nature of the boundary conditions and the implementation of all these

in code. The type of domain discretization becomes important when selecting a numerical

method. Some numerical methods employ fixed grids suitable for solid-state phase transfor-

mations whereas others do not use a mesh at all enabling the tracking of individual volume

elements in fluid motion especially useful when free surfaces and irregular interface geometries

are involved. The nature of the governing equations may also be different depending on the
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choice of domain discretization. For instance, for a fixed grid, the Eulerian form of the equations

of motion must be used for fluid dynamics. This involves a convective term which is not present

in the Lagrangian description used for the case where the interpolation points/grid nodes move

along with the fluid elements. While initially it may seem that using a Lagrangian approach

to modelling fluid flow is an obvious choice, if using a Lagrangian mesh, the mesh may become

too distorted if the corresponding fluid is subjected to large distortions [LL03, Ben92]. In other

words, the selection of an appropriate method for the simulation of a particular phenomenon

is vital.

1.4 Research aim

The aim of this research was to develop the tools to bridge the gaps in modelling and

simulation of steel processing. Two of the biggest gaps in steel processing simulation is the

modelling of solidification in the presence of flow and transformations not involving diffusion

such as martensite and bainite (Figure 1.1). During solidification, solidifying structures may

break off, rotate and collide with one another while solidifying. In order to simulate the complex

fluid in steel processing, the methods used must be able to deal with rapid fluid flow in the

presence of large distortions and cases where there is a free surface i.e. the surface of the

molten steel where it is in contact with air. In addition to this, the possibility of incorporating

thermodynamics should also be a reality. In order to do this, smoothed particle hydrodynamics

(SPH) and the phase-field (PF) method are to be utilised. The SPH method though has a

Lagrangian nature (i.e. the coordinate system follows the flow) is not reliant on a mesh. Instead

it represents fluid volume elements with particles and uses these as the interpolation points.

The method is efficient in dealing with shock waves, free boundaries and irregular interface

geometries. The PF method is selected to address the problem in microstructure computation

in diffusionless/displacive transformation. The PF method relies on a fixed grid, is derived

from statistical thermodynamics and is very popular in the area of materials science and solid-

state phase transformations. It has been very successful in the computation of microstructure

evolution in diffusive phase transitions. The problem that arises here is how to integrate a



1.4. Research aim 13

mesh-free method such as SPH and a grid dependent method such as PF. In fact, Eulerian and

Lagrangian methods [Ben92, HAC74] and Eulerian and meshfree methods [WWGB09] have

already been jointly used to tackle physical problems. In summary, both these methods have

no problems with complex geometries, have no requirement to explicitly track interfaces and

can be combined to represent the evolution of a physical system. In particular, the following

questions are to be addressed fundamentally in this thesis:

• A phase-field model for martensite transformation

There is a need for advancement in the modelling of martensitic phase transformations.

Models currently in circulation utilise the evolution of strain energy fields as well as

other fundamental quantities in order to determine plate growth. The reality is that the

processes involved in steels are much more abundant than the growth of martensite. This

means multiple effects and models need to be applied in tandem. It is required that less

computationally demanding models are researched for cases which do not require such

complexity.

• A phase-field model for bainitic transformation

Bainitic transformation is more complicated than martensite transformation because it

is driven not only by displacive transformation but also the carbon diffusion and crystal

orientation selections. A phenomenological approach to the modeling of displacive trans-

formations is utilised. This enables the orientation dependent growth of bainite platelets

as well as the treatment of autocatalysis. Since the chemical free energy is incorporated

into the model along with diffusion, the experimentally observed trapping of carbon in

films of austenite is reproduced.

• Application of smoothed particle hydrodynamics in non-ideal fluids

The SPH method has been applied before however its effects on entropy is seen to be

inconsistent when it is applied to the same system with different parameters such as

smoothing length. This inconsistency is shown here and possible steps are shown to limit

this inconsistency so that the difference in the total entropy change when attempting

to increase accuracy is minimised. This is important when coupling the SPH with an
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entropy dependent PF model.

With the availability of a suitable hydrodynamic model to deal with mesoscopic complex flu-

ids and a suitable mesoscopic method to deal with microstructure evolution due to displacive

transformation, mesoscopic simulation of the overall steel processing is possible. PF for diffu-

sive phase transformations has been addressed well in literature. Integration of SPH and PF

for diffusive transformation, PF for displacive transformation along with thermodynamic and

physical databases will enable the functionality. The integration is a coding problem and will

not be discussed in detail in this thesis.



Chapter 2

Assessment of the literature

In this chapter, the theoretical fundamentals of the PF method, thermodynamics, the SPH

method and hydrodynamics are introduced.

2.1 The phase-field method

2.1.1 Introduction

The PF method is a diffuse interface method in that infinitesimally thin interfaces are replaced

with thin regions over which the variables in the method vary continuously. A distinct feature

of the method is the introduction of a PF variable or an order parameter which varies over

the non-zero thickness interfacial region. The PF variable is then used implicitly to track the

location of the interface. In other words, the state of the system is determined by the PF

variable. This immediately presents an advantage over sharp interface methods that require

explicit tracking of the interface. However, the interface being of non-zero thickness means that

in order to capture certain physical characteristics of some phase transformations, higher res-

olution simulations must be carried out due to the large gradients present across the interface

(Figure 2.1). The evolution equations for the phase-field variables are derived to comply with

the second law of thermodynamics (Section 2.2) which defines equilibrium and the direction

15
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of phase transformation. The free energy representation of the system, from which the evo-

lution equations are derived, can be suitably adjusted in order to deal with different physical

phenomena. This is discussed in more detail in Section 2.1.2.

Figure 2.1: A theoretical simulation of an interface between two phases. It can be seen that
the details of the interface can be lost if an interface thickness which is too large is chosen in
the PF method.

Take the solidification of a pure material from its liquid state. This problem is typically

represented by two mathematical equations, one in the solid and one in the liquid, and another

equation at the boundary between the two to represent boundary conditions. This representa-

tion is called a sharp-interface model (Section 1.3) due to the interface between domains having

zero thickness. Analytically, there are solutions for only a few special cases. Due to its industrial

significance, models are required with the ability to simulate such problems accurately.

Sharp-interface models are incredibly tedious to solve computationally due to the requirement

to explicitly track the interface. Diffuse interface methods such as the PF method do not suffer

from this problem. Instead, the PF method introduces a field variable called the PF variable

φ or order parameter η that is used implicitly to track the interface. The interface is no longer

infinitesimally wide but is assumed to have a finite thickness 2λ. The value of φ or η is used
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to determine the location of the interface and the evolution of these variables is governed by

equations derived from thermodynamics.

Thus, in cases with little to no hydrodynamic effects, the thermodynamic description of the

PF method is naturally sufficient to describe and predict microstructure evolution. In contrast,

the PF method has also been used to solve the Navier-Stokes equations for multiphase systems

involving flows [BCB03, BDS+99, TA98, TA00]. In the following chapters, the PF method is

shown to have the ability to be applied to a wide range of cases in liquid-solid and solid-state

phase transformations.

2.1.2 Mathematical description of the phase-field method

Where a precipitate grows within a matrix, consider the three instances: precipitate, matrix

and the interface between the two. Taking the interface to be a surface with infinitesimal width

coincides with a sharp interface description. The PF method deals with the formulation of

such a system by assigning each location in the domain a field variable φ. The value of φ

at a location determines the phase that is present at that location, whether it be precipitate,

matrix or interface. The precipitate and matrix are often represented by φ = 1 and φ = 0

respectively. The PF variable changes continuously from its matrix value to its precipitate

value, i.e. 0 < φ < 1 within the interface (Figure 2.2). This region is interpreted as the

interface and the length over which this continuous change occurs is the width of the interface.

Here, it can be seen that the interface has a non-zero width. If more than two phases, say N

phases, exist, then each phase typically has a corresponding PF variable. The presence of phase

i < N at location r is then determined by 1 ≥ φi(r) ≥ 0. If φi(r) = 1, phase i exists, if φi(r) = 0

it does not exist at this location. At any interface involving phase i we have 1 > φi > 0. This

way we have that for any r,
N
∑

i=0

φi(r) = 1.



18 Chapter 2. Assessment of the literature

Figure 2.2: A visual comparison of a sharp interface (left) and a diffuse interface (right) (adapted
from [MBW08]).

The evolution of the PF variable and subsequently the microstructure, is governed by a

set of evolution equations for φ. These governing equations are derived from thermodynamic

considerations of the state functions of the system. For instance, the Gibbs free energy of the

system as a state function can be expressed in terms of φ as,

G =

∫

V

[

g0(φ, T ) +
1

2
ǫ(∇φ)2

]

dV, (2.1)

where V and T is the volume of the domain and the temperature, respectively. g0 is the sum of

the homogeneous free energies of the two phases while also involving a free energy barrier and

ǫ is termed the gradient energy coefficient. Other circumstances may prompt the use of other

state functions such as entropy, internal energy or Helmholtz free energy. The gradient of the

PF variable in the second term on the right-hand side of Equation (2.1) is non-zero only over

the interface and it can be guessed that this term is responsible for describing the interface

region. The derivation of the general form of Equation (2.1) is given in Appendix (A).

One of the key assumptions in deriving the evolution equation for φ from Equation (2.1)

is that the rate of evolution is proportional to the force driving the microstructural change
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[Ons31, Mil60],

∂φ

∂t
= −Mφ

δG

δφ
, (2.2)

where Mφ > 0 is termed the mobility and δG
δφ

plays the role of the force.

The PF variable φ can be chosen to represent a conserved variable such as composition or a

non-conserved quantity such as the amount of precipitate formed. A popular form for g0(φ, c, T )

is given as [WBM92],

g0(φ, c
α, cβ, T ) = h(φ)gα0 (c

α, T ) + (1− h(φ))gβ0 (c
β, T ) +

1

4ω
φ2(1− φ)2, (2.3)

where h(φ) = φ3(6φ2−15φ+10) [WB95] and gα0 (c
α, T ) and gβ0 (c

β, T ) are the homogeneous free

energy densities of the phases α and β and are known in advance. The composition in the α

and β phases are denoted by cα and cβ respectively. The last term gives a double well nature

to Equation (2.3) with ω responsible for the height of the energy barrier. Figure 2.3 shows a

plot of g0 and h. The values for gα0 and gγ0 are obtained from Section 2.2 at c = 0.0111 atomic

fraction carbon and T = 720◦C as −41785MJ/m3 and −41795MJ/m3 respectively. We set

ω = 0.75× 10−9m3/J (using Equation (2.11) with λ = 14.3nm and σ = 0.72J/m2).

Figure 2.3: A plot of Equation (2.3) on the left with gα0 = −41785MPa, gγ0 = −41795MPa
and ω = 0.75× 10−9. A plot of the function h(φ) on the right.
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Let G be the Gibbs free energy of the system. Then the evolution of an irreversible process

conforms with,

dG

dt
≤ 0, (2.4)

Since G is a functional of multiple variables evolving through time, it can be expanded to give,

dG

dt
=

(

δG

δφ

)

c,T

∂φ

∂t
+

(

δG

δc

)

φ,T

∂c

∂t
+

(

δG

δT

)

φ,c

∂T

∂t
≤ 0, (2.5)

where the subscript
(

δG
δφ

)

c,T
means the functional derivative of G with respect to φ is taken

with constant c and T .

We consider the terms in Equation (2.5) separately,

(

δG

δφ

)

c,T

∂φ

∂t
≤ 0,

(

δG

δc

)

φ,T

∂c

∂t
≤ 0,

(

δG

δT

)

φ,c

∂T

∂t
≤ 0 =⇒ δG

δt
≤ 0. (2.6)

(Note the one-sided implication in Equation (2.6).) Solving Equation (2.6) is much simpler

than solving Equation (2.5).

Using equations (2.2) and (2.6),

(

δG

δφ

)

c,T

∂φ

∂t
≤ 0⇐⇒ −Mφ

(

δG

δφ

)2

c,T

≤ 0, (2.7)

where Mφ > 0 is the mobility. Thus Equation (2.2) satisfies the first of Equation (2.6). The

resulting governing equation for φ, using Equation (2.2), is then,

∂φ

∂t
= Mφ

(

ǫ2∇2φ− ∂g(φ)

∂φ

)

, (2.8)
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where g(φ) = g0(φ) +
1
2
ǫ(∇φ)2. Similarly, the governing equations for c and T are given as

[Whe99, QW03b],

∂c

∂t
= ∇ ·

[

Mc

(

∂2G

∂c2

)

φ,T

∇c

]

, (2.9)

∂T

∂t
= ∇ ·

[

MT

(

∂2G

∂T 2

)

φ,c

∇T

]

, (2.10)

where Mc and MT are mobility parameters for mass and temperature respectively. The pa-

rameters ǫ and ω are related to the half-interface width, λ, and the interfacial energy, σ, as

[Whe99],

ǫ2 =
3λσ

1.1
, ω =

λ

26.4σ
. (2.11)

The PF method is popular in the area of materials science due to its ability to provide

a visual representation of the developing microstructure without the requirement to explicitly

track interfaces. This trait comes hand-in-hand with the diffuse interface description. However,

one of the problems the PF method is faced with is the thickness of the interface. In reality, the

resolving of interfacial features and complex shapes may require interface widths in the atomic

dimensions. In order to resolve these features, one must improve lattice resolution which quickly

becomes computationally cumbersome.

2.1.3 From free energy to free energy density

It is assumed that the free energy of a system can be defined by a Ginzburg-Landau free

energy functional of a state function/order parameter φ as [CH58, Gin55],

F =

∫

Ω

(f(φ) +
1

2
k|∇φ|2)dx, (2.12)

where the coefficient k is positive, f is the Helmholtz free energy density of the bulk homoge-

neous phases and Ω is the system domain. F is minimised at equilibrium and this solution for
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φ satisfies δF
δφ
= 0. For Equation (2.12), this variational derivative gives [Wei74],

δF

δφ
= f ′(φ)− k∇2φ. (2.13)

We have that within the bulk phases, ∇2φ = 0 and,

δF

δφ
= 0, ⇒ f ′(φ) = 0, (2.14)

i.e. f(φ) is minimised.

If φ is to be a quantity that is not conserved, i.e. the fraction of the solidified phase in a

solidification model [PF90],

φ,t = K(k∇2φ− f ′(φ)). (2.15)

If φ is to be a conserved quantity, i.e. the total sum of all its values across the system is constant

( d
dt

∫

Ω
φdx = 0) [PF90],

φ,t = ∇ · (M∇[f ′(φ)− k∇2φ]), (2.16)

where K ≡ K(φ, T ) and M ≡ M(φ, T ) are functions. Both equations (2.15) and (2.16) result

in a monotonically decreasing F . This does not violate the 2nd Law of Thermodynamics.

Addition of governing equations for other field variables, such as temperature, is also often re-

quired to describe evolution. The following equations are derived for the case with temperature

evolution [PF90],

αζ2φ,t = ζ2∇2φ+ g(φ)− T (2.17)

T,t = ∇2T + λφ,t, (2.18)

where T is temperature and ζ is a positive constant. However, equations (2.17) and (2.18) do not

result in a monotonically decreasing free energy F . This is due to the method of deriving these

equations. Equation (2.17) is derived assuming T is constant. Then Equation (2.18) is derived



2.1. The phase-field method 23

using Fick’s Law and allowing T to vary in time. Note that Equation (2.17) can be obtained

from Equation (2.15) by choosing f ′(φ) = T − g(φ), k = ζ2 and K = 1/(αζ2). Also, the notion

of temperature change is closely related to the energy evolution of the system, prompting a

requirement for energy conservation. If temperature is not assumed to be constant, the entropy

functional becomes more suitable [PF90]. In order to write Equation (2.12) in terms of the

entropy density, a relationship between the free energy density, f , and the entropy density, s,

is formed as [PF90],

f(T, φ) = inf
e
[e− Ts(e, φ)], (2.19)

where e is the energy density and infe means the infimum with respect to e. The Legendre

transform (Equation (2.19)) is obtained through certain assumptions about the functions, f

and s. Namely that they are concave in their variables. Equation (2.12) can now be rewritten

as,

F =

∫

Ω

(f +
1

2
k|∇φ|2)dx

=

∫

Ω

(inf
e
[e− Ts] +

1

2
k|∇φ|2)dx

=

∫

Ω

(inf
e
[e− Ts+

1

2
k|∇φ|2])dx

= inf
e

∫

Ω

(e− Ts+
1

2
k|∇φ|2)dx

= inf
e
[

∫

Ω

edx−
∫

Ω

(Ts− 1

2
k|∇φ|2)dx]

= inf
e
[E − TS], (2.20)

where E is the total energy and S is the total entropy,

E =

∫

Ω

edx, (2.21)

S =

∫

Ω

(s− k

2T
|∇φ|2)dx. (2.22)
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Equations (2.15) and (2.16) are then replaced by [PF90],

φ,t = KT
δS

δφ
, (2.23)

φ,t = −∇ · {MT∇(δS
δφ
)}, (2.24)

respectively, in the case of a variable temperature field. Analogous to these equations, the

corresponding equations for e (conserved) is,

e,t = −∇ · {K1T
2∇( 1

T
)}

= K1∇2T. (2.25)

where it was assumedM = K1T
2 withK1 a constant. This entropy and total energy description

now results in a non-decreasing entropy with respect to φ [PF90].

2.1.4 Application of phase-field method to solidification

Suppose that the state of the system at a particular time corresponds to the state of a single

PF variable φ(r),

φ(~r, t) =



























0

1

(0, 1)

~r ∈ ΩL(t)

~r ∈ ΩS(t)

~r ∈ Γ(t)

, (2.26)

where ΩL, ΩS and Γ are the subsets of the points in the domain corresponding to the liquid,

solid and interface respectively. Then, a Helmholtz free energy functional can be formed in

terms of φ(r) as [PF90, OKS01] Equation (2.12),

F =

∫

V

[

g0(φ, T ) +
1

2
ǫ(∇φ)2

]

dr, (2.27)

where V is a volume of space, ǫ > 0 is the gradient energy coefficient related to the interface

energy and g0 (f in Equation (2.19)) is a double well function the minima of which reflects the

two existing stable phases. If the PF variable is chosen to represent the local concentration,
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then the equilibrium state of the interface is found by minimising the free energy functional.

In the case of solidification, Equation (2.3) gives,

g0(φ, T ) = h(φ)fS + (1− h(φ))fL +
1

4ω
φ2(1− φ)2, (2.28)

where fS and fL are respectively the solid and liquid free energy densities. Equation (2.8) then

results in,

∂φ

∂t
= Mφ

(

ǫ2φ∇2φ− h′(φ)(fL − fS)− 1

2ω
φ(1− φ)(1− 2φ)

)

. (2.29)

In phase-field models for binary mixtures, the phase change as a function of composition is

assumed to be continuous. This means the homogeneous free energy densities are functions of

composition,

fL = cSf
L
B(T ) + (1− cS)f

L
A(T ), (2.30)

fS = cLf
S
B(T ) + (1− cL)f

S
A(T ), (2.31)

c = h(φ)cS + (1− h(φ))cL, (2.32)

µS(cS(xint, t)) = µL(cL(xint, t)), (2.33)

where A and B are the components, cS and cL are the solid and liquid compositions respectively,

c is the local composition, xint denotes a position within the interface, and µS and µL are their

chemical potentials. Assuming MT
∂2F
∂T 2 = DT , a constant, in Equation (2.10), and adding a

latent heat term gives,

∂T

∂t
= DT∇2T + h′(φ)

L

cp

∂φ

∂t
, (2.34)

where L and cp is the latent heat and the specific heat respectively. A solute diffusion equation

may also be included in the model (Equation (2.9)),

∂c

∂t
= ∇ ·

(

Dc

g,cc
∇g,c

)

, (2.35)

where Dc = Mcg,cc is the solute diffusivity and can be dependent on φ. g,c and g,cc are the first

and second derivatives of g with respect to composition.
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Using this model as a base, it is possible to describe dendritic growth by introducing an

anisotropy parameter (in two dimensions) which is applied to the gradient energy coefficient

[Kob93, QW03b],

ǫ = ǭ(1 + v cos(kθ)), tan(θ) =
∂φ/∂y

∂φ/∂x
, (2.36)

where ǭ is a constant (the mean value of ǫ), v is the amplitude and k represents the symmetry.

The Helmholtz free energy functional (Equation (2.27)) is applied to the PF method if the

temperature is assumed constant. If the temperature is a variable, Equation (2.27) is replaced

with the entropy functional Equation (2.22) [WSW+93],

S =

∫

V

[

s(φ, e, c)− 1

2
ǫ2φ(∇φ)2

]

dV, (2.37)

where s is the entropy density.

Using this entropy functional instead of the free energy functional in Equation (2.2) a model

for solidification can be constructed [WB95] the parameters of which can be related to material

parameters such as melting temperature and interface energy.

The classical equations for the description of the solidification of a pure melt were outlined

in Section 1.2.2. It was mentioned that a separate equation for each phase is required as well

as equilibrium conditions across each boundary. This quickly becomes impractical when the

model is pitted against multiple phases especially where complex interface shapes are involved.

However, the description of the PF method given in Section 2.1 makes it ideal for overcoming

computational resource barriers by requiring only a single set of equations to be solved for the

entire simulation domain. Additionally, complicated interface morphologies have less impact

on the efficiency.

While such PF models are applied to stationary liquid environments, which is insufficient

when the aim is to simulate real life processes, it is possible to incorporate fluid flow into the
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PF method by solving the Navier-Stokes equations [TA98, BDS+99, TA00].

In summary, the formulation of a PF model for solidification begins with the assumption

that the phase dynamics at the interface can be approximated by a smooth function φ, the PF

variable, while taking on nearly constant values within the phases. A free energy functional or

entropy functional is then formulated as a function of φ. The second law of thermodynamics

is then applied demanding the increase of entropy and the decrease of the total free energy of

the system with respect to time.

2.2 Thermodynamic properties

Calculation of microstructure evolution using the PF method requires thermodynamic quan-

tities (e.g. free energy and chemical potential) as input parameters. This can sometimes be

done by integration of the PF code with a commercial thermodynamic database. However,

there are several disadvantages in doing so. One is the computational speed. A commercial

thermodynamic database is aimed to produce phase-equilibrium calculations. It calculates

many thermodynamic quantities that are not required in the PF method. The most efficient

method is to have a code package for thermodynamic calculation for the purpose of the PF

calculation. For this purpose, a code package has been developed. The thermodynamic theory

and calculation methods are summarised in this section.

2.2.1 Fundamental definitions

Computations such as those used in producing phase diagrams and the possibility of sponta-

neous reactions require knowledge of thermodynamics since it involves a transformation of the

thermodynamic system from one state to another. Thermodynamics deals with the relation-

ships between heat, matter and different forms of energy. Over the course of the development

of this branch of science, four laws have come into existence which will be helpful to predict

certain behaviours of systems such as its evolution direction. These laws are given as:
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Zeroth Law: If a body, A, be in thermal equilibrium with two other bodies, B and C,

then B and C are in thermal equilibrium with one another [Pla45].

First Law: The energy of the universe is constant.

Second Law: The entropy of the universe tends to a maximum.

Third Law: The entropy of a perfect crystal, at absolute zero (zero kelvins), is exactly

equal to zero.

The First Law given by Clausius in his 9th paper in 1865 is in the form of the equation

∆U = q − w pertaining to a closed system, where ∆U is an increment in the internal en-

ergy and q and w is the heat accumulated by the system and the work done by the system

respectively. The assumption that the entropy of an isolated system (i.e. a system with no

mass or energy transfer across its boundaries) never decreases, The Second Law, is important

for thermodynamic evolution equations.

The total energy contained within a system is called the internal energy of the system, U .

By the first law of thermodynamics, U is related to the work done by the system, w, and the

heat transferred in to the system, q, in integral form by,

∆U = q − w (2.38)

or in differential form,

dU = dq − dw (2.39)

where work done by the system and heat given in to the system are positive. So for a system

with constant pressure,

dU = dq − PdV. (2.40)

Entropy, usually denoted by S, is another thermodynamic parameter used to describe a

system. The use of entropy is beneficial in that isolated systems tend to evolve towards a



2.2. Thermodynamic properties 29

state of maximum entropy. In statistical mechanics entropy is defined to be a measure of the

number of configurations of its microconstituents and can be used as a measure of disorder or

randomness. In thermodynamics however, it is defined on a macroscopic scale in terms of heat

for a reversible process as ∆S =
∫ B

A
dq
T
. The entropy is related to the internal energy by the

thermodynamic identity,

dU = TdS − PdV, (2.41)

where T is temperature.

The enthalpy, H, of a system is defined to be,

H = U + PV. (2.42)

This equation along with Equation (2.40) can now be used to describe the thermodynamics of

a system as,

dH = dU + d(PV ) = dq − PdV + d(PV ). (2.43)

Using the product rule for differentiation reduces the equation to,

dH = dq − V dP, (2.44)

resulting in a more useful equation for use with a system with variable volume but constant

pressure. The partial derivative of Equation (2.44) at constant pressure with respect to tem-

perature is defined to be the specific heat capacity, CP , of a phase at constant pressure,

CP =

(

∂H

∂T

)

P

=

(

∂q

∂T

)

P

. (2.45)

The specific heat capacity at constant volume, CV , is defined using Equation (2.40),

CV =

(

∂U

∂T

)

=

(

∂q

∂T

)

V

. (2.46)
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A change in the enthalpy of a system represents the heat absorbed by the system and the

work done. So a change in the enthalpy corresponds to a possibility of a spontaneous reaction.

However, some systems may undergo spontaneous reactions without a change in enthalpy. For

instance, an isothermal ideal gas has ∆H = 0, but upon release from a confined space (ordered

state) the gas proceeds to expand towards disorder. This corresponds to an increase in entropy.

Therefore, the entropy change as well as the enthalpy change of a system need to be considered

when describing a system. Along these lines the Gibbs free energy, G, of a system is defined to

be (for a system with constant temperature and pressure),

G = H − TS, (2.47)

and the Helmholtz free energy, F , is (for a system with constant temperature and volume),

F = U − TS. (2.48)

The entropy and the Gibbs and Helmholtz free energies depend only on the current state of

the system and not on its history and so are called functions of state.

In chemistry, a mole (n) is used as a unit of measurement for a quantity of a substance.

The equations (2.47) and (2.48) are often expressed as per mole of a substance. Consider a

phase α with two constituent atoms a and b. The molar Gibbs free energy of the phase α for

a multicomponent system is then a function of the free energies of the respective phases,

Gα
m = (1− x)Gα

a + xGα
b − T∆Sideal. (2.49)

where x is the mole fraction of component b, 1 − x is the mole fraction of component a, and

Gα
a is the Gibbs free energy of a in phase α. For an ideal solution we have the molar entropy,

∆Sideal = −R((1− x) ln(1− x) + x ln(x)). (2.50)
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Then the molar Gibbs free energy for an ideal solution can be written as,

Gα
m = (1− x)Gα

a + xGα
b +RT ((1− x) ln(1− x) + x ln(x)). (2.51)

For non-ideal systems, the ideal solution is often used as a reference solution while adding the

excess components (EGm = EH − TES) that contribute to its non-ideality,

Gα
m = (1− x)Gα

a + xGα
b +

EGm +RT ((1− x) ln(1− x) + x ln(x)). (2.52)

The free energies of equations (2.47) and (2.48) written in the form of Equation (2.52) are used

to produce phase diagrams such as that in Figure 2.4. Figure 2.5 shows a common tangent

method to producing the binary phase diagram. The two functions G1 and G2 correspond to

ferrite and austenite respectively. For all total compositions lying between the two intersection

points, the system can reduce it’s free energy by mixing with the compositions resulting from the

common tangent to the two phases. The process of constructing these functions is demonstrated

in the following sections.

2.2.2 The regular solution model

A regular solution model can be used to describe the molar free energies in a solution in

which the atoms of the solutions are distributed in a regular manner within the sublattices.

Due to the iron and carbon atoms having different characteristics, such as their size, they

occupy different sublattices. In this case it is possible to use a regular solution model under

the assumption that there is random mixing within each sublattice. The possibility of multiple

sublattices prompts the introduction of a new composition parameter, Y s
i = ns

i/(n
s
V a+

∑

i n
s
i ),

known as the site fraction of component i in sublattice s with subscript V a referring to vacant

sites and ni the number of moles of component i. Since the sum of the site fractions of all the

components within a sublattice must equal 1,
∑

i Y
s
i + Y s

V a = 1 for all s. If a component is

not found in a particular sublattice the corresponding site fraction is zero. For instance, the

regular solution model of α-iron has two sublattices with carbon atoms not entering in to the
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Figure 2.4: The Fe-C binary phase diagram. Adapted from [HB06]. The points S and P can
be calculated as in Figure 2.5.



2.2. Thermodynamic properties 33

Figure 2.5: A plot of the free energies of ferrite and austenite for temperature T = 727◦C
(T = 1000.15K). The common tangent approach is used to find the compositions of the two
phases (the short dotted line). These points correspond to the points S and P in Figure 2.4.
Repeating the process for varying T produces the whole diagram.
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same sublattice as the iron atoms, hence Y 1
C will be zero where s = 1 refers to the sublattice

occupied by the Fe atoms.

The mole fraction Xi of component i can be calculated from the site fractions as,

Xi =

∑

s a
sY s

i
∑

s a
s(1− Y s

V a)
, (2.53)

where as is the number of sites on sublattice s per formula units of the phase. Equation (2.53)

is plausible since each atom is represented by a site and a mole is defined to be a fixed number

of atoms so that it translates to a fixed number of sites. The introduction of the site fraction

is based on the fact that we are dealing with multiple sublattices. The numerator of the right-

hand side of Equation (2.53) is the total number of sites occupied by component i while the

denominator is the total number of sites occupied by an atom. This is precisely the definition

of a mole fraction.

The assumption of random mixing within each sublattice leads to the following expression

for the ideal molar entropy of mixing (Equation (2.50)),

−∆Sideal = R
∑

s

as
∑

i

Y s
i lnY

s
i . (2.54)

Even though iron has no ideal solutions (always has a non-zero enthalpy) its constituents are

still distributed randomly and the error with respect to an ideal solution can be corrected by

the introduction of an excess free energy term,

Gm =
∑

i

Xi
◦Gi − T∆Sideal + EGm (2.55)

where Xi =
ni

n
is the molar fraction of component i, with ni the number of moles of component

i and n the total number of moles in the solution. The term ◦Gi is the Gibbs free energy of the
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pure component i and EGm is the excess free energy, [Gus85]

EGm =
1

2

∑

s

∑

i

∑

j

∑

k

Y s
i Y

s
j Y

t
kL

sst
ijk (2.56)

where Lsst
ijk represents the interaction energy between i and j which are found within the same

sublattice for a two sublattice model. The interaction energies usually depend upon the com-

ponents present in the other sublattices k as expressed by the superscript t which must be

different from s.

