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Highlights 

• Sugar-binding C-type carbohydrate-recognition domains fall in five structural groups. 

• Structures for many of these domains, covering all of the groups, have been obtained. 

• Not all human C-type lectins have clear orthologues in other mammals such as mice. 

• Different mechanisms by which C-type lectins initiate signalling remain to be defined. 

• Hetero-oligomeric receptors add to the complexity of overlapping specificities. 

 

 

Abstract 

The majority of the C-type lectin-like domains in the human genome likely to bind sugars 

have been investigated structurally, although novel mechanisms of sugar binding are still 

being discovered. In the immune system, adhesion and endocytic receptors that bind 

endogenous mammalian glycans are often conserved, while pathogen-binding CRDs on 

cells of the innate immune system are more divergent. Lack of orthology between some 

human and mouse receptors, as well as overlapping specificities of many receptors and 

formation of receptor hetero-oligomers, can make it difficult to define the roles of individual 

receptors. There is good evidence that C-type lectins initiate signalling pathways in several 

different ways, but this function remains the least well understood from a mechanistic 

perspective. 
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Introduction 

Complex oligosaccharides on cell surfaces and glycoproteins in blood and other biological 

fluids often serve as recognition signals that are bound by specific glycan-binding receptors 

known as lectins [1]. The C-type lectins are the largest and most diverse of the lectin families 

found in animals. C-type lectins contain an independently folding, modular carbohydrate-

recognition domain (CRD) that in most cases binds sugars by ligation to Ca2+, making the 

sugar-binding activity Ca2+-dependent] [2]. Many receptors containing C-type CRDs are 

found in the immune system, with functions including cell adhesion, glycoprotein turnover or 

pathogen recognition based either on recognition of endogenous mammalian glycans or on 

binding to glycans on micro-organisms. 

 

The ways that some C-type lectins function in the immune system have been well 

established. For example, the importance of the selectins in interactions between leukocytes 

and endothelia is fully supported by phenotypes of knock-out mice and symptoms of a 

human congenital disorder of glycosylation that prevents synthesis of the fucosylated ligands 

recognized by the selectins [3,4]. Similarly, mannose-binding protein deficiency in humans 

shows that antibody-independent fixation of complement triggered by binding of serum 

mannose-binding protein to sugars on the surface of pathogens is an essential part of the 

innate immune response in young infants [5]. 

 

This review considers recent advances in our understanding of how C-type lectins in the 

immune system work, with an emphasis on summarizing the currently available structural 

information and defining the areas where functional and mechanistic information is still 

outstanding. 

 

Structures of C-type lectins: the current position 

Structural analysis of the prototype C-type CRD from serum mannose-binding protein 

showed that residues conserved between C-type CRDs form a hydrophobic core and 

disulfide bonds that define the overall fold of the domain [6]. Additional conserved residues 

ligate a Ca2+ that forms the basis of a primary sugar-binding site. Many protein domains that 

have the C-type CRD fold lack the conserved Ca2+-binding site and thus do not bind sugars, 

which has led to the distinction between the sugar-binding C-type CRDs and the broader 

family of C-type lectin-like domains (CTLDs) [2]. About half of the CTLDs contain residues 

required for binding of the conserved Ca2+, and for the human proteins, Ca2+-dependent 

sugar binding has now been demonstrated for most of the domains that contain these 

residues. Crystal structures are available for the majority of these proteins, although not all 

are with bound glycan ligands (Figure 1). The CRDs that bind sugars through the canonical 
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Ca2+-ligation mechanism fall in five of the structural groups defined by sequence similarity 

within the domain and the positions of the CRD in relationship to other protein domains 

(Genomics Resource for Animal Lectins; URL: http://www.imperial.ac.uk/research/ 

animallectins). Structural information is available for members of each of these groups. 

Binding of sugars to two proteins that lack the canonical sugar-binding site, dectin 1 and 

layilin, suggests the presence of non-canonical sugar-binding sites in these proteins (Figure 

1). 

