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Abstract: This paper presents a numerical investigation on aerodynamic control of
integrally-actuated membrane wings made of dielectric elastomers. They combine the
advantages of membrane shape adaptability with the benefits of the simple, lightweight
but high-authority control mechanism offered by integral actuation. For that purpose,
high-fidelity numerical models have been developed to predict their performance. They
include a fluid solver based on the direct numerical integration of the unsteady Navier-
Stokes equations, an electromechanical constitutive material model and a non-linear three-
dimensional membrane structural model. In addition, using the Eigensystem Realization
Algorithm, it is obtained a very low order model description of the fully coupled aero-
electromechanical system to aid the design of a simple PID control scheme for the feedback
control of the wing. The resulting regulator is then implemented in the high-fidelity model
and used for the mitigation of flow disturbances.

1 Introduction

Outdoor use of Micro Air Vehicles (MAVs) is limited by their low aerodynamic efficiencies
and sensitivity to flow disturbances. In addition, flight instabilities arising from their small
dimensions, require efficient control mechanisms. Natural fliers, such as small mammals
and insects that are similar to MAVs for size and flying conditions, use wing compliance to
efficiently compensate for flow disturbances and achieve high manoeuvrability and agility
[1, 2]. Experimental investigations of membrane wing prototypes have in fact demon-
strated that compliant wings can offer superior aerodynamic performance as compared
to rigid wings, such as delayed stall, higher lift and increased stability [3, 4, 5, 6]. These
aerodynamic advantages can also be used to mitigate the effect of flow disturbances in
engineering vehicles, but the controllability of the highly-flexible MAVs remains as one of
the main issues that needs to be solved for outdoor applications.

In bats, the skeleton stretching the membrane is an efficient control mechanism to
tune in real time the aerodynamic characteristics of the wing. A similar concept can be
reproduced in artificial membrane wings by embedding dielectric elastomers (DEs). They
are composed of a thin polymeric layer sandwiched between two compliant electrodes. The
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Figure 1: Definition of the aeroelastic problem of actuated membrane wings: physical
system and the corresponding computational model used in this work.

application of a voltage through the thickness causes the compression of the material in
that direction and its in-plane extension [7]. This defines a variation of the tension in the
wing that can be used to tune its dynamic behaviour. Dielectric elastomers (DEs) show
great promise since they combine the advantages of membrane wings with the benefits of
a simple, lightweight control mechanism, and lead to an increase of specific performance
and in the stability and controllability of the membrane wing. However, issues of material
stability and the high-voltage requirements would need to be addressed before actual
deployment as MAV wing skins [8].

Modelling and analysis of actuated membrane wings define an essentially multidis-
ciplinary problem, covering aerodynamics, structural dynamics, material modelling and
control aspects. The key characteristics of the resulting system are oulined in Fig.1. The
highly unsteady flow dynamics brings a strong coupling with the compliant membrane,
both in chordwise and spanwise directions [5, 9] – which may produce the aforemen-
tioned aerodynamic benefits. The structure, due to the high flexibility, is subjected to
large displacements involving large strains and a rate dependent material constitutive
behaviour. Arbos-Torrent et al. [6] have experimentally shown that mean camber and
modes of membrane aerofoils are also strongly influenced by the size and shape of the
leading- and trailing-edge supports which, in practice, can never be neglected. Finally,
an electromechanical material model is required to characterise the actuation [7].

The modelling fidelity available for the aeroelastic analyhsis of passive membrane wings
has improved together with the available computer power. 2D linear elastic structural
model have been typically used, which have been coupled sucesively with potential-flow
solvers [3], inviscid and viscous laminar solvers [10, 11] and implicit LES solvers [12].
For high-enough Reynolds numbers a major challenge is the modelling of the laminar-
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turbulent transition under unsteady conditions. This was first addressed by Lian et al.
[13] and Lian and Shyy [14], who developed an aeroelastic model including an hyper-elastic
constitutive solver for the material and a eN transition model for the fluid to investigate
the lift produced by unsteady separation bubbles on membrane wings. Recently, a coupled
high-fidelity model for actuated membrane wings that can consider all the fields involved
and their interaction (see Fig. 1) has been proposed by Buoso and Palacios [15], who
showed the effect of an open-loop control scheme on the aerodynamic performance of the
wing.

