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Abstract

This thesis addresses some of the challenges that arise when the new smart grid paradigm

is applied to power systems. In particular, novel control strategies are designed to deal

in a decentralized matter with the increasing complexity of the network. Two main areas

are investigated: participation to frequency control of variable-speed wind turbines and

management of large populations of competing agents (e.g. micro-storage devices and

“smart appliances”) that exchange energy with the system.

The first part of this work presents two different techniques that allow wind turbines to

provide frequency response: following the trip of a large power plant, the turbines popu-

lation increases its aggregate generated power, reducing the resulting drop in frequency.

A first method models the wind turbines as stochastic hybrid systems: the genera-

tors switch randomly between two operative modes characterized by different efficiency

and generated power at equilibrium. Transitions are driven by frequency-dependent

switching functions: single generators behave randomly while large populations perform

deterministically, changing the total power in response to frequency variations. The

second proposed control strategy allows a prescribed increase in generation, distributing

the control effort among the individual turbines in order to maximize the duration of

frequency support or minimize the resulting kinetic energy losses.

The second part of the thesis deals with large populations of agents which determine

their operation strategy in response to a broadcast price signal. Micro-storage devices

performing energy arbitrage are initially considered: each agent charges/discharges dur-

ing the day in order to maximize its profit. By approximating the number of devices as

infinite, modelling the population as a continuum and describing the problem through

a differential game with infinite players (mean field game), it is possible to avoid syn-

chronicity phenomena and determine an equilibrium for the market. Finally, the similar

case of flexible demand is analyzed, with price-responsive appliances that schedule their

power consumption in order to minimize their energy cost. Necessary and sufficient

conditions for the existence of a Nash equilibrium are provided, extending the results by

introducing time-varying constraints on the power rate and considering partial flexibility

of the devices.
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Chapter 1

Introduction

1.1 Background and Motivation

The rapid changes in the way energy is produced and consumed are creating new and

stimulating challenges that involve the structure and the organization of the future elec-

tric power network. In particular, following environmental concerns on global warming

and future scarcity of traditional energy sources, there is a clear trend of increasing

penetration of renewable energy in power systems. The United Kingdom has set an am-

bitious target of delivering 15% of its energy consumption from renewables by 2020 [3],

reducing by 80% its carbon emissions by 2050 [4]. Similar objectives on decarbonisation

of the electric sector have also been proposed at a European level [5], [6].

In order to achieve these goals, power systems will undergo the most significant transfor-

mation of the last 50 years. If one considers, for example, the increasing penetration of

wind generation in the system that will occur in the next decades to satisfy the expected

renewable quotas, a whole new set of challenges arise. In fact, wind turbines present

significant technological differences with respect to traditional synchronous generators.

As their presence becomes more significant, they will be required to participate in the

control and management of the power system, providing ancillary services (such as fre-

quency and voltage control) which nowadays are mainly offered by traditional power

plants.

The evolution of the electric network is also driven by the considerable technological ad-

vancements in fields such as information technology, power electronics and transporta-

tion. It is envisioned that in the next years there will be an electrification of important

sectors such as transportation [7] and heating [8]. This will cause a positive reduction of

carbon emissions, but it will also alter the traditional energy consumption patterns and

23



Chapter 1. Introduction 24

require a more efficient utilization of the current system assets. With the development

of smart meters and cheap storage devices, customers will have a more active role in

the operation of the network. The introduction of an underlying communication infras-

tructure within the power system will also allow to improve its security, flexibility and

quality of supply.

The new emerging paradigm which integrates all these elements in the electric network

of the future is the so called smart grid [9], [10]. One of its defining elements is the

conceptual shift in network operation. The centralized management which is currently

performed at most levels of the power system will be replaced by distributed and decen-

tralized mechanisms. The most significant example is probably the matching between

demand and supply. Currently demand is (mostly) considered as an external factor

which the system follows by a centralized scheduling of the generators provided by the

system operator. As a result of the increased level of uncertainty deriving from the pres-

ence of renewable generators and the considerable shift in power consumption patterns

introduced by new technologies (e.g. electric vehicles, “smart” appliances and domestic

micro-storage devices), this approach may not be viable or economically sustainable in

the future. This means that customers should play an active role and dynamically adapt

their consumption to the state of the network. Novel distributed control techniques will

be required, regulating the global behaviour of the population while taking into account

the decisions of the single agent. Similar problems arise if one considers the increasing

penetration of renewable generators (especially wind turbines and photovoltaic panels).

Proper coordination amongst large number of these machines must be achieved in order

to provide reliable ancillary services for the network.

When approaching these difficult tasks, one must consider that the future power system

will be also characterized by an increased controllability and a much larger amount

of recorded data. The control strategies proposed in this work for frequency response

from wind turbines, energy arbitrage with micro-storage devices and management of

flexible demand take into account these aspects and, at the same time, are designed for

a decentralized implementation. In this way scalability of the proposed techniques is

guaranteed, preserving their validity for a fast growing power system.

1.2 Thesis Objectives

Among the different aspects and issues that have been mentioned in the previous section,

the work described in this thesis has addressed two broad research questions:
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• Given a considerable number of renewable generators (in particular wind turbines)

what are the best control strategies that allow a global participation of these ma-

chines to the frequency regulation of the network? Is it possible to design decen-

tralized or stochastic control techniques that are robust, preserve a good efficiency

of the turbines and do not require additional communication infrastructure?

• For price-responsive agents that will operate in the future energy market, such

as privately owned micro-storage devices and flexible appliances, there exist dis-

tributed control mechanisms which are able to coordinate their operation strategies

in order to achieve an equilibrium in the market?

1.3 Thesis Outline

The rest of this thesis is structured as follows: Chapter 2 presents an overview of the

new control challenges that arise from the increasing penetration of wind generation in

power systems, presenting the main approaches proposed in the literature for frequency

response with wind turbines. It also describes a novel distributed control strategy for

wind farms, considering large populations of generators and modelling the single element

as a stochastic hybrid system with two discrete states, to which correspond different op-

eration modes. An alternative approach is presented in Chapter 3 where the frequency

response of the turbines is provided through temporary overproduction, slowing down

the generators and releasing part of their kinetic energy stored in the rotating shafts.

The control strategy is formulated through the minimization of the resulting efficiency

losses. Two different cases are considered, assuming respectively that the electric torque

of the turbines is defined by two different expressions or can be arbitrarily set.

The second part of the thesis deals with the control of a large number of competing agents

in the power system. The problem of energy arbitrage with micro-storage is analysed

in Chapter 4, presenting the state of the art in the management of large populations

of price-responsive devices in the energy market. The proposed approach considers a

competitive game framework, approximating the number of appliances as infinite and

describing the whole population as a continuum. The energy arbitrage can then be

modelled as a mean field game and solved through numerical integration of coupled

partial differential equations. The similar problem of determining Nash equilibria in

energy markets with a large number of flexible appliances is considered in Chapter

5. Necessary and sufficient conditions for equilibrium are provided by comparing two

functions which describe respectively the valley capacity of the system and the global

properties of the appliances population. These results are extended by introducing

proportional constraints on the maximum power and the case of partial flexibility is also
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analyzed. Finally, Chapter 6 contains some concluding remarks, presenting the more

promising research directions that can be followed to extend the results presented in this

thesis.

1.4 Contributions

The main elements of novelty and original contributions of this work can be summarized

as follows:

• A distributed control strategy is designed for frequency regulation through variable

speed wind turbines. While the single generator performs randomly according to

frequency-dependent switching functions, the whole population exhibits a deter-

ministic behaviour. Stability and robustness of the chosen approach (which does

not require additional communication infrastructure) are proved theoretically and

then shown in simulations.

• A similar problem is tackled with a deterministic strategy, determining the power

profiles of the wind turbines in order to provide frequency response and, at the

same time, minimize the resulting efficiency losses.

• A new approach to the problem of energy arbitrage with micro-storage devices is

introduced, adopting a game theory framework to model the competing interac-

tions between the single agents and achieve an equilibrium in the market.

• In a similar setting, the coordination of price-responsive flexible appliances is ana-

lyzed, providing necessary and sufficient conditions for equilibrium. The results are

then extended by introducing power constraints and considering partial flexibility

of the devices.
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• A. De Paola, D. Angeli and G. Strbac, “Distributed Control of Micro-storage
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• A. De Paola, D. Angeli and G. Strbac, “Scheduling of Wind Farms for Opti-
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Systems Technology, [Submitted].
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Chapter 2

Stochastic Distributed Control of

Wind Farms for Frequency

Response

The main features of variable-speed wind generators and the state of the art on frequency

support from wind farms are initially outlined. A novel control strategy is then proposed

for the provision of frequency response from large number of wind turbines. In partic-

ular, the single generator is modelled as a stochastic hybrid system with two discrete

states, characterized by different efficiency and generated power. Transitions between

these states are driven by frequency-dependent switching functions: the individual tur-

bine behaves randomly while large populations perform deterministically, varying the

aggregate power in response to frequency variations. Stability and disturbance rejection

of the control strategy are assessed, presenting also simulative results.

2.1 Introduction

Following the increasing contribution of wind turbines to total generation, new problems

arise in the control and management of the power system. This section discusses the

role of wind farms in providing ancillary services, focusing in particular on frequency

control. A general overview of the problem and the main approaches proposed in the

literature to tackle it are presented, highlighting the main differences with respect to

the stochastic control law described in the next sections of this chapter.

29
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2.1.1 Power System Stability and Frequency Regulation

Frequency stability is the ability of a power system to maintain steady frequency follow-

ing a severe system upset resulting in a significant imbalance between generation and

load [11]. In a power grid the system frequency is an indicator of the balance that

must be preserved at all times between supply (generation) and demand (load). The

frequency will drop from its nominal value of 50Hz if demand levels exceed the avail-

able supply, as represented in Fig. 2.1. Such imbalances are usually caused by trips of

large generating plants or sudden load increases and are corrected through three main

elements, with different characteristic time-scales: synchronous generators slowing down

and releasing kinetic energy (inertial response), increased generation from other plants

(governor/primary response) and AGC response [12].

Figure 2.1: Representation of a typical frequency event and subsequent frequency
response in the power system. Source: [1].

2.1.2 Variable-speed Wind Turbines

The growing environmental concerns about traditional power sources and the constant

advances in technology have caused an increasing penetration of wind energy in power

systems: in 2007 wind energy overtook hydropower to become the largest renewable

generation source in the UK and, in the same country, the 2009 Renewable Energy

Directive set a target to achieve 15% of energy consumption from renewable sources

by 2020 [13]. Therefore, in the near future, wind turbines will represent a significant

component of the total supply and will be required to provide the same services that

nowadays are performed by conventional synchronous generators [14]. An element of

particular importance and interest is the provision of frequency control [15], as requested

for example in [16], [17], [18], [19]. In particular, the UK grid code requires that all wind

plants supply a primary frequency response of up to 10% of their ratings, depending

on the actual loading at the instant of frequency events [19]. To understand the main
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challenges related to this task, it is useful to provide a basic description of these renewable

generators.

The most common typologies of wind turbines that are currently being installed are

Doubly-Fed Induction Machines (DFIM) and Permanent Magnet Synchronous Machines

(PMSM) [20], [21]. One important feature of these generators is the possibility to control

their power output: their steady-state active power depends in general on the mechanical

energy extracted from the wind but it is possible to obtain a different transient behaviour

by resorting to the system kinetic energy (rotating blades of the turbine). Furthermore,

the presence of power electronic converters between the electrical machine and the power

system allows to operate at an asynchronous rotor speed which can be set in order

to maximize power extraction over a wide range of wind conditions. This is usually

achieved by a speed controller which adapts the steady state generated power (or torque)

to a reference value, obtained by predefined power-speed curves or through algebraic

expressions [22]. A different control strategy is adopted at low wind speeds (generator

is kept at a constant low speed) and at high wind speeds (the pitch angle of the turbine

blades is increased so as to not exceed technical limitations of the generator).

A significant drawback of the decoupling introduced by power electronics between the

wind turbine and the network is the loss of inertial response. Differently from traditional

synchronous generators, the speed reduction and the resulting release of kinetic energy

following a frequency fall in the network are absent [23] or consistently reduced [24] for

the considered typologies of turbines. This means that alternative methods must be

devised for the provision of a satisfactory frequency response.

2.1.3 Frequency Control and Wind Turbines

Consistent research work has investigated how variable-speed wind turbines can provide

inertial response and frequency support for the grid. One possibility is to keep a power

reserve by operating the turbines at a deloaded maximum power curve, as proposed

in [25] and [26]. This means that, when a frequency fall is detected, the turbines can

respond by following the optimal power curve and increase their generated power. The

main problem with this approach is the economic loss which results from the turbines

operating, in normal conditions, with an energy efficiency that is not optimal. An

alternative solution to the problem is temporary overproduction: when a frequency drop

occurs the turbines slow down, releasing part of the kinetic energy stored in their rotating

shafts. This can be obtained, for example, emulating the inertial response of synchronous

generators by adding an extra term, proportional to the frequency variation, to the

torque reference of the speed controller [27]. The frequency derivative can represent
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an extra input of such controller [28] or, modified by a filter and a shaping function,

can be used by an additional control loop to regulate the slip of the generator [1] or

improve system damping [29]. Two substantially different approaches are presented in

[30], which indicates how to achieve the de-loading of the turbine operating on the pitch

angle of the blades, and [31] which adopts model predictive control to explicitly account

for the safety constraints of the generators.

2.1.4 Proposed Stochastic Control Strategy

The different approaches to frequency regulation described in Section 2.1.3 implicitly

assume that individual turbines are all controlled in the same way in case of frequency

drops. In the next sections and in Chapter 3 this assumption is removed and alternative

solutions are investigated. We initially consider a stochastic control technique that has

been previously applied to dynamic-demand management. In [32] decentralized random

controllers are used to modify the duty-cycle (and consequently the absorbed power) of

electric appliances when a frequency fall is detected. A dual approach is now adopted:

the wind turbines are considered as active elements that are able to reduce generation-

side fluctuations and contribute to the frequency control of the network. This can be

achieved by assuming that each renewable generator can operate at different levels of ef-

ficiency (to which correspond different quantities of generated power) and the switching

between these operating points is driven by frequency-dependent functions. The de-

signed control technique is fully decentralized and each turbine acts in an autonomous

setting. This choice avoids the huge costs and the potential safety issues related to an

additional communication infrastructure but, on the other hand, is a severe constraint

and complicates the problem. The difficulties introduced by the decentralized approach

can be overcome by adopting a stochastic control strategy: the individual generator ran-

domly switches between its operating points and, at the same time, large populations

of turbines perform deterministically.

The preliminary modelling of the single generator dynamics and the wind turbine pop-

ulation has been carried out by Dr David Angeli and is presented in Section 2.2. The

stability of the system is assessed in Section 2.3 and the proposed control strategy is

described in Section 2.4 where its disturbance-rejection properties are also discussed.

Simulation results are finally presented in Section 2.5.
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2.2 Modelling: Wind Farm and Network Frequency

The single wind turbine has been modelled as a simple device that extracts mechanical

power from the wind, stores it as rotational kinetic energy and releases part of it to the

network in the form of electric power. To make the problem amenable for analysis, a

first-order model has been chosen. Given the positive parameters α and β, we have:

ω̇(t) = −βω(t) +w(t) − αω(t) P = Kαω2(t) (2.1)

where ω is the rotor angular speed of the turbine, βω is the mechanical friction of the

generator while the terms w and αω are proportional to wind torque and electrical torque

applied by the turbine, respectively. The corresponding generated power P will be given

by the product of ω × αω = αω2 for some positive constant K. The model, despite its

simplicity, captures the main power flows involved in a realistic scenario and makes for a

challenging control problem that constitutes a meaningful starting point if more accurate

representations of the turbine need to be considered. If the term w is assumed to be

constant, it is straightforward to calculate the angular speed at equilibrium ωe and the

corresponding generated power P e:

ωe =
w

α+ β
P e = Kα

w2

(α+ β)2
(2.2)

If one considers P e as a function of α it can be noted that, independently from wind

torque, it has a maximum for α = β. Suppose now that each turbine can set α to

two distinct values and switch between the point of optimal efficiency (α1 = β) and

another operating point achieved with α2 = γβ for some γ 6= 1. For this purpose a

stochastic algorithm is adopted and transitions occur according to frequency-dependent

switching functions λ1(f) and λ2(f) which will be designed later on. The probability

that the switching from α1 to α2 will take place in the interval (t, t + dt] is given by

λ1(f(t))dt (for the transition in the opposite sense one must consider λ2(f(t))). The

switching function can therefore be interpreted as the instantaneous rate at which the

corresponding transition occurs. With this approach, the population of turbines can

generate different quantities of power with respect to the same wind torque and therefore

provide frequency response. From the mathematical point of view, each turbine can be

described as a stochastic hybrid system with two discrete states [33], as summarized in

Fig. 2.2. We remark that in our idealized model transitions between these states are

instantaneous but in real applications a delay would be involved.

In a practical implementation of this model, the individual turbine will monitor the net-

work frequency f(t) and update its operating mode according to the following algorithm
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λ1(f (t))

λ2(f (t))

ω̇ = −(α1 + β)ω + w ω̇ = −(α2 + β)ω + w

Figure 2.2: Turbine model as a stochastic hybrid system.

[34], where RND denotes a random number uniformly distributed in the interval [0, 1]:

• When the turbine enters the optimal mode (α = α1 = β) at time t:

1. Set t0 = t and r = RND.

2. Start evaluating the integral I(t) =
∫ t
t0
λ1(f(τ))dτ .

3. Switch to suboptimal operating mode at time t′

for which I(t′) ≥ − ln(r).

• When the turbine enters suboptimal mode (α = α2 = γβ) at time t:

1. Set t0 = t and r = RND.

2. Start evaluating the integral I(t) =
∫ t
t0
λ2(f(τ))dτ .

3. Switch to optimal operating mode at time t′

for which I(t′) ≥ − ln(r).

The unnormalized pdf of the generator speed in the optimal (α1 = β) and suboptimal

(α2 = γβ) regimes of operation, denoted respectively by ρ+(t, ω) and ρ−(t, ω), are now

introduced. Their evolution can be described by the following set of Kolmogorov forward

equations [35]:

∂ρ+
∂t

= − ∂

∂ω
[ρ+ · (−(α1 + β)ω + w)]− λ1(f)ρ+ + λ2(f)ρ−

∂ρ−
∂t

= − ∂

∂ω
[ρ− · (−(α2 + β)ω + w)]− λ2(f)ρ− + λ1(f)ρ+

(2.3)

Even if, in general, equations (2.3) do not admit a closed-form solution, it is possible to

obtain a set of ODEs which describe the time evolution of the associated (uncentered)

low-order moments, defined as follows:

π+(t) =

∫ +∞

−∞
ρ+(t, ω) dω ω+(t) =

∫ +∞

−∞
ωρ+(t, ω) dω W+(t) =

∫ +∞

−∞
ω2ρ+(t, ω) dω

π−(t) =
∫ +∞

−∞
ρ−(t, ω) dω ω−(t) =

∫ +∞

−∞
ωρ−(t, ω) dω W−(t) =

∫ +∞

−∞
ω2ρ−(t, ω) dω

(2.4)
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Assuming sufficiently smooth density functions of bounded support, taking derivatives

with respect to time in (2.4) and integrating by parts where needed yields:

π̇+(t) = −λ1(f)π+(t) + λ2(f)π−(t)

π̇−(t) = −λ2(f)π−(t) + λ1(f)π+(t)

ω̇+(t) = −(α1 + β + λ1(f))ω+(t) + λ2(f)ω−(t) + wπ+(t)

ω̇−(t) = −(α2 + β + λ2(f))ω−(t) + λ1(f)ω+(t) + wπ−(t)

Ẇ+(t) = −(2α1 + 2β + λ1(f))W+(t) + 2wω+(t) + λ2(f)W−(t)

Ẇ−(t) = −(2α2 + 2β + λ2(f))W−(t) + 2wω−(t) + λ1(f)W+(t)

(2.5)

where α1 = β and α2 = γβ for some γ 6= 1. In addition, the following conservation law

is fulfilled:

π+(t) + π−(t) = 1 ∀t ∈ R (2.6)

Remark 2.1. A deterministic interpretation can be provided for the moments of ρ+ and

ρ− if one considers large populations of identical turbines. In particular, π+ and π−

represent the fraction of generators in the two regimes of operation. Moreover, W+ and

W− denote the average value of the squared rotor speed ω in the two cases. Considering

(2.1) and introducing N as a rescaling factor, it is possible to define the total power

PTOT generated by the wind farm population:

PTOT (t) = N ·K (α1W+(t) + α2W−(t)) (2.7)

Analysis of system (2.5) is straightforward given its cascaded structure and its linearity

with respect to state-variables. In fact, for each constant input f , there exists a unique

globally asymptotically stable equilibrium xe(f) which we define as:

xe(f) =
[

πe+(f) π
e
−(f) ω

e
+(f) ω

e
−(f)W

e
+(f)W

e
−(f)

]′
. (2.8)

Similarly, the aggregate power at equilibrium corresponds to:

P eTOT (f) = N ·K
(

α1W
e
+(f) + α2W

e
−(f)

)

To provide some additional properties for system (2.5) and its equilibrium state xe, it is

useful to introduce the following assumption:

Assumption 2.1. The transition rates λ1(f) and λ2(f) are nonnegative and, respec-

tively, monotonic increasing and decreasing functions of the network frequency f . This

is coherent with the balancing task to be performed by the turbines: when frequency

decreases a higher number of turbines will switch to the operation mode of maximum

efficiency, generating an higher amount of power, and vice versa.
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It is now possible to state the following for the total power at equilibrium:

Proposition 2.1. Consider system (2.5) with a constant input f . If α1 = β 6= α2, the

quantity P eTOT (f) is monotonic decreasing with respect to f .

Proof. The states at equilibrium W e
+ and W e

− are denoted with a hat subscript when

computed as functions of the switching rates λ̂1 = λ1(f) and λ̂2 = λ2(f). Explicit

calculations show that, when α1 = β 6= α2, it holds:

∂

∂λ̂1

(

α1Ŵ
e
+(λ̂1, λ̂2) + α2Ŵ

e
−(λ̂1, λ̂2)

)

< 0
∂

∂λ̂2

(

α1Ŵ
e
+(λ̂1, λ̂2) + α2Ŵ

e
−(λ̂1, λ̂2)

)

> 0

Hence, given the monotonicity properties of λ1(f) and λ2(f) presented in Assumption

2.1, from the application of the chain rule it follows that:

dP eTOT (f)

df
= N ·K · d

df

(

α1Ŵ
e
+(λ1(f), λ2(f)) + α2Ŵ

e
−(λ1(f), λ2(f))

)

≤ 0

2.2.1 Frequency Representation and Analysis of Equilibria

In order to design the switching functions λ1(·) and λ2(·), which constitute the core of

the proposed distributed control, it is necessary to determine the relationship between

load variations and the frequency of the network. To this end, we denote as d the power

balance in the system between other kinds of generation and demand, introduce the

positive constants k and k1 and model the network frequency with a first order linear

system:

ḟ(t) = −kf(t) + k1[PTOT (t) + d(t)]

= −kf(t) + k1[NK(α1W+(t) + α2W−(t)) + d(t)]
(2.9)

Coherently with the qualitative description of the power system provided in Section

2.1.1, when the difference between generation and demand (represented in the present

case by PTOT + d) is negative the frequency will decrease and the opposite will occur

when PTOT + d is positive. The choice of a simple model for the network frequency has

been made in order to simplify the analysis and it does not introduce loss of generality

as long as the network can be modelled by a passive linear transfer function. In this

case, one can introduce a pre-filter in each frequency sensor device in order to perform

a suitable pole-zero cancellation so that the network is seen as a first order system with

respect to this filtered signal. Hence, the set of equations (2.5) and (2.9) represent a

full description of the closed-loop system constituted by the wind farm and the electric

network, as shown in Fig. 2.3.
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Network

eq. (2.9)

Wind Farm

eq.

 (2.5)

Figure 2.3: Block representation of the closed-loop system.

To study the equilibria of this system consider that (2.9), for the frequency f e at equi-

librium, becomes:

0 = −kf e + k1(P
e
TOT (f

e) + de)

where P eTOT (f) is the map f → NK(α1W
e
+(f) + α2W

e
−(f)).

Proposition 2.2. For constant values of de and w, the system described by (2.5) and

(2.9) admits a unique equilibrium when α1 = β 6= α2.

Proof. Taking into account that the open-loop system (2.5) has an equilibrium for any

positive value of f , the equilibria of the closed-loop system will be given by the intersec-

tion of the curves kf −k1de and the positive quantity k1P
e
TOT (f). Since α1 = β 6= α2, it

follows from Proposition 2.1 that k1P
e
TOT (f) is monotonically decreasing with respect to

the frequency f . Given that kf−k1de is linear with positive slope, we can conclude that

a single equilibrium exists in the positive orthant for all feasible values of parameters

and it is denoted by Xe:

Xe =
[

πe+(f
e) πe−(f

e) ωe+(f
e) ωe−(f

e) W e
+(f

e) W e
−(f

e) f e
]′
. (2.10)

2.3 Stability Analysis

2.3.1 Local Stability Properties

The analysis on the properties of the equilibrium point (2.10) has been carried out per-

forming a linearization of the closed-loop system equations. The second equation in (2.5)

has been replaced with (2.6), denoting the state variable by X̄ = X −Xe. Considering

implicitly the dependency of the equilibrium values from f e for a more compact notation
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and assuming differentiability of the switching functions at the equilibrium frequency,

the linearized system about the equilibrium point Xe can be described by the following

equations:

˙̄π+=−(λ1(f
e) + λ2(f

e))π̄+ −
(

λ̇1(f
e)πe+ − λ̇2(f

e)(1 − πe+)
)

f̄

˙̄ω+=−(α1 + β + λ1(f
e))ω̄+ + λ2(f

e)ω̄− + wπ̄+ −
(

λ̇1(f
e)ωe+ − λ̇2(f

e)ωe−
)

f̄

˙̄ω−=−(α2 + β + λ2(f
e))ω̄− + λ1(f

e)ω̄+ − wπ̄+ +
(

λ̇1(f
e)ωe+ − λ̇2(f

e)ωe−
)

f̄

˙̄W+=−(2α1 + 2β + λ1(f
e))W̄+ + λ2(f

e)W̄− + 2wω̄+ −
(

λ̇1(f
e)W e

+ − λ̇2(f
e)W e

−
)

f̄

˙̄W−=−(2α2 + 2β + λ2(f
e))W̄− + λ1(f

e)W̄+ + 2wω̄− +
(

λ̇1(f
e)W e

+ − λ̇2(f
e)W e

−
)

f̄

˙̄f=−kf̄ + k1(NK(α1W̄+α2W̄−) + d̄)

(2.11)

which can be rewritten as:
˙̄X = AlX̄ +Bld̄ (2.12)

Furthermore, the equilibrium values for the state components in (2.5) have been ana-

lytically calculated with respect to the parameters of the system and the value of the

switching functions at equilibrium. Replacing their expressions in (2.11), the matrices

Al and Bl will only be dependent on the parameters α, β, w, the switching functions at

equilibrium λ1(fe) and λ2(fe) and their derivatives λ̇1(fe), λ̇2(fe).

Theorem 2.1. Assuming differentiable switching functions λ1(·) and λ2(·), the linear

system (2.12) is globally exponentially stable for any positive value of w, λ1(fe) and

λ2(fe) if:

α1 = β 0 < α2 ≤ α1 λ̇1(f
e) > 0 λ̇2(f

e) < 0

Proof. The stability of the system can be proved using the Hurwitz Criterion [36], which

allows to verify the sign of the roots for the characteristic polynomial PA(s) of the matrix

Al. We denote by Ci, with i = 1 . . . 6, the leading principal minors of the Hurwitz matrix

for PA(s), reminding that the roots of PA(s) will all have negative real part if and only

if Ci > 0 for i = 1 . . . 6. We also carry out the substitution α1 = α2 + y where y, under

the current assumptions, is always greater than or equal to zero. An explicit calculation

shows that the Hurwitz determinants Ci are polynomials of positive coefficients in the

variables y, α2, w, λ1(fe), λ2(fe), λ̇1(f
e) and −λ̇2(f e). Since these are all positive

or nonnegative quantities, we can conclude that the determinants Ci are greater than

zero, all the roots of PA(s) have negative real parts and therefore the theorem claim is

verified.
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It is worth remarking that Theorem 2.1 implies that the closed-loop system described

by (2.5) and (2.9) is locally asymptotically stable. Different approaches have been con-

sidered to prove global stability: considering quadratic and 1-norm Lyapunov functions,

exploiting the positivity of the system parameters to use a Sum of Square (SOS) op-

timization toolbox [37], [38] and determining local monotonicity properties on certain

subsets of the state space. Unfortunately, none of these approaches has provided con-

clusive results.

2.3.2 Instability Phenomena

Since the local stability of the system has been proved only for α2 ≤ α1, it is worth

investigating if any limit cycle or unstable behaviour arises for different values of α2. In

this respect, the following result provides interesting clues:

Theorem 2.2. If α1 = β, α2 > α1, λ1(f), λ2(f) ∈ C1, Γ = λ̇1(f
e) = −λ̇2(f e) ≥ 0, the

following holds: for all positive values of w there exists Γp > 0 such that, for Γ < Γp,

all eigenvalues of the linearized system (2.12) have negative real part while, for Γ = Γp,

the system has a couple of imaginary eigenvalues.

Proof. In order to study the eigenvalues of the system, we consider the Hurwitz determi-

nants Ci (i = 1 . . . 6) for the characteristic polynomial PA(s) of the matrix Al in (2.12).

Denoting by y the positive term α2 − α1, explicit calculations provide the following

expression for the Hurwitz coefficients:

Ci =

i−1
∑

j=0

(−1)jmijΓ
j i = 1..5

C6 = (m61 +m62Γ)C5

(2.13)

where the polynomials mij are constituted by monomials with positive coefficients in

the nonnegative variables α1, w, λ1(fe), λ2(fe) and y. Notice that the coefficient of the

degree 0 term in PA(s) equals m61 + m62Γ and it is therefore always positive, ruling

out the possibility of eigenvalues in 0. From (2.13) it is possible to verify that all Ci

coefficients are positive if Γ = 0. Furthermore, there exists Γ̄ such that, for Γ = Γ̄, C2 is

equal to zero while, for Γ > Γ̄, C2 is negative. Hence, for Γ > Γ̄, the linearized system

admits eigenvalues with strictly positive real part. By continuity of eigenvalues with

respect to matrix entries, it follows that Γp exists as in the claim.

Theorem 2.2 shows that, for certain values of Γ, a couple of complex eigenvalues of

the linearized system crosses the imaginary axis. If we consider the Andronov-Hopf
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Bifurcation Theorem [39] we can notice how this condition strongly hints to the presence

of a Hopf Bifurcation in the system for α2 > α1. However, a rigorous proof of this fact

is not provided since the additional technical conditions required in [39] are difficult to

check in general. We can then conclude that, in order to avoid any periodic solution of

the system and, at the same time, arbitrarily choose the slope of the switching functions

with respect to frequency, it is necessary to impose α2 < α1. If one considers (2.2),

this corresponds to choose a suboptimal working point with higher angular speed at

equilibrium than the optimal one.

2.4 Proposed Control Law

The expressions of the switching functions λ1(f) and λ2(f) which are hereby considered

are the following:

λ1(f) =

{

0 if f ≤ fn

Λ1 if f ≥ fn
λ2(f) =

{

0 if f ≥ fn

Λ2 if f ≤ fn
(2.14)

where Λ1 and Λ2 are some positive constants and fn is the nominal frequency of the power

system. Notice that, due to discontinuity of λ1 and λ2, the solution of equation (2.5)

in feedback to (2.9) needs to be considered in a generalized sense, according to Filippov

definition [40]. Existence of such solution is guaranteed if the state derivates are bounded

while uniqueness, albeit not theoretically proved, should follow from the structure of

the problem and the assumptions on λ1 and λ2. Moreover, the last component of the

resulting equilibrium point Xe will be exactly at frequency fn (provided d ranges in

a suitable interval) and constitutes a sliding-mode solution. If the switching functions

are chosen according to (2.14), the turbines working at the optimal point will possibly

switch to the suboptimal mode (with α = α2 6= β) only if the frequency rises over its

nominal value while the switching of the other turbines will possibly occur only when

the frequency drops below its nominal value.

2.4.1 Rejection of Demand Variations

This choice of the switching functions is seen to achieve a good disturbance rejection at

steady-state since the power curve P eTOT (f), in this case, is vertical around the nominal

frequency fn. If we consider that the steady-state value of the frequency is determined

by the intersection of the curve k1P
e
TOT (f) with the curve kf − k1d

e, it is evident that

considerable variations of de will not introduce changes to the value of frequency at equi-

librium. In order to quantify the rejection of time-varying load variations the transfer



Chapter 2. Stochastic Distributed Control of Wind Farms for Frequency Response 41

function Wdf (s) between the power balance variation d̄ and the network frequency vari-

ation f̄ (considered as output) has been calculated for the linearized system (2.12). In

doing so, it is assumed that the derivatives of the switching functions at the equilibrium

frequency, for some positive constant Γ, are equal to:

λ̇1(f
e) = Γ λ̇2(f

e) = −Γ (2.15)

Letting Γ tend to infinity is considered a good local approximation of the nonlinear

system when the switching functions are defined according to (2.14). The magnitude of

the frequency response for Wdf has been numerically calculated for increasing values of

Γ and the results are shown in Fig. 2.4. The parameters have been chosen in order to

achieve a nominal generated power of 2MW for the individual turbine, with a reduction

of 7% in the suboptimal state:

α1 = β = 562.9s−1 γ = 0.6 α2 = 333.7s−1

k = 0.149s−1 fe = 50Hz k1 = 1s−2W−1 N = 1000

(2.16)
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Figure 2.4: Magnitude Bode plot of Wdf for increasing values of Γ.

It can be seen from Fig. 2.4 that higher values of Γ reduce in general the sensitivity of

frequency to variations of the signal d which represents the net balance between other

sources of generation and total demand. On the other hand, the figure shows a resonance

peak that, albeit acceptable, appears not to be reduced to zero by higher values of Γ.
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We define Md(Γ) as follows:

Md(Γ) = max
ω

|Wdf (jω,Γ)| (2.17)

It is possible to analytically calculate the limit of Md(Γ) for Γ that goes to infinity,

quantifying the upper bound of the frequency sensitivity to power disturbances achiev-

able by this decentralized approach (dependency from fe is implicit for a more compact

notation):

lim
Γ→+∞

Md(Γ) =
W e

+ +W e
−

(W e
+ +W e

−)(k + 2α1 + 2α2 + λe1 + λe2)− 2w(ωe+ + ωe−)

2.4.2 Rejection of Wind Torque Variations

It has been assumed so far that the wind torque acting on the turbines is constant in

time. It is interesting to evaluate what are the effects of variations of w on the system

frequency f when the proposed controller is adopted. Similarly to the previous case, the

analysis is conducted by linearizing the closed-loop system equations (2.5) and (2.9). In

this case the input of the system is w(t) = we + w̄(t), where we represents the value at

equilibrium and w̄(t) is an additional time-varying component. If one assumes that the

derivative of the switching functions at fe is equal to (2.15), it holds:

˙̄π+ =−(λ1(f
e) + λ2(f

e))π̄+ − Γf̄

˙̄ω+ =−(α1 + β + λ1(f
e))ω̄+ + λ2(f

e)ω̄− +weπ̄+ − Γ
(

ωe+ + ωe−
)

f̄ + πe+w̄

˙̄ω− =−(α2 + β + λ2(f
e))ω̄− + λ1(f

e)ω̄+ −weπ̄+ + Γ
(

ωe+ + ωe−
)

f̄ + (1− πe+)w̄

˙̄W+ =−(2α1 + 2β + λ1(f
e))W̄+ + λ2(f

e)W̄− + 2weω̄+ − Γ
(

W e
+ +W e

−
)

f̄ + 2ωe+w̄

˙̄W− =−(2α2 + 2β + λ2(f
e))W̄− + λ1(f

e)W̄+ + 2weω̄− + Γ
(

W e
+ +W e

−
)

f̄ + 2ωe−w̄

˙̄f =−kf̄ + k1(NK(α1W̄+α2W̄−) + d̄)

(2.18)

We denote now by Wwf the transfer function between w̄ and the frequency variation f̄ ,

considered as an output of the system. The magnitude response for increasing values of

Γ, adopting the parameters in (2.16), is shown in Fig. 2.5. As in the case of variations on

the power balance d, letting Γ tend to infinity is considered a good approximation of the

discontinuous switching functions presented in (2.14). It can be noticed that, in general,

a consistent attenuation is achieved for increasing values of Γ. The main difference with

respect to the previous case is that the resonance peak, albeit still present, tends to
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zero when Γ goes to infinity. If one introduces Mw(Γ) = maxω |Wwf (jω,Γ)|, explicit
calculations show the following:

lim
Γ→+∞

Mw(Γ) = 0
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Figure 2.5: Magnitude Bode plot of Wwf for increasing values of Γ.

2.5 Simulation Results

In order to validate the design approach presented in this chapter, the performance of

the distributed controller is evaluated in simulation. We consider turbines with power

rating Pr = 2MW , generated at the optimal operation mode (α1 = β) at equilibrium.

The wind farm is composed by 1000 elements and operates within an electric network

where, at the initial time t = 0 of simulation, the total power generation from other

sources amounts to 10GW and the power balance d is equal to zero.

2.5.1 Scenario 1a - Frequency Drop in Stable Configuration

In this scenario a loss of 90MW in the generation (or an equivalent increase of demand)

occurs in the system at t = 0.1s, when 90% of the turbines are working at the suboptimal

operating point with π+(0.1) = 0.1 and π−(0.1) = 0.9. A stable configuration has been

chosen (α2 < α1), using the parameters considered in (2.16) and assuming Λ1 = Λ2 = 15.

The network frequency f , the total power balance d + PTOT in the network and the
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wind-generated power PTOT are shown in Fig. 2.6. Note that the stochastic controller

is able to compensate the frequency drop resulting from the generation loss in about

0.3s, properly varying the power generated by the wind farm.
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Figure 2.6: Simulation of a power loss for the system in stable configuration.