 

In all C-type CRD-glycan complexes examined so far, the presence of the principal Ca2+ 

results in ligation of a monosaccharide through two vicinal hydroxyl groups as originally seen 

for serum mannose-binding protein. Investigation of the full complement of human C-type 

lectins has largely been borne out the early finding that the specificity for mannose-type 

sugars, which contain adjacent equatorial 3- and 4-hydroxyl groups (mannose, GlcNAc, and 

glucose) is determined by the presence of the residues EPN in the primary Ca2+ site while 

binding of galactose-type sugars in which the 4-hydroxyl group is axial (galactose and 

GalNAc) have QPD [7] . However, there have been some surprises. For example, the EPN-

containing CRD of langerin, a pathogen-binding C-type lectin on Langerhans cells, binds 

mannose-type sugars at the primary-binding site but can also accommodate sulphated 

galactose at this site with the non-optimal Ca2+ ligation of galactose compensated by charge-

charge interactions between the sulphate group and two lysine residues [8]. The ability of 

blood dendritic cell antigen 2 (BDCA-2) to bind galactose-terminated glycans in spite of the 

fact that it contains an EPN motif has recently been explained by demonstration that the 

mannose residue in terminal Gal1-4GlcNAc1-2Man structures is in the primary binding 

site while galactose occupies an adjacent secondary site, making it somewhat analogous to 

mouse dendritic cell immunoreceptor 2 (DCIR2) [9••,10••]. Finally, NMR analysis of ligand 

binding to DC-SIGN, a dendritic cell receptor that binds both high mannose oligosaccharides 

on viruses and Lewisx-containing glycans, suggests that in some cases crystallography may 

reveal only one of multiple modes of ligand binding [11,12]. Multiple orientations of GalNAc-

containing ligands bound to the macrophage galactose lectin have also been detected [13]. 

 

In addition to the primary binding site, screening of glycan arrays and structural analysis of 

C-type CRDs in complex with glycan ligands has increasingly demonstrated the importance 

of contacts outside of the primary sugar-binding site in extended or secondary binding sites 

[14]. Examples include binding of high mannose oligosaccharides to DC-SIGN, binding of 

Lewisx-containing ligands to the scavenger receptor C-type lectin and the selectins, and 

binding of glycolipids such as trehalose dimycolate to the macrophage receptor mincle [15]. 

In addition to the examples described in the previous reviews [14,15], extended site 
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mechanisms for binding bisected N-linked glycans have recently been demonstrated for the 

mouse dendritic cell immunoreceptor 2 (DCIR2) (Figure 2(a)) and BDCA-2 [9••,10••]. 

 

At another extreme, a proposed binding interaction of sialylated glycans on IgG with 

SIGNR1, one of the mouse homologs of human DC-SIGN, is quite minimal: in the crystals, 

just the carboxyl group of the sialic acid interacts with the protein by making coordination 

bonds to the bound Ca2+ (Figure 2(b)) [16••]. However, a role for glycan recognition in 

binding of IgG to DC-SIGN has been difficult to document [17••]. While it may be that this 

controversy reflects difference between human DC-SIGN and mouse SIGNR1, it is also 

interesting to note that the position and ligation of Ca2+ in the crystals of mouse SIGNR1, 

obtained in the presence of high sulphate and low Ca2+, differs from that observed in most 

other CRD-sugar complexes and no adjacent second Ca2+ near the sugar-binding site is 

observed. This latter observation may be significant, because the four amino acid side 

chains that form this second Ca2+ site in human DC-SIGN and many other C-type CRDs are 

all present in SIGNR1 (Fig 2(c)). If the CRD in the structure of mouse SIGNR1 is not fully 

ligated with Ca2+, the conformation in the crystal may not reflect the organization of the 

binding site under physiological conditions. At low Ca2+ concentration, crystals of the CRD 

from human and mouse mincle, a macrophage receptor that binds glycoconjugates on the 

surface of mycobacteria and fungi, similarly lack the second Ca2+, resulting in a re-

arrangement of the primary Ca2+ site [18-20•]. However, bound sugar ligand is only observed 

under conditions of higher Ca2+, when the second Ca2+ is occupied and the primary site 

takes on its canonical geometry. 