From the experimental side, only Hays et al. [16] and Curet et al. [17] have to date
tested the use of DEs to increase the performance of membrane wings. They have shown
that both static and dynamic actuation can enhance the aerodynamic efficiency of the
wing, measured as the mean lift-to-drag ratio.

Further to a previous work by the authors [15], this paper will investigate the potential
gains in performance of dynamically actuated two dimensional membrane wings in low
Reynolds number flows with a closed-loop feedback control system. Section 2 describes the
high-fidelity aeroelastic model developed and introduces the model reduction technique
based on the Eigensystem Realisation Algorithm (ERA). Section 3 presents numerical
results of the performance of the wing in the steady and unsteady case. The reduced-
order model (ROM) obtained with ERA is used for the design of a feedback control
scheme for the wing which is then applied to the high-fidelity model to compensate for
the flow-disturbances of the pressure field around the membrane.

2 Computational model

The structural is a geometrically non-linear solid finite-element discretization of the mem-
brane, with non-linear constitutive relations for the DE and a linear electrostatic model
for the Maxwell stresses. It is coupled, using an implicit time-marching algorithm with
non-matching spatial discretisations, with a flow solver based on the direct numerical in-
tegration of the unsteady Navier-Stokes equations. The key features both models will be
briefly described in Sections 2.1 to 2.3. For a detailed description the reader is referred
to the previous work of the authors [15]. In Section 2.4 the model reduction technique
based on the Eigensystem Realization Algorithm (ERA) is described.

2.1 Electromechanical Model

In the current approach, the thickness of the membrane is considered, allowing the defi-
nition of the electrostatic stress tensor in all three dimensions. The structural model will
be solved using solid eight-nodes three-dimensional elements with translational degrees of
freedom [18]. The large structural displacements requires a non-linear geometric struc-
tural description of the membrane and a non-linear constitutive model. The constitutive
model for DE is developed in the finite-deformation framework [19, 20, 21] through the
definition of a free energy function W

W = U(J) + Φ∞(Ī1), (1)

splitted into the contribution of a volumetric, U , and a deviatoric, Φ∞, components, which
depend on the deformation state of the solid. In particular, J is the determinant of the
deformation gradient, F , defined between the reference and the deformed configurations,
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and Ī1 is the first invariant of the deviatoric part of the deformation gradient, defined
as F̄ = FJ−2/3 (see Bonet [19] for details). The constitutive model assumes a nearly-
incompressible isotropic material, with a voltage- and stretch-independent value of the
dielectric constant. The selected deviatoric elastic constitutive law for the stress is the
Gent model [22]

Φ∞ = −µJm
2

log

(
1− Ī1 − 3

Jm

)
, (2)

where µ and Jm are material coefficients that have to be determined experimentally. The
model has been selected because it consists of two parameters of immediate physical
meaning and it predicts the stiffening behaviour when the deformation approaches the
value of the limiting stretch. The volumetric energy function is expressed by

U(J) = K(J − 1)2, (3)

where K is the compressibility modulus of the material, that needs to be experimentally
identified. Since in this work the material is assumed to be nearly-incompressible, high
values of K have to be expected. The low amount of compressibility allowed from the
inclusion of the volumetric stress component removes the numerical instabilities that
would appear under a conservation of volume assumption. The constitutive model is then
completed by adding the effect of the electrostatic stresses that are modelled with the
Maxwell’s stress tensor. Given an electric field vector E, the stress tensor σe is defined
as [7]