2.5.2 Scenario 1b - Frequency Drop in Unstable Configuration

The same event of Scenario 1a is simulated with an unstable configuration: the values

of the parameters correspond to the ones in (2.16), with the exceptions of γ = 1.8 and

consequently α2 = 1013 > α1. The results in Fig. 2.7 show that, coherently with the

analysis of Section 2.3.2, the system has a periodic solution for α2 > α1.

2.5.3 Scenario 2 - Rejection of Disturbances on Power Balance

In this case the capability of the controller to reject variations of the power balance d

has been tested. A sinusoid dd(t) = 50sin(2πt)MW has been added to the constant

signal de when the fraction of turbines that are initially operating at the optimal and

suboptimal point is equal (π+(0) = π−(0) = 0.5). The results in Fig. 2.8 show that a

consistent rejection is achieved and the oscillations introduced by the disturbance dd on

the network frequency are minimal.
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Figure 2.7: Simulation of a power loss for the system in unstable configuration.
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Figure 2.8: Simulation of a sinusoidal disturbance dd on the power balance d (in
red the minimum and maximum power that the wind farm is able to generate for the

considered constant wind torque).
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2.6 Conclusions

A distributed approach is proposed for frequency control with wind turbines. This choice

allows to overcome some disadvantages of deterministic control strategies, avoiding syn-

chronization of the generators and undesired frequency overshoots. The single generator

is modelled as a stochastic hybrid system that can operate in two discrete states, to which

correspond different levels of efficiency and generated power. The transitions between

these states are random and driven by frequency dependent switching functions. In this

way the behaviour of the individual generators is stochastic, while large populations of

turbines perform deterministically, changing the total generated power in response to

frequency variations. Furthermore, the implementation of the control strategy does not

require any additional communication infrastructure. The robust stability and the dis-

turbance rejection of the proposed control strategy have firstly been theoretically proved

and then showed in simulations.



Chapter 3

Scheduling of Wind Turbines for

Frequency Response

In this chapter the provision of frequency response from variable-speed wind turbines is

obtained through temporary overproduction. The turbines move from the steady-state

operating point of maximum efficiency, reducing the rotor angular speed and releasing

part of their kinetic energy. Two different approaches are considered, assuming that the

electric torque of the generators follows two given expressions or can instead be arbitrarily

set. In both cases the scheduling of the turbines is determined in order to guarantee extra

power production following a fault in the power system, maximizing the time of frequency

support provision or reducing energy losses. Finally, the recovery problem is analyzed,

determining the optimal control strategy which brings back the turbines to the original

working point of maximum efficiency after having provided frequency response.

3.1 Introduction

The problem of frequency control with variable-speed wind turbines is tackled with a

deterministic approach. As in the previous chapter, the control effort is distributed

among the whole turbines population. The aim is to increase the power provided by

the wind farm after the trip of a large generating plant in order to reduce the resulting

frequency fall. The control strategy is designed as a constrained optimization, maximiz-

ing the time of frequency response provision of the wind farm or minimizing the energy

losses of the generators. Differently from Chapter 2, where a fraction π− of turbines

was operating, in steady-state, at a suboptimal working point, it is now assumed that

in normal operative conditions all generators are running at maximum efficiency. Fol-

lowing a fault in the network, the resulting frequency response is an increase in power

47
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generation, obtained by slowing down the turbines and releasing part of the kinetic en-

ergy stored in their rotating shafts. A different model is introduced to characterize the

mechanical dynamics of the generators and take into account the relationship between

the rotor speed of the turbine and the corresponding efficiency of power absorption from

the wind. Two different approaches are then considered: one assumes that, in order to

provide extra power, the turbines can switch to an overproduction mode, applying an

extra torque step. The switching rate to the second mode and the permanence time of

the generators in this state become the control inputs of the turbine scheduling and are

designed in order to maximize the time of frequency response. A second possibility is

to assume that the generated power of each machine can be arbitrarily set (within the

operational limits of the generator): in this case the scheduling minimizes the energy

losses caused by the turbines slowing down and reducing their efficiency. Finally, the

inverse problem of recovery is considered: after having provided frequency response and

reduced their kinetic energy, the turbines are brought back to their operating point of

maximum efficiency.

The rest of this Chapter is structured as follows: the model for the turbine dynamics

and power absorption from the wind is described in Section 3.2. The two approaches for

the scheduling of wind turbines are presented respectively in Section 3.3 and 3.4 while

the problem of recovery is tackled in Section 3.5.

3.2 Modelling

The single wind turbine has been modelled in its mechanical part as a rotating mass,

describing its angular speed ω by the swing equation:

ω̇ =
1

J
(Tm − Te) (3.1)

where J is the total moment of inertia, Tm is the mechanical torque extracted from the

wind and Te is the electric torque used to generate power. The electrical dynamics of

the turbine are much faster than the mechanical ones and therefore have been neglected.

The additional control loop which determines the electrical quantities of rotor and stator

in order to achieve a certain torque Te is not considered and Te directly represents the

control input of the system. If we denote by v the wind speed, by R the radius of

the rotor and by µ the air density, the power of the wind Pw and the corresponding

mechanical torque acting on the turbine are:

Pw =
µπR2v3

2
Tm =

PwC̄(λ, θ)

ω
(3.2)
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The power coefficient C̄ represents the fraction of wind power which is captured by the

turbine and is dependent on the tip-speed ratio λ = ωR
v and the blades pitch angle θ. For

instance, in the simulation section, the formulation proposed by [41] will be considered:

C̄(λ, θ) = 0.22

(

116

λi
− 0.4θ − 5

)

e
− 12.5

λi
1

λi
=

1

λ+ 0.08θ
− 0.035

θ3 + 1
(3.3)

For the wind speed v and the pitch angle θ, the following assumptions are introduced:

Assumption 3.1. Given the relatively short time interval to be considered for the fre-

quency response of the turbines, it is reasonable to assume that the wind speed v is

constant in time. Furthermore, if one excludes high wind conditions, pitch angle actions

are not applied and the angle θ is constant and equal to zero. In this scenario, the power

coefficient can be defined exclusively as a function of the rotor speed ω and wind speed v:

C(ω, v) = C̄

(

ωR

v
, 0

)

(3.4)

A diagram of the wind turbine model, with a representation of the current assumptions,

is presented in Figure 3.1. The Optimal Power Point Tracking block (OPPT) is the

controller which is used in normal operation and determines the reference of electric

torque Teref in order to achieve maximum efficiency. The frequency control strategies

presented in the next sections will bypass this block and directly determine Te when a

frequency event occurs.

Figure 3.1: Block representation of the individual wind turbine. Source: [2].

3.3 Two-modes Scheduling

In this first formulation each turbine can only operate in two modes, one corresponding to

maximum power extraction at steady state and one characterized by a slower suboptimal
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equilibrium. By switching to the second mode, the wind turbine reduces its kinetic

energy and is able to temporarily generate more power. This policy can be desirable if

one wants to slow down only a fraction of the wind farm while waiting for secondary

response services to take over. In this case, in order to coordinate the switching of each

generator between the two modes, centralized management of the turbines is required.

For a constant wind speed v (assumed equal for all turbines), the two modes correspond

to different choices of the electrical torque Te. In one case it is desirable to operate at

the rotor speed ωss (and at the resulting tip-speed ratio λss = ωssR/v) that optimizes

the C coefficient and guarantees maximum efficiency. This is done by setting the electric

torque Te equal to the reference Teref of the OPPT controller, which can be described

by the following function T+ [22]:

T+(ω) =
µπR5C(ωss, v)

2λ3ss
ω2 = KTω

2 (3.5)

Denoting by ω+ the rotor speed in the first operation mode and replacing (3.2) and (3.5)

in the swing equation (3.1), we obtain:

ω̇+ =
Pw
J

ω3
ssC(ω+, v)− ω3

+C(ωss, v)

ω3
ssω+

(3.6)

It is straightforward to verify that ωss is an equilibrium point for (3.6) and it can be easily

proved, by linearization of the system, that such equilibrium is locally asymptotically

stable. The wind turbines are able to provide frequency response by switching to the

second operation mode, where an additional torque Tf is applied, slowing down the

turbine and releasing part of its kinetic energy to the network:

ω̇− =
Pw
J

ω3
ssC(ω−, v) − ω3

−C(ωss, v)

ω3
ssω−

− Tf
J

(3.7)

Remark 3.1. Several factors must be taken into account when choosing Tf : operative

constraints on the rotor speed ω can be satisfied by setting the additional torque in such

a way that the suboptimal equilibrium speed for (3.7) is acceptable. High values of Tf

must also be avoided, in order to limit the mechanical stress on the switching turbines.

Given their particular structure and the complicated expression of C, it has not been

possible to solve the equations (3.6) and (3.7) analytically, however, their solutions

are straightforward to obtain numerically. If we denote by φ+(ωIN , t) and φ−(ωIN , t),

respectively, the solutions of (3.6) and (3.7) at time t with initial condition ω(0) = ωIN ,

the corresponding power generated by the turbine in the two modes is:

P+(ωIN , t) = KTφ
3
+(ωIN , t) P−(ωIN , t) = KTφ

3
−(ωIN , t) + Tfφ−(ωIN , t) (3.8)



Chapter 3. Scheduling of Wind Turbines for Frequency Response 51

We consider a population of turbines where the single generator, at each time instant,

can operate according to (3.6) or (3.7). All turbines are initially in the first mode (with +

subscript) and the control input ρ(t) determines the rate at which they commute to the

second operation mode (with − subscript) at time t. Generators switching to the second

mode at t will operate according to (3.7) for Θ(t) seconds, where Θ is a second control

input, and then switch back and remain in the first mode (further transitions are not con-

sidered). For large populations, one can assume that the switching rate ρ(t) can be set

to any positive value, provided that the fraction of available turbines in the first mode,

at time t, is greater than 0. Notice that turbines switching at the same time are con-

strained to commute back to the original mode simultaneously. This hypothesis makes

the analysis of the system easier and does not limit its performance, as shown later on.

3.3.1 Maximization of Frequency Support Time

We want to understand what is the choice of ρ(·) and Θ(·) that guarantees the best

frequency response. We will do so by considering the following scenario: a frequency drop

is detected at t = 0 and a fraction ρ0 of turbines instantly switches to the second mode.

The aggregate power PTOT generated by the turbines population instantly increases

from P0 to P0 +∆P . If one considers the positive constant K as a rescaling factor, the

power increase is equal to ∆P = KTfωssρ0. This scenario of extra power generation can

be modelled by a switching function ρ(t) that presents a Dirac pulse of amplitude ρ0 at

t = 0. Our optimality criterion will be the maximization of the time interval [0, TEND]

during which it is possible to provide the extra generation ∆P or, equivalently, impose

that ṖTOT (t) = 0 for all t ∈ (0, TEND]. Denoting by D the set of integrable distributions

with non negative values, the optimization problem corresponds to:

max
ρ(·),Θ(·),TEND

TEND

s.t.

∫ TEND

0+
ρ(t) dt = 1− ρ0

ṖTOT (t) = 0 ∀t ∈ (0, TEND]

ρ(·) ∈ D

(3.9)

To calculate the optimal ρ∗(·) and Θ∗(·) for (3.9), a slightly different problem is initially

studied, removing the integral constraint on ρ and fixing the final time TEND:

min
ρ(·),Θ(·)

∫ TEND

0+
ρ(t) dt

s.t. ṖTOT (t) = 0 ∀t ∈ (0, TEND]

ρ(·) ∈ D

(3.10)
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Some additional notation and properties, required for the resolution of these two prob-

lems, are detailed next while the main results are provided in Section 3.3.3.

3.3.2 Preliminary Operations

The power generated by a single turbine at time t, if this has switched to the second

mode at t = 0 and switched back to the first mode at t = θ, is denoted by PG(t, θ) and

has the following expression:

PG(t, θ) =















P−(ωss, t) if t < θ

P+(φ−(ωss, θ), t− θ) if t ≥ θ

(3.11)

A graphical representation is provided using the parameters presented in the simulation

section. The generated power PG(t, 5) and the resulting rotor speed ω (blue) are com-

pared in Fig. 3.2 with the corresponding quantities of a turbine that always operates

in the first mode (red). In the time interval which goes from t = 0 to t = θ = 5s, the

turbine in the second mode generates more power, at the cost of a reduction of its rotor

speed. When the generator switches back to the first mode, the extra torque step Tf is

no longer applied: the electric torque (and consequently the generated power) instantly

decrease, causing an acceleration of the turbine.
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Figure 3.2: Comparison of generated power and rotor speed between a turbine that
remains in mode 1 (red) and one that switches to the second mode at t = 0s and

switches back at t = θ = 5s (blue)

It is straightforward to derive from (3.11) the rate of switching η(t, θ) that compensates

the power variation introduced at time t by a unitary fraction of turbines (ρ0 = 1)
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switching at t = 0 and undergoing a switch back to the initial mode after θ seconds.

Considering that the time derivative of PG(t, θ) is defined everywhere except for t = θ

and denoting as δ the Dirac delta, we deduce:

η(t, θ) =















− 1

Tfωss

∂PG(t, θ)

∂t
if t 6= θ

φ−(ωss, θ)
ωss

δ(t − θ) if t = θ

(3.12)

Remark 3.2. It is important to point out that, when (3.10) is considered, ρ(t) is unequiv-

ocally defined by the constraint ṖTOT (t) = 0 and the choice of Θ(·). Given that turbines

remaining in the first mode have constant power derivative, at each time instant t the

switching rate ρ must be determined in order to compensate the power variations of the

generators that have switched to the second mode in the time interval [0, t):

ρ(t) =

∫ t−

0
η(t− τ,Θ(τ))ρ(τ) dτ (3.13)

Furthermore, given the considered initial switching, ρ presents a Dirac delta of amplitude

ρ0 at t = 0 and the following equivalent expression can be provided:

ρ(t) = η(t,Θ(0))ρ0 +

∫ t−

0+
η(t− τ,Θ(τ))ρ(τ) dτ (3.14)

This means that solution of problem (3.10) amounts to optimally select Θ(·). In this

respect, it is useful to extend our notation and, for a given Θ(·), denote by ρ̄(t, s)

the switching rate after t seconds if a unitary fraction of turbines switches at time s

(corresponding to a Dirac delta in ρ̄(t, s) at t = 0) and the power is kept constant

thereafter. Since, at each t, ρ̄(t, s) must compensate the power variations introduced by

all turbines that have switched in [s, s+ t), we can derive:

ρ̄(t, s) =

∫ t−

0
η(t− τ,Θ(s+ τ))ρ̄(τ, s) dτ = η(t,Θ(s)) +

∫ t−

0+

η(t− τ,Θ(s+ τ))ρ̄(τ, s) dτ (3.15)

An alternative representation of ρ̄(t, s) can be obtained considering that, at each time

instant t, two different components must be taken into account:

1. Compensation of the initial power variation: η(t,Θ(s))

2. Compensation of the cascaded losses introduced at each time instant τ < t by the

first component above: η(τ,Θ(s))ρ̄(t− τ, s+ τ)

The resulting expression for ρ̄(t, s) is:

ρ̄(t, s) = η(t,Θ(s)) +

∫ t−

0+

η(τ,Θ(s))ρ̄(t− τ, s + τ) dτ =

∫ t

0+

η(τ,Θ(s))ρ̄(t− τ, s+ τ) dτ (3.16)
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A similar dual definition can be introduced for the integral ρ̄I(t, s), defined as the cu-

mulative fraction of turbines that switch in the interval (s, s + t], for a given Θ(·), if a
unitary fraction of turbines undergoes switching at s and the total generated power is

to be kept constant:

ρ̄I(t, s) =

∫ t

0+
ρ̄(τ, s) dτ (3.17)

Proposition 3.1. The cumulative fraction ρ̄I satisfies the following integral condition:

ρ̄I(t, s) =

∫ t

0+
η(τ,Θ(s)) [1 + ρ̄I(t− τ, s+ τ)] ds (3.18)

Proof. To show the equivalence of the two expressions for ρ̄I , we initially replace (3.16)

in the right-hand side of (3.17):

ρ̄I(t, s) =

∫ t

0+
η(τ,Θ(s))dτ +

∫ t

0+

∫ τ−

0+
η(x,Θ(s))ρ̄(τ − x, s+ x) dx dτ

By switching the order of integration in the second term and introducing the change of

variable τ̃ = τ − x, we obtain:

ρ̄I(t, s) =

∫ t

0+
η(τ,Θ(s)) dτ +

∫ t

0+

∫ t−x

0+
η(x,Θ(s))ρ̄(τ̃ , s+ x) dτ̃ dx

It is easy to realize that, moving η(x,Θ(s)) out of the integral over τ̃ , the resulting

expression is equivalent to (3.18).

3.3.3 Optimal Switching Time

It is now possible to provide the following result for the integral minimization problem

presented in Section 3.3.1:

Theorem 3.1. The optimal switching profile Θ̃(·) for the optimization problem (3.10)

can be defined as follows:

Θ̃(t) = argmin
θ∈(0,TEND−t]

[∫ TEND−t

0+
η(s, θ) [1 + ρ̃I(t+ s)] ds

]

(3.19)

where ρ̃I satisfies an integral equation solved backwards in time (with ρ̃I(TEND) = 0):

ρ̃I(t) =

∫ TEND−t

0+
η(s, Θ̃(t)) [1 + ρ̃I(t+ s)] ds (3.20)

Proof. Since the switching rate ρ(t) is linear with respect to the initial fraction ρ0 of

switched turbines, the objective function in (3.10) is equal to ρ0ρ̄I(TEND, 0), which in

turn is a function of the switching time profile Θ(·). When this is equal to Θ̃(·), it
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holds ρ̃I(t) = ρ̄I(TEND − t, t). It is now necessary to show that ρ0ρ̃I(0) is the mini-

mum for the considered optimization problem. In order to so, we introduce a different

switching profile Θ̂(·) which does not satisfy condition (3.19) on a set T ⊆ [0, TEND] of

positive measure. Similarly to ρ̃I , we denote by ρ̂I(t) the cumulative fraction of turbines

ρ̄I(TEND − t, t) when Θ = Θ̂. It is straightforward to derive the following expression:

ρ̂I(t) =

∫ TEND−t

0+
η(s, Θ̂(t)) [1 + ρ̂I(t+ s)] ds (3.21)

Consider that, when the switching profile Θ̂(·) is applied, the objective function in

(3.10) is equal to ρ0ρ̂I(0). To show the suboptimality of this choice, we introduce the

difference ρAD(t) = ρ̂I(t)− ρ̃I(t) and prove that, under the considered assumptions, it is

always positive. Subtracting (3.20) from (3.21) yields:

ρAD(t) =

∫ TEND−t

0+
[η(s, Θ̂(t))− η(s, Θ̃(t))] [1 + ρ̃I(t+ s)] ds

+

∫ TEND−t

0+
η(s, Θ̂(t))ρAD(t+ s) ds

= ρ0D(t) +

∫ TEND−t

0+
η(s, Θ̂(t))ρAD(t+ s) ds

(3.22)

It follows from the definition of Θ̃ in (3.19) that ρ0D(t) ≥ 0 ∀t ∈ T and ρ0D(t) = 0

elsewhere. An equivalent expression for the difference ρ̂I(t)− ρ̃I(t) is given by ρBD:

ρBD(t) =

∫ TEND

t
ρ̄D(t, s) ds (3.23)

where ρ̄D(t, s) represents the component of ρBD(t) resulting by different values of Θ̃ and

Θ̂ at time s:

ρ̄D(t, s) = ρ0D(t)δ(t − s) +

∫ s−t

0+

η(τ, Θ̂(t))ρ̄D(t+ τ, s) dτ (3.24)

For s /∈ T and t ≤ s we have that ρ̄D(t, s) = 0 is a solution of (3.24). To prove the

equivalence of ρAD and ρBD we initially notice that they are equal for t = TEND and then

we show that ρBD satisfies the integral condition in (3.22):

ρBD(t) = ρ0D(t) +

∫ TEND

t+
ρ̄D(t, s) ds = ρ0D(t) +

∫ TEND

t+

∫ s−t

0+
η(τ, Θ̂(t))ρ̄D(t+ τ, s) dτ ds

= ρ0D(t) +

∫ TEND−t

0+

∫ TEND

t+τ
η(τ, Θ̂(t))ρ̄D(t+ τ, s)dsdτ

= ρ0D(t) +

∫ TEND−t

0+
η(τ, Θ̂(t))ρBD(t+ τ) dτ

Consider that ρ̄D(t, s) fulfils the same kind of integral equation as (3.16) for ρ̄(s − t, t)
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which, under the considered overproduction regime, is always positive. We can conclude

that ρ̄D(t, s) ≥ 0 when s ∈ T . It follows from ρ̄D(·, s) = 0 ∀s /∈ T that ρBD(0) ≥ 0 and

therefore ρ0ρ̃I(0), obtained applying Θ̃ in (3.19), is the minimum for the cost function

in (3.10).

The result of Theorem 3.1 can be interpreted as follows: ρ̃I(t) represents the minimum

fraction of turbines which is required to maintain a constant power on the interval

[t, TEND] if a unit fraction of turbines undergoes switching at time t. Furthermore,

ρ̃I(t) is defined by the integral of its values for s > t, weighted by the function η. This

means that the solution of (3.10), which is proportional to ρ̃I(0), can be obtained by

choosing the minimizing switching time Θ̃ defined in (3.19) for decreasing values of time.

Regarding the integral equation that defines ρ̃I the following result can be provided:

Proposition 3.2. If Θ(·) is a positive increasing function of t, there exists one and only

one solution for the following integral equation:

xI(t) =

∫ TEND−t

0
η(s,Θ(t)) [1 + xI(t+ s)] ds xI(TEND) = 0 (3.25)

Proof. Introducing t̂ = TEND − t and x̂I(t̂) = xI(TEND − t̂) yields:

x̂I(t̂) =

∫ t̂

0
η(s,Θ(TEND − t̂))[1 + x̂I(t̂− s)] ds (3.26)

Considering ŝ = t̂− s we have:

x̂I(t̂) =

∫ t̂

0
η(t̂− ŝ,Θ(TEND − t̂))[1 + x̂I(ŝ)] dŝ (3.27)

Notice from (3.12) that the function η(s,Θ(t)), for a fixed t, can be defined as the sum of

two contributes: a piecewise continuous function − 1
Tfωss

∂PG(s,Θ(t))
∂s (with a discontinuity

for s = Θ(t)) and a Dirac pulse for s = Θ(t). If we introduce Θ̂(t̂) = Θ(TEND − t̂),

equation (3.27) can be rewritten as follows:

x̂I(t̂) =

∫ t̂

0
− 1

Tfωss

∂PG(t̂− ŝ, Θ̂(t̂))

∂t
[1 + x̂I(ŝ)] dŝ

+

[

φ−(ωss, Θ̂(t̂))

ωss
[1 + x̂I(t̂− Θ̂(t̂))]

]

· 1[Θ̂(t̂),TEND ](t̂)

(3.28)

The function L(t̂) = t̂ − Θ̂(t̂) is introduced, denoting by Li the i − th iterate of L.

Given the monotonicity assumption on Θ(·), the function L(t̂) is monotonic increasing.

Considering also that L(0) < 0 (the switching time Θ is always greater than 0), it is
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possible to partition [0, TEND] in n subsets Φi defined as follows:

Φi =
{

t̂ : Li(t̂) < 0 ∧ Li−1(t̂) ≥ 0
}

i = 1 . . . n (3.29)

When t̂ ∈ Φ1 the second term in (3.28) is equal to zero and it is possible to write the

equation as a standard Volterra integral equation of the second kind:

x̂I(t̂) =

∫ t̂

0
− 1

Tfωss

∂PG(t̂− ŝ, Θ̂(t̂))

∂t
[1 + x̂I(ŝ)] dŝ = K1(t̂) +

∫ t̂

0
K2(t̂, ŝ)x̂I(ŝ) dŝ (3.30)

where K1 and K2 are defined as follows:

K1(t̂) =

∫ t̂

0
− 1

Tfωss

∂PG(t̂− ŝ, Θ̂(t̂))

∂t
dŝ K2(t̂, ŝ) = − 1

Tfωss

∂PG(t̂− ŝ, Θ̂(t̂))

∂t

The terms K1(t̂) and K2(t̂, ŝ) are bounded and continuous since the point of non dif-

ferentiability for PG is outside the integration interval. This implies that (3.30) and

therefore (3.25) have one and only one (continuous) solution for t̂ ∈ Φ1. When t̂ ∈ Φ2,

we can write:

x̂I(t̂) = K1(t̂) +

∫ t̂

0
K2(t̂, ŝ)x̂I(ŝ) dŝ +

[

φ−(ωss, Θ̂(t̂))

ωss
[1 + x̂I(t̂− Θ̂(t̂))]

]

= K̄1(t̂) +

∫ t̂

0
K2(t̂, ŝ)x̂I(ŝ) dŝ

(3.31)

In this case t̂ − Θ̂(t̂) ∈ Φ1 and, from previous results, x̂I(t̂ − Θ̂(t̂)) is a well defined

quantity. It is then possible to group the elements outside the integral in the function

K̄1(t̂). By noticing that K2(t̂, ŝ) is continuous everywhere except for ŝ = t̂ − Θ(t̂) and

considering that K̄1 has a finite number of discontinuities, we can conclude applying

Theorem 1 in [42] (and verifying that the other technical assumptions are satisfied) that

(3.31) has one and only one solution when t̂ ∈ Φ1∪Φ2 and the same holds for (3.25). By

repeating the same procedure for increasing values of i, it is possible to prove existence

and uniqueness of the solution in all the other partitions Φi with i = 3 . . . n.

Additional properties can now be presented for the proposed scheduling, justifying the

choice of equal switching time Θ(t) for turbines that commute to the second mode at

some time instant t and allowing to provide results for the original optimization problem

(3.9).

Remark 3.3. The hypothesis that the time Θ(t) of permanence in mode 2 is equal for

all turbines is not restrictive. Assume that, for t = t̄, the turbines are divided in two

groups of size k1 and k2 that switch back for Θ1(t̄) and Θ2(t̄), which may differ in

general. The switching times are determined as the arguments of the minimum for the
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following optimization:

min
θ1,θ2

[

∫ TEND−t̄

0+
k1η(s, θ1) · [1 + ρ̃I(t+ s)] + k2η(s, θ2) · [1 + ρ̃I(t+ s)] ds

]

The solution can be obtained by separately solving two minimization problems of the

same form:

min
θ1

[

k1

∫ TEND−t̄

0+
η(s, θ1) · [1 + ρ̃I(t+ s)]

]

min
θ2

[

k2

∫ TEND−t̄

0+
η(s, θ2) · [1 + ρ̃I(t+ s)]

]

Hence they will yield the same results and this shows that considering a unique switching

policy does not degrade the optimal solution.

Remark 3.4. We denote by Ĩ(TEND) and Θ̃S(TEND, ·), respectively, the optimal value

and optimal switching times for (3.10) as functions of the final time instant TEND. If

the minimization is performed for a certain TEND = T1 by solving (3.19) and (3.20)

backwards in time, the solutions for all T2 < T1 are also obtained:

Ĩ(T2) = ρ0 · ρ̃I(T1 − T2) Θ̃S(T2, t) = Θ̃S(T1, t+ T1 − T2) (3.32)

Moreover, one can assume that, under the considered overproduction regime, the func-

tion Ĩ(T ) is strictly monotonic increasing: a larger fraction of turbines will be required

to switch to the second mode if extra power must be generated for longer times. For the

same reasons, fixed a certain TEND as final time, ρ̃I(t) in (3.20) is strictly monotonic

decreasing and always positive in [0, TEND] since ρ̃I(TEND) = 0.

Remark 3.5. For the optimization problem (3.10) with ρ0 < 1, given previous consid-

erations, there exists TN such that Ĩ(TN ) = 1 − ρ0. Furthermore, solving (3.10) for a

sufficiently large TEND with TN < TEND yields:

ρ0 · ρ̃I(TEND − TN ) = Ĩ(TN ) = 1− ρ0 (3.33)

Notice that, if problem (3.10) is directly solved for TEND = TN , the resulting minimum

fraction of turbines required to switch in order to guarantee the extra power generation

(corresponding to an initial fraction ρ0 of switched turbines at t = 0) is equal to 1− ρ0

and therefore corresponds to the utilization of all available generators. We can now

provide the following result for the original problem of time maximization:
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Theorem 3.2. The optimal switching profile Θ∗(·) for the maximization problem (3.9)

can be computed according to the following formula:

Θ∗(t) = argmin
θ∈(0,TN−t]

[∫ TN−t

0+
η(s, θ) [1 + ρ̃I(t+ s)] ds

]

(3.34)

where ρ̃I is defined by an integral equation solved backwards in time (with ρ̃I(TN ) = 0):

ρ̃I(t) =

∫ TN−t

0+
η(s,Θ∗(t)) [1 + ρ̃I(t+ s)] ds (3.35)

Proof. If Θ∗ is not optimal, there exists a feasible Θ̂ and corresponding switching rate ρ̂

that guarantee ṖTOT (t) = 0 ∀t ∈ (0, T̂END], with final time T̂END > TN and such that:

1− ρ0 =

∫ T̂END

0+
ρ̂(t) dt (3.36)

This is impossible since Θ∗ is the optimal switching time for the integral maximization

(3.10) with TEND = TN and the following must hold from Remark 3.4:

∫ T̂END

0+
ρ̂(t) dt ≥ Ĩ(T̂END) > Ĩ(TN ) = 1− ρ0 (3.37)

In conclusion, the duration of the frequency response from the wind turbines population

can be maximized by adopting the scheduling introduced in Theorem 3.1 for the integral

minimization problem, calculated considering TN as final time instant. This corresponds

to the maximum utilization of the available generators, since Ĩ(TN ) = 1− ρ0.

3.3.4 Simulation Results

The performance of the control strategy described in Section 3.3.3 has been evaluated in

simulations. The function η(t, θ) has been calculated at discretized values, considering

different steps and intervals for its two variables. The step ∆t = 0.01s has been chosen

for t in order to properly capture the dynamics of the switching turbines, evaluating

η for t ∈ [0, TEND]. For the variable θ, to reduce the computational burden, a larger

step ∆θ = 0.5s has been used. For the same reason, a restricted interval of values has

been considered, excluding the time instants that were too close to TEND and that, after

direct verification, represented suboptimal switching times for the turbines. The solution

(Θ̃(·), ρ̃(·)) of problem (3.10) for TEND = 500s has been calculated through numerical
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integration of (3.19) and (3.20), using the parameters in [41]:

R = 37.5m v = 10m/s Tss = KTω
2
ss = 7.02 · 105Nm

J = 5.9 · 106Kg ·m2 ωss = 1.69rad/s Pss = KTω
3
ss = 1.18 · 106W

(3.38)

The quantity ρ̃I(t) has been evaluated by integrating backward in time (3.20), obtaining

Θ̃(t), at each time step, through the minimization problem (3.19). The correspond-

ing switching rate ρ(t), for ρ0 = 4.3 · 10−4, is compared in Fig. 3.3 with the case

Θ(t) = TEND ∀t ∈ [0, T ], characterized by switching rate ρC(t). The most significant

difference is represented by the spikes of ρ(t), caused by the cascaded compensations of

the initial fraction of turbines ρ0 switching back to mode 1. The corresponding frac-

tions of switched turbines (respectively ρI(t) =
∫ t
0+ ρ(s) ds and ρCI (t) =

∫ t
0+ ρ

C(s) ds)

are shown in Fig. 3.4. The integral ρI(t) (blue) is initially bigger, since some of the

turbines are returning to mode 1 and require higher power compensation. When TEND

is approaching the turbines stop switching back and, given that some of them are again

in mode 1 (with higher efficiency) ρI(t) increases more slowly. At final time TEND, as

expected, the integral ρI is lower than ρCI . The optimal switching profile Θ̃(t) for dif-

ferent torque steps Tf (considered as fractions of Tss = KTω
2
ss, the steady-state torque

in mode 1) are shown in Fig. 3.5. In all cases Θ̃(t) increases with time: at lower time

instants, turbines switch back to the first mode since the instantaneous increase of ρ(t) is

compensated over time by the increasing efficiency. There exists a threshold after which

it is not possible to perform such compensation and turbines remain in the second state

(Θ̃(t) = TEND). The maximum frequency response duration TN for (3.9) is shown in

Fig. 3.6 as a function of the power increase ratio ∆P/P0, for different torque steps Tf .

Considering that ρ0 = ∆P
KTfωss

, it appears that higher values of TN are achieved in a

certain range of ρ0: when ∆P is lower, low values of Tf are preferable and vice versa.
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Figure 3.6: Maximum time TN of frequency response provision as a function of per-
centage increase in power, for different torque steps Tf .

3.4 Optimal Inertial Response

In this section it is assumed that the wind turbines are not constrained to operate in the

two modes presented in Section 3.3 but it is instead possible to consider their electric

torque Te as a control input. Following a frequency drop, a set-point is introduced for

the aggregate extra generation that must be provided by the wind farm, calculating the

power profile of each turbine in order to minimize the resulting losses of kinetic energy.

In this case, the application of the classical tools of optimal control is prevented by

the complicated expression that describes the power extraction from the wind and the

large number of considered generators. For this reason, the optimal power profile of the

turbines is obtained by exploiting particular monotonicity properties that arise if one

considers the kinetic energy dynamics and their relationship with the efficiency of the

generators. The problem is initially solved for the simplified case without constraints

on generated power, using the results as a starting point for the more realistic analysis

in which the power provided by each turbine cannot exceed some technical limits. It

is worth noticing that the optimal power profiles are straightforward to calculate nu-

merically. In practical implementations, in case of frequency events, they can be used

to determine the torque reference Teref , replacing the values calculated by the OPPT

controller (see Fig. 3.1). A similar approach can be used to study the energy recovery

problem: after having provided frequency response, the aggregate power set-point is
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reduced and turbines are brought back to the operating state with maximum efficiency.

With the same tools, it is possible to determine which power references are feasible for a

given energy state and calculate the power profiles which allow to perform the recovery

in minimal time.

3.4.1 Wind Turbine Dynamics and Power Extraction

The dynamics of the individual wind turbine are described by the swing equation (3.1)

presented in Section 3.2 and Assumption 3.1 is still valid. The wind speed is assumed

constant in time but, in this case, is in general different for each turbine. Furthermore,

on the basis of the expressions of C̄ proposed in the literature, the following assumptions

are introduced for the corresponding coefficient C(ω, v) = C̄(ωR/v, 0), obtained for pitch

angle θ = 0:

Assumption 3.2. For a fixed wind speed v, it is assumed that the power coefficient

C(ω, v) has a unique maximum for ω = ωss(v), is a monotonic increasing function in

some interval [ωL(v), ωss(v)] and is strictly concave for ω > ωL(v).

In order to study the optimal control problem to be defined in the next subsection, it is

convenient to introduce a change of coordinates, describing the state evolution of a single

turbine by considering its kinetic energy E = 1
2Jω

2 (rather than its angular speed). It

is straightforward, using (3.2) and (3.4), to express the mechanical power Pm = Tm · ω
as a function Γ that depends only on E and v:

Pm = PwC(ω, v) = PwC

(
√

2E

J
, v

)

= Γ(E, v) (3.39)

Values of Γ at different wind speeds, for the turbine parameters considered in the sim-

ulation section, are shown in Fig. 3.7.

The state equation in the new coordinate becomes:

Ė = Jωω̇ = Pm − Pe = Γ(E, v) − Pe (3.40)

The term Pe = Te · ω in (3.40) represents the electrical power generated by the turbine.

Assuming that the rotor speed ω can be measured without uncertainties, Pe can be

considered as the new control input of the system. To account for physical constraints

of the turbine, the kinetic energy E is limited to some interval E = [EMIN , EMAX ].

Remark 3.6. The properties of C introduced in Assumption 3.2 are closely related to

the function Γ. For a fixed v, the mechanical power Γ(E, v) has a unique maximum for

E = Ess(v) =
1
2Jω

2
ss(v) and is monotone increasing in the interval [EL(v), Ess(v)].
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Figure 3.7: Mechanical power Γ as a function of kinetic energy E, for different wind
speeds v.

Assumption 3.3. Given the expressions for the coefficient C and the specifications of

the turbines found in the literature, it is reasonable to assume that Γ(E, v) is strictly con-

cave on [EL(v), EMAX ] and the energy E of the single generator, in the overproduction

regime of the frequency response, is always within the concavity region of Γ:

EL(v) ≤ EMIN ≤ E ≤ Ess(v) ≤ EMAX

3.4.2 Scheduling in the Case of Unconstrained Power

A population of N wind turbines is considered and the kinetic energy, electrical power

and wind speed of the i-th generator are denoted respectively by Ei, Pi and vi. All

turbines are initially operating in steady-state at the kinetic energy Ess(vi) which guar-

antees the maximum efficiency, with the following equality holding for the mechanical

and electrical power:

Γ(Ess(vi), vi) = Pi(0) i = 1 . . . N

When a frequency drop occurs in the network at time t = 0, the wind turbine population

can increase its aggregate generated power by releasing part of the kinetic energy stored

in the rotating shafts. In particular, a reference Pr(·) is set on the time interval [0, T ],

requiring an aggregate power which is greater than the one at steady state:

Pr(t) >

N
∑

i=1

Γ(Ess(vi), vi) = P0 ∀t ∈ [0, T ] (3.41)
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Our aim is to determine the power profile Pi(·) of each turbine in order to satisfy the

following:
N
∑

i=1

Pi(t) = Pr(t) ∀t ∈ [0, T ]

Ei(t) ∈ [EMIN , EMAX ] i = 1 . . . N

(3.42)

In general there exist multiple choices of Pi which are feasible for (3.42) and it is therefore

important to introduce some optimality criterion in the calculation of the power profiles.

In this respect a logical choice is to define as optimal the set of Pi(·) which maximizes the

total final energy
∑

iEi(T ) of the turbines. This choice takes into account the following

recovery phase of the generators that, after having provided frequency response, are

brought back to their working point of maximum efficiency. Furthermore, it will be

shown that the resulting power profiles guarantee feasibility for the largest class of

power references Pr.