 

In proteins such as mouse DCIR2 and BDCA-2, which lack the accessory Ca2+, residues that 

would have ligated this Ca2+ are changed so that a basic amino acid side chain takes up the 

position of the missing Ca2+ [9••,10••]. Sugar binding to CRDs with a single Ca2+ site shows 

first order dependence on Ca2+ concentration, while CRDs with multiple Ca2+ sites have 

second or third-order dependence [9••,20•]. The presence of additional sites also shifts the 

midpoint of the transition between sugar-binding and inactive conformations. The precise 

dependence on Ca2+ may be important in determining how sensitive CRDs are to variation in 

the Ca2+ concentration active in various intracellular compartments, such as the endoplasmic 

reticulum, Golgi, and endosomes as well as regions of the extracellular matrix. In some 

cases, a sharp transition between active and inactive conformations, resulting from the 

higher order Ca2+ dependence, may be important for their biological functions, for example in 

ligand release from endocytic receptors in endosomes. 
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Knowledge of the mechanism of carbohydrate-recognition by C-type CRDs is now sufficient 

that glycomimetic drugs can be envisaged [21]. Mimics of sialyl-Lewisx that inhibit binding of 

all three selectins have been developed through a fragment-based screening approach 

[22••]. One of these is now in clinical trials for sickle cell disease, where selectin-mediated 

interactions of leukocytes and platelets with vascular endothelium contribute to vasculo-

occlusive crisis [23••].  

 

Relationships of CRDs across species 

Comparison of C-type lectins in the immune systems of humans and mice shows that there 

are several distinct patterns of evolution (Figure 3). Conservation is observed for many 

receptors that bind endogenous glycans and function in adhesion and glycoprotein 

clearance by endocytosis. Examples of proteins for which it is possible to identify well-

defined one-to-one orthologs between species include the selectin cell adhesion molecules 

[24] as well as the mannose receptor and the scavenger receptor C-type lectin, which 

function in clearance of serum glycoproteins released at sites of infection or inflammation 

[25,26]. 

 

In contrast, many receptors that bind to pathogen glycans have undergone recent dramatic 

evolutionary changes, resulting in the absence of simple orthology between mice and 

humans. The differences include absence of specific proteins in one of the species and very 

recent duplications and divergences. For example, the human genome encodes two closely 

related proteins DC-SIGN and DC-SIGNR (L-SIGN) while there are eight genes for mouse 

SIGN proteins, none of which is organized in the same way as DC-SIGN and DC-SIGNR 

with extended neck domains between the CRD and the membrane [27,28]. Similarly, in the 

collectin family, mice express two different forms of mannose-binding protein, while there is 

only one functional gene in humans [29]. It appears that there has been significant 

evolutionary pressure on some of these receptors during the recent evolution of mammals, 

possibly reflecting the fact that these receptors are targets for viruses that may have 

selected for changes in or loss of these genes. However, it is not an absolute rule that only 

receptors that bind endogenous ligands are conserved, since langerin and mincle both bind 

pathogen glycans but their properties are very similar across mammalian species [30,31]. 

 

The absence of orthology between mice and humans for some proteins puts restrictions on 

the use of mouse models in understanding the functions of C-type lectins. In some cases, 

such as for the selectins and the mannose receptor, mice in which a particular gene is 

knocked out will provide information about the function of a well-defined human orthologue, 
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while in other cases, including DC-SIGN and the mouse SIGNS, care must be taken to 

select an appropriate mouse model [28]. 

 

Functions of C-type lectins in signalling 

Many C-type lectins found on cells in the immune system have been reported to initiate 

intracellular signalling, but this remains the least well understood function of these receptors. 

The different arrangements of these receptors in the plasma membrane reflects the fact that 

there are several distinct mechanisms by which sugar binding at the cell surface leads to 

events on the cytoplasmic side of the membrane (Figure 4). 

 

The cytoplasmic domains of two receptors, dectin-1 on macrophages and dendritic cells and 

prolectin on B cells, contain signalling motifs that allow direct activation of Syk kinase. 

Responses stimulated via dectin-1 signalling include phagocytosis, the respiratory burst and 

production of inflammatory cytokines such as TNF- and IL-6 [32]. Dectin-1 appears to be 

important for anti-fungal immunity particularly against Candida in both humans and mice. 

