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ABSTRACT 
 
 

Quantification of reservoir and fluid properties in large, highly matured fields with high watercuts is 

proving to be a main issue in reservoir characterization and engineering due to bad production and 

reservoir data management. Most of these matured fields, such as a matured field located in Romania that 

is analysed in this study, have been producing for more than 40 years, and the data available such as 

production data, pressure data, fluid properties data and Special Core Analysis (SCAL) data for these 

fields are either sparse or unavailable. The purpose of this study is to develop a methodology to estimate 

and quantify the reservoir and fluid properties of these fields and reduce the uncertainty in these fields. 

 

The study incorporates the use of linear and one-dimensional Buckley-Leverett Theory (Buckley and 

Leverett 1942) to analyse the sparse production data for a well located in a matured field in Romania. A 

real-time producer which was pre-assessed for good connectivity with an injector was used in this 

analysis to test the methodology. Using the Buckley-Leverett Theory, the parameters of the reservoir and 

fluids were optimized using a simple algorithm to history match the actual production data with the 

generated Buckley-Leverett solution. This method resulted in multiple solution sets of the average 

reservoir and fluid properties and the drainage volumes surrounding the producer well. The properties that 

could be estimated with this methodology include absolute permeability, Corey exponents, fluid 

viscosities, porosity, net pay thickness, width of the flood etc. The study finally discusses the 

development and implementation of an Automated-History Matching tool, called WATERFLOOD, which 

is based on the methodology discussed in the study.  

 

The paper also discusses the limitations and assumptions of this method. Using simulated production data, 

the results show that this method can be used for accurate estimation of these properties for horizontal and 

slightly dipping reservoirs but not for gravity-dominated, largely dipping reservoirs. This is due to the 

assumption of no change to the fractional flow curve due to gravity when the total liquid rate is varied. 

This tool would not only be able to estimate reservoir and fluid properties, which can be used as 

precursors for reservoir model characterization for future dynamic simulations, but would also aid in 

decision-making of future  infill drilling campaigns. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Combination of  Conventional and Optimisation Techniques for Performance Prediction in Large Waterflood Project                                          iii 

 

ACKNOWLEDGEMENTS 
 

 

I would like to express my sincere gratitude and acknowledgement to my project supervisor, Professor 

Peter R. King, for his invaluable time, supervision and useful suggestions throughout the research project, 

as well as for making this project possible. 

 

I am also extremely thankful to Mr Laurent Alessio, for his invaluable help and support in this project. I 

appreciate the time he has taken to discuss and comment on the work that I have done, as well as for his 

invaluable ideas in constructing new concepts with regards to this project. 

 

I would also like to thank my industry supervisor, Mrs Archana Kumar, for her help and advice on 

Buckley-Leverett Theory and Automated History Matching of production history with Buckley-Leverett 

Solutions.  

 

Last but not least, I would like to thank my family and friends for all their love and enduring support 

throughout my education. Without their encouragement, help and support, this project would not have 

been what it is today. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv                                       Combination of  Conventional and Optimisation Techniques for Performance Prediction in Large Waterflood Projects 

 

TABLE OF CONTENTS 
 

DECLARATION OF OWN WORK ............................................................................................................................................. i 

ABSTRACT .................................................................................................................................................................................. ii 

ACKNOWLEDGEMENTS ......................................................................................................................................................... iii 

LIST OF FIGURES ...................................................................................................................................................................... v 

LIST OF TABLES ....................................................................................................................................................................... vi 

Abstract ......................................................................................................................................................................................... 1 

Introduction ................................................................................................................................................................................... 1 

Theory ............................................................................................................................................................................................ 2 

Methodology and Analysis .......................................................................................................................................................... 3 

Construction of BL spreadsheet .................................................................................................................................................. 3 

Validation of negligible effect of variable qt on fw for low Ngv reservoirs .................................................................................. 4 

Case 1 ................................................................................................................................................................... 5 

Case 2 ................................................................................................................................................................... 6 

Construction of the Automated-HM tool – WATERFLOOD ..................................................................................................... 8 

Discussion and Future Recommendations ............................................................................................................................ 13 

Conclusion .................................................................................................................................................................................. 13 

Nomenclature ............................................................................................................................................................................. 14 

References .................................................................................................................................................................................. 14 

Appendices ................................................................................................................................................................................... 15 

Appendix A – Critical Milestones ............................................................................................................................................ 15 

Appendix B – Critical Literature Review ................................................................................................................................. 17 