σe = εE ⊗E − 1

2
ε (E ·E) I, (4)

where ε is the material dielectric constant, E is the electric field vector in the deformed
coordinate system and I is the unitary second order tensor. The material dielectric
constant ε is usually expressed as ε = ε0εr where ε0 is the vacuum dielectric constant and
εr is the material relative dielectric constant. The total stress is finally obtained as σ [7]

σ = σm + σe. (5)

In this work, the VHB4905 acrylic dielectric elastomer is selected as material for the
membrane wing and its constitutive model has been implemented in a user-subroutine
in Abaqus [18]. The coefficients of the Gent material model used are µ= 20 kPa, Jm=
100 and K= 3.8×108 Pa, from a previous work from the authors [23], and the relative
dielectric constant is εr = 2.7 to match the experimental results of Refs [24, 25].

2.2 Fluid Model

The numerical model for the low-Reynolds flow is based on a finite-volume discretization
of Navier-Stokes equations with second-order integration in space an time. The solution
is based on the compressible-equations with a low-Mach preconditioner [26]. A coupled
approach is used to solve the flow and energy equations, which requires more memory
but offers better stability and velocity in the convergence. The boundary conditions for
the single-membrane wing analysis include a constant pressure boundary condition at the
outlet, and the specification of velocity magnitude and direction for all other far-field
boundaries. In this work a 2D case is considered, hence periodic boundary conditions are
imposed in the lateral surfaces of the domain. On the membrane walls a no-slip constrain
is imposed.
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In addition to the conventional studies on sensitivity to the grid-resolution and time
step, which are described in Section 3, for each case considered the element size and time
step have been compared with the characteristic viscous length and time scales, that is,
lν = ν/uν and tν = lν/uν, respectively, where ν is the kinematic viscosity of the fluid and
uν is the friction velocity [27]. Assuming a volumetric average of the elements size, the
characteristic length of the mesh elements is lmesh = 3

√
lxlylz with lx, ly and lz being the

dimensions of the hexahedral cells. Appropriate spatial and temporal resolution of the
smallest turbulence scales requires to have [28] l∗ = lmesh

lν
∼ O(1), t∗ = ∆t

tν
∼ O(1), where

∆t is the time step of the implicit solvers. The fluid mesh selected for the simulations in
this work, described in Sec. 3, is well within this range, with a value of l∗ and t∗ below 3
throughout the domain.

2.3 Fluid-Structure Coupling

The coupling of flow and structural solvers is carried out using a common interface that
occupies the same spatial positions in both models. The mapping of the grid nodes
between both meshed proceeds as follows [26]: First, neighbour nodes and elements are
identified; next, the fluid solver uses the shape functions of the structural solver for the
interpolation of the pressure and viscous forces and the definition of the equivalent set of
nodal loads to be used in the finite-element solver; finally, the new nodal displacements
and velocities from the FE solver are then passed to the fluid solver for the deformation
of the mesh and the computation of the new flow field. The mesh deformation process
moves the mesh nodes accordingly to a 3D linear interpolation law that is depending on
their distance from the moving and fixed boundaries. The exchange of data between the
solvers uses a bridge in the RAM memory [26].

An implicit coupling was found necessary, considering the strong interaction of the
fluid and the membrane structure in this problem. When the relative difference in the
norm of two consecutive field exchanges is below a defined tolerance (10−4 for the results
in this work) convergence is established. The solution is initialised with a quasi-steady
step, neglecting the inertia forces and velocities of the membrane, and is then restarted
with a dynamic step to converge to the real solution.

2.4 Model Reduction: Eigensystem Realization Algorithm

As mentioned above, the high-fidelity is not directly usable for controller design and a
reduced-order model description is needed. For that purpose, the fully coupled model
is considered here as a single-input (voltage) / single-output (Cl) system. The model-
reduction is based on the assumption that the fully-coupled electro-aeroelastic model can
be described by a discrete linear system in the form

Xk+1 = AXk +BUk, (6a)

Yk+1 = CXk+1, (6b)

where Xk and Xk+1 are the vectors of the identify system state variables at increments
k and k+ 1, U and Y are the input and output of the system respectively, and A, B and
C are the matrices representing the evolution of the linear system.

