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The debate on low-carbon heat in Europe has become focused on a narrow range of

technological options and has largely neglected hydrogen and fuel cell technologies,

despite these receiving strong support towards commercialisation in Asia. This review

examines the potential benefits of these technologies across different markets, particularly

the current state of development and performance of fuel cell micro-CHP. Fuel cells offer

some important benefits over other low-carbon heating technologies, and steady cost re-

ductions through innovation are bringing fuel cells close to commercialisation in several

countries. Moreover, fuel cells offer wider energy system benefits for high-latitude coun-

tries with peak electricity demands in winter. Hydrogen is a zero-carbon alternative to

natural gas, which could be particularly valuable for those countries with extensive natural

gas distribution networks, but many national energy system models examine neither

hydrogen nor fuel cells for heating. There is a need to include hydrogen and fuel cell

heating technologies in future scenario analyses, and for policymakers to take into account

the full value of the potential contribution of hydrogen and fuel cells to low-carbon energy

systems.

Copyright © 2014, The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy

Publications, LLC. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).
Introduction

Heat generation in buildings and industry accounts for more

than half of global final energy consumption and a third of

global energy-related carbon dioxide (CO2) emissions [1].
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There is widespread acceptance that current hydrocarbon

fuels used for heat generation will need to be substituted by

low-carbon alternatives if global greenhouse gas emissions

are to be reduced sufficiently by 2050 to avoid dangerous

climate change [2]. Electrification of heat provision, using air

or ground-source heat pumps, is one strategy. District heating
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Table 1 e Global final energy consumption in 2011 in residential buildings, commercial buildings (including public sector),
and industrial plants. Heat refers to heat from centralised CHP or district heat plants. Most fuels are used only for heat
generation but electricity powers a range of machinery including refrigeration, motors and electrical appliances. Data from
Ref. [12].

Residential (EJ) Commercial (EJ) Industrial (EJ) Total (EJ)

Petroleum products 9 4 14 26

Coal 3 1 31 35

Natural gas 17 7 21 46

Biofuels and waste 35 1 8 44

Electricity 18 15 28 61

Heat 5 1 5 11

Other 0 0 0 1

Total 87 30 107 224

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 0 ( 2 0 1 5 ) 2 0 6 5e2 0 8 32066
(using low-carbon fuels), solar heating and biomass are other

potential options [3,4].

Fuel cells and hydrogen have received less attention in the

literature, but could potentially generate low-carbon heat and

electricity while avoiding some of the practical consumer

acceptance issues faced by other low-carbon technologies (see

Refs. [5e7] for examples of these issues). Japan andKorea have

deployment programmes for residential fuel cell micro-CHP1

[8,9], while larger fuel cells have penetrated the commercial

heat market in the USA [10]. In the UK and in some other parts

of Europe, the debate on low-carbon heat has largely neglec-

ted hydrogen and fuel cell technologies. Yet hydrogen is

potentially an alternative zero-carbon gaseous fuel to natural

gas. Existing fuel cells have built-in reformers that produce

hydrogen from natural gas, but an alternative fuel such as

hydrogen produced from a low-carbon energy source or bio-

SNG2 could be used to power fuel cells in the future. There are

also several hydrogen-powered heat technologies in addition

to fuel cells.

In May 2014, the UK Hydrogen and Fuel Cell Supergen Hub

published a White Paper that systematically examines the

evidence base for using hydrogen and fuel cells to provide

low-carbon, secure, affordable heat in the UK [11]. This paper

synthesises that White Paper but takes a broader perspective

that includes developments and potential applications across

the globe. Three broadmethodswere used in the development

of this review. First, there was an extensive review of the

technical, academic and commercial literature surrounding

hydrogen and fuel cells. Second, the findings from this review

were tested through consultations with core industry stake-

holders.3 Third, the findings were augmented with a

comparative analysis of heating technologies that used resi-

dential data from several UK field trials, in conjunction with

models, to consider the potential impacts of fuel cells on the

wider UK energy system. All data in the paper except for case

study results in Section 5 are secondary data.

The paper is set out as follows. Potential markets for

hydrogen and fuel cell technologies are examined in Section 2.

Section 3 reviews fuel cell micro-CHP, while hydrogen as a

heating fuel is examined in Section 4. The integration and
1 CHP stands for Combined Heat and Power, and is also known
as cogeneration.

2 SNG stands for Synthetic Natural Gas.
3 Stakeholders that contributed extensively to the review are

listed in the Acknowledgements.
potential benefits of hydrogen and fuel cells for national en-

ergy systems are considered in Section 5, using a case study of

the UK. Policy issues are highlighted in Section 6.
Potential markets for hydrogen and fuel cell
technologies

In 2011, total global energy use for heat in buildings and in-

dustry was 172 EJ [1]. Around 75% of this heat was generated

using fossil fuels, leading to emissions of 10 GtCO2. The only

substantial renewable fuel contribution was from biomass,

which provided 9% of the total energy use. Table 1 shows a

breakdown of fuel consumption in the residential, commer-

cial and industrial sectors. Markets for low-carbon heating are

emerging as a result of policy drivers, of which some are dis-

cussed in Section 6, and in response to the emergence of a

number of low-carbon technologies, including fuel cells.

Residential sector

The residential sector accounts for 39% of global final energy

in buildings and industry. Fuels are used to provide space

heating, water heating and cooking, but the demand for these

varieswidely according to the climate, house size and building

construction. For example, Fig. 1 shows that houses in the UK

have a wide range of heating demands in winter but similar

demands in summer. Peak electricity consumption occurs in

winter in cold temperate countries such as the UK, but in

summer in warmer countries when air conditioning is widely

used. This has important ramifications for the relative

competitiveness of fuel cell CHP and heat pumps, as part of

their value is determined by their impact on the electricity

system, as discussed in Section 5.

Biomass and waste currently supply more than 40% of

residential heat provision, primarily in less developed coun-

tries or in areas of low population density. For people in poorer

countries, access to modern energy services using clean

gaseous or liquid fuels, or electricity, is a priority, but

hydrogen and fuel cell technologies are likely to be prohibi-

tively expensive for such applications in the near and

medium-term due to the high capital costs relative to other

options. Natural gas supplies around 20% of global residential

heat, primarily in OECD countries. Gas is widely used in

highly-populated regions of Northern Europe and North
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Fig. 1 e Heat demands from different households

throughout the year in the UK. The demands include both

space and water heating. Winter consumption is strongly

temperature-dependent and the winter peaks can be much

higher in a cold year. Based on data from Ref. [14].
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America; for example, in the UK and the Netherlands more

than 80% of houses use in-house gas boilers4 [13]. This is

important for two reasons. First, such a strong incumbent

technology could prove difficult to displace with alternatives,

particularly as studies of consumer preferences regarding

heating systems show a strong cultural affinity in these

countries for gas boilers, which are perceived as safe, cheap,

effective and easy to control [6,7]. Second, markets and

infrastructure already exist for gaseous heating fuels and it

might be possible to convert these to use hydrogen, while

providing a similar service to households that natural gas

provides at present.
6 Following heating industry conventions in Europe, all effi-
Commercial sector

Space and water heating are the most important energy ser-

vice demands for commercial and public sector buildings, but

the diversity of buildings is much greater than for the resi-

dential sector in terms of their size, shape, and level of heat

demand. This diversity, coupled with the low fuel consump-

tion relative to the residential and industrial sectors (Table 1),

means that decarbonising the commercial sector often re-

ceives much less attention than the residential sector.

Natural gas and electricity are the dominant fuels. In

contrast to residential buildings, electrically-powered HVAC5

systems are used in many larger commercial buildings and

these could run in cogeneration with fuel cell CHP, with the

fuel cell contributing to the power and heating loads as well as

providing an alternative electrical backup to UPS systems and/

or diesel generators. The major barriers to the deployment of

hydrogen and fuel cell heating systems are high costs when
4 Boilers are also furnaces or stoves in North America. Hydronic
boilers supplying hot water for heating are commonly used in
Europe while forced-air furnaces supplying hot air through ducts
are often used in North America.