The simpler case in which no constraints are imposed on the generated power Pi of the

turbines is initially analysed. The corresponding optimization problem is:

max
Pi(·),i=1...N

N
∑

i=1

Ei(T )

s. t.
∑N

i=1 Pi(t) = Pr(t)

Ei(0) = E0
i

Ėi(t) = Γ(Ei(t), vi)− Pi(t)

Ei(t) ∈ [EMIN , EMAX ]

(

∀i = 1, . . . , N

∀t ∈ [0, T ]

)

(3.43)

In this scenario, given any state vectors Ea and Eb in EN of equivalent total energy (viz.

such that
∑N

i=1E
a
i =

∑N
i=1E

b
i ), it is possible to transfer between turbines the amount of

energy required so as to achieve an instantaneous switch between the two states. This is

true since all Pi are unconstrained and (as we are neglecting power losses) the total power

required for the switch is zero. Therefore, indications on the solution of (3.43) can be

obtained by solving, at each time instant t, a static optimization problem. In particular,

the kinetic energy ETOT of the wind farm is distributed among the turbines in order to

obtain the maximum derivative h(ETOT ) of the total mechanical power extracted from

the wind:

h(ETOT ) = max
xi,i=1...N

N
∑

i=1

Γ(xi, vi) (3.44a)

s.t.
N
∑

i=1

xi = ETOT (3.44b)

xi ∈ [EMIN , EMAX ] (3.44c)
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In order to solve (3.44) it is useful to introduce the partial derivative ΓE(E, v) =
∂Γ(E,v)
∂E

and its inverse function with respect to the energy E when v = vi, which can be denoted

as Γ−1
Ei

: [0,ΓE(EMIN , vi)] → [EMIN , Ess(vi)]. Given the strict concavity of Γ established

in Assumption 3.3, this inverse function is always well defined and monotonic. It is now

possible to provide the following preliminary result:

Proposition 3.3. For any value of total energy ETOT ∈ [NEMIN ,
∑

iEss(vi)] there

exists one and only one κ, that we denote by K(ETOT ), such that the following holds:

N
∑

i=1

Γ−1
Ei

(min(κ,ΓE(EMIN , vi))) = ETOT (3.45)

Proof. Existence and uniqueness of K(ETOT ) are straightforward to verify if one con-

siders that the function K−1(κ), which denotes the left-hand-side of (3.45), is monotonic

decreasing, continuous and its image includes the interval [NEMIN ,
∑

iEss(vi)]:

K−1(0) =
N
∑

i=1

Ess(vi) K−1

(

max
i∈{1,...,N}

(ΓE (EMIN , vi))

)

= NEMIN

This result allows to determine the solution of the static optimization problem:

Theorem 3.3. If ETOT ∈ [NEMIN ,
∑

iEss(vi)], under Assumption 3.3 for the function

Γ, there exists a unique solution x∗ = [x∗1 . . . x
∗
N ]

′ for problem (3.44) and the single

component x∗i is defined as follows:

x∗i = Γ−1
Ei

(min(K(ETOT ),ΓE(EMIN , vi))) i = 1, . . . , N (3.46)

Proof. The feasibility of x∗ is straightforward to verify: the constraint (3.44b) is satisfied

from equation (3.45) while for (3.44c) it is sufficient to notice that, for the considered val-

ues of ETOT , the result of the function Γ−1
Ei

is always in the interval [EMIN , Ess(vi)] with

Ess(vi) < EMAX from Assumption 3.3. The optimality of the candidate solution is now

proved through Karush-Kuhn-Tucker (KKT) conditions. In this particular case such

conditions are necessary and sufficient since the inequality constraints are convex, equa-

tion (3.44b) is affine and the objective function is strictly concave [43]. To see this, con-

sider that the Hessian of the objective function H = diag(ΓEE(x1, v1), . . . ,ΓEE(xN , vN ))

is negative definite since the second derivative ΓEE = ∂2Γ(E, v)/∂E2 is negative from

the strict concavity of Γ established in Assumption 3.3. For the proposed solution the

constraint on the maximum energy EMAX is never active (the corresponding multiplier

will always be equal to 0) and only the inequality in the opposite sense xi ≥ EMIN must
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be considered when deriving the KKT conditions. Therefore, the vector x∗ is optimal if

and only if there exists κ and µ = [µ1, . . . , µN ] such that:

ΓE(x
∗
i , vi) = −µi + κ

µi ≥ 0

µi · (EMIN − x∗i ) = 0

i = 1, . . . , N

In particular these conditions are satisfied if one chooses the multipliers as follows:

κ = K(ETOT )

µi =

{

0 if ΓE(EMIN , vi) > κ

κ− ΓE(EMIN , vi) if ΓE(EMIN , vi) ≤ κ

Notice also that uniqueness of the optimal solution follows from its existence and the

strict concavity of the function to maximize.

For a better understanding of the structure of the solution for (3.44), a graphical rep-

resentation is provided in Fig. 3.8 for the simple case with N = 3. Three different

values of total energy [Ẽ1, Ẽ2, Ẽ3] are considered, associating to each Ẽj a function

pj(E) = K(Ẽj), represented in the figure as a black/grey dashed line. For the gen-

erator with index i, if K(Ẽj) < ΓE(EMIN , vi), the optimal value x∗i for ETOT = Ẽj is

given by the projection on the x axis of the intersection between pj(·) and the func-

tion ΓE(·, vi) (see for example the projections of the red curve). If, on the other hand,

K(Ẽj) ≥ ΓE(EMIN , vi), the corresponding x
∗
i is equal to EMIN (for example the x-value

of the curve in green). The optimal energy values are in the same colour of the corre-

sponding ΓE curves (blue: vi = 7m/s, green: vi = 8.5m/s, red: vi = 10m/s). They are

displayed as circles when ETOT = Ẽ1 = 10MJ , as squares when ETOT = Ẽ2 = 7.5MJ

and as crosses when ETOT = Ẽ3 = 5.4MJ .

The following property of the function h(·), as defined in (3.44), will be crucial for

determining optimality of the proposed solution to problem (3.43):

Proposition 3.4. The maximum h(ETOT ) of (3.44) is strictly concave and Lipschitz

continuous with respect to ETOT in the interval [NEMIN ,
∑N

i=1Ess(vi)].

Proof. Consider that the right hand side in (3.44a) is a strictly concave function of x

and the compact-valued continuous correspondence D(ETOT ) which returns the set of

feasible x for a given ETOT has a convex graph. It is therefore possible to apply the

maximum theorem 9.17 in [44], considering ETOT as a parameter of the optimization and

concluding that h is strictly concave with respect to ETOT . Notice now that, following

the concavity properties introduced in Assumption 3.3, the definition of the derivative
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Figure 3.8: Solution of the static maximization problem (3.44) for different values of
ETOT .

inverse Γ−1
Ei

can be extended to the interval [ΓE(EMAX , vi),ΓE(EL(vi), vi)]. It is also

possible to define the domain of h as the interval ED =
[

∑N
i=1EL(vi),

∑N
i=1ER(vi)

]

which satisfies the following property:

[

NEMIN ,
∑N

i=1
Ess(vi)

]

⊂ ED ⊂
[

∑N

i=1
EL(vi), NEMAX

]

where ER(vi) < EMAX is the maximum value for the optimal energy of the i-th turbine,

for which it holds:

ΓE(ER(v1), v1) = · · · = ΓE(ER(vN ), vN ) < 0

Such domain definition is possible if one considers that in each [EL(vi), ER(vi)] the

monotonicity and concavity properties mentioned in the previous remarks still hold. It

is therefore sufficient to extend the results of Proposition 3.3 and Theorem 3.3, repeating

the steps of the corresponding proofs for the new interval ED. From the concavity of h

with respect to ETOT we can then conclude that it is also Lipschitz continuous in the

same variable on the interval [NEMIN ,
∑N

i=1Ess(vi)] ⊂ ED.

Given the results of Proposition 3.4, assuming continuity of Pr and applying the Picard-

Lindelöf theorem, it is possible to define E∗
TOT (·) as the unique solution of:

ĖTOT (t) = h(ETOT (t))− Pr(t) ETOT (0) =
N
∑

i=1

E0
i (3.47)

providing the following constructive solution for the problem of final energy maximiza-

tion:
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Theorem 3.4. The functions E∗
i (·), i = [1, . . . , N ], defined as the solution at each time

t ∈ [0, T ] of problem (3.44) for ETOT = E∗
TOT (t), are optimal state trajectories for the

final state maximization problem (3.43).

Proof. For the feasibility of E∗ notice that, at any time instant t ∈ [0, T ], it holds:

Ė∗
TOT (t) = h(E∗

TOT (t))− Pr(t) =

(

N
∑

i=1

Γ(E∗
i (t), vi)

)

− Pr(t) =

N
∑

i=1

Ė∗
i (t).

Taking into account that individual power Pis are unconstrained, it is always possible to

determine input profiles P ∗
i (t), with i = [1, . . . , N ], which satisfy the constraint on the

state derivative Ė∗
i (t) = Γ(E∗

i (t), vi)−P ∗
i (t) and such that

∑N
i=1 P

∗
i (t) = Pr(t). Consider

now an arbitrary state trajectory Ē(·) which is feasible for (3.43) and define, at each

time instant t, the corresponding total energy ĒTOT (t) =
∑N

i=1 Ē(t). Such function is

differentiable since it holds:

˙̄ETOT (t) =

N
∑

i=1

Γ(Ēi(t), vi)− Pr(t)

From the definition of h, it follows:

˙̄ETOT (t) ≤ h(ĒTOT (t))− Pr(t) ∀t ∈ [0, T ]

Given that ĒTOT (0) = E∗
TOT (0), applying the comparison theorem in [45] we can con-

clude that ĒTOT (t) ≤ E∗
TOT (t) for all t ≥ 0 including t = T and therefore E∗(·) is

optimal for problem (3.43).

Since the optimal trajectory E∗, at each time instant, is the solution of the static opti-

mization problem (3.44), evaluating the min function in the expression of x∗, provided

in Theorem 3.3, yields:

E∗
i (t) =















Γ−1
Ei

(K (E∗
TOT (t))) if i ∈ P1(t)

EMIN if i ∈ P2(t)

(3.48)

where E∗
TOT (t) =

∑N
i=1E

∗
i (t) and the two sets P1(t) and P2(t) are defined as follows:

P1(t) = {i : ΓE(EMIN , vi) > K (E∗
TOT (t))} P2(t) = {1, 2, . . . , N} \P1(t)

Remark 3.7. At any time t the components of E∗(t) can be divided in two groups:

the ones in P2(t) will have minimum energy EMIN while the remaining ones will be
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characterized by equal derivatives ΓE(E
∗
i (t), vi) = K(E∗

TOT (t)). Given (3.48) and the

definitions of P1 and P2, it also holds:

ΓE(E
∗
i (t), vi) ≥ ΓE(E

∗
j (t), vj) ∀ i ∈ P1(t) ∀ j ∈ P2(t) (3.49)

We are now interested in determining the power profiles P ∗ which generate the optimal

state trajectories. The analysis will consider the case in which it is not necessary to

perform an instantaneous energy switch since the initial state corresponds to the optimal

solution at time t = 0:

E0
i = E∗

i (0) i = 1, . . . , N (3.50)

If this is not the case, it is sufficient to consider in the expression of P ∗
i an additional

impulsive term (E0
i −E∗

i (0)) ·δ(t). For the calculation of the power profiles the following

feedback law is introduced:

ϕi(E, t) =















Γ(Ei, vi)− fi(E, t) if Ei > EMIN

Γ(EMIN , vi) if Ei = EMIN

(3.51)

where the function fi is obtained by differentiating the expression in (3.48) when i ∈ P1(t),

evaluated at an arbitrary state E:

fi(E, t) =
d

dκ
Γ−1
Ei

(

K

(

N
∑

i=1

Ei

))

K ′
(

N
∑

i=1

Ei

)[

N
∑

i=1

Γ(Ei, vi)− Pr(t)

]

(3.52)

Proposition 3.5. If (3.50) holds for the initial state E0, the optimal power profile P ∗

for (3.43) is equal to the feedback ϕ evaluated along the optimal trajectory E∗:

P ∗
i (t) = ϕi (E

∗(t), t) (3.53)

Proof. It is sufficient to show that the derivative for E∗
i defined in (3.48) corresponds

to the dynamics (3.40) of the single turbine when P ∗ is applied. Notice that, for

Ei = EMIN , the feedback law is discontinuous. In this case, taking into account that, if

E∗
i (t) = EMIN , it holds E∗

i (t̄) = EMIN for t̄ > t, the right derivative (equal to 0) can

be considered. The following general expression can then be provided:

d

dt
E∗
i (t) = fi(E

∗(t), t) · sign(E∗
i (t)− EMIN ) = Γ(E∗

i (t), vi)− P ∗
i (t) (3.54)

The first equality holds by definition of fi, the second is obtained by replacing (3.51)

in the expression (3.53) of P ∗
i . Proof is concluded by verifying that the last member
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in (3.54) is equal to the state equation (3.40) evaluated at E = E∗
i (t), Pe = P ∗

i (t) and

v = vi.

Proposition 3.6. The power profile defined by (3.53) satisfies the constraint on the

total generated power, with
∑

i P
∗
i (t) = Pr(t) for all t ∈ [0, T ].

Proof. Consider that, for the sum of the components of P ∗(t), it holds:

N
∑

i=1

P ∗
i (t) =

N
∑

i=1

Γ(E∗
i (t), vi)−

∑

i∈P1(t)

fi(E
∗
i (t), t) (3.55)

The derivative of the function K in (3.52) can be written as follows:

K ′
(

N
∑

i=1

Ei

)

=

(

d

dκ
K−1 (κ)

)−1

=

(

d

dκ

N
∑

i=1

Γ−1
Ei

(min(κ,ΓE(EMIN , vi)))

)−1

=





d

dκ

∑

{i:Ei>EMIN}
Γ−1
Ei

(κ)





−1

(3.56)

To prove that
∑

i P
∗
i (t) = Pr(t), it is sufficient to replace E with E∗(t) in (3.56), sub-

stituting the resulting expression in (3.52) and obtaining the following for the last sum

in (3.55):
∑

i∈P1(t)

fi(E
∗
i (t), t) =

N
∑

i=1

Γ(E∗
i (t), vi)− Pr(t)

In conclusion, if one considers (3.48) and (3.54), it can be seen that the optimal schedul-

ing, in the case of unconstrained power, is achieved by controlling the turbines in two

different ways. The kinetic energy of the generators with E∗
i (t) > EMIN is reduced by

imposing Ė∗
i (t) = fi(E

∗(t), t) so that the following holds:

ΓE(E
∗
i (t), vi) = K(E∗

TOT (t)) ∀i ∈ P1(t)

Once the i-th turbine reaches the minimum energy EMIN , it remains in that state

(Ė∗
i (t) = 0) and the energy reduction is performed with the same criterion on the

remaining ones.

It is now possible to further discuss the choice of providing frequency response with a

scheduling of the turbines which maximizes the total kinetic energy at the final time T .
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Proposition 3.7. For a given initial state E0, the solution of problem (3.43) guarantees

feasibility of (3.42) for the largest class of aggregate power set-points Pr.

Proof. To show this, consider a reference P̃r : [0, T ] → R+ for which (3.43) is unfeasible.

Assuming P̃r is bounded, since the generated power of the individual turbine is uncon-

strained, there exist t̃ < T defined as the maximum t such that (3.43) is feasible for P̃r

restricted on the interval [0, t]. In the considered overproduction regime this implies that,

for the corresponding optimal state trajectories, it holds E∗
1(t̃) = · · · = E∗

N (t̃) = EMIN .

Consider now an arbitrary power profile P̄ with
∑

i P̄i = P̃r. For the correspond-

ing energy vector Ē it will hold
∑

i Ēi(t̃) ≤
∑

iE
∗
i (t̃) = NEMIN . This means that

Ē(t̃) = E∗(t̃) or there exists at least one i such that Ēi(t̃) < EMIN . We can conclude

that there is no power profile P (·) such that (3.42) is satisfied for Pr = P̃r.

3.4.3 Optimal Response with Constraints on Generated Power

The analysis is now extended in order to consider the case of wind turbines which have a

limited power output in the interval [PMIN , PMAX ]. The corresponding control problem

becomes:

max
Pi(·),i=1...N

N
∑

i=1

Ei(T )

s.t.
∑N

i=1 Pi(t) = Pr(t)

Ei(0) = E0
i

Ėi(t) = Γ(Ei(t), vi)− Pi(t)

Ei(t) ∈ [EMIN , EMAX ]

Pi(t) ∈ [PMIN , PMAX ]

(

∀i = 1, . . . , N

∀t ∈ [0, T ]

) (3.57)

It is important to notice that, under some conditions, the optimality results of the

previous section can be extended to the present case. In particular, it is possible to

state the following:

Remark 3.8. If we denote by (E∗̄, P ∗̄) the solution of the unconstrained problem (3.43),

this is feasible and optimal also for (3.57) if the following conditions are fulfilled:

E0
i = E∗̄

i (0) i = 1, . . . , N (3.58a)

PMIN ≤P ∗̄
i (t) ≤ PMAX t ∈ [0, T ] (3.58b)

The equation on the initial state E0 guarantees that P ∗̄ is bounded since it is not

necessary to perform an impulsive energy switching at t = 0, while (3.58b) verifies that

the additional power constraints are satisfied.
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The optimal scheduling problem is now solved for the cases in which condition (3.58a)

does not hold. In this respect, it is useful to provide a preliminary result:

Proposition 3.8. If a power profile P ∗(·) is optimal for (3.57), it is also a solution

to all the sub-problems which only consider a subset S of turbines in the time interval

[t0, T ]:

{P ∗
i (·) : i ∈ S} = argmax

Pi(·),i∈S

∑

i∈S
Ei(T )

s. t.
∑

i∈S Pi(t) =
∑

i∈S P
∗
i (t) = PS,r(t)

Ei(t0) = E∗
i (t0)

Ėi(t) = Γ(Ei(t), vi)− Pi(t)

Ei(t) ∈ [EMIN , EMAX ]

PMIN ≤ Pi(t) ≤ PMAX





∀i ∈ S

∀t ∈ [t0, T ]





(3.59)

Proof. If the proposition statement is not verified, there exists P̄i(·) with i ∈ S such that,

for the corresponding state trajectory Ē : [t0, T ] → E |S| with Ē(t0) = E∗(t0), it holds
∑

i∈S Ēi(T ) >
∑

i∈S E
∗
i (T ). It is now possible to define the following control function

for the optimization problem (3.57):

P̃i(t) =















P̄i(t) if i ∈ S ∧ t ≥ t0

P ∗
i (t) otherwise

For the resulting state trajectory Ẽ, it holds:

N
∑

i=1

Ẽi(T ) =
∑

i∈S
Ēi(T ) +

∑

i/∈S
E∗
i (T ) >

N
∑

i=1

E∗
i (T )

which contradicts the optimality of P ∗ for (3.57).

This result is now applied to a set of turbines S and its subset of generators with

minimum initial energy SMIN = {i : i ∈ S, Ei(t0) = EMIN} which satisfy the following

at time t0:

ΓE(Ei(t0), vi) = ΓE(Ej(t0), vj) i, j /∈ SMIN

ΓE(Ei(t0), vi) ≤ ΓE(Ej(t0), vj) i ∈ SMIN , j /∈ SMIN

(3.60)
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In this case, for an arbitrary reference function PS,r one may attempt to solve (3.59) as

an unconstrained problem, neglecting the inequalities PMIN ≤ Pi(t) ≤ PMAX :

max
Pi(·),i∈S

∑

i∈S
Ei(T )

s. t.
∑

i∈S Pi(t) = PS,r(t)

Ei(t0) = E∗
i (t0)

Ėi(t) = Γ(Ei(t), vi)− Pi(t)

Ei(t) ∈ [EMIN , EMAX ]





∀i ∈ S
∀t ∈ [t0, T ]





(3.61)

In fact, if one considers the state optimality condition (3.48) and Remark 3.7, it is

possible to verify that (3.60) corresponds to (3.58a) for the initial time instant (in this

case t0). Therefore, the unconstrained solution does not involve impulsive transfers

of power at time t0. Moreover, from Remark 3.8, the solution P ∗̄
S of the unconstrained

problem (3.61) is feasible and optimal also for the constrained case (3.59) if the equivalent

of (3.58b) holds:

PMIN ≤ P ∗̄
S,i(t) ≤ PMAX ∀ i ∈ S t ∈ [t0, T ] (3.62)

This means that when solving (3.57) we need to calculate, for a set S of the kind

defined above, only the optimal aggregate profile
∑

i∈S P
∗
i , determining the power P ∗

i

of the individual turbine by solving (3.61), with PS,r =
∑

i∈S P
∗
i . This approach can

be applied to a more general situation by partitioning the turbines in subsets Si that
present similar properties as the ones detailed in (3.60).

Remark 3.9. To an arbitrary state vector E ∈ EN it is always possible to associate N−k
distinct sets S1, . . . ,SN−k with cardinality νi = |Si| ≥ 1 and such that the following holds

for i = 1, . . . , N − k:

ΓE(Ej , vj) = ΓE(El, vl) j, l /∈ SMINi

ΓE(Ej , vj) ≤ ΓE(El, vl) j ∈ SMINi
, l /∈ SMINi

(3.63)

where SMINi
= {j : j ∈ Si, Ej = EMIN} with |SMINi

| = νMINi
and k is the difference

between the state dimension N and the number of sets. Denoting the maximum deriva-

tive of Γ in each subset i as γi = maxj∈Si
ΓE(Ej , vj), the following additional condition

can be imposed:

γ1 > γ2 > · · · > γN−k (3.64)
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Given a vector E and the corresponding sets S1, . . . ,SN−k described in Remark 3.9, the

reduced state vector φ(k) ∈ R
N−k is introduced:

φ
(k)
i (E) =

∑

j∈Si

Ej i = 1, . . . , N − k (3.65)

Accordingly, the following dynamics and input constraints can be considered:

φ̇
(k)
i (E) =

∑

j∈Si

Γ
(

gi,j

(

φ
(k)
i (E)

)

, vj

)

− ψ
(k)
i (P ) (3.66)

νiPMIN ≤ ψ
(k)
i (P ) ≤

∑

j∈SMINi

Γ(EMIN , vj) + (νi − νMINi
)PMAX (3.67)

where ψ(k)(P ), to be regarded as the input vector of the reduced system, is defined as

follows:

ψ(k)(P ) =





∑

j∈S1

Pj , . . . ,
∑

j∈SN−k

Pj ,



 (3.68)

The system reduction applies the results of Proposition 3.8 to sets S1, . . . ,SN−k for

which the solution of sub-problem (3.59) is equal to the unconstrained one (E∗̄
Si
, P ∗̄

Si
)

for (3.61), assuming that (3.62) holds on each subset Si. The function gi,j in (3.66)

returns the energy repartition in the original coordinate Ej of the aggregate state φ
(k)
i .

Since we are assuming that the state trajectories of the turbines in Si correspond to the

optimal ones of the unconstrained problem (3.61), following Theorem 3.4 it is possible

to define gi,j as the energy component of the j-th turbine in the solution of (3.44) for

ETOT = φ
(k)
i . This reduces the number of control inputs to be determined from P ∈ R

N

to ψ(k) ∈ R
N−k: for each set Si, once the aggregate power ψ

(k)
i has been determined,

the individual power Pj with j ∈ Si can be calculated by considering (3.53) of the

unconstrained sub-problem. The choice to model the aggregate state φ
(k)
i as the sum

of the individual turbine energies in Si is used to introduce monotonicity, as it will be

shown next, and allows to consider the sum ψ
(k)
i (P ) =

∑

j∈S Pj as an explicit input of

the new system. Notice also that, for sets Si = {l} with νi = 1, the corresponding inputs

(ψ
(k)
i and Pl) and states (φ

(k)
i and El) in the two systems coincide.

A change of coordinates is now introduced:

φ̂
(k)
i (E) =

i
∑

j=1

φ
(k)
j (E) ψ̂

(k)
i (P ) =

i
∑

j=1

ψ
(k)
j (P ) (3.69)

˙̂
φ
(k)
i (E) =

i
∑

j=1

∑

l∈Sj

Γ(gj,l(φ
(k)
j (E)), vl)− ψ̂

(k)
i (P ) (3.70)
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with the following expressions for state and output in the original coordinates:

φ
(k)
i (E) =

{

φ̂
(k)
1 (E) if i = 1

φ̂
(k)
i (E)− φ̂

(k)
i−1(E) if i > 1

(3.71)

ψ
(k)
i (E) =

{

ψ̂
(k)
1 (E) if i = 1

ψ̂
(k)
i (E)− ψ̂

(k)
i−1(E) if i > 1

(3.72)

Proposition 3.9. The system defined by (3.69) and (3.70), for partitions that satisfy

the conditions in Remark 3.9, is monotone for the orders induced from orthant R
N−k
≥0

for the state φ̂(k) and R
N−k
≤0 for the control ψ̂(k).

Proof. The monotonicity can be proved by considering Corollary III.3 in [46]. Notice

in particular that the function on the right hand side of (3.70), which defines the state

derivative, is continuously differentiable (from maximum theorem in the proof of Propo-

sition 3.4) and the sets of admissible states and controls (denoted respectively by Φ̂ and

Ψ̂) are convex since they are defined by a set of linear inequalities. This means that the

system is monotone if, for the following partial derivatives, it holds:

∂
˙̂
φi

∂φ̂j
(φ̂, ψ̂) ≥ 0 i 6= j φ̂ ∈ Φ̂, ψ̂ ∈ Ψ̂

∂
˙̂
φi

∂ψ̂j
(φ̂, ψ̂) ≤ 0

i = 1 . . . N − k

j = 1 . . . N − k
φ ∈ Φ̂, ψ̂ ∈ Ψ̂

(3.73)

Notice that dependency from E, P and the reduction parameter k are not explicitly

shown in the proof for a more compact notation. It is straightforward to verify that the

derivatives with respect to ψ̂ are negative while, for the ones with respect to the state

φ̂, two different cases have to be considered. The following expression can be provided

for i = 1 by substituting (3.71) in (3.70):

∂
˙̂
φ1

∂φ̂j
=















∑

l∈S1

ΓE

(

g1,l

(

φ̂1

)

, vl

)

·
dg1,l

(

φ̂1

)

dφ
if j = 1

0 if j > 1

(3.74)

In the same way, it is possible to verify that for i > 1 and j > i the partial derivatives

are equal to zero while, for the case i > 1 and j < i, it holds:

∂
˙̂
φi

∂φ̂j
=
∑

l∈Sj

ΓE

(

gj,l

(

φ̂j − φ̂j−1

)

, vl

)

·
dgj,l

(

φ̂j − φ̂j−1

)

dφ

−
∑

l∈Sj+1

ΓE

(

gj+1,l

(

φ̂j+1 − φ̂j

)

, vl

)

·
dgj,l

(

φ̂j+1 − φ̂j

)

dφ
= . . .
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· · · =
∑

l∈Sj

ΓE (gj,l (φj) , vl) ·
dgj,l (φj)

dφ
−
∑

l∈Sj+1

ΓE (gj+1,l (φj+1) , vl) ·
dgj,l (φj+1)

dφ

(3.75)

Notice now that gj,l(φj) is defined as the optimal energy of the l-th turbine in the

solution of (3.44) for ETOT = φj . Considering that
∑

l∈Sj
gj,l(φj) = φj, for the sum of

derivatives we have:
∑

l∈Sj

dgj,l(φj)

dφ
= 1 (3.76)

Furthermore, given the definition of the sets Sj provided in Remark 3.9, two differ-

ent cases have to be analysed. If SMINj
= Sj only positive variations of φj must be

considered. From Remark 3.7 on the optimal state in the unconstrained problem, the

components which are equal to EMIN must always have a derivative ΓE which is lower or

equal than the remaining ones. This means that in the present case the energy increase

must be performed only on the sets of turbines Sγj , defined as follows:

Sγj = {l : l ∈ Sj ,ΓE(gj,l(φj), vl) = γj}

From the total sum (3.76) for the derivatives of g, the following holds:

dgj,l(φj)

dφ
= 0 ∀l /∈ Sγj

∑

l∈Sγj

dgj,l(φj)

dφ
= 1

When SMINj
⊂ Sj , one can directly consider the derivative with respect to E∗

TOT (t)

of the optimal state E∗
i (t) defined in (3.48) for the unconstrained case, obtaining the

following:
dgj,l(φj)

dφ
= 0 ∀l ∈ SMINj

∑

l∈Sj\SMINj

dgj,l(φj)

dφ
= 1

In conclusion, for both cases, dgj,l(φj)/dφ is different from zero only for a subset of

turbines whose derivatives ΓE are all equal to γj. If we consider that (3.76) holds for

the total sum, the following equivalent expression can be provided for (3.75):

∂
˙̂
φi

∂φ̂j
= γj − γj+1 > 0

where the inequality is verified if one considers (3.64) in the definition of the sets Si.

Following Proposition 3.8 and subsequent comments, the calculation of the optimal

solution of (3.57) can be characterized analytically and computed through numerical

integration of suitable ODEs if we constrain our analysis to a particular class of signals

E.
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Definition 3.1. Consider a feasible state trajectory Ē(·) : [0, T ] → EN , denoting by P̄ (·)
the corresponding power profile and defining, for each t ∈ [0, T ], a subset repartition
{

S1(t), . . . ,SN−k(t)(t)
}

which satisfies (3.63) for E = Ē(t). It holds Ē(·) ∈ E if the

following condition is satisfied:

P̄Si(t)(t) = P ∗̄
Si(t)

(t)
i = 1, . . . , N − k(t)

∀t ∈ [0, T ]
(3.77)

where P̄Si(t)(t) is the vector of the j-th components of P̄ (t) such that j ∈ Si(t) while

P ∗̄
Si(t)

is the solution of the unconstrained optimization problem (3.61) with S = Si(t),
t0 = t and PS,r(s) =

∑

j∈Si(s)
P̄j(s):

P ∗̄
Si(t)

= argmax
Pj(·),j∈Si(t)

∑

j∈Si(t)

Ej(T )

s. t.
∑

j∈Si(t)
Pj(s) =

∑

j∈Si(t)
P̄j(s)

Ej(t) = Ēj(t)

Ėj(s) = Γ(Ej(s), vj)− Pj(s)

Ej(s) ∈ [EMIN , EMAX ]





∀j ∈ Si(t)
∀s ∈ [t, T ]





(3.78)

In other words, the class of signals E corresponds to the state trajectories Ē(·) whose

power profiles P̄ (·) are equal to the optimum of the unconstrained subproblem (3.61)

for any configuration which at time t satisfies (3.58a) and therefore does not require

impulsive switching. This implies that, for all t ∈ [0, T ], the power profiles of the

individual turbines in Si(t) can be defined exclusively on the basis of their current

kinetic energy and of their aggregate power value. It is therefore possible to associate

to Ē(·) ∈ E a reduced system description with state φ(k(t))(Ē) and input ψ(k(t))(P̄ ),

defined as in (3.65)-(3.68). The partitioning of the state E at each time instant can

then be performed by simply joining at time t existing subsets i, j which present equal

maximum derivative γi(t) = γj(t). This can be achieved by the following procedure,

which also preserves at each t the ordering in (3.64) and therefore the monotonicity of

the reduced system described in Proposition 3.9:

1. At time t = 0 introduce the partition S〈0〉
1 , . . . ,S〈0〉

N−k0 following Remark 3.9 for

E = E0. The corresponding maximum derivative over time are denoted by

γ
〈0〉
1 (t), . . . , γ

〈0〉
N−k0(t) and defined as follows:

γ
〈0〉
i (t) = max

j∈S〈0〉
i

ΓE(Ej(t), vj) (3.79)

2. Set l = 0 and tl = 0.



Chapter 3. Scheduling of Wind Turbines for Frequency Response 79

3. At each time t > tl verify if there exist indexes i, j ∈ {1, . . . , N − kl} for which the

following holds:

γ
〈l〉
i (t) = γ

〈l〉
j (t) (3.80)

• If (3.80) is never satisfied, then Si(t) = S〈l〉
i and k(t) = kl for all t ∈ (tl, T ]

and i = 1, . . . , N − kl. Set L = l and exit the procedure.

• If (3.80) holds for t = t̄, go to step 4.

4. Define Si(t) = S〈l〉
i and k(t) = kl for i = 1, . . . , N − kl and for all t ∈ (tl, t̄]. Set

l = l + 1 and tl = t̄.

5. Set SIN = S〈l−1〉 and perform the following:

(a) Denote by q the dimension of SIN and by γIN1 , . . . , γINq the maximum deriva-

tive in each of its subsets.

(b) Find the minimum m ∈ {1, . . . , q} such that it yields γINm = γINm+1.

(c) If m does not exist set S〈l〉 = SIN and kl = N − q, define γ
〈l〉
1 , . . . , γ

〈l〉
N−kl as

in (3.79) and go to step 3. If m exists, define SFIN as follows:

SFINi =























SINi if i < m

SINm ∪ SINm+1 if i = m

SINi+1 if i > m

Set SIN = SFIN and go to step 5.a.

With the proposed procedure it is possible to partition the time interval [0, T ] in the

following way:

[0, T ] = [t0, t1] ∪ (t1, t2] · · · ∪ (tL, T ] = τ1 ∪ τ2 · · · ∪ τL

Furthermore, the order reduction parameter k is a function of time and is constant on

each of the time subinterval:

k(t) = kl ∀t ∈ τl

with k1 < k2 < · · · < kL. Notice also that the proposed algorithm unifies two partition

subsets S〈l〉
i (t) and S〈l〉

i+1(t) every time it holds γ
〈l〉
i (t) = γ

〈l〉
i+1(t). If we consider that

the derivative ΓE is continuous in time and the initial partition at t = 0 is performed

according to Remark 3.9, the following inequality is satisfied for all l ∈ {1, . . . , L} and

t ∈ τl:

γ
〈l〉

1 (t) > · · · > γ
〈l〉

N−kl(t)
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The main result for the final state maximization problem (3.57) can now be provided:

Theorem 3.5. Consider a state trajectory E∗(·) and the corresponding power profile

P ∗(·) which are feasible for (3.57), where E∗(·) ∈ E as specified in Definition 3.1 and

therefore admits a reduced system (φ(k)(E∗), ψ(k)(P ∗)). The control P ∗ is optimal for

problem (3.57) if the following holds for any other feasible P̄ :

ψ̂
(k(t))
i (P ∗(t)) ≤ ψ̂

(k(t))
i (P̄ (t))

∀t ∈ [0, T ]

i = 1, . . . , N − k(t)
(3.81)

where φ̂(k)(E∗) and ψ̂(k)(P ∗) represent respectively state and control of the reduced system

when the change of coordinate described by (3.69) is applied.

Proof. It follows from (3.70) and inequality (3.81) that the power profile P ∗ maximizes

the derivative of each state component φ̂
(k(t))
i (E∗(t)) of the reduced system. If one

considers the time interval τL = (tL, T ], following the monotonicity of the reduced

system introduced in Proposition 3.9, for i = 1, . . . , N − kL it holds:

φ̂
(kL)
i (E∗(T )) = max

ψ̂(kL)(·)
φ̂
(kL)
i (E(T ))

s. t.
∑N

i=1 Pi = Pr(t)

φ̂
(kL)
i (E(tL)) = φ̂

(kL)
i (E∗(tL)) ∀t ∈ (τL, T ]

Pi(t) ∈ [PMIN , PMAX ]

(3.82)

For the same monotonicity properties, the maximized state φ̂
(kL)
i (E∗(T )) is mono-

tonically increasing with respect to each component of φ̂(kL)(E∗(tL)). It also holds

φ̂(kL)(E∗(tL)) ⊂ φ̂(kL−1)(E∗(tL)): in fact, a new subset repartition is always obtained by

unifying sets with adjacent indexes and φ̂
(k)
i is defined as the sum of the variables φ

(k)
j

for j = 1, . . . , i. With similar steps, one can verify that φ̂(kL−1)(E∗(tL)) is the maximum

of (3.82) for kL−1,τL−1 and tL−1. By repeating the same considerations for decreasing

values of l and corresponding order reductions kl, time intervals τl and final times tl

until l = 0, it is possible to show that, for the given initial condition E0, P ∗ maximizes

φ̂
(kL)
i (E(T )) for i = 1, . . . , N − kL. Proof is concluded by considering that the objective

function in (3.57) is the last state component of the reduced system in the changed

coordinates:
N
∑

i=1

Ei(T ) = φ̂
(kL)
N−kL(E(T ))

The numerical calculation of the optimal profile P ∗ is straightforward and can be per-

formed, starting from 0 and for increasing values of t, in two separate steps:
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1. Given the current state repartition
{

S1, . . . ,SN−k(t)
}

calculate the values of ψ(k(t))

which satisfy (3.81) for the corresponding ψ̂(k(t)) and the constraint in (3.57) on

the aggregate power, with
∑N−k(t)

i=1 ψ
(k(t))
i = Pr(t). Notice from (3.69) that each

ψ
(k)
j appears in the expression of all ψ̂

(k)
i with i ≥ j. This means that (3.81) can

be satisfied by choosing the maximum feasible value for ψ
(k(t))
N−k(t), doing the same

on all the others ψ
(k(t))
i for decreasing indexes i until the aggregate power Pr(t)

has been allocated.

2. Determine P ∗(t) which returns the desired ψ(k(t)). For each partition subset Si(t),
with i = 1, . . . , N − k(t), two different cases must be considered:

(a) If νi = |Si(t)| = 1 and Si(t) = {l}, one can verify that P ∗
l (t) = ψ

(k(t))
i .

(b) If νi > 1, the unconstrained sub-problem (3.61) is solved for S = Si(t), t0 = t

and PS,r = ψ
k(t)
i . The values of P ∗

l (t) with l ∈ Si(t) will correspond to the

unconstrained solution P ∗̄
Si(t)

(t).

From Theorem 3.5 and the procedure for the calculation of the optimal control, it can

be seen that the final aggregate kinetic energy is maximized by allocating maximum

power on the turbines with lower derivative ΓE. When a group of turbines S have equal

derivative, this configuration is considered as the initial condition of an unconstrained

problem whose solution P ∗̄ is feasible for the original maximization if (3.62) holds.