From the reference configuration, which is identified by X0 = 0, the system is excited
with an impulsive function. Under this conditions, the system outputs at any instant k
can be expressed as Yk = CAk−1B. The Henkel matrices H(0) and H(1) are defined as
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H(0) =


Y1 Y2 . . . Yγ
Y2 Y3 . . . Yγ+1
...

...
. . .

...
Yp Yp+1 . . . Yγ+p−1

 , H(1) =


Y2 Y3 . . . Yγ+1

Y3 Y4 . . . Yγ+2
...

...
. . .

...
Yp+1 Yp+2 . . . Yγ+p

 , (7)

where p and γ are integers satisfying the relation γr ≥ pm and r and m are the number
of inputs and outputs of the system respectively. The Henkel matrix H(0), by means
of the Singular Value Decomposition (SVD), is factorised in H(0) = R Σ ST . The n
non-zero eigenvalues of Σ (which are all non-negative [29]) are retained and H(0) can be
written as H(0) = Rn Σn S

T
n , where Rn and Sn are obtained considering only the first

n columns of R and S respectively. Writing H(0) in terms of the observability, Pp, and
controllability, Qγ, matrices it is obtained [29]

H(0) =
[
Rn Σ

1
2
n

] [
Σ

1
2
n S

T
n

]
∼= PpQγ (8)

with Pp = Rn Σ
1
2
n and Qγ = Σ

1
2
n S

T
n . The matrices A, B and C are then obtained as

A = Σ
− 1

2
n RT

nH(1)SnΣ
− 1

2
n , (9a)

B = the first r columns of Qγ, (9b)

C = the first m rows of Pp. (9c)

The reduced-order model identified in (6) is limited by the linear assumption and by
the frequency range that is considered during the system identification, which is defined
by the time window and time step selected. Still it can represent key relevant dynamics of
the full system at a very low computational cost and will therefore be used in an iterative
scheme for the design of the feedback control of the actuated membrane.

3 Numerical Results

The implementation of the electro-aeromechanical material model proposed in Sec.2 has
been verified against the relevant literature in a previous work by the authros [15]. Here,
it will be used to investigate the closed-loop operation of an integrally dynamically actu-
ated 2D membrane wing made with of VHB4905 elastomer. The numerical simulations
consider a Reynolds number Re = 2500, as done by Gordnier [12], with angle of attack
α = 4◦ and 8◦. The DE membrane, which has an initial thickness h = 0.05 mm, is
prestretched to 50% of its underformed length (λp = 1.5). The selected amount of de-
formation defines a relatively stiff case, but is representative of the values of stretch in
common DEs applications.

In the aerodynamic model, the shape of the supports is neglected, and in the structural
solver they are assumed to be rigid. The membrane is pinned at the lower side of the
leading and trailing edge. The structural mesh is composed of 400 elements chordwise,
and only one element in the thickness direction. Since a 2D problem is addressed, a
single element is used in the spanwise direction as well. For each case considered, mesh-
refinement and time-step sensitivity studies have been conducted in dynamic simulations
on the fluid solver and the relative errors on the mean value of Cl and Cd as well as the
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amplitudes and frequencies of the oscillations of their values were considered to establish
convergence. The maximum relative error of those quantities was set to be below 2%.
The resulting fluid domain extends for 100 chords in both directions and is meshed with
around one million elements, which corresponds to 400 elementa along the membrane
walls in the chordwise direction, 400 in the flow direction for the wake, and 400 elements
in the radial direction from the chord. the smaller element at the membrane wall is
50 µm and the bigger elements, at the domain boundaries, are around twice the size of
the membrane chord. The vertical coordinate of the points of the membrane presented,
y∗, are non-dimensional quantities obtained with normalisation with the value of the
maximum amplitude of the membrane with the same prestretch subjected to a uniform
pressure equivalent to the free stream dynamic pressure ∆P∞ = 0.5ρV 2

∞. For temporal
convergence, the maximum number of sub-iterations for each time-step is set to 10 and
the limit relative tolerance for the monitored flow properties is set to 10−4. Evolution
histories of the structure and aerodynamic coefficients are presented as function of the
non-dimensional time t∗ = tV∞/c.