Signalling through dectin-1 requires clustering and can be induced by dectin-1 binding to -

glucans on fungi including Candida, Aspergillus and Pneumocystis species [33]. Clustering 

leads to activation of the widely expressed protein kinase Syk via the sequence that 

resembles an immunoreceptor tyrosine-based activation motif (ITAM) in the cytoplasmic 

region of dectin-1. In many signalling pathways, tyrosine residues in ITAMs can be 

phosphorylated by Syk, which creates a Syk binding site that in turn results in the kinase 

becoming active on additional substrates. The particular targets vary depending on which 

ones are expressed in a particular cell type.  In the case of Dectin-1, downstream signalling 

events involve the CARD9/MALT1/Bcl-10 adapter complex. The consequences of ligand 

binding to prolectin are less well understood. In this instance, the cytoplasmic domain 

interacts with Grb2, an adapter protein that often recruits additional signalling molecules [34], 

but such binding partners have not yet been reported The presence of signalling motifs in 

the cytoplasmic domain of these sugar-binding receptors is reminiscent of the arrangement 

of another group of glycan-binding receptors, the siglecs [35]. 

 

Several other C-type lectins of myeloid cells, including mincle, dectin-2 and BDCA-2, lack 

intrinsic signalling domains but activate Syk through association with the common Fc 

receptor  chain (FcR), which contains an ITAM. Signalling through association of FcR with 

mincle and dectin-2 occurs via activation of the CARD9/MALT1/Bcl-10 adapter complex by 

Syk, promoting outcomes that include secretion of cytokines TNF- and IL-6 [36-38]. 

Antibodies to BDCA-2, which is a receptor of plasmacytoid dendritic cells, initiate signalling 
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through the FcR chain, but in this case the result is suppression of inflammatory cytokines 

through a pathway involving BTK kinase, BLNK adapter protein and phospholipase C2 [39]. 

BDCA-2 is found in primates and some more distantly related species, but the gene is not 

present in mice. The molecular mechanisms for stimulation of Syk, either directly by dectin-1 

or indirectly through FcR, have not been determined. Clustering or crosslinking of receptors 

by ligand binding is likely to be important, but so far there is little information about the 

oligomeric state of mincle, dectin-2 or BDCA-2 or the stoichiometry of the complexes that 

form with FcR. 

 

DC-SIGN and the macrophage galactose receptor (MGL) are both reported to modulate 

signalling pathways activated by toll-like receptors. It is proposed that the adapter LSP1 

interacts with the cytoplasmic domain of DC-SIGN and becomes phosphorylated through a 

pathway initiated by toll-like receptor 4 [40]. Previous work showed that mannose-containing 

ligands, such as those found on Mycobacterium tuberculosis, lead to assembly of adapter 

proteins KSR1 and CNK and kinase Raf-1, enhancing proinflammatory cytokine production. 

Recent work now demonstrates that fucose-containing ligands, such as those present of 

Helicobacter pylori, result in binding of a different set of proteins, IKK kinase and the 

deubiquitinating enzyme CYLD, leading to nuclear accumulation of kinase Bcl3 and 

suppression of the proinflammatory response [41]. From a mechanistic point of view, the 

basis for differential activation of DC-SIGN by different glycan ligands is difficult to 

understand, since structures of the unliganded CRD and the CRD bound to both mannose-

containing and fucose-containing ligands, obtained both by crystallography [42,43] and more 

recently by NMR [11,12], do not indicate that there are changes in the protein structure upon 

binding of any of the ligands. In spite of evidence for activation of various downstream 

pathways by ligands for MGL, no specific binding partners have been proposed for MGL and 

less is known about the details of ligand binding [44]. The situation with these receptors may 

become clearer when the nature of the interaction between DC-SIGN and LSP1 has been 

defined. Both DC-SIGN and MGL mediate endocytosis [43,45,46] and have cytoplasmic 

domains containing YXX motifs associated with trafficking through the clathrin-mediated 

endocytic pathway [47]. However, both receptors are pre-formed oligomers [48,49] and in 

the case of DC-SIGN, the YXXL sequence resembles a hemi-ITAM, but does not function in 

this way [50]. 