Remark 3.10. Notice that in some cases condition (3.62) may not be satisfied. In partic-

ular, given the expressions (3.51) and (3.53) for the optimal power in the unconstrained

case, it can be seen that this is in general different for each turbine and it depends

on the wind speed vi. Consider now a subset S(t̄) of turbines with cardinality S: if

the assigned power reference PS(t̄),r is sufficiently close to S · PMAX , the resulting un-

constrained optimal power profiles P ∗̄
S(t̄),i will not be feasible. In this case, under the

specified constraints, the initial ordering of the maximum derivative γ of the turbine

subsets cannot be preserved and the results of Theorem 3.5 no longer apply. Notice that

this does not happen when equal wind speeds are considered since, in this case, equal

ΓEs correspond to equal P ∗s.

It is also worth pointing out that, for scenarios with different wind speeds, it is possible

to find a possibly suboptimal solution by the following heuristic approach. In particular,

a new repartition for which (3.64) holds can be introduced. Starting from t̄, the resulting

state vector φ̂(k(t̄)) (which still includes in its last component the total kinetic energy

of the wind farm) can be maximized over the interval [t̄, T ]. For simulations run with

standard turbine parameters, whose results are shown in the next section, the feasibility

of P ∗̄ for the constrained problem has always been verified.
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3.4.4 Simulation Results

The performance of the proposed scheduling has been evaluated in simulations. The

turbine parameters presented in [41] have been adopted, converting the operative interval

of the rotor speed to the corresponding kinetic energy values:

R = 37.5m J = 5.9 · 106Kg ·m2

PMIN = 0MW PMAX = 2MW

EMIN = 2.62 · 106J EMAX = 1.43 · 107J
(3.83)

A first analysis focuses on the case of turbines with unconstrained power, considering a

population of N = 20 generators. A qualitative representation of the considered scenario

is presented in Fig. 3.9: initially all generators are operating at the point of maximum

efficiency Ei(0) = Ess(vi) with different wind speeds in the interval [8m/s, 10m/s] and

equal derivatives ΓE(E1(0), v1) = · · · = ΓE(EN (0), vN ) = 0. The total power provided

by the wind farm is equal to P0, as defined in (3.41). At time t = 0, supposing a

frequency event occurs, the reference for the aggregate generated power is increased:

Pr(t) = 1.3
N
∑

i=1

Γ(Ess(vi), vi) = 1.3P0

After having provided frequency response, the turbines move to a recovery phase: they

reduce power generation in order to increase their kinetic energy and reach the oper-

ating point of maximum efficiency which characterizes normal operation. The recovery

problem is studied in detail in Section 3.5.
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Figure 3.9: Total power generated by the wind turbines population at different oper-
ational modes.
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The optimal scheduling is calculated with a time step ∆t = 0.05s, solving the static

optimization problem (3.44) at each time instant l ·∆t. The optimal energy trajectories

E∗ for each turbine are shown in Fig. 3.10. It can be seen that the kinetic energy is

reduced across time in all generators in order to maintain an equal derivative ΓE . The

corresponding optimal power profiles P ∗ are shown in Fig. 3.11: at first the generated

power is approximatively constant for all turbines. When the slowest turbine (let it be

turbine i) reaches the minimum energy EMIN , its power generation is instantaneously

reduced to Γ(EMIN , vi) and the control effort is redistributed among the remaining

generators which, as a consequence, increase their individual power output considerably

in order to meet overall power requirements. Since turbines have equal derivatives ΓE

at time t = 0 and therefore satisfy (3.50), there is no impulsive energy switch. The

optimal power in the unconstrained case is finite and, in this example, it is also within

the operational limit PMIN < P < PMAX of the turbines except for the very last part

of the frequency response when the power output of some turbines is indirectly limited

by the fact that they have reached the minimum feasible energy EMIN .
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Figure 3.10: Kinetic energy of the individual wind turbines when providing frequency
response in the unconstrained power case.

A similar scenario is now simulated when constraints on the generated power P are

considered: in this case it is assumed that turbines have different derivative ΓE at t = 0,

with wind speed and initial state defined as follows for j = 1, . . . , 20:

vj = 8 + 0.1 · j Ej(0) = Ess(vj) · (1.02 − 0.02 · j) (3.84)

The optimal state trajectories, generated power profiles and partial derivatives ΓE of the

individual turbines are shown respectively in Fig. 3.12, 3.13 and 3.14. Three different
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Figure 3.11: Optimal power profiles P ∗

i for turbine scheduling in the unconstrained
case.

time intervals can be analysed separately, on the basis of the values of ΓE . At the begin-

ning of the frequency response (from 0 to 1 second) the power derivatives are distinct:

the aggregate power Pr is allocated by setting P ∗
i (t) = PMAX for the turbines that have

lower ΓE which, as a result, are slowed down. Since Pr is not an integer multiple of

PMAX , one of these turbines will generate a power which is lower than the maximum.

Gradually the generators will converge to equal values of ΓE: every time this happens,

one turbine moves from maximum (or minimum) generation to some intermediate value

and the power of the turbines with the same derivative is adjusted accordingly. In a sec-

ond time interval (approximatively from 1 to 6 seconds), all turbines have equal values

of ΓE and therefore the results are similar to the ones of the unconstrained case: energy

is gradually reduced, the derivative ΓE increases over time and the power P ∗
i of each

generator remains almost constant. In the last interval, when turbines start reaching the

minimum energy value EMIN , their power is reduced to P ∗
i (t) = Γ(EMIN , vi) and such

variation is compensated by increasing the power on the remaining ones until feasibility

can be guaranteed.

Finally, for the considered values of initial energy and wind speed, it is supposed that

a certain time T of frequency response is required from the turbines. The maximum

power increase factor ∆P/P0 which can be obtained with the proposed scheduling by

setting Pr(t) = P0 + ∆P for all t ∈ [0, T ] is shown in Fig. 3.15. Notice that, at lower

values of T (and higher power increase factors), the power reduction is more significant.

This can be explained considering that, in this case, turbines are generating more power,

moving away faster from their initial operating point and introducing a larger reduction

of efficiency.
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Figure 3.12: Kinetic energy of the individual wind turbines when providing frequency
response in the constrained power case.
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Figure 3.13: Optimal power profiles P ∗

i for turbine scheduling with constraints on
generated power.
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Figure 3.14: Partial derivative ΓE(E
∗

i (t), vi) for the optimal scheduling with con-
straints on generated power.
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3.5 Optimal Energy Recovery

When turbines provide frequency response they release part of their kinetic energy and,

as a result, they move away from their operation point of maximum efficiency. There-

fore, after the frequency support has been provided, it is desirable to bring back the

turbines to their optimal rotor speed (and corresponding kinetic energy). The recovery

is approached as an optimal control problem, imposing a minimum value PL of aggregate

generated power and calculating the power profiles Pi which minimize the time required

to restore the original configuration of maximum production in the wind farm:

min
T,Pi(·),i=1...N

T

s. t.
∑N

i=1 Pi(t) ≥ PL

Ei(0) = E0
i

Ei(T ) = Ess(vi)

Ėi(t) = Γ(Ei(t), vi)− Pi(t)

Ei(t) ∈ [EMIN , Ess(vi)]

Pi(t) ∈ [PMIN , PMAX ]

(

∀i = 1, . . . , N

∀t ∈ [0, T ]

)

(3.85)

The feasibility of the problem is initially assessed, determining the values of PL in the

interval [NPMIN , NPMAX ] for which a solution exists. A preliminary assumption is

made for the constraints on the generated power Pi of the single turbine:

Assumption 3.4. For any feasible value Ei, it is always possible to increase or reduce

the kinetic energy of the turbine:

0 ≤ PMIN < Γ(Ei, vi) < PMAX
i = 1, . . . , N

Ei ∈ [EMIN , Ess(vi)]
(3.86)

A first feasibility result can now be provided with the following sufficient condition:

Proposition 3.10. Under Assumption 3.4, given the initial state E0, problem (3.85) is

feasible for a certain value PL of minimum total generated power if:

PL <

N
∑

i=1

Γ
(

E0
i , vi

)

= ΓTOT
(

E0
)

(3.87)

where ΓTOT denotes the aggregate mechanical power extracted by the wind turbines as a

function of their kinetic energy.

Proof. We show that, if (3.87) holds, there exists at least one power profile P̄ (·) that

satisfies the constraints in (3.85). In order to construct P̄ , denote the set of turbines
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which have reached the desired terminal state by F(E) := {i : Ei = Ess(vi)}. The power
profile can now be defined through the following feedback law for i = 1, . . . N :

ϕ̄i(E) =















Γ(Ess(vi), vi) i ∈ F(E)

max (Γ(Ei, vi) · r(E), PMIN ) i /∈ F(E)

(3.88)

where the function r(E) is defined as follows:

r(E) =
PL −∑i∈F(E) Γ(Ess(vi), vi)

ΓTOT (E)−
∑

i∈F(E) Γ(Ess(vi), vi)
=
PL −∑i∈F(E) Γ(Ess(vi), vi)

∑

i/∈F(E) Γ(Ei, vi)
(3.89)

It is straightforward to verify that ϕ̄ satisfies the constraint on the minimum total

generated power. In fact, for an arbitrary E, it holds:

∑

i/∈F(E)

ϕ̄i(E) ≥
∑

i/∈F(E)

Γ(Ei, vi) · r(E) = PL −
∑

i∈F(E)

ϕ̄i(E) (3.90)

We define now Ē(·) as the unique solution, for i = 1, . . . , N , of the following system of

differential equations:

Ėi(t) = Γ(Ei(t), vi)− ϕi(E(t)) Ei(0) = E0
i (3.91)

The corresponding power profile will be equal to the feedback law ϕ̄ evaluated along Ē,

with P̄i(t) = ϕ̄i(Ē(t)) for i = 1, . . . , N . To show that Ē satisfies the final state condition

in (3.85), considering that ˙̄Ei(t) = 0 if Ēi(t) = Ess(vi), it is sufficient to verify the

following:

˙̄Ei(0) > 0 ∀i /∈ F(E0) (3.92)

∂ζi(E)

∂Ej
> 0

∀i, j /∈ F(E)

∀E ∈∏i

(

E0
i , Ess(vi)

]
(3.93)

where ζi(E) denotes the time derivative of the i-th component of E when the feedback

ϕ̄ is applied. Specifically, for i /∈ F(E), it holds:

ζi(E) =















Γ(Ei, vi) [1− r(E)] if Γ(Ei, vi) · r(E) > PMIN

Γ(Ei, vi)− PMIN if Γ(Ei, vi) · r(E) ≤ PMIN

(3.94)

For the inequality in (3.92) notice that ˙̄Ei(0) = ζi(E
0). If one replaces E0 in (3.94),

for the case Γ(Ei, vi) · r(E) > PMIN it is sufficient to consider that r(E0) < 1 since

PL < ΓTOT (E
0). The inequality in the other case is verified from (3.86). For condition

(3.93), this is always satisfied when Γ(Ei, vi)·r(E) ≤ PMIN since ΓE > 0. In the opposite
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case, it holds r(E) > 0 since Γ(Ei, vi) and PMIN are both nonnegative quantities.

Furthermore, for the considered E, we have PL < ΓTOT (E0) < ΓTOT (E) and therefore

r(E) < 1. From expression (3.94) and the positivity of ΓE, condition (3.93) holds if the

following inequality is satisfied:

∂r(E)

∂Ej
= −

ΓE(Ej , vj)
[

PL −∑i∈F(t) Γ(Ess(vi), vi)
]

[

ΓTOT (Ē(t))−
∑

i∈F(t) Pi(t)
]2 < 0

This is true since the positivity of
[

PL −∑i∈F(t) Γ(Ess(vi), vi)
]

follows from the fact that

r(E) and its denominator in (3.89) are both greater than zero. The proof is concluded

by noticing that also the constraints in (3.85) on the single power P̄i are satisfied since

ϕi(E) ≥ PMIN by definition and r(E) < 1.

If the sufficient condition (3.87) does not hold, there is no power profile which allows to

instantly increase the energies Ei of all turbines. It is still possible, on the other hand,

to provide milder conditions for the feasibility of the recovery problem, which in this

case are necessary and sufficient:

Proposition 3.11. For a given initial state E0 and minimum aggregate generation PL,

problem (3.85) is feasible if and only if there exists a time τ ≥ 0 and a power profile

P̄ (·) such that, for the corresponding energy vector Ē, it holds:

N
∑

i=1

Γ(Ēi(τ), vi) = ΓTOT (Ē(τ)) > PL (3.95)

Proof. If τ specified in the claim does not exist, it follows that the derivative of the total

energy stored in the turbines is always negative and therefore, since Ei(0) < Ess(vi) ∀i,
problem (3.85) is infeasible. If, on the other hand, (3.95) is satisfied, the feasibility is

guaranteed by Proposition 3.10, considering τ as the initial time instant.

This means that the feasibility of problem (3.85) can be determined by solving the

following problem for increasing values of τ and comparing its solution with PL:

max
Pi(·),i=1...N

ΓTOT (E(τ))

s. t.
∑N

i=1 Pi(t) ≥ PL

Ei(0) = E0
i

Ėi(t) = Γ(Ei(t), vi)− Pi(t)

Ei(t) ∈ [EMIN , Ess(vi)]

Pi(t) ∈ [PMIN , PMAX ]





∀i = 1, . . . , N

∀t ∈ [0, τ ]





(3.96)
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In this respect, it is possible to extend previous optimization results:

Remark 3.11. If a power profile P ∗(·) is optimal for problem (3.57) with Pr(t) = PL and

T = τ , it is also a solution for (3.96). To show this, it is sufficient to apply the state

repartition presented in Remark 3.9 to the present case, considering the corresponding

reduced system with the change of coordinates (3.69). Notice now that ΓTOT (E(t)) cor-

responds to
˙̂
φ
(k(t))
N−k(t)+Pr(t) which, from Proposition 3.9, has positive partial derivatives

with respect to all the state components φ̂
(k(t))
i with i = 1 . . . , N − k(t). Since, from the

proof of Theorem 3.5, such components are maximized at final time T = τ by P ∗(·),
this is optimal also for problem (3.96).

The results provided in Section 3.4.3 can also be used to solve the current problem of

time minimization:

Theorem 3.6. Consider a state trajectory E∗(·) and the corresponding input profile

P ∗(·) which are feasible for (3.85), where E∗(·) ∈ E as specified in Definition 3.1 and

therefore admits a reduced system (φ(k)(E∗), ψ(k)(P ∗)). The input P ∗ (and the corre-

sponding final time T ∗) are optimal for problem (3.85) if, at each time instant t ∈ [0, T ∗],

the following holds for any feasible P̄ (t) such that
∑

j P̄j(t) ≥ PL, for i = 1, . . . , N − k(t):

ψ̂
(k(t))
i (P ∗(t)) ≤ ψ̂

(k(t))
i (P̄ (t)) (3.97)

where φ̂(k)(E∗) and ψ̂(k)(P ∗) represent respectively state and control of the reduced system

when the change of coordinate described by (3.69) is applied.

Proof. Considering Theorem 3.5, P ∗ is the solution of (3.57) with EMAX = Ess(vi) and

Pr(t) = PL ∀t ∈ [0, T ∗]. From the proof of such theorem, it follows that P ∗ maximizes

the total amount of kinetic energy at each time instant t ∈ [0, T ∗]. Furthermore, taking

into account the constraints on the energy Ei of the single turbine, the following holds

for the total kinetic energy over time:

N
∑

i=1

E∗
i (t) <

N
∑

i=1

E∗
i (T

∗) =
N
∑

i=1

Ess(vi) ∀t ∈ [0, T ∗) (3.98)

If P ∗ is not optimal for (3.85), there exists a feasible power profile P̄ and the correspond-

ing energy vector Ē such that, for T̄ < T ∗, it holds Ēi(T̄ ) = Ess(vi) with i = 1, . . . , N .

As a result, the following must hold at t = T̄ :

N
∑

i=1

Ēi(T̄ ) =
N
∑

i=1

Ess(vi) >
N
∑

i=1

E∗
i (T̄ )

but this contradicts the optimality of P ∗ for problem (3.57) with final time T̄ .
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The time-minimizing control P ∗ can be calculated in the same way of problem (3.57): at

each time instant t the aggregate power is allocated starting with the turbines which have

lower ΓE , solving the unconstrained energy problem for group of turbines which have

equal derivatives. The feasibility conditions and the optimal scheduling for the energy

recovery problem have been tested in simulations adopting the same parameters (3.83)

used in Section 3.4.4. In particular, the feasibility conditions presented in Proposition

3.10 and 3.11 have been applied to the simple case of N = 3 turbines with different wind

speeds v = [8m/s, 9m/s, 10m/s] and a power reference PL = 2.5MW . The borders of

the feasibility regions with respect to the initial energy E0
i of each turbine are shown

in Fig. 3.16. The border B1 (in red) delimits the initial energy values for which a

recovery scheduling exists (from Proposition 3.11) while the border B2 (in blue) denotes

the smaller area, defined by Proposition 3.10, in which is possible to initially accelerate

all turbines at the same time.
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Figure 3.16: Borders of the feasibility region of the recovery problem with respect to
initial state E0, as defined by Prop. 3.10 (blue) and Prop. 3.11 (red) in the case of

N = 3 turbines.

The proposed scheduling is also compared with the recovery of the turbines when a

standard optimum power point tracking (OPPT) is used and the power generated by

the i-th turbine is defined as a function of the rotor speed ωi [22]:

P̄i(ωi) =
µπR5C̄(λss(0), 0)

2λ3ss(0)
ω3
i = KTω

3
i (3.99)

where λss(0) denotes the tip-speed ratio which maximizes the power coefficient C̄(λ, θ)

when θ = 0. The aggregate power profile PTOT generated with this controller is then used

as reference for the optimal recovery problem (extended to consider time-varying PL).

The kinetic energies of the turbines in the two cases are compared in Fig. 3.17. Notice
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that, with the proposed scheduling, only some turbines are initially accelerated and

then, when equal values of ΓE are obtained, the solution of the unconstrained problem

is applied. The total kinetic energy of the turbines in the two cases (respectively ĒTOT

and E∗
TOT ) is shown in Fig. 3.18: as expected, the proposed scheduling is able to achieve,

for the same aggregate generated power, a faster recovery of the wind farm.
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Figure 3.17: Kinetic energy of each wind turbine during recovery when a standard
OPPT controller is used (top) and when the optimal scheduling is applied (bottom).
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3.6 Conclusions

New techniques for the provision of frequency response through variable-speed wind

turbines have been presented. In particular, the extra power generation that follows

a frequency event is distributed among the individual turbines in order to optimize

some global criteria: maximization of the frequency response duration or minimization

of the energy losses. Two different approaches are considered, assuming respectively

that turbines can switch to a second mode with an additional torque step or directly

determining (within the operational constraints of the devices) the generated power

of each turbine. The performance of the proposed control strategies is evaluated in

simulations and then extended to consider the similar recovery problem, determining

the optimal power profiles that, in minimum time, bring back the turbines to their

original working point of maximum efficiency. We point out that the control strategies

proposed in this chapter are open-loop policies. These can be implemented in closed-loop

by solving a sequence of optimal control problems in a receding horizon framework.





Chapter 4

Distributed Control of

Micro-storage Devices with Mean

Field Games

This chapter provides a general overview of the principal benefits and challenges related

to micro-storage and dynamic demand, describing the main approaches presented in

the literature for the management of large populations of agents in the power system. A

distributed control strategy is then proposed for micro-storage devices that perform energy

arbitrage and maximize their profit by optimally charging/discharging energy on the basis

of its price throughout the day. For large populations of appliances, the problem can be

approximated as a differential game with infinite players (mean field game). Through the

resolution of coupled partial differential equations, it is possible to determine, as a fixed

point, the optimal feedback strategy for each player and the resulting price of energy if

that strategy is applied. A decentralized implementation is straightforward to obtain and

it is possible to extend the original model in order to consider additional elements such

as cyclic constraints, multiple populations of devices and uncertainties on demand.

4.1 Introduction

One of the key features of the smart grid paradigm, which represents the conceptual

vision of future power systems, is the increasing participation of end customers in system

operation. In particular, the growing diffusion of flexible loads (i.e. “smart appliances”

[47] and electric vehicles [48]) and the development of new storage technologies [49] will

allow users, in the near future, to have an active role in the electricity market [50]. This

section provides a general overview of the main control challenges that arise from this

95
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scenario, describing the principal approaches and mathematical tools which have been

proposed in the literature to solve them.

4.1.1 Distributed Storage and Energy Arbitrage

Energy storage in a traditional power system is usually constituted by large scale

pumped-hydro systems. Recent technological developments are making possible its

implementation on a smaller scale and with different technologies. The potential ad-

vantages of this scenario have been widely analysed [51] and include absorption of wind

power variability [52], [53], load levelling [54] and primary frequency regulation [55].

The recent introduction of micro-storage devices like the ones presented in [56] and [57]

has increased the interest in energy arbitrage with storage on a distributed scale. It

is reasonable to assume that, in the near future, batteries will be installed in private

households in the order of millions. These devices will determine their operation strat-

egy in order to maximize their profit by trading energy with the system at different

prices during the day. This, in principle, would correspond to a profit for the individual

customer and positive effects for the power system in the form of reduced prices and

improved reliability. The main challenge is the coordination of the devices: a greedy op-

timization from the single agents could result in synchronicity phenomena, when devices

all charge/discharge at the same time, altering the original price function and resulting

in suboptimality of their operation strategy. This problem is tackled in the subsequent

sections of this chapter using mean field games, introduced in Section 4.1.4.

4.1.2 Flexible Demand: Challenges and Potential Benefits

The increasing number of flexible loads in the power system will give customers the

possibility to partially schedule their power consumption and have an active role in the

management of the network. The impact and potential benefits of this development

have been widely investigated [58], [59], [60]: the individual customers will reduce the

cost of their electricity bill with a minimum impact on their comfort. At the same time,

the power system will achieve an improved reliability and will benefit from a reduction

in the peak demand and in the reliance on fossil fuel peaking plants. Participation of

flexible demand has usually been considered with two different approaches:

1. Incentive-Based Programs [61]: the customers stipulate a contract with the sys-

tem operator and are compensated for providing services such as interruptibility,

emergency response and ancillary services.
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2. Price-Based Programs [62]: a price signal is broadcast to the devices which deter-

mine independently their power consumption, operating during the hours of the

day characterized by lower energy prices.

When the latter policy is applied, one must consider the global effect that the power

scheduling of the appliances has on the aggregate demand and the resulting energy price:

for example, if all devices operate when energy is cheaper, the peak demand will simply

be shifted. Equilibrium conditions and decentralized control strategies for this problem

will be provided in Chapter 5.

4.1.3 Management of Flexible Loads and Storage

The difficulties of coordinating large populations of agents acting in a competitive frame-

work are very similar if one considers storage devices or flexible demand. For this reason,

the most common solutions proposed in the literature for the two cases are presented in

a unified manner.

Two main approaches have been proposed to model the interactions of a large number

of devices with the energy market and design suitable control techniques. Centralized

mechanisms tackle this problem by considering a global optimization which is solved by

the market operator on the basis of the data provided by generators and consumers, as

proposed in [63] and [64]. Given the complexity of this problem for high number of appli-

ances, privacy concerns and the traditional tendency of customers to have full control of

their energy consumption, distributed approaches have also been considered. For exam-

ple, [65] proposes an adaptive pricing scheme for the energy suppliers, broadcasting the

price of energy to the devices in advance of each daily period, in order to better predict

the global storage behaviour. Similarly, [66] adopts the concept of congestion pricing

and proposes a control technique based on price feedbacks. A game theory approach

is used in [67] to calculate the performance bounds of the storage devices, which are

then used as benchmark for the proposed adaptive strategy. Game theory has also been

applied to the similar case of electric vehicles, calculating a cost-minimizing scheduling

which fills the valleys in electric load profiles. In [68] the mean behaviour of the vehicles

population is used to determine the charging profile of each agent, achieving a Nash

equilibrium that coincides with the globally optimal strategy if the vehicles are identi-

cal. Similarly, [69] proposes an iterative strategy where each agent minimizes its own

cost function (which takes into account the result of the previous iteration), reaching an

equilibrium with certain valley-filling properties. A different approach is adopted in [70]

to integrate flexible demand in the electricity market, using a two-level iterative process

with Lagrange relaxation.
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4.1.4 Mean Field Games

The main challenges in the management of flexible appliances and micro-storage are

represented by the high number of devices and the difficulty to model and predict their

behaviour. One way to address these problems is to approximate the population size as

infinite and consider a differential game with an infinite number of players. The theory

for this approach has been independently developed by Huan-Caines-Malhamé [71], [72]

and Lasry-Lions [73], who introduced the term Mean Field Games (MFG) for games with

a continuum of players. In their basic formulation they are described by two coupled

Partial Differential Equations (PDEs): one Hamilton-Jacobi-Bellman (HJB) equation,

which returns the optimal control of the agents, and one Fokker-Planck (FP) equation

which describes their distribution. An introduction to the subject, starting with toy

models and gradually presenting the mathemathical concepts, is given in [74] while [75]

provides some fundamental results of existence and unicity of solutions. Current theoret-

ical research focuses on extending the original framework, for example considering cases

with minor-major agents [76] or a limited number of players [77]. Consistent research

work is also being carried out on integration schemes and the numerical resolution of the

coupled PDEs [78], [79]. Mean field games are currently being used in several fields such

as crowd dynamics [80], [81], economics [82], [83], and consensus dynamics [84]. Many

applications have also been considered for the new smart grid paradigm: [85] models elec-

tric vehicles as infinitesimal agents and calculates the charging profiles that minimizes

generation costs while [86] applies a similar approach to consider large-scale real-time

bidding with a high number of suppliers and consumers. Large populations of electrical

heating or cooling appliances are controlled in [87] to guarantee desynchronization and

improve power network resilience.

In Section 4.2 the problem of energy arbitrage with storage is presented as a competitive

game for the case of a finite number of players, modelling the dynamics of the single

device and the energy market. The analysis is then extended in Section 4.3 to consider

an infinite number of agents, deriving the coupled PDEs of the corresponding mean

field game. The iterative resolution procedure, the chosen numerical methods and the

simulative results are presented in Section 4.4 while Section 4.5 contains some extensions

to the original model.
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4.2 Differential Game with Finite Number of Players

4.2.1 Modelling of the Storage Devices

The energy arbitrage with a finite number N of devices is initially considered in a

competitive game framework: each device (agent) exchanges energy with the network

aiming at maximizing its own profit. The i-th storage is described by the following set

of equations:

Ė
(i)
s (t) = u

(i)
s (t)

y
(i)
s (t) = u

(i)
s (t) + γsu

(i)2

s (t)
(4.1)

The derivative of the stored energy Es is equal to the charging power us which represents

the control input of the device. In order to take into account the storage efficiency,

quadratic losses parametrized by the positive quantity γs are introduced in the expression

of ys, which denotes the power exchanged by the device with the network. It is important

to notice that, with an appropriate choice of the parameter γs, the introduction of y
(i)
s can

be considered a reasonable approximation of the traditional efficiency model with linear

losses, where the power zs exchanged with the network has the following expression:

zs = us + η|us| (4.2)

A representation of the differences between us, ys and zs is provided in Fig. 4.1.
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−1

−0.5

0

0.5

1

1.5

charging power u
s
 [p. u.]

 

 

u
s

y
s

z
s

Figure 4.1: Qualitative comparison between the rate of charge us and the power
exchanged with the network, modelled with quadratic (ys) and linear (zs) losses.

The physical limitations of the storage devices are also taken into account. If one

denotes respectively by Er and Pr the energy and power rating of the devices, the

stored energy Es and the charging power us are subject to the following constraints
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within the considered time interval [0, T ]:

0 ≤ E
(i)
s (t) ≤ Er ∀ t ∈ [0, T ]

uMIN
s = −Pr ≤ u

(i)
s (t) ≤ Pr = uMAX

s i = 1, . . . , N
(4.3)

The efficiency of the devices can alternatively be expressed through the parameter ks,

defined such that the linear loss ksus is equal to the chosen quadratic one for us = uMIN
s :

−γs
(

uMIN
s

)2
= ksu

MIN
s → ks = −γsuMIN

s

Remark 4.1. The power constraints are such that uMIN
s < 0 and uMAX

s > 0. Fur-

thermore, if one considers the physical meaning of ys, i.e. the power that the storage

device exchanges with the network for a certain rate of charge us, it is reasonable to

assume that ys is monotonic increasing with respect to us. This is equivalent to impose

uMIN
s > − 1

2γs
or, alternatively, ks <

1
2 .

Remark 4.2. Homogeneity of storage is initially assumed: all devices have the same

parameters γs, E
MAX
s , uMIN

s and uMAX
s . In Section 4.5.2 the possibility to extend the

results obtained under this assumption to the case of multiple typologies of devices will

be investigated.

4.2.2 Energy Market and Objective Function of the Appliances

The electricity market has been abstracted with the monotonic increasing function

Π : [dMIN ,+∞] → [πMIN ,+∞] where dMIN and πMIN are fixed positive quantities.

This function associates, to a given value of aggregate demand D(t), the corresponding

energy price p(t) = Π(D(t)). The power demand D will be given by two different com-

ponents: the inflexible demand Di and the contribution Ds of the storage population.

The inflexible profile is modelled with the function Di(t), initially assumed to be known

without uncertainties, while the storage component Ds is defined as the total power

exchanged by the devices:

Ds(t) =

N
∑

i=1

y(i)s (t) =

N
∑

i=1

u(i)s (t) + γsu
(i)2

s (t) (4.4)

We denote by u
(̄i)
s the vector of control inputs for all players except i and we introduce

the cost function J
(i)
s that the i-th agent aims to minimize. By implicitly considering

the dependency of J
(i)
s from u

(̄i)
s through the price function Π(Di(t) +Ds(t)), it holds:

J (i)
s

(

E(i)
s (0), u(i)s , u

(̄i)
s

)

=

∫ T

0
Π(Di(t)+Ds(t))[u

(i)
s (t)+γsu

(i)2

s (t)] dt+Ψ(E(i)
s (T )) (4.5)
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The integral component of J
(i)
s represents the cost sustained by the device while charg-

ing/discharging energy during the considered time interval [0, T ] while the terminal cost

function Ψ is used to take into account the final energy value and avoid, for example,

the total discharge of the device. The main objective is to determine a Nash Equilib-

rium for the non cooperative game described by (4.1), (4.3) and (4.5). To this end, we

denote by Ū (i)
s the set of open-loop feasible strategies for the i-th player and introduce

the corresponding product set Ūs = Ū (1)
s × · · · × Ū (N)

s . Given a vector of initial energies

Es(0), we want to determine if there exists u∗s(·) =
[

u
(1)∗
s (·), . . . , u(N)∗

s (·)
]

∈ Ūs for which
the following holds:

J
(i)
s

(

E
(i)
s (0), u

(i)∗
s , u

(̄i)∗
s

)

≤ J
(i)
s

(

E
(i)
s (0), u

(i)
s , u

(̄i)∗
s

)

∀u(i)s ∈ Ū (i)
s i = 1 . . . N

(4.6)

4.2.3 Existence Results

The existence of a Nash equilibrium for the differential game with a finite number of

players is now investigated, replacing the terminal cost function Ψ with the constraint

E
(i)
s (0) = E

(i)
s (T ) for i = 1, . . . , N .

Assumption 4.1. The price function Π is considered to be linear with respect to the

aggregate power demand (with constant parameter Γ > 0):

Π(Di(t) +Ds(t)) = Γ [Di(t) +Ds(t)] = Γ

[

Di(t) +
N
∑

i=1

(

u(i)s (t) + γsu
(i)2

s (t)
)

]

= c(t) + Γ

N
∑

i=1

(

u(i)s (t) + γsu
(i)2
s (t)

)

(4.7)

Assumption 4.2. The variation on the price p(t) = Π(D(t)) introduced by the charge

profile of the single device is assumed to be negligible. If one denotes by l(i) the La-

grangian of the functional in (4.5), the following approximation can be considered:

∂l(i)(t, us)

∂u
(i)
s

≃ Π(D(t))
(

1 + 2γsu
(i)
s

)

=

[

c(t) + Γ
N
∑

i=1

(

u(i)s + γsu
(i)2

s

)

]

(

1 + 2γsu
(i)
s

)

Assumption 4.3. The constraints (4.3) on stored energy Es and charged power us are

initially neglected.

It is now possible to provide the following result for the existence of equilibria in the

case of finite players.
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Theorem 4.1. Consider the differential game characterized by the following optimiza-

tion problem for the i-th player:

min
u
(i)
s (·)

∫ T

0
p(t)[u(i)s (t) + γsu

(i)2
s (t)] dt

s. t. Ė
(i)
s (t) = u

(i)
s (t)

E
(i)
s (0) = E

(i)
s (T )

i = 1, . . . , N
(4.8)

where the price function p(t) = Π(Di(t) +Ds(t)) is defined as in (4.7). Under Assump-

tions 4.1, 4.2 and 4.3 there exists one and only one open-loop Nash equilibrium if:

ΓN − 4γsc(t) ≤ 0 ∀t ∈ [0, T ] (4.9)

Proof. Following the definition of open-loop Nash equilibrium provided for example in

[88], the theorem statement can be verified under the specified assumptions by applying

the Pontryagin Minimum Principle (PMP) to the optimization problem of each player. If

one replaces p(·) in (4.8) with an arbitrary positive price function π(·), the corresponding
Hamiltonian H(i) for the i-th player is equal to:

H(i)(t, E(i)
s (t), u(i)s (t), λ(i)(t)) = π(t)[u(i)s (t) + γsu

(i)2
s (t)] + λ(i)(t)u(i)s (t)

Considering Assumption 4.2, the necessary conditions for the optimal control u
(i)∗
s and

costate λ(i)
∗
are:

u(i)
∗

s (t) = −π(t) + λ
(i)∗
s (t)

2γsπ(t)
λ̇
(i)∗

s (t) = 0

∫ T

0
u(i)

∗

s (t) dt = 0 (4.10)

Since H(i) does not depend on state E
(i)
s and is convex with respect to u

(i)
s , it is possible

to conclude from [89] that such conditions are also sufficient. For a positive π(·), given
that u

(i)∗
s (t) is strictly decreasing with respect to λ

(i)∗
s at each t, there exists at most

one constant costate λ
(i)
s (t) = λ̃

(i)
s for which the third condition (fixed terminal state) in

(4.10) is verified. Given the special structure of the problem, the optimal control u
(i)∗

s is

independent from the initial state E
(i)
s (0) and therefore equal for all agents. It follows

that the theorem is verified if there exist (π̄(·), ū(·), λ̄) such that:

ū(t) = − π̄(t) + λ̄

2γsπ̄(t)
π̄(t) = c(t) + ΓN

[

ū(t) + γsū
2(t)
]

∫ T

0
ū(t) dt = 0 (4.11)

An equivalent representation of the first two conditions is obtained by replacing the

expression of ū in π̄:

π̄(t) = c(t) + ΓN

[

− π̄(t) + λ̄

2γsπ̄(t)
+ γs

(π̄(t) + λ̄)2

4γ2s π̄
2(t)

]

= c(t) + ΓN

[−π̄2(t) + λ̄2

4γsπ̄2(t)

]

(4.12)
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By rearranging the terms, considering the price as a variable π and the costate λ as a

free parameter, a cubic equation is obtained:

4γsπ
3 + [ΓN − 4γsc(t)] π

2 − ΓNλ2 = 0 (4.13)

Consider that the price π must be a real positive quantity. If (4.9) holds, the discriminant

∆ for the cubic function (4.13) is negative, therefore there exist one real root and two

complex conjugate roots. Furthermore, by the sign alternance of the coefficients, the

real root, denoted by π̃(t, λ), is positive. It follows that the equivalent (4.12) of the first

two conditions in (4.11) is satisfied for π̄(t) = π̃(t, λ̄). In order to prove the existence of

the Nash equilibrium, it is sufficient to show that also the integral condition in (4.11) is

satisfied and there always exists λ̄ such that:

∫ T

0
ū(t) dt =

∫ T

0
− π̃(t, λ̄) + λ̄

2γsπ̃(t, λ̄)
dt = − T

2γs
− 1

2γs

∫ T

0

λ̄

π̃(t, λ̄)
= 0 (4.14)

Explicit calculations show the following for λ/π̃(t, λ):

∂

(

λ

π̃(t, λ)

)

∂λ
> 0 ∀λ ∈ R lim

λ→−∞
λ

π̃(t, λ)
= −∞ lim

λ→+∞
λ

π̃(t, λ)
= +∞ (4.15)

All these properties naturally extend to the function
∫ T
0 λ/π̄(t, λ) dt which is continuous,

strictly monotonic increasing and with image equal to R. This means that there exists a

unique λ̄ such that
∫ T
0

λ̄
π̄(t,λ̄)

= −T and therefore satisfies (4.14). We can conclude that

the price π̄ and the control ū for which the equilibrium conditions (4.11) hold are given

by:

π̄(t) = π̃(t, λ̄) ū(t) = − π̃(t, λ̄) + λ̄

2γsπ̃(t, λ̄)
∀t ∈ [0, T ]

The charge profiles of the devices at equilibrium are: u
(1)∗
s = · · · = u

(N)∗
s = ū.