2.2.3 The regular solution model applied to the Fe-C system

The molar free energies of the solid phases of the Fe-C system according to a 2 sublattice

model with formula units Fea(V a, C)b can be expressed as, [Gus85],

Gm = Y 2
V a

◦Gh
Fe:V a+Y 2

C
◦Gh

Fe:C+bRT{Y 2
C ln(Y

2
C)+Y 2

V a ln(Y
2
V a)}+Y 2

V aY
2
CLFe:V a,C+Gmo

m (2.57)

where Y s
i is the site fraction of component i on sublattice s and s = 2 is the interstitial sublattice

not occupied by Fe. The Gibbs free energy of pure component Fe is denoted ◦Gh
Fe:V a and

◦Gh
Fe:C

is the Gibbs free energy of Fe with all interstices filled with C. The enthalpy is calculated by

interaction energies as LFe:V a,C where the vacancies (V a) being in the same sublattice as the

carbon atoms (C) are separated with a comma rather than a colon. The contribution due to

magnetic ordering is expressed as Gmo
m .

Carbon atoms enter the octahedral sites of both the FCC and BCC structure. So the for-

mula units for ferrite and austenite correspond to the ratio of lattice points occupied by the

constituent atoms in Figure 2.6. Each Fe atom at the corner of the FCC structure contributes

1/8th of a lattice point to the total and each Fe atom at the centre of a face contributes

1/2. There are 8 corners and 6 faces giving a total of 4 lattice points. Each interstitial site

at the edges contribute 1/4 of a lattice point so that 12 edges contribute toward the total of

4 lattice points occupied by interstitial sites including the interstitial site at the centre of the
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FCC. Austenite then has formula units Fe1(V a, C)1 since the lattice points occupied by the

two sublattices have a ratio of 1 : 1. Similarly, ferrite has formula units Fe1(V a, C)3 since the

lattice points occupied by the two sublattices have a ratio of 1 : 3.

Considering the 2 sublattice model of ferrite with formula units Fe1(V a, C)3 we have a
1 = 1

and a2 = 3, thus by Equation (2.54):

XC =
3YC

1 + 3YC

, (2.58)

with Y 1
V a = 0. Rearranging and defining the u-fraction of C as uC = XC

1−XC
gives [LAgA04],

YC =
uC

3
, (2.59)

YV a = 1− uC

3
, (2.60)

Similarly for austenite with constituents Fe1(V a, C)1 we have a
1 = 1 and a2 = 1,

XC =
YC

1 + YC

, (2.61)

YC = uC , (2.62)

YV a = 1− uC . (2.63)

While the range of values for XC is [0, 1], the range of values for uC is [0,∞).

2.2.4 Computational thermodynamics for steels

Following Gustafson’s expressions for the molar Gibbs free energy of the Fe-C system [Gus85],

it is possible to compute the solubilities of carbon in the various phases using the common

tangent approach. Suppose we have two smooth functions Gα
m(x) and Gγ

m(x). The tangent

functions T1(x) and T2(x) to these functions at points x1 and x2 respectively would have to
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Figure 2.6: The molecular structures of austenite (FCC) and ferrite (BCC). The FCC structure
has 13 octahedral and 8 tetrahedral interstices. 12 octahedral interstices are situated on the
edges and 1 at the center. If the cube were to be divided in to 8 equal subcubes, a tetrahedral
interstice is located at the center of each of these cubes. The BCC structure has 18 octahedral
and 24 tetrahedral interstices. 6 octahedral interstices are located at the centers of the 6 faces
with the remaining at the edges. The tetrahedral interstices are found at the faces of the cube
mid-way between the center of the face and the edges.
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satisfy the equations:

T1(x) =
dGα

m(x1)

dx
x+ C1,

T2(x) =
dGγ

m(x2)

dx
x+ C2.

For these two tangents to be common we must have T1(x) = T2(x) for all x. For x = 0 we have

C1 = C2 = C. Since the derivative of a tangent function is the same everywhere we obtain the

following equations:

T (x) =
dGα

m(x1)

dx
x+ C,

T (x) =
dGγ

m(x2)

dx
x+ C,

⇒ dGα
m(x1)

dx
=

dGγ
m(x2)

dx
.

Using the fact that T (x1) = Gα
m(x1) and T (x2) = Gγ

m(x2), i.e. the tangent functions intersect

the corresponding functions at x1 and x2 respectively, we have,

Gα
m(x1)−Gγ

m(x2) = T (x1)− T (x2) =
dGα

m(x1)

dx
x1 −

dGγ
m(x2)

dx
x2

and thus deriving the equations for solving for the common tangent:

dGα
m(x1)

dx
=

Gα
m(x1)−Gγ

m(x2)

x1 − x2

,

dGα
m(x1)

dx
=

dGγ
m(x2)

dx
.

A common tangent to Gγ
m and Gα

m must satisfy the above two equations which when solved

give the two points corresponding to Figure 2.5. Taking Gα
m(x) and Gγ

m(x) to be the molar

free energies of the α and γ phases as functions of composition respectively as provided by

Gustafson, we can compute the solubility of carbon in the α phase as x1 = xα and the γ phase

as x2 = xγ. Note that Gm is a function of temperature and the above formulation for xα and

xγ is for a particular temperature. Calculating xα and xγ for various temperatures in the same

way as above, a section of the FeC binary phase diagram such as that in Figure 2.7 can be
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computed.
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Figure 2.7: A section of the phase diagram computed using the common tangent construction
giving a solubility limit of 0.091 atomic fraction carbon in the ferrite phase.

2.3 The smoothed particle hydrodynamics method

2.3.1 Introduction

Smoothed particle hydrodynamics (SPH), as a meshfree Lagrangian particle method, was

originally introduced to deal with astrophysical phenomena on a large scale. Since it’s inception

some forty years ago independently by Lucy [Luc77] and Monaghan [Mon92] there have been

significant improvements to the capabilities of SPH such as the formulation of SPH to discretize

the equations of hydrodynamics while explicitly adhering to the second law of thermodynamics

[EnR03]. While the focus of this thesis is on the use of SPH on mesoscale systems with the

interpolation points representing volumes of material, the length scales within the scope of the

capabilities of the SPH method runs from the astronomical scale to the microscale [NZ02]. The

method has also been used to represent discrete particles rather than continuum mechanics. As
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we shall soon see, there are many different formulations of the SPH equations. Some are better

when applied to certain situations. However, the one thing common to all is the basic idea of

SPH - the use of a weight function as an interpolation function to approximate the value of a

field function at any given particle point. This approach enables the calculation of derivatives

of the field functions to be obtained via the derivatives of the weight function only. A given

particle within a system in the SPH formulations is generally regarded as a subsystem with its

own variables such as mass, density and velocity representative of the material it contains. The

SPH method holds many advantages over other methods and can be summarised as follows:

• The SPH method can be applied to problems of astronomical scale down to the microscale

[NZ02]

• Particles representing the system are not rigidly connected to each other making large

deformations easy to deal with (solving the problem faced with using the traditional

Lagrangian description)

• Adapts to the system at hand thereby not being affected by initial particle distribution

• Complex geometries are easily dealt with

• Free surfaces are not a problem

• Moving interfaces are not a problem

• Can trace a discrete volume of material through space and time

• Boundary conditions are easily applied

• The particles in the SPH method not only act as interpolation points but also carry

around system properties such as mass, velocity, pressure, density etc...

Using a weight function, a field property such as pressure at a particle location is calculated

using the values of that field property at the locations of neighbouring particles. This can be
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represented for field property f(ri) at position ri and weight function W (r) as,

f(ri) =
N
∑

j=0

W (ri − rj)f(rj). (2.64)

This immediately implies that the accuracy and benefits of the approximation depend on the

choice of the weight function. There are many choices for the weight function and these are

discussed later.

2.3.2 The fundamental theory of smoothed particle hydrodynamics

In order to convey the general idea of the SPH method we derive the SPH methodology from

the integral representation of a function f(r) at position r using the dirac delta function δ(r),

δ =











∞, r = 0

0, r 6= 0

. (2.65)

The following is true for the dirac delta function:

∫

Ω

δ(r− r′)dr′ = 1, (2.66)
∫

Ω

f(r′)δ(r− r′)dr′ = f(r), (2.67)

where Ω is a region of volume containing r. Here, Equation (2.67) is exact, however, the function

δ is too rigid and too abstract to be dealt with easily. Instead, we formulate an approximation to

this equation by replacing δ(r) with a weight function (also called a smoothing function/Kernel)

W (r, h) with the property that,

∫

Ω

W (r′, h)dr′ = 1, (2.68)

W (r, h) = 0, if r /∈ B(h), (2.69)
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where h is called the smoothing length and determines the volume (B(h)) within which the

kernel has influence and is non-zero. B(h) is called the support domain and Ω is the system

domain. In other words, W (r, h) is a smoothed approximation of δ(r) that does not have an

infinitesimally small domain within which it is non-zero. W is visualised in Figure 2.8 where it

can be seen that the field properties are smoothed over a region.

Figure 2.8: A figure of the support domain of length h of a particle (blue). Higher contrast
areas correlate to larger contributions due to the weight function to the summation of Equation
(2.64) from a particle in that region.

We can now re-write Equation (2.67) as,

f(r) ≈
∫

Ω

f(r′)W (r− r′, h)dr′, (2.70)

where the kernel W must adhere to certain requirements which will be specified later.
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Approximation to the derivatives ∇f(r) and ∇ · f(r) can be obtained as (where f is a scalar

function in the prior case and a vector function in the latter),

∇f(r) ≈
∫

Ω

(∇f(r′))W (r− r′, h)dr′ (2.71)

∇ · f(r) ≈
∫

Ω

(∇ · f(r′))W (r− r′, h)dr′. (2.72)

Using the identity,

∇ · (fW ) = W∇ · f + f · ∇W, (2.73)

Equation (2.72) can be written as,

∇ · f(r) ≈
∫

Ω

[∇ · (f(r′)W )− f(r′) · ∇W ] dr′. (2.74)

Using the divergence theorem to convert the first term on the right-hand side of Equation (2.74)

into an integral over the surface,

∇ · f(r) ≈
∫

S

f(r′)W · n̂dS −
∫

Ω

f(r′) · ∇Wdr′, (2.75)

where n̂ is the unit normal to surface S of the support domain. The first term on the right-

hand side of Equation (2.75) vanishes since the kernel is zero everywhere except for within the

support domain. Similar operations on Equation (2.71) results in,

∇f(r) = −
∫

Ω

f(r′)∇Wdr′, (2.76)

∇ · f(r) = −
∫

Ω

f(r′) · ∇Wdr′, (2.77)

where the gradients on the right-hand side of the equations are with respect to r′. Re-writing

the equations with the gradients with respect to r we can get rid of the negative sign (since
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∂W (ri−rj)

∂rj
=

∂W (ri−rj)

∂(ri−rj)

∂(ri−rj)

∂rj
=

∂W (ri−rj)

∂(ri−rj)
(−∂(ri−rj)

∂ri
)),

∇f(r) =

∫

Ω

f(r′)∇Wdr′, (2.78)

∇ · f(r) =
∫

Ω

f(r′) · ∇Wdr′. (2.79)

Note that this simplification is only valid if the support domain of the particle in question

is entirely within the system domain. In cases where part of the support domain is outside

the system domain, the first term on the right-hand side of Equation (2.75) is no longer zero.

However, there are techniques that compensate for these cases as we shall see later.

2.4 Hydrodynamics

In fluid mechanics, the equations governing the evolution of the system must adhere to the

conservation of certain variables such as the mass, momentum and energy. The four fundamen-

tal equations are explicitly, the conservation equations for mass, energy, momentum and angular

momentum. Including the second law of thermodynamics gives the equations for describing a

thermofluid. The Lagrangian form of these equations of hydrodynamics are [PHK95, PH97]:

dρ

dt
= −ρ∇ · v, (2.80)

dv

dt
=
1

ρ
∇ ·P+ g, (2.81)

Tρ
dS

dt
= φ+ κ∇2T , (2.82)

dU

dt
=
1

ρ
P : ∇v − 1

ρ
∇ · q, (2.83)

P = −P I+ σ, (2.84)

σ = ηV [∇v +∇vT ] + (ζ − 2

d
ηV )(∇ · v)I, (2.85)

q = −K∇T, (2.86)

where ρ, v, S, P and T is the density field, velocity field, entropy per unit mass, pressure field

and the temperature field respectively. The coefficients ηV , ζ and κ are the shear viscosity, bulk
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or dilatational viscosity and thermal conductivity respectively. The stress tensor is denoted by

P and the viscous stress tensor is denoted by σ. φ is the viscous heating field and is defined by,

φ = 2η∇v : ∇v + ζ(∇ · v)2, (2.87)

where the tensor ∇v is given for dimension d by,

∇v =
1

2
[∇v +∇vT ]− 1

d
1∇ · v. (2.88)

1 is the unit tensor and the expression A : B =
∑

i

∑

j AijBji is the double dot product of two

tensors with Aij referring to the element found in the ith row and jth column of the tensor

A. φ ensures the contribution to the internal energy from the energy dissipation due to shear

stresses.

In many cases, the fundamental equations describing fluid motion and evolution are insuf-

ficient for solving for the system parameters. It is therefore necessary to increase the number

of equations in relation to the parameters. These equations are called constitutive equations.

For instance, Fick’s law of mass transfer is a constitutive equation. In this thesis, there will be

many instances of a frequently used constitutive equation called the equation of state which

involves thermodynamic variables such as pressure, temperature and density.



Chapter 3

Phase field models for martensitic

transformations

3.1 Solid-solid phase transformations

The mobility of elements in the solid-state is much lower than that in the liquid state. In

the solid state, atom diffusivity is related to the temperature as

D(T ) = DO exp(−
Kb

KBT
), (3.1)

where Do is a coefficient dependent on the atom size and atom vibration frequency. Kb is

the kinetic barrier. KB is the Boltzmann constant, and T is the temperature. This means

that the diffusivity at high temperatures is greater than at low temperatures. In high tem-

perature solid-solid phase transformations, the atom mobility is still high enough to enable

diffusive transformations. Austenite to pearlite transformation, austenite to allotriomorphic

ferrite transformation and austenite to idiomorphic ferrite transformation are typical diffu-

sive solid-solid phase transformations in steels. However, when the temperature is low, atom

mobility is too low to fulfill the requirements of the phase transformation. Thus displacive

transformation may take pace. The latter is a cooperative displacement of atoms. An example

46
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of a displacive transformation in steels is martensite which is obtained by rapidly cooling the

steel to low temperatures. This particular phase transforms from a face centered cubic (FCC)

structure to a body centered cubic (BCC) structure at very high speed allowing atoms (say

carbon atoms) very little time to diffuse into the surrounding material. The result is a su-

persaturated body centered tetragonal (BCT) phase. Martensite is a highly brittle but strong

phase. Due to the rapid speed of formation of these phases, experimental results, for instance

during the formation of a plate, are absent and incredibly difficult if not impossible to obtain.

Numerical modelling and simulation, as will be seen in the subsequent chapters, enables the

study of these transformations at very small time increments.

3.2 Martensitic transformation theory

Martensitic transformation (MT) is observed in many materials, not just in steels, and at

a wide range of temperatures [Bha01]. MT in steels is accompanied by a rearrangement of

the crystal lattice. The transformation is displacive and so there is no atomic diffusion. The

microstructure formed resembles plate-like regions where martensite has formed. There are 24

different orientation variants of the martensite plates in steels [Kun07]. Given the accommo-

dating nature of the transformation, the microstructure tends to favour certain variants above

others.

One way to model and simulate martensitic growth using the PF method is to find a free

energy as a function of the order parameter, η, which produces a single minimum (at η = 0)

at high temperatures corresponding to the high temperature phase and two minima at low

temperatures corresponding to the low temperature phase. These two minima must be at

nonzero order parameter. At intermediate temperatures, the free energy must have three

minima. Landau expanded the free energy density of a system to model second order phase

transitions as,

f(η, T ) = f0 + a2(T − T1)η
2 + a4η

4, (3.2)
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where the constants a2, a4 > 0. This is obtained from the original power series expansion,

f(η, T ) = f0 + a1η + a2η
2 + a3η

3 + a4η
4 + ..., (3.3)

as follows: Let T1 be the transition temperature. At high temperatures above T1, the high

temperature phase must be stable, i.e. the free energy must have a minimum at η = 0,

∂f

∂η
|η=0= [a1 + 2a2η + 3a3η

2 + ...] |η=0= 0, (3.4)

∂2f

∂η2
|η=0= [2a2 + 6a3η + ...] |η=0> 0. (3.5)

Equation (3.4) implies a1 = 0. Equation (3.5) implies a2 > 0. Below T1 we should have the

emergence of a new phase and the high temperature phase should be unstable, i.e. the free

energy must have a maximum at η = 0,

∂2f

∂η2
|η=0< 0→ a2 < 0. (3.6)

This means a2 depends on temperature and changes sign at the transition temperature. One

simple possibility is a(T −T1), a > 0. For f(η, T ) to increase with |η|, i.e. continuous transition

between phases, we must have a3 = 0 and a4 > 0. Devonshire [Dev54] devised a free energy for

first order phase transitions as (called the 2-4-6 phase transition polynomial),

f(η, T ) = f0(T ) + A(T )η2 − Bη4 + Cη6, (3.7)

A(T ) = a(T − T1),

where a, B, C, T1 > 0. f0 is the free energy at η = 0 (i.e. high temperature phase) as expanded

by the power series. The order parameter η, may correspond to the strain or atomic shuffling.

A plot of Equation (3.2) and Equation (3.7) is shown in Figure 3.1 and Figure 3.2 respectively.
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Figure 3.1: A plot of Equation (3.2) (Landau) with a2 = 0.05, a4 = 0.5 and T1 = 10.
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Figure 3.2: A plot of Equation (3.7) (Devonshire) with a = C = 1, B = 5 and T1 = 10.
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Solving ∂f
∂η
= 0 for Equation (3.7) gives the five roots,

η = ±

√

2B ±
√

4B2 − 12ac(T − T1)

6C
, (3.8)

η = 0.

Let T2 be such that 4B
2 − 12ac(T − T1) = 0 and T3 be such that f(η1, T ) = f(η2, T ) = f(0, T )

for the minima η1 and η2 in Equation (3.8). This gives,

T2 =
B2

3ac
+ T1, (3.9)

T3 =
B2

4ac
+ T1. (3.10)

Then Equation (3.8) results in one root and one minimum for T > T2, three roots and two

minima for T ≤ T1 and five roots and three minima for T2 > T > T1. At T = T3, the energy

wells are of equal depth. The two minima corresponding to nonzero order parameter represent

two orientation variants of the martensitic phase.

In the presence of an external field, σ̃ (external stress), the free energy is [Fal82],

f̃(η, T ) = f(η, T )− σ̃η, (3.11)

implying equilibrium at,

∂f̃

∂η
= 0→ ∂f

∂η
= σ̃. (3.12)

Equation (3.7) is plotted again with σ̃ > 0 in Figure 3.3.

It may be noticed that if one were to use Equation (3.11) to model phase transitions involving

domains, equilibrium considerations of the free energy will result in infinitesimally narrow

interface widths. Ginzburg-Landau free energy is the result of adding a gradient term to the
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Figure 3.3: A plot of Equation (3.11) with a = C = 1, B = 5, T1 = 10 and σ = 10.
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homogeneous free energy density,

f̃(η,∇η, T ) = f̃(η, T ) + ǫ(∇η)2, (3.13)

where ǫ > 0 is the gradient energy coefficient. Thus minimising the total free energy,

F (η,∇η, T ) =

∫

Ω

f̃(η,∇η, T )dV, (3.14)

where Ω is the system domain, V is the volume and the terms η and T now depend on position

x. For cases which are not invariant under the transformation (η −→ −η), a 2−3−4 polynomial

may be used,

f(η, T ) = f0 + a1(T − T1)η
2 − a2η

3 + a3η
4. (3.15)

The nonsymmetric nature of Equation (3.15) can be seen in Figure 3.4. As mentioned in Section
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Figure 3.4: A plot of Equation (3.15) with a1 = 0.05, a2 = 0.5, a3 = 1 and T1 = 10.

2.1.3, in some PF models, secondary order parameters are employed such as temperature and
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composition. For martensitic phase transitions, PF models may involve a coupling of the order

parameter η with a secondary order parameter, ε, the strain. A simple free energy with coupling

to ε is,

f(η, T ) = a1η
2 − a2η

4 + a3η
6 +

E

2
ε2 − Fεηk, (3.16)

with k = 1, 2.

Figure 3.5: The three cubic to tetragonal transformations.

As stated above, PF models may use Equation (3.2) or (3.7) with η representing the strain

[Fal82, AB65, AY81, BK84, SWL97, RLS+01, CKO+07, SSF12], Equation (3.2) coupled with

strain with η representing the three different energy equivalent transformations from a cubic

lattice to a tetragonal lattice (Figure 3.5) [WK97, JAK01, KO03, SHL+03, YTT08], or a coupled

Equation (3.2) with strain and an additional 2-3-4 polynomial for thermal effects. The Gibbs
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free energy in this case is then formulated as,

G = −σ : λ : σ/2 : εtφ(η) + f(η, T ), (3.17)

where, as in Equation (2.87), : is the double dot product of two tensors, εt is the transformation

strain and φ and f are 2-3-4 polynomials in η. The strain may also be coupled to a 2-3-4-5

polynomial to model martensite-martensite transitions [LPL03]. Other works have also applied

this approach [ICL08, ICL08, Ber10]. The order parameter in martensitic transformations may

also take other forms such as electronic band energy levels [Bha78] and charge density waves

[KS79] among others.

3.3 A phase-field formulation for martensite

Given the transformation of austenite to martensite, the free energy density of the system

can be represented by [WBM92],

g =
1

2
ǫ2|∇φ|2 + 1

4ω
φ2(1− φ)2 + h(φ)gα′ + [1− h(φ)]gγ, (3.18)

with h(φ) = φ3(6φ2 − 15φ + 10) [WB95] where gα′ and gγ are the homogeneous free energy

densities of the martensite and austenite phases respectively. Equation (3.18) is in the form

of Figure 2.3 with the α′ and γ phases represented by the two energy wells with the energy

barrier representing the interface between the two. The value of φ at any point ~r determines

the phase present. Here, φ = 0 and φ = 1 corresponds to austenite and martensite respectively.

Values of φ in the interval (0, 1) correspond to the interface between austenite and martensite.

The kinetic coefficient (ω) and the gradient energy coefficient (ǫ) are related to the interface

energy (σ) and half-interface thickness (λ) as ω = λ/(26.4σ) and ǫ =
√

3λσ/1.1 [KKS98]. The

governing equation for φ is then [WBM92, KKS98],

φt = Mφ[ǫ
2∇2φ+

1

2ω
φ(1− φ)(1− 2φ)− 30φ2(1− φ)2(gα′ − gγ)], (3.19)
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whereMφ > 0 is the PF mobility. Equilibrium of the system corresponds to gα′γ = gα′−gγ = 0.

The driving force can be separated into the chemical free energy difference and the strain energy

difference,

gα′γ = gchemα′γ + gstrainα′γ . (3.20)

The value of gchemα′γ may be calculated using thermodynamic computational software. This

coupling of thermodynamic software and the PF method has been demonstrated in the past

for solidification in reference [QW03b]. The strain energy provides a positive contribution to

the free energy meaning it is unfavourable, i.e. it serves to reduce the driving force gα′γ. The

interface between the martensite and austenite on the macroscopic scale is termed the habit

plane. The formation of matensite is accompanied by a dilatation δ normal to the habit plane

and a shear s lying on it. The non-shear and shear contribution to the strain energy related to

this ellipsoidal inclusion shaped transformation with dimensions ca and a is given respectively

as [Chr58],

gstrainα′γ1 =
µ

1− σp

[
2

9
(1 + σp)∆

2 +
πca
4a

δ2 +
π

3
(1 + σp)

ca
a
∆δ], (3.21)

gstrainα′γ2 =
µ

1− σp

[
π

8
(2− σp)

ca
a
s2], (3.22)

where µ, σp and ∆ is the shear modulus, poisson’s ratio and the uniform dilatation respectively.

Assuming ∆, ca
a
<< 1, Equation (3.21) may be approximated to second order in ∆ and δ by

[Chr58],

gstrainα′γ1 =
µ

1− σp

[
πca
4a

δ2]. (3.23)

The total strain energy due to the oblate ellipsoidal inclusion is then,

gstrainα′γ =
µπca

4a(1− σp)
[δ2 +

2− σp

2
s2]. (3.24)

Choosing the coordinate system such that ~sx, ~sy and ~δ correspond to the x, y and z directions

(martensite coordinate system),

~δ = φ,zk̂, ~s = ~sx + ~sy = φ,xî+ φ,y ĵ, (3.25)
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where φ,m = ∂φ
∂m

and î, ĵ and k̂ are the unit vectors in the x, y and z directions respectively.

Equation (3.24) can then be written in terms of the PF variable as,

gstrainα′γ =
µπc

4a(1− σp)
[φ2

,z +
2− σp

2
(φ2

,x + φ2
,y)]. (3.26)

In order for the correct macroscopic shape change to be observed, the chemical free energy

change is required to be a function of second order in the PF variable. Consideration of

symmetry as in Appendix A gives,

gchemα′γ = k1φ
2
,x + k2φ

2
,y + k3φ

2
,z, (3.27)

where the ki are constants. The chemical free energy change is dependent on the amount of

phase transformed and not on orientation, thus k1 = k2 = k3 = K and,

gchemα′γ = K(∇φ)2. (3.28)

In this way, the total driving force due to the strain and chemical energy difference is expressed

as,

gα′γ = gstrainα′γ + gchemα′γ =
1

d
[(f1 + dk1)φ

2
,x + (f2 + dk2)φ

2
,y + (1 + dk3)φ

2
,z], (3.29)

with f1 = f2 =
2−σp

2
and d = 4a(1−σp)

caµπ
and k1 = k2 = k3 = K. In order to determine the

favoured growth shape of Equation (3.29), note that within the composition-temperature range

within which MT is favourable, K is negative. From the definition of f1 and f2 and that

σp > 0 we have 0 < f1, f2 < 1. This results in the coefficients of φ2
,x and φ2

,y in Equation (3.29)

being smaller (more energetically favourable) than that of φ,z, e.g. f1 + dK = f2 + dK <

1 + dK. The resulting macroscopic shape change is an oblate ellipsoid. Equation (3.29) is

with respect to the martensite coordinate system. The required format should be with respect

to the austenite coordinate system. Letting [γ,~v] and [α′, ~v] be the column vector ~v in the

austenite and martensite coordinate system respectively, there exists a transformation matrix
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(γJα′) from the martensite coordinate system to the austenite coordinate system such that,

[γ,~v] = (γJα′)[α′, ~v], (3.30)

and for polycrystalline steels an orientation matrix for different austenite grains is introduced

as [γ,~v] = (SJγ)(γJα′)[α′, ~v] where (SJγ) is a rotation matrix from the austenite coordinate

system to the sample coordinate system. The matrix (γJα′) is available for many steels. The

works here use the transformation matrix for Fe− 30Ni− 0.3C [Kun07] as,













0.575371 0.542097 0.097510

−0.550726 0.568476 0.089244

−0.008855 −0.131888 0.785465













. Letting the elements of the 3 × 3 matrix (γJα′) be represented by Hij, and applying the

transformation to the vector ∇φ,













H11 H12 H13

H21 H22 H23

H31 H32 H33

























φ,x

φ,y

φ,z













=













H11φ,x +H12φ,y +H13φ,z

H21φ,x +H22φ,y +H23φ,z

H31φ,x +H32φ,y +H33φ,z













,

gives the driving force as,

gα′γ =
1

d

3
∑

i=1

(fi + dK)(Hi1φ,x +Hi2φ,y +Hi3φ,z)
2. (3.31)

There are 24 variants of martensite plate growth in steels. This is due to the equivalent

symmetry variants of the cubic structure. Letting each of the 6 faces of the cube take position

as the bottom face and applying rotations (4 rotations) about the z-axis through this face

results in 6× 4 = 24 symmetry operations. Applying these operations to (γJα′) gives another

23 matrices.
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Individual plates are produced using Equation (3.31) and the following parameters: Mφ = 100

(PF mobility, qualitatively unimportant here), σ = 0.6J/m2, λ = 14.3nm [QB09, QW03a,

WBM93, KR98], σp = 0.285 (real values are in the range 0.27-0.3), µ = 72 × 109Pa by using

the equation [Ban05],

µ(T ) = µ0 −
D

exp(298/T )− 1
, (3.32)

where T is temperature in Kelvin, µ0 = 85GPa, D = 10GPa and T = 250◦C (523.15 Kelvin).

K = 3.6 × 109J/m3 is chosen and is in the same order of magnitude as that in reference

[YTT10]. The parameter ca/a is the observed dimensions of the oblate ellipsoid. This ratio

should be reflected in the coefficients of the various directions in Equation (3.31), by solving

the following equation for ca/a,

1 + dK

f1 + dK
=

ca
a
. (3.33)

For the chosen parameters, ca/a = 0.045197387. Using these parameters, the 24 plate variants

are shown in Figure 4 in Appendix D. During growth, each variant is given a unique ID

which is only for identification purposes and does not require governing equations. This way,

the nucleation and growth of multiple martensite grains within multiple austenite grains is

possible. This is shown in Figure 3.17. Figure 3.6 Shows the PF variable profile of a simulation

of a single variant by nucleation on a grain boundary. Figure 3.7 shows a simulation of 30

nuclei randomly nucleated at the system boundary. New nucleations are performed every 20

timesteps until a maximum of 30 nuclei is reached.

The formulations above do not consider externally applied stress. Given an externally applied

stress, the system is no longer in a stress free state. The first term in Equation (3.19) is

responsible for the energy contribution of the interface. The second term is responsible for the

energy barrier between two stable states. The effect of an applied stress must then be reflected

by the driving force term, i.e. an applied stress effects the driving force for growth [Kun07].