 

The importance of hetero-oligomers and spatial arrangements of CRDs 

Binding of pathogen glycans by several C-type lectins, including DC-SIGN, MGL, serum 

mannose-binding protein and langerin is dependent on formation of homo-oligomers. 
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Potential formation of hetero-oligomers creates an additional level of complexity when 

assessing the functions of C-type lectins in immunity against pathogens. 

 

Recent evidence suggests that functions of both mincle and dectin-2 on macrophages are 

dependent on the macrophage protein MCL, a C-type lectin-like protein also known as 

dectin-3. The importance of mincle in recognition of the glycolipid trehalose dimycolate, a 

major virulence factor of mycobacteria and a potent stimulator of inflammatory responses, is 

indicated by complete abrogation of inflammatory response to trehalose dimycolate in 

macrophages deficient in mincle as well as in mincle knockout mice [51,52]. However, MCL 

has also been shown to initiate signalling following stimulation with trehalose dimycolate 

[53••]. Formation of a functional complex of mincle with MCL and FcR has been suggested, 

based on co-immunoprecipitation of mincle and MCL when they are both expressed in 293T 

cells [54••]. But analysis of MCL-knockout mice suggests that MCL is required to up-regulate 

expression of mincle in response to stimulation with trehalose dimycolate and no evidence 

for hetero-oligomer formation was seen when MCL and mincle were co-expressed in the 

mouse macrophage-like RAW-264.7 cells [55••]. These findings support the alternative 

interpretation that initial sensing of trehalose dimycolate by constitutively expressed MCL 

stimulates signalling through activation of the CARD9/MALT1/Bcl-10 complex leading to 

activation of the transcription factor NFB, which in turn up-regulates transcription of mincle 

mRNA. Binding of trehalose dimycolate to MCL has been described [19,53••]. However, the 

C-type lectin-like domain of MCL does not contain the conserved residues needed for Ca2+-

dependent sugar-binding of the trehalose moiety of trehalose dimycolate, or residues that 

form a hydrophobic groove seen in the mincle CRD that are predicted to accommodate the 

acyl chains of a glycolipid [18], so the mechanism of trehalose dimycolate binding to MCL is 

not clear. 

 

The mannose-specific C-type lectin dectin-2 binds pathogens including mycobacteria and 

fungi such as Candida and Malassezia, which also interact with mincle but through different 

ligands: dectin-2 binds the capping mannose residues of lipoarabinomannan from 

mycobacteria or terminal mannose residues on fungal mannans [56•,57•,58•]. Candida 

mannan also binds weakly to MCL and MCL-knockout mice are more susceptible to Candida 

infection than wild type mice, suggesting a role for MCL in anti-fungal immunity, possibly 

through formation of a hetero-oligomer with dectin-2 [58•]. Dectin-2 has been seen to co-

immunoprecipitate with MCL both in transfected RAW 264.7 cells and in mouse bone-

marrow derived macrophages. In addition, bimolecular fluorescence complementation 

assays indicate formation of hetero-dimers between dectin-2 and MCL at the cell surface, 
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although homo-dimers of dectin-2 and MCL also form [58•]. The relative importance of 

hetero-oligomers versus homo-oligomers and the exact nature of the interactions between 

the different receptors remain to be determined. 

 

Structural analysis of oligomeric C-type lectins has shown the importance of the spatial 

arrangement of C-type CRDs in determining specificity for pathogen glycans. In one model, 

exemplified by serum mannose-binding protein, CRDs with low affinity and broad specificity 

are held in fixed geometrical arrangements in order to bind arrays of terminal sugars on 

bacterial and fungal cell surfaces [2]. In an alternative model, based on DC-SIGN, CRDs that 

bind restricted oligosaccharide motifs are flexibly linked and able to accommodate the 

disposition of these glycans on viral surfaces [59]. Results from recent quantitative imaging 

studies illustrate that, for cell surface receptors such as DC-SIGN, the arrangement of the 

tetrameric receptors on the cell-surface is also important for internalization of viruses [60•]. 

These methods reveal that DC-SIGN is clustered in microdomains on the plasma 

membranes of dendritic cells and on transfected cell lines and that each microdomain 

contains only 1-2 copies of the DC-SIGN  tetramer. Internalization and infection studies with 

dengue virus, a small virus that binds to DC-SIGN, in cells transfected with DC-SIGN 

showed that no re-arrangement of micro-domains is required for efficient internalization of 

dengue virus and that the small number of DC-SIGN molecules in each micro-domain is 

sufficient to allow productive internalization and infection. 