5 HVAC stands for Heating, Ventilation and Air Conditioning.
compared against alternatives, and their perceived techno-

logical immaturity [15]. Many commercial organisations are

often reluctant to adopt innovative technologies, favouring

instead established technologies and processes [16,17]. CHP is

an important commercial technology in some countries,

whether supplying only single large buildings or providing

district heat to a range of residential and/or commercial

properties.

Industrial sector

The potential market for low-carbon heat technologies in the

industrial sector is distinct from the commercial and resi-

dential parts of the economy because space heating is a

relatively minor end use for heat demand. Demands for water

heating and for the direct supply of industrial processes at

different temperatures are much larger, particularly outside

the food and drink sector [4]. Table 1 shows that industrial fuel

use is quite different to the other two sectors, with a greater

dominance for fossil fuels. Coal is the most used fossil fuel,

followed by natural gas and petroleum products.

Possible roles for hydrogen and fuel cell products include

the substitution of hydrogen for natural gas in some processes

and the use of CHP technologies. Industry is a major market

for CHP, as many companies that use significant amounts of

process heat find that generating their own electricity on site

can help to offset production costs [18].
Fuel cells

Fuel cells can produce the highest proportion of electricity of

any CHP technology. They are a flexible, modular technology

that can easily be scaled up from serving individual homes to

large office blocks and industrial complexes. While some

systems are designed to solely produce electricity, the most

common stationary application is CHP, which can provide

exceptionally high efficiency e up to 95%6 in total e and

reduce dependence on centrally-generated power, potentially

saving on electricity costs and carbon emissions.

Fuel cells are not the only technology for heating with

hydrogen (see Section 4.1 for other options), but they are the

most prominent because of their electrical efficiency advan-

tage. Similarly, hydrogen is not the only fuel that can power

fuel cells, and most currently produce hydrogen internally by

reforming a supplied hydrocarbon fuel. For stationary heat

applications, natural gas is most widely used, along with LPG

and biogas.

Types of fuel cells

PEMFCs (proton exchange membrane fuel cells7) are the most

developed technology, powering around 90% of systems
ciencies in this white paper are expressed relative to the lower
heating value (LHV) of the fuel input.

7 PEMFC is also widely known as PEFC (polymer electrolyte fuel
cell) and SPFC (solid polymer fuel cell). The direct methanol fuel
cells (DMFCs) used in portable applications are technically very
similar to PEMFCs.
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Fig. 2 e Cumulative number of fuel cell micro-CHP systems

deployed in three major regions, showing historic growth

(solid lines) and near-term projections (dotted lines). Based

on data from Refs. [8,32e38].
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shipped to date [10]. They are most widely used in residential

heating systems (1e3 kW thermal), such as those in the Jap-

anese ‘EneFarm’ programme, and are also the stack technol-

ogy used in fuel cell vehicles. After more than a decade of

intense R&D effort, PEM technology offers high efficiency,

durability and reliability, and costs have fallen rapidly due to

mass production. Current research is aimed at system

simplification: removing the platinum could avoid complex

engineering solutions [19,20], while high-temperature (HT-

PEM) cells can operate on dry hydrogen over 100 �C, removing

the need for humidifiers [21,22].

SOFCs (solid oxide fuel cells) are high-temperature fuel

cells used in both large industrial CHP (100e1000 kW) and

residential heating systems (1e3 kW), that have recently

grown to reach 10% of global sales [10]. SOFC benefit from the

highest electrical efficiency and greater fuel-flexibility, but

operate less dynamically than PEMFC due to their tempera-

ture requirements [23]. In particular, start-up and shut-down

are sensitive operations taking 12 h or more, and so systems

tend to run “always-hot”, reducing their output when there is

little or no demand. Fundamental research has been aimed at

improving durability andmaterial fatigue, and there is a trend

towards intermediate temperature devices (IT-SOFC) that

operate at 500e750 �C [24]. This allows a wider range of ma-

terials to be used, lowering costs and improving dynamic

performance.

MCFCs (molten carbonate fuel cells) are another high-

temperature fuel cell used in large industrial CHP and grid-

scale electricity production (3e60 MW), which have become

themarket leader for large stationary applications [10]. MCFCs

benefit from relatively low capital costs due to non-platinum

catalysts and simpler ancillary systems, but suffer from low

lifetime and low power density [25]. The key research issue is

improving stack lifetimes, which stand at only five years due

to the aggressive chemistry of the stack and electrolyte

leakage, meaning a stack replacement is required half-way

through a system's lifetime [26]. Power density is also a

research focus, to reduce cell size and thus material costs.

PAFCs (phosphoric acid fuel cells) were the first fuel cell

technology employed for heating, being used since the 1970s

in commercial-scale CHP systems (100e400 kW electric) [27].

Around 400 systems (85 MW) are in operation, predominantly

in the US, Germany, Japan and Korea [28,29]. A small number

of demonstration systems have been made at the 1 kW scale

[30], but no residential products have been brought to market.

Global deployment of fuel cells for CHP

Stationary combined heat and power (CHP) is currently the

largest and most established market for fuel cells. The com-

mercialisation of micro-CHP fuel cells has proceeded rapidly

since the first launch in 2009. In Japan, nearly 60,000 systems

have been sold in the four years to October 2013 [8], and in

2012 fuel cells outsold engine-based micro-CHP systems for

the first time, taking 64% of the global markete approx. 28,000

sales worldwide [31]. As shown in Fig. 2, Japan is leading the

way in terms of deployment, some 6e8 years ahead of South

Korea and Europe; however, all regional markets are roughly

doubling in size year on year. This impressive growth is ex-

pected to continue in the near future: the Japanese
government has a target for 1.4 million fuel cells installed by

2020, and the European Union anticipates 50,000 systems

deployed by 2020 followed by commercial roll-out [8,32].

Japan
By far the greatest activity has occurred in Japan, as the result

of generous government funding (circa V200 m per year) over

the last 10e15 years for both research and demonstration

projects to catalyse fuel cell micro-CHP development. A series

of large demonstration programmeswere carried out between

2002 and 2010, resulting in the installation of 3352 PEMFC and

233 SOFC units into private homes [39,40]. After the comple-

tion of the Japanese Large-scale Stationary Fuel Cell Demon-

stration Project in 2009, the Ene-Farmbrand of PEMFC systems

was launched collectively by Panasonic, Toshiba and Eneos (a

joint venture between JX Nippon Oil & Sanyo). The commer-

cialisation of Ene-Farm has proceeded swiftly with sales

approximately doubling each year, with a total of 57,000 sys-

tems sold as of October 2013 [8].

Japan also lies at the forefront of SOFC development.

Companies such as Kyocera, Nippon Oil and Toto have been

engaged in residential demonstrations of 0.7e1 kW systems

since 2007. Two models of EneFarm-S were launched by

Kyocera and Eneos in 2012, and over 1000 systems had been

sold in their first 2 years [41]. The government roadmap aims

for widespread commercialisation of SOFC from 2015 to 2020

[39].

South Korea
South Korea saw an initial field test of 1 kW residential power

generators (RPGs) in 2004, which led to a larger demonstration

by four Korean companies (GS Fuel Cell, FuelCell Power,

HyoSung and LS) beginning in 2006. 210 systems were

installed between 2006 and 2009, backed by a government

subsidy of 80% of the purchase price (~$47,500 in 2012) [36], at

a cost of $18 m [9]. The subsidies provided in this trial were

significantly higher than the purchase price of other systems

at the time e reflecting the relative immaturity of Korean

systems at the time, and the government's desire to catalyse a

http://dx.doi.org/10.1016/j.ijhydene.2014.11.059
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Table 2 e Summary of fuel cell performance.