Again, requirement of symmetry results in only the second order terms [Kun07],

U = σNδ
2 + τs2 = σNφ

2
,z + τ(φ2

,x + φ2
,y), (3.34)
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where U is in units of Pa, due to an applied stress and σN and τ is the stress components

resolved normal and parallel to the habit plane respectively. Applying this to Equation (3.29)

in a similar manner to reference [Kun07],

gα′γ = gchemα′γ + gstrainα′γ

=
1

d
[(0.85 + dK − dτ)(φ2

,x + φ2
,y) + (1 + dK − dσN)φ

2
,z. (3.35)

The condition inferred by Equation (3.33) is then transformed to,

1 + dK − dσN

f1 + dK − dτ
=

ca
a
. (3.36)

Given an applied stress of

σ =













1 0 0

0 1 0

0 0 1













the value of ca/a is 0.0576. In the case for a uniaxial applied stress, a simulation of all variants

is shown in Figure 12 in Appendix D. Figure 8 in Appendix D shows the effect of applied

stress on ca/a. This agrees well with references [Kun07, GR86] where it is shown that a general

applied stress results in a larger ca/a ratio. It is seen from Figure 8 in Appendix D that an

applied stress of around 200MPa increases the ratio of the plates by around 5% for this steel

within the range given in [GR86]. In Figure 12 there are 16 out of 24 variants that are able to

grow, 12 of which have a favourable interaction with the applied stress. This is also shown in

Tables (3.4) and (3.5) in reference [Kun07].

3.4 Phase-field simulation of bainitic transformation

One such case of martensitic transformation where structures must be distinguished from

each other is bainite. The method has been used to simulate the evolution of bainite formation

using a criteria for autocatalytic nucleation based on driving force values at each point across



3.4. Phase-field simulation of bainitic transformation 61

Figure 3.6: The phase-field variable profile of 8 martensite nuclei nucleated at the boundary.
The image is of a cross section of the domain.

Figure 3.7: The growth of 30 martensitic nuclei at time step 1000 (top left), 2000 (top right),
24000 (bottom left and bottom right).
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the domain. Even so, the method could be employed given any nucleation criteria that may

arise from recent studies involving bainite. For the γ to bainite (αB) transformation, unlike the

γ to α′ transformation, the composition is no longer constant in time during the growth of the

phase [Bha92]. This means a governing equation for composition must also be considered as

well as the presence of composition terms in the free energy density. Equation (3.18) becomes

Equation (A.9),

g =
1

2
ǫ2φ|∇φ|2 + 1

2
ǫ2c |∇c|2 + 1

4ω
φ2(1− φ)2 + h(φ)gαB

+ [1− h(φ)]gγ, (3.37)

where ǫφ and ǫc are the gradient energy coefficient associated with the PF variable and the

composition respectively with the governing equation as that in Equation (3.19). A governing

equation for c is derived as [CH58],

∂c

∂t
= ∇ · (Mc∇

δG

δc
), (3.38)

G =

∫

Ω

gdv, (3.39)

where Mc is the concentration mobility and δG
δc

is the functional derivative of the total free

energy G. We have,

δG

δc
=

∂g

∂c
−∇ · ∂g

∂∇c
, (3.40)

giving,

∂c

∂t
= ∇ · (D∇c), (3.41)

with the diffusivity D = Mc
∂2g
∂c2
. This term is calculated using Equation (2.57) for both phases

as,

∂2g

∂c2
= h(φ)

∂2gchemαB

∂c2
+ [1− h(φ)]

∂2gchemγ

∂c2
. (3.42)

An increase in carbon content translates to a decrease in the aspect ratio of the bainitic subunits

[WZYF00]. In the previous work on the PF modelling of bainite (see Appendix E), the function

l(c) = −h4tan
−1(h1c+h2)+h3, where h1, h2, h3 and h4 are constants, was used to fit available

data on the carbon concentration dependence of the aspect ratio of bainite plates. The existence
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of Equation (3.33) to determine the aspect ratio means that this is now not necessary. To show

that there is a general reduction of the aspect ratio for an increase in carbon concentration,

Equation (3.33) is solved for T = 400◦C (673.15 Kelvin), µ = 67 × 109Pa and σp = 0.285 at

carbon concentrations c = 0.0111 and c = 0.0211 atom fraction. This gives K = −1.8 × 109

Pa and K = −1.4× 109 Pa respectively using the regular solution method from Section 2.2.3.

Solutions of Equation (3.33) for these values give,

ca
a

=
(−d ca

a
K + 1)±

√

(−d ca
a
K + 1)2 + 4(d ca

a
K)0.8575

2(0.8575)
,

ca
a
(c = 0.0111) = 0.0244

ca
a
(c = 0.0211) = 0.019,

i.e. an increase of c results in a reduction of ca
a
. Equation (3.29) results in energy favourable

for growth only if 1 + dK < 0. For T = 400◦C this gives a carbon concentration less than

c = 0.051 and an aspect ratio for the individual subunits as small as ca
a
= 0.03.

Using the same parameters as in Section 3.3 but with T = 400◦C, µ = 67 × 109 Pa and

c = 0.0111, a single bainitic subunit in the subunit coordinate system is shown using the PF

method in Figure 3.9 on a 1003 grid. The growth of a single subunit is stopped after 7000 time

steps or if the subunit encounters a grain boundary. The carbon concentration from the center

of the subunit is plotted in Figure 3.8. It can be seen that, due to Equation (3.41), the carbon

diffuses out of the subunit to the adjacent austenite. More figures can be seen on this from

Figure 4 in Appendix E.

In order to reproduce autocatalytic behaviour, a random number generator is used in the

vicinity of the existing subunits. The possibility of a nucleation is gauged by the driving force

at that location. It can be seen from Figure 3.8 (see also Figure 2 and Figure 4 in Appendix

E) that the carbon concentration around the subunit increases. This corresponds to a lower

driving force in that region. This can be seen in Figure 3.10 of the driving force profile across

the subunit in Figure 3.9. This nucleation criteria results in a higher possibility to nucleate
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Figure 3.8: The concentration profile across the bainitic subunit in Figure 3.9. Position 50
corresponds to the centre of the plate with the measured direction advancing vertically in
Figure 3.9.
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near the tips of existing subunits as seen experimentally [RB92a].

Figure 3.9: A simulation of a single bainitic subunit on a 1003 grid using the PF model described
in Section 3.3.

In this manner, autocatalytic behaviour is demonstrated in Figure 3.11 and Figure 3.12. Here,

a single bainitic subunit is nucleated at the grain boundary with three subsequent autocatalytic

nucleations. An entire sheaf is shown in Figure 3.13 growing through a grain from one side to

the other. The concentration profile across the width of the sheaf is shown in Figure 3.14 with

regions of high concentration corresponding to the carbon build up between subunits (see also

Figure 6 in Appendix E).

A system domain consisting of two austenite grains on a 1003 lattice is shown in Figure 3.16.

This is obtained by randomly nucleating two austenite grains, assigning them random rotation

matrices ((SJγ) in Section 3.3) and letting them grow spherically. The lattice points in which
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Figure 3.10: The driving force profile of the subunit in Figure 3.9. The red regions correspond
to high driving forces while blue regions indicate low driving forces.
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the two grains meet is identified as a grain boundary as are the system domain boundaries.

Six subunits are nucleated randomly at the grain boundaries within this domain. Subsequent

autocatalytic growth generates the microstructure shown in Figure 3.17. Finally, on a similar

two-austenite domain but with 2003 lattice points, multiple grain boundary nucleations and

autocatalytic nucleations form a microstructure with its cross section shown in Figure 3.15 (see

also Figure 3 in Appendix F).

Figure 3.11: A simulation of a bainitic sheaf via autocatalytic subunit nucleation on a 1003

grid using the PF model described in Section 3.3.

3.5 Summary and discussion

The developed model for martensite plate growth is unlike previous studies of PF modelling

of martensite in that only a single PF variable is used for the growth of multiple plates. The
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Figure 3.12: A simulation of a bainitic sheaf via autocatalytic subunit nucleation on a 1003

grid using the PF model described in Section 3.3.
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Figure 3.13: A simulation of a bainitic sheaf via autocatalytic subunit nucleation on a 1003

grid using the PF model described in Section 3.3.
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Figure 3.14: The concentration profile across the domain of Figure 3.13. The high peaks in
concentration lie in the regions between the subunits whereas the smallest concentration values
are at the centres of the subunits.

Figure 3.15: The cross section of a simulation of bainite growth on a 2003 fixed grid showing
two bainite sheaves (indicated as A and B). C is an intersection of the slice section and a larger
cross section of a subunit.
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Figure 3.16: A system domain of size 1003 composed of two austenite grains.
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Figure 3.17: A PF simulation of bainitic autocatalytic growth on the system domain described
in Figure 3.16.
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evolution is free energy driven within which is contained the contribution due to the strain

energy from the phenomenological theory of ellipsoidal inclusions. Each plate is assigned a

unique identifier in order to distinguish it from other plates. Thus the orientation influence in

the governing equation for each plate is dependent on this identifier in order to produce correct

orientation by application of a transformation matrix. This transformation matrix is known

for many steels.

The use of a single PF variable reduces computation time greatly. Also, due to the more phe-

nomenological nature of the model, the microstructure produced will be more macroscopically

realistic. The model is able to reproduce all 24 variants with and without applied stress with

the use of transformation matrices which is an input parameter. This enables the reproduc-

tion of variant selection which is influenced by applied stress. The thickness and shape of the

martensitic plates are determined clearly by the chemical free energy term K, applied stress σ

and temperature T .

It was previously shown possible to employ a more fundamental PF approach to the modelling

of martensite using elastic energy minimisation [SMKU13]. As in atomistic calculations, this

approach provides information about the transformation which the current model can not.

However, this occurs at a great computational cost. These methods utilise a PF order parameter

which not only is a vector, but the number of which scales with the number of present phases.

Not only does this result in higher loads on memory but also impacts computation time due to

the additional equations that must be solved for elastic energy minimisation. One can argue

that recent increased computational capabilities enable such simulations of martensitic growth

within a domain, however, today models are required to perform in unison with other models or

at least have the ability to be made use of in order to describe the evolution of multiple complex

phases through time. This makes any improvement upon computation load significant.

The previous paragraph may appear to imply that the elastic field of the growing structures

is completely ignored. This is far from the truth. Phenomenological theory has previously
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been applied to the growth of inclusions [Esh57, Chr58]. This work has then linked this phe-

nomenological theory with the growing martensite grains and their size. It is these resulting

expressions that have been minimised in the evolution of the PF variable. It is also the myriad

of data on variant selection on the martensite phase that enables this approach to be fruitful

while still remaining relatively simple.

Much like how atomistic simulations, while unable to be utilised for length scales above

the nanometer, are able to provide information about the actual atomic rearrangement during

martensitic transformations [SU09], the PF method is able to render system size almost unim-

portant as far as the calculation time is concerned. Also, it is well known that a finer lattice

spacing in the simulation domain results in a more accurate representation of complex interface

structures. The PF method given here then has the ability to be applied to large systems while

not presenting much extra load on computation due to the increased number of phases

The developed PF model has been shown to be able to simulate bainite growth. The bainitic

subunits are described using the PF model for martensite growth adapted to incorporate a

nonconstant concentration. A Cahn-Hilliard governing equation for the diffusion is also used

in order to evolve concentration levels. This approach reproduces the carbon build up in the

austenite films between the subunits and also enables autocatalytic nucleation based on the

reduction of the driving force caused by the diffusion of carbon. Further application of this

model will enable the reproduction of the incomplete transformation phenomenon [RB92b].



Chapter 4

The SPH model of complex reactive

fluids

4.1 Introduction

In Section 1.4, the areas in the simulation of steel processing that require further attention were

detailed. One of those areas is displacive transformations. In Chapter 3, a model for displacive

transformations was developed in order to describe martensite and bainite transformations.

This presents us with the tools to simulate solid state phase transformations arising from the

heat treatment and deformation of steel. However, the treatment process as shown in Figure 1.1

involves a stage within which a coupling of fluid dynamics as well as solidification is required.

In order to develop the tools required to simulate such dynamics with the goal of SPH working

alongside the phase-field modelling of solid state mechanics, the SPH method is analysed in this

chapter. The theory of the method is introduced leading to some applications to the complex

cases mentioned in Chapter 1.2, such as complex boundaries, free surfaces and large density

ratios. Then an application of SPH to vdW fluids is given. This is a case requiring a larger

presence of thermodynamics showing that SPH has the capability to represent thermodynamical

parameters such as entropy.

75
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4.2 Theory

The essence of SPH lies in the identity,

f(ri) =

∫

Ω

f(r′)W (ri − r′)dr′, (4.1)

where r = ri denotes the position of particle i, f(ri) is the value of a field variable f approxi-

mated at particle i and W (ri − r) is the kernel as in Equation (2.70). In 3 dimensions this is

an integral over a volume. Explicitly specifying the volume element of a particle as dr′ = ∆Vj

and noting that the mass mj and density ρj of that particle are related to its volume element

by ∆Vj = mj/ρj, Equation (4.1) can be approximated as,

f(ri) =
∑N

j=0 f(rj)W (ri − rj, h)∆Vj

=
∑N

j=0
mj

ρj
fjWij, (4.2)

where fi = f(ri) and Wij = W (ri − rj, h). The summation in Equation (4.2) includes the case

where i = j (self contribution). Note that the consideration of a volume element ∆Vj is an

approximation to the integral. Thus the smaller the volume element with respect to h, the

better the approximation. Similarly, equations (2.78) and (2.79) become,

∇fi =
∑N

j=0
mj

ρj
fj∇iWij, (4.3)

∇ · fi =
∑N

j=0
mj

ρj
fj · ∇iWij, (4.4)

where it has been explicitly stated that ∇iWij is a spatial derivative with respect to particle i.

One of the most recognised and widely used SPH equations is the estimation of the density

ρ(ri) = ρi at particle i. By simply replacing ρi as the field function fi in Equation (4.2) we

obtain,

ρi =
N
∑

j=0

mjWij. (4.5)
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While equations (4.3) and (4.4) are sufficient to perform an SPH approximation, it is preferred

to have both particles involved in the summation. Consider Equation (4.2) and suppose that

particle i and j are within the support domains of each other. Then the contribution of i and

j to this summation for i is the same as that for j, i.e.

∑

k=i,j

fkWik = fiWii + fjWij

= fiWjj + fjWji

=
∑

k=i,j fkWjk, (4.6)

since W is an even function and ri − ri = rj − rj = 0. Now consider Equation (4.3). The

contribution of i and j to the summation for i is given as,

∑

k=i,j

mk

ρk
fk∇iWik. (4.7)

However, due to the symmetric and differentiable nature of W , even though W (0, h) 6= 0, we

have ∇iW (0, h) = 0 such that the surviving term of Equation (4.7) is the ri 6= rj term,

mj

ρj
fj∇iWij, (4.8)

which is not necessarily equal in magnitude to the counterpart for the summation for j,

mi

ρi
fi∇jWji = −

mi

ρi
fi∇iWij. (4.9)

This means that forces arising from interparticle interactions may not experience the same

repelling/attracting force. This gives rise to asymmetry and thus the aforementioned presence

of both i and j on the right-hand side is preferred. Symmetric forms of these equations are

derived in Appendix B and seen in the following.

Given a system of governing equations (such as Eq.’s (2.80) - (2.88)), we now take steps

to discretize the gradients and time derivatives involved in order to form representative SPH
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equations for the system. Focusing on particle i, these equations are given as,

(
dρ

dt
)i = −ρi(∇ · v)i, (4.10)

(
dv

dt
)i =

1

ρi
(∇ ·P)i + g, (4.11)

Tiρi(
dS

dt
)i = φi + κ(∇2T )i, (4.12)

(
dU

dt
)i =

1

ρi
Pi : (∇v)i −

1

ρi
(∇ · q)i, (4.13)

Pi = −PiI+ σi, (4.14)

σi = η[(∇v)i + (∇vT )i] + (ζ − 2

d
η)(∇ · v)iI, (4.15)

qi = −K(∇T )i, (4.16)

φi = 2η(∇v)i : (∇v)i + ζ(∇ · v)2i , (4.17)

(∇v)i =
1

2
[(∇v)i + (∇vT )i]−

1

d
1(∇ · v)i. (4.18)

Using Equation (4.4), the divergence of the velocity can be calculated as,

(∇ · v)i =
N
∑

j=1

mj

ρj
vj · ∇iWij, (4.19)

or with the presence of both terms on the right-hand side (Equation (B.2) in Appendix B),

(∇ · v)i =
N
∑

j=1

mj

ρij
vji · ∇iWij, (4.20)

where ρij =
1
2
(ρi + ρj) and vji = vj − vi, giving an expression for the time rate of change of

the density,

ρ̇i = −ρi(∇ · v)i = −ρi
N
∑

j=1

mj

ρij
vji · ∇iWij. (4.21)

Similarly, the temperature gradients are [EnR03],

(∇T )i =
N
∑

j=0

mj

ρij
Tji∇iWij, (4.22)

(∇2T )i = 2
N
∑

j=0

mj
rij∇iWij

ρjr2
Tij. (4.23)
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The interpolant of the pressure field is given by,

P (ri) =
∑

j

mj

ρj
P (rj)Wij (4.24)

and its gradient by (given in Appendix B),

(∇P (r))i = −ρi
∑

j

mj

[

Pj

ρ2j
+

Pi

ρ2i

]

∇Wij. (4.25)

Some other forms for these discretizations are given in Appendix B.

4.3 Numerical algorithm

The numerical simulation then proceeds as follows:

• 1 - Set up the particle representation giving the particles appropriate mass, velocity etc...

• 2 - Apply a pairing procedure in order to pair the SPH particles

• 3 - Calculate the density (Equation (4.5) if using the summation density approach instead

of Equation (4.10))

• 4 - Calculate the stress tensor using the velocities and other properties of the particles

(Equation (4.14) using Equation (4.15) and the pressure from a suitable equation of state,

i.e. Equation (4.59))

• 5 - Determine the acceleration of each particle using the stress tensor (Equation (4.11))

• 6 - Calculate the velocity at each particle using their accelerations

• 7 - Apply velocity restrictions according to maximum velocity

• 8 - Calculate the new positions of the particles using their velocities

• 9 - Apply boundary conditions
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• 10 - Repeat steps 2-9

4.4 Assessment of Kernels and their accuracy

The accuracy and the dynamics observed during the numerical evolution of a system solved

using the SPH method is directly related to the form of the kernel. There are many possible

kernels that are constructed according to the following constraints:

• 1 - Unity condition
∫

Ω

W (r, h)dr = 1

• 2 - Compact condition

|r| > h =⇒ W (r, h) = 0

• 3 - Positivity condition

W (r, h) ≥ 0 ∀ r

• 4 - Monotonic condition

∂W (r, h)

∂r
≤ 0 ∀ r ≥ 0

• 5 - Delta function limit condition

lim
h→0

W (r, h) = δ(r)

• 6 - Even function condition

W (r, h) = W (−r, h)

• 7 - Smooth condition

The first condition is related to the accuracy of the approximation. The compact condition

enables the application of the interpolation over a small portion of the system domain rather
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than the entire domain, which clearly benefits efficiency. The monotonic condition ensures that

closer particles will have more of an effect compared to particles further away. An even kernel

ensures all particles at the same distance will contribute equally in magnitude. The smoothness

condition states that a kernel should be sufficiently smooth. The Delta function limit condition

is a resulting condition of the enforcement of conditions 1-4. To informally see this, as h→ 0,

due to the compact condition, W (r) = 0 everywhere but in the infinitesimally small volume dr.

Due to the monotonic and positivity conditions, the largest contribution is always at r = 0.

Given this information, the only function to satisfy the unity condition is by definition the

Delta function.

The following are just some kernel functions that are popular for SPH simulations:

WL(r− r′, h) = αL ×











(1 + 3 r
h
)(1− r

h
)3 0 ≤ r < h

0 r ≥ h
, (4.26)

Wcs(r− r′, h) = αcs ×























(2− r
h
)3 − 4(1− r

h
)3 0 ≤ r < h

(2− r
h
)3 h ≤ r < 2h

0 r ≥ 2h

, (4.27)

Whs(r− r′, h) = αhs ×























( r
h
)3 − 6 r

h
+ 6 0 ≤ r < h

(2− r
h
)3 h ≤ r < 2h

0 r ≥ 2h

, (4.28)
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and their gradients are:

∇iW (r− r′, h) =
∂W

∂ri
=

∂W

∂r

∂r

∂ri
=

∂W

∂r

rij

r
,

∇iWL(r− r′, h) =
−12αL

h3
×











rij(1− r
h
)2 0 ≤ r < h

0 r ≥ h
, (4.29)

∇iWcs(r− r′, h) =
−3αcs

h
×























rij

r
(2− r

h
)2 − 4rij

r
(1− r

h
)2 0 ≤ r < h

rij

r
(2− r

h
)2 h ≤ r < 2h

0 r ≥ h

, (4.30)

∇iWhs(r− r′, h) =
−αhs

h
×























6rij
r
− 3

rijr

h2 0 ≤ r < h

3
rij

r
(2− r

h
)2 h ≤ r < 2h

0 r ≥ 2h

, (4.31)

where rij = ri − rj, r = |rij| and WL, Wcs and Whs are respectively the Lucy function, the

cubic spline kernel and the hyperbolic spline kernel. The constants αL, αcs and αhs are scaling

constants determined by the unity condition,

∫

Ω

WdV = 1, (4.32)

where the integral is taken over a volume Ω with volume element dV . In Appendix C, the

constants are calculated as follows: αL = 5/(4h), αcs = 1/(6h) and αhs = 1/(7h) in one

dimension, αL = 5/(πh2), αcs = 5/(14πh2) and αhs = 1/(3πh2) in two dimensions and αL =

105/(16πh3), αcs = 1/(4πh3) and αhs = 15/(62πh3) in three dimensions.

By the definition of the kernel functions, the compact condition is satisfied. The positivity

condition is satisfied by the fact that each of the kernel functions are functions of r = |ri− rj|.

In order to see that the monotonic condition also holds, we note that the function
∂Wij

∂r
is the

same as ∇iW with rij replaced by r. The even condition is satisfied similar to the positivity

condition in that the kernel functions are functions of r. For the Delta limit condition, as

the smoothing length h tends to zero, the value of the kernel within this compact domain
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approaches infinity. To see this consider Lucy’s function with h > r = ǫh with ǫ < 1,

lim
h→0

WL = lim
h→0

αL(1 + 3ǫ)(1− ǫ)3 =∞, (4.33)

since (1 + 3ǫ)(1 − ǫ)3 < 1 is bounded and αL ∝ 1/hd with dimension d. The kernel functions

and their derivatives are plotted in Figures 4.1 - 4.3.

Figure 4.1: The Lucy kernel and its derivative with h = 1 in 1 dimension. ~r is a 1 dimensional
vector. In higher dimensions the functions are scaled due to αL but the features are analogous
to the 1 dimensional case.

One immediate observation from the kernels is that the hyperbolic spline is discontinuous at

~r = ~0. In fact this is not the only kernel function to exhibit such a feature. The quadratic spline

is also discontinuous at this point [JSB96]. The reason such a discontinuity is unavoidable is

due to the instability condition [SHA95]. A kernel function will result in instability in certain

cases if its second derivative is negative within some region. This immediately imposes the

restriction that not only the kernel function itself but its first derivative must also be monotonic.

In particular, the first derivative must be monotonically increasing. Such a function cannot
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Figure 4.2: The cubic spline kernel and its derivative with h = 0.5 in 1 dimension. ~r is a 1
dimensional vector. In higher dimensions the functions are scaled due to αcs but the features
are analogous to the 1 dimensional case.
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Figure 4.3: The hyperbolic spline kernel and its derivative with h = 0.5 in 1 dimension. ~r is a
1 dimensional vector. In higher dimensions the functions are scaled due to αhs but the features
are analogous to the 1 dimensional case.
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be continuous over the entire domain as follows. Suppose such a function existed. Then the

following conditions for the right and left-handed limits are true,

∀ ǫ1 > 0 ∃ δ1 > 0 such that ∀ r,

0 < r < r+ δ1 ⇒ |∇W (r)− L1| < ǫ1, (4.34)

and,

∀ ǫ2 > 0 ∃ δ2 > 0 such that ∀ r,

r− δ2 < r < 0⇒ |∇W (r)− L2| < ǫ2. (4.35)

Due to the monotonic condition we have that ∇W (r) ≤ 0 for r ≥ 0 giving L1 ≤ 0 and

∇W (r) ≥ 0 for r ≤ 0 (a smooth function with compact condition at some r = h > 0) giving

L2 ≥ 0. This means that the limit of such a function can only exist at 0 if L1 = L2 = 0. Along

with the monotonic condition, the only smooth function to satisfy this is ∇W (r) = 0 ∀ r.

Suppose a field function f(r) exists which is differentiable over the system domain. Let us

expand the field function f(r′) as a Taylor series,

f(r′) = f(r) + f ′(r)(r′ − r) + · · ·+R(r− r′)

= f(r)− f ′(r)(r− r′) + · · ·+R(r− r′)

=
n

∑

k=0

(−1)k(r− r′)k

k!
fk(r) +Rn(r− r′), (4.36)

where f ′ is the derivative of f with respect to r and Rn(r− r′) is the remainder term of terms

of order > n. Placing this expansion into Equation (2.70) leads to,

f(r) =
n

∑

k=0

(−1)kfk(r)

k!

∫

Ω

(r− r′)kW (r− r′, h)dr′ +Rn(r− r′). (4.37)
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Only the k = 0 term survives in the equality (since the coefficient of f(r) should be 1 and the

coefficients of fk(r) should be zero for k > 0). This gives,

(−1)k
k!

∫

Ω

(r− r′)kW (r− r′, h)dr′ =











1 k = 0

0 k > 0
. (4.38)

This immediately results in the unity condition. In addition to this, the case with k = 1,

−
∫

Ω

(r− r′)W (r− r′, h)dr′ = 0, (4.39)

is translated as the symmetric condition. Given these 2 conditions, first order accuracy is

guarenteed leaving a remainder R1(r − r′). Subsequently, second order accuracy is obtained

only if the following condition for k = 2 holds,

∫

Ω

(r− r′)2W (r− r′, h)dr′ = 0. (4.40)

This is unfortunate since this implies that the kernel must be negative in some parts of its

domain. Given that this aspect of a kernel often results in unphysical evolution such as negative

density values, non-positive kernels are often avoided.

Again, taylor expansion of f(r′) about r results in,

f(r′) = f(r) + f ′(r)(r′ − r) +R((r′ − r)2),
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where f ′ is the derivative of f with respect to r and R is a function of the higher terms or the

residual of the taylor expansion. Substituting this into Equation (2.70) and expanding,

f(r) =

∫

Ω

f(r)W (r′ − r, h)dr′ +

∫

Ω

f ′(r)(r− r′)W (r− r′, h)dr′ (4.41)

+

∫

Ω

R((r′ − r)2)W (r− r′, h)dr′ (4.42)

= f(r)

∫

Ω

W (r′ − r, h)dr′ + f
′

(r)

∫

Ω

(r′ − r)W (r− r′, h)dr′ (4.43)

+

∫

Ω

R((r′ − r)2)W (r− r′, h)dr′. (4.44)

Using the even function condition and letting,

g(r′) = (r′ − r)W (r− r′, h),

and r1 − r = −(r2 − r) such that a straight line drawn from point r1 to point r2 in space, goes

through the point r. We have,

g(r1) = (r1 − r)W (r− r1, h)

= (r1 − r)W (−(r− r1), h)

= −(r2 − r)W (r− r2, h) = −g(r2). (4.45)

So that g(r′) is an odd function with respect to r. Thus, over a symmetric region about r (each

point r1 having an equivalent r2 with a line going through r),

∫

Ω

(r′ − r)W (r− r′, h)dr′ = 0.

Using the unity condition we have,

f(r) ≤ f(r) +O(h2)

∫

Ω

Wdr

= f(r) +O(h2). (4.46)
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This implies that, subject to conditions 1 and 6, the kernel approximation of Equation (2.70)

is of second order accuracy in h.

The accuracy analysis of the kernel approximation made above considers the accuracy of the

approximation of the integral representation using the kernel function [LL03]. It does not say

anything about the accuracy when this form is discretized using interpolation points. Consider

the particle approximations of Equations (4.38) for k = 0 and k = 1,

N
∑

j=0

mj

ρj
Wij = 1, (4.47)

N
∑

j=0

mj

ρj
(ri − rj)Wij = 0. (4.48)

Figure 4.4: Figure of the support domain of a particle (blue) close to the boundary of the
system domain.

It can be seen from Figure 4.4 that Equations (4.47) and (4.48) will not be satisfied. In some

cases this is beneficial to reproduce boundary and interfacial effects (such as in vdW droplet

formation discussed in Section 4.10.4). Nevertheless, in cases where boundary deficiencies such

as this are undesirable, approximation may be improved by using kernel adjustments at the

boundary particles [LL03, LJZ95, LNW02, LG04]. However, these methods are computationally

exhaustive and will not be considered in this work.



90 Chapter 4. The SPH model of complex reactive fluids

Notice that from figures 4.1 - 4.3, that the centre peak of the kernels differ. One may ask

what effect this has on the approximation. To answer this, we begin by assuming a kernel can

be written in the form [LL03],

W (r, h) = a0 + a1
r

h
+ a2

r2

h2
+ a3

r3

h3
+ · · · .

Then the unity condition in one dimension gives,

∫ h

−h

W (r, h)dr = 2h[a0 +
a1
2
+

a2
3
+

a3
4
+

a4
5
+ · · · ]

= 1

=⇒ a0 =
1

2h
− [

a1
2
+

a2
3
+

a3
4
+

a4
5
+ · · · ]

=⇒ a0 =
1

2h
− f(a1, a2, a3, · · · ), (4.49)

where f is a positive function since at h, W (r = 0, h) > W (r = h, h) gives a0 > a0 + f which

results in f < 0. The larger a0 is the smaller f is. The absolute value of the remainder term,

R1, in Equation (4.37) tells us about the approximation. Namely, the smaller this term is in

magnitude, the better the approximation to second order.