Existence and uniqueness of the Nash equilibrium are preserved when constraints on the

charging power u
(i)
s are introduced. In particular:

Proposition 4.1. Under Assumptions 4.1 and 4.2, if (4.9) holds, a unique open-loop

Nash equilibrium exists for the differential game given by (4.8) when the following addi-

tional constraints are introduced:

uMIN
s ≤ u

(i)
s (t) ≤ uMAX

s ∀t ∈ [0, T ] i = 1, . . . , N

Proof. In the case of constraints on the charging power us, the set P(t) of feasible energy

prices at the time instant t is equal to a closed interval. From (4.7), if one denotes by
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yMIN
s = uMIN

s + γsu
MIN2

s the minimum power exchanged by the single device and

defines similarly the maximum yMAX
s , it follows:

P(t) =
[

c(t) + ΓNyMIN
s , c(t) + ΓNyMAX

s

]

= [pMIN (t), pMAX(t)]

Note that pMIN and pMAX correspond to the prices obtained when all devices are

respectively discharging and charging at maximum rate. Considerations in the proof of

Theorem 4.1 on the convexity of the Hamiltonian for the optimization of the single player

and its independence from the state Es still apply. This means that the proposition is

verified if there exist (π̄c(·), ūc(·), λ̄c) such that it holds:

ūc(t) = sat
Us

[

− π̄c(t) + λ̄c
2γsπ̄c(t)

]

π̄c(t) = c(t) + ΓN
[

ūc(t) + γsū
2
c(t)
]

∫ T

0
ūc(t) dt = 0

(4.16)

where Us is the interval [uMIN
s , uMAX

s ] of feasible controls. As in the previous case,

an equivalent expression for the first two conditions can be obtained by replacing the

expression for ūc in π̄c:

π̄c(t) = c(t) + ΓN

(

sat
Us

[

− π̄c(t) + λ̄c
2γsπ̄c(t)

]

+ γs satUs

[

− π̄c(t) + λ̄c
2γsπ̄c(t)

]2
)

(4.17)

Notice now that the unique positive solution π̃(t, λ) of (4.13) presented in the proof

of Theorem 4.1, for a fixed t, is monotonic decreasing and admits an inverse π̃−1(t, p)

with respect to λ. Consider in fact that (4.12), evaluated at λ̄ = λ, is satisfied for

π̄(t) = π̃(t, λ). Partial derivation with respect to λ on both sides of the equation yields:

∂π̃(t, λ)

∂λ
=

ΓN

2γs

λ

π̃(t, λ)

∂(λ/π̃(t, λ))

∂λ

Since the costate λ must be negative in order to satisfy the integral constraint in (4.16)

(price π̄c and parameter γs are always positive), we can conclude from (4.15) that ∂π̃(t,λ)
∂λ

is negative. One can then introduce λMIN and λMAX , which represent the costate values

at which the saturation constraints on ūc are active:

λMIN (t) = π̃−1(t, pMAX(t)) λMAX(t) = π̃−1(t, pMIN (t))

Considering that control ūc and price π̄c, at a certain t, take the same values for all

λ̄c ≤ λMIN (t) (the same property holds in the opposite sense with λMAX(t)), one can

provide the following definition for π̃c which satisfies (4.17):

π̃c(t, λ) =















π̃(t, λ) if λMIN (t) ≤ λ ≤ λMAX(t)

π̃(t, λMIN (t)) if λ < λMIN (t)

π̃(t, λMAX(t)) if λ > λMAX(t)
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The proof is concluded by verifying that there exists a unique λ̄c that satisfies the integral

condition in (4.16), which can be rewritten as follows:

∫ T

0
ūc(t) dt =

∫ T

0
sat
Us

[

− π̃c(t, λ̄c) + λ̄c
2γsπ̃c(t, λ̄c)

]

= 0

To see this, λ̄MIN and λ̄MAX are introduced:

λ̄MIN = min
t∈[0,T ]

λMIN (t) λ̄MAX = max
t∈[0,T ]

λMAX(t)

We now have that Λ =
[

λ̄MIN , λ̄MAX
]

contains all possible values of λ which returns

different results for the integral ũI(λ) =
∫ T
0 ũ(t, λ) dt, with ũ(t, λ) = satUs

[

− π̃c(t,λ)+λ
2γsπ̃c(t,λ)

]

.

The integral condition is verified if one considers that uI(λ) is a continuous monotonic

decreasing function of λ in Λ and the following holds:

ũI(λ̄MIN ) = TuMAX
s ≥ 0 ≥ ũI(λ̄MAX) = TuMIN

s

4.3 Energy Arbitrage with Mean Field Games

4.3.1 Infinite Number of Players

It is in general difficult to extend the results of the previous section when constraints

on the state Es are considered and the optimal control u∗s is different for each device,

depending on their initial energy. A possible way to approach the problem and also

explicitly account for Assumption 4.2 is to consider that the contribution of the single

device to the total value ofDs (and to the corresponding price p = Π(Di+Ds)) is reduced

by increasing values of N . If the number of devices is very high, it can be approximated

as infinite: the contribution of the single device to the total demand becomes negligible

and it is necessary to consider only the effect of the whole storage population (mean

field). Furthermore, such population can be described as a continuum, introducing the

following equations for the single agent:

Ė(t) = u(t) y(t) = u(t) + γu2(t) (4.18)

In this case the variables E and u represent respectively the state of charge of the device

(between 0 and 1) and the rate of charge. The physical constraints of the devices in
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these new variables can be represented as follows:

0 ≤ E(t) ≤ 1

uMIN = −Pr
Er

≤ u(t) ≤ Pr
Er

= uMAX

∀ t ∈ [0, T ] (4.19)

Remark 4.3. All the results provided in this section can be rescaled and used to approx-

imate the scenario with a finite number of players N . In this case, assuming Er and

Pr equal for all devices, the stored energy Es, the charging power us and the efficiency

coefficient ks can be defined as follows:

Es = Er ·E us = Er · u ks = −γuMIN = k (4.20)

The energy distribution within the storage population is denoted by m: given two

arbitrary values E1 and E2 for the state of charge,
∫ E2

E1
m(t, E) dE will correspond to the

fraction of devices for which E1 ≤ E(t) ≤ E2. Since the optimal control is going to be

calculated in feedback form, it is assumed that the charging rate of the devices u(t, E)

is a function of time and current state of charge. By considering the aggregate energy

capacity ETOT = N ·Er as a rescaling factor, the variation to total demand introduced

by the storage population can now be defined:

Ds(t) = ETOT
∫ 1

0
m(t, E)

[

u(t, E) + γu2(t, E)
]

dE = ETOT
∫ 1

0
m(t, E)y(t, E) dE

(4.21)

We finally introduce the cost J to be minimized by each agent:

J(E(0), u(·)) =
∫ T

0
Π(Di(t) +Ds(t)) [u(t) + γu2(t)] dt +Ψ(E(T ))

=

∫ T

0
p(t)y(t) dt+Ψ(E(T ))

As in (4.5), the different devices interact between each other by varying the value of

Ds and therefore the price of energy. It is significant that, with this approach, such

variations do not depend on the single device but on the charge distribution of the

whole population.

4.3.2 Derivation of the Coupled PDEs

It is now possible to derive the partial differential equations that describe the mean field

game and are used to determine the decentralized control. In order to calculate the

optimal rate of charge u∗ which minimizes J , if one denotes by U = [uMIN , uMAX ] the
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set of admissible controls, a Hamilton-Jacobi-Bellman equation can be considered:

−∂tV (t, E) =min
u∈U

[

p∗m(t)(u+ γu2) + ∂EV (t, E)u
]

V (T,E) =Ψ(E)

(4.22)

In particular, the function p∗m represents the price of energy resulting from all de-

vices (with distribution m) applying the optimal charging profile u∗. If one denotes

by E = [0, 1] the interval of feasible states, it holds:

p∗m(t) = Π

(

Di(t) + ETOT
∫

E
m(t, E)

[

u∗(t, E) + γu∗
2
(t, E)

]

dE

)

(4.23)

Note that (4.22) is a PDE in the unknown function V which corresponds to the value

function of the optimization problem:

{

V (t, x) = min
u(·)

∫ T

t
p∗m(t)[u(t) + γu2(t)] dt+Ψ(E(T ))

}∣

∣

∣

∣

Ė=u

E(t) = x

(4.24)

The optimal control u∗, at each time instant, is the argument of the minimum in (4.22)

and therefore must satisfy the following:

u∗(t, E) = sat
U

[

−p
∗
m(t) + ∂EV (t, E)

2γp∗m(t)

]

(4.25)

Since p∗m depends on u∗, there is no closed expression for the optimal control. On the

other hand, it is possible to provide the following result:

Theorem 4.2. Consider an arbitrary t ∈ [0, T ] and m which belongs to the space of

probability measures on E and assume that the partial derivative ∂EV (t, ·) exists and is

bounded. If Π is a Lipschitz continuous and monotonic increasing function, there exists

a unique u∗(t, ·) which satisfies equations (4.23) and (4.25).

Proof. At an arbitrary time instant t the control which satisfies (4.25) for a given price

p is denoted by f(E, p):

f(E, p) = sat
U

[

−p+ ∂EV (E)

2γp

]

= sat
U

[

− 1

2γ
− ∂EV (E)

2γp

]

where the dependency from time t is not denoted explicitly for a more compact notation.

The function g which is obtained by considering u∗(E) = f(E, p) in the right-hand side

of (4.23) has the following expression:

g(p) = Π

(

Di +ETOT
∫

E
m(E)

[

f(E, p) + γf(E, p)2
]

dE

)
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The theorem statement corresponds to existence and uniqueness of a fixed point for the

function g under the same assumptions. Since Di and the demand variation introduced

by storage are bounded and their sum is always positive, g(p) is defined on a closed

interval [pMIN , pMAX ] (with pMIN equal to a strictly positive quantity) and takes values

in the same set. From Brouwer’s fixed point theorem [90], if g is continuous, a fixed

point exists. To show this, the function f̃(E, p) is introduced:

f̃(E, p) = −p+ ∂EV (E)

2γp
= − 1

2γ
− ∂EV (E)

2γp

The continuity of f̃ with respect to p can be proven by showing that, for any couple

(p1, p2) such that p1, p2 ∈ [pMIN , pMAX ] and ||p1 − p2||1 = c, the following holds:

||f̃(E, p1)− f̃(E, p2)||1 =
∣

∣

∣

∣

∂EV (E)

2γp1p2
(p1 − p2)

∣

∣

∣

∣

≤ |∂EV (E)|
2γpMIN2 c

It is straightforward to prove that also the function f is continuous, for example verifying

with a case by case inspection that:

||f(E, p1)− f(E, p2)||1 ≤ ||f̃(E, p1)− f̃(E, p2)||1 ≤ |∂EV (E)|
2γpMIN2 c (4.26)

In order to prove the continuity of g, given the current assumptions, it is sufficient to

show that the function l, presented below, is continuous:

l(p) = Di + ETOT
∫

E
m(E)

[

f(E, p) + γf(E, p)2
]

dE

For any (p1, p2) with p1, p2 ∈ [pMIN , pMAX ] and ||p1 − p2||1 = c, bringing the absolute

value in the integral in l and considering that |f(E, p)| ≤ uMAX = −uMIN yields:

||l(p1)− l(p2)||1 ≤ ETOT
∫

E
|m(E)[f(E, p1)− f(E, p2)][1 + γ(f(E, p1) + f(E, p2))| dE

≤ ETOT max
E

(

(1 + 2γuMAX)
|∂EV (E)|
2γpMIN2 c

)

= max
E

(|∂EV (E)|)ETOT 1 + 2γuMAX

2γpMIN2 c

Since l is Lipschitz continuous, we can conclude that g is also continuous and therefore,

from previous considerations, has a fixed point. For the uniqueness of such fixed point,

considering Remark 4.1 and (4.20), it is sufficient to show that for k < 1
2 the function

f and therefore g are monotonic decreasing with respect to p. In this respect, notice

that f̃(E, p) is monotonic decreasing and always greater than − 1
2γ if ∂EV (E) < 0 .

On the other hand, if ∂EV (E) > 0, the function f̃ is monotonic increasing and always

lesser than − 1
2γ . This second case is always excluded in f by the saturation, since from
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Remark 4.1 it holds k = ks <
1
2 or, equivalently, − 1

2γ < uMIN .

It has been shown how the optimal control u∗ depends on the charge distribution m

through the energy price p∗m but an analogue relationship also holds in the opposite

sense. In particular, m depends on the charge profile of the devices through the following

transport equation:

∂tm(t, E) =−∂E [u∗(t, E)m(t, E)]

m(0, E) =m0(E)
(4.27)

The solution to the arbitrage problem as a mean field game consists then in the couple

(V,m) (and the corresponding (u∗,m)), which represents a fixed point for equations

(4.22) and (4.27). In other words, it is necessary to determine an optimal u∗ which

minimizes the cost J for a given distribution m and, at the same time, induces such

distribution. For practical implementations, the MFG solution can be calculated in a

centralized manner following the procedure detailed in the next section. Once this has

been determined, a distributed control can be implemented with a one-way communica-

tion channel: the resulting energy price p∗m is broadcast to the devices, which will only

need to solve their individual optimization to determine their charge profile.

Remark 4.4. Existence and uniqueness for the solution of the MFG described by equa-

tions (4.22) and (4.27) have not been proved theoretically: current mathematical litera-

ture on the topic provides results in this sense only for much simpler classes of systems

[91]. In the rest of this chapter it is assumed that such solution exists and is approxi-

mated by the result of the numerical procedure described next.

4.4 Numerical Integration of the MFG Equations

For the calculation of the MFG solution it is important to consider that not only the

two equations (4.22) and (4.27) are interdependent, but they are also integrated in two

different directions. In fact, for the dynamic programming principle, the HJB equation

must be integrated backward in time while the transport equation is integrated forward.

In this respect, two different approaches are usually analysed in the literature: one

possibility, described for example in [78] and [79], is to approximate the MFG solution

by finite difference methods of the mean field model. In particular, the coupled PDEs

are solved at once applying a Newton method and solving the corresponding systems of

nonlinear equations through an iterative procedure. The application of this method in

the present case is complicated by the presence of the additional fixed point described

by (4.23) and (4.25). The use of discrete Semi-Lagrangian scheme is presented in [92],

which solves iteratively the two coupled PDEs until convergence to a solution.
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4.4.1 Iterative Strategy

A similar approach is used for the numerical resolution of the energy arbitrage MFG,

solving one equation at a time and using the result as a starting point for the next

integration. All steps of the numerical resolution are detailed below:

1. The initial guess for the energy distribution and the demand variation introduced

by storage are denoted respectively by m̃ and D̃s and are defined as follows:

m̃(t, E) = m0(E)

D̃s(t) = 0
∀ t ∈ [0, T ] (4.28)

2. The HJB equation (4.22) is integrated backwards starting from V (T,E) = Ψ(E)

and assuming m = m̃. At each time step t the fixed point for equations (4.23)

and (4.25), which corresponds to the optimal control u∗ and related price p∗m, is

calculated according to steps a) to d):

(a) The energy price is initially assumed equal to p̃(t) = Π(Di(t)).

(b) Optimal control estimate ū(t, ·) is obtained with equation (4.25), where p∗m(t)

is replaced with p̃(t).

(c) The new price estimate p̄ is calculated as:

p̄(t) = Π

(

Di(t) + ETOT
∫

m̃(t, E)
[

ū(t, E) + γū2(t, E)
]

dE

)

(4.29)

(d) The quantity |p̄(t) − p̃(t)| is evaluated. Given a certain price error tolerance

ǫp, if |p̄(t)− p̃(t)| < ǫp the iterations are stopped and step 3 is executed. If the

condition is not satisfied, the initial price estimation is reset with p̃(t) = p̄(t)

and steps 2.b-c are repeated.

3. A new estimate m̄ is obtained integrating forward equation (4.27) while considering

u∗ = ū. The resulting demand variation D̄s(t) introduced by storage is calculated

by replacing m̄ and ū in (4.21).

4. The following function norm is evaluated:

||D̄s − D̃s||1 =
∫ T

0

∣

∣

∣D̄s(t)− D̃s(t)
∣

∣

∣ dt

For a certain demand error tolerance ǫD, if ||D̄s − D̃s||1 < ǫD step 5 is executed.

Otherwise, the estimates in (4.28) are updated with m̃ = m̄ and D̃s = D̄s and

steps 2-3 are repeated.
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5. The solution of the MFG corresponds to the results of the last iteration:

u∗ = ū m = m̄

4.4.2 Numerical Methods

The numerical integration of the coupled PDEs has been performed using finite dif-

ference schemes. The time and state of charge steps ∆t and ∆E are chosen and the

corresponding vectors are partitioned:

ti = i ·∆t Ej = j ·∆E

The value of a function f(t, E) in (i∆t, j∆E) will be hereby denoted as f ij .

It is important to point out that the adopted numerical method for the integration of

the HJB equation is based on dynamic programming techniques for discretized systems.

Heuristically, the results are regarded to be consistent with the boundary conditions

that the constraints on the state E introduce in the PDE of the continuous problem

[93]. In particular, the following expression is considered for the optimal control u∗:

u∗
i

j = arg min
u∈U(Ej)

[

p∗
i

m(u+ γu2) + (∂EV )ij · u
]

Minimization is performed over the set U(E) of feasible controls for a given state E:

U(E) =



















[

0, uMAX
]

if E = 0
[

uMIN , uMAX
]

if 0 < E < 1
[

uMIN , 0
]

if E = 1

The control ū in step 2.b of the iterative strategy can then be determined as:

ūij = sat
U(Ej)



− p̃
i +

V i
j+1−V i

j−1

2∆E

2γp̃i





The integration of the HJB equation (4.22) at the time step i− 1 is performed with an

upwind scheme [94]:

V i−1
j = ∆t · ūij

[

1 + sign(ūij)

2

(V i
j+1 − V i

j )

∆E

]

+∆t · ūij

[

1− sign(ūij)

2

(V i
j − V i

j−1)

∆E

]

+ ∆t · p̄i
[

ūij + γ
(

ūij

)2
]

+ V i
j

(4.30)
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With this approach, the calculation of the partial derivative ∂EV at the state boundaries

is straightforward: when j = 1 the forward derivative, calculated using V i
1 and V i

2 ,

is always adopted and the same holds for the backward derivative when j = 1/∆E.

The transport equation (4.27) has been integrated with a Lax-Friedrich method [95].

An artificial viscosity with coefficient ǫ is introduced, adopting the following numerical

scheme:

m̄i+1
j = m̄i

j −
∆t

2∆E

[

ūij+1m̄
i
j+1 − ūij−1m̄

i
j−1

]

+ ǫ
[

m̄i
j+1 − 2m̄i

j + m̄i
j−1

]

(4.31)

Equation (4.31) can be easily extended to the energy boundaries (j = 1 and j = 1/∆E)

by taking into account that the sum of the viscosity term over j must be equal to 0.

4.4.3 Simulation Results

The presented iterative strategy and numerical methods are now used to simulate the

scenario of a large population of storage devices performing energy arbitrage in the

British power system. Regarding the parameters of the network, the inflexible demand

Di has been chosen equal to a 24-h UK demand profile [96] shown in Fig. 4.2. The price

function Π(D) has been defined on the basis of the values used in [97] and is shown in

Fig. 4.3.
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Figure 4.2: Chosen values of Di over a time interval of 24h.

In this case study a population of N = 106 devices has been considered, with the

following parameters:

Pr = 2.5KW Er = 25KWh k = 0.25
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Figure 4.3: Energy price Π(D) with respect to aggregate demand D.

The approximation with infinite players is then introduced, defining the boundary con-

ditions of the PDEs: m0 has been chosen as a gaussian distribution and Ψ as a quadratic

function which penalizes final values of E different from 1/2:

m0(E) = 1√
2πσ

e−
(E− 1

2)
2

2σ2 Ψ(E) = cE
(

E − 1
2

)2 (4.32)

The chosen parameters, including time and state of charge step, are:

∆t = 0.02h σ = 0.1 ǫp = 0.5£

∆E = 0.004 cE = 1000 ǫD = 1GWh

Consider that, once the mean field game has been solved, the results for a finite number

of devices can be obtained following Remark 4.3: the energy level Es and the charging

power us for the single device can be calculated by multiplying E and u by Er. In a

similar way, it is possible to obtain their energy distribution ms, optimal power profile

u∗s and cost function Js. A numerical solution to the mean field game described by

(4.22) and (4.27) is now obtained by following the procedure detailed at the beginning

of this section. Simulations have been run in a MATLAB environment on a HP Z600

machine equipped with an Intel Xeon CPU (frequency of 2.4GHz) and 12 GB of RAM.

The whole resolution procedure is completed, for the specified parameters, in about 7

seconds. The inflexible demand profile Di and the aggregate demand Di +Ds, at each

iteration of the backward/forward integration, are shown in Fig. 4.4. The proposed

resolution strategy, for the chosen demand error tolerance ǫD, converges in 3 iterations.

Furthermore, the presence of storage devices performing energy arbitrage introduces in

the aggregate demand a considerable peak shaving/valley filling. The optimal power
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profile u∗s(t, Es) = u∗(t, Es

Er
)Er is shown in Fig. 4.5. The resolution of the HJB equation

returns an optimal control in feedback form: since the charge profile is not only a function

of time but it also depends on the current energy of the device, greater robustness is

guaranteed. The energy stored in the devices across time, for different values of Es(0), is

shown in Fig. 4.6: notice that, in general, the trajectories have similar trends across time

and charging occurs in the first hours of the day when energy prices are low. Devices

with high values of Es(0) represent the only exception: in this case the initial charging is

limited by the constraint on the maximum energy Er. Moreover, it is important to point

out that the whole population, given the particular choice of Ψ (equal for all devices),

converges at time T towards the energy value Er

2 . The possibility to introduce different

terminal conditions, for example imposing that devices must have the same initial and

final energy, is considered in the next section. In Fig. 4.7 the original price of energy

p(t) = Π(Di(t)) is compared to p∗m(t), obtained when the storage population applies the

optimal charge profile u∗. Following the variations introduced in the aggregate demand

profile (shown in Fig. 4.4) and considering the chosen price function Π, the proposed

operation strategy achieves a considerable price reduction during peak times. From

expression (4.24) of the value function V , the profit Gs = −Js of the single device as a

function of its initial energy Es(0) can be defined as follows:

Gs(Es(0)) = −V
(

0,
Es(0)

Er

)

· Er

and it is shown, for the last iteration, in Fig. 4.8. As previously mentioned, in the current

formulation all devices will tend towards the same final value Er

2 of stored energy. This

means that Gs will be bigger for devices with higher values of Es(0) that have more

energy available to exchange.
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Figure 4.4: Aggregate demand profile at each iteration of the MFG-solving procedure.
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Figure 4.6: Stored energy Es(t) of the single device across time for different initial
values Es(0).
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0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Initial stored energy, E
s
(0) [KWh]

P
ro

fi
t,
 G

s
 [
£
]

 
 

Figure 4.8: Profit Gs of the single device as a function of the initial stored energy.

4.5 Model Extensions

The energy arbitrage problem with an infinite number of devices, described by the mean

field game with equations (4.22) and (4.27), is extended in this section in order to

consider additional elements or different constraints.
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4.5.1 Cyclic Constraints

In the original formulation the terminal cost function Ψ(E) is the same for all devices,

which in turn induces convergence towards similar values of Es at t = T . It might be

desirable to impose, for each device, a cyclic constraint Es(0) = Es(T ). In order to do

so, we introduce an additional state variable Is, defined as follows:

Is(t) =

∫ t

0
us(τ) dτ −Er ≤ Is(t) ≤ Er (4.33)

Notice that Is(t) represents the total variation of stored energy in the interval [0, t] and

the condition Es(0) = Es(T ) is equivalent to require Is(T ) = 0. For the case of infinite

players, the equivalent state variable I(t) =
∫ t
0 u(τ) dτ (in p.u.) is introduced in the

mean field game equations. For the transport equation, taking into account that the

optimal control will depend on time and the two state variables, it holds:

∂tm(t, E, I) = −∂E [u∗(t, E, I)m(t, E, I)] − ∂I [u
∗(t, E, I)m(t, E, I)]

m(0, E, I) = m0(E, I)
(4.34)

Similarly, for the HJB equation:

−∂tV (t, E, I) = min
u∈U

[

p∗m(t)(u+ γu2) + (∂EV (t, E, I) + ∂IV (t, E, I)) u
]

V (T,E, I) = Ψ(E, I)
(4.35)

In this case the demand variation Ds introduced by the storage population and consid-

ered in the calculation of p∗m corresponds to:

Ds(t) = ETOT
∫ ∫

m(t, E, I)[u∗(t, E, I) + γu∗
2
(t, E, I)] dI dE

Regarding the boundary conditions of the PDEs, for the transport equation (4.34) it is

sufficient to specify for E the initial energy distribution of the devices, with I = 0. For

the previous case study, considering (4.32) and denoting by δ the Dirac delta, it holds:

m0(E, I) =
1√
2πσ

e−
(E−1

2)
2

2σ2 · δ(I)

The cyclic condition E(0) = E(T ) can be introduced as a soft constraint, choosing Ψ in

order to penalize, for example quadratically with parameter cI , final values of I different

from 0:

Ψ(E, I) = cI · I2

As in the previous case, the coupled PDEs (4.34) and (4.35) have been solved numerically,

using the algorithm described in Section 4.4.1. The main difference is that the additional



Chapter 4. Distributed Control of Storage with MFG 118

state variable increases considerably the computational complexity of the integration

schemes. For this reason, different numerical methods are considered. The step ∆u is

introduced and the admissible controls are defined as:

ul = l ·∆u l = uMIN

∆u , u
MIN

∆u + 1, . . . , 0, . . . , u
MAX

∆u − 1, u
MAX

∆u
(4.36)

The time and state of charge steps are chosen in such a way that the state variation

introduced by ul is a multiple of ∆E, with ∆E = ∆u · ∆t = ∆I. A notation similar

to the one presented in Section 4.4.2 is adopted for the numerical schemes, denoting as

f ij,k the value of a function f(t, E, I) at (i∆t, j∆E, k∆I). The HJB equation can be

integrated considering a dynamic programming problem:

V i−1
j,k = min

l∈L(Ei,Ij)

[

p̄i
[

ul + γu2l
]

∆t+ V i
j+∆l,k+∆l

]

(4.37)

where ∆l = ul
∆t
∆E corresponds to the energy index variation introduced by ul and L(E, I)

is the set of admissible input indexes for a certain state (E, I). Given the control ūij,k

and the resulting energy index variation ∆̄i
j,k = ūij,k

∆t
∆E , the integration of the transport

equation can be easily implemented by initializing m̄i+1 at 0 and iterating the following

over j and k:

m̄i+1
j+∆̄i

j,k,k+∆̄i
j,k

= m̄i+1
j+∆̄i

j,k,k+∆̄i
j,k

+ m̄i
j,k

The scenario described in the previous section has been simulated with the following

parameters:

Pr = 2.5KW Er = 25KWh k = 0.25 cI = 105

∆u = 0.0125/h ∆t = 0.32h ∆E = ∆I = ∆u ·∆t = 0.004
(4.38)

The algorithm for the resolution of the MFG converges, as in the previous case, in about

three iterations and, given the additional variable I introduced in the problem, for the

parameters in (4.38) requires about 4 hours to be completed. By choosing a larger step

∆u = 0.025/h, it is possible to complete the same calculations in 1 hour, with a difference

in the results which is not significant. The profile of total demand obtained in simulation

is very similar to the one in Fig. 4.4. The corresponding energy trajectories for different

values of E(0) are shown in Fig. 4.9. As expected, each device charges/discharges on the

basis of the current price of energy, returning at its initial state of charge for T = 24h.

In this case the profit Gs of the single device as a function of its initial energy Es(0) is

equal to −V
(

0, Es(0)
Er

, 0
)

Er. A sensitivity analysis has been carried out, evaluating Gs

for different values of Er (while keeping unaltered the other parameters). The results

are shown in Fig. 4.10. One can see that to higher energy ratings correspond higher

profits. Furthermore, the arbitrage is in general more profitable for the devices which
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start with a low state of charge and are therefore able to charge more energy during the

first hours of the day, when energy price is lower. A further consideration can be made

for the scenario with Er = 25KWh: in this case the highest profit is achieved by devices

with initial state of charge within a certain interval. It can be noticed from Fig. 4.9 that

these devices are the ones for which the constraints on minimum and maximum energy

are not active in the considered time horizon.
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Figure 4.9: Stored energy of the devices across time for different values of E(0), with
energy rating Er = 25KWh.
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4.5.2 Multiple Populations of Devices

A preliminary hypothesis in the formulation of the arbitrage problem as a mean field

game has been the homogeneity of the devices: all agents have the same efficiency,

capacity and maximum rate of charge. It is possible, in principle, to introduce in the

model a parameter α which varies in the population, considering it as an additional state

variable and imposing α̇ = 0. The main problem with this approach is that it increases

considerably the complexity of the problem. An acceptable trade-off can be obtained if,

instead of parameters that vary continuously, we consider a finite number of populations,

each with devices of the same kind. In fact, for the considered arbitrage problem, these

distinct groups of agents will interact only through the energy price Π(Di +Ds). This

particular case can be approached by solving in parallel a set of coupled PDEs (4.34) and

(4.35), one for each population, that share the same price function. The same resolution

procedure is followed, with a different expression for the demand variation introduced by

storage. Denoting with subscript j the energy distribution, total capacity and optimal

control for the j-th population, it holds:

Ds(t) =
M
∑

j=1

ETOTj

∫ ∫

mj(t, E, I)
[

u∗j(t, E, I) + γju
∗2
j (t, E, I)

]

dE dI (4.39)

In the case of a finite number M of populations, characterized by different sets of pa-

rameters, M coupled PDEs are solved in parallel, with a computational complexity that

increases linearly with respect to M . This extension is particularly significant if one

considers practical implementations of the proposed control algorithm. In fact, in order

to obtain the solution of the mean field game, the centralized entity that performs this

calculation must know the initial energy distribution of the devices and the correspond-

ing characteristics (energy/power rating and efficiency). In this respect, it is reasonable

to assume that a finite number of device typologies (with known parameters) will be

available for commercial purposes. In the proposed formulation, to each kind of device

will correspond one of the M populations considered above.

A scenario with two distinct groups of storage devices (A and B) performing energy

arbitrage has been simulated, with the following choice of parameters:

NA = 5 · 105 ErA = 20KWh PrA = 2KW

NB = 5 · 105 ErB = 30KWh PrB = 3KW

The corresponding MFG equations with cyclic constraints have been integrated using the

same boundary conditions and numerical methods presented in the previous subsection.

With the hardware/software specifications provided in Section 4.4.3, the simulation is
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completed in about 4 hours. As in the previous case, the simulation time is sensibly

reduced if one increases the discretization step ∆u of the control u. The aggregate

demand at each iteration of the backward/forward integration is shown in Fig. 4.11.

Convergenge to the solution is achieved in 3 steps when ǫD = 1GWh and the peak

shaving/valley filling introduced by storage is comparable to the one achieved when a

single population is considered. The profit of the devices as a function of their initial

state of charge is compared in Fig. 4.12 for the two groups. Notice in particular that

for the devices of population A, with a lower power rating, the corresponding profit GsA

is sensibly lower. Furthermore, the considerations on Fig. 4.10 about the effect of the

initial state of charge on the profit Gs can be extended to the present case.
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of the MFG-solving procedure.

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Initial state of charge, E(0)

P
ro

fi
t,
 G

s
 [
£
]

 

 

 

G
s

A

G
s

B

Figure 4.12: Profit Gs of the single device as a function of the initial state of charge,
for population A (blue) and B (red).



Chapter 4. Distributed Control of Storage with MFG 122

4.5.3 Uncertainty in Demand

Another assumption in the formulation of the mean field game presented in Section 4.3

is that the inflexible demand profile Di is known without uncertainties. It is possible to

consider error in the demand forecast D̃i by introducing the following expression:

D̃i(t) = Di(t) + η(t)

where Di is the actual inflexible demand and η is a stochastic process. One possible way

to take into account demand uncertainty is to use a receding horizon control:

1. At time t the actual demand Di(t) is measured and the forecast D̃i is estimated

over the interval [t, t+ T ].

2. Based on the current distribution m(t, ·), the terminal cost function Ψ is updated:

Ē(t) =

∫

E
m(t, E)E dE

Ψ(E) = cE ·
(

E − Ē(t)
)2

3. The coupled PDEs (4.22) and (4.27) are solved considering D̃i as profile of inflexible

demand.

4. The optimal u∗ is applied only at the current time step.

5. Steps 1-4 are repeated for t+∆t.

This approach allows to implicitly incorporate uncertainty in the model but, on the other

hand, increases the computational complexity by a factor of T/∆t since the equations of

the mean field game must now be solved at each time step. For the simulation presented

next, the dynamics of η are defined as follows:

dηt = σf · dWt (4.40)

where W denotes the Wiener process. The forecast error η is characterized, similarly

to what is shown for example in [98], by mean value µη(t) = 0 and standard deviation

ση(t) = σf
√
t. The performance of the receding horizon strategy has been evaluated for

the case study described in Section 4.4.3, with a higher time step ∆t = 0.2h. The average

daily profit Ḡs of the single device over 200 days has been calculated for different values

of σf and it is shown in Fig. 4.13. The simulation time for each σf amount to about

80 minutes. Notice that, in practical implementations, calculations would be gradually
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performed during the whole time interval and not entirely at the beginning. As expected,

there is a reduction of Ḡs for increasing values of σf . On the other hand, such reduction

is not very significant: by solving the MFG at each time step, with updated forecasts on

demand, the impact of uncertainties on the final result can be considerably reduced.
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Figure 4.13: Average daily profit Ḡs of the single device (over 200 days) as a function
of the parameter σf when the receding horizon control is applied.

4.5.4 Multi-Area Systems

In the initial model presented in Section 4.3 it is assumed that all generators, loads and

storage devices belong to the same area and there is no limit to the power that can

be exchanged within the network. To consider a more realistic framework, the power

system can be divided in different areas, introducing transmission constraints. In each

area k the generation cost Ck(G), the demand Dk and the installed storage capacity

ETOTk are different. To calculate the price at which storage devices will exchange energy

in the different areas, an optimal power flow problem must be solved. On the basis of

the current values of demand, storage charge profiles and transmission constraints, the

generated power is distributed among the different areas in order to minimize the total

generation cost. For a system with nA areas, if we denote by F̄kl the capacity constraint

between areas k and l and by Fkl the actual power flow, we have:

min
G

nA
∑

k=1

Ck(Gk)

s.t. Gk = Dk +

nA
∑

j=1,j 6=k
Fkj k = 1 . . . nA

|Fkl| ≤ F̄kl ∀(k, l)

(4.41)
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The optimization problem is approached by considering as decision variables the net

inflows Ik and the voltage angles θk. Under the standard assumptions for DC power

flow, (4.41) can now be written as [99]:

min
I,θ

nA
∑

i=1

Ck(Gk)

s.t. Gk = Dk + Ik k = 1 . . . nA

I = Y θ

|Fkl| =
∣

∣

∣

∣

1

xkl
(θk − θl)

∣

∣

∣

∣

≤ F̄kl ∀ (k, l)

(4.42)

where I and θ denote respectively the vectors of net inflows and voltage angles, Y is

the admittance matrix of the system and xkl is the reactance of line kl. Each demand

Dk in (4.42) has two components, the known inflexible profile Dik and the contribution

of storage Dsk . The prices pk at which the storage devices in area k exchange energy

are given by the value of the Lagrange multiplier associated with the equality constraint

Ik = Ykθ. The MFG equations for the population of devices in area k are a straight

derivation of (4.22) and (4.27):

−∂tVk(t, Ek) = min
uk∈Uk

[

pk(t)[uk + γu2k] + ∂Ek
Vk(t, Ek)uk

]

∂tmk(t, Ek) =−∂Ek
[mk(t, Ek)u

∗
k(t, Ek)]

(4.43)

The coupled PDEs (one for each area k) can be solved in parallel with the procedure

described in Section 4.4.1. The only difference is that the price p̄ at step 2.c is not

calculated with equation (4.29) but it is obtained solving problem (4.42), considering

the following expression for the demand Dk in each area:

Dk(t) = Dik(t) + ETOTk

∫

E
m̄k(t, E)ȳk(t, E) dE (4.44)

Furthermore, the convergence conditions in step 2.d and 4 have to be verified for prices

and demand in each area.

Simulations have been run for the 3-area power system shown in Fig. 4.14, with the

following choice of parameters:

x12 = 0.2 p.u. x13 = 0.1 p.u. x23 = 0.2 p.u.

F̄12 = 8GW F̄13 = 8GW F̄23 = 4.3GW

ETOT1 = 15GWh ETOT2 = 15GWh ETOT3 = 7.5GWh

(4.45)
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Generation costs increase from Area 1 to Area 3 (C1(G) > C2(G) > C3(G)) and the

inflexible demand profile in each area is a repartition of the function Di shown in Fig.

4.2:

Di1 =
1

2
Di Di2 =

1

3
Di Di3 =

1

6
Di (4.46)

Figure 4.14: Three area system considered in the numerical resolution of the MFG.
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The numerical procedure for the integration of (4.43) converges, as in the previous cases,

in 3 iterations. The values of generation in each of the 3 areas are shown in Fig. 4.15.

It can be seen that, as in the other case studies, the energy arbitrage performed by the

storage devices introduces a significant valley filling. A similar trend can be noticed

in the power flows, shown in Fig. 4.16: the presence of storage reduces their variation

during the day and restricts the time interval during which the line 2-3 operates at

full capacity. The prices at which the devices exchange energy are in Fig. 4.17. It is

interesting to notice that prices are equal in all areas except when a capacity constraint

is active and energy becomes more expensive in areas 1 and 2.
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Figure 4.17: Nodal prices in the three areas.

4.6 Conclusions

A new methodology is presented for distributed control of storage devices performing

energy arbitrage. The problem is formulated in a competitive game framework, consider-

ing initially a finite number of players and providing some preliminary existence results.

In order to properly account for the changes in the total power demand and energy price

introduced by the devices, the storage population is modelled as a continuum and the

problem is approached as a differential game with infinite players (mean field game).

Once the game is solved by numerical integration of coupled PDEs, an updated energy

price can be communicated to the devices, which are able to calculate their optimal

charge profile in a decentralized manner. The methodology is tested through simula-

tions and then expanded to account for additional elements such as cyclic constraints,

uncertainty on demand and multi-area systems.



Chapter 5

Decentralized Scheduling of

Flexible Demand in the

Electricity Market

This chapter deals with large populations of flexible appliances which, in order to mini-

mize their energy cost, greedily determine their daily profile of power consumption on the

basis of a broadcast price signal. By approximating the population size as infinite and

describing its behaviour as a continuum, it is possible to provide necessary and sufficient

conditions for the existence of a Nash equilibrium in the energy market. These condi-

tions can be extended introducing proportional constraints on the absorbed power of the

devices, limiting the impact of the population on the energy price at critical time instants.

The described framework is tested in simulation and extended in order to consider partial

flexibility of the appliances.