Application PEMFC SOFC PAFC MCFC

Residential Residential/commercial Commercial

Electrical capacity (kW) 0.75e2 0.75e250 100e400 300þ
Thermal capacity (kW) 0.75e2 0.75e250 110e450 450þ
Electrical efficiencya (LHV) 35e39% 45e60% 42% 47%

Thermal efficiencya (LHV) 55% 30e45% 48% 43%

Current maximum lifetime ’000 h

years

60e80

10

20e90

3e10

80e130

15e20c
20

10c

Degradation rateb Per year 1% 1e2.5% 0.5% 1.5%

a Rated specifications when new, which are slightly higher than the averages experienced in practice.
b Loss of peak power and electrical efficiency; thermal efficiency increases to compensate.
c Requires an overhaul of the fuel cell stack half-way through the operating lifetime.
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domestic market for producers [36]. The Korean government's
roadmap sees trials continuing through 2014, then commer-

cial sales expanding rapidly from 2015 onwards. More detailed

plans are not yet available, so it remains to be seen whether

these aggressive targets can be met.

Europe
After a decade of small trials in Europe, the Callux residential

field trial of fuel cellmicro-CHP began in 2008with threemajor

German manufacturers e Hexis and Vaillant (both SOFC) and

Baxi Innotech (PEMFC). Up to 560 fuel cells were installed into

German homes between 2008 and 2013, and will be monitored

for at least two years [38]. Other European demonstrations

include the Danish Micro Combined Heat & Power project and

the FC-District Project which is operating in Spain, Greece and

Poland.

More recently, the Ene.field trials have begun to deploy

1000 systems across 12 European countries between 2014 and

2016. This project involves nine manufacturers, including

Baxi, Bosch, Ceres, Hexis, SOFCPower and Vaillant, and will

demonstrate novel intermediate temperature IT-SOFC and

high temperature HT-PEM technologies as well as the more

established stack technologies [32].

North America
There has been little residential fuel cell activity in North

America to date, despite one of the largest fuel cell manu-

facturers, Ballard, being located in Canada. However, the USA

is one of the largest current markets for fuel cells in com-

mercial and industrial applications [10], including in CHP

applications.
8 Lifetimes assume 5000 operating hours per year for inter-
mittent residential operation. Calendar lifetimes would be lower
for commercial and industrial installations with longer running
hours.
Technical performance

The technical performances of the different fuel cell stacks are

summarised in Table 2. Fuel cells offer the highest electrical

efficiency of any CHP technology, and rival even the best

conventional power stations [42]. The leading SOFC systems at

both residential and larger scales have rated electrical effi-

ciencies of 45e60%, and total efficiencies of 80e90% against

LHV. Fuel processing incurs greater losses in low temperature

fuel cells, so electrical efficiencies are lower but thermal effi-

ciencies are higher. The leading residential PEMFCs are rated

at 39% electrical and 95% total efficiency [43,44]. European and
American systems have not yet matched the leading Japanese

and Australian models, with efficiencies being five to ten

percentage points lower than the above values (34% electrical

for both PEMFC and SOFC) [45,46]. The efficiency of these

residential models is somewhat lower in intermittent real-

world usage, due to part-load operation, auxiliary power

consumption and varying flow/return temperatures [38]; for

example, CFCL's BlueGen is rated to be 60% efficient, but

achieves 51e56% in practice.

For many years, durability was a key issue holding back

fuel cells. Stack lifetimeswere around 10,000 h (around 2 years

of intermittent operation)8 for all but PAFC technology [37],

which proved a serious barrier to practicality and cost

competitiveness. Recent improvements in both PEMFC and

SOFC technology, particularly by Japanese manufacturers,

have seen lifetimes improve past the critical milestone of

40,000 h (10 years). The leading Japanese residential systems

are now expected to operate for 60e80,000 h for PEMFCs

[43,44], and up to 90,000 h for SOFCs [47]. Except for PAFCs,

these lifetimes have not yet been proven in the field as the

latest generation of systems have only been operating for

around two years.

Being a newly commercialised technology, fuel cells need

to gain public acceptance as a safe and dependable technol-

ogy. Although the public are familiar with using natural gas

and petrol, the association with hydrogen (flammable and

explosive) gives the impression that fuel cells could be

dangerous. In natural gas-fired CHP systems, hydrogen is

generated on-demand and almost instantaneously

consumed, so only a fraction of a gram is present in the sys-

tem at any givenmoment. Safety considerations are therefore

very similar to a conventional gas boiler and other electricity-

producing technologies such as solar PV.

Economic performance

Upfront capital cost remains a major hurdle for fuel cells to

overcome. Even with the current subsidies offered in Japan

and the UK, residential micro-CHP systems are unable to

recover their initial cost within their expected operating

http://dx.doi.org/10.1016/j.ijhydene.2014.11.059
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lifetime [11]. These systems are currently targeted at premium

consumers on the grounds of their environmental credentials

and improved features (for example, the ability to provide

heat and power during a blackout in Japan).

The economics of commercial and industrial CHP need to

be better than for residential systems as they must offer an

attractive payback period to gain sales. For example, the

annual return on investment (ROI) can range from 8 to 12% in

Europe, depending on the customer and their energy costs

[48,49].

Capital costs
As production has expanded rapidly, capital costs have fallen

in recent years. Fuel cells are still more expensive than

competing technologies but this gap is rapidly narrowing. As

of 2014, the purchase price of a 0.7 kW PEMFC or SOFC resi-

dential system was £12,000 to £16,000 in Japan, the 1.5 kW

BlueGEN SOFC was £20,000 in Australia [43,50], and European

systems are estimated to be around £26,000 [51]. Economies of

scale mean that larger commercial MCFC and PAFC systems

are cheaper per unit output, costing in the region of

£2500e3500 per kW [25,50,52].

The price of residential systems has fallen dramatically e

by 85% in the last 10 years in Japan [50], as shown in Fig. 3, and

by 60% over the last four years in Germany [38]. These are

prime examples of industry ‘learning by doing’ e as com-

panies gain experience with manufacturing a product, they

optimise the design and production process, and so cost falls

with cumulative output.

Capital cost trends
During early demonstration projects in Japan and Korea, the

price of residential PEMFC systems reduced by 20% for each
Fig. 3 e Experience curves fitted to the historic price of

Japanese EneFarm and South Korean residential PEMFC

systems from the last ten years. For each doubling in the

number produced, EneFarm prices have fallen by 15% and

Korean prices by 20%. Prices are British pounds in the year

2012; exchange rates for that year were

£1¼ V1.12¼ US$1.45¼ ¥152. Data are from Refs. [36,43,50].
doubling in cumulative production [33,50] e the same down-

wards trajectory that has brought solar photovoltaic panels

into the mainstream [53]. However, as seen in Fig. 3, the price

of Japanese systems has fallen more gradually since their

commercialisation in 2008. This slowdown could have natural

causes [50]:

� the greatest gains from system optimisation were made

earlier in the product's development;

� R&D expenditure has not kept pace with sales volumes

since commercialisation; and,

� the fuel cell stack is now a minor cost component, so a

greater fraction of the system cost comes from relatively

standard components that have alreadymoved down their

learning curves.

The transition from demonstration projects to a competi-

tive market in Japan (2008e09) sparked a price war that forced

two manufacturers to leave the industry and caused prices to

stagnate for three years (the first two of which were not used

in the fitting of the learning curve shown in Fig. 3). Subse-

quently, prices reduced at a rate of 13% per doubling in pro-

duction between 2010 and 2013.

If the historic trends from Fig. 3 continue into the future,

we could expect the millionth residential system to be

installed in the next 4e6 years and to cost between £4500 and

£9000. The main measures for future cost reduction at all

scales are [50]:

� reducing system complexity through design optimisation;

� eliminating major system components such as fuel pro-

cessing stages;

� cell-level design improvements such as reducing catalyst

content and increasing power density;

� greater collaboration between manufacturers to stan-

dardise minor components and overcome research chal-

lenges more effectively; and,

� further expansion of manufacturing volumes and mass

production techniques.

In contrast to PEMFC and SOFC systems, the cost of larger

PAFC systems has remained stable for many years as they

have yet to take off in the commercial CHP sector. Recently,

ClearEdge (now Doosan Fuel Cell America) have halved their

costs per kW by scaling up from 200 to 400 kW systems [28];

however, the platinum content in PAFC stacks remains a

major obstacle, contributing 10e15% of the total system cost

[52]. In contrast, sales of largeMCFCs have grown steadily over

the years, with prices falling by 60% in the transition from

initial field trials to commercial product (2003e9). FuelCell

Energy are targeting a further 20% cost reduction in the near

term [25].