R1 = 2

∫ h

0

r2W (r, h)dr

= 2[

∫ h

0

r2a0dr+
1

h

∫ h

0

r3a1dr+
1

h2

∫ h

0

r4a2dr+ · · · ]

= 2[

∫ h

0

r2a0dr+
∞
∑

k=1

1

hk

∫ h

0

rk+2akdr]

= 2

∫ h

0

r2[
1

2h
− a1

2
− a2

3
− a3

4
− · · · ]dr+

∞
∑

k=1

1

hk
2

∫ h

0

rk+2akdr

= 2

∫ h

0

r2

2h
dr+ 2

∞
∑

k=1

ak

∫ h

0

[
rk+2

hk
− r2

k + 1
]dr

= 2

∫ h

0

r2

2h
dr+ 2

∞
∑

k=1

akh
3[

1

k + 3
− 1

3k + 3
]. (4.50)

We see that the coefficient of each ak term in Equation (4.50) for k > 0 is positive. This means

smaller values for all {ak : k > 0} will result in a smaller remainder. On the other hand,
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Equation (4.49) states that smaller values for these constants results in a larger a0, i.e. a larger

center peak value. However, the other direction of this statement is not true since given a set

of values {ak}, suppose we pick a new set {a′k} with a′3 = a3 + 1 and a′4 = a4 − 1. This reduces

f by 0.05 and increases Equation (4.50) by 2h3

140
. Thus in this case an increase of a0 does not

result in a reduction in the remainder term.

We can calculate the value of the remainder term for each kernel in order to determine which is

a better approximation. For Lucy’s function, the cubic spline kernel and the hyperbolic spline,

the remainder term, R1, is calculated in 1 dimensions to be 2(2h)2/21, h2/3 and 31h2/105

respectively. So the accuracy improves in that order. The (2h)2 in the remainder term for

Lucy’s function is present because this kernel has domain [0, h] instead of [0, 2h] so that for

comparison, this must be scaled.

4.5 Artificial viscosity

In cases of high velocity impacts, or simply where particles penetrate each other due to high

velocities, an artificial viscosity addition to the momentum equation is employed. The most

popular form of artificial viscosity is given by Monaghan and Gingold [MG83],

Πij =











−αΠc̄ijφij+βΠφ2

ij

ρij
vij · rij < 0

0 vij · rij ≥ 0
(4.51)

where ρij = (ρi + ρj)/2, φij = (hijvij · rij)/(|rij|2 + 0.1hij), hij = (hi + hj)/2, c̄ij = (ci + cj)/2

and ci is the speed of sound of particle i. αΠ is the bulk viscosity and βΠ is the antipenetration

parameter. The artificial viscosity term is placed in the pressure term. It can be seen from

the pressure term in Equation (4.14) that the artificial viscosity would result in a negative

contribution to the momentum equation which is translated as a repulsion between particles.

Equation (4.51) is plotted in Figure 4.5 with the part of the domain with vij · rij < 0 shown.
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Particles close to each other with velocities such that they are on a collision course will generate

a repulsion from this artificial viscosity.

Figure 4.5: The Monaghan type artificial viscosity. Equation (4.51) with αΠ = 1, βΠ = 1,
hij = 1, c̄ij = 1 and ρij = 1.

4.6 Artificial compressibility and the time step

The approach to modelling theoretically incompressible flows using the SPH method usually

assumes that the fluid has a small amount of compressibility. This relaxes the conditions

imposed on the system by the equation of state and allows for larger time steps [Mon94].

The assumption that a theoretically incompressible flow can be approximated as a weakly

compressible flow is the result of an artificial compressibility approach. A weakly compressible

equation of state relating density changes to the pressure is given as [Mon94],

P = B((
ρ

ρ0
)γ − 1), (4.52)
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where ρ is the density, ρ0 is the reference density and γ and B are constants. This equation

is used to simulate common flows in the following sections. It can be seen from this pressure

equation that the gradient of the pressure is dependent on a change in density. It can also be

seen that the acceleration of the SPH particles in Equation (4.11) is determined by the pressure

gradient. Since the time step for the simulation should be chosen depending on the maximum

velocity each SPH particle can travel within a single time step, it is ultimately related to a

density change. Analysing a change in density [Mon94],

∆ρ

ρ
=

v2

c2
= M2, (4.53)

where c is the speed of sound in the material and M is known as the Mach number. It is seen

that for an incompressible material, c is very large. However, choosing c to be a constant less

than the actual speed of sound in the material to allow a small density variation, say 1% (i.e.

M2 < 0.01), the flow can be approximated by a weakly compressible condition. As mentioned

before, the equation of state in Equation (4.52) is a function of the change in density. The

coefficient B is chosen to be related to the maximum velocity of the material as [Mon05],

B =
c2ρ0
γ

=
v2maxρ0

γ(∆ρ
ρ
)
=

v2maxρ0
γ(0.01)

=
100v2maxρ0

γ
, (4.54)

since v2/c2 < v2max/c
2 = 0.01 where vmax is the maximum expected velocity of the SPH particles.

This should result in a density change of less than 1%.

To determine the time step, ∆t, the condition is to set it to be proportional to the smallest

particle spacing for movement. To ensure that the effects of particle presence on neighboring

particles are captured during each time step, we require the spatial movement to be less that

the smallest smoothing distance [LL03],

∆t = min
i
(
hi

ci
), (4.55)
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where hi and ci are the smoothing length and speed of sound of particle i respectively. To

include the effects of viscous dissipation and external forces such as gravity [Mon92],

∆t1 = min
i

(

hi

ci + 0.6(αΠci + βΠmax(φij))

)

,

∆t2 = min
i

(

hi

|fi|

)

,

where fi is the acceleration due to the external force on particle i. Then the time step is chosen

as,

∆t = min(λ1∆t1, λ2∆t2), (4.56)

where λ1 and λ2 are safety parameters (λ1 = 0.4 and λ2 = 0.25 in [Mon92]). Determining the

time step in this manner enables the numerical time integration to be stable.

4.7 Average velocity

In cases where the particles are too disorderly and the velocity profile is too erratic, the

velocity is adjusted by an extra term which averages velocity values over an area determined

by the smoothing length h [Mon92],

ṽi = vi + ǫ
N
∑

j=0

mj

ρij
vjiWij, (4.57)

where ρij = (ρi + ρj)/2 and ǫ < 1 is a constant and determines the extend of averaging. An

SPH variant using Equation (4.57) is called XSPH. If this approach is to be used along with

the continuity calculation of density then Equation (4.21) should be calculated using ṽi instead

of vi. In this thesis, the XSPH variant will be utilised when needed.
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4.8 The equations of state

The dynamics of an evolving system heavily depends on the equations of state governing

fluid motion. The equations of state relate state variables. Consider a system on a relatively

large scale such as water flow around a dam. Thermodynamic effects such as temperature and

internal energy changes will be minimal. This means internal energy and temperature changes

need not be modelled. Thus we only require an equation of state determining pressure such as

Equation (4.59). However, some situations such as droplet formation call for the calculation of

other variables such as internal energy and temperature. In this case, equations of state relating

these variables are required. These may be given as equations relating pressure, density, internal

energy and temperature such as in equations (4.71) and (4.72).

Mutliple equations of state are used in the susequent sections to describe different cases.

In short, the variables of interest are determined for the evolution of a system, equations of

state are then formed using equilibrium conditions relating them in order to close the system

of equations.

4.9 Boundary conditions and virtual particles

There are four types of boundary conditions that will be applied in this work: No boundary

conditions, periodic boundary conditions, reflective boundary conditions and virtual particles.

While in some cases, such as within a vacuum environment, no boundary conditions are applied

to represent the fact that there is no force imposed due to the environment, in most cases the

boundary conditions need to be treated with care. Figure 4.6 shows the starting conditions

for drop formation within a vacuum environment. The particles at the sides and edges do not

interact with particles on the other side of the simulation domain. Periodic boundary conditions

however, assumes the domain is looped such that particles on the edges interact with particles

on the opposite edges. If periodic boundary conditions are applied to a homogeneous system

such as that in Figure 4.6, the system should not evolve without creating a small inhomogeneity
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or disturbance. Reflective boundary conditions involve putting a particle which has escaped

the domain back into the simulation domain to the point it escaped (its position at the previous

time step) then reflecting the directional properties, such as its velocity, across the boundary.

In some cases, such as when walls and impenetrable boundaries are involved, virtual particles

are placed at the boundaries with strong repelling properties. Take Figure 4.7 for instance, the

green particles are virtual particles. They are not actual particles in the sense that they are

not considered in some interactions such as equation of state calculations. They are mainly

considered for repulsion calculations. On the other hand, other types of virtual particles may be

employed at the boundaries to solve, to some extent, the boundary particle deficiency resulting

from the kernel being cut off by the boundary (Figure 4.4).

Figure 4.6: 30 × 30 particles on a square grid. Starting point for drop formation simulations.
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Figure 4.7: Particles on a square grid with virtual particles (green). Starting point for bubble
rising simulations.

A popular potential for virtual particle repulsion is the Lennard-Jones potential,

VLJ =
DL((

r0
r
)12 − ( r0

r
)6)rij

r2
, (4.58)

where DL is related to the maximum permitted velocity DL = v2max and r0 is some specified

influence range. Figure 4.8 shows what this force looks like. It can be seen that the force ap-

proaches infinity as the distance goes to zero. While in the continuous sense this will guarantee

that the boundary is not penetrated, the boundary application should still be approached with

care. Often in SPH simulations a constant speed of sound is defined to limit the space an SPH

particle can cover in a single time step (velocity). If this does not match with other aspects

of the simulation such as the boundary conditions one may find the SPH particle on the other

side of the virtual particles. Also, the speed of sound limiting the particle velocities should be

applied after the boundary conditions. Since otherwise a particle may be given a large velocity

due to traveling too close to the virtual particles. As seen in Figure 4.9, an SPH particle has

traveled too close over the r0 distance for the Lennard-Jones potential. If the resulting force

is not limited, this particle will be flung into the simulation domain with great velocity. Some

numerical techniques, such as the predictor-corrector method [VSMS08], enable calculations at
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Figure 4.8: Lennard-Jones potential for DL = 1 and r0 = 1 in Equation (4.58).

half time steps to be taken into account reducing such effects.

4.10 Numerical calculation and results

4.10.1 Heat diffusion, the collapsing dam and parameter selection

First we apply the SPH to demonstrate simple heat diffusion (Equation (4.16)). 900 SPH

particles are used with a heat diffusion coefficient of K = 1. The particles are fixed in position

and the time step dt = 0.005. After 1000 time steps the temperature profile of the system is

shown in Figure 4.10. Next we apply the SPH method to some fluid dynamics cases. However,

a suitable equation of state must first be specified. The equation of state relating pressure and
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Figure 4.9: An SPH simulation using multiple rows of virtual particles. An SPH particle comes
too close to the virtual particles.

density used here will be [Mon94],

P = b((
ρ

ρ0
)γ − 1) + χ, (4.59)

where ρ0 is some initial reference density and b, γ and χ are constants. Another equation

of state would also be required relating temperature and internal energy (such as Equation

(4.72)) if these variables play a substantial role in the dynamics. The first term on the right

hand side is affected by a change in density such as compression and so b is a constant related

to the compressibility of the fluid. Even when dealing with theoretically incompressible flows,

some compressibility is assumed. The constant χ is not related to the evolution of the fluid.

Considering two different fluids, the pressure of one is indefinitely elevated due to a higher χ

term and so this term is related to the interface length of the fluid with other fluids. The

values used here are γd = 7, ρd0 = 1000, bd = 28000 and χd = 0 for the dense liquid and

γl = 1.4, ρl0 = 500, b = 5000 and χ = 30000 for the lighter liquid in the case for a rising bubble
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Figure 4.10: A simulation of heat diffusion using the SPH method. A contour plot (left) and
the temperature profile with respect to the origin (right).

Figure 4.11: Dam collapse simulation with 10000 particles at time steps 30 (top), 1620 (middle)
and 3990 (bottom). No boundary particles were used in this SPH simulation, instead a simple
bounce back algorithm was applied at the boundaries (invisible). This corresponds to the
absence of friction.
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Figure 4.12: Dam raise simulation with 10000 particles at time steps 30 (top), 990 (second
down), 2490 (third down) and 3990 (bottom). Virtual boundary particles (green) were used.
Friction exists in the form of particle-boundary interaction.

[VSMS08]. It is important to note that since the equations for internal energy increase the

computational impact they are not applied to these flows allowing the use of a larger number of

particles. Figure 4.11 shows a simulation of a collapsing dam. The initial condition is to order

10000 particles into a square. The bottom and left side of the square is considered a wall with

reflective boundary conditions. The force of gravity is then allowed to influence the movement

of the fluid reproducing the effect of suddenly removing the right wall. Another wall is placed

a small distance to the right with a gap in the bottom in order to demonstrate the dynamics

that occur in such a situation. All boundary conditions in this collapsing dam simulation is

reflective and friction is not included. The walls are invisible since there are no particles placed

there.

Figure 4.12 shows a simulation of a dam raise. 10000 particles are placed inside a square

box and the wall one the right side is lifted to reveal a small gap at the bottom. A small ramp

is also placed a small distance to the right. Here, virtual boundary conditions are applied.

Friction exists in the sense that the virtual particles are included in average velocity calculations

(Equation (4.57)). The virtual particles are given a constant velocity of 0 and their effect on the

averaging will be to drag the SPH particles. Notice the different flow dynamics when compared
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to the dam collapse simulation. Figure 4.11 shows particles gliding along a frictionless surface.

Figure 4.13: A simulation of a rising bubble of fluid within a heavier more viscous fluid at time
step 0 (top left), 1000 (top right), 2000 (middle left), 3000 (middle right) and 4000 (bottom
left). 10000 particles were used along with reflective boundary conditions.

4.10.2 Rising bubble

Figures 4.13 and 4.14 show a bubble of lighter fluid rising within a denser fluid using reflective

boundary conditions and virtual particles respectively. The density of the denser fluid is 1000

and that of the lighter fluid is 500. The lighter fluid rises to the top of the simulation domain
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Figure 4.14: A simulation of a rising bubble of fluid within a heavier more viscous fluid at time
step 0 (top left), 1000 (top right), 2000 (bottom left) and 3000 (bottom right). 10000 particles
were used along with virtual particles.
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Figure 4.15: A simulation of a rising bubble of fluid within a heavier more viscous fluid at time
step 0 (top left), 1000 (top right), 2000 (middle left), 3000 (middle right). 10000 particles were
placed randomly with reflective boundary conditions.
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due to the influence of gravity [VSMS08]. This is an important example of how easily SPH can

deal with small phases breaking away from larger phases and producing complex boundaries.

Figure 4.15 shows a bubble in a fluid where instead of placing particles with equal distances,

the points are randomly scattered. Then all points within a certain circular area are designated

the lighter fluid with the rest being the heavier fluid. This demonstrates how SPH deals with

and adapts to the system conditions at hand.

4.10.3 Shock tube

An example involving discontinuities (in density) is that of the shock tube simulation [HK89,

Mon05]. The system is set up with two regions of high and low density seperated by a membrane

(Figure 4.16). This membrane is then removed creating a discontinuity in density across the

interface between the two regions [HK89, LL03]. The subsequent shock wave dynamics is then

captured using the standard SPH method. The regions attributed to the shock tube are shown

in Figure 4.17. For the 2D simulation, the number of high density (red) particles is 40000 giving

a particle distance of 0.00375 and the number of low density (green) particles is 10000 giving a

particle distance of 0.0075. For the 1D simulation, the number of high density (red) particles

is 640 giving a particle distance of 0.001172 and the number of low density (green) particles is

160 giving a particle distance of 0.00469. The mass of each particle is set as m = 0.000014072

for the 2D simulation and m = 0.00117075 in order to satisfy ρleft = 1 for both cases. The

equation of state is given as [BFP07],

Pi = (γ − 1)Uiρi, (4.60)

where Ui is the internal energy of each particle and γ = 1.4 is the specific heat ratio. The

initial internal energy is Ui = 2.5 for the high density region and Ui = 1.795 for the low density

region. This gives initial conditions for the pressure as Pleft = 1 and Pright = 0.1795. The initial

density for the low density fluid is ρright = 0.25. The domain size is given as 0 ≤ x ≤ 1.5 and

0 ≤ y ≤ 0.75. The support range of each particle is 0.02. All particles are initially stationary.
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Figure 4.16: The initial particle positions (left) and at t=0.2s (right) for the shock tube simu-
lation. The top and bottom figures represent the 2D and 1D simulations resprectively.

Figure 4.17: The regions of interest in the shock tube system. The subscripts 1, 3, 34, 5
denote the corresponding values in the left, middle, post shock, and right regions of the domain
respectively. Region II is the rarefaction section.
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For the analytic solution, the pressure for the regions III and IV (P34) is found by solving

the following equation for P [Sod78],

2
√
γ

γ − 1

[

1− P
γ−1

2γ

]

= (P − P5)

[

(1− µ2)2

ρ5(P + µ2P5)

]1/2

, (4.61)

where µ2 = (γ− 1)/(γ +1). The velocity of the fluid in this region is then calculated using P34

as

V34 =
2
√
γ

γ − 1

[

1− P
γ−1

2γ

34

]

. (4.62)

The velocity of the shock wave Vshock and ρ3 and ρ4 are now calculated as,

Vshock = V34

ρ34
ρ5

ρ34
ρ5
− 1

, (4.63)

ρ3 = ρ1

(

P34

P1

)

, (4.64)

ρ4 = ρ5

P34

P5
+ µ2

1 + µ2 P34

P5

. (4.65)

The speed of sound in region II, c2, is then calculated as,

c2(x) = µ2

[

x0 − x

t

]

+ (1− µ2)c1, (4.66)

where c1 =
√

γP1/ρ is the speed of sound in region I. The state variables in region II are then

calculated as,

V2(x) = (1− µ2)

[−x0 + x

t
+ c1

]

, (4.67)

ρ2(x) = ρ1

(

c2(x)

c1

) 2

γ−1

, (4.68)

P2(x) = P1

(

ρ2(x)

ρ1

)γ

. (4.69)

The locations of the regions and the internal energy, U(x), are then

x1 = x0 − c1t, x3 = x0 + V34t, x4 = x0 + Vshockt, U(x) =
P (x)

(γ − 1)ρ
. (4.70)
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The location of x2 is the x value where we have the equality P2(x) = P34.

For the initial conditions given above, the variables are calculated to be as follows: µ2 = 1/6,

x0 = 0.75, c1 = 1.183, Vshock = 1.5, x1 = 0.5134, x2 = 0.668, x3 = 0.885, x4 = 1.05, P34 = 0.427,

V34 = 0.677, ρ3 = 0.545 and ρ4 = 0.456. The analytic solution is compared to the SPH solutions

in Figure 4.18. Figure 4.19 is an additional plot of the pressure profile since the exceptional

agreement of the cubic spline results is not obvious from Figure 4.18. It can be seen that the

cubic spline gives results more comparable to the analytical solution.

Figure 4.18: The shock tube results with h = 0.01 for the cubic spline and the hyperbolic-
shaped kernel and h = 0.02 for Lucy’s function. The plots include the analytical solution and
results from all three kernels including an additional 1 dimensional simulation using the cubic
spline.

4.10.4 Droplet formation in non-ideal fluids

The use of the SPH method for the simulation of some hydrodynamic simulations is now

possible using equations (4.10) - (4.18). However, a suitable equation of state for droplet
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Figure 4.19: The shock tube results for the pressure for the 2 dimensional (left) and 1 dimen-
sional (right) cubic spline kernel.

formation must first be specified. The equation of state used here will be the van der Waals

equation of state,

P =
ρk̄T

1− ρb̄
− āρ2, (4.71)

where k̄ = kB/m is the scaled Boltzmann constant and ā = a/m and b̄ = b/m are the scaled

van der Waals parameters. ā is related to the strength of attraction of the particles whereas b̄

is related to the occupied volume per mole of the hard spheres. The equation of state relating

the internal energy U to temperature T is given as,

U =
d

2
k̄T − āρ, (4.72)

where d is the dimension of the problem. Unless explicitly specified, the general process for

the simulations is to begin with a domain with homogeneously dispersed particles with equal

distances from each other. The mass is set to be constant for all the particles and remains

constant in time (apart from mass fluctuations). This immediately results in a view of the

model as considering a single particle to represent a fixed amount of fluid. The particle density

di (and subsequently the mass density ρi) of particle i can then change depending on the

locations of the particles. Unfortunately, such a treatment for a vdW droplet does not yield

stable results. The reason for this was found to be due to the assumption that the vdW

attraction force acts on the same scale as the repulsion due to pressure differences. Nugent and

Posch [NP00] introduced a larger smoothing length, H ≥ h, over which to impose the effects of
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the second term on the right-hand side of Equation (4.71). This results in the following terms

to be considered seperately,

(
dv

dt
)ai = 2ā

N
∑

j=0

mj∇iWijH , (4.73)

(
du

dt
)ai = ā

N
∑

j=0

mj(vj − vi) · ∇iWijH , (4.74)

where the superscript a denotes the long range contribution acting over smoothing length

H > h. Given a symmetric kernel and a symmetric treatment for the smoothing lengths

(which is the case here since the smoothing lengths do not differ from particle to particle),

it can be seen that Equations (4.73) and (4.74) are symmetric in space. This means that

the contribution due to these long range forces cancel within the bulk of the vdW droplet.

The boundary of the droplet however, experiences a change in density and other parameters

disturbing the symmetricity of the long range contributions. The resolved attractive force is in

the direction of the normal to the curvature, towards the center of the droplet. This naturally

gives rise to surface tension [NP00, LS06].

The boundary conditions are periodic. Applying fluid dynamics to this exactly homogeneous

system will not evolve it in any particular manner and thus an inhomogeneity needs to be

introduced. This is done by introducing random mass fluctuations throughout the system.

Figure 4.20 shows a vdW simulation using 61×61 SPH particles each given a mass of 0.6 with

temperature 0.8. The smoothing length is set to h = 2 and H = 1.6× h. The bulk viscosity is

ζ = 0.1 and the shear viscosity is η = 1. The artificial viscosity parameters are αΠ = 0.1 and

βΠ = 1. The heat conduction coefficient is K = 5. The vdW parameters are ā = 1.018226,

b̄ = 0.3 and k̄ = 1. These vdW parameters are taken from a similar simulation using Lattice

Boltzmann [Qin06] and the resulting high-low density values shown in Figure 4.21 agree for

this temperature (roughly 0.3 and 2.1).
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Figure 4.20: A simulation of vdW drop coalescence using 61 × 61 SPH particles. Periodic
boundary conditions with random mass fluctuations was employed.

Figure 4.21: The density profile across two of the coalesced drops from the simulation in Figure
4.20.
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The previous simulation was done using a single fluid type. Suppose now that we introduce

a system with two fluid types. Fluid A and fluid B. The vdW interactions between different

pairs of fluid volumes should now be different. Let us define the vdW parameters as āij and

b̄ij where the subscript represents the combinations {AA,AB,BB}. For the first simulation we

set āij = 1.018226 if i = j = B and āij = 0 otherwise and b̄ij = 0.3 as before. The result is

shown in Figure 4.22. The green SPH particles are of type B. It can be seen that the sizes of

the high density regions are quite small. Introducing the right amount of velocity gradients

(stirring, mixing etc...) may lead to the formation of larger high density regions. Figure 4.23 is

a simulation with the same parameters but with a positive velocity given to particles near the

top and bottom of the domain and a negative velocity given to those near the horizontal center

line. The velocities of the particles are increased gradually. This way different vdW scenarios

can be simulated.

Figure 4.22: A simulation of vdW drop coalescence using 61× 61 SPH particles (1861 type A
and 1860 type B particles). Periodic boundary conditions with random mass fluctuations was
employed.

4.11 Smoothing length dependence of the results ob-

tained from van der Waals simulations

It has been seen that the smoothing length effects the accuracy of the results when applying

the SPH method to describe natural phenomena. In this chapter, we explore the effects on the
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Figure 4.23: A simulation of vdW drop coalescence using 61× 61 SPH particles (1861 type A
and 1860 type B particles). Periodic boundary conditions with random mass fluctuations and
a velocity gradient was employed.
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consistency of the results of systems governed by forces such as van der Waals forces due to

a change in smoothing length. This consistency is of great importance when communicating

or sharing system states between models cooperating in order to describe an entire system.

One important quantity is entropy. If the entropy of a system depends upon the accuracy

parameters used such as the smoothing length in the SPH method, this makes it increasingly

difficult to obtain correct results when models running in tandem with the SPH method depend

upon the information being consistent.

Multiple simulations are performed on a system with initial state consisting of 30× 30 SPH

particles as in Figure 4.6. The smoothing length is varied while using Lucy’s function as the

kernel. The evolution of the velocity and internal energy are evolved as in Section 4.10.4,

i.e. using Equations (4.11) and (4.73) for the velocity and Equations (4.13) and (4.74) for the

internal energy. The tensor form of Equation (4.20) is used for (∇v)i and Equations (4.22) and

(4.23) are used for (∇T )i and (∇2T )i respectively. The vector form of Equation (4.25) is used

to calculate (∇ ·P )i and the entropy evolution is calculated according to Equation (4.12). The

density is calculated according to the summation density equation, Equation (4.5). The reason

this is used instead of evolving density according to the continuity equation, Equation (4.10),

is because the summation density equation conserves mass. The traditional evolution equation

for heat conduction is (analogous to that for pressure),

(∇ · q)i = ρiK

N
∑

j=0

mj(
qi
ρ2i

+
qj
ρ2j
) · ∇iWij, (4.75)

however, reports of a more consistent form of heat conduction is given as [YLP14, Mon05],

(∇ · q)i = −ρiK
N
∑

j=0

2mjrij · ∇iWij

ρiρj(r2ij + 0.01h2
(Tj − Ti). (4.76)

The initial temperature is set as T = 0.02, heat conductivity K = 5 and particle distance

∆x = 0.75. A time step of ∆t = 0.005 is used. The forces involved in the path towards

equilibrium of a vdW fluid involves oscillations about equilibrium. The amplitude of these
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oscillations in the simulations tend towards zero as time goes to infinity. It is therefore more

practical to assign a logical point at which sufficient evolution toward equilibrium is assumed.

This point is assumed here to be the point at which the entropy change is as ∆S < 0.0001. Due

to the presence of velocity and temperature gradients in the evolution of the entropy change,

an entropy change tending toward zero translates as a decrease in system activity.

The SPH particle positions as well as the pressure profiles for the cases for Lucy’s function

with h = 3 with and without the application of average velocity are shown in Figure 4.24. Table

(1) and Table (2) in Appendix G show the total entropy change in each of these cases with

and without the average velocity technique respectively. One immediately notices clumping

behaviour of SPH particles for smoothing lengths larger than 2. It is seen that a kernel with a

negative second derivative will exhibit tensile instability for distances within the region where its

second derivative is negative [SHA95, YLP14]. Lucy’s function has a negative second derivative.

Given the initial conditions which result in particle distance ∆x = 0.75, using a smoothing

length value h > 2, will result in calculations lying in the negative second derivative region hence

the clumping of SPH particles within this region. The simulations with and without average

velocity show that the average velocity technique greatly improves the entropy consistency,

especially for Lucy’s function.

4.12 Summary

The SPH method is a tool that has been developed from an initial simple integral identity

(Equation (4.1)) into a method fully capable of describing complex fluid systems. Given hydro-

dynamic evolution equations, the SPH method can be used to discretise a system of equations

(equations (4.10) - (4.13)) in order to predict fluid environments. An essential component to

the SPH method is the use of a smoothing function or a kernel to enable the possibility to

represent discrete points as continuous regions. This is the reason it is possible to approximate

gradients of physical state variables. There are multiple candidates for kernels, three of which

are given in Section 4.4. These are chosen since they cover three categories of kernels: piece-
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Figure 4.24: A simulation of a vdW droplet using the SPH method. The figure shows the
particle positions and pressure profiles for Lucy’s function with h = 3 using average velocity
(right column) and without average velocity (left column).

wise kernels with negative second derivatives (cubic spline, Equation (4.27), Figure 4.2), single

function kernels with negative second derivatives (Lucy’s function, Equation (4.26), Figure 4.1)

and kernels with positive second derivatives (hyperbolic shaped kernel, Equation (4.28), Figure

4.3).

It is fortunate that the errors produced using the SPH method are bounded. This is because

given a set of governing equations representing a physical system, along with the equations of

state, the direction and magnitude of evolution is always dependent on the current state of the

system. This means that if it is accepted that the SPH method used incurs some approximation

errors, these errors do not carry from one time step to the next [LL03]. This ability to adapt

to the current state of the system is seen in Figure 4.15, in which the SPH points are randomly

placed within the system domain.

Some techniques can be utilised in order to make SPH a more stable and robust method.

These include the inclusion of artificial viscosity (Section 4.5) to remedy particle penetration,
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the average velocity technique (Section 4.7) in order to produce a smoother velocity profile

and the inclusion of virtual particles at the boundary of the system (Section 4.9) in order

to minimise errors in approximation due to part of the smoothing range of particles close to

the boundary lying outside of the system (Figure 4.4). The SPH method is applied to heat

diffusion, flow through obstacles, rising bubbles of less dense material within a more dense

material, the shock tube and droplet formation (Section 4.10). The smoothing length is shown

to have influence on the results obtained for the van der Waals simulations. In particular, the

obtained entropy change is inconsistent and erratic. Applying the average velocity technique

is shown to reduce entropy change variations by forming a smoother velocity profile. Also,

instead of simply increasing the smoothing length in order to obtain better accuracy, it is seen

to be better to increase the number of SPH points while keeping the total mass constant.
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Conclusion and discussion

The phase-field (PF) method and the smoothed particle hydrodynamics (SPH) method are

seen to be more than capable of dealing with complex phenomena in materials science. The

PF method is popular in describing phase transformations due to its ability to describe in-

terfacial regions implicitly without requiring the locating of these structures explicitly during

computation. The SPH method is exceptional in describing fluid mechanics situations. Due

to the method being meshfree, it has received much attention for its capability in simulating

situations involving high velocity impact, irregular boundaries and large deformations.