3.1 Passive configuration

The passive case for α = 4◦ is characterised by a steady-state solution with a maximum
amplitude y∗ = 0.33 at x/c = 0.4, where c is the chord length (red in Fig. 2). The lift
coefficient is Cl = 0.396. In the second case, with α = 8◦, when it is observed the presence
of self-excited oscillations due to the fluid-structure interaction, the averaged deformed
shape has a maximum amplitude of y∗ = 0.85 at x/c = 0.31 (blue line in Fig. 2).
Consistently with experimental observations [6], the maximum-camber point is moving
downstream because of the increased amount of separation. This generates a low pressure
region towards the trailing edge that results in an increase of membrane displacements
in that area. Since the membrane is relatively stiff, separation occurs at a low angle of
attack. The time-averaged lift coefficient is Cl = 0.83, and its time evolution is shown in
Fig 3a.

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

x/c

y
∗

α = 8◦
α = 4◦

Figure 2: Mean deformed shapes for α = 4◦ and 8◦, Re = 2500, λp = 1.5.

A spectral analysis indicates the dominant contribution of a frequency content of 26
Hz, with secondary effects at 51 Hz, which is roughly twice the frequency. A POD analysis
of the oscillations of the membrane over its mean value, Fig. 3b, shows a principal 1st
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Figure 3: Passive membrane response at Re = 2500, λp = 1.5, α = 8◦.

vibrational mode, with the contribution of the 2nd and 3rd mode determining the chordwise
displacement of the maximum amplitude point. The combination of the three determines
the displacement history of Fig. 3c.

3.2 System Identification and Control Design

As discussed in the introduction, the main advantage of DE-based embedded actuation
would be the rejection of flow disturbances and the achievement of “on-demand” aerody-
namic performance. A closed loop-control system is then required to control in real time
the actuation voltage of the DE. For the identification of the coupled system dynamics,
the wing is excited with a pulse-signal and the simulation is run with a time range that
goes from t∗ = 0 to t∗ = 1.2, in order to focus into the fast response of the wing, which is
the one that is addressed by the control system. The time step is 10−4 s. Increasing the
total simulation time would increase the contribution of the slow dynamics related to the
convective time scale of the fluid, which are neglected in this work. The reduced-order
system identified is a 10th order dynamic SISO system. The comparison of the pulse-
response of the high-fidelity system and the linear model identified is presented in Fig.
4, where the oscillations of the Cl over the mean value are plotted. The reduced-order
model captures the main dynamic of the full-system for both frequency and amplitude of
the oscillations, and showed convergence to the high-fidelity solution with the increase of
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Figure 4: Comparison of the pulse-response of the high-fidelity model and linear system
identified with ERA.

the order of the system.
The discrete dynamic system provides a good estimation of the fast dynamics of the

actuated wing in the low Reynolds number flow considered and can be used as a tool
for the preliminary design of a Proportional-Integral-Derivative (PID) controller for the
wing. The controller is then defined as

V 2(t) = Ki

∫ t

0

e(τ)dτ +Kpe(t) +Kdė(t) (10)

where V is the applied voltage, Ki, Kp and Kd are the integral, proportional and derivative
gains, and e(t) = Cl,ref − Cl(t) is the instantaneous error between the reference lift
coefficient for the control system, Cl,ref and the lift coefficient of the system, Cl. The
continuum form description of the controller can be conveniently discretised and coupled
with the linear system identified. The SISO system defined does not include the possibility
of defining pressure variations on the membrane, so the control system design is done
considering the step-response of the system. The coefficients are defined in order to
obtain a fast response, so that the control scheme can compensate for fast disturbances of
the pressure field. The coefficients identified, from an iterative procedure aimed to get the
fastest response without the destabilisation of the system are Ki = 2.3 ×1015 V 2/s, Kp