Running costs
The high capital cost of fuel cell systems is offset by lower

running costs which result from lower consumption of grid

electricity. Residential systems are advertised by their man-

ufacturers as reducing household bills by £350e750 per year

[43,47,54]; the attainable savings depend strongly on the ratio

of electricity to gas prices and the levels of subsidy offered.

http://dx.doi.org/10.1016/j.ijhydene.2014.11.059
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Fig. 4 e Comparison of CO2 emissions from fuel cell micro-

CHP, heat pumps and gas boilers for different electricity

generation emission factors. Based on Ref. [67].
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Subsidies such as feed-in tariffs have proven very effective

at bringing technologies such as solar PV to market, particu-

larly in Germany. The UK offers a feed-in tariff to micro-CHP

which pays 13.24 p for each kWh of electricity generated,

and allows excess electricity production to be exported for a

fixed rate of 4.77 p/kWh [55].

The running costs experienced in one country are not

necessarily transferable abroad because of climatic and social

differences, as mentioned in Section 2.1. For example, com-

puter simulations of Japanese fuel cells in UK houses using

two independentmodels, CODEGen [56] and FCþþ [37], suggest

that fuel cells would perform better in the UK climate, given

the higher UK demand for space heat andwith peak electricity

demand being in winter rather than summer, when the fuel

cell is likely to contribute to the peak load. Annual savings

from a 1 kW fuel cell in an average UK home are estimated to

be around £850 per year, which primarily comes from feed-in

tariff income [11]; however, this is not sufficiently high to

repay the current upfront cost during the fuel cell's lifetime.

Environmental impacts

Carbon footprint of construction
Fuel cells are larger and heavier than the gas boilers they

replace, and require catalyst metals such as nickel and plat-

inum which are extremely energy-intensive to produce. Just

as with other low-carbon technologies (e.g. solar PV and nu-

clear), the energy required tomanufacture the fuel cell and the

resulting carbon emissions are important as these offset the

savings made during operation.

Several life-cycle assessments (LCAs) have estimated these

carbon emissions e known as the embodied carbon or the

carbon footprint e by considering how the fuel cell is manu-

factured, the quantity of materials required and how these

materials are produced.Manufacturing a 1 kW residential CHP

system results in emissions of 0.5e1 tCO2, while a 100 kW

commercial system results in 25e100 tCO2 [57e59]. There are

small differences between technologies (e.g. between PEMFC

and SOFC), but these are outweighed by differences in the

country of manufacture and production methods employed

by different brands. The carbon footprintwould greatly reduce

if the manufacturing processes were decarbonised.

If these emissions are averaged over the system's lifetime,

they equate to around 10e20 gCO2/kWh of electricity, or

8e16 gCO2/kWh of heat [57]. For comparison, the carbon in-

tensity of construction is widely estimated to be 40e80 gCO2/

kWh for solar PV and 10e30 gCO2/kWh for nuclear fission

[60,61].

CO2 emissions from operation
In countries with high-carbon electricity systems, fuel cells

can reduce carbon emissions relative to conventional heating

technologies. For example, for deployment in the UK, fuel cell

manufacturers advertise 0.7e1 kW systems as saving

1.3e1.9 tCO2/year in a four-person household (35e50% re-

ductions) [43,44,47,54], while the larger CFCL BlueGen device is

claimed to save around 3 tCO2/year [62]. Modelling suggests

that these figures are broadly transferable to northern Europe

[37]. Similar percentage savings can be made by commercial

CHP systems.
As with financial savings, CO2 savings are country- and

site-specific, depending on the carbon intensity of grid elec-

tricity and on the heating system that is displaced. A modern

gas-fired condensing boiler produces heat with an intensity of

215 gCO2/kWh [63]. Most electricity systems have substan-

tially higher CO2 emissions; for example, the average carbon

intensity in 2011 was 441 gCO2/kWh in the UK [64], 503 gCO2/

kWh in the USA and 477 gCO2/kWh in Germany [65]. However,

marginal plants, which are those that respond to changes in

demand (and whose output would be reduced by micro-CHP

generation) are typically coal or gas (as these are flexible and

controllable), and emissions may average up to 690 gCO2/

kWh, depending on the country [66]. Fig. 4 compares the

emissions by a household per day during the heating season

when using a condensing boiler, an air source heat pump and

a micro-CHP system respectively. The model in Ref. [67] con-

siders the impact of grid electricity emissions on the overall

emissions for supplying electricity and heat to an average

house. These have no effect on gas boilers but are critical for

the relative performance of heat pumps and fuel cells. With

high grid emissions, micro-CHP is the technology with the

lowest overall emissions. Fuel cell micro-CHP currently pro-

duces lower emissions than both gas boilers and heat pumps

in all three countries, and will continue to do so until the

marginal electricity generation carbon intensity reduces to

330 gCO2/kWh. Decarbonisation pathways for the UK suggest

that even the average grid emissions, which tend to be lower

than those of the marginal plants, could still exceed this level

for another 10 years [68]. The realisation of these targets is by

no means guaranteed, such that micro-CHP could remain the

lowest emission option for the foreseeable future.

Other airborne emissions
Fuel cells also offer significant benefits to local air quality even

when fuelled on natural gas. The process of reforming the fuel

at low temperatures in the absence of air, rather than com-

busting it, results in lower emissions of harmful air pollutants,

including oxides of nitrogen (NOx), carbon monoxide (CO) and

particulates (PM10). Emissions from fuel cells are around a

http://dx.doi.org/10.1016/j.ijhydene.2014.11.059
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tenth of those from other gas-burning technologies, as shown

in Table 3.
User experience compared to other heat technologies

Fuel cell CHP faces competition from five established and

emerging technologies: condensing gas boilers and furnaces,

biomass boilers, engine-based CHP, electric heat pumps and

gas-engine heat pumps. Barriers to low-carbon technologies

include high capital and installation costs, uncertain fuel

costs, house space requirements and noise pollution [5].

Installation of a fuel cell is comparable to that of conven-

tional heating, requiring the skill-sets of a heating engineer

and an electrical engineer. Installation can take as little as a

day, and involves relatively little disruption to the premises. In

contrast, heat pumps require more specialised skills: for

example, a refrigeration technician is needed along with a

geological borehole specialist for ground-source pumps [70],

and the requirement for low output temperatures can lead to

intrusive changes to household heat distribution systems [5].

Residential fuel cells are physically larger than gas boilers,

around the size of a large fridge-freezer, and so they are

installed in basements or outside. A typical system (1 kW

electric) weighs 150e250 kg and has a 2m2 footprint, including

the hot water tank and supplementary boiler [38,43]. Smaller

wall-hung systems are being developed (e.g. by Ceres Power

and Elcore) whichweigh as little as 60e100 kg (comparable to a

boiler). The need for a hot water storage tank poses a problem

in smaller urban houses, although this is a common require-

ment for all low-carbon heating technologies [69]. Commercial

fuel cells are similarly larger than boilers: 300e400 kW gen-

erators can fit into a small shipping container, occupying

22e36 m2 and weighing 30e35 tonnes [71,72]. For context,

1e2 MW of electrical capacity can be installed into the area of

a tennis court.

Apart from their physical size, fuel cells are relatively un-

obtrusive. The only moving parts are pumps and fans so noise

levels are similar to boilers, around 40 dB for residential sys-

tems (equivalent to a library) [44], and 60e65 dB for commer-

cial systems (a busy road) [71,72]. Noise levels from air source

heat pumps are higher due to the large fan [70], and CHP en-

gines can be significantly louder, although modern sound-

proofing reduces residential systems to around 45 dB [69].

Fuel cells could therefore be suitable for installation in living

spaces if their size can be reduced sufficiently.