Concerning the solid state regions of Figure 1.1, the developed PF model for martensite and

bainite formation has the capability to reproduce orientation variants of martensitic plates ob-

served in steels. The phenomenological theory of strain energy is incorporated into the model

which uses a governing equation for a single PF variable for phase growth. The growth of

different orientations are then dependent upon the orientation matrices obtained from litera-

ture. Effects of different applied stresses on variant selection is also within the capabilities of

the model. Application to bainite formation by including carbon diffusion has reproduced the

trapping of carbon within the films of austenite between bainite subunits. It is also capable

of reproducing the incomplete transformation phenomenon experimentally observed in bainitic

steels. While sufficient for describing many bainitic steels, future development of the model

118
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would typically involve incorporating carbide precipitation within these supersaturated austen-

ite regions. The nucleation and growth of martensitic plates are influenced by the growth of

prior plates. The strain energy far away from an ellipsoidal inclusion is given by Eshelby [Esh57].

Consideration of this in the model to reproduce this long distance strain energy along with the

interaction energy between nucleations and the stress field [MRH06] will enable autocatalytic

nucleations seen in martensite nucleation.

The SPH method has the ability to model many fluid dynamics situations for treatment of

the region in Figure 1.1 involving hydrodynamics. The method is very flexible to initial and

boundary conditions. Virtual particles may be placed at the boundary in order to simulate

impenetrable walls with and without friction. Alternatively, the absence of any boundary

conditions aid in simulating systems in a vacuum environment. By applying some techniques

it is capable of generating a consistent entropy production in droplet formation. The same

system will result in approximately the same entropy regardless of a change in the accuracy

parameters such as the number of particles. It is seen that the some kernels such as Lucy’s

function respond better to this treatment than others. Application of SPH to modelling surface

tension in real fluids requires the adjustment of parameters for those of the fluids as well as

vdW parameters governing the interaction between different types of fluids [LVCT14].

The final region in Figure 1.1 to be studied adequately involves both hydrodynamics and

solidification. This calls for a coupling of the methods SPH and PF. When it comes to the

merging of the PF method with the SPH method, Lagrangian and Eulerian methods have been

successfully coupled to solve complex natural phenomena [Ben92, HAC74, WWGB09]. An

important requirement here is the mode of communication between the two methods. The PF

method relies on a fixed grid and so is unable to interpret data obtained at random locations

within the system domain. The nature of the SPH interpolation makes this cooperation between

models possible. Within the SPH framework, interpolation is performed at particle locations

whereas the output properties in the figures in Section 4.10 are performed at discrete points

in the system domain where no particle resides. This means that an evolutionary property
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to be communicated between the PF and SPH methods can be translated from grid points to

meshfree particles and vice versa. In this way, cases involving the solidification in the presence

of flow can be treated with high Reynolds numbers and conditions deemed too complex for

traditional computing methods to handle.

A free floating solid particle within a fluid material is arguably one of the most complex cases

to be modelled. Not only does this particle, in the most general case, have complex boundaries

and movement, it also rotates. We have seen that the models mentioned in this work have no

trouble with complex interfaces. The solid particle can be represented in the SPH calculations

as a cluster of spaced SPH particles fixed together. These particles can then interact with the

fluid particles to calculate forces. The movement of the solid particle should be governed by the

hydrodynamics capabilities of the SPH method by calculating linear and angular momentum

due to drag forces.

The capability of the particle to rotate would be affected by the motion of SPH fluid particles

against the impenetrable boundary of the solid particle as well as collisions of solid particles

subjected to a contact force. This contact force (e.g. linear spring dashpot contact force

[RRL14]) appears as a force in the acceleration equation. The effect of the fluid on the solid

particles is to inflict a drag force (e.g. Stokes drag force). The effect of the drag force on

SPH solid particle i is related to the difference in average velocities of the solid particles and

the velocity of particle i. This means that in order to calculate the drag force, summations

are required over same phase particles. Once this force is determined, it must be equal in

magnitude to the force on the surrounding fluid. Thus resulting in a net force acting upon the

fluid particles. When applying an SPH summation for each fluid particle over the surrounding

solid particles, care must be taken in order to ensure the forces match. A similar treatment for

the boundary inconsistency may be applied here (Equation (B.7)). This way, the drag force on

each solid particle is translated as a drag force on each fluid particle. Identifying the centre of

mass of the solid particle and the susequent translational and angular velocity determines the

motion of the solid. The PF method governs the evolution of the solid-liquid interface. After
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movement of the solid particle has been completed, the variables are mapped back onto the PF

mesh. The motion of the liquid particles near the solid-liquid interface require careful attention

ensuring heat conduction and material transport are adequately modelled.
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Appendix A

Phase-field free energy

Consider an isothermal system at constant pressure. The state variable to be considered is

the Gibbs free energy of the system. The Gibbs free energy density of a heterogeneous system

per unit volume is assumed to be able to be expressed in terms of the phase-field variable ,

composition, temperature, and their gradients, g(φ, c, T,∇φ,∇c,∇T, ...), where c is composition

and T is temperature. The Gibbs free energy density is written as a Taylor series about the

Gibbs free energy of its homogeneous description (all gradients equal to zero) [CH71, CH59],

g(φ, c, T, ...) = g0 +
∂g0
∂∇φ

(∇φ) +
1

2

∂2g0
∂(∇φ)2

(∇φ)2 +
1

6

∂3g0
∂(∇φ)3

(∇φ)3...

+
∂g0
∂∇c

(∇c) +
1

2

∂2g0
∂(∇c)2

(∇c)2 +
1

6

∂3g0
∂(∇c)3

(∇c)3...

+
∂g0
∂∇T

(∇T ) +
1

2

∂2g0
∂(∇T )2

(∇T )2 +
1

6

∂3g0
∂(∇T )3

(∇T )3...

+
∂g0
∂∇2φ

(∇2φ) +
1

2

∂2g0
∂(∇2φ)2

(∇2φ)2 +
1

6

∂3g0
∂(∇2φ)3

(∇2φ)3...

+
∂g0
∂∇2c

(∇2c) +
1

2

∂2g0
∂(∇2c)2

(∇2c)2 +
1

6

∂3g0
∂(∇2c)3

(∇2c)3...

+
∂g0

∂∇2T
(∇2T ) +

1

2

∂2g0
∂(∇2T )2

(∇2T )2 +
1

6

∂3g0
∂(∇2T )3

(∇2T )3...

... (A.1)

where the subscript denotes g0 = g(φ, c, T,∇φ = 0,∇c = 0,∇T = 0,∇2φ = 0, ....) and g0

is the Gibbs free energy density of the homogeneous phase. Thus we are considering a small
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134 Appendix A. Phase-field free energy

displacement of the gradient terms from homogeneity. The free energy must be symmetric

about the origin, thus the coefficients of odd power or order terms are zero. In addition to this,

truncating to omit third and higher order terms we obtain a simplified description of the free

energy density,

g(φ, c, T, ...) = g0 +
1

2

∂2g0
∂(∇φ)2

(∇φ)2 +
1

2

∂2g0
∂(∇c)2

(∇c)2 +
1

2

∂2g0
∂(∇T )2

(∇T )2

+
∂g0
∂∇2φ

∇2φ+
∂g0
∂∇2c

∇2c+
∂g0

∂∇2T
∇2T. (A.2)

It is obvious that the variables involving the squared terms are symmetric about the origin. An

even derivative of a function with respect to spatial coordinates is also an even function. To

see this, consider a function f(r). We have,

∇f =
∂f

∂r
=

∂f

∂(−r)
∂(−r)
∂r

= − ∂f

∂(−r) , (A.3)

∂2f

∂(−r)2 =
∂ ∂f

∂(−r)

∂(−r) = −
∂ ∂f

∂(−r)

∂r
=

∂ ∂f
∂r

∂(r)
=

∂2f

∂r2
= ∇2f, (A.4)

so that ∇f is not an even function of r but ∇2f is. For the second step in Equation (A.4) we

used the result from Equation (A.3) and then applied the product rule for differentiation for

the step after that.

For simplicity let us write g(φ, c, T,∇φ, ...) as g(αi,∇αi,∇2αi) : i ∈ {1, 2, 3} so that α1 = φ,

α2 = c and α3 = T . The total free energy over the volume V of the system is then,

∫

V

g(αi,∇αi,∇2αi)dr =

∫

V
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3
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)]

dr. (A.5)
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Using integration by parts on the term involving the Laplace operator,
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where r̂ is the unit vector in the coordinate direction. The first term is of odd order and the

same reasoning as before results in the coefficient of the first term being zero. The following

have been used in the derivation of Equation (A.6):

r = r̂r =⇒ dr

dr
= r̂ =⇒ dr = r̂dr (A.7)

0 =
d(1)

dr
=

d(r̂) · r̂
dr

= 2
dr̂

dr
· r̂ =⇒ dr̂

dr
= 0. (A.8)

Equation (A.5) then becomes,
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where ǫi =
∂g0

∂(∇αi)2
− 2 ∂

∂αi

∂g0
∂∇2αi

.



Appendix B

SPH equations

Density

The continuity equation is given as,

ρ̇i = −ρi(∇ · v)i. (B.1)

Using Equations (4.3) and (4.4) we have,

ρ̇i = −ρi(∇ · v)i + 0

= −ρi(∇ · v)i + ρivi · ∇1

= −ρi
∑

j

mj

ρj
vj · ∇iWij + ρivi ·

∑

j

mj

ρj
∇iWij

= ρi
∑

j

mj

ρj
vij · ∇iWij, (B.2)

where we used the fact that ∇1 = 0. One may argue that instead of ∇1, we may use an SPH

approximation to ∇C = 0 with any constant C. This is true and the continuity equation still

holds, however, the evolution towards equilibrium will have a steeper gradient if C > 1 or the

sensitivity of the density to velocity changes will be different.

136



137

If we use the identity,

−ρi(∇ · v)i = vi · (∇ρ)i − (∇ · (ρv))i, (B.3)

and apply Equations (4.3) and (4.4), we obtain another approximation to the continuity equa-

tion,

ρ̇i = −ρi(∇ · v)i = vi · (∇ρ)i − (∇ · (ρv))i

= vi

∑

j

mj∇iWij −
∑

j

mjvj · ∇iWij

=
∑

j

mjvi · ∇iWij −
∑

j

mjvj · ∇iWij

=
∑

j

mjvij · ∇iWij, (B.4)

where vij = vi − vj.

The summation density (Equation (4.5)) is obtained from Equation (4.2) as,

ρ =
∑

j

mjWij. (B.5)

Using Equation (4.2), the SPH approximation of 1 can be found as,

1 =
∑

j

mj

ρj
Wij. (B.6)

Multiplying this approximation to 1 by ρi and subtracting it from Equation (4.5)) gives an

approximation to ρi suitable for the treatment of free surfaces and phase boundaries [RL96],

ρ =

∑

j mjWij
∑

j
mj

ρj
Wij

. (B.7)
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Pressure gradient

In order to find the gradient of the pressure field, rather than take the derivative of Equation

(4.24), we proceed with the approximation to the integral representation of the field variable,

∇P (r) =

∫

Ω

∇P (r′)W (r− r′, h)dr

=

∫

Ω

[

ρ(r)∇P (r′)

ρ(r′)
+

P (r)

ρ(r)
∇ρ(r′)

]

Wdr′

=

∫

Ω

ρ(r)∇P (r′)

ρ(r′)
Wdr′ +

∫

Ω

P (r)

ρ(r)
∇ρ(r′)Wdr′

= ρ(r)

∫

Ω

[

∇
(

P (r′)

ρ(r′)
W

)

− P (r′)

ρ(r′)
∇W

]

dr′

+
P (r)

ρ(r)

∫

Ω

[∇ (ρ(r′)W )− ρ(r′)∇W ] dr′

= −ρ(r)
∫

Ω

P (r′)

ρ(r′)
∇Wdr′ − P (r)

ρ(r)

∫

Ω

ρ(r′)∇Wdr′

= −ρ(r)
∫

Ω

[

P (r′)

ρ(r′)
+

P (r)

ρ(r)2
ρ(r′)

]

∇Wdr′

= −ρ(r)
∑

j

[

mjPj

ρ2j
+

P (r)mj

ρ(r)2

]

∇Wij

=⇒ ∇P (ri) = −ρi
∑

j

mj

[

Pj

ρ2j
+

Pi

ρ2i

]

∇Wij. (B.8)

The following product rule applications were used in the above derivation,

∇P (r′) = ρ(r)∇P (r′)

ρ(r′)
+

P (r)

ρ(r)
∇ρ(r′) (B.9)

∇P (r′)

ρ(r′)
= ∇

[

P (r′)

ρ(r′)
W

]

− P (r′)

ρ(r′)
∇W (B.10)

W∇ρ(r′) = ∇ [ρ(r′)W ]− ρ(r′)∇W, (B.11)

and from line 4 to line 5 of Equation (B.8) we use the divergence theorem from a volume Ω to

a surface S,
∫

Ω

∇(FW )dV =

∫

S

FW · n̂dS (B.12)

along with the fact that the kernel is zero everywhere but within the support domain making

the right-hand side of Equation (B.12) equal to zero.
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Direct SPH approximation of the pressure tensor results in,

(∇P )i =
∑

j

mj

ρj
Pj∇iWij. (B.13)

Adding zero to this results in,

(∇P )i =
∑

j

mj

ρj
Pj∇iWij + Pi∇1

=
∑

j

mj

ρj
Pj∇iWij + Pi

∑

j

mj

ρj
∇iWij

=
∑

j

mj
Pi + Pj

ρj
∇iWij. (B.14)

For the Navier-Stokes equations, the pressure P can be directly replaced with the more

general stress tensor P = IP + σ where I is the unit tensor and σ is the viscous stress tensor.

Divergence of the velocity

The particle density is defined as,

di =
∑

j

Wij, (B.15)

and for the mass density in terms of the particle density,

ρi = midi. (B.16)

The derivative of ρ can be calculated using Equation (B.15) as,

ρ̇ = miḋi = mi

∑

j

∂Wij

∂t
= mi

∑

j

∂Wij

∂rij

∂rij
∂t

= mi

∑

j

vij∇Wij. (B.17)
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where ρ̇ ≡ ∂ρ
∂t
. Comparing Equations (B.17) and (4.10) gives an expression for the divergence

of the velocity,

−ρi(∇ · v)i = mi

∑

j

∇vijWij,

=⇒ (∇ · v)i = −mi

ρi

∑

j

∇vijWij = −
1

di

∑

j

vij∇Wij. (B.18)
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SPH unity condition

The constants of the Lucy function, the cubic spline kernel and the hyperbolic-shaped kernel

denoted respectively as αL, αcs and αhs are scaling constants determined by the unity condition,

∫

Ω

WdV = 1 (C.1)

where the integral is taken over a volume Ω in three dimensions.

For Lucy’s kernel we have,

∫

Ω

WdV = αL

∫

Ω

[1− 6
r2

h2
+ 8

r3

h3
− 3

r4

h4
]dV. (C.2)

In one dimension (two sides of 0 where |r| ≤ h on the real line),

∫

Ω

WdV = αL

∫ h

−h

[1− 6
r2

h2
+ 8

r3

h3
− 3

r4

h4
]dr = αL

4

5
h (C.3)

giving αL = 5/(4h). In two dimensions,

∫

Ω

WdV = αL

∫ h

0

∫ 2π

0

[1− 6
r2

h2
+ 8

r3

h3
− 3

r4

h4
]rdθdr = αL

π

5
h2 (C.4)
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giving αL = 5/(πh2). In three dimensions,

∫

Ω

WdV = αL

∫ h

0

∫ π

0

∫ 2π

0

[1− 6
r2

h2
+ 8

r3

h3
− 3

r4

h4
]r2 sinφdφdθdr = αL

16π

105
h3 (C.5)

giving αL = 105/(16πh3).

For the cubic spline kernel we have,

∫

Ω

WdV = αcs[

∫

r∈Ω:r≤h

[(2− r

h
)3 − 4(1− r

h
)3]dV +

∫

r∈Ω:h≤r≤2h

(2− r

h
)3dV ]. (C.6)

In one dimension,

∫

Ω

WdV = αcs[2

∫ h

0

[(2− r

h
)3 − 4(1− r

h
)3]dr + 2

∫ 2h

h

(2− r

h
)3dr] = 6hαcs (C.7)

giving αcs = 1/(6h). In two dimensions,

∫

Ω

WdV = αcs[

∫ h

0

∫ 2π

0

[(2− r

h
)3−4(1− r

h
)3]rdθdr+

∫ 2h

h
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0

(2− r

h
)3rdθdr] =

14π

5
h2αcs (C.8)

giving αcs = 5/(14πh2). In three dimensions,

∫

Ω

WdV = αcs[

∫ h

0

∫ 2π

0

∫ π

0

[(2− r

h
)3 − 4(1− r

h
)3]r2 sinφdφdθdr

+

∫ 2h

h

∫ 2π

0

∫ π

0

(2− r

h
)3r2 sinφdφdθdr] = 4πh3αcs (C.9)

giving αcs = 1/(4πh3).

For the hyperbolic spline kernel we have,

∫

Ω

WdV = αhs[

∫

r∈Ω:r≤h

(
r3

h3
− 6

r

h
+ 6)dV +

∫

r∈Ω:h≤r≤2h

(2− r

h
)3dV ]. (C.10)
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In one dimension,

∫

Ω

WdV = αhs[2

∫ h

0

(
r3

h3
− 6

r

h
+ 6)dr + 2

∫ 2h

h

(2− r

h
)3dr] = 7hαhs (C.11)

giving αhs = 1/(7h). In two dimensions,

∫

Ω

WdV = αhs[

∫ h

0

∫ 2π

0

(
r3

h3
− 6

r

h
+ 6)rdθdr +

∫ 2h

h

∫ 2π

0

(2− r

h
)3rdθdr] = 3παhsh

2 (C.12)

giving αhs = 1/(3πh2). In three dimensions,

∫

Ω

WdV = αhs[

∫ h

0

∫ 2π

0

∫ π

0

(
r3

h3
− 6

r

h
+ 6)r2 sinφdφdθdr

+

∫ 2h

h

∫ 2π

0

∫ π

0

(2− r

h
)3r2 sinφdφdθdr] =

62

15
πh3αhs (C.13)

giving αhs = 15/(62πh3).
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Abstract

A phase-field model for the computation of microstructure and texture evolu-

tion of plate formation under applied stress during martensite transformation

(MT) has been developed. The model is based on the phenomenological MT

theory and the symmetric analysis of cubic crystals, and has reproduced re-

alistic martensite grain morphology and accurate crystallographic orientation.

The free energy has been constructed according to the established strain energy

expression and cubic symmetry. The theoretical framework is consistent with

classical phase-field schemes. The model is applicable to MT in a wide range

of real materials and processing, e.g. variant selection and texture formation

in stress-affected MT in polycrystalline materials. The comparison between the

present and existing phase-field models is addressed.

Keywords: Phase-field, martensite, solid-state phase transformation,

phenomenological theory

1. Introduction

Martensite transformation (MT) is a displacive phase transition where atom

mobility is too slow to fulfil the structural transformation. MT can take place

in various materials at a wide range of temperatures, e.g. from 1200 K in ZrO2
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Qin )
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to 30 K in Ar-40N2 [1]. Modelling and simulation of MTs have attracted sig-5

nificant attention for many years. More recently, the formation of martensite

during deformation at high strain rates has been studied using modelling tech-

niques [2], modelling the behaviour of stress assisted MT [3] and TRIP steels

using a phenomenological mean-field approach [4, 5, 6, 7], reproducing the elas-

tic and plastic deformations of metallic materials [8], the coupling of MT and10

plasticity [9] etc... Martensite in steels is considered one of the strongest but

most brittle of phases. Its excellent strength is favourable in the design of a new

generation of advanced high strength steels, but its poor toughness is detrimen-

tal to the mechanical properties. The aim of the phase-field study of MT is to

provide information on microstructure evolution in MT so as to improve the15

understanding of its microstructure-property relationship.

Symmetry preservation is one of the most important restrictions in the de-

scription of crystalline materials. According to Landau-Ginzburg-Devonshire

theory, the free energy density of a bulk phase with cubic crystallographic sym-

metry (gb) can be represented by the following generic format [10]20

gb = a1(φ
2
x + φ2

y + φ2
z) + a11(φ

2
x + φ2

y + φ2
z)

2

+ a12(φ
2
xφ

2
y + φ2

yφ
2
z + φ2

zφ
2
x) + a123φ

2
xφ

2
yφ

2
z

+ a111(φ
2
x + φ2

y + φ2
z)

3 + a112[φ
4
x(φ

2
y + φ2

z)

+ φ4
y(φ

2
z + φ2

x) + φ4
z(φ

2
x + φ2

y)], (1)

where ai, aij and aijk are coefficients. φx, φy and φz are the order parameters

along the x, y and z directions in a Cartesian coordinate system, respectively.

For ferroelectric materials such as BaTiO3, φα represents the polarization along

the α direction [10]. Eq. (1) preserves cubic symmetry because applying all the

Oh(or m3̄m) symmetry operations to the right hand size of Eq. (1) give the25

same value of gb. Within the interface of a cubic crystal, the free energy density

2



(gi) is suggested to take the following expression [11]

gi = b11(φ
2
x,x + φ2

y,y + φ2
z,z)

+ b12(φx,xφy,y + φy,yφz,z + φz,zφx,x)

+ b44(φ
2
x,y + φ2

x,z + φ2
y,z + φ2

y,x + φ2
z,x + φ2

z,y), (2)

where b11, b12 and b44 are coefficients. The suffixes preceded by a comma denote

partial differentiation: φx,y = ∂φx/∂y. Eq. (2) also preserves cubic symmetry.

It is worth emphasising that Eq. (2) represents the general free energy density30

within the interface rather than just the conventional interface energy. The

expressions for the anisotropic interface energies, such as those proposed by

Karma and Rappel [12], Haxhimali et al. [13] and Qin and Bhadeshia [14] for

cubic crystals, and Böttger et al. [15] and Qin and Bhadeshia [16] for hexagonal

close-packed crystals, all preserve the symmetrical properties of crystals. The35

bulk free energy formula utilized in the computational thermodynamics, such as

the Redlich-Kister equation [17], contains no vectors but scalars (e.g. temper-

ature, composition and pressure) and therefore does not violate the symmetric

properties of the crystal.

The phase-field models based on Eq. (1) have been developed by Ma et40

al. [18] and Li and Chen [19] for the simulation of the precipitations in zir-

conium and Al-Cu alloys, respectively. Li et al. have developed a phase-field

model based on Eq. (1) and a simplified format of Eq. (2) and applied this to

the domain morphological evolution of PbZrTiO3 ferroelectric grains [20]. The

phase-field model of Zhang et al. is based on a simplified format of both Eq.45

(1) and Eq. (2) and has simulated the BiFeO3 thin film [21]. Hu et al. has

coupled a much simplified format of Eq. (1) and Eq. (2) with an elastic field

and used the phase-field scheme for the investigation of the phase transition in

Pu-Ga alloys [22]. The phase-field model proposed by Moelans et al. was based

on the first three terms in Eq. (1) and described grain growth in anisotropic50

polycrystalline materials [23]. Chen reviewed the application of the extended

format of Eq. (1) in phase-field models to the simulation of ferroelectric mate-

rials where the crystal symmetry may be affected by the applied electric field

3



and stress field [24].

There are a number of phase-field models published already in the simulation55

of MT and displacive transformation. Wang and Khachaturyan have reviewed

a number of phase-field models based on Eq. (1) for the simulation of MT [25].

Levitas et al. have developed a phase-field model and studied the stress-induced

MT [26, 27, 28], where a Landau type potential has been derived to include the

large rotation and elastic strains [26]. The interface profile and velocity are60

found to be a function of temperature and the stress tensor in their solutions

[27]. Recently, Yeddu et al. developed a new phase-field model for MT in

steel which used the 1st, 2nd and 5th terms in Eq. (1) to represent chemical

free energy while also considering the anisotropic elastic property in the MT.

Their simulation reproduced the autocatalysis and morphological mirror image65

formation [29, 30].

The PF model of Kundin et al. [31] caters for plastic accommodation

and relaxation effects during MT. A dislocation density field is introduced and

evolved seperately and used to simulate the evolution of butterfly-type marten-

site. Within this work, the energy of interaction between two martensitic plates70

is also considered. An order parameter for each martensitic variant is evolved

as a set of governing equations. The total free energy of the system is the sum

of the elastic energy and the chemical energy which does not explicitly depend

on composition. Instead, the dependence is on the equilibrium transformation

temperature T0 and an anisotropic function which in turn has a dependence on75

plate width. Once the elastic component of the driving force and the equilibrium

shape of a martensitic plate is estimated, the evolution of the order paramters

may commence.

The works of Levitas et al. [32] and the references within on the application

of the PF method to martensite transformation is notable for their advance-80

ment in the area. The model is demonstrated on the material NiAl with elastic

strains considered small to simplify equations which involves plastic relaxation

in the surrounding bulk during plate formation. While the method also incor-

porates plastic deformation, it is also applied to deduce the interface energy and

4



width between two martensitic variants. This not only enables their model to85

have the ability to represent martensite - martensite transformations, but also

multiple twinning. A single radial order parameter, Υ, is applied to represent

all matrix to martensite transformations along with n additional angular order

parameters, vi : i = 1, 2, .., n, where n is the number of twinning systems. The

parameter Υ alone is not sufficient in determining the variant and orientation90

of the resulting martensitic variant, but is simply used to determine the region

that is a martensitic phase. The variant and orientation are determined by

the additional order parameters vi. The authors state that it is not possible

to represent two simple shears between two martensitic variants with a single

order parameter using the classic application of the PF method to martensitic95

transformation. The elastic field is solved completely for the sample in order

to deduce the values of the order parameters. The selling point of the model is

that the number of order parameters are sufficient in describing the myriad of

variant-variant twinning.

Yeddu et al. [33] have developed a PF model in order to determine the100

effect of martensite embryo size on the subsequent transformation in steel. The

chemical energy density is expressed as a function of three martensitic domains

(η1, η2, η3) as [34]

Gchem
v (η1, η2, η3) =

1

Vm

[

1

2
A(η21 + η22 + η23) (3)

−
1

3
B(η31 + η32 + η33) +

1

4
C(η21 + η22 + η23)

2

]

, (4)

where Vm is the molar volume and A, B and C are coefficients. Their model

incorporates elastic and plastic strain effects by evolving the strain field through-105

out the system.

MT with self accommodation and plastic accommodation has been incorpo-

rated by Yamanaka et al. [35] with three order parameters while considering

the form of the chemical free energy the same as that in Eqn. (4) with the

constants: A = 0.15, B = 3A+12 and C = 2A+12. The point at which plastic110

deformation takes place depends upon the comparison between the shear and
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yield stresses of the material. The plastic strain as well as the order parameters

are then evolved according to the time dependent Ginzburg-Landau equation.

The plastic accommodation is shown to reduce the elastic strain energy con-

siderably. The resulting crystallographic information is reported to agree with115

phenomenological crystallography theories.

MT is driven by the chemical free energy difference between martensite and

austenite. The morphology of martensite, however, is affected significantly by

the strain energy. Based on this consideration, many existing phase-field models

have been coupled with the precise calculation of the strain and stress fields.120

These models possess many advantages over the phenomenological and coarse-

scaled approximations, e.g. being able to reveal the fundamental interactions

between mechanical properties and phase transitions in materials. The dis-

advantages include the excess demand in computational resources, difficulties

in the addition of more sophisticated factors and poor agreement with experi-125

mental observations. For example, the computational microstructure for MT is

hardly comparable to what is seen experimentally. The composition-dependent

orientation of the habit plane in MT has not been reproduced so far. The

variant selection under external stress, the texture formation and evolution in

martensitic steels and many other important phenomena have not been covered130

by many existing phase-field models.

The aim of the present work was to develop a phenomenological phase-field

model to study the MT in steels. The phenomenological description of MT

is easier to understand and has the ability to be scaled up to simulate more

sophisticate phenomena in the thermo-mechanical processing of steels. The135

phase-field model developed in the present work is consistent with the MT theory

in steels, and is able to produce realistic microstructure and correct texture

information. Particularly, the model is capable of producing the differences

in the microstructure and texture of MT in various steels and under versatile

processing conditions. For example, it is easy to predict the differences between140

MT in 304 stainless steels, Fe-3Mn-2Si-0.4C wt% steel and Fe-31Ni-0.23C wt%,

and to predict the variant selection and texture formation in stress-affected MT

6



in polycrystalline steels.

As has been shown, there are many PF models on MT with a microscopic

theme, however, to the authors’ knowledge there are no PF models of the type145

used in this paper applied to MT.

2. The theoretical consideration and the phase-field model

The MT in steels transforms face-centered-cubic (fcc) austenite (denoted as

γ) to body-centered-cubic (bcc) martensite (denoted as α′) crystals. From a

thermodynamic point of view, the transition can be described by a double-well150

potential with the asymmetry representing the thermodynamic driving force

and the height of the peak representing the kinetic barrier [36]. The free energy

density of a steel containing austenite, martensite and the interface can be

represented by the following [37, 38]

g =
1

2
ǫ2|∇φ|2 +

1

4ω
φ2(1− φ)2

+ h(φ)gα′ + [1− h(φ)]gγ , (5)

where φ is the phase-field order parameter with φ = 0 representing the austenite,155

φ = 1 the martensite and 0 < φ < 1 the interface between austenite and

martensite. ǫ is the gradient energy coefficient and ω is a coefficient associated

with the kinetic barrier. h(φ) = φ3(6φ2−15φ+10) can be understood to be the

local volume fraction of martensite. It has h(φ) = 1 when φ = 1 and h(φ) = 0

when φ = 0. The bulk free energies of the martensite and austenite phases are160

denoted by gα′ and gγ , respectively. The parameters ǫ and ω are determined

by ǫ2 = 3λσ/1.1 and ω = λ/(26.4σ) [38], where σ is the interface energy and λ

is the half-thickness of the interface. The interface energy is small due to the

coherency of the austenite-martensite interface. There are a limited number of

interface orientations meeting the lattice coherence.165

The governing equation for the phase-field order parameter can be derived
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from the second law of thermodynamics and has the following format [37, 38]

∂φ

∂t
= Mφ[ǫ

2∇2φ+
1

2ω
φ(1− φ)(1− 2φ)

− 30φ2(1− φ)2(gα′ − gγ)], (6)

where Mφ > 0 is called the phase-field mobility which is related to the growth

rate of a martensite grain. The third term within the square bracket on the

right hand side of Eq. (6) is non-zero only within the interface (where φ 6= 0

and φ 6= 1) and at non-equilibrium (where gα′γ = gα′ − gγ 6= 0). Therefore

gα′γ is the driving force for MT and the equilibrium corresponds to gα′ =

gγ . This is different from reconstructive transformation where the equilibrium

corresponds to the common tangent of the chemical potential rather than the

equivalence of the free energy. The reason is that MT does not involve the

partitioning of chemical compositions. The following consideration on gα′γ is

for the martensite-austenite interface only where the aim is to solve Eq. (6).