5.1 Introduction

Flexible demand is an important aspect of the smart grid paradigm for the future power

system. As mentioned in Section 4.1.2, it is expected that in the next few years there

will be a consistent number of devices (e.g. “smart” domestic appliances and electric

cars) that would be able to schedule their power consumption throughout the day. In

particular, it is reasonable to assume that the scheduling will be determined in order to

minimize the total operating cost. As in the previous chapter, which considers micro-

storage devices, the demand variations introduced by the aggregate power consumption

of the population modify the resulting price of energy and must therefore be taken

into account. The main difference with respect to the storage case is that the flexible

127
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appliances can only absorb energy from the system. This implies that it is no longer

necessary to impose constraints on the state of the devices (which in the previous chapter

corresponds to their state of charge): each appliance will only need to specify the total

amount of energy to be consumed during the considered time horizon.

The problem is analysed within a game-theory framework: the appliances are considered

as competing agents which schedule their power consumption in order to minimize their

energy cost, on the basis of a broadcast price signal received by some central entity.

Existence and uniqueness of a Nash equilibrium are investigated, determining under

which conditions all the appliances have no unilateral interest in changing their operation

strategy, formulated on the basis of the broadcast signal, when the energy price of

the resulting aggregate demand profile is considered. A significant element of novelty

with respect to most of the distributed control strategies presented in Section 4.1.3 is

that, instead of operating iteratively by updating in turn the broadcast price and the

strategies of the players, necessary and sufficient conditions are provided for convergence

to equilibrium in one step. This is achieved by approximating the population size as

infinite and accounting for its parameters distribution through a power density of task

durations which describes the valley-filling capability of the appliances. Similarly, the

inflexible demand profile is described by the negotiable valley capacity, a function that is

related to the measure of its different sublevel sets and quantifies the amount of flexible

demand that can be allocated while preserving an equilibrium. By comparing these two

functions, it is possible to verify whether an equilibrium exists and show that, if this is the

case, it can be achieved by simply broadcasting to the devices the price of the inflexible

demand. When the equilibrium conditions are not satisfied, the problem is approached

by introducing a time-varying proportional constraint (equal for all appliances) in order

to limit the power absorption at critical time instants. Such constraint is designed in

order to achieve a Nash equilibrium and, at the same time, minimize the operation time

of all the appliances. It is possible to show that the proposed control strategy is optimal

also for some global index that quantifies the flattening of aggregate demand and, in

some cases, achieves Pareto optimality. The proposed algorithms are then evaluated

in simulations and extended to consider partial flexibility of the devices. In particular,

assuming that each agent can operate only after a certain time instant, the analysis

focuses on a specific class of broadcast signals which can be parametrized as valleys. A

design method is provided in order to calculate, if there exists, a demand/price function

that can be broadcast to the devices and induce an equilibrium under the additional

time constraint.

The rest of this chapter is structured as follows: Section 5.2 models the flexible appli-

ances population and their optimization strategy with respect to a broadcast price. The
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necessary and sufficient conditions for a Nash equilibrium are derived in Section 5.3 and

extended, through the addition of time-varying proportional constraints, in Section 5.4.

Simulation results are presented in Section 5.5 while Section 5.6 describes the global

optimality properties of the proposed control strategy and Section 5.7 details the case

of appliances with partial flexibility.

5.2 Flexible Demand and Optimization Strategies

The existence of Nash equilibria in the electricity market is investigated considering a

large number of flexible appliances, such as “smart” domestic loads and electric cars,

that must complete a certain task within a specified time interval [0, T ], at minimum

cost. Each of them communicates to a central entity the total amount of energy Etot

that needs to consume and the minimum time tmin required to do so by operating at

rated power Pr. If the number of appliances is sufficiently large to be described by

a continuum, it is possible to derive the unnormalized distribution m(t, E) of these

parameters, where
∫ t2
t1

∫ E2

E1
m(t, E) dE dt will denote the number of devices for which

E1 ≤ Etot ≤ E2 and t1 ≤ tmin ≤ t2. For the purposes of the present work, the properties

of the appliances population can be summarized by the function f(t), which denotes the

aggregate amount of energy required by the appliances with tmin ≤ t, and its derivative

f ′. Denoting by E an interval which includes all broadcast values of Etot, they can be

defined as follows:

f(t) :=

∫ t

0

∫

E
m(τ,E)E dE dτ f ′(t) :=

∫

E
m(t, E)E dE (5.1)

Assumption 5.1. The derivative f ′ is assumed of compact support with F = supp(f ′) =

[qmin, qmax]. In general this can correspond to a scenario of heterogeneous appliances

with different parameters tmin and Etot but can also represent the case of homogeneous

devices which, at the beginning of the considered time interval [0, T ], are performing

distinct tasks that require different amounts of time or energy to be completed.

The energy price p(t) (generally varying in time) is modelled as a static function of the

aggregate demand Da at the same instant, viz. p(t) = Π(Da(t)), for some monoton-

ically increasing function Π : [0,+∞) → [0,+∞). The aggregate demand, in turn, is

given by two different components: the inflexible demand Di, assumed to be known

a priori, and the contribution Df of the flexible appliances. These appliances receive

from the mentioned central entity a certain demand profile D(t) (or equivalently the

price p(t) = Π(D(t))) and determine their power consumption u by minimizing their
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own resulting total energy cost:

min
u(·)

∫ T

0
Π(D(t)) · u(t) dt

s. t 0 ≤ u(t) ≤ Etot
tmin

∫ T

0
u(t) dt = Etot

(5.2)

It is straightforward to verify that the solution of (5.2) corresponds to operate, at rated

power Pr =
Etot

tmin
, during the tmin hours characterized by lowest demand (or equivalently

lowest price). In order to provide a formal expression of the optimal power consumption

profile u∗, the following definition is crucial:

Definition 5.1. Considering the continuous function D : [0, T ] → [0,+∞) as the broad-

cast profile, we define its cumulative distribution QD : [dmin, dmax] → [0, T ] as:

QD(d) := µ ({τ ∈ [0, T ] : D(τ) ≤ d}) (5.3)

where µ denotes the Lebesgue measure. Notice that QD(d), which returns the measure

of the sublevel sets of the profile D, is a monotone increasing function. Furthermore, it

holds QD(dmin) = 0 and QD(dmax) = T where dmin and dmax are defined as follows:

dmin := inf
t∈[0,T ]

D(t) dmax := sup
t∈[0,T ]

D(t) (5.4)

Assumption 5.2. There are no level sets of positive measure for the broadcast demand

D. In particular, for any d ∈ [dmin, dmax], it must hold:

µ ({τ ∈ [0, T ] : D(τ) = d}) = 0. (5.5)

Such assumption is not very restrictive and holds in general for typical profiles of in-

flexible demand, which will be considered later on when determining the equilibrium

conditions. Furthermore, it guarantees continuity of the cumulative distribution QD

and uniqueness (up to congruence in the ℓ1 norm) of the optimal solution of (5.2). Con-

sider in fact that, for all values of tmin, there exists a sublevel set of D of measure tmin

that we denote by SD(tmin) and define as follows:

SD(tmin) = {t ∈ [0, T ] : QD(D(t)) ≤ tmin} . (5.6)

In particular, from (5.3) and Assumption 5.2, it holds:

D(t1) < D(t2) ∀t1 ∈ SD(tmin) ∀t2 ∈ [0, T ]\SD(tmin) (5.7)
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For a better understanding of the relationship between time t and the measureQD(D(t)),

some comparisons are performed next. Examples of broadcast demand profiles are shown

in Fig. 5.1 while Fig. 5.2 contains the corresponding functions QD(D(t)).
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Figure 5.1: Examples of broadcast profiles D.
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Figure 5.2: Measure function QD(D(t)) for the broadcast profiles shown in Fig. 5.1.

The blue curve D1 in Fig. 5.1 is a typical 24h UK demand profile and the corresponding

function QD1 in Fig. 5.2 shows the same monotonicity trends with values in the interval

[0, 24]. The red curve D2 represents an example of monotonically increasing profile to

which, by definition, corresponds a linear function QD2(D2(t)) = t. The last considered

curve D3 is a profile which violates Assumption 5.2 and is constant over an interval of
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positive measure. It is clear from Fig. 5.2 that this corresponds to discontinuities in the

measure function QD3 .

The optimal power consumption profile u∗ for devices with minimum time tmin = s and

total energy Etot = x can now be defined as:

u∗(t, s, x) =



















x

s
if t ∈ SD(s)

0 if t /∈ SD(s)
(5.8)

Consider that t ∈ SD(s) if and only if QD(D(t)) ≤ s. This means that u∗ can be

calculated as a function of the measure q returned by QD(D(t)). If the broadcast

demand D satisfies Assumption 5.2, the following expression can be provided for the

optimal power profile of the individual device with tmin = s and Etot = x:

ū∗(q, s, x) =



















x

s
if q ≤ s

0 if q > s

(5.9)

Furthermore, it is possible to define the aggregate power density ḡ of the devices with

tmin = s as a function of q:

ḡ(q, s) =

∫

E
ū∗(q, s, x) ·m(s, x) dx =



















f ′(s)
s

if q ≤ s

0 if q > s

(5.10)

By taking the integral of ḡ over the different minimum times tmin, one can derive the

expression of the flexible demand D̄f generated by the appliances population when D is

broadcast:

D̄f (q) =

∫ T

0
ḡ(q, s) ds =

∫ T

q

f ′(s)
s

ds (5.11)

Remark 5.1. The optimal power consumption profile u∗, its aggregation g and the flexible

demand Df can be calculated as functions of time by evaluating the corresponding

expressions in the q variable at q = QD(D(t)):

u∗(t, s, x) = ū∗(QD(D(t)), s, x) g(t, s) = ḡ(QD(D(t)), s) Df (t) = D̄f (QD(D(t)))

(5.12)

Remark 5.2. Since f ′(s)
s quantifies the aggregate rated power of the appliances with

tmin = s, given expression (5.9) for the optimal power profile ū∗ and Assumption 5.1 on

the support of f ′, it follows that, when D is broadcast, all devices will operate (at rated

power) when QD(D(t)) < qmin and will instead not operate when QD(D(t)) > qmax.
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Having defined the flexible demand which results from broadcasting a certain D, the

corresponding aggregate profile Da,D will have the following expression:

Da,D(t) = Di(t) + D̄f (QD(D(t))) (5.13)

In the particular case in which D = Di (viz. inflexible demand is broadcast), the

aggregate demand depends exclusively on the current broadcast value d = Di(t) through

the function K(d) defined below:

Da,Di
= K(d) =







































d if QDi
(d) > qmax

d+

∫ qmax

qmin

f ′(s)
s

ds if QDi
(d) < qmin

d+

∫ qmax

QDi
(d)

f ′(s)
s

ds if QDi
(d) ∈ supp(f ′)

(5.14)

5.3 Conditions for Nash Equilibrium

It is desirable to understand under which conditions a Nash equilibrium is achieved in

the energy market. In particular, we want to determine which are the broadcast profiles

D such that the corresponding u∗ are optimal power schedules also for the resulting

aggregate demand Da,D. In other words the devices, which have optimized their power

consumption considering the broadcast D, will have no unilateral interest in changing

their operation strategy in response to the variation of prices induced by considering the

aggregate demand. The analysis of the equilibria will be carried out by comparing two

different functions in the variable q which are related to the chosen broadcast profile

and to the properties of the appliances population.

Consider that high penetration of flexible demand has the potential of transforming val-

leys of the broadcast demand signal into peaks of the aggregated demand profile. In this

case the decentralized power scheduling computed by the appliances is suboptimal and

constantly susceptible to renegotiation in a way that forbids convergence to a well defined

power consumption profile. For a given profile D, it is possible to quantify the amount

of flexible demand that can be greedily allocated by the appliances while preserving the

existence of a Nash equilibrium. We name this quantity the negotiable valley capacity:

Definition 5.2. For a continuous demand profileD : [0, T ] → [0,+∞) fulfilling Assump-

tion 5.2, the negotiable valley capacity is defined as the function ΛD : [0, T ] → [0,+∞)

presented below:

ΛD(q) : q →
d

dq
Q−1
D (q).
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Such definition is independent of the price of energy Π and quantifies the flexible power

density allowed in the valleys of the broadcast signal D.

In a similar way, it is possible to describe how a certain population of appliances will

allocate their power consumption u as a function of the sublevel set measure q, based

on the distribution of the parameters tmin and Etot. In particular, the following notion

of power density at q can be introduced:

Definition 5.3. For a population of flexible appliances with parameters distribution m,

we define the power density of task durations as the function Λf : [qmin, qmax] → [0,+∞)

given below:

Λf : q → f ′(q)
q

=

∫

E Em(q,E) dE

q

Notice that Λf (q) =
f ′(q)
q is a density function which quantifies the total rated power of

the appliances with parameter tmin = q. Therefore, given q1, q2 ∈ supp(f ′), the integral
∫ q2
q1

Λf (τ) dτ is equal to the total rated power of the appliances with tmin ∈ [q1, q2]. It

will be shown in the rest of this section how the existence of an equilibrium can be

verified by comparing the values of Λf and ΛDi
on the interval [qmin, qmax].

If one initially considers the problem in the time variable t, an equilibrium exists if and

only if the flexible demand scheduled on the basis of the a priori broadcast price signal

Π(D) is also optimal for the a posteriori price signal (viz. taking into account the sum

Da,D of the inflexible and flexible demand). Hence, the following needs to hold for all

Etot = x ∈ E and tmin = s ∈ [qmin, qmax]:

∫ T

0
Π(Da,D(t))u

∗(t, s, x)dt = min
u(·)

∫ T

0
Π(Da,D(t)))u(t) dt

s. t 0 ≤ u(t) ≤ x

s
∫ T

0
u(t) dt = x

(5.15)

Given the optimality of the power profile u∗ for (5.2) and its expression provided in

(5.8), the following is verified for all tmin ∈ supp(f ′):

D(t1) < D(t2) ∀t1 ∈ SD(tmin) ∀t2 ∈ [0, T ]\SD(tmin) (5.16)

In the same way, u∗ will be the solution of the minimization problem in (5.15) (when

the aggregate profile Da,D is considered) if and only if a similar inequality holds for all

tmin ∈ supp(f ′):

Da,D(t1) ≤ Da,D(t2) ∀t1 ∈ SD(tmin) ∀t2 ∈ [0, T ]\SD(tmin) (5.17)
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(the “only if” direction being a consequence of continuity of the aggregate demand if

Assumption 5.2 is fulfilled). These conditions are at the core of the following result

which characterizes existence of a Nash equilibrium in the electricity market:

Theorem 5.1. Consider a continuous profile of inflexible demand Di fulfilling Assump-

tion 5.2. The equilibrium condition (5.15) is satisfied for D = Di if and only if:

Λf (q) ≤ ΛDi
(q) ∀q ∈ [qmin, qmax]. (5.18)

Proof. Given definition (5.6) of the set SD(tmin) for D = Di, the optimality condition

(5.17) forDa,Di
(equivalent to (5.15)) can alternatively be written, for all tmin ∈ supp(f ′),

as:

K(d1) ≤ K(d2) ∀d1, d2 : QDi
(d1) ≤ tmin, QDi

(d2) > tmin (5.19)

where K, defined in (5.14), is the function that returns the aggregate demand when

the inflexible profile Di is broadcast. A more general expression which accounts for all

values of tmin can also be provided:

K(d1) ≤ K(d2) ∀(d1, d2) ∈ DC : d1 ≤ d2

In order to define the set DC , consider that the comparisons in (5.17) and (5.19) are

performed between the demand values at some instant t1, included in the interval

SDi
(tmin) and some other t2 not included in it. Since the inequality must hold for

all tmin ∈ supp(f ′), if one denotes by dmin and dmax the minimum and maximum values

of inflexible demand, it is possible to give the following definition:

DC := ([dmin, dmax]× [dmin, dmax]) \(Dmin ∪ Dmax)

The sets Dmin (and Dmax) correspond to pairs of demand values at which all devices

are consuming power (respectively not consuming). From Remark 5.2, it holds:

Dmin = {(d1, d2) : QDi
(d1) < qmin, QDi

(d2) < qmin}

Dmax = {(d1, d2) : QDi
(d1) > qmax, QDi

(d2) < qmax}

Taking into account that K(d) is monotonic increasing by definition in the intervals

[dmin, Q
−1
Di

(qmin)] and [Q−1
Di

(qmax), dmax], conditions (5.17) and (5.19) correspond to K

being monotonic increasing on DDi
= [Q−1

Di
(qmin), Q

−1
Di

(qmax)] or equivalently:

K ′(d) = 1− f ′(QDi
(d))

QDi
(d)

Q′
Di
(d) ≥ 0 ∀d ∈ DDi
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Dividing both terms of the inequality by Q′
Di
(d) and letting q denote QDi

(d) yields:

Λf (q) =
f ′(q)
q

≤ d

dq
Q−1
Di

(q) = ΛDi
(q) ∀q ∈ [qmin, qmax]

From Theorem 5.1 it is possible to conclude that, if the power density Λf is lesser or

equal than the negotiable valley capacity ΛDi
on the support of f ′, the equilibrium can

be achieved (in a one-step iteration) by simply broadcasting to the devices the profile Di

(or the associated price) of inflexible demand and letting each device schedule its power

consumption at constant maximum rate within the sublevel set of Di of appropriate

measure, viz. corresponding to its own minimum time parameter tmin.

Remark 5.3. Condition (5.18) in Theorem 5.1 is equivalent to impose that the aggregate

demand is monotonic increasing in the q variable. In fact, if one considers (5.11), the left

hand side Λf in (5.18) represents the derivative of the flexible demand in the variable q

changed in sign. Similarly, since Q−1
Di

(q) returns the value of Di at a given q, the right

hand side ΛDi
in (5.18) represents the derivative of the inflexible demand with respect

to q. The equilibrium condition (5.18) can then be rewritten as:

D̄′
i(q) + D̄′

f (q) ≥ 0 ∀q ∈ [qmin, qmax] (5.20)

where D̄f (q) and D̄i(q) denote respectively flexible and inflexible demand as a function

of the measure q.

The next step is to understand if alternative profiles D could be broadcast in order to

induce an equilibrium when condition (5.18) is violated. Namely, whether or not there

exist other kinds of Nash equilibria, possibly under relaxed conditions and higher density

of flexible demand. To this end, let us regard two broadcast profiles as equivalent if they

induce (for almost all times) the same scheduling of flexible demand. The equivalence

class Di of the signal Di can be characterized as in the definition below.

Definition 5.4. Let Di denote the set of signals Db for which the following conditions

are satisfied for almost all t ∈ [0, T ]:

QDb
(Db(t)) ≤ qmin if QDi

(Di(t)) ≤ qmin (5.21a)

QDb
(Db(t)) ≥ qmax if QDi

(Di(t)) ≥ qmax (5.21b)

QDb
(Db(t)) = QDi

(Di(t)) if qmin ≤ QDi
(Di(t)) ≤ qmax (5.21c)

From Remark 5.2 and expressions (5.11) and (5.12) for the flexible demand, condition

(5.21a) is equivalent to impose that time intervals for which the flexible demand equals
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its maximum value
∫ qmax

qmin

f ′(τ)
τ dτ when Db and Di are broadcast coincide up to sets of

zero measure. Similarly, condition (5.21b) ensures that the intervals for which flexible

demand is equal to zero when Db and Di are broadcast differ for sets of zero measure.

Finally, condition (5.21c) imposes equality of the flexible demand at all other time

instants.

It is now possible to verify that an equilibrium can be achieved only with broadcast

signals D that belong to Di.

Theorem 5.2. The Nash equilibrium condition (5.15) is satisfied for a broadcast profile

D = Db which fulfils Assumption 5.2 if and only if Db ∈ Di and inequality (5.18) holds.

Proof. It is straightforward to verify the sufficient part of the theorem by noticing that,

if Db ∈ Di, the aggregate demand Da,Db
and the optimal power profile u∗ obtained with

the broadcast Db are equal almost everywhere to the corresponding quantities obtained

when the inflexible demand Di is broadcast. For the necessary part of the theorem, it

can be shown that, if any condition in (5.21) is violated on a set of positive measure, the

power absorption profiles calculated according to Db are not optimal for the resulting

aggregate demand. In this respect, it is useful to define the following sets associated to

an arbitrary profile D:

TminD
:= {t : QD(D(t)) ≤ qmin} TmaxD := {t : QD(D(t)) ≥ qmax} (5.22)

and calculate the corresponding measures:

µ(TminD
) = qmin µ(TmaxD) = T − qmax

Alternatively, Di can be defined as the set of broadcast profiles Db which satisfy the

following conditions:

µ
(

TminDb
\TminDi

)

= 0 (5.23a)

µ
(

TmaxDb
\TmaxDi

)

= 0 (5.23b)

QDb
(Db(t)) = QDi

(Di(t)) ∀ t ∈ [0, T ]\(TmaxDi
∪ TminDi

) (5.23c)

Assume now that (5.23a) does not hold. Since µ(TminDi
) = µ(TminDb

) = qmin, it is

possible to define t1 and t2 such that:

t1 ∈ TminDb
t1 /∈ TminDi

t2 /∈ TminDb
t2 ∈ TminDi

(5.24)
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This means that, for all tmin ∈ [qmin, QDb
(Db(t2))), it holds:

t1 ∈ SDb
(tmin) t2 /∈ SDb

(tmin) (5.25)

It follows from (5.24) that Di(t2) < Di(t1). Moreover, if one considers the expressions of

flexible demand in (5.11) and (5.12), since in the present caseQDb
(Db(t1)) < QDb

(Db(t2)),

it holds Df (t2) < Df (t1). The following inequality is therefore verified for the aggregate

demand:

Di(t1) +Df (t1) > Di(t2) +Df (t2)

This means that the Nash equilibrium condition (5.17) is violated for D = Db and

tmin ∈ [qmin, QDb
(Db(t2))).

A similar approach is followed when (5.23b) is not verified, defining t1 and t2 such that:

t1 /∈ TmaxDb
t1 ∈ TmaxDi

t2 ∈ TmaxDb
t2 /∈ TmaxDi

(5.26)

Thus, for all tmin ∈ [QDb
(Db(t1)), qmax], it holds:

t1 ∈ SDb
(tmin) t2 /∈ SDb

(tmin) (5.27)

Considering that Di(t1) > Di(t2) from (5.26) and QDb
(Db(t1)) < QDb

(Db(t2)), we also

have Df (t1) > Df (t2). For the aggregate demand at the two time instants, it holds:

Di(t1) +Df (t1) > Di(t2) +Df (t2)

We can conclude that the Nash equilibrium condition (5.17) is not verified for D = Db

when tmin ∈ [QDb
(Db(t1)), qmax]. We finally analyze the case when (5.23a) and (5.23b)

hold but (5.23c) is violated. This means that the sets TminD
and TmaxD coincide up

to sets of measure 0 for the profiles Di and Db. Moreover, it is possible to define the

following:

TM = [0, T ]\(Tmaxi ∪ Tmini
) = [0, T ]\(Tmaxb ∪ Tminb

)

It is assumed that there exists t2 ∈ TM such that it holds:

QDi
(Di(t2)) < QDb

(Db(t2))

The proof can be easily extended to the case when the opposite inequality is verified.

The following sets are now introduced:

Ti− := {t : QDi
(Di(t)) ≤ QDi

(Di(t2)), t ∈ TM}
Tb− := {t : QDb

(Db(t)) ≤ QDb
(Db(t2)), t ∈ TM}
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For the corresponding measures, it holds:

µ(Ti−) = QDi
(Di(t2))− qmin < QDb

(Db(t2))− qmin = µ(Tb−)

Considering the assumptions on Db, there exists t1 ∈ Tb−\Ti− such that:

QDb
(Db(t1)) < QDb

(Db(t2)) QDi
(Di(t1)) > QDi

(Di(t2))

or equivalently:

Db(t1) < Db(t2) Di(t1) > Di(t2)

Notice now that, if the profile Db is broadcast, for all tmin ∈ [QDb
(t1), QDb

(t2)) we have:

t1 ∈ SDb
(tmin) t2 /∈ SDb

(tmin)

This implies that Df (t1) > Df (t2) and therefore the following holds for the aggregate

demand:

Di(t1) +Df (t1) > Di(t2) +Df (t2) (5.28)

We can conclude that in this case the equilibrium condition (5.17) with D = Db is

violated for tmin ∈ [QDb
(t1), QDb

(t2)).

Theorem 5.1 and 5.2 provide (respectively) sufficient and necessary conditions for the

existence of a Nash equilibrium in the sense described by (5.15): any broadcast profile

in the set Di will induce an equilibrium for the resulting aggregate demand if and only if

the inequality (5.18) between negotiable valley capacity ΛDi
and power density of task

durations Λf holds. If this is not the case it is shown that, for all the other profiles

D /∈ Di which fulfill Assumption 5.2, condition (5.15) is never satisfied.

5.4 Nash Equilibria through Saturated Flexible Demand

The possibility to extend the equilibrium conditions presented in the previous section

is now investigated. When (5.18) does not hold the sublevel sets of the broadcast

profile and of the resulting aggregate demand do not correspond. This means that

the power absorption of the flexible appliances introduces peaks in the aggregate profile

at time instants when the broadcast demand is particularly low (and therefore energy

is considered cheap). The resulting high energy prices at such peaks make the original

scheduled profiles suboptimal for the aggregate demand and prevent the existence of

a Nash equilibrium. To avoid this and limit, at critical time instants, the demand

variation introduced by the flexible appliances, we consider an additional constraint on
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their maximum power absorption. For this purpose, the function α : [0, T ] → [0, 1] is

introduced, defining a time-varying proportional constraint (equal for all the appliances)

on the power u. For devices with minimum task time tmin and total energy Etot, it must

hold:

0 ≤ u(t) ≤ α(t) · Etot
tmin

∀t ∈ [0, T ] (5.29)

With this formulation the maximum power of the devices is a fraction of the rated

power Pr = Etot/tmin. It is assumed that equal values of α correspond to equal values

of broadcast demand D and therefore it is possible to define the proportional constraint

as a function ᾱ(q) of the measure q with α(t) = ᾱ(QD(D(t))). The main idea is to

design ᾱ in order to modify the global behaviour of the appliances population, shaping

the profile of a new power density of task durations Λ̄f which satisfies the inequality

Λ̄f (q) ≤ ΛDi
(q) for all values of q.

5.4.1 Optimal Power Profile and Equilibrium Conditions

The optimization problem solved by the flexible appliances when a profile D is broadcast

and proportional constraints are introduced becomes:

min
u(·)

∫ T

0
Π(D(t)) · u(t) dt

s. t 0 ≤ u(t) ≤ α(t)
Etot
tmin

∫ T

0
u(t) dt = Etot

(5.30)

The optimal power profile of the devices with Etot = x and tmin = s can be defined as

a function of the measure q = QD(D(t)):

ū∗(q, s, x) =



















ᾱ(q)
x

s
if

∫ q

0
ᾱ(τ) dτ ≤ s

0 otherwise

(5.31)

Notice in fact that, similarly to (5.9), each appliance will operate (at maximum feasible

power) at the lowest values of q until the total required energy x has been obtained.

It follows that power absorption will be scheduled at a certain q only if the following

condition is satisfied:
∫ q

0
ū∗(τ, s, x) dτ ≤ x, (5.32)

This can equivalently be rewritten as
∫ q
0 ᾱ(τ)

x
s dτ ≤ x and ultimately as

∫ q
0 ᾱ(τ) dτ ≤ s.

The aggregate power density ḡ consumed by the devices with tmin = s can be calculated
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as ḡ(q, s) =
∫

E ū
∗(q, s, x)m(s, x) dx, deriving the following expression:

ḡ(q, s) =



















ᾱ(q)
f ′(s)
s

if

∫ q

0
ᾱ(τ) dτ ≤ s

0 otherwise

(5.33)

If one denotes by ᾱI(q) =
∫ q
0 ᾱ(τ) dτ the integral of the constraint function ᾱ, the flexible

demand D̄f (q) can be defined as:

D̄f (q) =

∫ T

0
ḡ(q, s) ds = ᾱ(q)

∫ T

ᾱI (q)

f ′(s)
s

ds (5.34)

Remark 5.4. Like in the unconstrained case, the optimal power profile, aggregate power

density and flexible demand as functions of time can be obtained by evaluating the

corresponding expressions in the q variable at q = QD(D(t)), as shown in (5.12).

To verify that u∗(t) = ū∗(QD(D(t))) guarantees the total amount of required energy

and to determine in general an useful relationship between the time t and the measure

q = QD(D(t)), the following result is provided:

Lemma 5.1. For an integrable function f̄ : [0, T ] → R and a profile D which satisfies

Assumption 5.2, the following equality is always verified:

∫ T

0
f̄(q) dq =

∫ T

0
f̄ (QD(D(t))) dt (5.35)

Proof. Introducing the function Q̄D(t) = QD(D(t)) and recalling that µ denotes the

Lebesgue measure, (5.35) is equivalent to:

∫

[0,T ]
f̄ dµ =

∫

[0,T ]
f̄ ◦ Q̄D dµ (5.36)

Applying standard properties [100] of the Lebesgue integral, the right hand side in (5.36)

can be written as:
∫

[0,T ]
f̄ ◦ Q̄D dµ =

∫

[0,T ]
f̄d
(

Q̄∗
Dµ
)

(5.37)

where Q̄∗
Dµ denotes the pushforward measure of µ induced by Q̄D and it is such that,

for any measurable set E, it holds Q̄∗
Dµ(E) = µ(Q̄−1

D (E)). From (5.37), the lemma is

verified if the measures Q̄∗
Dµ and µ are equal and the following holds for any measurable

set E:

µ(Q̄−1
D (E)) = µ(E) (5.38)
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Such condition is initially verified for a closed interval X = [0, xR] with xR ≤ T . In this

case the set Q̄−1
D (X) has the following expression:

Q̄−1
D ([0, xR]) =

{

t : Q̄D(t) ≤ xR
}

= {t : µ ({s : D(s) ≤ D(t)}) ≤ xR}

Given the monotonicity properties of QD, there exists D̄ such that QD(D̄) = xR and

therefore it holds Q̄−1
D ([0, xR]) =

{

t : D(t) ≤ D̄
}

. For the corresponding measure, taking

into account the definition of D̄, the following expression can be provided:

µ
(

Q̄−1
D ([0, xR])

)

= xR = µ([0, xR])

Similarly, considering Assumption 5.2, it is possible to verify that (5.38) holds and

µ(Q̄−1
D (X)) = xR − xL = µ(X) for any arbitrary closed interval X = [xL, xR] ⊆ [0, T ]:

µ(Q̄−1
D [xL, xR]) = µ

({

t : Q̄D(t) ≤ xR
})

− µ
({

t : Q̄D(t) ≤ xL
})

= xR − xL

The equivalency of the measures can be extended to any measurable set X by considering

the Vitali covering theorem [101] which guarantees that for any set X there exists an at

most countable set of disjoint closed intervals Ij such that µ (X\ ∪j Ij) = 0.

Applying Lemma 5.1 for f̄ = ū∗ and considering (5.32), it is straightforward to show:

∫ T

0
u∗(t, s, x) dt =

∫ T

0
ū∗(QD(D(t)), s, x) dt =

∫ T

0
ū∗(q, s, x) dq = x

We are now interested in determining which constraint functions ᾱ(·) induce an equilib-

rium in the system when Di is broadcast. The equilibrium condition is similar to the

one presented in (5.15) and must hold for all Etot = x ∈ E and tmin = s ∈ [qmin, qmax]:

∫ T

0
Π(Da,Di

(t))u∗(t, s, x) dt = min
u(·)

∫ T

0
Π(Da,Di

(t))u(t) dt

s. t. 0 ≤ u(t) ≤ α(t)
x

s
∫ T

0
u(t) dt = x

(5.39)

As in the unconstrained case, the aggregate demand Da,Di
(t) = Di(t)+ D̄f (QDi

(Di(t)))

obtained when Di is broadcast can be defined as a function of the current broadcast

demand value d = Di(t):

Da,Di
(t) = K(d) = d+ D̄f (QDi

(d))

= d+ ᾱ(QDi
(d))

∫ T

ᾱI (QDi
(d))

f ′(s)
s

ds
(5.40)
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Similarly to what has been presented in the previous section, it is possible to provide

conditions in the variable q for which (5.39) is satisfied.

Proposition 5.1. For any integrable constraint function ᾱ(·) taking values in [0, 1] and

any broadcast demand D = Di, the equilibrium condition (5.39) holds if:

D̄′
f (q) + D̄′

i(q) ≥ 0 (5.41)

where D̄f (q) and D̄i(q) denote respectively flexible and inflexible demand as a func-

tion of the measure q = QDi
(Di(t)) with D̄i(QDi

(Di(t))) = Di(t), while primes denote

derivation with respect to the argument q.

Proof. The interval of power consumption for devices with minimum time parameter

tmin, when Di is broadcast, can be defined as follows:

SDi
(tmin) = {t : ᾱI(QDi

(Di(t))) ≤ tmin} (5.42)

Similarly to (5.17), the equilibrium condition (5.39) is verified if and only if the following

holds for all tmin ∈ supp(f ′):

Da,Di
(t1) ≤ Da,Di

(t2) ∀t1 ∈ SDi
(tmin) ∀t2 ∈ [0, T ]\SDi

(tmin) (5.43)

Notice now that the integral ᾱI(q) is a monotonic increasing function since ᾱ(q) ≥ 0.

Given that QDi
(d) has the same monotonicity properties and considering definition

(5.42) of SDi
(tmin), for the values of inflexible demand at the time instants t1 and t2

considered above it holds d1 = Di(t1) ≤ Di(t2) = d2. Therefore the inequalities in (5.43)

are verified if:

K(d1) ≤ K(d2) ∀d1, d2 ∈ [dmin, dmax] : d1 ≤ d2

This is equivalent to impose nonnegativity of K ′(d):

K ′(d) = 1 + D̄′
f (QDi

(d))Q′
Di
(d) ≥ 0

Dividing both terms of the inequality by Q′
Di
(d) and letting q denote QDi

(d) yields:

0 ≤
(

d

dq
Q−1
Di

(q)

)

+ D̄′
f (q) = D̄′

i(q) + D̄′
f (q)
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5.4.2 Shaping of Power Density of Task Durations

The design of a constraint function ᾱ which satisfies (5.41) is nontrivial since the rela-

tionship between D̄′
f and ᾱ is not instantaneous:

D̄′
f (q) = ᾱ′(q)

∫ T

ᾱI(q)

f ′(s)
s

ds− ᾱ2(q)
f ′(ᾱI(q))
ᾱI(q)

For this reason, a desired profile of flexible demand that satisfies condition (5.41) will

be initially calculated, deriving only as a second step the function ᾱ needed to generate

such profile. In particular, an additional function F̄ : [0, T ] → R
+ and a reference D̄r

for the flexible demand are introduced with:

D̄r(q) =

∫ T

q
F̄ (τ) dτ (5.44)

For a given function F̄ (·), it is possible to define the following dynamical system with

states ᾱI and F̄I :

˙̄αI(q) = ᾱ(q) =

∫ T
q F̄ (τ) dτ

∫ T
ᾱI(q)

f ′(τ)
τ dτ

=
Ftot − F̄I(q)
∫ T
ᾱI (q)

f ′(τ)
τ dτ

ᾱI(0) = 0

˙̄FI(q) = F̄ (q) F̄I(0) = 0

(5.45)

where Ftot = F̄I(T ) =
∫ T
0 F̄ (τ) dτ denotes the integral of F̄ over the interval [0, T ].

Given a feasible control profile F̄ (·), the unique solution of (5.45) will be denoted by

(ϕ̄α(·), ϕ̄F (·)). The definition of the derivative ˙̄αI(q) guarantees that the resulting flexible

demand D̄f , defined in (5.34), is equal to D̄r. Furthermore, for D̄f = D̄r, the equilibrium

condition (5.41) becomes:

D̄′
i(q) ≥ F̄ (q) (5.46)

An alternative interpretation of (5.46) can be provided if one considers the power den-

sity of task durations Λf and the negotiable valley capacity ΛDi
in the constrained case.

Since it is not possible to modify ΛDi
, which depends exclusively on the inflexible de-

mand profile, the function F can be determined in order to change the behaviour of

the appliances population and properly shape a new power density Λ̄f . In fact, if one

imposes D̄f = D̄r by choosing ᾱ according to (5.45) and considers the results of Remark

5.3, condition (5.46) becomes:

ΛDi
(q) = D̄′

i(q) ≥ F̄ (q) = −D̄′
f (q) = Λ̄f (q)

This allows, rather than directly calculating ᾱ, to determine F̄ (q) which satisfies (5.46)

(and therefore guarantees an equilibrium) while obtaining the corresponding ᾱ through
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(5.45). In this respect, an additional constraint must be taken into account. Since ᾱ(q)

represents a proportional reduction in the maximum power of the devices, a certain state

(ᾱI(q),F̄I (q)) will be feasible only if:

0 ≤ ᾱ(q) =
Ftot − F̄I(q)
∫ T
ᾱI (q)

f ′(τ)
τ dτ

≤ 1

When determining F̄ we do not only seek to satisfy the equilibrium condition (5.46)

but we also aim at optimizing some global properties of the system. In particular we

are interested in minimizing the total time required by the appliances to perform their

tasks. It will be shown later on that this minimization guarantees optimality properties

for each single device and for some other global cost functions. Notice now that the

time Γ(tmin) required by devices with parameter tmin to complete their task is equal to

µ (SDi
(tmin)). Considering definition (5.42) and the monotonicity of ᾱI , the following

expression can be provided:

Γ(tmin) = min
q

{q : ᾱI(q) ≥ tmin} (5.47)

Taking into account that µ (SDi
(tmin1)) ≤ µ (SDi

(tmin2)) if tmin1 ≤ tmin2 , the total

task duration corresponds to the one of the devices with tmin = qmax. The optimization

problem can finally be defined as the minimization of Γ(qmax) or, alternatively:

min
F̄ (·),Ftot

TEND

s.t. ᾱI(TEND) = qmax F̄I(TEND) = Ftot

˙̄αI(q) =
Ftot − F̄I(q)
∫ T
ᾱI (q)

f ′(τ)
τ dτ

˙̄FI(q) = F̄ (q)

ᾱI(0) = 0 F̄I(0) = 0

0 ≤ ˙̄αI(q) ≤ 1 F̄ (q) ≤ D̄′
i(q)

(5.48)

Remark 5.5. Once the minimization problem has been solved, it is straightforward to

obtain the corresponding values of α in the time variable t with α(t) = ᾱ(QDi
(Di(t))).