One clear advantage that fuel cells and other CHP devices

have is the ability to operate during a blackout. This became a

highly prized selling point as the Great East Japan Earthquake
Table 3 e Measured emissions of major pollutants from
fuel cells (averaged over 8 sources), condensing boilers
and CHP engines. All emissions are given in g/MWh of
fuel input [37,69].

Fuel cell Condensing boiler CHP engine

NOx 1e4 58 30e270

CO 1e8 43 10e50

CH4 1e3 13 No data

SO2 0e2 2 No data
of 2011 caused lasting power shortages across Japan, and

hurricanes Katrina and Sandy caused extensive power loss in

the US. Provided that the natural gas network is not disrupted,

the fuel cell can provide hot water and sufficient power for

refrigeration, a TV, computer and lighting during an emer-

gency [34]. Similarly, commercial fuel cells continue operating

throughout power outages, enabling shops and offices to

continue functioning as normal.
Hydrogen

Hydrogen can be used as an alternative to natural gas for

space heating, water heating, and for gas cooking. There are

numerous engineering factors which determine the compat-

ibility of appliances with different types of gases, with the

simplest and most commonly-used comparison metric being

the Wobbe index. Even across Europe, natural gas varies in

terms of its exact composition, with different Wobbe band

standards being used in different countries for historical

reasons. The Wobbe number is used, amongst other in-

dicators, as a yardstick of compatibility when gas shippers

import gases from other territories. Using a gas device with a

fuel that is outside of the Wobbe band it is designed for can

cause a number of undesired effects, such as incomplete

combustion, the flame extinguishing easily, or the burner

overheating.

Pure hydrogen has aWobbe index number of around 48MJ/

m3 [73], which iswithin the natural gas safety regulation range

for burners in some European countries [74]. Despite the close

match of Wobbe band numbers, gas appliances that are

designed for use with natural gas cannot generally be used

directly with hydrogen.9 This is principally because the com-

bustion velocity, also called the flame speed, is much higher

for hydrogen than for natural gas, so controlling the flame is

more challenging and requires different burner head designs.

Practically, this means that all existing burner heads would

have to be replaced in order to combust hydrogen instead of

natural gas.

The physical and chemical properties of hydrogen are well

understood and safety standards are in place for industrial

processes. In contrast, there is very limited knowledge of the

risks associated with hydrogen as a fuel in buildings [75,76].

The overall risk of hydrogen ignition within a building is

higher than for natural gas. Moreover, hydrogen has no smell

and suitable odorants have not yet been developed, and

hydrogen flames are invisible.

In the short-term, several studies have proposed mixing

natural gaswith biologically-derivedmethane to lower the net

CO2 emissions from gas combustion [77e80]. Hydrogen in-

jection has been proposed as an alternative or in some cases, a

compliment to biomethane injection as a means of lowering

the carbon content of supplied gas without changing existing

appliances.
9 The Wobbe index number is principally a method of
comparing the energy produced when different gases are burned,
which while useful, doesn't capture all of the variables that are
important for designing gas-using equipment (NGC þ Gas Inter-
changability Working Group 2005).
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Hydrogen heat technologies

In homes, hydrogen could be used to power fuel cell micro-

CHP, direct flame combustion boilers (similar to existing nat-

ural gas boilers), catalytic boilers and gas-powered heat

pumps. A variety of larger district heat and CHP devices that

use natural gas could also be redesigned to use hydrogen [81].

It would also be possible to replace a large number of natural

gas processes in industry [82]; for example, hydrogen could be

used to fuel cement kilns, although substantial plant re-

designs would be necessary [83].

A direct flame combustion H2 boiler is functionally iden-

tical to the gas boilers installed in Europe and North America

to supply residential central heating [84], except that it burns

hydrogen instead of natural gas. Like natural gas boilers,

direct combustion of the gas produces a series of flame jets

that heat water. From a consumer perspective, there is no

difference in the appearance or operation of hydrogen boilers

when compared to their natural gas equivalents.

A catalytic boiler passes hydrogen gas over a highly reac-

tive metal catalyst, which undergoes an exothermic chemical

reaction to produce heat for space and hot water heating

without a flame. The process results in very low nitrogen

oxide emissions, and the heat output is potentially more

easily controlled than that of a naked flame burner [85,86].

From a consumer perspective, catalytic hydrogen boilers can

be designed to look and perform in a very similar fashion to

existing natural gas boilers, except for the absence of a pilot

light.

Gas heat pumps operate on similar principles to electric

heat pumps, upgrading ambient heat from air, ground or

water sources to useful temperatures. A phase-change work-

ing fluid is used to absorb heat from an ambient source and to

transfer it to the building heating system. Instead of an elec-

tric vapour compressor, gas is combusted to provide the

heating energy for the phase-change. Gas heat pumps use this

refrigeration cycle to increase the delivered thermal energy

beyond what would have been obtained from direct gas

combustion alone. They have principally been developed for

larger commercial buildings to date, although residential-

scale models have also been successfully deployed in the

German market [87].

Using hydrogen would remove CO2 emissions at the point-

of-use but would only reduce emissions across the energy

system if low-carbon hydrogen production technologies and

feedstocks were used. Moreover, while the use of fuel cells

would greatly reduce emissions of non-CO2 airborne pollut-

ants, high-temperature hydrogen combustion would greatly

increase NOx emissions in comparison.

Hydrogen delivery infrastructure

Widespread consumption of hydrogen for heating would

require the production of huge quantities of the gas. Con-

structing a pipeline network would likely be more economic

than bulk delivery by freight transport vehicles to supply cities

[88]. Possible routes for achieving widespread pipeline distri-

bution include scaling up and expanding existing hydrogen

networks, constructing entirely new ones, or converting some

or all of existing natural gas distribution networks. It is likely
that the pathway taken would depend on market-specific

factors in different countries, and, in some cases, it is

possible that a combination of all three approaches could be

optimal. The repurposing of existing grids is highly attractive

in markets with established gas networks because it avoids

some of the potentially-enormous costs of building an entirely

new hydrogen infrastructure from scratch [89e91].

Constructing hydrogen pipeline networks
A small number of high-pressure pipelines already exist to

transport hydrogen between industrial producers and con-

sumers. There are around 1600 kmof hydrogen pipes in Europe

across 15 main networks, with the largest operators being Air

Liquide, BOC and Sapio [92]. Globally, about 3000 km of pipe-

lines had been constructed by the year 2010 [93]. Hydrogen

transmission pipelines are typically constructed using low-

carbon steel coated with epoxy to prevent corrosion.

Pipe costs for hydrogen are difficult to generalise as they

are heavily influenced by geographic considerations such as

the routing of pipelines and the way they are trenched and

installed in the ground. This depends on factors such as ge-

ology, topography, coordinationwith other buried electrical or

fluid conduits, the costs of securing the rights to install pipes

through private land, etc. [93e95]. On average, costs for

hydrogen pipe infrastructure are estimated to be around 10%e

20% more expensive than for natural gas [93,96].

Converting existing gas networks to deliver hydrogen
The potential role of hydrogen in the existing gas networks

has attracted interest from government [3,4], academia

[13,97], and industry [98]. One of the main attractions of this

concept is that it offers a long-term transition pathway to-

wards a low-carbon future for countries with established gas

networks, which have received significant public and private

investment over decades. The re-use or conversion of existing

networks potentially avoids the significant costs of building

entirely new parallel infrastructures for heat supply, such as

district heating, or upgrading electricity distribution networks

to cope with heat pumps [98,99]. In the case of the gas

network, all of the required land rights have already been

secured and could in principle be re-used. While existing high

pressure networks are unlikely to be suitable for carrying pure

hydrogen, the majority of investments in the gas grid are in

intermediate and local distribution networks and not in

transmission systems [100]. Leakage from low-pressure pipes,

particularly those constructed of polyethylene, is likely to be

too small to be important unless the escaping hydrogen can

accumulate in houses, the likelihood of which is not well

understood [97].