Appendix C – VBA code for manual matching of rates in BL solution ................................................................................... 26 

Appendix D – Simulator Input Data File for Case 1 – Variable Rate Scenario ........................................................................ 28 

Appendix E – Simulator Input Data File for Case 1 – Average Rate Scenario......................................................................... 37 

Appendix F – Simulator Input Data File for Case 2 – Variable Rate Scenario......................................................................... 45 

Appendix G – Simulator Input Data File for Case 2 – Average Rate Scenario ........................................................................ 54 

Appendix H – Sample calculation algorithm in WATERFLOOD tool .................................................................................... 62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Combination of  Conventional and Optimisation Techniques for Performance Prediction in Large Waterflood Project                                          v 

 

LIST OF FIGURES 
 
Figure 1 A single manual match solution set of parameters 4 
Figure 2 A single manual match for CumOil vs CumWater of a real time producer well. 4 
Figure 3 A single manual match for WC vs CumOil of a real time producer well. 4 
Figure 4 Comparison of WC vs CumOil using variable rate and average rate throughout the production history for 

Case 1 5 
Figure 5 Comparison of CumOil vs CumWater using variable rate and average rate throughout the production 

history for Case 1 5 
Figure 6 Comparison of WC vs CumOil using variable rate and average rate throughout the production history for 

Case 1 6 
Figure 7 Comparison of CumOil vs CumWater using variable rate and average rate throughout the production 

history for Case 1 6 
Figure 8 A single manual match for WaterRate vs Time of a real time producer well 7 
Figure 9 A single manual match for OilRate vs Time of a real time producer well 7 
Figure 10 Workflow for manual history matching of a simple BL solution with the production history for a single 

solution set 8 
Figure 11 Workflow of a Deterministic Approach to Auto-HM using BL solutions 9 
Figure 12 Main Interface of WATERFLOOD Auto-HM tool showing the multiple solutions of the AUTO-HM of the 

well on the left hand side of the screen 10 
Figure 13 Production history of well as input 10 
Figure 14 Choice of parameters to be varied and their ranges as input 10 
Figure 15 Auto-HM of a well showing the best fit solution for the 4 plots 11 
Figure 16 Error Calculation of the 4 plots 11 
Figure 17 Manual matching of the parameters 11 
Figure 18 Auto-HM of a well showing multiple parameters solutions sets for the 4 plots 12 
Figure 19 Manual match using BL spreadsheet for best fit parameters solution set from WATERFLOOD tool for 

validation of the tool 12 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307352
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307353
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307354
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307355
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307355
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307356
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307356
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307357
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307357
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307358
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307358
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307359
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307360
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307363
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307363
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307364
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307365
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307366
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307367
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307368
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307369
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307370
file:///E:\MSc%20Thesis\thesis-draft.docx%23_Toc304307370


vi                                       Combination of  Conventional and Optimisation Techniques for Performance Prediction in Large Waterflood Projects 

 

LIST OF TABLES 
 
 
 

Table 1 Properties of reservoir for highly-gravity dominant and dipping reservoir and the production data for 
simulation of Case 1 .............................................................................................................................................. 5 

Table 2 Properties of reservoir for slightly-gravity dominant and dipping reservoir and the production data for 
simulation of Case 2 .............................................................................................................................................. 6 

Table A-1 Milestones in the study of “Combination of Conventional and Optimisation Techniques in Performance 
Prediction of Large Waterflood Projects” ............................................................................................................ 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Combination of Conventional and Optimisation Techniques for Performance 
Prediction in Large Waterflood Projects  
Muthukumaran Samiayyan 
 
 
Imperial College Supervisor: Prof. Peter R. King   
 
Industry Supervisor: Mrs Archana Kumar, Leap Energy Partners Sdn Bhd  
 

Abstract 
 

Quantification of reservoir and fluid properties in large, highly matured fields with high watercuts is proving to be a main issue 

in reservoir characterization and engineering due to bad production and reservoir data management. Most of these matured 

fields, such as a matured field located in Romania that is analysed in this study, have been producing for more than 40 years, 

and the data available such as production data, pressure data, fluid properties data and Special Core Analysis (SCAL) data for 

these fields are either sparse or unavailable. The purpose of this study is to develop a methodology to estimate and quantify the 

reservoir and fluid properties of these fields and reduce the uncertainty in these fields. 