Since all devices complete their task for q ≤ TEND the values of ᾱ(q) can be defined

arbitrarily (for example equal to 1) when q > TEND.

5.4.3 Backward-integrated Dynamical System

One of the main challenges in the resolution of (5.48) is that the final value Ftot of

the state F̄I , not known a priori, appears in the dynamics of ᾱI(q). For this reason

a different system is introduced in order to model the same dynamics of (5.45) in the

opposite direction of integration. It will be shown that, for certain conditions on the
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final state, the solutions of the two systems coincide and therefore it is possible to solve

the optimization problem (5.48) without directly operating on (5.45). The new system

is described by the following equations:

˙̃αǫI(q) =
F̃ ǫI (q)

∫ qmax

qmax−α̃ǫ
I (q)

f ′(τ)
τ dτ

=
F̃ ǫI (q)

h(α̃ǫI(q))
α̃ǫI(0) = ǫ

˙̃F ǫI (q) = F̃ (q) F̃ ǫI (0) = 0

(5.49)

where the function h(x) =
∫ qmax

qmax−x
f ′(τ)
τ dτ is used for a more compact expression of

˙̃αǫI . Notice that (5.49) defines a family of Cauchy problems parametrized by the initial

condition ǫ of one of the state variables. Fixed a control profile F̃ (·), the unique solution
of (5.49) will be denoted by (ϕ̃ǫα(·), ϕ̃ǫF (·)). Taking into account that the expression for

˙̃αǫI is not well defined when
(

α̃0
I(0), F̃

0
I (0)

)

= (0, 0), we will consider decreasing values

of ǫ, denoting by (ϕ̃α(·), ϕ̃F (·)) the limit of solutions of (5.49) for ǫ which tends to

zero. Such a limit exists and is unique as equation (5.49) defines a cooperative system

(monotonicity with respect to initial conditions).

In order to show the relationship between solutions of (5.49) and (5.45), the function

ϕ̃ǫI , representing the integral over q of the solution ϕ̃ǫF , is calculated:

ϕ̃ǫI(q)=

∫ q

0
ϕ̃ǫF (τ) dτ =

∫ q

0

˙̃ϕǫα(τ)h(ϕ̃
ǫ
α(τ)) dτ = [ϕ̃ǫα(τ)h(ϕ̃

ǫ
α(τ))]

q
0 −

∫ q

0
ϕ̃ǫα(τ)h

′(ϕ̃ǫα(τ)) dτ

=[ϕ̃ǫα(q)h(ϕ̃
ǫ
α(q))− ǫh(ǫ)]−

∫ g(ǫ)

g(ϕ̃ǫ
α(q))

g(τ̄ )
f ′(τ̄)
τ̄

dτ̄

=[ϕ̃ǫα(q)− qmax]

∫ g(ǫ)

g(ϕ̃ǫ
α(q))

f ′(τ)
τ

dτ + [ϕ̃ǫα(q)− ǫ]h(ǫ) +

∫ g(ǫ)

g(ϕ̃ǫ
α(q))

f ′(τ) dτ

(5.50)

where g(x) = qmax−x and τ̄ = qmax − ϕ̃ǫα(τ) denotes a change of variable in the integral.

When ǫ tends to zero the corresponding integral ϕ̃ǫI(q) will have the following expression:

ϕ̃I(q) = lim
ǫ→0

ϕ̃ǫI(q) = [ϕ̃α(q)− qmax]

∫ qmax

qmax−ϕ̃α(q)

f ′(τ)
τ

dτ +

∫ qmax

qmax−ϕ̃α(q)
f ′(τ) dτ (5.51)

It is now possible to provide a first result for the state trajectories of the discussed

dynamical systems:

Proposition 5.2. Consider any F̄ (·) defined on [0, T̃ ], T̃ > 0, which is feasible for

(5.45) and such that, for the corresponding solution (ϕ̄α(·), ϕ̄F (·)), it holds:

ϕ̄α(T̃ ) = qmax ϕ̄F (T̃ ) = Ftot (5.52)
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Denote now by F̃ (·) the control input of system (5.49) defined by F̃ (q) = F̄ (T̃ − q) for

all q ∈ [0, T̃ ]. For the corresponding limiting solution (ϕ̃α(·), ϕ̃F (·)) it holds:

ϕ̄α(T̃ − q) = qmax − ϕ̃α(q) ϕ̄F (T̃ − q) = Ftot − ϕ̃F (q) (5.53)

Proof. The equality is straightforward for the states ϕ̄F and ϕ̃F :

ϕ̄F (T̃ − q) =

∫ T̃−q

0
F̄ (τ) dτ = Ftot −

∫ T̃

T̃−q
F̄ (τ) dτ = Ftot −

∫ q

0
F̄ (T − τ̄) dτ̄

= Ftot −
∫ q

0
F̃ (τ̄ ) dτ̄ = Ftot − ϕ̃F (q)

(5.54)

For the condition on the states ϕ̄α and ϕ̃α, the integral ϕ̃I(q) is evaluated. Considering

(5.54) and the system equations (5.45) yields:

ϕ̃I(q) =

∫ q

0
ϕ̃F (τ) dτ =

∫ q

0
Ftot − ϕ̄F (T̃ − τ) dτ

=

∫ q

0

[

˙̄ϕα(T̃ − τ)

∫ qmax

ϕ̄α(T̃−τ)

f ′(s)
s

ds

]

dτ =

∫ T̃

T̃−q

[

˙̄ϕα(τ̄)

∫ qmax

ϕ̄α(τ̄)

f ′(s)
s

ds

]

dτ̄

With algebraic steps similar to (5.50), the following expression can now be provided:

ϕ̃I(q) = −ϕ̄α(T̃ − q)

∫ qmax

ϕ̄α(T̃−q)

f ′(τ)
τ

dτ +

∫ ϕ̄α(T̃ )

ϕ̄α(T̃−q)
f ′(τ) dτ (5.55)

The proof is concluded by noticing that ϕ̃I(q) as defined in (5.51) is a monotonic increas-

ing function of ϕ̃α(q) and therefore, considering that ϕ̄α(T̃ ) = qmax, the two expressions

(5.51) and (5.55) are equal if and only if ϕ̄α(T̃ − q) = qmax − ϕ̃α(q).

Similar results can be provided if one considers the correspondence between the two

systems in the opposite direction:

Proposition 5.3. Consider any F̃ (·) defined on [0, T̃ ] which is feasible for (5.49) and

such that the corresponding solution (ϕ̃α(·), ϕ̃F (·)) when ǫ tends to zero satisfies the

following conditions:

ϕ̃α(T̃ ) = qmax ϕ̃F (T̃ ) = Ftot (5.56)

If one denotes by F̄ the control profile of system (5.45) such that F̄ (q) = F̃ (T̃ − q) for

all q ∈ [0, T̃ ], it holds:

ϕ̃α(T̃ − q) = qmax − ϕ̄α(q) ϕ̃F (T̃ − q) = Ftot − ϕ̄F (q) (5.57)
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Proof. The equality for the states ϕ̄F and ϕ̃F can be verified as follows:

ϕ̃F (T̃ − q) =

∫ T̃−q

0
F̃ (τ) dτ = Ftot −

∫ T̃

T̃−q
F̃ (τ) dτ

= Ftot −
∫ q

0
F̃ (T̃ − τ) dτ = Ftot − ϕ̄F (q)

To check that also the first equation in (5.57) holds, the integral ϕ̄I(q) is evaluated in

two different ways:

ϕ̄I(q) =

∫ q

0
Ftot − ϕ̄F (τ) dτ ϕ̄I(q) =

∫ q

0
ϕ̃F (T̃ − τ) dτ

With algebraic steps similar to the ones used in the previous proof it is possible to show

that the two expressions are equal if and only if ϕ̃α(T̃ − q) = qmax − ϕ̄α(q).

The results of Proposition 5.2 and 5.3 determine the correspondence between the state

trajectories of the dynamical systems introduced so far if certain conditions are verified

for the states at the final time T̃ . In the next subsection an optimization will be per-

formed on the states of (5.49), using the equivalent for system (5.45) of the resulting

optimal control to solve the time minimization problem (5.48) and induce a Nash equi-

librium. The choice to operate on system (5.49) is motivated not only by the dependency

of ˙̄αI in the original system (5.45) from the final state Ftot but also by its monotonicity

properties:

Proposition 5.4. The dynamical system described by (5.49) is cooperative.

Proof. To show this, it is sufficient to consider the sign of the following partial derivatives:

∂ ˙̃αǫI
∂F̃ ǫI

=
1

h
(

α̃ǫI
) ≥ 0

∂ ˙̃F ǫI
∂α̃ǫI

= 0

∂ ˙̃αǫI
∂F̃

= 0
∂ ˙̃F ǫI
∂F̃

= 1 > 0

(5.58)

5.4.4 Task-time Minimizing Solution

The sets of admissible states
(

α̃ǫI , F̃
ǫ
I

)

and controls F̃ (·) for system (5.49), respectively

X and UT̃ , are defined as follows:

X =
{(

α̃ǫI , F̃
ǫ
I

)

: F̃ ǫI ≤ h (α̃ǫI)
}

UT̃ = {F̃ (·) : F̃ (q) ∈
[

0, D̄′
i(T̃ − q)

]

∀ q ∈ [0, T̃ ]}
(5.59)
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Given the monotonicity of (5.49), it is possible to maximize its state components by

applying, at each q, the maximum feasible control. Each value of T̃ induces a corre-

sponding maximizing solution. With the proper choice of the parameter T̃ , it is then

possible to satisfy (5.56) and apply Proposition 5.3, extending the same result to the

forward system (5.45) and allowing to solve the original optimization problem (5.48). In

order to so, the following feedback law as a function of q and current states α̃I and F̃I

is introduced:

F̃ ∗(q, α̃I , F̃I) =















D̄′
i(T̃ − q) if F̃I < h (α̃I)

min
(

D̄′
i(T̃ − q), h′ (αI)

)

if F̃I = h (α̃I)

(5.60)

We denote by ΦT̃ (x0, q) the solution of (5.49) at ‘time’ q and from initial state x0 (q = 0)

when the (time-varying and discontinuous) feedback law F̃ ∗ is applied. Subscripts F

and α will be used to refer to the corresponding single state components. Define next

the value function γǫ of the following optimization problem:

γǫ(T̃ ) := max
F̃ (·)∈U

T̃

α̃ǫI(T̃ ) (5.61)

Considering the monotonicity of the system and the fact that F̃ ∗ represents the maxi-

mum feasible control at any time instant and current state, for any T̃ ≥ 0 we have:

γǫ(T̃ ) = ΦT̃α([ǫ, 0], T̃ ) (5.62)

The next result introduces important properties of the above value function.

Proposition 5.5. The function γǫ(T̃ ) is Lipschitz continuous and monotonically in-

creasing.

Proof. For any T1, T2 ∈ [0, T ] with T1 < T2, the maximum γǫ(T2) has the following

expression:

γǫ(T2) = ΦT2α ([ǫ, 0], T2) = ΦT1α
(

ΦT2 ([ǫ, 0], T2 − T1) , T1
)

. (5.63)

To see this, it is sufficient to consider that the only dependency of ΦT̃ from the parameter

T̃ is given by the maximum value D̄′
i(T̃ − q) imposed for F̃ ∗ at each q. To prove the

Lipschitz continuity of γǫ, the following inequalities are considered for |γǫ(T2)− γǫ(T1)|:

∣

∣ΦT1α
(

ΦT2 ([ǫ, 0], T2 − T1) , T1
)

− ΦT1α ([ǫ, 0], T1)
∣

∣

≤
∥

∥ΦT1
(

ΦT2 ([ǫ, 0], T2 − T1) , T1
)

− ΦT1 ([ǫ, 0], T1)
∥

∥

1

≤ K1

∥

∥ΦT2 ([ǫ, 0], T2 − T1)− [ǫ, 0]
∥

∥

1
≤ K1K2 |T2 − T1|

(5.64)
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whereK1 andK2 are positive constants. The second inequality in (5.64) derives from the

continuous differentiability of the solutions of (5.49) with respect to the initial conditions

[102]. This can be verified by replacing F̃ ∗ in the expressions of (5.49) and noticing that

the partial derivatives of the result with respect to each state component exist and are

continuous (almost everywhere). The last inequality is a result of the boundedness of

the state derivatives. For the monotonicity of the function γǫ, it is sufficient to consider

that for any T1, T2 ∈ [0, T ] with T2 > T1, following Proposition 5.4, it holds:

ΦT1α
(

ΦT2 ([ǫ, 0], T2 − T1) , T1
)

≥ ΦT1α ([ǫ, 0], T1)

where the two sides of the inequality denote respectively γǫ(T2) and γ
ǫ(T1) as shown in

(5.62) and (5.63).

Given the properties of γǫ(T̃ ) introduced in the previous proposition and denoting by

γ(T̃ ) the corresponding function when ǫ tends to 0, it is possible to provide the main

result of this section, describing the solution of the optimization problem introduced in

(5.48):

Theorem 5.3. If problem (5.48) is feasible, there exists T ∗ defined as the minimum t

such that γ(t) = qmax. Denote now by ψ̃∗(q) the following signal:

ψ̃∗(q) = lim
ǫ→0

F̃ ∗
(

q,ΦT
∗
([ǫ, 0], q)

)

. (5.65)

The control F̄ ∗ defined below is feasible and optimal for (5.48):

F̄ ∗(q) = ψ̃∗(T ∗ − q) ∀q ∈ [0, T ∗] (5.66)

Proof. The existence of T ∗ is initially shown. In this respect, consider an arbitrary feasi-

ble control F̄ for (5.48) such that, for the corresponding state trajectory of system (5.45),

it holds ϕ̄α(TEND) = qmax at some TEND ∈ [0, T ]. Applying the results of Proposition

5.2 for T̃ = TEND, it is possible to define F̃ such that for the resulting limiting solu-

tion of (5.49), considering (5.53) at q = T̃ = TEND, we have ϕ̃α(TEND) = qmax. Given

the optimality of F̃ ∗ for the value function γǫ defined in (5.61), we can conclude that

γ(TEND) ≥ qmax. It follows from the continuity and monotonicity of γ presented in

Proposition 5.5 that there exists T ∗ as defined in the theorem statement. We show now

that F̄ ∗ in (5.66) is feasible for (5.48). Denoting by ϕ̃∗ the limiting solution of system

(5.49) when ψ̃∗ is applied and ǫ tends to zero, considering (5.59) and definition (5.60)

of F̃ ∗, we have:

ψ̃∗(q) ≤ D̄′
i(T

∗ − q)
ϕ̃∗
F (q)

h(ϕ̃∗
α(q))

≤ 1 ∀q ∈ (0, T ∗]
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Given the results of Proposition 5.3 for the solution ϕ̄∗ of system (5.45) when F̄ ∗ is

applied, the following holds at any q ∈ [0, T ∗):

F̄ ∗(q) = ψ̃∗(T ∗ − q) ≤ D̄′
i(q) 0 ≤ ˙̄ϕ∗

α(q) =
Ftot − ϕ̄∗

F (q)
∫ qmax

ϕ̄∗
α(q)

f ′(τ)
τ dτ

=
ϕ̃∗
F (T

∗ − q)

h(ϕ̃∗
α(T

∗ − q))
≤ 1

Finally, to show the optimality of F̄ ∗, we assume that there exists a control input F̄ ⋄

which is feasible for (5.48) and such that, for the corresponding state trajectory ϕ̄, it

holds ϕ̄α(T
⋄) = qmax with T ⋄ < T ∗. If this were the case, it would be possible to define

the corresponding control F̃ ⋄ for system (5.49) using the results of Proposition 5.2. For

the same reasons detailed above for the final instant TEND, it would yield γ(T ⋄) ≥ qmax

with T ⋄ < T ∗ which contradicts the definition of T ∗.

From Theorem 5.3 we can conclude that the task-time minimizing profile of flexible de-

mand in the q variable D̄f (q) (and the function ᾱ(q) that induces it when broadcast to

the devices) can be calculated operating “backward”. In particular, fixed a certain final

instant TEND where we assume D̄f (TEND) = 0, the maximum increase F̃ (q) of flexible

demand for decreasing values of q is calculated. Notice that two constraints must be

taken into account when doing so: by imposing F̃ (q) = F̄ (TEND − q) ≤ D̄′
i(q) the equi-

librium condition for the resulting aggregate demand profile is satisfied. Furthermore,

it must be verified that the reference D̄r for flexible demand is lesser or equal than the

aggregate power that can be absorbed by the appliances population. At each q, taking

into account the previous values of α̃ through the integral α̃I , it must hold:

F̃I(q) ≤
∫ qmax

qmax−α̃I (q)

f ′(τ)
τ

dτ

For a certain final time instant (TEND = T ∗ in the theorem statement), the allocation of

flexible demand performed for decreasing q will be completed at q = 0. In this case the

values of F̄ , considered for increasing q by setting F̄ (q) = F̃ (TEND − q), are optimal for

problem (5.48). Moreover, since ˙̄αI = ᾱ has been set in order to guarantee D̄f = D̄r as

defined in (5.44), the expression for the flexible demand induced by the optimal solution

of (5.48) is:

D̄∗
f =

∫ T ∗

q
F̄ ∗(s) ds (5.67)

5.5 Simulation Results

The equilibrium conditions and the design method of the proportional constraint α

presented in the previous sections are now tested in simulations. A typical 24h UK

demand profile is considered (blue trace in Fig. 5.1), with a time discretization step of
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∆t = 0.01h. Denoting by Dk
i the value of inflexible demand at t = k ·∆t, the function

QDi

(

Dk
i

)

is approximated as
∣

∣Sk
∣

∣ ·∆t where Sk is defined as follows:

Sk =
{

j : Dj
i ≤ Dk

i

}

In the first case study we consider a population of flexible appliances described by a

function f that satisfies condition (5.18) in Theorem 5.1 for the given Di. The total en-

ergy required by the devices amounts to 55GWh and the corresponding f ′ is a truncated

gaussian with mean equal to 8.2h. This choice can represent heterogeneous devices that

have different power ratings, but it can also model scenarios with only one type of device

where each appliance needs to perform tasks that require different amounts of time or

energy to be completed. The corresponding values of Λf (q) and ΛDi
(q) are shown in

Fig. 5.3. From the results of Theorem 5.1, since the density of task durations Λf (red)

is always lesser or equal than the valley capacity ΛDi
(blue), an equilibrium is achieved

by broadcasting to the appliances the profile of inflexible demand Di. The resulting

demand components as functions of the measure q are shown in Fig. 5.4: given that

q = QD(D(t)), when D = Di we expect D̄i(q) to be a monotonic increasing function.

Conversely, considering that all devices with tmin < q perform their tasks in the inter-

val [0, tmin], the flexible demand D̄f (q) will always be decreasing. From Remark 5.3,

since in this case (5.18) is satisfied, the sum D̄a(q) of the two demand components will

be nondecreasing. The same quantities as functions of time are displayed in Fig. 5.5.

The intervals of scheduled power consumption for the appliances with tmin equal to 5h,

7h and 9h are represented by the blue shaded areas. As expected, the considered de-

vices have no interest in changing their power profiles since they are operating (at rated

power) during time intervals characterized by the lowest values of aggregate demand.

5 10 15 20
0

0.5

1

1.5

2

2.5

3

measure q [h]

[G
W

/h
]

 

 

ΛDi
(q)

Λf (q)

Figure 5.3: Graphical representation of the equilibrium condition (5.18).
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Figure 5.4: Profiles of inflexible, flexible and aggregate demand as a function of the
measure q = QDi

(Di(t)).

Figure 5.5: Profiles of inflexible, flexible and aggregate demand as a function of time.

A different case study is now simulated, considering an appliances population whose task

duration profile Λf does not satisfy the equilibrium condition presented in Theorem

5.1. In particular, the function f ′ is defined as the sum of two truncated gaussians

with mean equal to 4h and 8h. This choice could model, for example, two distinct

typologies of appliances (with different rated power), considering that devices in each

group have different minimum times tmin for their tasks. The total energy required by

the appliances, as in the previous case, amounts to 55GWh. A graphical representation

of the equilibrium condition of Theorem 5.1 applied to the present scenario is provided
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in Fig. 5.6: it is straightforward to verify that an equilibrium cannot be achieved in

the unconstrained case since Λf (q) > ΛDi
(q) in the interval which goes approximatively

from q = 2h to q = 5h. This can also be seen from the demand profiles shown in Fig.

5.7, obtained when D = Di is broadcast and no constraint α is imposed. In this case

the shaded blue areas, which represent the scheduled interval of power consumption of

devices with tmin equal to 2h, 4h and 8h, do not correspond to the lowest values of

aggregate demand. For example, the appliances with tmin = 2h could reduce their total

cost by shifting part of their power consumption to the small valley of aggregate demand

which appears around t = 6h. This means that the operation strategy formulated by

the devices on the basis of the broadcast signal D = Di is not optimal for the induced

aggregate demand and an equilibrium is not achieved.

The same scenario is approached by introducing a proportional constraint α on the

power absorption, determined by solving the time minimization problem (5.48). The

optimal F̄ ∗ (and the corresponding α) are calculated according to Theorem 5.3. The

value of T ∗ is determined through a bisection technique that exploits the monotonicity

of the function γ. In particular, the following iterative procedure is followed:

1. Set T̃ = T/2, Tmin = 0 and Tmax = T .

2. Calculate an approximation γ̂(T̃ ) of the value function γ(T̃ ) = lim
ǫ→0

γǫ(T̃ ). This

can be done through integration of the system equations (5.49), considering a

sufficiently small value of ǫ and applying the feedback control F̃ ∗ defined in (5.60).

3. Given a certain error tolerance δ > 0, the following cases are considered:

• If |γ̂(T̃ ) − qmax| < δ it is assumed that the allocation of flexible demand is

completed for q = T̃ . Set T ∗ = T̃ and calculate the solution F̄ ∗ of (5.48)

according to (5.65) and (5.66). Exit the procedure.

• If γ̂(T̃ ) + δ < qmax the allocation of flexible demand is not completed. Set

T̃NEW = (Tmax + T̃ )/2, Tmin = T̃ and repeat steps 2 and 3 with T̃ = T̃NEW .

• If γ̂(T̃ ) > qmax + δ the allocation of flexible demand is completed for some

smaller value of q. Set T̃NEW = (T̃ + Tmin)/2, Tmax = T̃ and repeat steps 2

and 3 with T̃ = T̃NEW .

For the considered scenario this procedure converges, in 10 iterations, to T̃ = T ∗ = 12.8h.

The computational time, with an integration step of 0.01h, amounts to about one minute.

The resulting values of F̄ ∗ (which corresponds to the reshaped task duration profile Λ̄f )

are represented by the green dashed lines in Fig. 5.6 while the demand profiles and

the proportional constraint ᾱ as functions of the measure q are shown in Fig. 5.8.
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Three different intervals, for decreasing values of q, can be considered. In particular,

for q > T ∗, it can be seen in Fig. 5.6 that F̄ ∗ and the flexible demand D̄f are equal

to zero since all the appliances have already completed their tasks. In the interval

which goes from approximatively 6h to T ∗, the input F̄ ∗(q) corresponds to the function

Λf (q − ∆) with ∆ equal to about 2h: the function α is equal to 1 and the resulting

demand profile corresponds to the one obtained if all task times were increased by ∆.

At about q = 6h the function F̄ ∗ intersects ΛDi
: this means that a constraint must be

introduced on the power rate of the appliances by setting ᾱ(q) < 1. This is done by

imposing F̄ ∗(q) = ΛDi
(q) which corresponds to a flat profile of aggregate demand in

the q variable. The results in the time variable are shown in Fig. 5.9. Similarly to the

previous case, the shaded blue areas represent the intervals of power consumption of

devices with tmin equal to 2h, 4h and 8h. It is possible to verify that they correspond

to the lowest values of Da(t) and therefore an equilibrium is achieved. On the other

hand, given the introduction of the constraint α, the time required by the appliances

to complete their task is larger than the corresponding one for the unconstrained case

shown in Fig. 5.7. A comparison between the broadcast minimum time tmin and the

actual task time Γ(tmin) is shown in Fig. 5.10. Notice in particular that the increase

introduced in the task time of the appliances is larger for higher values of tmin. This

can be explained if one considers that, for t1, t2 with t1 < t2, it holds SDi
(t1) ⊂ SDi

(t2)

and therefore appliances with higher values of tmin are limited by the constraint α on a

larger interval.
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Figure 5.6: Graphical representation of the equilibrium condition (5.18) which, for
the chosen function f ′ and corresponding Λf , is not satisfied.
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Figure 5.7: Profiles of inflexible, flexible and aggregate demand as a function of time,
for Λf shown in Fig. 5.6 and with no constraint α on the maximum power of the

appliances.
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Figure 5.8: Profiles of inflexible, flexible and aggregate demand as a function of
the measure q, for Λf shown in Fig. 5.6 and with the proportional constraint ᾱ(q)

(magenta).
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Figure 5.9: Profiles of inflexible, flexible and aggregate demand as a function of time,
for Λf shown in Fig. 5.6 when the proportional constraint α(t) (magenta) is applied.
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Figure 5.10: Comparison between the broadcast minimum time tmin and the actual
task time Γ(tmin) of the appliances when the constraint α is introduced.
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5.6 Properties of the Decentralized Control Strategy

In Section 5.3 necessary and sufficient conditions have been provided for the existence

of a Nash equilibrium when the devices perform a selfish scheduling of their power

consumption based on a broadcast demand signal. It is shown now that, under some

additional conditions, such equilibrium is also Pareto optimal. Furthermore, for the

constrained case presented in Section 5.4, the choice to design α which induces an

equilibrium by minimizing the total task time of the population can be further justified

by showing that additional optimality properties are guaranteed for the single appliances

and from a global point of view. It is proved that the proposed control strategy minimizes

the task time of the single appliance and is optimal for some index that quantifies the

flattening of the aggregate demand profile.

5.6.1 Pareto Optimality

We want to investigate under which conditions the Nash equilibrium determined in

Section 5.3 for the unconstrained scenario is also Pareto optimal. If this is not the case,

there will exist power profiles different from u∗ in (5.8) which allow to reduce the cost

sustained by at least one device without increasing the costs of the other appliances. A

different notation must be used in order to consider the more general case in which the

power u is not obtained by a greedy optimization of the cost function on the basis of a

broadcast signal D. This means that it is not possible to define u as a function of tmin

and Etot since, in general, appliances with equal parameters could have different power

profiles. The set of devices is denoted by V while ν ∈ V represents the single device with

minimum task time tmin(ν) and total energy Etot(ν). For a feasible power profile u(·, ν)
of the device ν, it must hold:

0 ≤ u(t, ν) ≤ Etot(ν)

tmin(ν)
∀t ∈ [0, T ]

∫ T

0
u(t, ν) dt = Etot(ν)

The total costs sustained by the device ν when applying an arbitrary feasible profile

u(·, ν) and u∗(·, tmin(ν), Etot(ν)) are denoted respectively by J(ν) and J∗(ν):

J(ν) =

∫ T

0
Π(Di(t) +Df (t))u(t, ν) dt

J∗(ν) =
∫ T

0
Π(Di(t) +D∗

f (t))u
∗(t, tmin(ν), Etot(ν)) dt

where Df (t) =
∫

V u(t, ν) dν and D∗
f (t) as defined in (5.12) are the flexible demand

profiles introduced by the appliances when u and u∗ are applied. If the Nash equilibrium
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is Pareto optimal, there is no feasible u(·, ·) and ν̃ ∈ V for which the following holds:

J(ν) ≤ J∗(ν) ∀ν ∈ V J(ν̃) < J∗(ν̃). (5.68)

The Pareto optimality will be verified by comparing the total costs of the appliances

population (denoted respectively by Jtot and J
∗
tot) when u and u∗ are applied:

Jtot =

∫

ν∈V
J(ν) dν =

∫ T

0
Π(Di(t) +Df (t))Df (t) dt

J∗
tot =

∫

ν∈V
J∗(ν) dν =

∫ T

0
Π(Di(t) +D∗

f (t))D
∗
f (t) dt

Assumption 5.3. Define as Uq the set of feasible power profiles uq(·, ·) such that, for

the resulting flexible demand Df,q, it holds:

Df,q(t1) = Df,q(t2) ∀(t1, t2) : Di(t1) = Di(t2) (5.69)

For any feasible u(·, ·), there exists uq(·, ·) ∈ Uq to which corresponds a lower or equal

value of total cost Jtot.

In other words, we are assuming that we can restrict our analysis to flexible demand

profiles which are well defined in the variable q = QDi
(Di(t)) since the function which

minimizes Jtot will always be of such kind. Notice that such assumptions can be easily

verified with standard optimal control techniques if one relaxes the constraints and

minimizes Jtot over the positive flexible demand profiles with a given total integral.

It is now possible to provide the following result:

Theorem 5.4. Denote by D̄∗
f the flexible demand in the variable q defined in (5.11)

when the profile D = Di is broadcast and by D̄∗
a the corresponding aggregate demand.

Assume that (5.18) is verified and therefore there exists a Nash equilibrium in the sense

described by (5.15). For a monotonic increasing and convex price function Π, such

equilibrium is Pareto optimal if the following holds for all q ∈ [0, T ]:

D̄∗′
a (q)

[

Π′′(D̄∗
a(q))D̄

∗
f (q) + Π′(D̄∗

a(q))
]

+Π′(D̄∗
a(q))D̄

∗′
f (q) ≥ 0 (5.70)

Proof. From Lemma 5.1, the cost Jtot for a power profile uq ∈ Uq can be written as:

Jtot =

∫ T

0
Π(D̄i(q) + D̄f (q))D̄f (q) dq =

∫ T

0
Π(D̄i(q) + D̄∗

f (q) + l(q))
[

D̄∗
f (q) + l(q)

]

dq

(5.71)

where D̄i and D̄f represent respectively inflexible and flexible demand in the variable

q = QDi
(Di(t)) when uq is applied. It follows from (5.9) that, when the control u∗ which
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induces the Nash equilibrium is chosen, the devices operate at maximum power at the

lowest values of q and therefore, for any uq ∈ Uq, ν ∈ V and q ∈ [0, T ], it holds:

∫ q

0
uq(s, ν) ds ≤

∫ q

0
u∗(s, tmin(ν), Etot(ν)) ds

By taking the integral over the whole population, it is possible to verify the same prop-

erty for the demand profiles D̄f and D̄∗
f . We can conclude that the set L of feasible

variations l to consider in (5.71) can be defined as:

L :=

{

l(·) :
∫ q

0
l(s) ds ≤ 0 ∀l ∈ [0, T ],

∫ T

0
l(s) ds = 0

}

(5.72)

The function V (s, τ) = Π(D̄i(s) + D̄∗
f (s) + τ)

[

D̄∗
f (s) + τ

]

is introduced, allowing to de-

rive an alternative expression of the total cost Jtot:

Jtot =

∫ T

0
V (s, 0) ds +

∫ T

0

∫ l(s)

0

∂V

∂τ
(s, τ) dτ ds

= J∗
tot −

∫

T−

∫ 0

l(s)

∂V

∂τ
(s, τ) dτ ds +

∫

T+

∫ l(s)

0

∂V

∂τ
(s, τ) dτ ds

(5.73)

The sets T− and T+ are defined as follows:

T− := {s : l(s) < 0} T+ := {s : l(s) > 0} (5.74)

while for the partial derivative of V it holds:

∂V

∂τ
(s, τ) = Π′(D̄i(s) + D̄∗

f (s) + τ)
[

D̄∗
f (s) + τ

]

+Π(D̄i(s) + D̄∗
f (s) + τ)

It is shown that, under the current assumptions, the partial derivative ∂V
∂τ (s, τ) is mono-

tonically increasing with respect to τ and with respect to s when τ = 0. The mono-

tonicity with respect to τ is always verified since the price function Π is convex and

monotonically increasing. For the monotonicity of ∂V
∂τ (s, 0) in the variable s, explicit

calculations show that the left hand side in (5.70) corresponds to ∂2V
∂s∂τ (q, 0) which is

therefore positive for all q ∈ [0, T ]. If one denotes by S− and S+ the following sets:

S+ = {(τ, s) : l(s) ≥ 0 ∧ τ ∈ [0, l(s)]}

S− = {(τ, s) : l(s) ≤ 0 ∧ τ ∈ [l(s), 0]}

it holds:

−
∫

S−

dτ ds +

∫

S+

dτ ds =

∫

T−

∫ l(s)

0
dτ ds+

∫

T+

∫ l(s)

0
dτ ds =

∫ T

0
l(s) ds = 0
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Considering that
∫ q
0 l(s) ds ≤ 0 and assuming that there only exist finitely many intervals

{I1, I2, . . . , In} included in [0, T ] where l(·) is identically 0, it is possible to partition S+

and S− in n subsets (S1
+, . . . , S

n
+) and (S1

−, . . . , S
n
−) such that:

∫

Si
−

dτ ds =

∫

Si
+

dτ ds s1 ≤ s2 τ1 ≤ 0 ≤ τ2

where the inequalities are verified for all (s1, τ1) ∈ Si− and (s2, τ2) ∈ Si+ with i = 1, . . . , n.

Such partition can be performed by choosing Si− as the connected components of S−.

We denote now as t1+ ≤ t2+ ≤ . . . ≤ tn+ ≤ tn+1
+ = T the (minimal) values in [0, T ] such

that:
∫

Si
−

dτds =

∫

[ti+,t
i+1
+ ]∩T+

∫ l(s)

0
dτds

The corresponding Si+ can be defined as ([ti+, t
i+1
+ ]× R) ∩ S+. Given the monotonicity

properties of the partial derivative ∂V
∂τ , it also holds:

∂V

∂τ
(s1, τ1) ≤

∂V

∂τ
(s1, 0) ≤

∂V

∂τ
(s2, 0) ≤

∂V

∂τ
(s2, τ2)

for all (τ1, s1) and (τ2, s2) as defined above. From the monotonicity of the integral, it

follows:
∫

Si
−

∂V

∂τ
(s, τ) dτds ≤

∫

Si
+

∂V

∂τ
(s, τ) dτds i = 1, . . . , n (5.75)

Adding up the inequalities (5.75) for i in {1, 2, . . . , n} yields:

∫

T−

∫ 0

l(s)

∂V

∂τ
(s, τ) dτds =

∫

S−

∂V

∂τ
(s, τ) dτds

≤
∫

S+

∂V

∂τ
(s, τ) dτds =

∫

T+

∫ l(s)

0

∂V

∂τ
(s, τ) dτds

(5.76)

Hence, the sum of the last two terms in (5.73) is positive and therefore Jtot ≥ J∗
tot.

Assumption 5.3 allows to extend this result from uq ∈ Uq to any feasible u. The proof

is concluded by noticing that (5.68) never holds if Jtot ≥ J∗
tot.

It is of particular interest the application of Theorem 5.4 when an affine price function

Π(d) = a + b · d is considered. In this case the inequality (5.70) corresponds to a

relationship between the negotiable valley capacity ΛDi
and the power density of task

durations Λf :

−D̄∗′
f (q) = Λf (q) ≤

ΛDi
(q)

2
=
D̄′
i(q)

2



Chapter 5. Decentralized Scheduling of Flexible Demand in the Electricity Market 162

5.6.2 Minimization of Task Time for the Single Appliance

Consider the decentralized control in the constrained case that has been presented in

Section 5.4. Recalling the definition of Γ(tmin) provided in (5.47) and the optimization

(5.48) of the total task time, the problem of minimizing the time required by the single

appliance (with parameter tmin = s) to complete its task can be written as:

min
F̄ (·),Ftot

Ts

s.t. ᾱI(Ts) = s F̄I(TEND) = Ftot

˙̄αI(q) =
Ftot − F̄I(q)
∫ T
ᾱI (q)

f ′(τ)
τ dτ

˙̄F (q) = F (q)

ᾱI(0) = 0 F̄I(0) = 0

0 ≤ ˙̄αI(q) ≤ 1 F̄ (q) ≤ D̄′
i(q)

ᾱI(TEND) = qmax TEND ≤ T

(5.77)

Similarly to (5.48), the considered constraints guarantee that an equilibrium is achieved

for the resulting aggregate demand. Furthermore, the condition ᾱI(TEND) = qmax with

TEND ≤ T is introduced to impose that the tasks of the whole population are performed

within the considered time interval [0, T ]. Note that the power absorption of the single

device with tmin = s, in the q variable, is scheduled in the interval characterized by

ᾱI(q) ≤ s. Considering the monotonicity of ᾱI(q), it is sufficient to minimize Ts such

that ᾱI(Ts) = s. It is now possible to provide the following result:

Theorem 5.5. The control F̄ ∗ defined in (5.66) and optimal for the problem (5.48) of

global task time minimization, is the solution of (5.77) for all s ∈ [qmin, qmax].