 

Spatial arrangement of the CRDs in the langerin trimer has also been studied in the context 

of formation of Birbeck granules, the specialized structures of the endosomal pathway with 

which langerin is associated in Langerhans cells [61]. Langerin expression is absolutely 

required for formation of Birbeck granules, as indicated by the absence of these structures in 

the langerin knock-out mouse and in humans with a very rare mutation in the langerin gene 

that prevents langerin expression [62]. Mutation of a residue located at the interface between 

adjacent CRDs in the langerin trimer has now been shown to cause destabilization of the 

langerin trimer and this mutation also causes abnormal membrane architecture in Birbeck 

granules as well as decreasing the affinity for HIV gp120 [61]. 

 

 

Conclusions 

The broad outlines of the mechanism by which simple sugars are bound to C-type CRDs, 

established roughly twenty years ago, remain valid. However, the ways that accessory 

binding sites lead to selectivity for specific classes of oligosaccharide ligands continue to be 

elucidated. While further structures of CRDs with bound ligand are needed, the current state 
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of structural information makes it possible to envision that a relatively complete description of 

the sugar-recognition aspect of C-type lectin function can be achieved. The mechanisms by 

which these lectins participate in cell adhesion and in glycoprotein clearance are also now 

relatively well understood. In contrast, roles of C-type lectins in signalling are continuing to 

emerge and description of the mechanisms by which glycan binding leads to initiation of 

signalling pathways remains an area of active investigation. 
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Figure legends 

 

Figure 1 

Summary of current state of structural analysis of glycan-binding C-type CRDs. Dendrogram 

at the left shows the relationships of the sequences of human CRDs, with the domains that 

bind glycans at the conserved Ca2+ site in yellow boxes and the domains that appear to bind 

glycans through non-canonical sites in blue boxes. Members of other groups that contain C-

type lectin-like domains but lack key residues usually associated with Ca2+ and sugar-

binding are not shown individually. Names of proteins containing the full set of residues 

needed to form canonical sugar-binding sites are shown in green when structures with 

bound glycan ligands have been obtained, in red for those cases in which unliganded 

structures have been determined and in black where structures have not been elucidated. 

The organization of proteins containing these CRDs is depicted schematically at the right, 

with the positions of CRDs, shown as green spheres, shown in relationship to other 

domains. Groups 2, 4 and 6 are receptors with transmembrane sequences. Proteins that 

bind sugars but lack the canonical binding site are indicated in blue. The crystal structure of 

Dectin-1 has been determined and a possible mode of sugar binding has been suggested 

[63]. 

 

 

Figure 2 

Recently reported structures of C-type CRDs with unusual modes of sugar binding. (a) 

Mouse dendritic cell immunoreceptor 2 (DCIR2) with a bound bisected biantennary N-linked 

glycan [PDB 3VYK]. The positions of the three sugar residues A, B and C that interact with 

the protein are indicated in the schematic diagram of the bisected oligosaccharide. (b) 

Mouse SIGNR1 with bound sialic acid [PDB 4C9F]. In both (a) and (b), the primary Ca2+ 

bound to the protein is shown as a magenta sphere. (c) Sequence alignment of a portion of 

the CRDs from the proteins shown in (a) and (b) as well as mincle. Framework residues are 

highlighted in yellow, ligands for the conserved Ca2+ are highlighted in green and ligands for 

the adjacent accessory Ca2+ site in mincle are highlighted in pink. 

 

 

Figure 3 

Summary of evolution of vertebrate C-type lectin-like domains. Common domain 

organizations were established early. However, recent evolution makes it difficult to define 

specific orthologues for some proteins, even between mammals such as humans and mice. 
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Figure 4 

Organization of proteins containing extracellular C-type CRDs and intracellular domains 

involved in signalling. Sequence motifs in the cytoplasmic domains include immunotyrosine 

activation motifs (ITAMs), in which the tyrosine residues become phosphorylated, making 

them targets for binding to Src homology type 2 domains (SH2). 
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