This has

gα′γ = gchemα′γ + gstrainα′γ , (7)

where gchemα′γ = gchemα′ −gchemγ is the chemical free energy difference and gstrainα′γ =

gstrainα′ − gstrainγ is the strain energy difference between the martensite and the

austenite phases. gchemα′γ should be negative in MT according to the second170

law of thermodynamics. If there is no external stress acting on the steel, then

gstrainα′γ = 0 before the MT. Equation (7) does not include the interface energy

since this has been included and represented by the first term within the square

bracket on the right hand side of Eq. (6). gchemα′γ is associated with the chemical

constitution, temperature and pressure of the steel. This value can be obtained175

directly from a commercial computational thermodynamic database such as

Thermo Calc or MTDATA.

A martensite grain is in an oblate ellipsoidal shape. The shear and dilatation

components of the strain energy contribution to the free energy can be assumed

independent. The overall free energy change due to the transformation is de-180

pendent on the dilatation normal to the habit plane, δ, and the shear lying on

8



the habit plane, s. Eshelby analysed the strain energy of an ellipsoidal inclusion

in a homogeneous matrix [39]. The strain energy contribution to the free energy

is given by Christian as [40],

gstrain1α′γ =
µ

1− σp

[
2

9
(1 + σp)∆

2

+
πc

4a
δ2 +

π

3
(1 + σp)

c

a
∆δ] (8)

gstrain2α′γ =
µ

1− σp

[
π

8
(2− σp)

c

a
s2]. (9)

where µ, σp, ∆, δ and s are the shear modulus, Poisson’s ratio, lattice dilata-

tion, uniaxial expansion and the amount of shear, respectively. The gstrain1α′γ

and gstrain2α′γ are the non-shear and shear components of the contribution re-

spectively. The constants a and c are the dimensions of the oblate ellipsoid.

gα′γ achieves minimum when ∆ = 0 and c/a goes to minimum. In other words,

the overall change from a bcc cell to a martensite cell involves no uniaxial di-

latation. The minimum value of c/a affects the nucleation of martensite. The

non-shear contribution can be written as,

gstrain1α′γ =
µ

1− σp

πc

4a
δ2, (10)

and the shear component as,

gstrain2α′γ =
µ

1− σp

[
π

8
(2− σp)

c

a
s2]. (11)

The total energy due to strain is then,185

gstrainα′γ = gstrain1α′γ + gstrain2α′γ

=
µπc

4a(1− σp)
[δ2 +

2− σp

2
s2]. (12)

Equation (12) shows the strain contribution to the free energy from a dilatation

of δ normal to the habit plane and a shear s lying on the habit plane. Writing

this equation in terms of small increments we obtain,

∆gstrainα′γ =
µπc

4a(1− σp)
[(∆δ)2 +

2− σp

2
(∆s)2], (13)

where ∆ refers to a small change and not the uniaxial dilatation parameter. In

the PF method, a small change in location of the interface is translated as a

9



small change in the PF variable φ at that location, φ,x = ∂φ
∂x

, φ,y = ∂φ
∂y

and

φ,z = ∂φ
∂z

in the x, y and z directions respectively. In the coordinate system

of the martensite plate, δ corresponds to the z axis. The shear direction lies

on the habit plane normal to the z axis and so the shear vector can be divided

into two orthogonal vectors as ~s = ~sx + ~sy. In small displacement form, these

correspond to,

∆~δ = φ,zk, ∆~s = ∆~sx +∆~sy = φ,xi+ φ,yj, (14)

where i, j and k are unit vectors in the x, y and z directions respectively.

Considering the fact that the total strain contribution from Eq. (12) in the

untransformed matrix is zero, Eq. (12) can now be written in terms of the PF

variable as,

gstrainα′γ =
µπc

4a(1− σp)
[φ2

,z +
2− σp

2
(φ2

,x + φ2
,y)]. (15)

In addition to the strain energy, the chemical free energy contribution, K, to the

total free energy must also be considered. This depends on the local composition

and temperature. In other words, the affinity of the material to transform at

a given location is gauged by the contribution through the strain energy and

the chemical free energy due to the local composition and temperature. The

chemical free energy is related to the rate of change of the PF variable as,

gchemα′γ = k1φ
2
,x + k2φ

2
,y + k3φ

2
,z. (16)

The total free energy contribution is therefore,

gα′γ = gstrainα′γ + gchemα′γ

=
µπc

4a(1− σp)
[(
2− σp

2
+

4a(1− σp)

µπc
k1)φ

2
,x

+(
2− σp

2
+

4a(1− σp)

µπc
k2)φ

2
,y

+(1 +
4a(1− σp)

µπc
k3)φ

2
,z]. (17)

The parameter µ is the shear modulus and is temperature dependent. The

aspect ratio c/a is dependent on composition as well as temperature. Equation
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(17) is written as the total free energy per unit volume. Let f1 = f2 = (2−σp)/2

and d = 4a(1− σp)/µπσp to give,190

gα′γ =
1

d
[(f1 + dk1)φ

2
,x + (f2 + dk2)φ

2
,y

+(1 + dk3)φ
2
,z]. (18)

Since f1, f2 < 1 and the chemical driving force is a negative value during MT,

the direction normal to the habit plane will naturally be less favoured in an

energy reduction sense.

Figure 1: Two-dimensional schematic diagrams showing the three invariant-plane strains of:

(a) the uniaxial dilatational strain δ; (b) the simple shear strain s; (c) the general displacement

strain m.

Figure 2: Schematic diagrams showing: (a) martensite transformation with shear, expansion

and deformation; (b) phase-field interpretation of the martensite transformation.

Equation (16) does not imply that the chemical free energy is orientation

dependent. This is achieved through specifying the ki. In this work, all the ki are195

equal inferring an isotropic chemical free energy. The main meaning behind Eq.

(16) is that the driving force due to the chemical free energy change at a location

is related to the amount of phase present or more precisely, the amount of phase

to be formed in a given evolution time. Given that k1 = k2 = k3 = K, Eq. (18)
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does not preserve cubic symmetry unless f1 = f2 = 1. The latter is clearly200

not possible in MT in steels because s ≫ δ. However, the coordinate system

defined in Fig. 2 is with respect to the martensite grain while the symmetry

analysis should be based on the austenite grain within which MT is taking place.

Figure 3 demonstrates the relation between the austenite coordinate system

(xγyγzγ) and the martensite coordinate system (xyz). Following the notation205

set by Bowles and MacKenzie [41], the deformation vector ~m = ~s + ~δ in the

austenite coordinate system can be obtained by multiplying its representation

in the martensite coordinate system by a coordinate transformation matrix.

This operation is represented as

[γ, m] = (γ Jα′)[α′m], (19)

where the square bracket represents a 3 × 1 column matrix and (γ Jα′) is a210

3× 3 matrix. The real value of (γ Jα′) is available for many steels and can be

calculated according to crystallographic theory for any steel. For example, the

(γ Jα′) matrix for the 304 stainless steels has been described in reference [42].

Figure 3: A schematic diagram of the coordinate systems in the austenite and the martensite

grains.

Applying the cubic symmetry operations Oh (or m3̄m) to (γ Jα′) will pro-
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duce another 23 formats of (γ Jα′). These 24 formats represent the 24 grain215

variants in MT. Let Hij represent the elements of the (γ Jα′) matrix. Substi-

tuting this into Eq. (19) gives the total free energy in the austenite coordinate

system as

gα′γ =
1

d

3
∑

i=1

(fi + dk)(Hi1φ,x +Hi2φ,y

+Hi3φ,z)
2, (20)

where f3 = 1. The selection of fi will be discussed later in this work. Eq.

(20) preserves cubic symmetry. Substituting Eq. (20) into Eq. (6) leads to the220

governing equation for the phase-field order parameter in MT as,

∂φ

∂t
= Mφ[ǫ

2∇2φ+
1

2ω
φ(1− φ)(1− 2φ)− 30φ2(1− φ)2

×
1

d

3
∑

i=1

(fi + dk)(Hi1φ,x +Hi2φ,y +Hi3φ,z)
2]. (21)

3. Numerical calculation and discussion

To validate the proposed phase-field model, Eq. (21) is solved numerically

using a 6-neighbour explicit finite difference method on a three dimensional

uniform grid with the following parameters: Mφ = 100, λ = 14.3 nm, σ =225

0.6 J/m2. The parameters ǫ and ω are obtained according to ǫ2 = 3λσ/1.1

and ω = λ/(26.4σ). We have also chosen Poisson’s ratio as σp = 0.285. All

input parameters, except for the mobility Mφ, have been obtained from realistic

expected values in martensite transformation in steels. Parameter selection has

taken into account the following considerations:230

Mφ - The phase-field mobility is proportional to the migration rate of the

martensite-austenite interface in MT [36]. The latter has been proven to be very

high and is comparable to the speed of sound in steel. However, a larger value

of Mφ requires a smaller computing time step to retain the numerical stability.

The value of Mφ in the majority of the phase-field simulations for diffusional235

phase-transitions is less than 50 [43], thus one can choose Mφ = 100 to reflect

the high speed martensite growth. It should be pointed out that the selection
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of the value of Mφ does not affect these numerical results in any sense because

no other mechanism is competing with the growth of the martensite grains in

the present simulation.240

λ = 14.3 nm has been used in a number of papers when the Eq. (5) approach

is used for the free energy density [14, 36, 44, 12]. Following on those references,

the grid size is defined as ∆x = 0.5λ so that the interface covers 4 grid points.

The time step is defined according to the mathematical theory on the stability

of the explicit finite difference method.245

σp - Poisson’s ratio is between 0.27 − 0.3 for steels. The average value of

0.285 has been chosen.

σ - The interface energy between martensite and austenite is small due to co-

herence. The value used in the present work is chosen according to experimental

data for the fcc-bcc interface energy of pure iron [45].250

Hij - The elements of the (γ Jα′) coordinate transformation matrix are

different for MT in different materials. Table 1 lists their values for several

iron-alloys [1, 46]. The calculations in the present work utilized the value for

Fe-30Ni-0.3C wt.% alloys. The approximate habit plane indices for this alloy is

{3 15 10}γ .255

For a typical steel, the chemical free energy change is chosen as K = 3.6 ×

109J/m3. There is a range of choices for K over which growth is possible

(∼ 108 − 109), i.e. Yamanaka et al. [35] have chosen to use a chemical driving

force of 1.29×108J/m3 for an Fe-Ni alloy. We assume athermal growth without

diffusion and so we use this value for the purpose of demonstration. Using the

MTS shear modulus model for a 4340 steel [47],

µ(T ) = µ0 −
D

exp(298/T )− 1
,

for µ0 = 85, D = 10 and T = 250◦C we obtain µ = 72× 109 Pa. The term dK

can now be calculated as

dK =
4(1− σp)

µπ c
a

K =
−0.045518313

c
a

. (22)
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Composition (wt.%) Coordinate transformation matrix

Fe-30Ni











0.579632 0.102883 0.5426071

−0.552075 0.086760 0.5732948

−0.014871 0.789220 −0.133758











Fe-1.8C











0.575191 0.542067 0.097283

−0.550660 0.568276 0.089338

−0.008610 −0.131800 0.785302











Fe-30Ni-0.3C











0.575371 0.542097 0.097510

−0.550726 0.568476 0.089244

−0.008855 −0.131888 0.785465











Fe-8Cr-1C











0.584634 0.519305 0.119189

−0.529661 0.583719 0.059597

−0.046858 −0.118861 0.813418











Fe-18Cr-8Ni











0.579356 0.542586 0.102537

0.014470 0.133650 −0.788984

−0.552000 0.572979 0.086936











Table 1: The coordinate transformation matrix of various iron-alloys [1, 46].
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Figure 4: The 24 variants of the martensite grains at 10,000 time steps.

16



For favourable growth, Eq. (18) implies

dK < −1 =⇒
c

a
< 0.045518313.

This gives an aspect ratio well within what is experimentally observed. In fact,

the model must reproduce this same aspect ratio. In other words, writing Eq.

(18) as three separate directions φ,x = φ∗, φ,y = φ∗ and φ,z = φ∗, where φ∗ is

some constant value, in the separate systems respectively, we obtain the total

energy contribution due to Equation (18) as,260

(0.85− dK)φ∗ in system 1 and 2 (23)

(1− dK)φ∗ in system 3. (24)

The resulting ratio will be (1−dK)/(0.85−dK). This must be equal to c/a. The

subsequent quadratic equation gives only a single solution c/a = 0.045197387

for dK < −1. This value is used in the subsequent simulations unless stated

otherwise.

Figure 6 demonstrates the numerical results based on the earlier selected

parameter values. The austenite-martensite boundary is defined as the center

of diffuse interface, i.e. φ = 0.5. The calculations were performed on a 1003 grid

and the time steps for growing the demonstrated martensite plates was 10, 000

steps. The initial condition was to put a spherical martensite seed at the center

of the logistic frame with the phase-field order parameter configured for a single

time step as

f(x) =



















φ(r, t = 0) = 1, for r ≤ ∆x

φ(r, t = 0) = 2
1+exp(r−1) , for ∆x < r < 4∆x

φ(r, t = 0) = 0, for r ≥ 4∆x

.

It can be seen that the martensite grains have developed into oblate ellip-265

soidal shapes. There are 24 variants, and each grain has the grain orientation

the same as that predicted by the crystallographic theory.

To simulate MT in polycrystalline steels, a sample coordinate system should

be chosen, as demonstrated in Fig. 5. The matrix to convert a vector from

17



austenite to sample coordinates, (sJ γ) can be calculated according to the ori-270

entation of the austenite grains. Eq. (19) in the sample coordinates is changed

into the following format

[s; m] = (sJ γ)(γ Jα′)[α′; m]. (25)

The expression for the strain energy in the sample coordinate system can be

obtained directly from Eq. (25) and Eq. (20) using matrix algebra. The phase-

field model presented in the present work can therefore be used to study MT in275

polycrystalline steels.

Figure 5: The schematic diagram of the martensite (xyz), austenite (xγyγzγ) and sample

(xsyszs) coordinate systems.

In steels, the nucleation of the martensite phase takes place at either the

austenite grain boundary or around the inclusions/dislocations inside the austen-

ite grain. Figure 6 demonstrates the numerical results of 50 martensite grains

nucleated and then grown within the computational frame containing 2003 lat-280

tice points and 2 austenite grains. The austenite grains have been grown from

random locations and have met at the diagonal plane within the cube. Their

orientations, in terms of Euler angles, are (0.298854, 0.811461, 0.646287) and

18



(0.292141, 0.408522, 0.477327). A global grain identity number (gg id) is intro-

duced to represent the grain property. For example, the austenite grain bound-285

ary is denoted by gg id = 0. The two austenite grains are denoted by gg id = 1

and gg id = 2. The martensite grains are denoted by gg id = 3, 4, ...52. Marten-

site nucleation is randomly selected in a position with gg id = 0. The growth

of martensite with gg id = i > 2 is only possible from the austenite grain and

only if at least one of the nearest lattice points possesses the same gg id num-290

ber. This ensures that the growth of one martensite grain will be unable to

grow when it meets another martensite grain or enter into another austenite

grain. A case where two martensite plates meet is given in Figure 7. The

justification for applying this procedure is that the governing equations used

here provide the strain energy representation for the transition of phase from295

austenite to martensite. A strain energy representation for the transition of

phase from martensite to martensite is not yet implemented into the model and

is assumed unfavourable here for steels. The morphologies and orientations of

the martensite grains at t=2000, 7000, 10000, 13000, 16000 and 19000 are shown

in Figure 6. The figures are plotted using the in-house three-dimensional visu-300

alization software - MatVisual. Since all the 24 variants have equal possibilities

to nucleate and grow, the steel after MT will not incur the preferred texture.

If an external stress is applied to the steel during MT, martensite grains with

different orientations will have different possibilities to nucleate and grow [42].

Combining the orientation-related nucleation theory with the present phase-

field model will make it possible to simulate the texture formation in stress-

induced MT in steels. Alternatively, suppose that the sample is subjected to an

externally applied stress field σij. The works of Patel and Cohen [48] show that

the energy term resulting from an applied stress can be added algebraically to

the chemical free energy of the transformation, and subsequently in this model,

to the strain energy. It is known that the interaction energy of a martensitic

plate with the applied stress field is composed of a component directed normal

to the plate (and so is a function of δ) and a component directed along the habit

plane ( and so is a function of s) [46]. However, the algebraic representation
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Figure 6: Growth of 50 martensite seeds in 2 austenite grains at t = 2000, 7000, 10000, 13000,

16000 and 19000 time steps.
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Figure 7: A figure of the case where two plates meet. Uniquely identifying each phase gives

the model the ability to differentiate between them.

is not specified. Here we represent this energy in the following form so as to

comply with the form of Eq. (12) and be equally dependent on δ and s,

U = σNδ2 + τs2, (26)

where σN and τ is the stress component resolved normal and on the habit plane

respectively. Writing this in terms of the variable φ as before Eq. (18) now

becomes,305

gα′γ =
1

d
[(0.85 + dk1)φ

2
,x + (0.85 + dk2)φ

2
,y

+(1 + dk3)φ
2
,z]− U, (27)

U = σN (φ2
,z) + τ(φ2

,x + φ2
,y)

where f1 = f2 = 0.85 due to the selection of σp and U > 0 is translated as a

favourable contribution to the energy. As before, we solve the following equation

in order to determine c/a:

1
d
(1 + dK)− σN

1
d
(0.85 + dK)− τ

=
c

a
. (28)
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Figure 8 is obtained by plotting Eq. (28) in order to see the effect of applied

stress on the thickness of the plates. It can be seen that an applied stress normal

to the habit plane causes a larger influence on the thickness whereas stress along

the habit plane has little effect.

Figure 8: 3-Dimensional plot of the plate thickness dependence on the applied stress.

Figure 9 is obtained by investigating the effect of the applied stress on the310

normal component of Eq. (27). It can be seen that an applied stress on the

habit plane results in a large reduction in the transformation energy for growth

normal to the habit plane. Figure 10 is obtained by investigating the effect

of the applied stress on the habit component of Eq. (27). It can be seen

that an applied stress on the habit plane results in a large reduction in the315

transformation energy for growth along the habit plane. Since the magnitude

of increase of the transformation energy due to applied stress in the normal

direction is less than the reduction caused by stress on the habit plane, and vice

versa for the thickness, from these plots it is seen that for general applied stress,

the free energy of formation is reduced (for appropriately oriented variants) and320

the thickness is increased. This is the same conclusion arrived by Ohtsuka et al.

[49]. Of course, some orientation variants will have an unfavourable interaction

with the applied stress field. This can be seen from the two figures that force
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resolved normal to the habit plane is unfavourable in terms of energy reduction.

Figure 9: 3-Dimensional plot of the transformation energy normal to the habit plane and its

dependence on the applied stress.

It is seen from Eq. (27) that if U > 0, the interaction of that particular325

martensitic variant with the applied stress field is favourable. For the simula-

tions of the effects of applied stress on the growth of a single plate, the following

conditions are chosen:

Case 1: ~σij = 0,

Case 2: ~σij =











1 0 0

0 0 0

0 0 1











,330

Case 3: ~σij =











1 0 0

0 1 0

0 0 1











,

where the applied stresses have units of GPa and no rotation matrix is applied

to the plate for demonstration purposes.

Case 1: Eq. (28) is solved giving c/a = 0.0452

Case 2: Eq. (28) is solved giving c/a = 0.0576335

Case 3: Eq. (28) is solved giving c/a = 0.0576.

The results for all cases are given in Figure 11.
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Figure 10: 3-Dimensional plot of the transformation energy in a direction lying on the habit

plane and its dependence on the applied stress.

The method implies that for some cases the nucleated variant has an un-

favourable interaction with the applied stress field and thus, if the unfavourable

interaction is large enough, is unable to evolve. To demonstrate this, all 24340

variants are nucleated and subjected to growth under the same applied stress

field. The results are given in Figure 12. The number of martensitic plates

having a favourable interaction with the applied stress field is 12. The number

of plates having unfavourable interactions but are still able to evolve due to this

interaction being weak are 4. Tables 3.4 and 3.5 in the works of Kundu [46]345

show results which agree with this very well. Aspect ratios of martensite plates

formed in the absence of prior plates were shown to increase with applied stress

[50]. This feature is reproduced in Figures 11 and 12.

It is well known that the total formed martensite volume fraction is a func-

tion of various parameters such as temperature and applied stress. This in-350

dicates the existence of an equilibrium mechanism. The theory developed by

Eshelby [39] provides the necessary contribution to the elastic field at a point

close to and far away from an ellipsoidal inclusion. Due to the complication of

the case for intermediate distances from the inclusion, this is not available as a
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Figure 11: The 3-Dimensional growth of the plate and the 2-Dimensional contour plot of the

value of φ under no applied stress (top), σ11 = σ33 = 1GPa (middle), and σ11 = σ22 = σ33 =

1GPa (bottom).
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Figure 12: 3-Dimensional plot of the 24 grain variants under a uniaxial applied stress of

1GPa.

simple phenomenological model. Rather than resolving the elastic stress tensor355

throughout the sample at each location, the model can diffuse elastic properties

during plate growth in such a manner as to reproduce the phenomenological

model of Eshelby’s inclusion at large distances. Similar treatment has been ap-

plied to the evolution of the plastic strain energy in the past [35]. Application

of this procedure will enable the present model to both reproduce variant selec-360

tion due to formed martensitic plates and to predict the final volume fraction

of martensite due to the elastic field effect of prior formed plates. This problem

is not tackled in the present work and will be revisited by future work.

4. Conclusion and remarks

A phenomenological phase-field model has been developed. The model is365

different from existing phase-field models for martensite transformation in many

aspects:

a) The model developed in the present work has introduced only one phase-

field order parameter, while other phase-field models for MT utilise three order

parameters. This has reduced the computing time in the simulation of MT370
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by two-thirds. The meaning of the phase-field order parameter in the present

work is associated with the volume fraction of the martensite phase. The order

parameters in some of the other phase-field models are related to the Bain strain

in three directions. The present model is easy to scale up to deal with a much

larger domain and include additional factors in the growth mechanics.375

b) The phase-field model developed in the present work utilises the phe-

nomenological strain energy description associated with MT directly. Most

other phase-field models are based on the elastic field analysis in martensite

transformation, which require the calculation of elastic distortion in steels. Due

to the phenomenological description, the present phase-field model enables the380

reproduction of a more realistic steel microstructure formed by the martensite

phase transition.

c) The model proposed in the present work is able to produce 24 variants with

accurate crystallographic orientations. This provides opportunities to simulate

texture formation and evolution in steel processing.385

d) It is straightforward to expand the current phase-field model to the sim-

ulation of the stress-induced martensite transformation within polycrystalline

steels. The method can be used directly to simulate MT in some real steels

since the input parameters for the present phase-field model, such as the crys-

tallographic data, are available for most steels.390

e) The phase-field model has been shown to be able to incorporate the effects

of applied stress to the resulting strain energy change and subsequently on

variant selection. In addition, the models ability does not end at uniaxially

applied stresses but also those with arbitrary direction vectors.

f) It has been shown to be relatively simple, both due to the ease of the com-395

prehension of the model and due to the reduced computational effort, to include

mechanisms that effect the evolution of martensite as long as phenomenological

formulae for the effect of the mechanism is accessible.

g) Due to the progressive nature of the model, the size and shape of a plate

need not be checked at all throughout the simulation.400

h) The effects of temperature and composition on the morphology of formed
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plates are incorporated directly throught the term K. This enables the part

of autocatalysis which is influenced by local driving force changes such as that

seen in bainite formation due to local composition changes [51].

Due to the phenomenological description, some of the microscopic phenom-405

ena in martensite phase transitions have not been addressed in the present work,

for example, the effect of the dislocation density on the morphology and orien-

tation of martensite grains and the crack formation in the martensite grain.

These problems will be addressed in future works.
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[33] H. K. Yeddu, A. Borgenstam, J. Å gren, Effect of martensite embryo575

potency on the martensitic transformations in steelsA 3D phase-field

study, Journal of Alloys and Compounds 577 (2013) S141–S146.

doi:10.1016/j.jallcom.2012.01.087.

URL http://linkinghub.elsevier.com/retrieve/pii/

S0925838812001594580

[34] Y. Wang, a.G. Khachaturyan, Three-dimensional field model and computer

modeling of martensitic transformations, Acta Materialia 45 (2) (1997)

759–773. doi:10.1016/S1359-6454(96)00180-2.

URL http://linkinghub.elsevier.com/retrieve/pii/

S1359645496001802585

[35] A. Yamanaka, T. Takaki, Y. Tomita, Elastoplastic phase-field simulation

of martensitic transformation with plastic deformation in polycrystal,

International Journal of Mechanical Sciences 52 (2) (2010) 245–250.

doi:10.1016/j.ijmecsci.2009.09.020.

URL http://linkinghub.elsevier.com/retrieve/pii/590

S0020740309001696

[36] R. Qin, E. Wallach, A method to compute the migration rate of planar

solidliquid interfaces in binary alloys, Journal of Crystal Growth 253 (1-4)

(2003) 549–556. doi:10.1016/S0022-0248(03)01042-X.

URL http://linkinghub.elsevier.com/retrieve/pii/595

S002202480301042X

[37] A. Wheeler, W. Boettinger, G. McFadden, Phase-field model for isothermal

phase transitions in binary alloys, Physical Review A 45 (10) (1992) 7424–

7440.

URL http://pra.aps.org/abstract/PRA/v45/i10/p7424_1600

34



[38] S. Kim, W. Kim, T. Suzuki, Interfacial compositions of solid and liquid in a

phase-field model with finite interface thickness for isothermal solidification

in binary alloys, Physical Review E 58 (3) (1998) 3316–3323. doi:10.1103/

PhysRevE.58.3316.

URL http://link.aps.org/doi/10.1103/PhysRevE.58.3316605

[39] J. Eshelby, The determination of the elastic field of an ellipsoidal inclusion,

and related problems, Proc. R. Soc. London Sect. A 241 (1957) 376.

URL http://rspa.royalsocietypublishing.org/content/241/1226/

376.short

[40] J. Christian, Accommodation strains in martensite formation, and the use610

of a dilatation parameter, Acta Metallurgica 6 (1958) 377–379.

URL http://scholar.google.com/scholar?hl=en&btnG=Search&q=

intitle:Accommodation+strains+in+martensite+formation,+and+

the+use+of+a+dilatation+parameter#0

[41] J. Bowles, J. Mackenzie, The crystallography of martensite transformations615

I, Acta Metallurgica 2 (1954) 129.

URL http://www.sciencedirect.com/science/article/pii/

0001616054901029

[42] S. Kundu, H. Bhadeshia, Crystallographic texture and interven-

ing transformations, Scripta Materialia 57 (9) (2007) 869–872.620

doi:10.1016/j.scriptamat.2007.06.056.

URL http://linkinghub.elsevier.com/retrieve/pii/

S1359646207004940

[43] T. Takaki, T. Fukuoka, Y. Tomita, Phase-field simulation during

directional solidification of a binary alloy using adaptive finite ele-625

ment method, Journal of Crystal Growth 283 (1-2) (2005) 263–278.

doi:10.1016/j.jcrysgro.2005.05.064.

URL http://linkinghub.elsevier.com/retrieve/pii/

S0022024805007074

35



[44] A. Wheeler, W. Boettinger, G. McFadden, Phase-field model of solute trap-630

ping during solidification, Physical review E 47 (3).

URL http://pre.aps.org/abstract/PRE/v47/i3/p1893_1

[45] Z. Yang, R. Johnson, An EAM simulation of the alpha-gamma iron in-

terface, Modelling and Simulation in Materials Science and Engineering 1

(1993) 707.635

URL http://iopscience.iop.org/0965-0393/1/5/010

[46] S. Kundu, Transformation strain and crystallographic texture in steels,

Ph.D. thesis, University of Cambridge London (2007).

URL http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.541810

[47] B. Banerjee, The mechanical threshold stress model for various tempers of640

AISI 4340 steel, International journal of solids and structures (2005) 1–44.

URL http://www.sciencedirect.com/science/article/pii/

S002076830600182X

[48] J. Patel, M. Cohen, Criterion for the action of applied stress in the

martensitic transformation, Acta Metallurgica 1 (5) (1953) 531–538.645

URL http://www.sciencedirect.com/science/article/pii/

0001616053900832

[49] H. Ohtsuka, G. Ghosh, H. Wada, Size and aspect ratio of martensite in

FeNiC alloys formed under applied magnetic field and tensile elastic stress

at 4.2 K, Materials Science and Engineering: A 273-275 (1999) 342–346.650

doi:10.1016/S0921-5093(99)00426-8.

URL http://linkinghub.elsevier.com/retrieve/pii/

S0921509399004268

[50] G. Ghosh, V. Raghavan, The dimensions of isothermally formed marten-

sitic plates in an FeNiMn alloy, Materials Science and Engineering 79 (2)655

(1986) 223–231. doi:10.1016/0025-5416(86)90407-6.

URL http://linkinghub.elsevier.com/retrieve/pii/

0025541686904076

36



[51] T. Arif, R. Qin, A phase-field model for bainitic transfor-

mation, Computational Materials Science 77 (2013) 230–235.660

doi:10.1016/j.commatsci.2013.04.044.

URL http://linkinghub.elsevier.com/retrieve/pii/

S0927025613002164

37



Appendix E

A phase-field model for bainitic

transformation

Computational Materials science 77 (2013) 230-235

182



A phase-field model for bainitic transformation

T.T. Arif, R.S. Qin ⇑

Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, UK

a r t i c l e i n f o

Article history:

Received 6 January 2013

Received in revised form 16 March 2013

Accepted 18 April 2013

Keywords:

Displacive phase transitions

Phase-field model

Bainite transformation

Cubic crystal

Autocatalysis

a b s t r a c t

A phase-field model for the computation of microstructure evolution for the bainite transformation has

been developed. The model has a classical phase-field foundation, incorporates the phenomenological

displacive transformation theory and the symmetric analysis of cubic crystals, and is able to reproduce

realistic grain morphology and crystal orientation after adequate calibration. Using the free energy

expression for the shape change of displacive transformations along with the free energy formula for

the chemical free energy change of the two phases derived from established regular solution models,

the current model is able to deal with autocatalysis.
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1. Introduction

The phase-field (PF) method is used in the domain of materials

science for simulating microstructure evolution on the mesoscale.