One challenge for converting existing gas networks is the

20e30% lower energy carrying capacity for hydrogen for a

pipeline of the same pipe diameter and pressure drop, when

compared to natural gas [90,101]. This limitation could be

exacerbated by increasing gas demands, with fuel cell micro-

CHP having a 25% higher fuel consumption than condensing

boilers, although this increase could be offset by fitting energy

conservation measures [97]. An engineering appraisal is

required to understand the extent to which the networks

would require reinforcement in order to transport sufficient

hydrogen to meet demand.
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Another issue is the role of the networks as an energy

storage medium to meet daily gas demand peaks (commonly

called the linepack). The linepack capacity of a network for

hydrogen is less than a quarter of the natural gas capacity as it

depends only on the relative volumetric energy densities of

the two fuels [90]. It is not clear whether the network opera-

tors would be able to follow current natural gas operating

practices for hydrogen, or whether additional storage would

be required. One option to increase hydrogen linepack ca-

pacity would be to increase the operating pressures across the

networks [102].

A national programme would be required to convert the

existing gas networks. It would be necessary to fit hydrogen

sensors in each home for safety reasons and new meters to

accurately measure consumption. There is a precedent for

such a programme in the conversion programmes from town

gas to natural gas, but such programmes would be more

complex today because current gas networks are much more

interconnected than previous town gas networks, so it would

be more difficult to limit the length of supply disruptions

during conversion. It would also be more difficult to organise

and finance a national program in those countries with frag-

mented low-pressure networks owned by several private

companies. Section 6.2 explores some of the policy issues

surrounding conversion.
Hydrogen production

Europe and North America possess significant industrial

infrastructure for large-scale hydrogen production [103].

Hydrogen has been used to make ammonia for crop fertiliser

and for “cracking” heavy oil into common fuels like petrol,

kerosene and diesel formore than 100 years. It is also used in a

wide variety of industries such as food processing and metal

fabrication [104].

Hydrogen can be produced from fossil fuels, biological

material or water [105]. Current hydrogen production is

largely from steam methane reforming, but there is also

strong interest in the electrolysis of ‘green’ hydrogen from

water that in the future would use zero-carbon electricity.

Low-carbon electricity is a relatively expensive resource and

some energy system studies have identified fossil or biomass-

fuelled plants fitted with carbon capture and storage (CCS)

technologies as more competitive long-term options for

hydrogen production [e.g. 13]. There are also a number of
Table 4 e Representation of hydrogen and fuel cell heating tec
system models.

Model Scope

ETSAP-TIAM [114] World N

US EPA 9R [115] USA N

Canada TIMES [116] Canada In

Pan-European TIMES [117] Europe N

JRC-EU-TIMES [118] Europe In

hy

Belgium TIMES [119] Belgium N

Norway TIMES [120] Norway N

UK MARKAL [121] UK In

UKTM [122] UK In
production methods under development that could become

significant in future hydrogen supply chains, including:

� Electrolysis at high temperatures, using heat from nuclear

reactors or concentrating solar power [106], which makes

the process more efficient.

� Thermolysis, which uses extreme heat from nuclear or

solar energy to split hydrogen from water [107,108].

� Photocatalytic water splitting, the process of obtaining

hydrogen directly from water using sunlight [109].

� Production of hydrogen from direct fermentation of bio-

logical material [110].

Hydrogen is not a sustainable energy vector unless the

production process produces low emissions. In Germany, a

‘green hydrogen’ standard has been developed by TÜV-SÜD

[111], and is increasingly widely used as a benchmark in pro-

jects and demonstration activities for defining ‘green’

hydrogen. The European Commission Joint Undertaking on

Hydrogen and Fuel Cells is funding the development of a Eu-

ropean framework for guarantees of origin of green hydrogen,

to enable the harmonised development of green hydrogen

standards.
The benefits of hydrogen and fuel cells for
national energy systems

The previous sections have shown that fuel cells and other

hydrogen-fuelled technologies have the potential to be low-

carbon options for heat provision. This section considers

why these technologies have not featured in heat decarbon-

isation pathways in different countries, concentrating on

Europe in particular. It also examines how fuel cell micro-CHP

could be integrated into existing energy systems to support

electricity generation and distribution.

Heat decarbonisation pathways

Decarbonisation pathways across economies are often iden-

tified using energy system models. These models represent

commodity flows through the entire economy and are used to

identify the energy system that meets energy service de-

mands with the lowest discounted capital, operating and

resource cost, subject to constraints such as greenhouse gas
hnologies in several national and international energy

Representation of hydrogen and fuel cells for heat

one

one

cluded, but no specific details available

o information available

cludes a hydrogen “burner”, but with a very high costs/kW, and also

drogen injection to the gas networks

one

one

cludes only natural gas-powered fuel cells

cludes fuel cell and hydrogen boiler technologies

http://dx.doi.org/10.1016/j.ijhydene.2014.11.059
http://dx.doi.org/10.1016/j.ijhydene.2014.11.059


e
rg

y
sy

st
e
m

m
o
d
e
ls
.F

o
r
th

e
h
o
u
se

ca
te
g
o
ri
e
s,

“
lo
ca

ti
o
n
”
re
fe
rs

to
u
rb

a
n
/r
u
ra

l
w
h
il
e

so
li
d
o
r
ca

v
it
y
w
a
ll
).
T
h
e
“
b
a
se

”
h
e
a
t
te
ch

n
o
lo
g
ie
s
a
re

fo
ss

il
fu

e
l,
e
le
ct
ri
c
a
n
d
b
io
m

a
ss

H
e
a
t
te
ch

n
o
lo
g
ie
s

H
2
h
e
a
ti
n
g
fu

e
l

a
se

,
m
C
H
P
,
fu

e
l
ce

ll
m
C
H
P

N
o
a

a
se

,
m
C
H
P
,
h
y
d
ro

g
e
n
b
o
il
e
rs
,
fu

e
l
ce

ll
m
C
H
P
,
h
y
b
ri
d
H
P
s

Y
e
s

a
se

,
m
C
H
P

N
o
b

a
se

,
m
C
H
P

N
o

n
k
n
o
w
n

N
o

a
se

N
o

a
se

N
o

a
se

N
o

a
se

,
m
C
H
P
,
h
y
d
ro

g
e
n
b
o
il
e
rs
,
fu

e
l
ce

ll
m
C
H
P
,
h
y
b
ri
d
H
P
s

Y
e
s

a
se

,
m
C
H
P
,
h
y
d
ro

g
e
n
b
o
il
e
rs
,
fu

e
l
ce

ll
m
C
H
P
,
h
y
b
ri
d
H
P
s,

g
a
s
h
e
a
t
p
u
m
p
s

Y
e
s

a
se

,
m
C
H
P
,
h
y
b
ri
d
H
P
s

N
o
b

rs
io
n
o
f
U
K

M
A
R
K
A
L
.

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 0 ( 2 0 1 5 ) 2 0 6 5e2 0 8 3 2075
emission targets and government policies. Energy system

models are used to inform climate policy in many countries. It

is therefore important that these models have an appropriate

representation of hydrogen and fuel cell heating technologies

so that any benefits of these technologies can be properly

understood and communicated to policymakers.

While energy system models have comprehensive repre-

sentations of the entire energy system, they tend to have

aggregated representations of the individual sectors [112] and

also coarse spatial and temporal resolutions [113], in order to

restrict the model complexity and the computational running

time. Yet despite these trade-offs, they still tend to represent

thousands of different technologies. It is often difficult to find

specific information about the many assumptions in such

models if the documentation is poor or not made available

[113]. This is the case for some of the models that are listed in

Table 4.

The models in Table 4 are prominent energy system

models that operate from global to regional and country

scales. Several models do not include hydrogen and fuel cell

heating technologies at all; these effectively assume that such

technologies are technically or economically infeasible in the

short and long-term. Some of the recently-developed models

do include hydrogen-fuelled technologies, although the JRC-

EU-TIMES model uses what appears to be an excessively

high capital cost that would render the technology uneco-

nomic. Since hydrogen and fuel cell technologies have not

been considered in many of these models, they could not

appear in long-term decarbonisation pathways even if they

formed part of the most economic technology portfolio.
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Case study: UK heat decarbonisation pathways

The energy system models of the UK in Table 4 are of partic-

ular interest as they both include hydrogen and/or fuel cell

heating technologies. It is interesting to take a closer look at

the representation of these technologies in UK energy system

and building stock models.10 Table 5 compares several of

these models for the UK, as well as hybrid versions that

combine detailed housing stock representations within a

wider energy system model. They principally differ according

to the model type, the number of represented house cate-

gories and the breadth of low-carbon heat technologies.