 

The study incorporates the use of linear and one-dimensional Buckley-Leverett Theory (Buckley and Leverett 1942) to analyse 

the sparse production data for a well located in a matured field in Romania. A real-time producer which was pre-assessed for 

good connectivity with an injector was used in this analysis to test the methodology. Using the Buckley-Leverett Theory, the 

parameters of the reservoir and fluids were optimized using a simple algorithm to history match the actual production data with 

the generated Buckley-Leverett solution. This method resulted in multiple solution sets of the average reservoir and fluid 

properties and the drainage volumes surrounding the producer well. The properties that could be estimated with this 

methodology include absolute permeability, Corey exponents, fluid viscosities, porosity, net pay thickness, width of the flood 

etc. The study finally discusses the development and implementation of an Automated-History Matching tool, called 

WATERFLOOD, which is based on the methodology discussed in the study.  

 

The paper also discusses the limitations and assumptions of this method. Using simulated production data, the results show that 

this method can be used for accurate estimation of these properties for horizontal and slightly dipping reservoirs but not for 

gravity-dominated, largely dipping reservoirs. This is due to the assumption of no change to the fractional flow curve due to 

gravity when the total liquid rate is varied. This tool would not only be able to estimate reservoir and fluid properties, which 

can be used as precursors for reservoir model characterization for future dynamic simulations, but would also aid in decision-

making of future  infill drilling campaigns. 

Introduction 
 

Large fields that are characterized by high maturity and high watercuts are proving to be very difficult to implement traditional 

workflows, such as geocellular modeling and advanced 3D dynamic simulation techniques to provide reliable insights towards 

future decision making around infill drilling and flood pattern optimization. Due to bad data management in the past, 

inaccuracy or unavailability in data collection of these reservoir properties for these matured fields are common.  These 

limitations result in the accuracy with which the reservoir properties can be estimated in these matured fields. Due to the very 

high cost of coring analysis to estimate reservoir parameters, a lot of emphasis is focused on history matching of production 

data. In this process, the reservoir and fluid parameters are manipulated til the simulated production data matches the data that 

was measured during production.  

 

In cases of highly matured fields that has been producing for more than 40 years, where the data are sparsely distributed and 

often are of very bad quality, simulation of production data itself is an arduous process due to the properties selection being 

spatially three-dimensional (3D) during the history matching. Therefore, for this type of fields, the simplest way forward would 

Imperial College 
London 
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be to use one-dimensional (1D) conventional analytical techniques instead of 3D numerical techniques to perform the history 

matching and estimate the reservoir and fluid properties.  

 

Sitorus et al(2006), worked on development of fractional flow curve from historic production. It involved using a commercial 

optimisation program to historically match the production data by optimizing the parameters of the fractional flow curve. 

However, this method is only analysed for performance prediction for horizontal wells and in estimating only the relative 

permeabilities-saturation relationships and the fluid properties, not inclusive of the drainage areas, volumes and porosity. 

 

Van den Bosch et al (1977) explained history matching two phase petroleum reservoirs for incompressible flow which would 

be able to estimate porosity, absolute permeability and relative permeability-saturation relationships. To be able to use this 

method successfully, significantly good production data and pressure data has to be present for the accurate estimation of these 

properties.  

 

The 1D history matching is developed from the Buckley-Leverett theory (Buckley and Leverett 1942) assuming a post-

breakthrough saturation profile in this study. This paper describes a methodology based on 1D Buckley-Leverett Theory for 

estimation of reservoir and fluid properties by history matching only production and injection data and analysis on the 

constraints and assumptions that are made for this methodology are discussed. 

Theory 
 

Oil displacement by waterflooding is assumed to take place under diffuse flow condition where the fluid saturations at any 

point are uniformly distributed with respect to thickness. Therefore, the displacement can be described in one dimension and 

provides the simplest possible model of the oil displacement by waterflooding (Buckley and Leverett 1942). The fractional 

flow of water, fW, can be described from one-dimensional equations of simultaneous flow of oil and water by applying Darcy’s 

Law. By simple derivation, the fractional flow of water in one dimension can be expressed as follows: 

 

𝑓𝑤 =
1+

𝑘𝑘𝑟𝑜 𝐴

𝑞𝑡𝜇 𝑜
 
𝜕𝑃𝑐
𝜕𝑥

−∆𝜌𝑔 sin 𝜃 

1+
𝜇𝑤
𝑘𝑟𝑤

∙
𝑘𝑟𝑜
𝜇 𝑜

                                                                             (1) 

 