The locations, sizes and shapes of the grains involved are repre-

sented by the PF variables. The evolution of the PF variables is then

governed by a set of partial differential equations. They have nearly

constant values within the grains but vary continuously over the

interfaces between them. This means that the interface has a width

and is not infinitesimally thin. Thus the method is said to have a

diffuse-interface description. Unlike sharp interface methods, the

diffuse-interface nature enables the computation of complex

microstructures without explicitly tracking the interfaces. The

method has been reviewed extensively, such as that in Refs. [1,2].

A PF model involves the formulation of a free energy functional

of the PF variables and their gradients. - A form of the free energy

functional includes the PF variable / as a means of distinguishing

coexisting phases along with the composition field C and temper-

ature T as [3]

G ¼

Z

V

g0ð/;C; TÞ þ
1

2
e2Cð

~rCÞ2 þ
1

2
e2/ð

~r/Þ2
� �

d~r ð1Þ

where eC and e/ are the gradient energy coefficients and g0(/, C, T) is

the free energy density over the volume V. The governing equation

for / is derived from G in a thermodynamically consistent manner

adhering to the second law of thermodynamics. Eq. (1) can be cou-

pled with a thermodynamic database [4–7] and used for the simu-

lation of solidification [8], grain growth [9], solute drag [10] and

many other processes. The method has thus gained momentum in

microstructure formation and evolution. In solid state phase trans-

formations there have been PF models that consider displacive

transformations [11] and those that consider diffusive transforma-

tions [9,12].

Considered within the present work is a PF model able to utilise

both diffusive and displacive mechanisms in its treatment of

microstructure evolution. The microstructure focussed upon is bai-

nite. Bainite is a microstructure resulting from the decomposition

of austenite usually found to occur at a temperature between the

pearlite reaction and the martensite start temperature (Ms). Ini-

tially detected as a unique microstructure in the early 1900s

[13,14], interest in this multi-phase product of austenite grew once

its benefits were realised. Bainitic steels boast improved strength

without the expense of weldability and toughness and have appli-

cations in the railway, automotive industries and structural engi-

neering [15–19]. The time-consuming process of producing

bainitic steels prompted the desire to understand and formulate

models for the kinetics and formation of bainite.

Following the kinetic model of Bhadeshia [20] the supersatu-

rated ferrite sub-units form in austenite via a displacive mecha-

nism. The ferrite sub-units form martensitically without the

partitioning of alloying elements. Due to the higher temperatures

when compared to martensite, the partitioning of the interstitial

carbon from the supersaturated ferrite into the residual austenite

follows soon after. Upon carbide precipitation in the austenite,

the upper bainite microstructure forms. As the temperature is re-

duced, this diffusion process is slowed down which results in

carbon precipitation within the bainitic ferrite giving lower bainite
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[21]. The transformation strains are accommodated plastically

with the growth of the sub-unit limited by the dislocation debris

[20,22–24]. The repeated nucleation and growth of these supersat-

urated bainitic ferrite sub-units gives the overall sheaf structure.

There have been efforts to model Bainitic phase transformation

using a multiple order parameter phase-field model [25], in which

both displacive transformation and carbon diffusion are consid-

ered. However, their work considers the entire sheaf as a single

structure. This is opposed to the experimental fact that a sheaf

consists of many individual sub-units. In the present work, a single

order parameter phase-field model will be developed and the

sub-units in bainite will be considered.

2. The phase-field model and the transformation theory

The governing equation for the phase-field order parameter, /,

derived from Eq. (1) using the second law of thermodynamics is gi-

ven as [3,26]

@/

@t
¼ M/ e2r2

/þ
1

2x
/ð1ÿ /Þð1ÿ 2/Þ ÿ 30/2ð1ÿ /Þ2ðgaB ÿ gcÞ

� �

ð2Þ

where 0 < / < 1 is the interface between austenite and supersatu-

rated ferrite with / = 0 representing the austenite and / = 1 the

supersaturated ferrite. e is the gradient energy coefficient and the

coefficient x is related to the kinetic barrier. gaB and gc are the bulk

free energies of the supersaturated ferrite and austenite, respec-

tively. The parameters are related by the equations e2 ¼ 3kr=1:1
and x ¼ k=ð26:4rÞ [27], where r and k is the interface energy and

half-thickness of the interface, respectively. gaB–gc is the driving

force for microstructure evolution.

Bhadeshia expressed the strain energy of an ellipsoidal inclu-

sion for the example of a martensitic grain as [28]

gstrain
aBc ¼

a1
a2
l � m2 ¼

a1
a2
lðs2x þ s2y þ d2Þ ð3Þ

where m is the total deformation and is the sum of the shear strains

along the x direction sx and along the y direction sy, and the uniaxial

dilatation strain d. a1 and a2 are the dimensions of the ellipsoid and

l is the shear modulus. In the current phase-field model, the super-

saturated ferrite can be considered as an ellipsoidal inclusion. The

orientation of the interface is represented by the gradient of the

phase-field order parameter

n̂ ¼
r/

jr/j
¼

1

jr/j

@/

@x
x̂þ

@/

@y
ŷþ

@/

@z
ẑ

� �

ð4Þ

Phase transformation takes place at the interface. For an interface

with surface area ds and migration rate ~mðtÞ, the volume of the

new phase formed in the transformation within time duration dt

is ds �~mðtÞ � n̂dt. The dimension of the newly formed phase along

the x direction is therefore represented as

ds � j~mðtÞj � dt
jr/j

�
@/

@x
/

@/

@x
ð5Þ

The growth of the new phase along different directions causes dif-

ferent amounts of strain. Therefore, one has sx / f1
@/
@x
; sy / f2

@/
@y

and

d / f3
@/
@z
. Eq. (3) is hence represented as

gstrain
aBc ¼ f 21 /

2
x þ f 22 /

2
y þ f 23 /

2
z ð6Þ

where /xi
¼ @/=@xi is the rate of change of / in the xi direction. The

change of chemical free energy only depends on the amount of new

phase formed, and the free energy density difference between the

new and parent phases.

The driving force is then

gaBc ¼ gaB ÿ gc ¼ ðgstrain
aB ÿ gstrain

c Þ þ ðgchem
aB ÿ gchem

c Þ

¼ ðf 21 /
2
x þ f 22 /

2
y þ f 23 /

2
z Þ þ gchem

aBc ð7Þ

The chemical free energy density difference can be obtained from a

thermodynamic database and is usually isotropic [1,4], meaning

k1 = k2 = k3 = k in the following equation:

gchem
aBc ¼ k1/

2
;x þ k2/

2
;y þ k3/

2
;z ð8Þ

It should be pointed out that fi and ki are unspecified coefficients so

far and that the squares of the fi can been omitted since the square

of an unspecified constant remains an unspecified constant. Eq. (7)

is therefore reduced to

gaBc ¼ ðf1 þ k1Þ/
2
;x þ ðf2 þ k2Þ/

2
;y þ ðf3 þ k3Þ/

2
;z ð9Þ

Given a transformation matrix from the growing crystal coordinate

system to the parent crystal coordinate system with elements rep-

resented by Hij, the final form of the driving force becomes for an

isotropic chemical free energy (k1 = k2 = k3 = k)

gaBc ¼
X

3

i¼1

ðfi þ kÞðHi1/;x þHi2/;y þHi3/;zÞ
2 ð10Þ

The phase transition from the parent phase to the new phase re-

quires that gaBc < 0. The fi are specified as f1 = f2 and f3 = c1f1 accord-

ing to the experimental observation of the morphology of the new

phase. c1 is a shape factor in the anisotropic driving force and re-

lated to the equilibrium aspect ratio of the bainite sub-unit. In dis-

placive phase transformation, solute composition of the new phase

is the same as that for the matrix due to its diffusionless nature. The

volume change between the new phase and the parent phase is

incorporated in the strain and the transformation matrix Hij.

The width of the bainitic sub-units depend upon alloying ele-

ments. In particular, an increase in carbon concentration translates

to a decrease in the aspect ratio of the sub-units [29]. This means

that the shape factor c1 � c1(c) is a function of the carbon concen-

tration c. Due to the shape change we must have that

c1f1 þ k P f1 þ k 8 c1; k. Since k < 0 we immediately have that

c1 P 1 � c1 is a monotonic decreasing function of c. Also at the equi-

librium between bainitic ferrite and austenite (i.e. at T 0
0 and c�), we

have zero driving force for bainite growth giving c1(c
�)f1 + k(c�) =

f1 + k(c�) = 0. Since k(c�) =ÿf1, we have that f1 + k(c�) = 0 holds. In or-

der for c1(c
⁄)f1 + k(c⁄) = 0 to be true we must have c1(c

�) = 1.

Given a function l(c) describing the aspect ratio of bainitic sub-

units, we can impose the requirement that at a carbon composition c

c1ðcÞf1 þ kðcÞ ¼ bðlðcÞÞðf1 þ kðcÞÞ ð11Þ

where b is a function relating the coefficient of the right hand side

of Eq. (11) to the resulting aspect ratio. To clarify Eq. (11), c1(c) is

the previously mentioned shape factor and l(c) is the experimen-

tally observed aspect ratio. However, observing Eq. (2) it is not obvi-

ous that the resulting aspect ratio of the bainite sub-units in the

models output has a simple relation to c1(c). In other words, a shape

factor of c1 does not necessarily result in an aspect ratio of c1. There-

fore, b is introduced to establish the connection between c1(c) and

the resulting aspect ratio. For instance Fig. 1 shows that the evolu-

tion of the resulting aspect ratio given an input coefficient of 0.05

(i.e. 0.05(f1 + k(c))) tends to a limit (approximately 0.125). This

would then mean that b(0.125) = 0.05.

Given reports that an aspect ratio of 0.025 is most frequently

observed with 0.008 being the minimum, we require that

l(c�) = 0.008 and at the initial average composition of
�c; ðl�cÞ ¼ 0:025. Then c1 can be calculated as

c1ðcÞ ¼
bðlðcÞÞðf1 þ kðcÞÞ ÿ kðcÞ

f1
ð12Þ
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Note that it gives c1(c
�) = 1 and for c < c�, c1(c) > 1. Since austenite

enrichment will only serve to provide the nucleation of bainite in

a higher carbon enriched environment, the local composition will

not drop below �c.

Within this work we assume l(c) to be a function of the form,

lðcÞ ¼ ÿh4 tan
ÿ1ðh1c þ h2Þ þ h3 ð13Þ

with the conditions that

(a) l(c) = 0.008 at c = c⁄.

(b) l(c) = 0.025 at c = �c.

(c) l(c)? 0 as c?1.

(d)
R c¼c�

c¼�c
lðcÞdc >

R x¼c�

x¼�c
ÿ0:017
c�ÿ�c

ÿ �

xÿ �cð Þ þ 0:025
� �

dx.

Eq. (13) is visualised along with the conditions in Fig. 2. Using

(a–c), Eq. (13) can be written in terms of h4 which can then be

specified using condition (d). By imposing the last condition we ca-

ter for the observation that some aspect ratios are more common

than others. The choice of Eq. (13) is due to its monotonic decreas-

ing nature and that it can be made to satisfy condition (d). The

integral on the right hand side of condition (d) is the area beneath

a linear equation from coordinates ð�c;0:025Þ to (c�, 0.008). The four

conditions ensure that the majority of the aspect ratios observed

are close to 0.025. In reality, l(c) will be determined from more

thorough experimental evidence so that sub-units with accurate

aspect ratios are observed for corresponding carbon enrichment.

Note that it has been assumed that the majority of the c range con-

sists of 0.025 aspect ratios and the larger ratios lie below �c .

After the displacive transformation, carbon in supersaturated

ferrite starts to precipitate away from the ferrite and forms

cementite. Both the ferrite and the cementite form the bainite.

The formation of the supersaturated ferrite is formed by displacive

transformation. But the formation of the cementite phase is a

reconstructive transformation and is controlled by the diffusion.

The governing equation for solute concentration is determined

using the Cahn–Hilliard diffusion equation [30]

@c

@t
¼ r � MCr

dG

dc

� �

ð14Þ

and conserves mass. The free energy density (the expression within

the integral) of Eq. (1) is written as

g ¼ hð/ÞgaB þ ½1ÿ hð/Þ�gc þ
1

4x
/2ð1ÿ /Þ2 þ

1

2
e2jr/j2 ð15Þ

The interpolation function [31] h(/) = /3(6/2–15/ + 10) is trans-

lated as the local volume fraction of the phase. MC is the concentra-

tion mobility and dG
dc
¼ @g

@c
ÿr � @g

@rc
is the functional derivative. To

determine MC, Eq. (14) is expanded into

@c

@t
¼ r � ½Drc� ð16Þ

where D ¼ MC
@2g
@c2

and D is the diffusivity. The form of gchem for the

binary Fe–C system with two sublattices and a1 and a2 sites with

site 1 occupied by Fe and site 2 occupied by C and Va (vacant sites)

is given as [32,33]

gchem ¼ Y20

VaGFe:Va þ Y20

C GFe:C þ RT½a2ðY2
C lnY2

C þ Y2
Va lnY2

VaÞ�

þ Y2
VaY

2
CLFe:Va;C þ Gmo

m ð17Þ

where Y s
i denotes the site fraction of component i on sublattice s,

LFe:Va,C is an interaction parameter with the comma separating

two components in the same sublattice and a colon separating

two in different sublattices. The relation between the site fraction

and molar fraction xi of component i is given as xi ¼

P

s
asYs

i
P

s
asð1ÿYs

VaÞ
and

YVa = 1–YC. G
mo
m is the contribution due to magnetic ordering, 0GFe:Va

is the Gibbs free energy of pure Fe and along with 0GFe:C and LFe:Va,C
is given in [32]. We have a = 3, a1 = 1 and a2 = 3 for ferrite and a = 1

and a1 = a2 = 1 for austenite. Note that here Eq. (17) corresponding

to ferrite is used to approximate gaBchem. Thus, using Eq. (17), the

functional derivative in Eq. (14) can be calculated as dG
dc
¼ @g

@c
, which is

just the chemical potential. This is calculated both in ferrite a and

austenite c and takes the form

@g

@c
¼ hð/Þ

@gaBchem
@c

þ ½1ÿ hð/Þ�
@gcchem
@c

@2g

@c2
¼ hð/Þ

@2gaBchem
@c2

þ ½1ÿ hð/Þ�
@2gcchem
@c2

ð18Þ

where the volume fraction h(/) takes on the value 1 in ferrite and 0

in austenite. D in Eq. (16) is then calculated via Eq. (18).

For autocatalytic nucleation, a random number generator is

used around the ferrite tip area of previous sub-units with the

nucleation probability being calculated according to the driving

force at that lattice point. During the transformation there will

be carbon enrichment of the residual austenite reducing the

Fig. 1. The evolution of the aspect ratio with time for an input coefficient of 0.05. In

the figure the discrete steps are due to the lattice spacing while the system evolves

toward the limiting aspect ratio.

Fig. 2. A plot of l(c) with h1 = 6843.168, h2 = ÿ136.22, h3 = 0.012566, h4 = 0.008,

c� = 0.02 and �c ¼ 0:0111. The implications of the conditions of Eq. (13) are shown in

the figure. Condition (d) implies that
R

l(c)dc >
R

f(c)dc within the range �c 6 c 6 c� . It

can be seen from the figure that for the majority of the c range, l(c) returns an aspect

ratio close to 0.025 .
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driving force available for the nucleation and growth of subsequent

sub-units. The condition for growth is DGc ? a < ÿ400 J molÿ1,

where DGc ? a is the chemical free energy change for the transfor-

mation [34]. This equation is simply the locus of points for which

the free energies of bainite and austenite are equal (T 0
0 in [35]).

At the points above this line the driving force is insufficient to com-

pensate for the strain energy involved in the plastically accommo-

dated bainite transformation [15,35]. The effect of carbon

enrichment in austenite is to reduce the magnitude of the k term

in Eq. (10) until eventually growth is no longer favoured.

3. Results and simulations

An explicit finite difference method is used in solving Eqs. (2)

and (14). The phase-field mobility is chosen as M/ = 100 to reflect

the speed of bainite transformation when compared to diffusional

transformations and the concentration mobility is MC = 0.00046 in

order to be slower than the displacive growth of the sub-units. The

half-interface thickness and interface energy are k ¼ 14:3 nm

[3,26–28] and r = 0.72 J/m2 [36], respectively. The grid point spac-

ing is defined as Dx ¼ 0:5k giving the width of the interface as 4

grid points [3,27,37]. k is related to the chemical free energy at

500 °C and is determined using Eq. (17). The following numerical

results are obtained with 0.241 wt% carbon initially distributed

homogeneously over the entire system.

The simulations are set up as follows: the simulation grid is set

up with a given set of dimensions. The lattice points at the sides

and edges of the grid are not part of the domain and are simply

there to contain the system domain. In the case of a single austen-

ite grain, an austenite grain is grown spherically from the centre

until the entire grid is austenite (except for the previously men-

tioned lattice points at the sides and edges). When a bainite sub-

unit is nucleated at the boundary, the nucleation actually occurs

a single lattice point away from the austenite grain boundary

and two lattice points from the grid sides and edges. In the case

of multiple austenite grains, the grains are grown spherically from

multiple locations within the grid. When two austenite grains

meet, there will be two adjacent lattice points consisting of austen-

ite grain boundary and no growth will occur here.

A single sub-unit was nucleated at the centre of the logistic do-

main of dimension 1003. The sub-unit grows to a limited size be-

fore its growth is stopped. Carbon is segregated out of the ferrite

during the sub-unit growth but at a much slower speed than the

growth of the sub-unit itself. Fig. 3 represents the carbon distribu-

tion evolution across a sub-unit and shows that the concentration

within the sub-unit approaches minimum while the carbon con-

tent approaches the average concentration with increasing dis-

tance from the centre of the sub-unit. Fig. 4 shows the carbon

profile and the driving force across a sub-unit.

A second simulationwith the sameparameterswas performed in

order to demonstrate autocatalysis. Fig. 5 is the result from the

nucleation of a sub-unit at the austenite grain boundarywith subse-

quent autocatalytic events while Fig. 6 shows a single autocatalytic

Fig. 3. Concentration profile of carbon across the bainitic ferrite/austenite interface

at increasing time steps.

Fig. 4. Images of (a) carbon composition distribution and (b) driving force distribution across a sub-unit.
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event. Fig. 7 presents the resulting sheaf obtained from repeatedly

applying the autocatalysis event of Fig. 5 using MatVisual.

4. Discussion and conclusion

The bainite transformation temperature is chosen as 500 °C so

as to concur with all the temperature ranges given by the equa-

tions found in [38–41] for 0.241 wt% C. The apparent thickness of

bainitic sub-units was shown to depend on temperature [34]. In

this case c1(c) can be made to depend upon temperature. Carbide

precipitation was not considered for the numerical results, how-

ever, there are many applications of carbide-free bainitic steel [34].

From the carbon profile in Fig. 4a, we see that enrichment oc-

curs much less in the austenite at the tip of the sub-unit. This is

due to the larger surface area available for diffusion of carbon

out of the ferrite. The diffusion process continues until chemical

equilibrium is reached. The rate at which carbon is ejected from

the ferrite into the austenite is much faster than the diffusion rate

of carbon in austenite. This causes the austenite adjacent to the

sub-unit to become supersaturated for some time while gradually

homogenising over the domain. In the case of bainite growth, mul-

tiple sub-units are nucleated in close proximity with films of aus-

tenite in between. Fig. 6 shows the carbon profile for a single

autocatalytic event. Here the carbon is seen to be trapped in the

film of austenite between two sub-units. The relatively slowmobil-

ity of carbon in austenite along with this trapping effect prolongs

the bainite transformation [21,42] enabling a volume fraction of

bainite to form that is greater than if the concentration was distrib-

uted homogeneously. The concentration levels of the trapped aus-

tenite films may then exceed the concentration levels given by the

T 0
0 curve [34].

The driving force distribution about a sub-unit is displayed in

Fig. 4b. Due to the increased amount of carbon ejected into the aus-

tenite adjacent to the sub-unit, there is a larger reduction in driv-

ing force in these areas rather than at the tips of the sub-units

where carbon saturation is to a lesser degree.

In models for calculating the kinetics of bainite transformation,

an autocatalysis factor is often used to gauge the rate of autocatal-

ysis [21]. In the present phase-field model this is implicitly taken

into account by the random number generation along with the

driving force so that the location and rate of autocatalysis is gov-

erned by the current state of the system. The nature of this method

of incorporating autocatalysis enables carbon enrichment to affect

Fig. 5. Autocatalysis events at the tip of a sub-unit nucleated at the grain boundary

(grid size = 1503).

Fig. 6. The carbon concentration profile of a single autocatalysis (grid size = 1003). The figures are of a small section of the simulation domain and not the entire domain itself.
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a particular sheaf while the less enriched blocky austenite is still

allowed to transform [21]. The effect of an increase in carbon con-

centration is translated into the model through the k term of Eq.

(10) reducing the driving force and subsequently the speed of

growth until growth is no longer possible. This will enable the

reproduction of the incomplete transformation phenomenon fre-

quently seen in bainite formation [21].

The numerical results were obtained for a 1003 and 1503 grid. A

larger domain will result in a more accurate visual representation

since the interface between the two phases while remaining as

four grid points will constitute a smaller fraction of the domain.

The concentration mobility MC was chosen as such because the va-

lue resulting from Eq. (16) while realistic is too small and subse-

quently slows the simulation. However, as long as the choice is

much smaller than the phase-field mobility so as to not diffuse

too far ahead of the interface, the results remain accurate. The cur-

rent model can be adapted to simulate a whole sheaf by repeatedly

applying the autocatalytic process as seen in Fig. 7. The driving

force for the nucleation of bainite is expressed imperially as

DGm ¼ Gn ÿ l1ðWs ÿ TÞ

where l1 = 7.66 J/(mol K), Gn is the universal nucleation function gi-

ven by Gn = l2Ws–l3 where l2 = 3.6375 J/(mol K) and l3 = 2540

J/mol [15,34,35]. Here, Ws is the highest temperature at which

ferrite can nucleate via a displacive mechanism. The condition for

nucleation at a grain boundary is then DGm < Gn [21]. In order to

produce multiple sheaves of bainite, this condition for nucleation

as well as the condition for growth can be used in the present

model. The function b(l(c)) can be determined by simulations such

as that in Fig. 1.

The phase-field variable / in this paper is a means of determin-

ing the existence of the bainitic ferrite phase. When it comes to

bainitic ferrite phases with different orientation, the growth direc-

tion (being different for each orientation) is incorporated implicitly

into the model through the transformation matrix Hij of Eq. (10). Hij

is an input parameter and is specified for each bainite sheaf. When

considering multiple austenite grains, the orientation matrix of

each austenite grain is then incorporated into Hij by multiplying

it with the bainite sheaf transformation matrix. The presence of

this transformation matrix enables the simulation of multiple

sheaves of bainite within multiple grains of austenite with only a

single phase-field variable.

The developed phase-field model utilises just a single phase-

field order parameter reducing the computation time. The order

parameter used is related to the volume fraction of bainite formed

and can be extracted from the model. The phenomenological

description enables a more realistic morphology of bainite forma-

tion in steels. Carbide formation has not been considered in the

present work and may be considered in the future.
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Abstract. The phase-field method is rapidly becoming the method of choice for simulating the 
evolution of solid state phase transformations in materials science. Within this area there are 
transformations primarily concerned with diffusion and those that have a displacive nature. There 
has been extensive work focussed upon applying the phase-field method to diffusive 
transformations leaving much desired for models that can incorporate displacive transformations. 
Using the current model, the formation of martensite, which is formed via a displacive 
transformation, is simulated. The existence of a transformation matrix in the free energy expression 
along with cubic symmetry operations enables the reproduction of the 24 grain variants of 
martensite. Furthermore, upon consideration of the chemical free energy term, the model is able to 
utilise both the displacive and diffusive aspects of bainite formation, reproducing the autocatalytic 
nucleation process for multiple sheaves using a single phase-field variable. Transformation matrices 
are available for many steels, one of which is used within the model. 
 

Introduction  
    The phase-field (PF) modelling of microstructure evolution has evolved considerably with its 
current forms being established more than 20 years ago by Chen [1], Wang [2] and Langer [3]. 
However, in comparison to other more established methods, it is considered that the PF method is 
yet to sufficiently mature. While there have been many works focussed upon diffusion based 
growth such as solidification [4], grain growth [5,6] and solid-state sintering [7], there are few 
models established for realistic reproduction of the displacive transformations martensite and 
bainite. 
    There are two types of PF models when it comes to the application of the method. The first type 
(Type A) was derived from microscopic theory ([1,2]) and applied to solid-state phase 
transformations. The field variables in this type of model are related to physical order parameters 
such as the local composition and long-range order parameters corresponding to crystal symmetry. 
In the second type (Type B), the main variable is called the phase-field variable and is 
phenomenological in nature ([3]). This variable is introduced in order to relieve the computational 
strain of having to track the interfaces between domains explicitly. This type of model is more 
popular in solidification models. 
    We will be applying a PF model of the second type with a single PF variable to martensite 
formation and with an additional composition field variable to bainite formation. This is due to its 
phenomenological description and its ability to deal with larger systems with relatively low 
computational cost. The derivation of the model involves the PF parameters which are determined 
by comparison with observed macroscopic properties and with the sharp-interface equations at the 
zero-width limit. The value of the PF variable is considered constant within domains while varying 
continuously between two domains. The location of the interface between two domains is 
determined by the value of the PF variable.  
Any further mention of the PF method will imply Type B as mentioned previously. 
 
The phase-field model  

    A PF model begins with the description of the free energy of the system as a functional of the PF 
variable φ , the composition field C , and temperature T  [8], 
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where Cε  and φε  are the gradient energy coefficients corresponding to the composition field and 

the PF variable respectively. g  is the free energy density of the domain Ω . 0=φ refers to the 

parent phase and 1=φ refers to the product phase while 10 << φ  is considered the interface 

between the two. 
    In steels, MT is accompanied by a transformation from a face-centered-cubic lattice to a body-
centered-cubic lattice. The transition from the parent austenite phase to martensite is due to the 
chemical free energy difference of the two phases. The resulting morphology of the martensite grain 
is then due to the strain energy difference. While the chemical free energy of the two phases is 
important, there is no actual change in the composition field during martensite transformation in 
steel. This means that the free energy density need not involve any gradients of the composition 
field. The free energy density is then written in terms of the PF variable and the bulk free energy 
densities 'αg  and γg  of the martensite and austenite phases respectively as [8], 
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where )10156()( 23 +−= φφφφh  is the volume fraction of martensite. The coefficient ω  is related 

to the kinetic barrier. 
    The governing equation for the PF variable is obtained by applying the second law of 
thermodynamics to Eq. 1 [8], 
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where φM  is called the PF mobility and is related to the rate of growth of the product phase which 

in this case is the martensite. γα gg −'  is the driving force for the transformation and we have 

equilibrium when γα gg =' . Note that this is different from diffusional transformations where the 

common tangent rule is applied. 
    The free energy change, γα gg −' , can be seperated into the free energy change due to the 

chemical free energy difference, 
chemchem

ggK γα −= ' , and that due to the strain energy difference, 
strainstrainstrain

ggg γαγα −= '' . K  is assumed to be constant for MT. 

    The strain energy difference can be approximated in the following form [9], 
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where δ


+= sm  is the deformation vector with s


 and δ


 the shear and dilatation vectors 
accompanying MT respectively. The dilatation vector is normal to the habit plane whereas the shear 
vector lies on the habit plane, i.e. yx sss


+=  where the directions referred to as " x " and " y " are in 

the habit plane coordinate system. The constants c  and a  are the dimensions of the oblate 
ellipsoidal shape of the martensite plates. 
    The components of the deformation vector are proportional to the rate of change of the PF 
variable [10], 
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    Using Eq. 4 along with Eq. 5 and assuming an isotropic distribution of the chemical free energy, 
the free energy difference in Eq. 3 can be written as, 
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where 
x

x ∂
∂

=
φ

φ,  and sk  and δk  are constants related to the shear and dilatation parameters 

respectively. Unless 0' <γαg , no transformation occurs. 

    Intuitively, since strain energy works to increase the system free energy, there must be a larger 
positive contribution from the z  direction to the total free energy due to strain. This will deem 

growth in that direction less favourable and so 
22

skk >δ . 

    Eq. 6 is now incorporated into Eq. 3 to give the governing equation in the martensite coordinate 
system, 
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    Given a transformation matrix, ijH , from the martensite coordinate system to the austenite 

coordinate system, the governing equation can now be written in the austenite coordinate system as, 
 

].))((

)1(30)21)(1(
2

1
[

23

1
,3,2,1

2

2222

∑
=

+++×

−−−−−∇=
∂
∂

i

ziyixii HHHKk

M
t

φφφ

φφφφφ
ω

φε
φ

φ

              (8) 

 
This transformation matrix is available for many steels and will be specified later in this work. One 
can now utilise Eq. 8 to simulate martensite formation in austenite. 
    Bainite, just like martensite, is displacive in nature but also involves diffusion of the interstitial 
elements [11]. One big difference is that bainite has a sub-unit structure where a single plate of 
sheaf is formed of many sub-plates o sub-units. These sub-units are what form via a displacive 
process as supersaturated ferrite with the diffusion occurring after each sub-unit has grown. So there 
are brief periods during the growth of a sheaf where diffusion occurs between subsequent growths 
of sub-units. 
    To incorporate this into the model, the constant K  is no longer assumed constant. Additionally, a 
concentration field is included to track the local concentration. The evolution of the concentration 
field is governed by the Cahn-Hilliard diffusion equation [12], 
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where the subscript Bgα  refers to the baintie phase. The second derivatives of the bulk free energies 

with respect to concentration can be calculated using a regular solution model form [10,13]. 
 
Simulations 

    The following parameters are chosen for the simulations: 

72.0,3.14,
4.26

,
1.1

3
,00046.0,100 2 ====== σλ

σ
λ

ω
λσ

εφ nmMM C . 1=− Kks  and 

01.0=− Kkδ  for the martensite plate simulations. The lattice spacing is λ5.0=∆x . The 

simulations of bainite are performed at a temperature of C500  with a carbon content of 
%241.0 wt  distributed homogeneously. The matrix ijH  used here is given for a Fe-8Cr-1C steel as, 
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By symmetry, another 23 forms of this matrix can be obtained. For the simulation of martensite 

plates, 2 austenite grains are grown on a 3100  grid with 80 martensite nuclei placed on the 
boundaries of the austenite grains. Fig. 1 shows a single plate nucleated at the center of the domain. 
 