Most of themodels in Table 5 also do not include hydrogen

and fuel cell technologies as an option, which explains why

they have not generally featured in most UK decarbonisation

pathways. Only UKTM and RESOM have wide ranges of heat

technologies that include hydrogen and fuel cell technologies.

RESOM represents amuch greater number of house categories

but UKTM has a more detailed representation of the com-

mercial and industrial sectors. However, conversion of the gas

networks to deliver hydrogen, which Section 4.2 identifies as a
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10 Building stock models are used to identify decarbonisation
pathways for the residential, public and commercial sectors. The
sectors are highly disaggregated with many different types of
buildings separately represented by, for example, the physical
variables for houses might include the house type, size, age, re-
gion, conurbation (urban/rural), level of insulation and heating
technology.
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Fig. 5 e Coincidence of combined electricity generation

from 46 sites with SOFC-based CHP and national load in

each half hour of the coldest week. CHP units load follow

thermal demand and are therefore correlated to national
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key option for the future, has only been assessed using a

research version of UK MARKAL that added many hydrogen

and fuel cell technologies.11 Those studies concluded that

using fuel cells powered by hydrogen from a converted gas

network could be the lowest-cost option for decarbonising

heat, reducing the number of houses using heat pumps while

supporting heat pump operation through high micro-CHP

generation output at peak demand times [13,97]. The RESOM

decarbonisation scenarios do not find a role for fuel cells and

instead identify hybrid heat pumps as a key technology for the

future.

Case studies of fuel cells in individual homes

The exact role of fuel cell micro-CHP in a low-carbon energy

system remains unclear from the models summarised in

Tables 4 and 5. The coarse temporal resolution that is com-

mon in both energy system and housing stock models is un-

likely to fully reflect the integrated functionality that fuels

cells may perform as a constituent part of future energy sys-

tems and their ability to support system operation. In partic-

ular, technologies that tend to generate electricity at times of

peak demand offer additional value to the energy system by

reducing the need for storage and back-up generation

capacity.

In Asia, where fuel cell micro-CHP has been mostly

deployed, peak electricity occurs during summer when there is

high demand for air conditioning. It is therefore surprising that

fuel cells are not more prevalent in northern Europe, where

peak electricity demand occurs in winter and is linked to the

overall space heating demand. Fuel cellmicro-CHP should offer

additional value to the energy system in such climates by

generating electricity and heat at times of peak demand.

Moreover, the value is likely to increase in the future if heat is

electrified through the deployment of heat pumps in many

houses, whichwould greatly increase thewinter peak demand.

The literature on fuel cells and heat pumps has tended to

present them as alternative or rival technologies, with either

one or the other expected to achieve market dominance

[136,137]. More recently, the potential benefits of combining

heat pumps and CHP technologies have been discussed

[67,138e140]. In Denmark, for instance, municipal CHP sys-

tems with heat networks have been investigated for their

ability to better integrate large wind resources [141e143]. This

section explores whether heat pumps and fuel cells can

complement each other, using two case studies of the UK

energy system.

Case study 1: fuel cell contribution to meeting peak electricity
demand
For the power sector, all long-run UK energy system decar-

bonisation scenarios entail significant shares of wind and

nuclear generation entering the electricity system. This poses

new challenges in terms of system flexibility and provision of

peak demand capacity. The scale of generation, transmission

and distribution infrastructures in the UK, and the substantial

costs associated with these assets, are to a large extent
11 UKTM was developed from this research version of UK
MARKAL.
governed by peak demands in a few hours each year. Any

increase in load during these periods, for example through

electrification of heat or transport, could result in costly

infrastructure expansions. This case study focuses on the

week in which peak electricity consumption is most likely to

occur (typically mid-December) and examines the in-

teractions of fuel cells and other heating technology during

that week.

Reducing peak demand can bring about a host of benefits

for many different stakeholders across the energy system:

1. All other factors being equal, a reduction in peak demand

could lead to higher asset utilisation across the electricity

system, which in turn implies a lower levelised cost of

electricity.

2. Peak demand periods constitute a high risk of system

failures and potential black-outs. Reduction in peak de-

mand thus contributes to the security of the system and its

resilience to shocks.

3. Distribution and transmission systems are also sized to

cope with their respective peak demands. Any avoided

increase in peak demand can therefore defer costly

network upgrades and lead to better utilisation of existing

infrastructure.

In common with many cold-temperate climates, the UK

tends to experience peak electrical demand at roughly the

same time as peak thermal demand in the residential sector.

Both typically fall on a cold December weekday at around 5:30

pm.

The relationship between CHP load profiles and national

electricity loads is shown in Fig. 5. During high electricity

demand periods, micro-CHP units tend to generate more

electricity, thereby potentially supporting peak generation

requirements. Such a relationship does not exist for heat

pumps, whose loads do not correlate with the national de-

mand. It is conceivable that a change in operating strategy
electricity demand. Lines mark the range for heat-to-power

ratios of different fuel cell technologies between 1:1 and

2:1. Based on data from Refs. [144,145].
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may better schedule heat pump loads with respect to national

loads. However, the continuous operation of heat pumps in

the same trial suggests that the scope for changes to their load

profile is limited.

The impact of heat pumps on a low-voltage feeder with 46

residential dwellings is shown in Fig. 6. Each 5-min period in

the coldest week of the year is ranked in this graph by its load.

The highest point on the left of this load-duration curve rep-

resents the peak demand on this feeder. Its value defines the

capacity a low-voltage network would have to support in the

absence of storage or demand response measures. The addi-

tion of heat pumps in 20% of the dwellings in this example

raises the load duration curve throughout, with a notable in-

crease in peak demand, potentially necessitating costly

network reinforcements and transformer upgrades. Adding

fuel cells alongside heat pumps, in the ratio 2.5:1, mitigates

the demand increase and avoids such investments. Moreover,

the load duration curve of the combined heat pump and fuel

cell case is flatter than the alternatives, suggesting improved

asset utilisation and probably reducing the average levelised

cost of electricity.

Case study 2: complementing electric vehicles with fuel cell
micro-CHP
Electrification of transport could also increase future elec-

tricity system loads. Presently transport, heat and electricity

are delivered from separate sectors within the UK energy

system and from broadly different energy commodities (oil,

gas and electricity, respectively) [146]. Electric vehicles would

shift a substantial energy demand from petroleum products

towards electricity. As with heat pumps, the timing and dis-

tribution of this added load is crucial for its system impact.

A shift from petrol and diesel to electricity would move

away from a fuel with some degree of storage in its supply

infrastructure towards the ‘just-in-time’ electricity network

[147]. Depending on the timing of charging, this could add or

alleviate electricity network challenges [148]. The potential

impact of charging patterns for electric vehicles on
Fig. 6 e Load duration curves for homes heated using: (i)

natural gas (baseline); (ii) 20% of gas boilers replaced by

heat pumps; and, (iii) 20% heat pumps and 50% micro-CHP

fuel cells. Data are based onmeasurements in 46 dwellings

[145].
distribution networks, and the potential for SOFCs to mitigate

their impact, have been examined in Refs. [149,150]. Vehicle

charging tends to fall into the early evening period, when

many people return home and seek to recharge for the next

day. This behaviour pattern has the potential to adversely

affect peak demand periods. The load profiles in Fig. 7 show

the timing of electric vehicle charging as experienced on a

low-voltage network. The electricity generated by heat-led

fuel cell micro-CHP operation counteracts the main load

from electric vehicle charging in the period from 5 pm to 11

pm. For a scenario with a 30% penetration of plug-in hybrid

electric vehicles (PHEVs) matched by a 30% penetration of fuel

cell micro-CHP systems, the combined load profile over a

typical day is fully compensated during the critical evening

peak hours and the maximum impact at any time of day is

reduced by 30%.