Neglecting capillary pressure effects on fractional flow of water,  

 

𝑓𝑤 =
1−

𝑘𝑘𝑟𝑜 𝐴

𝑞𝑡𝜇 𝑜
 ∆𝜌𝑔 sin 𝜃 

1+
𝜇𝑤
𝑘𝑟𝑤

∙
𝑘𝑟𝑜
𝜇 𝑜

                                                                                 (2)      

 

Where kro and krw are the relative permeabilities of oil and water respectively, k is the average absolute permeability of the 

formation, A is the cross sectional area of the flow (product of the net pay thickness, h, and the width of the flood area, w), qt is 

the total flow rate of the liquid, θ is the dip angle of the reservoir, ∆ ρ is the density difference between oil and water and µo 

and µw are the viscosities of oil and water respectively.   

 

For the analysis based on this paper, kro and krw can be approximated by the Corey Correlation: 

 

𝑘𝑟𝑜 = 𝑘𝑟𝑜𝑒  
 1−𝑆𝑤−𝑆𝑜𝑟  

1−𝑆𝑤𝑐 −𝑆𝑜𝑟
 
𝑁𝑜

                                                                            (3) 

𝑘𝑟𝑤 = 𝑘𝑟𝑤𝑒  
 𝑆𝑤−𝑆𝑤𝑐  

1−𝑆𝑤𝑐 −𝑆𝑜𝑟
 
𝑁𝑤

                                                               (4)   

kroe and krwe are the respective oil and water relative permeability end points, Sor is the irreducible oil saturation, Swc is the 

connate water saturation and No and Nw are the respective Corey oil and water exponents. 

 

 

Buckley and Leverett (1942) presented the basic equation for describing immiscible displacement in one dimension. For water 

displacing oil, the equation determines the velocity of a plane of constant water saturation travelling through a linear system.  



Combination of  Conventional and Optimisation Techniques for Performance Prediction in Large Waterflood Project                                          3 

 

The equation states that the velocity of a plane of constant water saturation is directly proportional to the derivative of the 

fractional flow equation evaluated for that saturation as shown in (5). 

 
𝑑𝑥

𝑑𝑡
|𝑆𝑤

=
𝑞𝑡

𝐴∅

𝑑𝑓𝑤

𝑑𝑆𝑤
|𝑆𝑤

                                                                                 (5)       

Where, ø is the average porosity of the formation. 

 

Integrating (5) for the total time since the start of water flooding (injection),  

𝑥𝑆𝑤
=

1

𝐴∅

𝑑𝑓𝑤

𝑑𝑆𝑤
|𝑆𝑤  𝑞𝑡𝑑𝑡

𝑡

0
                                                                      (6) 

Further simplification of (4) leads to  

𝑥𝑆𝑤
=

𝑊𝑖

𝐴∅

𝑑𝑓𝑤

𝑑𝑆𝑤
|𝑆𝑤

                                                                                   (7) 

Where Wi is the cumulative water injected and it is assumed that Wi=0 when t=0. This equations shows that position of the 

different water saturation planes can be plotted, using (5) by determining the slope of the fractional flow curve for the 

particular saturation. 

 

Using (7) as the starting point we could derive oil recovery calculations after breakthrough of water at the production well. (8) 

and (9) relates the cumulative dimensionless number of pore volumes injected, Wid, and the cumulative dimensionless number 

of pore volumes produced after breakthrough of water, Npd, respectively (Welge 1952).  

 

𝑊𝑖𝑑 =
1

𝑑𝑓𝑤
𝑑𝑆𝑤

|𝑆𝑤𝑒

                                                                                       (8) 

 

𝑁𝑝𝑑 =  𝑆𝑤𝑒 − 𝑆𝑤𝑐  +  1− 𝑓𝑤𝑒  𝑊𝑖𝑑                                                             (9) 

 

Swe and Swc is the water saturation at the position of the producer and the connate water saturation respectively. fwe is the 

fractional flow of water at Swe. 