 
Fig. 1. Simulation of a single plate at the center of the domain using the model. (Domain size 3100 ) 
 
A single ferritic sub-unit of a bainite sheaf is simulated to display the diffusion of carbon out of the 
supersaturated ferrite. This is shown in Fig. 2. A single plate is nucleated at the center of the domain 
within a homogeneous distribution of carbon. The plate is grown to a given size which is too fast 
for diffusion. The subsequent diffusion process ejects the carbon from the bainitic ferrite. This 
process continues until chemical equilibrium is reached within the sub-unit. The large chemical 
driving force forces the diffusion of carbon from the ferrite into the austenite at a high rate while 



reducing in the austenite which causes a build up of carbon concentration in the vicinity of the plate. 
An entire domain is simulated in Fig. 3 with several autocatalytic reactions forming sheaves. We 
use a uniform random number generator in the surrounding area of the sub-units which is scaled by 
the driving force which is dependent on the concentration. The tip of the sub-unit has a lower build-
up of carbon and so has a higher driving force and subsequently a higher chance of nucleation. 

 

 
Fig. 2. Figure of a single sub-unit nucleated at the center of the domain. The phase-field profile 
across a sub-unit (left) and the carbon profile across the same sub-unit during the diffusion process 
(right). 
 

 
Fig. 3. Figures of bainite formation at 10,000 time steps (left) and 28,000 time steps (right) in two 
austenite grains. The part of the domain marked in red indicates the growth of two sheaves via 
autocatalysis. 
 
Summary  
    A phase-field model has been presented with the ability to simulate martensite plates and bainite 
sheaves. The computational cost is only dependent on the size of the domain and not the number of 
grains of martensite, bainite or austenite. Each grain is assigned a global ID in order to distinguish it 
from other grains. This is not included in evolution equations and thus does not have any impact on 
the computational resources. The treatment involving global IDs enables the simulation of two or 
more grains in close proximity without the model being confused as to the identity of each grain. 
The treatment of autocatalysis uses a uniform random number generator but the possibility of a new 
nucleation at a point is gauged by the driving force at that location. This approach enables the 
simulation of bainite while also taking into account the composition changes during transformation. 
 
 



 
Fig. 4. Cross section views of a simulation for sheaf formation. A and B are two forming sheaves 
whereas C is an intersection of the cross section with a larger portion of a sub-unit. 
 
References  

[1]  L. Chen, A. Khachaturyan, Computer simulation of structural transformations during 
precipitation of an ordered intermetallic phase, Acta metallurgica et materialia 39(1991) 2533–

2551. 
[2]  Y. Wang, L.-Q. Chen, A.G. Khachaturyan, Kinetics of strain-induced morphological 

transformation in cubic alloys with a miscibility gap, Acta Metallurgica et Materialia 41(1993) 
279–296. 

[3]  J. Langer, Models of pattern formation in first-order phase transitions, in: G. Grinstein and G. 
Mazenko (Eds.) Directions in Condensed Matter Physics, World scientific, Singapore, 1986, pp. 
165–185. 

[4]  W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma, Phase-Field Simulation of 
Solidification 1, Annual Review of Materials Research 32(2002) 163–194. 

[5]  L. Chen and W. Yang, Computer simulation of the domain dynamics of a quenched system with 
a large number of nonconserved order parameters: The grain-growth kinetics, Physical Review 
B 50(1994). 

[6]  I. Steinbach, F. Pezzolla, B. Nestler, A phase field concept for multiphase systems, Physica D: 
Nonlinear …, 94(1996) 135–147. 

[7]  A. Kazaryan, Y. Wang, B. Patton, Generalized phase field approach for computer simulation of 
sintering: Incorporation of rigi-body motion, Scripta Mater. 41(1999) 487–492. 

[8]  A. Wheeler, W. Boettinger, G. McFadden, Phase-field model for isothermal phase transitions in 
binary alloys, Physical Review A 45(1992) 7424–7440. 

[9]  H. K. D. H. Bhadeshia, Worked examples in the Geometry of Crystals Second edition, London, 
1987 

[10] T.T. Arif, R.S. Qin, A phase-field model for bainitic transformation, Computational Materials 
Science 77(2013) 230–235. 
[11] H. K. D. H. Bhadeshia, Bainite in steels Second edition, London, 1992. 
[12] J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. 
Chem. Phys. 28(1958) 258–266. 
[13] B. Sundman, J. Ågren, A regular solution model for phases with several components and 
sublattices, suitable for computer applications, Journal of physics and chemistry of solids 42(1981) 
297-301. 



Appendix G

SPH Kernel and smoothing length

influence on the evolution of a van der

Waals fluid

Manuscript Submitted for Publication

196
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Abstract

The effects of the smoothed particle hydrodynamics (SPH) smoothing length and kernel on the evolution of a thermody-

namic/hydrodynamic system involving van der Waals (vdW) forces is studied. It is natural to assume discrepancy between

the evolution of two identical hydrodynamic systems when simulated using different cut-off radii and smoothing function.

Different SPH user specified parameters such as the smoothing length and the extent of averaging is shown to have an effect

on evolution data of such systems, especially the total entropy change.

Keywords: Smoothed particle hydrodynamics, SPH, van der Waals, hydrodynamics, droplet

1. Introduction

Smoothed particle hydrodynamics (SPH) is a popular simulation tool applied to fluid dynamics problems. SPH is a

meshfree method in that the interpolation points are the free-moving particles themselves. Each particle represents a volume

of the fluid carrying the properties of that region along with them. The typical properties associated with each particle are

the mass, velocity, temperature, internal energy, entropy change etc... While often more computationally demanding than5

grid-based methods developed for specific phenomena, its advantages include improved stability and the ability to deal with

high velocities and free surface flow. It exceptionally handles cases with deformable and irregular boundaries/interfaces and

provides ease of adding additional effects. These features are naturally extended to three dimensions. SPH codes are often

much easier to implement when compared to, say, implicit finite difference schemes. Originally developed for astrophysical

problems [1] and applied to moon formation [2, 3], incorporation of special relativity [4, 5], collisions of astronomical objects10

[6, 7, 8], SPH has been used extensively in the area of fluid mechanics. The value of any field property at a location in space

is calculated as a sum over all the weighted contributions from neighbouring particles. The function determining the distance

dependent weight of a contribution within this sum is called the kernel function.

Liquid droplet formation due to van der Waals (vdW) forces may involve free surfaces, moving interfaces and in cases of

collisions, high impact velocities. Unlike many other methods, SPH can comfortably deal with these issues. The evolution15

of a vdW droplet towards an equilibrium involves surface tension. This surface tension and its effects on interface properties

and forces are important for understanding many phenomena observed in materials science such as, fluid flow in low gravity

[9, 10], internal combustion engines [11], cloud behaviour [12] and cavitation [13]. Other applications involve food processing,

fuel injection systems, enamelling and metal casting.

Other methods have been used for modelling liquid drop formation and surface tension [14, 15]. Brackbill et al. model20

surface tension using a grid-based approach by applying a continuous transition region as the interface between two fluids

[16] . This transition region is characterised by a continuous function obtained from its discrete counterpart by utilising an

interpolation function much like the kernel functions used in SPH formulation.

∗Corresponding author
Email addresses: t.arif11@imperial.ac.uk (T. T. Arif ), r.qin@imperial.ac.uk (R. S. Qin )

Preprint submitted to Elsevier October 2, 2014



In Section (2) we present the basic formulation of SPH for application to vdW droplets. Then in Sections (3) and (4),

some information and procedures about the simulations are given. In Section (5), we present the simulation results and25

highlight inconsistencies in results. Once this is done, it is shown that a few simple techniques can reduce inconsistencies.

2. SPH equations for vdW

The governing equations of hydrodynamics are given in particle form as:

(

dr

dt

)

i

= vi (1)

(

dρ

dt

)

i

= −ρi(∇ · v)i (2)

ρi

(

dv

dt

)

i

= (∇ · σ)i + ρig (3)

Ti

(

dS

dt

)

i

= mi

φi

ρi
+mi

κ

ρi
(∇2T )i (4)

ρi

(

dU

dt

)

i

= Pi : (∇v)i − (∇ · q)i (5)

(P)i = −PiI+ σi (6)

(σ)i = η
[

(∇v)i + (∇vT )i
]

+ (ζ −
2

d
η)(∇ · v)iI (7)

φi = 2η((∇v)i : (∇v)i) + ζ(∇ · v)2i (8)

(∇v)i =
1

2
((∇v)i + (∇v)Ti )−

1

d
(∇ · v)iI (9)

qi = −K(∇T )i (10)

where r, v, m, P , T , S, U and ρ is the position, velocity, mass, pressure, temperature, entropy, internal energy and mass

density respectively. The quantity g is a body force - induced acceleration, I is the unit tensor, σ is the viscous stress tensor,30

∇vT is the transpose of the tensor ∇v and : denotes the dyadic product. The constant d denotes the dimension of the problem

whereas constants η, ζ and κ are respectively the shear and bulk viscosities and the coefficient of thermal conductivity. U is

the internal energy, P is the stress tensor, q is the heat flux vector and φ is the viscous heating field. The subscript i refers

to evaluation at particle i and the operator ∇ = ( ∂
∂x

, ∂
∂y

, ∂
∂z

) is the spatial derivative operator.

For a van der Waals fluid, the equations of motion are closed by the equations of state for the pressure and the internal35

energy:

Pi =
k̄BρiTi

1− b̄ρi
− āρ2i (11)

Ui =
ζ

2
k̄BTi − āρi, (12)

where ā = a/m2 and b̄ = b/m are the usual vdW fluid parameters with a being responsible for long range attractive forces,

and b is related to the finite volume of an atom/molecule.

The typical SPH interpolations for a field variable f(r) and its gradient are:

fi =
N
∑

j=0

mj

ρj
fjWij

∇fi =

N
∑

j=0

mj

ρj
fj∇iWij , (13)
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where fi = f(ri) and Wij = W (ri − rj , h) is called the kernel function with h the smoothing length. Equations (13) can be

used to discretize the variables and their gradients in the equations of motion. For example, the density at each particle may

be approximated by replacing fi with ρi in Eq. (13) to give

ρi =
N
∑

j=0

mj

ρj
ρjWij =

N
∑

j=0

mjWij . (14)

Eq. (13) includes the self term but ∇iWii = 0 for the kernels used here. Equation (14) conserves total mass and will be used40

to evolve density according to particle positions instead of Eq. (2). When it comes to the gradient of a field function, the

appearance of paired terms on the right-hand side of the equation is preferred, for example, the appearance of fi as well as fj

on the right-hand side of Eq. (13) is often desired due to its symmetric contribution. Thus, a variety of different discretization

forms are available. This paired form will be apparent in the SPH equations to follow. The effect of the kernel function is to

smooth particle properties over a region depending on particle positions and acts as a weighting function. The kernel function45

also gives SPH the unique ability to form gradients by applying the gradient to the kernel function rather than the property

fields (which are discrete). There are many forms for the kernel function and a classic study of SPH involves introduction

of different forms that cater for different effects. For instance, the Gaussian kernel often used to simplify SPH analysis from

a physical point of view, the quartic and quintic spline kernels introduced to be more stable than the Gaussian kernel [17],

the quadratic smoothing function for high velocity impacts [18] and many more. The kernel functions that appear in this50

paper are the Lucy function [1], cubic spline (CS) [19] and the hyperbolic-shaped kernel (HS) [20]. While there are many

other functions used as kernels, we believe the 3 categories represented by these kernels as comprising almost all popular

kernel types: piece-wise kernels with a negative second derivative, single-function kernels with a negative second derivative,

and kernels with a positive second derivative remedying instability problems. These are given respectively as:

WL(R, h) = αL ×







(1 + 3R)(1−R)3 0 ≤ R < 1

0 R ≥ 1
(15)

Wcs(R, h) = αcs ×



















(2−R)3 − 4(1−R)3 0 ≤ R < 1

(2−R)3 1 ≤ R < 2

0 R ≥ 2

(16)

Whs(R, h) = αhs ×



















R3 − 6R+ 6 0 ≤ R < 1

(2−R)3 1 ≤ R < 2

0 R ≥ 2

(17)

where R =
ri−rj

h
=

rij
h

and for a one dimensional system αL = 5/4h, αcs = 1/6h, αhs = 1/7h, for a two dimensional system55

αL = 5/πh2, αcs = 5/14πh2, αhs = 1/3πh2, and finally for a three dimensional system αL = 105/16πh3, αcs = 1/4πh3,

αhs = 15/62πh3. Kernel functions are subjected to a number of conditions, one of which is the normality condition [21]. This

normality condition is how the coefficients αL, αcs and αhs are determined. The gradient of the kernel function (∇iWij)

appearing in Eq. (13) is with respect to position i so that ∇iWij = −∇jWij .
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The SPH form for the gradients of the field variables and equations of motion are given as [22, 23, 21]:60

(∇v)i =
N
∑

j=0

mj

ρij
(vj − vi)∇iWij (18)

(∇T )i =
N
∑

j=0

mj

ρij
(Tj − Ti)∇iWij (19)

(∇2T )i = 2ρi

N
∑

j=0

mj

rij∇Wij

ρiρj
v2
ij (20)

(∇ ·P)i
ρi

=
N
∑

j=0
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ρ2i
+
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ρ2j

)

· ∇iWij (21)

(∇ · q)i
ρi

=
N
∑

j=0

mj

(

qi

ρ2i
+

qj

ρ2j

)

· ∇iWij (22)

(
dv
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N
∑
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mj

(
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ρ2i
+
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ρ2j

)

· ∇iWij + gi (23)
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2

N
∑
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mj(
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ρ2j
) : (vj − vi)∇iWij

−
N
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mj(
qi

ρ2i
+

qj

ρ2j
) · ∇iWij (24)

φi =
mi

ρi


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ζ

2
−

5η

6
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∑

j

mj

ρj
rij

v2
ij

r2
∇iW

−
5

2
(ζ +

η

3
)
∑

j

mj

ρj
rij(r̂ij · vij)

2∇iW



 (25)

where r = |rij | = |ri − rj |, r̂ij = rij/r, ρij = 1
2
(ρi + ρj) and vij = vi − vj . It should be noted that the SPH forms of the

equations of motion are not unique. The momentum equation for instance, Eq. (23), is the preferred format of monaghan

[21] derived to be symmetric.

Equations (1) - (4), the equations of state (11) and (12) along with suitable boundary conditions are sufficient to completely

describe the evolution of a fluid system. However, proceeding with these set of governing equations, one finds unstable results65

and incorrect dynamics pertaining to vdW droplets. This was attributed to the assumption that the second long range

attractive term in Equation (11) acted over the same short range as that of the first short-range repulsive term. It was

found that considering the attractive forces to act over a greater smoothing length results in correct dynamics and a better

description of surface tension.

Following Nugent and Posch [24], we assume that the cohesive pressure term, second term on the right-hand side of Eq.70

(11), acts on a larger interaction range and so is considered in SPH with a larger smoothing length H > h. Isolating this

term in Eqs. (23) and (24) results in the following additional terms to be considered over a larger range:

(
dv

dt
)ai = 2ā

N
∑

j=0

mj∇iWijH (26)

(
du

dt
)ai = ā

N
∑

j=0

mj(vj − vi) · ∇iWijH (27)

(28)

where the superscripts a and H denote the additional cohesive pressure term and the kernel function calculated at a larger
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smoothing length respectively. This extra term acting on a long range is an attractive, symmetric and central force. This

means that its effects are cancelled within the bulk of a homogeneous phase. At the surface or interface however, the75

asymmetry of the forces resulting from this term contributes to the surface tension [16, 24].

3. Parameter specification and equations

It is common to expect multiple forms of the SPH equations in different circumstances. For instance, recently Yang et

al. [20] proposed a new kernel function to resolve instability issues. Even though such suggestions often result in better and

more stable results, the effect they have on the evolution process and time is still of great importance. First we consider the

effect of using the single step heat conduction equation instead of the form in Eq. (24) [20],

(∇ · q)i = −ρiK

N
∑

j=0

2mjrij · ∇iWij

ρiρj(r2ij + 0.01h2)
(Tj − Ti) (29)

The results are shown in Fig. 1. It can be seen that although the density, temperature and pressure profiles are almost the

same, the entropy profile is much more stable and reaches equilibrium much sooner. Based on this and on reports [25, 20] that

for higher smoothing lengths the temperature profile obtained is smoother, we will be using the single step heat conduction80

calculation for the rest of this article.

4. Simulation procedures

The smoothing length, h, is chosen for each kernel function such that the effective smoothing range is equal. For Lucy’s

function, the support domain of each particle is H = h whereas for the HS and CS kernels it’s H = 2h. The effective

smoothing range for such simulations are often around H = 5∆x where ∆x is the initial particle spacing. This results in a85

staggering long range smoothing length of H = 10∆x. There are reports of exceedingly long running times for the simulation

of vdW forces due to the existence of the long range force. Here we study the effects of the differences in results due to

the selection of different smoothing lengths and so the selection of the kernel function should be able to reproduce results

at smaller smoothing lengths. A large heat conductivity of k = 5 is chosen throughout the simulations in order to reduce

density fluctuations due to yet unequilibrated temperature distributions. The initial system domain, unless otherwise stated,90

is homogeneous as in Fig. (2) with 30x30 particles placed in a square grid initial arrangement with no boundary conditions

to simulate vacuum conditions.

4.1. Time step

Due to the large density differences at the liquid droplet/vacuum interface and the high sensitivity of the equation of state

to density changes, a smaller time step is required in order for the simulation to retain numerical stability. The numerical95

instability in question occurs due to the asymptote in the denominator of the equation of state for pressure. Considering

only the hydrostatic pressure term in the stress tensor, a plot of the dependence of velocity on density is given in Fig. 3

both for T = 0.2 and T = 0.8 with the vdW parameters: ā = 2, b̄ = 0.5 and k̄ = 1. The gradient of the kernel in Eq. 23

is assumed to be a constant value and so Fig. 3 should only be viewed as a comparison of the density influence between

the different temperatures. It is seen from the figure that the velocity gradient is larger for T = 0.2 (i.e. more sensitive to100

changes in density, or equivalently, to particle positions). For this reason we choose a small time step of 0.005 for the liquid

drop formation in a vacuum. For the case of agglomeration within a fluid substance, a larger time step of 0.05 can be utilised

due to smaller density differences [24].
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Figure 1: Simulation results with h=2, H=4 using the heat conduction form of Eq. 24 (left) and the single step version (right). Lucy’s function

is used as the kernel function. The rows from top to bottom, in order, are of the particle positions, density profile, temperature profile, pressure

profile and time dependent entropy change.
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Figure 2: Initial positions of the 30 × 30 SPH particles.

Figure 3: Velocity dependence on the density with T = 0.2 (red) and T = 0.8 (green). k̄ = 1 and vdW parameters ā = 2 and b̄ = 0.5.
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4.2. Selection of a suitable kernel function

When it comes to the selection of the kernel function there are many options that have been used in the past years. To begin105

with, we run simulations using Lucy’s function, CS and HS kernels on a vdW homogeneous gas/fluid at initial temperature

T = 0.2 without periodic boundary conditions (within a vacuum environment) and without random fluctuations. The results

are shown in figures 8 - 13. In Fig. 1 the resulting particle positions are nicely spaced out using Lucy’s kernel function for

h = 2 and H = 4. However, once the smoothing length is increased to h = 3 and H = 6, the resulting particle positions

involve more clustering as seen in Fig. 4. This clustering above a certain smoothing length can be explained by looking at110

the second derivatives of Lucy’s kernel function (Fig. 5). The initial particle spacing for the simulations is 0.75 and this value

changes very little with the parameters used. For h = 2, the second derivative of Lucy’s kernel is always positive. However,

increasing the smoothing length to h = 3 but keeping the initial particle spacing as 0.75, results in the second derivative

being negative which is associated with tensile instability [26].

4.3. Interpretation of results115

As well as using actual particle values to form a profile as a function of radius, the results such as the density and pressure

profiles are calculated according to physical positions across the system domain using the SPH smoothing technique by

utilising Eq. 13 (i.e. results are displayed for both a smoothing length of h as well as a function of radius). The smoothing

length chosen to interpret the results has a larger effect on the interface region rather than the bulk. We consider the entropy

change of evolution as an appropriate quantity as an indication of equilibrium. It can be seen from Eq. 4 that the entropy120

change is a function of relative velocities and temperatures. This can be reinterpreted as the evolution speed of the system.

If the entropy change levels of at zero, this means the system is at equilibrium. An entropy change of < 0.0001 is chosen as

the equilibrium condition to display results for comparison. Thus, the system may still be evolving toward equilibrium at a

very slow speed.

5. Smoothing length study125

The following simulations are run for varying smoothing lengths. It is common in literature to see a smoothing length of

H = 5∆x and a long range smoothing length of H = 2h. The latter is almost always the case. Here we study the effect of

different smoothing lengths on the results of vdW drops. We begin with a smoothing length of H = 2∆x and H = 2h and

systematically increase H to 4∆x for the following cases. The particle positions are shown in figures 8 - 13.

From Table 1 it can be seen that there is a large variation in both temperature results and total entropy results for differing130

smoothing lengths (and this trend continues for larger smoothing lengths). The inconsistency of the resulting entropy change

is thought to be due to the clumping up of the SPH particles. Notice the HS has a lower total entropy change when compared

to the other two kernels.

Surface pressure is proportional to the interface curvature and surface tension resolves a force normal to the interface

toward its center of curvature. The equilibrium shape of a vdW drop in the absence of external forces is a sphere. The results135

show that the resulting shape differs slightly from being spherical if h is too small.

It is important to note that the temperature profiles as seen in figures 8 - 11 have inconsistencies at the sufaces [24].

However, a plot of the particle temperatures as in Fig. 6 shows that in fact, all particles have equal temperatures and the

positive/negative deviations are caused by the free surface and the cut-off distance of the kernel.

It can be seen that such simulations using vdW forces result in oscillations which contribute to the entropy change. In

order to keep individual particle oscillations to a minimum, an XSPH variant [27] is introduced in the updating of particle
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Figure 4: h=3, H=6, kernel = Lucy at 60,000 (left column) and 122000 (right column) time steps.
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Figure 5: The second derivative of Lucy’s function DDW L(x,h) with h = 2 (solid line) and h = 3 (dashed line). An initial particle spacing of 0.75

is marked with small dashes.

Table 1: The total entropy change and average temperature for the respective kernels and

effective smoothing lengths.

Lucy’s function Hyperbolic-shaped kernel Cubic spline

H Total S Average T Total S Average T Total S Average T

1.5 2215 0.2875 N/A N/A 231 0.3145

1.75 1428 0.3141 1256 0.1857 421 0.3130

2.25 2277 0.3217 389 0.2606 3499 0.3189

2.5 1790.7 0.3277 896 0.2807 2296 0.3251

2.75 1580.7 0.3317 908.9 0.2942 5349 0.3274
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Table 2: The total entropy change and average temperature for the respective kernels and effective smooth-

ing lengths using Equation (30). The last row specifies that the domain consists of 35× 35 particles instead

of 30× 30.

Lucy’s function Hyperbolic-shaped kernel

H Total S Average T Total S Average T

3.0 29.12 0.311 11.20 0.284

3.45 25.5 0.314 13.52 0.295

3.0 (35 × 35) 29.14 0.311 48.04 0.311

positions in the hopes that unnecessary oscillations of individual particles is sufficiently dampened. The application of XSPH

involves an adjustment to the method of updating particle positions. We replace Eq. (1) with

(

dr

dt

)

i

= vi + ǫ
∑

j

mj

ρij
(vj − vi)Wij = ṽi (30)

where ρij = 0.5(ρi + ρj). The results are given in Table (2). The effect of applying an average velocity through Eq. (30) is140

to reduce the capability of any single SPH particle to act alone. This way velocities and the effects of forces are smoothed

resulting in a number of particles acting in response to that force. Artificial viscosity has also been introduced in some works

[28] in the past to prevent post-shock oscillations. The positive parameter ǫ is a constant value less than 1. We choose ǫ = 0.1.

Simulations with this adjustment to the velocity, while reducing the disagreement between different smoothing lengths, the

differences are still unacceptable. Increasing the number of particles within the domain and reducing the mass associated145

with each particle makes it possible to keep the mass within the kernel domain constant while increasing the number of

interpolation points.

Figure 6: The temperature dependence on the radial distance from the centre of the vdW drop for the Lucy function with h = 2.75 (left) and the

HS kernel with h = 1.5. Unsmoothed.

It can be seen from the results that different kernel functions perform better at different smoothing lengths. The density

profiles given by the raw unsmoothed particle densities in Fig. 7 are smooth for all kernels. When the density profiles are

calculated at arbitrary points in the domain it seems the density profiles for the HS kernel is not as smooth. This is due150

to the fixed, more rigid particle locations. At larger smoothing lengths/more particles, this effect is of lesser importance.

However, Lucy’s function does not suffer from this even though the particle spacing is more erratic. The generated density

profile is always smooth even for relatively small smoothing lengths. This has also been reported previously on drops using an
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equation of state different from vdW [29]. It is logical to assume that no matter the particle distributions, the forces through

the equation of state will push toward an equilibrium where the particle densities are smooth (the raw particle densities of155

Fig. 7). However, the pressure profile generated for the HS kernel seems to always be smooth unlike that generated for

Lucy’s function and the CS kernel. The differences are seen when this data is translated through the smoothing function for

arbitrary locations. Given enough time, the pressure profiles for CS and Lucy’s function will eventually become smoother,

however, HS evolves toward equilibrium with a smoother pressure profile. Application of Equation (30) to CS and Lucy’s

function results in their pressure profiles also being smoother throughout evolution. This reduces the total time steps required160

to achieve equilibrium considerably.

Figure 7: The mass density dependence on the radial distance from the centre of the vdW drop for the Lucy function with h = 2.75 (left) and the

HS kernel with h = 1.5. Unsmoothed.

When the initial state of the system is placed out of equilibrium, as is the case here, the evolution toward equilibrium

involves oscillations while forces tend toward a point in which they cancel each other. It is clear from Table (1) that a

smaller h decreases oscillations and subsequently the total temperature change of the system during its evolution to the final

equilibrium state. On a positive side note the SPH method reproduces this dampening effect such that the entropy change165

reaches zero in all cases. These effects can also be seen in the final temperature achieved since the viscous heating term

generates heat through relative motion. A logical solution to this is to reduce the time step as equilibrium is approached

to ensure the oscillations are the result of the evolution dynamics and not due to numerical effects. However, this leads to

excessive simulation times. For the HS kernel, the particles move more as a group and so the local velocity gradients between

neighboring particles are small. (notice for the Lucy and CS kernels with a smaller h have much lower average temperatures170

due to ordered particles.) Understandably, there isn’t a relationship between the total entropy change and the smoothing

length due to different clumping effects at different h.

6. Conclusion and remarks

It is seen from the results that Lucy’s function, the CS and the HS kernels perform best at H = 3.7∆x, H = 3∆x and

H = 4∆x respectively. If one requires a better approximation, we have seen that in the case of Lucy’s function, an increase175

of interpolation points rather than an increase of the smoothing length is necessary since an increase of smoothing length

does not give consistent results especially when the total entropy change is concerned. This is shown in Table (2). For the

CS kernel the resulting value for the temperature for the 30 × 30 system at H = 3 is 0.310 with the total entropy change

14.09. The corresponding values for the 35× 35 system is 0.310 and 17.25. However, increasing the smoothing length results
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in a larger value discrepancy. Increasing the number of particles, unlike increasing the smoothing length, does not change180

the obtained temperature values for CS and Lucy’s function. In addition to this, the radius of curvature to smoothing ratio

remains constant. The HS kernel does not seem follow this trend. This is possibly due to its second derivative not being as

steep as that for Lucy’s function and CS.

When tensile instability is observed, comparison of the total entropy change becomes meaningless. This is due to the

clumping of the SPH interpolation points. It is seen that application of an XSPH variant to the velocity calculation with a185

coefficient as small as ǫ = 0.1 is sufficient in reducing some clumping. More importantly, the total entropy change becomes

more consistent.

It is important for the evolution of a thermodynamic system to be associated with a stable and consistent entropy change

rather than an entropy change that is large and erratic. Without the incorporation of Equation (30), the total entropy is very

unpredictable since SPH particles vibrate excessively relative to one another. When it comes to the magnitude of the total190

entropy change, since the total volume change observed here is very small given the initial conditions and that we are dealing

with a single phase fluid, we should not expect much rearrangement of mesoscopic fluid volumes hence the total entropy

change should be small and certainly shouldn’t be subjected to a smoothing length dependence which results in differences

as seen from Table (1).
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Figure 8: Lucy’s function results for h=1.5 at 85,500 time steps (left column), h = 1.75 at 106,500 time steps (second column), h = 2 at 145,000

time steps (third column) and h = 2.25 at 133,500 time steps (fourth column)
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Figure 9: Lucy’s function results for h = 2.5 at 172,500 time steps (first column), h = 2.75 at 148,500 time steps (second column) and h = 3 at

206,000 time steps (last column)
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Figure 10: The HS results for h=0.75 at 150 time steps (left column), h=0.875 at 500,000+ time steps (second column), h=1 at 140,000 time steps

(third column) and h=1.125 at 165,000 time steps (last column). The system becomes unstable for h=0.75. (500,000+ indicates more time steps

are required to achieve dS < 0.0001.)
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Figure 11: The HS results for h=1.25 at 281,500 time steps (second column), h=1.375 at 322,500 time steps (third column), h=1.5 at 273,500 time

steps (last column)
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Figure 12: The CS results for h=0.75 at 90,500 time steps (left column), h=0.875 at 500,000+ time steps (second column), h=1 at 140,000 time

steps (third column) and h=1.125 at 165,000 time steps (last column). (500,000+ indicates more time steps are required to achieve dS < 0.0001.)
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Figure 13: The CS results for h=1.25 at 500,000+ time steps (left column), h=1.375 at 500,000+ time steps (second column), h=1.5 at 500,000+

time steps (third column). (500,000+ indicates more time steps are required to achieve dS < 0.0001.)
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