Energy system models have coarse temporal scales while

housing stock models generally do not consider variations in

intraday heat generation. This means that none of themodels

listed in Tables 4 and 5 simulate the contribution of fuel cells

to balancing potential demands from heat pumps and electric

vehicles using the temporal resolution shown in Figs. 6 and 7.

The potential role of fuel cells as system-integrating solutions

may therefore have been underestimated in the resulting

scenarios.
Policy issues

Despite making up a large share of overall energy consump-

tion and greenhouse emissions globally, heat has only

recently become prominent in discussions of energy policy.

Most efforts have focused on the power and transport sectors,

with heat appearing marginalised in comparison. Heat policy

is often characterised by four overarching objectives: (i)

reducing greenhouse gas and other environmentally harmful

emissions; (ii) affordability to consumers and business; (iii)

security and reliability of supply; and, (iv) the potential to

stimulate the development of technologies with export op-

portunities [3,4].
Fig. 7 e Fuel cells can compensate for the evening load

increase from PHEVs on distribution networks. Based on

Ref. [150].
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In meeting these objectives, policymakers in many coun-

tries attempt to take a broadly technology neutral approach to

heat policy, relying on markets to efficiently determine the

relative shares of different heating technologies and fuels

(typically based on arguments about information asymme-

tries and government failure [151]). The task of policy is seen

as the efficient regulation of the market to protect consumers,

in the context of significant network effects and natural mo-

nopolies related to large physical infrastructures such as gas

or electricity networks. Policy should intervene where market

failures prevent markets from efficiently determining a so-

cially beneficial outcome; the most significant failures often

relate to various externalities and public goods, including

carbon emissions and energy security.

Support for new heat technologies

An additional set of policy rationales comes into play for

emerging energy technologies, associated with the necessity

of state action to support a well-functioning innovation sys-

tem [152,153]. Policymakers typically seek to provide some

support for emerging energy technologiesdthrough basic

research support and R&D funding, and through support for

demonstration trials, testing and other mechanismsdwhere

these technologies are thought to offer benefits. The rationale

for such support is typically framed in terms of spill-overs

arising from R&D, which result in reduced incentives for

firms to invest in innovation [154].

Hydrogen and fuel cell technologies for heatingmarkets lie

at the intersection of these two policy domainsdheat policy

and energy innovation policydand different countries have

adopted a diverse range of approaches to supporting tech-

nologies, driven by differing rationales and objectives. Key

policy rationales for dedicated support instruments for

hydrogen and fuel cell technologies include:

1. Market design. Existing market arrangements may fail to

reward systembenefits provided by particular technologies

(such as those discussed in Section 5.3), resulting in sub-

optimal investment and deployment of those technologies.

2. Optionality. There may be a need to provide support to

emerging technologiesdsuch as hydrogen and fuel cells for

heatingdwhere failure to do sowould close off apotentially

important long-term option, or result in an unacceptable

delay. Failure to invest inkeepingoptionsopenwould result

in the loss of such options in the future, even where they

were potentially the best long-term pathway.

3. Innovation and industrial development. Support for

hydrogen and fuel cell technologies may enable the

development of a successful domestic industry, with the

ultimate aim of achieving net economic benefits arising

from exports. Clearly this is true for all emerging technol-

ogies, and there is a risk that the potentially high cost of

providing strong technology-specific support based on this

argument could yield few benefits if industrial develop-

ment is unsuccessful.

Numerous policy instruments in different countries sup-

port the development and deployment of hydrogen and fuel

cell technologies. There are a suite of R&D, demonstration and
industry development support measures (e.g. Germany's
NOW programme; the European Commission Joint Under-

taking on Hydrogen and Fuel Cells; the US Department of

Energy's Hydrogen Program). Some countries and regions

provide direct subsidy support for manufacturing facilities

(e.g. USA). There are subsidies for capital costs (e.g. in Japan,

Nord-Rhein Westphalia), tax incentives, or feed-in tariffs for

fuel cell CHP (e.g. in Germany, Korea). Deployment subsidies

currently in place are focused on CHP and frequently reward

power generation rather than the use of heat directly; in fact,

many existing policies offer general support for hydrogen and

fuel cell technologies in stationary applications and are not

specific to heating. Another area of support is from regulatory

and planning incentives, with hydrogen and fuel cells some-

times treated preferentially by local planning authorities,

providing incentives for developers to deploy fuel cells in new

buildings (e.g. in London, UK and Bloomington, Indiana).

Keeping options open: the special case of hydrogen in the gas
grid

A particularly important and long-term policy issue is the

future of the extensive natural gas distribution networks in

many countries. As discussed in Section 4.2, there is potential

to: (i) inject hydrogen into gas networks to provide marginal

decarbonisation of delivered gas while enabling wider system

benefits through reducing wind curtailment and deferred in-

vestment in electricitynetworks; and, (ii) convert gasnetworks

to deliver pure hydrogen as a zero-carbon heating fuel.

It is in this policy area that the “optionality” argument is

most clear. Research and innovation are required to keep open

the option of a long-term transition to a pure hydrogen

network, and the timescales of a costeeffective transition are

sufficiently long that there is a strong case for embarking on

that work now.

In the long term, it is clear that a decision will have to be

made about whether the gas networkdor sections of itdwill

distribute pure hydrogen. It is difficult to envisage a scenario

in which market forces (allied to strong carbon prices) drive

network conversion without governments playing a strongly

supportive role. This is because of the co-ordination and reg-

ulatory challenges required in enabling consumer appliances,

infrastructure regulation and investment in a conversion

programme to be aligned. Making this decision is therefore a

key long-term policy goal, for which a great deal of develop-

ment work is necessary. Clearly, a transition of this kind

would require appropriate regulatory frameworks to be

developed, as well as a carefully designed process for change.

While there might be learning points for the technical aspects

of conversion from the various town gas conversion pro-

grammes around the world, most of these were centrally-

planned and took place in a very different regulatory envi-

ronment that is not comparable to the contemporary system

of multiple private operators that operates in many countries.
Conclusions

Heatmakes up a large share of overall energy consumption and

CO2 emissions globally, but decarbonisation of heat has had
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relatively little attention compared to electricity generation and

the transport sector. One reason is that many high-income

countries predominantly use natural gas for heating and

there is no clear cost-effective, low-carbon alternative at the

moment. Fuel cell CHP has been supported towards commer-

cialisation in Asia over recent years but hydrogen and fuel cell

technologies have not generally featured in European heat

decarbonisation studies. Yet fuel cell CHP is maturing into a

reliable and commercially-viable heat technology with a good

safety record, with potential applications at different scales

across a range of markets. Moreover, hydrogen is potentially a

credible zero-carbon alternative to natural gas, particularly if

economic low-carbon hydrogen can be produced and delivered

using existing gas network infrastructure.

In May 2014, the UK H2FC Hub published an assessment of

the evidence on the potential for hydrogen and fuel cells to

meet the goals of UK heat policy, which are the provision of

secure, affordable, low-carbon heat. This paper has expanded

on the White Paper by examining the potential benefits of

these technologies across different markets in high-income

countries. Steady cost reductions through innovation have

brought fuel cells close to commercialisation. Fuel cell CHP

has lower net emissions than existing natural gas-fuelled heat

and electricity systems, and also lower emissions than heat

pumps supplied by the current electricity generation portfo-

lios of most countries. Fuel cells also offer additional value to

the energy systems of high-latitude countries by generating

electricity at times of peak demand, and this will become

increasingly important in the future if these peaks increase

through the electrification of heat and transport.

Decarbonisation scenarios are often produced using en-

ergy system models and a review of several global, regional

and national models shows that most do not consider

hydrogen and fuel cell heating technologies, and hence make

the implicit assumption that these technologies are not

technically viable. However, there is evidence that these

technologies are starting to be incorporated into some more

recentmodels. There is a need for the academic community to

include these technologies in future assessments and for

policymakers to consider these technologies when devising

policies to reduce greenhouse gas emissions from heat

provision.
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