Proof. Assume that F̄ ∗ is not optimal and there exists another control F̄ ⋄ which is

feasible for (5.77) and such that, for the corresponding solution (ϕ̄⋄
α, ϕ̄

⋄
F ) of (5.45), it

holds:

ϕ̄⋄
α(Ts) = s > ϕ̄∗

α(Ts) (5.78)

where ϕ̄∗ denotes the solution of (5.45) when F̄ ∗ is applied. Since ϕ̄⋄
α(TEND) = qmax,

it is possible to apply Proposition 5.2 and calculate the equivalent control F̃ ⋄ for (5.49)

to which corresponds the limiting solution (ϕ̃⋄
α, ϕ̃

⋄
F ) when ǫ tends to zero. The same

operations are performed for the control F̄ ∗ with final time T ∗, obtaining the corre-

sponding F̃ ∗ and the solution (ϕ̃∗
α, ϕ̃

∗
F ) for system (5.49). Considering the relationship

(5.53) between trajectories in the two systems and the inequality in (5.78) yields:

ϕ̃⋄
α(TEND − Ts) < ϕ̃∗

α(T
∗ − Ts) ϕ̃⋄

α(TEND) = ϕ̃∗
α(T

∗) = qmax (5.79)
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with T ∗ ≤ TEND given the optimality of F̄ ∗ for (5.48). Furthermore, ϕ̃I(q) defined in

(5.51) can be considered as a strictly monotonic increasing function of ϕ̃α(q). Denoting

the value of ϕ̃I when F̃ ⋄ and F̃ ∗ are considered with the same superscript, we have:

ϕ̃⋄
I(TEND − Ts) < ϕ̃∗

I(T
∗ − Ts) ϕ̃⋄

I(TEND) = ϕ̃∗
I(T

∗) =
∫ qmax

0
f ′(τ) dτ (5.80)

It follows from T ∗ ≤ TEND and ϕ̃∗
α(0) = 0, that ϕ̃⋄

α(TEND − T ∗) ≥ ϕ̃∗
α(0). Given the

inequality in (5.79) and the continuity of the solutions of system (5.49) there must exist

y ∈ [Ts, T
∗] such that:

ϕ̃⋄
α(TEND − y) = ϕ̃∗

α(T
∗ − y) ˙̃ϕ⋄

α(TEND − y) < ˙̃ϕ∗
α(T

∗ − y) (5.81)

where the second condition in (5.81) corresponds to ϕ̃⋄
F (TEND − y) < ϕ̃∗

F (T
∗ − y) from

(5.49). Taking into account the monotonicity of system (5.49) with T̃ = y and the

properties of F̃ ∗, considering as initial states ϕ̃⋄(TEND − y) and ϕ̃∗(T ∗ − y), we have:

ϕ̃⋄
F (TEND − Ts) ≤ ϕ̃∗

F (T
∗ − Ts)

From the conditions (5.80) on the integral ϕ̃I , there must exist an interval of positive

measure T ⊆ [0, Ts] such that:

ϕ̃⋄
F (TEND − τ) > ϕ̃∗

F (T
∗ − τ) ∀τ ∈ T

Given the monotonicity properties of system (5.49) with T̃ = Ts and the fact that the

control F̃ ∗ always maximizes the state derivatives, we can conclude that this is not

possible. As a consequence, there is no F̄ ⋄ for which (5.78) holds and therefore F̄ ∗ is

optimal for (5.77).

5.6.3 Flattening of Aggregate Demand Profile

We are now interested in the global properties of the control strategy presented in Section

5.4. Similarly to what has been proposed in [69], we aim to quantify the flattening

introduced in the aggregate demand by minimizing the following functional:

J (Df (·)) =
∫ T

0
U (Di(t) +Df (t)) dt =

∫ T

0
U (Da(t)) dt (5.82)

where U : [0,+∞) → R
+ is a positive convex function. It is desirable to perform such

optimization on the class Df of flexible demand profiles which result from a greedy

optimization of the appliances on the basis of the broadcast signal D = Di and a pro-

portional constraint on power consumption. We also require task completion for the
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appliances population, fairness (the proportional constraint is equal for all the appli-

ances) and equilibrium of the system in the sense specified by (5.39). Denote now as D̄f

the set of flexible demand profiles in the variable q which are defined, given (ᾱI , F̄I , F̄ )

which satisfy the constraints in (5.48), according to (5.34). From the results of Section

5.4, for each Df (·) ∈ Df there exists D̄f (·) ∈ D̄f such that:

Df (t) = D̄f (QDi
(Di(t))

Da(t) = D̄a(QDi
(Di(t))

∀t ∈ [0, T ] (5.83)

where Da and D̄a denote respectively the resulting profiles of aggregate demand in the

variables t and q. It is now possible to introduce the equivalent functional J̄ :

J̄(D̄f (·)) =
∫ T

0
U
(

D̄i(q) + D̄f (q)
)

dq =

∫ T

0
U
(

D̄a(q)
)

dq (5.84)

Remark 5.6. For any Df (·) ∈ Df and D̄f (·) ∈ D̄f which fulfil (5.83), as a direct result

of Lemma 5.1, the following holds for the functionals defined in (5.82) and (5.84):

∫ T

0
U (Di(t) +Df (t)) dt =

∫ T

0
U
(

D̄i(q) + D̄f (q)
)

dq (5.85)

This means that it is possible to minimize J by solving the equivalent optimization

problem on J̄ . Since it is in general difficult to provide an analytical definition of D̄f ,

a larger class of flexible demand profiles is introduced. If one considers D̄∗
f as defined

in (5.67), which represents the flexible demand resulting from the optimal solution of

(5.48), the set D̃f can be defined as:

D̃f :=
{

D̄f (·) : D̄f (q) = D̄∗
f (q) + l(q) ∀q ∈ [0, T ], l(·) ∈ L

}

(5.86)

where the set L of admissible variations is:

L :=

{

l(·) :
∫ q

0
l(s) ds ≤ 0 ∀l ∈ [0, T ],

∫ T

0
l(s) ds = 0

}

(5.87)

Proposition 5.6. The set of demand profiles D̄f and D̃f defined in (5.86) are such that

D̄f ⊆ D̃f .

Proof. To any profile D̄f (·) ∈ D̄f must correspond task completion of the appliances

population and therefore it must hold:

∫ T

0
D̄f (s) ds =

∫ T

0
D̄∗
f (s) ds (5.88)



Chapter 5. Decentralized Scheduling of Flexible Demand in the Electricity Market 165

This means that D̄f ⊆ D̃ if, for all D̄f (·) ∈ D̄f , the following holds at all q < T :

∫ q

0
D̄f (s) ds ≤

∫ q

0
D̄∗
f (s) ds (5.89)

In fact, if this is true, there exists a function l(·) ∈ L such that D̄f = D̄∗
f + l. To verify

(5.89), consider the solution (ϕ̄α, ϕ̄F ) of (5.45) obtained applying the control F̄ which

induces the flexible demand D̄f . Denote by TEND the corresponding time required for

total task completion of the population. From definition (5.44) of D̄r = D̄f , consid-

ering the state (ϕ̃α, ϕ̃F ) of the backward system (5.49) obtained applying Proposition

5.2 for T̃ = TEND, we have D̄f (q) = ϕ̃F (TEND − q). Denoting with the star sub-

script the corresponding quantities for D̄∗
f and considering T ∗ instead of TEND yields

D̄∗
f (q) = ϕ̃F (T

∗ − q). If one considers ϕ̃I(q) =
∫ q
0 ϕ̃F (τ) dτ , defined in (5.51), the in-

equality in (5.89) can be rewritten as:

DI − ϕ̃I(TEND − q) ≤ DI − ϕ̃∗
I(T

∗ − q) (5.90)

The total demand integral DI =
∫ T
0 D̄f (q) dq =

∫ T
0 D̄∗

f (q) dq is equal for the two cases, as

shown in (5.88). Suppose now that (5.90) does not hold and there exist some D̄f (·) ∈ D̄f

and q ∈ [0, T ] such that ϕ̃I(TEND − q) < ϕ̃∗
I(T

∗ − q). If one considers that ϕ̃I(TEND) =

ϕ̃∗
I(T

∗) = DI , it is possible to show that this is impossible by following the steps detailed

for (5.80) in the proof of Theorem 5.5.

The global cost (5.84), equivalent to (5.82), is minimized over D̃f (which includes the

set of feasible profiles D̄f ):

min
D̄f (·)∈D̃f

∫ T

0
U
(

D̄i(s) + D̄f (s)
)

ds (5.91)

It can be shown that the task time minimizing solution presented in Section 5.4 is

optimal also for the current problem. In particular:

Theorem 5.6. The profile of flexible demand D̄∗
f induced by the optimal solution of

(5.48) and defined in (5.67) is optimal for (5.91).

Proof. For any D̄f (·) ∈ D̃f the cost function in (5.91), denoted as J̄ , can be written as:

J̄=

∫ T

0
U
(

D̄i(s) + D̄∗
f (s)

)

+

∫ l(s)

0
U ′ (D̄i(s) + D̄∗

f (s) + τ
)

dτ ds

= J̄∗ −
∫

T−

∫ 0

l(s)
U ′ (D̄i(s) + D̄∗

f (s) + τ
)

dτ ds+

∫

T+

∫ l(s)

0
U ′ (D̄i(s) + D̄∗

f (s) + τ
)

dτ ds

(5.92)
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The term J̄∗ denotes the cost function evaluated at D̄f = D̄∗
f while D̄i represents the

inflexible demand in the variable q = QDi
(Di(t)) and the sets T+ and T− are defined as

follows:

T− := {s : l(s) ≤ 0} T+ := {s : l(s) ≥ 0} (5.93)

Note that the derivative U ′
(

D̄i(s) + D̄∗
f (s) + τ

)

is monotonically increasing with respect

to s and τ . The monotonicity in τ derives from the convexity of U and the same holds

for s given that, from the definition of D̄∗
f and Remark 5.3, it follows D̄′

i(s) + D̄′∗
f (s) ≥ 0.

Notice also that, if one denotes by S− and S+ the following sets:

S+ = {(τ, s) : l(s) ≥ 0 and τ ∈ [0, l(s)]}

S− = {(τ, s) : l(s) ≤ 0 and τ ∈ [l(s), 0]}

it holds:

−
∫

S−

dτ ds +

∫

S+

dτ ds =

∫

T−

∫ l(s)

0
dτ ds+

∫

T+

∫ l(s)

0
dτ ds =

∫ T

0
l(s) ds = 0

Considering that
∫ q
0 l(s) ds ≤ 0 and assuming that there only exist finitely many intervals

{I1, I2, . . . , In} included in [0, T ] where l(.) is identically 0, it is possible to partition S+

and S− in n subsets (S1
+, . . . , S

n
+) and (S1

−, . . . , S
n
−) such that:

∫

Si
−

dτ ds =

∫

Si
+

dτ ds s1 ≤ s2 τ1 ≤ 0 ≤ τ2

where the inequalities are verified for all (s1, τ1) ∈ Si− and (s2, τ2) ∈ Si+ with i = 1, . . . , n.

These subsets can be determined as in the proof of Theorem 5.4, considering Si− as the

connected components of S−. We denote by t1+ ≤ t2+ ≤ . . . ≤ tn+ ≤ tn+1
+ = T the

(minimal) values in [0, T ] such that:

∫

Si
−

dτds =

∫

[ti+,t
i+1
+ ]∩T+

∫ l(s)

0
dτds.

The corresponding Si+ can then be chosen as ([ti+, t
i+1
+ ]× R) ∩ S+. Given the mono-

tonicity properties of U ′, it also holds:

U ′ (D̄i(s1) + D̄∗
f (s1) + τ1

)

≤ U ′ (D̄i(s2) + D̄∗
f (s2) + τ2

)

for all (s1, τ1) ∈ Si− and (s2, τ2) ∈ Si+, with i = 1, . . . n. Hence, by monotonicity of the

integral, it follows:

∫

Si
−

U ′ (D̄i(s) + D̄∗
f (s) + τ

)

dτds ≤
∫

Si
+

U ′ (D̄i(s) + D̄∗
f (s) + τ

)

dτds. (5.94)
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Adding up the inequalities (5.94) for i in {1, 2, . . . , n} yields:

∫

S−

U ′ (D̄i(s) + D̄∗
f (s) + τ

)

dτds ≤
∫

S+

U ′ (D̄i(s) + D̄∗
f (s) + τ

)

dτds. (5.95)

This shows:

∫

T+

∫ l(s)

0
U ′ (D̄i(s) + D̄∗

f (s) + τ
)

dτ ds−
∫

T−

∫ 0

l(s)
U ′ (D̄i(s) + D̄∗

f (s) + τ
)

dτ ds

=

∫

S+

U ′ (D̄i(s) + D̄∗
f (s) + τ

)

dτds−
∫

S−

U ′ (D̄i(s) + D̄∗
f (s) + τ

)

dτds ≥ 0

We can then conclude that the sum of the last two terms in (5.92) is positive and

therefore D̄∗
f is optimal for (5.91)

5.7 Appliances with Partial Flexibility

It has been assumed so far that appliances can schedule their power consumption at any

time instant within the considered interval [0, T ]. It is possible to extend such formula-

tion and account for devices that must operate with stricter time constraints. In particu-

lar, we will consider the case of appliances that must perform their tasks at t ≥ tst where

tst (“st” standing for start) is an additional parameter of the individual device which is

also communicated to the mentioned central entity. The distributionm of the parameters

in the population will now have an additional variable:
∫ t2
t1

∫ τ2
τ1

∫ E2

E1
m(t, τ, E) dE dτ dt

will denote the number of devices for which E1 ≤ Etot ≤ E2, t1 ≤ tmin ≤ t2 and also

τ1 ≤ tst ≤ τ2. Similarly, the function f(t, τ) in this case will represent the total amount

of energy required by devices with tst = τ and tmin ≤ t:

f(t, τ) :=

∫ t

0

∫

E
E ·m(x, τ,E) dE dx (5.96)

It is now possible to define the derivative with respect to t of the function f with

f ′(t, τ) = ∂f(t,τ)
∂t =

∫

E E ·m(t, τ, E) dE .

Assumption 5.4. For the derivative f ′, similarly to the previous analysis, we make an

assumption of compact support. In particular:

supp(f ′) = [qmin, qmax]× [τmin, τmax]

We also assume that tmin+ tst ≤ T for all (tmin, tst) ∈ supp(f ′) as all appliances should

be able to complete their task by operating at rated power within the specified availability

interval [tst, T ].
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5.7.1 Optimal Power Profiles and Equilibrium Conditions

As in the case with total flexibility, the appliances minimize their individual cost on the

basis of a broadcast demand profile D that satisfies Assumption 5.2. The optimization

problem for the single device with tmin = s, tst = τ and Etot = x is:

min
u(·)

∫ T

τ
Π(D(t)) · u(t) dt

s. t 0 ≤ u(t) ≤ x

s
∫ T

τ
u(t) dt = x

(5.97)

In order to define the optimal power profile u∗, it is useful to provide the following

preliminary result:

Proposition 5.7. Given the sublevel set SD defined in (5.6), for any (s, τ) ∈ supp(f ′)

there exists λ ∈ [0, T ], that we denote by Λ(s, τ), such that the following holds:

λ = inf
x
{x ∈ [0, T ] : µ ( [τ, T ] ∩ SD(x) ) = s} (5.98)

Proof. It is straightforward to verify that, under Assumption 5.2 for the broadcast D,

the term µ ( [τ, T ] ∩ SD(x) ) in (5.98) is continuous and nondecreasing with respect to x.

Furthermore, we have:

µ ([τ, T ] ∩ SD(T )) = µ ([τ, T ] ∩ [0, T ]) = T − τ

µ ([τ, T ] ∩ SD(0)) = 0
(5.99)

Since, from Assumption 5.4, it holds s ≤ T − τ for all (s, τ) ∈ supp(f ′), we can conclude

that Λ(s, τ) exists as specified in the claim.

Notice that SD(Λ(tmin, tst)) returns a time interval with the lowest values of broadcast

demand D and whose intersection with [tst, T ] has measure tmin. The solution to (5.97),

for a device with tmin = s, tst = τ and Etot = x can then be defined as follows:

u∗(t, s, τ, x) =















x

s
if t ∈ ([τ, T ] ∩ SD(Λ(s, τ)))

0 if t /∈ ([τ, T ] ∩ SD(Λ(s, τ)))
(5.100)

As in the previous analysis, considering the aggregate demand Da,D obtained by broad-

casting the profile D to the appliances, an equilibrium is achieved if the following holds
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for all (tmin, tst) = (s, τ) ∈ supp(f ′) and Etot = x ∈ E :
∫ T

τ
Π(Da,D(t)))u

∗(t, s, τ, x) dt = min
u(·)

∫ T

τ
Π(Da,D(t))u(t) dt

s. t 0 ≤ u(t) ≤ x

s
∫ T

τ
u(t) dt = x

(5.101)

In the case of appliances with partial flexibility, the concepts of negotiable valley capacity

and power density of task durations are no longer applicable. In fact, it is in general not

possible to provide an expression of flexible and aggregate demand simply as a function

of the variable q = QD(D(t)). This is due to the fact that, following the additional

constraint on the initial time of power consumption, equal values of D at different time

instants do not correspond to equal values of Df . On the other hand, it is possible to

provide the following result:

Proposition 5.8. A broadcast profile D induces a Nash equilibrium satisfying (5.101)

if the following holds:

QD(D(t)) = QDa,D
(Da,D(t)) ∀t ∈ [0, T ] (5.102)

Proof. To see this, it is sufficient to consider that the set SD and the function Λ in

(5.100) depend only on the measure QD(D(t)). This implies that, if (5.102) holds, the

solution to the minimization problem in (5.101) can be achieved by adopting the power

profile u∗ which is optimal when considering the broadcast D in (5.97).

5.7.2 Parametrization of the Broadcast Signal

Since it is not possible to provide equilibrium conditions in the variable q = QD(D(t)),

the problem is approached by restricting the analysis to a specific class Dm of broadcast

signals D : [0, T ] → [0, T ] which are equal to their measure function QD. To define Dm,

consider the functions θL : [0, T ] → [0, T0] and θR : [0, T ] → [T0, T ] with T0 ∈ [0, T ] and

such that, for all q ∈ [0, T ], it holds:

θR(q)− θL(q) = q θ̇L(q) < 0 θ̇R(q) > 0 (5.103)

Furthermore, the following conditions at q = 0 and q = T are verified:

θL(0) = θR(0) = T0 θL(T ) = 0 θR(T ) = T (5.104)
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The class of profiles Dm will consist of the functions D for which there exist θL and θR

which satisfy (5.103) and (5.104) and such that the following holds:

D(t) =

{

θ−1
L (t) if t ∈ [0, T0]

θ−1
R (t) if t ∈ [T0, T ]

(5.105)

Notice that D ∈ Dm can be defined through (5.105) if one considers that the functions

θL and θR are invertible and the union of their images is equal to [0, T ]. Moreover, it

holds Im(θL) ∩ Im(θR) = T0 with θ−1
L (T0) = θ−1

R (T0) = 0. The profiles D ∈ Dm can

be visualized as valleys, with one decreasing profile θ−1
L in the interval [0, T0] and an

increasing one (θ−1
R ) on [T0, T ].

Remark 5.7. Given (5.105), the following relationship holds for the broadcast profile

D ∈ Dm evaluated at θL(q) ∈ [0, T0] and θR(q) ∈ [T0, T ]:

D(θL(q)) = θ−1
L (θL(q)) = q = θ−1

R (θR(q)) = D(θR(q)) (5.106)

In order to provide equilibrium conditions under partial flexibility of the appliances, it

is useful to introduce the following property:

Proposition 5.9. For any D ∈ Dm the values of QD(D(t)) are equal to the profile

itself:

QD(D(t)) = µ ({s ∈ [0, T ] : D(s) ≤ D(t)}) = D(t) ∀t ∈ [0, T ] (5.107)

Proof. Given definition (5.105) for D ∈ Dm, the function QD can be written as follows:

QD(D(t)) = µ
(

{s ∈ [0, T0] : θ
−1
L (s) ≤ D(t)}

)

+ µ
(

{s ∈ [T0, T ] : θ
−1
R (s) ≤ D(t)}

)

= µ ([θL(D(t)), T0]) + µ ([T0, θR(D(t))]) = θR(D(t))− θL(D(t))

where the second equality holds for the monotonicity properties of the functions θL and

θR (and consequentially of the inverse θ−1
L and θ−1

R ). The proof is concluded by verifying

that, following the equality in (5.103), it holds θR(D(t))− θL(D(t)) = D(t).

It is interesting to notice that, for D ∈ Dm, the equilibrium condition (5.102) becomes:

D(t) = QDa,D
(Da,D(t)) ∀t ∈ [0, T ] (5.108)

Furthermore, in the considered case, an important property holds also for the power

consumption interval of the appliances:

Proposition 5.10. If one considers a broadcast profile D ∈ Dm, the power consumption

of the single device with tmin = s, tst = τ and Etot = x is scheduled (at maximum feasible
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rate x/s) during a compact interval S̄D(s, τ):

S̄D(s, τ) :=















[θL(s), θR(s)] if τ ≤ θL(s)

[τ, τ + s] if τ > θL(s)

(5.109)

Proof. For the interval in the first case of definition (5.109) it holds [θL(s), θR(s)] ⊆ [τ, T ].

Furthermore, considering (5.103) and (5.105), the following properties are satisfied:

µ ([θL(s), θR(s)]) = s

D(t1) < D(t2) ∀t1 ∈ [θL(s), θR(s)], t2 /∈ [θL(s), θR(s)]

For the second case in (5.109), since D is monotonic increasing for t > T0, it is sufficient

to show the following:

τ + s > T0

D(t) ≤ D(τ + s) ∀t ∈ [τ, τ + s]

(5.110)

Given that τ > θL(s), it is possible to verify that τ + s > θL(s) + s = θR(s) > T0. For

the second inequality in (5.110) two different cases have to be analyzed: if t > T0 then

D(t) = θ−1
R (t) ≤ θ−1

R (τ + s) = D(τ + s) from the monotonicity properties of θ−1
R . If

t ∈ [τ, T0], from τ > θL(s) and Remark 5.7, it follows:

D(t) ≤ D(τ) < D(θL(s)) = D(θR(s)) < θ−1
R (τ + s) = D(τ + s)

It is now possible to provide the following expression for the optimal power profile at

time t of appliances with tmin = s, tst = τ and Etot = x, when the profile D ∈ Dm is

broadcast:

ū∗(t, s, τ, x) =















x

s
if t ∈ S̄D(s, τ)

0 if t /∈ S̄D(s, τ)
(5.111)

Having derived the optimal power consumption, it is possible to calculate the resulting

flexible demand Df (t) by evaluating the following integral:

Df (t) =

∫ T

0

∫ T

0

∫

E
m(s, τ, x)ū∗(t, s, τ, x) dx dτ ds =

∫ T

0

∫ T

0

f ′(s, τ)
s

· 1S̄D(s,τ)(t) dτ ds

(5.112)
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Proposition 5.11. The following expressions of Df as a function of θL and θR hold:

Df (θL(q)) =

∫ θL(q)

0

∫ T

q

f ′(s, τ)
s

ds dτ

Df (θR(q)) =

∫ θL(q)

0

∫ T

q

f ′(s, τ)
s

ds dτ +

∫ θR(q)

θL(q)

∫ T

θR(q)−τ

f ′(s, τ)
s

ds dτ

(5.113)

Proof. To prove the equality for Df (θL(q)) it is useful to consider definition (5.109) of

S̄D and notice that no appliance completes its task for t < T0. This means that at time

θL(q) ≤ T0 the flexible demand can be determined by taking into account only the start-

ing time of power consumption. For any appliance with initial time constraint τ < θL(q),

two cases must be considered: if the task duration at rated power s ∈ (θ−1
L (τ), T ] ⊂ [q, T ]

then it holds τ > θL(s) and from (5.109) the starting time is equal to τ ≤ θL(q). If

instead s ∈ [0, θ−1
L (τ)], the starting time of power consumption is equal to θL(s) and

only devices with task time s ≥ q must be accounted for in the computation of flexible

demand. This proves the first expression in (5.113). For the expression of Df (θR(q)),

the considered values of the parameter τ are lesser or equal than θR(q) and, from (5.109),

the same holds for the starting time. The bounds of the integration in s when τ ≤ θL(q)

can be determined similarly to the previous case, considering the final time of power con-

sumption. If θL(q) < τ ≤ θR(q) the only possible case to analyze in (5.109) is τ > θL(s),

when the interval of power consumption scheduled by the devices equals [τ, τ + s]. To

account for the appliances that are operating at t = θR(q) it is sufficient to impose

τ + s ≥ θR(q) and therefore s ≥ θR(q)− τ .

It is straightforward to obtain an expression for the resulting aggregate demand Da,D:

Da,D(θL(q)) = Di(θL(q)) +Df (θL(q))

Da,D(θR(q)) = Di(θR(q)) +Df (θR(q))
(5.114)

5.7.3 Sufficient Conditions for Nash Equilibrium

Having calculated flexible and aggregate demand as functions of θL and θR corresponding

to the broadcast D ∈ Dm, it is possible to provide the following result:

Theorem 5.7. The equilibrium condition (5.101) is satisfied for D ∈ Dm if, for the

corresponding functions θL, θR and profile of aggregate demand Da,D, it holds:

d
dqDa,D(θL(q)) > 0

d
dqDa,D(θL(q)) =

d
dqDa,D(θR(q))

∀q ∈ [0, T ] (5.115)
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Proof. By the first equality in (5.104), Da,D(θL(0)) = Da,D(θR(0)) = Da,D(T0). There-

fore, the second condition in (5.115) is equivalent to:

Da,D(θL(q)) = Da,D(θR(q)) ∀q ∈ [0, T ].

Moreover, (5.115) and monotonicity of the functions θL and θR imply the following

inequalities for all q ∈ [0, T ]:

Da,D(t) ≤ Da,D(θL(q)) = Da,D(θR(q)) if θL(q) ≤ t ≤ θR(q)

Da,D(t) > Da,D(θL(q)) = Da,D(θR(q)) otherwise
(5.116)

To see this, consider t such that θL(q) ≤ t ≤ T0: by monotonicity and continuity of θL

there exists q̄ ≤ q such that θL(q̄) = t and therefore, from the inequality in (5.115):

Da,D(t) = Da,D(θL(q̄)) ≤ Da,D(θL(q))

Similarly, when t < θL(q), there exists q̄ > q such that θL(q̄) = t and Da,D(t) =

Da,D(θL(q̄)) > Da,D(θL(q)). The inequalities in (5.116) can be verified for t > T0 in

a similar manner, considering in this case the increasing function θR. It is now possible

to provide the following expression for the measure function Q of the aggregate demand:

QDa,D
(Da,D(θR(q))) = QDa,D

(Da,D(θL(q))) = µ ({s : Da,D(s) ≤ Da,D(θL(q))})
= θR(q)− θL(q) = q

(5.117)

If one evaluates (5.117) at q = D(t) with t ≤ T0, recalling that θL(D(t)) = t from

(5.105), it holds:

QDa,D
(Da,D(t)) = QDa,D

(Da,D(θL(D(t)))) = θR(D(t))− θL(D(t)) = D(t)

The same result is obtained by considering q = D(t) when t > T0 and therefore

θR(D(t)) = t. We can then conclude that QDa,D
(Da,D(t)) = D(t) for all t ∈ [0, T ]

and therefore (5.108), which is equivalent to the equilibrium condition (5.102) in Propo-

sition 5.8, is satisfied.

Proposition 5.8 and Theorem 5.7 provide conditions for the existence of an equilibrium in

the sense described by (5.101) by verifying that the optimal power profile of the devices,

defined in (5.100), is identical when the broadcast D or the resulting aggregate demand

Da,D are considered. Such conditions are only sufficient since the optimal power profile

is unique and equal to (5.100) only if the broadcast signal satisfies Assumption 5.2. If

such assumption holds not only for the function D but also for the resulting aggregate

demand, the equilibrium conditions become also necessary.



Chapter 5. Decentralized Scheduling of Flexible Demand in the Electricity Market 174

5.7.4 Synthesis Technique and Simulations

Following the results of Theorem 5.7, it is also possible to provide a constructive tech-

nique which verifies, for a given Di and f
′, if there exists a profile D ∈ Dm which satisfies

(5.115) and allows to calculate it numerically. To do so, it is useful to derive expressions

for the derivatives with respect to the variable q of the different demand components:

d

dq
Di(θL(q)) =

dDi(t)

dt

∣

∣

∣

∣

t=θL(q)

θ̇L(q)

d

dq
Di(θR(q)) =

dDi(t)

dt

∣

∣

∣

∣

t=θR(q)

θ̇R(q)

d

dq
Df (θL(q)) =

∫ T

q

f ′(s, θL(q))
s

ds · θ̇L(q)−
∫ θL(q)

0

f ′(q, τ)
q

dτ = G1(q) · θ̇L(q)−G2(q)

d

dq
Df (θR(q)) =

d

dq
Df (θL(q)) +

∫ T

0

f ′(s, θR(q))
s

ds · θ̇R(q)

−
∫ T

θR(q)−θL(q)

f ′(s, θL(q))
s

ds · θ̇L(q)−
∫ θR(q)

θL(q)

f ′(θR(q)− τ, τ)

θR(q)− τ
dτ · θ̇R(q)

=G1(q) · θ̇L(q)−G2(q) +G3(q) · θ̇R(q)−G4(q) · θ̇L(q)−G5(q) · θ̇R(q)
(5.118)

By replacing (5.118) in the equation of (5.115), it is possible to calculate θL(q) and θR(q)

as the solution of the following dynamical system:

θ̇L(q) =

dDi(t)
dt

∣

∣

∣

t=θR(q)
+G3(q)−G5(q)

dDi(t)
dt

∣

∣

∣

t=θL(q)
− dDi(t)

dt

∣

∣

∣

t=θR(q)
−G3(q) +G4(q) +G5(q)

θ̇R(q) = 1 + θ̇L(q) θL(0) = T0 θR(0) = T0

(5.119)

If the solution satisfies the inequalities in (5.103) and (5.115) for some T0 ∈ [0, T ], the

corresponding D ∈ Dm defined according to (5.105) induces an equilibrium. To deter-

mine T0, it is useful to consider the equality in (5.115), evaluated at θL(q) = θR(q) = T0:

Ḋa,D(T0)− Ḋa,D(T0) =

[

dDi(t)

dt

∣

∣

∣

∣

t=T0

+

∫ T

0

f ′(s, T0)
s

ds

]

= 0 (5.120)

The described technique, given the hypothesis on the broadcast D and the fact that the

power consumption of each appliance occurs during a compact time interval, is partic-

ularly suited for dealing with valleys in the inflexible demand. A qualitative example is

now simulated with T = 12h, considering a parabolic profile for the inflexible demand
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and an appliances population that requires 10GWh of total energy. The distribution

of the parameter tst has been modelled with a truncated gaussian with mean equal to

5h while the values of minimum task time tmin are in the range [2h, 5h]. The resulting

function f ′ (tmin, tst) is shown in Fig. 5.11. The initial condition T0 for θL and θR has

been calculated using (5.120) and is equal to 4.21h. The equations in (5.119) have been

integrated and the broadcast profile D has been obtained with (5.105). The correspond-

ing measure QD is compared in Fig. 5.12 with the functions Q of the inflexible and

aggregate demand. The comparison of the demand profiles is presented in Fig. 5.13.

As expected, the measure QDa,D
of the aggregate demand is equal to the function D

and therefore an equilibrium is achieved according to (5.108). Notice also that D has a

minimum at time T0 = 4.21h while the minimum in Di is achieved at t = 6h. This is

due to the time constraint tst: the earlier power scheduling of devices with lower values

of tst (during a time interval which is not characterized by the lowest values of inflexible

demand) will be balanced by the other appliances which are constrained to operate at

later times.

Figure 5.11: Density f ′ of the considered population as a function of the minimum
task time tmin and initial time constraint tst,
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5.8 Conclusions

This chapter describes a novel methodology for the management of large populations of

flexible appliances which schedule their power consumption on the basis of a broadcast

price signal. Necessary and sufficient conditions are presented for convergence to a Nash

Equilibrium in one step. This is done by describing the devices population as a contin-

uum, abstracting its valley-filling capabilities through a power density of task durations

and then comparing this with the considered profile of inflexible demand, described by

its negotiable valley capacity. The equilibrium conditions are then extended, introduc-

ing time-varying proportional constraints on the power of the devices. Such constraints

are calculated in order to induce an equilibrium and, at the same time, minimize the

task time of the appliances and optimize some global cost function. The case of partial

flexibility of the devices is also considered, providing a design method for a broadcast

signal which induces an equilibrium under additional time constraints.





Chapter 6

Conclusions and Future Research

6.1 Conclusions

This work has tackled some of the new challenges that arise in the context of the smart

grid, proposing control strategies that are specifically designed for the management of a

large number of agents. In particular, two main aspects of the future power system have

been considered: frequency control with variable-speed wind turbines and management

of large populations of price-responsive devices (storage and flexible appliances).

The first part of this thesis is focused on new methods for providing frequency response

with wind generators. Initially, an overview is given of the frequency stability issues

resulting from high penetration of wind turbines and corresponding reduction of system

inertia. The main approaches proposed in the literature are described and a new dis-

tributed stochastic control strategy is presented. In particular, the single generator is

modelled as a stochastic hybrid system that can operate in two discrete modes, which

correspond to different levels of efficiency and generated power. Transitions between

these two modes are random and are driven by frequency-dependent switching func-

tions: the single turbine behaves stochastically and, at the same time, large populations

perform deterministically, changing the aggregate generated power in response to fre-

quency fluctuations. The main element of novelty is the stochastic repartition of the

control effort among the individual generators: the responses of the single turbines are

in general different, synchronicity of the generators is avoided and no additional commu-

nication infrastructure is required. The stability and robustness of the control strategy

are shown theoretically and then evaluated in simulations.

The possibility to provide frequency response through temporary overproduction is also

considered: following a fault in the system, the turbines can increase their generated

179
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power by slowing down and releasing part of the kinetic energy stored in the rotating

shafts. An optimal scheduling of the turbines is presented, determining the repartition

of extra power among the single generators in order to optimize some global criterion.

In particular, two different cases are considered, assuming respectively that the electric

torque of the turbines can correspond to two distinct expressions or can be arbitrarily

set. In this last scenario, the objective is to minimize the efficiency losses resulting from

the overproduction, considering a wind speed different in general for each turbine and

taking into account the physical limitations of the generators.

In the second part of the thesis, the coordination of large populations of micro-storage

devices which perform energy arbitrage (charge/discharge on the basis of current en-

ergy prices) is considered. The main element of difficulty is that the charge profile of

the appliances modifies the price of energy and therefore can prevent convergence to an

equilibrium (i.e. all devices charge when price is low and peak demand is only shifted).

The state of the art for this subject is discussed, presenting the different approaches

investigated so far (centralized/distributed/game theory). The main idea for the novel

proposed control strategy is to approximate the number of devices as infinite, describing

the population as a continuum: the price variation introduced by the single agent be-

comes negligible and only the general behaviour of the population must be considered.

The problem can then be modelled as a mean field game described by two coupled par-

tial differential equations. Numerical resolution of these equations allows to determine

a control strategy of the devices which is optimal for a certain price function and, at the

same time, induces it when applied. A decentralized implementation can be obtained by

broadcasting the mentioned price function to the devices, which are then able to perform

their optimization independently. Extensions to the initial model are also considered,

introducing cyclic constraints, multiple populations of appliances and uncertainties in

the system.

The last section of this thesis deals with the similar problem of large populations of

price-responsive flexible appliances that schedule their power consumption during the

time intervals characterized by cheapest energy. As in the previous case, it is neces-

sary to account for the change in energy prices that these devices introduce with their

operation strategies. The presented analytic methods allow to derive necessary and suf-

ficient conditions for the existence of a Nash equilibrium: all appliances, which have

optimized their power consumption according to a broadcast price signal, have no inter-

est in unilaterally changing their policy when the resulting price of aggregate demand

is considered. These results are obtained by comparing two different functions which

describe respectively the valley capacity of the inflexible demand and the global proper-

ties of the flexible devices. The equilibrium conditions can be extended by introducing

time-varying proportional constraints on the maximum power of the appliances. The
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case of partial flexibility is also studied, considering in particular devices which can only

operate after a specified time instant.

6.2 Future Research Directions

6.2.1 Stochastic Distributed Control of Wind Turbines

One of the most promising extensions of the stochastic control strategy described in

Chapter 2 for frequency response is the implementation of a more detailed model of

the individual turbine. In particular, it could be considered that the power extracted

from the wind is in general cubic with respect to the rotor speed, which also affects the

efficiency of the generator. The first attempts in this sense have shown that it is not

possible to provide a complete model of the turbines population with moments of finite

orders like in the original case. This problem could be solved by introducing a moment

truncation, verifying that the result is a reasonable approximation of the actual system

and preserves the stability properties presented in the initial analysis.

6.2.2 Scheduling of Wind Generators for Frequency Response

For the scheduling of wind turbines presented in Chapter 3, it seems that the most

promising research direction would be to extend the scenarios under which the proposed

control algorithms can be applied. In particular, a wider range of wind speeds could

be considered and the pitch angle of the turbines could be included as an additional

actuator. Furthermore, one could provide frequency response with only a fraction of

generators, using the remaining ones to support their recovery phase. In this way, after

the frequency support, the resulting reduction of aggregate power from the turbines

would be postponed, being easier to manage for the rest of the power system.

6.2.3 Energy Arbitrage with Micro-storage Devices

Regarding the distributed control of micro-storage devices, the following elements seem

to be of particular importance:

• Theoretical results of existence and uniqueness for the solution of the mean field

game equations. In particular, it would be interesting to understand if there

is a maximum penetration of storage for which an equilibrium can be achieved.

Furthermore, there may be some cases where multiple equilibria exist and one has
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to determine which one corresponds to desired configuration of the system, for

example evaluating some global performance index.

• Consider a model of the individual device where efficiency is accounted by intro-

ducing linear losses on the charging power. This would represent a more realistic

representation of the storage devices which are currently being developed. On

the other hand, the resulting optimal control of the devices in this case would be

discontinuous, preventing the application of the numerical methods considered so

far.

• Extensions of the current framework in order to account for devices which provide

additional ancillary services. For example, the storage population could provide

reserve: following errors in the demand forecast or unforeseen generation unavail-

ability, the devices could contribute to compensate supply/demand imbalances.

A possibility is to model these events stochastically, introducing a different cost

function for the devices which perform this additional task.

• Account explicitly for demand uncertainties: instead of adopting a receding horizon

strategy to deal with uncertainties on the inflexible demand profile, one could

incorporate these forecast errors in the model, for example considering mean field

games with major and minor players.

6.2.4 Equilibria in Energy Markets with Large Populations of Flexible

Appliances

The most interesting extension of the equilibrium analysis presented in Chapter 5 is to

remove the assumption that prescribes no level sets of positive measure for the broadcast

demand. In this case the optimal control of the devices is in general not unique: the

expression for the flexible demand and the equilibrium conditions provided so far do

not longer apply. It is worth investigating whether other kinds of Nash equilibria exist

and what is the level of coordination between the devices which is required to achieve

them. Furthermore, a broader analysis for the case of devices with partial flexibility

could be provided. In principle, one could consider appliances which can arbitrarily

specify a time set during which they are available to operate. It would be interesting to

understand how this limited flexibility impacts the fairness of the game and the pay-off

of the individual player.
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ulation stochastic dynamic games,” Journal of Systems Science and Complexity,

vol. 20, no. 2, pp. 162–172, 2007.

[72] M. Huang, P. E. Caines, and R. P. Malhamé, “Large population stochastic dynamic
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