= 4.0 ×1011 V 2 and Kd = 7.5 ×105 V 2s. It has to be noticed that the output of the PID
controller can only be positive, so the control system is characterised by a zero-saturation.
The design of the control system in this work has been done in order to reduce this at a
minimum.

3.3 Flow Disturbance Rejection

The closed-loop aerodynamic response of the membrane wing previously considered is
finally simulated under a external disturbance. The reference case considered is the
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Figure 5: Comparison of the passive and feedback controlled cases for the case of the
disturbance defined in (11). The target camber amplitude defined is 1.10 of the initial
reference one. Results refer to the simulations in the high-fidelity model.

steady-state configuration for α = 4◦. The disturbance is simulated as a time-dependent
variation of a constant pressure field directly applied on the walls of the wing, which is
varied according to the harmonic law

∆P = P (1− cos(2πfpt)), (11)

where ∆P is variation in the pressure distribution. In this case P and fp are set to
3% of the free stream dynamic pressure and 10 Hz respectively. Imposing directly the
pressure variation on the wing allows to neglect the convective time scales of the fluid
and precisely define the type of disturbance, in terms of amplitude and frequency, to
which the wing is subjected to. Although it results in a non-physical problem, at this
preliminary evaluation of the performance of a feedback control scheme on the wing, this
assumption allows to target the problem and quickly identify the numerical issues related
to the solution adopted.

Since the pressure is artificially applied to the system, an excellent system output into
the control for this case is the membrane camber amplitude, a. This is also justified by
the results in Fig. 3b, where the Cl behaviour is mainly determined by the first mode
of the aeroelastic system, which is well approximated by the instantaneous membrane
camber. As a result, considering the value of the lift coefficient or the maximum camber
is essentially a matter of a scaling the coefficient in the controller designed in Sec. 2.4.

The wing response in the open- and closed-loop simulations is compared in Fig. 5. For
the disturbance selected, the open-loop results show a reduction of 5% of the mean camber
amplitude and oscillations of 5% around the reduced mean value. In the controlled case,
the mean amplitude targeted is set to 1.1 of the initial reference value. It can be seen
that the controller is bringing the value of the maximum camber amplitude close to the
target one, with minimal oscillations as compared with the passive case. The actuation is
not saturating because of the positive higher membrane amplitude considered as target.
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4 Conclusions

This work has presented a high-fidelity computational framework and a subsequent pro-
cedure for controller design for actuated membrane wings. Numerical results have showed
that the proposed model is capable of representing the system dynamics and therefore
allows for the investigation of the structural and flow phenomena of the fully-coupled
aeroelastic system, and the achievement of desired aerodynamic response using closed-
loop strategies.

Numerical results have showed the potential for the feedback control of the wing
for rejection of external disturbances. A system identification technique based on the
Eigensystem Realization Algorithm has been used to define a low order description of the
aeroelastic system to be used in the preliminary design of the PID-type control system.
The designed controller has been applied to the high-fidelity model for the compensation
of flow disturbances. On the one hand, this preliminary investigation has demonstrated
the potential of embedded actuation for aerodynamic control in MAVs, but on the other
hand, it has also highlighted the need for a more suitable control strategies that consider
the constraints imposed by the zero-voltage saturation.

Results have also highlighted the advantages of the system identification methodology
proposed in this work to allow a cheap iterative procedure for the control-system design,
considering a large time window. The long term aerodynamic response of the wing in a
closed loop response, and a preliminary energy balance of the controlled system will be
the subject of the future work of the authors.
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