Methodology and Analysis 
 

The main idea is to generate an Auto History Match (Auto-HM) tool by a deterministic approach for wells that has been 

assessed to be well connected to injectors (well-connected injector-producer pairs). The Automated History match is 

implemented by fitting the generated Buckley-Leverett solution with the production and injection history data of the single 

well  by optimizing the unknown reservoir, fluid and production parameters(such as kro and  krw by changing the Corey 

parameters, k, µo, µw, the drainage area, h, θ,  etc.).  This is a multiple solution optimization workflow, where there are multiple 

sets of parameters solutions that can be generated for a history match. A simple optimization algorithm was implemented for 

the multiple solutions search for the Automated History Matching. The consistency of the matched parameters can be checked 

by cross plotting against the available data wherever possible. The Auto-HM solutions also provide the drainage area and the 

associated sweep efficiency (VSE) for each parameters solution set. The matched reservoir, fluid and production parameters 

can then be utilised as precursors for static and dynamic models characterization in the future.  

 

Construction of BL spreadsheet  

The construction of the Buckley-Leverett (BL) spreadsheet is the first step in developing the Auto-HM tool. Real-time 

production data of a well that has been operating for 54 years in a matured field in Romania was used to test the spreadsheet. 

The reservoir, fluid and production parameters were manually changed to fit the BL solution to the production data. The 

parameters that were available with the data were kept unchanged. The parameters that were unavailable with the data were 

manually changed to fit the BL solution for the Cumulative Oil Production (CumOil) versus Cumulative Water Injection 

(CumWater) plots and the WaterCut (WC) versus CumOil plots for the time period after breakthrough. This manual match 

would give one single set of the many plausible parameters solution sets. Figures 1, 2 and 3 illustrate the single matched 

solution set. 
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Validation of negligible effect of variable qt on fw for low Ngv reservoirs 

The production history data of the producer well shows that the well delivers variable total liquid production rates over time in 

reservoir volume. This indicates that the total liquid flow rate is not constant as assumed in fractional flow derivation and in the 

Buckley-Leverett solution derivation. Therefore, it has to be validated that the variable total liquid production rates do not 

affect the fractional flow curve and therefore do not affect the Buckley-Leverett solution.  A new term is introduced in (2) to 

account for the gravity term, called the Gravity number, Ngv (Walsh and Moon 1991). 

 

From (2), 

 

 𝑓𝑤 =
1−𝑁𝑔𝑣𝑘𝑟𝑜

1+
𝜇𝑤
𝑘𝑟𝑤

∙
𝑘𝑟𝑜
𝜇 𝑜

                                                                           (10) 

 

 

 

 

Figure 2 A single manual match for CumOil vs 
CumWater of a real time producer well. 

Figure 3 A single manual match for WC vs CumOil of a 
real time producer well. 

Figure 1 A single manual match solution set of 
parameters 



Combination of  Conventional and Optimisation Techniques for Performance Prediction in Large Waterflood Project                                          5 

 

/m3 

/m3 

Where, 

 

𝑁𝑔𝑣 =
𝑘𝐴

𝜇𝑜𝑞𝑡
 ∆𝜌𝑔 sin𝜃                                                                        (11) 

The magnitude of Ngv determines the change in fractional flow curve due to variable total liquid rate over the production 

history of the well. This magnitude is mainly dependent on the reservoir and oil fluid properties such as k, µo, θ, net pay 

thickness and ∆ρ. The Ngv corresponds to how gravity dominant the immiscible flow is in dipping reservoirs. When very high 

magnitude of k, h, θ, ∆ρ, is coupled with very low µo and qt, the flow becomes very highly gravity-dominant (Ngv is more than 

1) in a highly dipping reservoir. This relates to an immiscible flow of very light oil in a highly permeable and dipping reservoir 

with thick net pay. 2 cases were analysed by simulating data with ECLIPSE, a numerical simulator, and analysing with the BL 

spreadsheet on slightly gravity dominated reservoir and highly gravity dominated reservoir. These 2 cases were analysed to 

check how different simulation production data is with using variable rate scenario over time and a single average over time 

scenario. In addition the parameters solutions set that was obtained from the manual match was validated with the parameters 

set that were used to simulate the production data in ECLIPSE.  The input files to the simulator for both cases 1 and 2 are 

shown in Appendices D to G. 

 

Case 1 

Case 1 is a highly gravity-dominated and dipping reservoir model. The properties of the reservoir are shown in Table 1. The 

total liquid flow rate in reservoir volume was varied for the simulation between 10 m
3
/day and 125 m

3
/day. The average 

permeability was set to be very high at about 25 Darcy (25000mD) to represent case 1 as an extreme case of a highly gravity-

dominant reservoir. The net pay thickness is set to be at 10m. The dip angle was also set to be at a high angle of 45
o
.  

