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ABSTRACT
Software performance engineering heavily relies on appli-
cation and resource models that enable the prediction of
Quality-of-Service metrics. Critical to these models is the
accuracy of their parameters, the value of which can change
with the application and the resources where it is deployed.
In this paper we introduce the Filling-the-gap (FG) tool,
which automates the parameter estimation of application
performance models. This tool implements a set of sta-
tistical routines to estimate the parameters of performance
models, which are automatically executed using monitoring
information kept in a local database.

1. INTRODUCTION
DevOps [5] is a recent trend in software engineering that

bridges the gap between software development and opera-
tions, putting the developer in greater control of the ap-
plication operational environment. To support Quality-of-
Service (QoS) analysis, the developer may rely on software
performance models. However, to provide reliable estimates,
the input parameters must be continuously updated and ac-
curately estimated. Accurate estimation is challenging be-
cause some parameters are not explicitly tracked by log files,
requiring deep monitoring instrumentation that poses large
overheads, unacceptable in production environments.

In this paper we present the first release of the Filling-the-
Gap (FG) tool, a tool for continuous performance model
parametrization that implements the research agenda set
in [4]. The FG tool implements a set of statistical estima-
tion algorithms to parameterize performance models from
runtime monitoring data. Multiple algorithms are included,
allowing for alternative ways to obtain estimates for differ-
ent metrics, but with an emphasis on resource demand esti-
mation, which has recently been contemplated also in tools
such as LibReDE [6]. A distinguishing feature of FG tool
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Figure 1: FG Architecture

is that it supports advanced algorithms to estimate param-
eters based on response times and queue-length data, which
makes the tool useful in particular for applications running
in virtualized environments where utilization readings are
not always available. In addition, the FG tool offers sup-
port for parallel computations, integrates monitoring data
acquisition, and generates performance reports.

The FG tool is composed of four main components: the
FG Local DB, the FG Analyzer, the FG Actuator, and the
FG Reporter. We now describe these components and their
interactions, depicted in Figure 1.

FG Local DB: This local database periodically acquires
and stores the monitoring data that is relevant for FG
analysis and used by the FG Analyzer. The Local DB
is a Fuseki1 database, which keeps data in RDF format.

FG Analyzer: The FG Analyzer executes the statistical
methods necessary to obtain the estimates of the per-
formance models parameters, relying on the monitor-
ing information available on the Local DB. It has the
ability to connect with a Condor cluster to process es-
timation routines in parallel. The FG Analyzer relies
on the Matlab Compiler Runtime for execution.

FG Actuator: The FG Actuator updates the parameters
of the models, e.g., resource demands, think times,
etc., which are obtained from the FG Analyzer. The
update is performed on both the performance and the
deployment model, e.g. a Palladio Component Model2,
making this information available to the developer.

1http://jena.apache.org/documentation/serving_
data/
2https://sdqweb.ipd.kit.edu/wiki/Palladio_
Component_Model



FG Reporter: The FG Reporter is in charge of providing
the developers with information regarding the appli-
cation runtime behavior to help them evaluate how
well the application responds under different condi-
tions. The FG Reporter is based on DynamicReports3.

2. SUPPORTED DEMAND ESTIMATION AL-
GORITHMS

Queueing networks and layered queueing networks are
popular abstractions used as application performance mod-
els. To parametrize these models, the FG tool uses the
monitoring data collected at runtime and executes statistical
methods, improving the accuracy of the models. Among the
set of model parameters, resource consumption, also called
demand, is difficult to estimate since extensive monitoring
poses unacceptable overheads. To tackle this problem, the
FG Analyzer implements several algorithms relying on dif-
ferent monitoring metrics. Below we provide a short descrip-
tion of some of these methods. Here we use Dr to represent
the service demand of request class r.

CI: the Complete Information (CI) method [3] requires a
full trace, that is, the times at which every request ar-
rives and departs from the resource. Consider a class-r
request that arrives at t1 and departs at tI , where I
is the number of observed events (request arrivals or
departures) during the request execution. Then the
demand of that request on that resource is:

Dr =
∑I−1

i=1 (ti+1 − ti) min(n(t+i ), V )/n(t+i )

where n(t+i ) is the number of requests in execution just
after time ti and V is the number of CPUs.

GQL: the Gibbs sampling with Queue Lengths (GQL) method
[7] uses queue-length samples collected at run time to
estimate the service demand with the Bayes’ theorem:

P (D|N) = P (N |D)P (D)/P (N) ≈
∏
n∈N

P (n|D)P (D),

where P (n|D) is the steady state probability of a prod-
uct form queueing network, N is the observed queue
length dataset and n is one entry of the dataset N , i.e.
nir is the number of class-r jobs at station i. Gibbs
sampling is employed to obtain the demand D.

MINPS/FMLPS: the MINPS method [3] is a maximum
likelihood method based on a Markov Chain represen-
tation of the response time given the observed queue
length. It requires response times and queue lengths
observed upon arrival. Similarly, FMLPS [3] is also a
maximum likelihood estimator but uses a fluid approx-
imation to obtain estimates for large systems.

ERPS: the Extended Regression-Based (RPS) approach [3]
makes use of the response times and queue lengths
observed at arrival times as in the equation

E[Rr] = E[Dr]E[Ār]/min
{
V, 1/I

∑I
i=1 n(ti)

}
,

where Ar is the queue-length seen upon arrival by
class-r jobs, and Rr is their response time. The service
demand is estimated using linear regression.

3http://www.dynamicreports.org/
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Figure 2: Comparison between demand estimation
algorithms

FCFS: estimations for FCFS servers [1] rely on

E[Rr] = E[Tr] +
∑K

k=1 E[Dr](1k,r + E[Ar
k]),

where 1k,r = 1 if k = c otherwise 1k,r = 0, Tr is the
residual time to completion of a class-r request, and
Ar

k is the queue-length of class-k jobs seen upon arrival
by each class-r request. Demand estimates E[Dr] are
obtained with regression methods given Ar

k and Rr.

2.1 Evaluation
One advantage of the FG tool is the availability of different

estimation algorithms in a common environment. We make
use of the tool to provide a novel comparison of these algo-
rithms. We simulate the underlying Markov chain of a closed
network with 4 request classes, 2 queueing stations, and one
delay node. The queueing stations have 2 servers and the
number of jobs for each class is [7, 7, 1, 5]. We simulate a
total of 200000 arrival and departure events, and generate
all the metrics required by the estimation algorithms.

Figure 2 shows the experiment result, including the UBR [8]
and UBO [2] methods, which use CPU utilization measure-
ments. We observe that CI achieves the highest accuracy
while UBR is the most efficient one.
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