 

 

Table 1 Properties of reservoir for highly-gravity dominant and dipping reservoir and the production data 
for simulation of Case 1 

Average K 
(mD) 

25000 No 2 

Φ 0.3 Nw 2 

Δρ (kg/m
3
) 300 Sor 0.2 

μo(mPa.s) 17 Swc 0.2 

μw(mPa.s) 1.5 Θ 45
o
 

Kroe 1 
qt range 
(m

3
/d) 

10-125 

krwe 1 
Average qt 

(m
3
/d) 

65 

h 10 
Duration of 
simulation 

(days) 
9150 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 Comparison of WC vs CumOil using variable 
rate and average rate throughout the production 
history for Case 1 

Figure 5 Comparison of CumOil vs CumWater using 
variable rate and average rate throughout the 
production history for Case 1 

/m3 
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After running the simulation for case 1 reservoir model with 1 injector and 1 producer, the simulation results were compared 

with the results of a simulation of the same reservoir model but with an average total liquid rate of 65m
3
/day. The CumOil 

versus CumWater plot and WC versus CumOil plot were used for the analysis of the two different scenarios for case 1 

reservoir model. Figures 3 and 4 illustrate the comparison of these 2 scenarios. It can be deduced from the plots that for the 

average total liquid rate scenario, more water needs to be injected than for the variable liquid rate scenario to produce the same 

volume of oil. Therefore, there is a slight deflection for the average total liquid rate scenario from the variable liquid rate 

scenario in the CumOil versus CumWater plot after breakthrough. Another difference that can be noted between the 2 

scenarios is the start of breakthrough. For Figure 4, it can be deduced that the start of breakthrough is slightly earlier for the 

variable total liquid rate scenario.  This may be caused by the fractional flow curve changes due to the differences in the total 

rates between the 2 scenarios. The watercut of the average total liquid rate scenario also reaches a high value, increasing 

sharply even though it has a later breakthrough when compared to the variable liquid rate scenario. These slight differences 

may be due to the fractional flow curve changes due to rate differences in the highly-gravity dominated and dipping reservoir. 

 

Case 2 

Case 2 is a slightly gravity dominated reservoir model. The properties are shown in Table 2. The total rates in reservoir volume 

were varied for the variable total liquid rates scenario for the same time period as case 1. For this case, the average 

permeability was set to be lower by a magnitude when compared to case 1 at 2.5 Darcy. The net pay thickness was lowered to 

1.5m. This dip angle was also set to be at about 5
o
 to represent case 2 to be a slightly gravity-dominated and dipping reservoir 

as it has a comparably lower Ngv than case 1. 

 

Table 2 Properties of reservoir for slightly-gravity dominant and dipping reservoir and the production data 
for simulation of Case 2 

Average K 
(mD) 

2500 No 2 

Φ 0.3 Nw 2 

Δρ (kg/m
3
) 300 Sor 0.2 

μo(mPa.s) 7 Swc 0.2 

μw(mPa.s) 1.5 θ 5
o
 

Kroe 1 
qt range 
(m

3
/d) 

10-125 

krwe 1 
Average qt 

(m
3
/d) 

65 

h 1.5 
Duration of 
simulation 

(days) 
9150 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Case 2, after running the simulation for the same duration as case 1 with one injector and 1 producer for variable total liquid 

flow rate scenario, it can be seen from Figure 4 that it gives an exact match for the CumOil versus CumWater plot when 

Figure 6 Comparison of WC vs CumOil using 
variable rate and average rate throughout the 
production history for Case 1 

Figure 7 Comparison of CumOil vs CumWater using 
variable rate and average rate throughout the 
production history for Case 1 

/m3 

/m3 

/m3 
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plotted against the simulated results of the average total liquid flow rate scenario for case 2. This result shows that even if the 

average permeability is as high as 2.5 Darcy, the fractional flow curve does not change at all for a variable total liquid flow rate 

scenario when compared to the variable liquid flow rate scenario for a slightly dipping reservoir. The WC versus CumOil plot 

comparison for the 2 scenarios also gives an exact match, which reiterates our conclusion that there is no change in the 

fractional flow curve for a variable flow rate scenario as long as the Ngv is relatively low. 

 

Therefore, from the analysis of the 2 cases, we can deduce that variable total flow rate do not affect the fractional flow curve 

for dipping reservoirs as long as the Ngv is low enough for the flow to be only slightly gravity dominated.  Hence, the Buckley-

Leverett solution parameter sets can be deduced from Automated-History Matching the production history data for slightly 

dipping or horizontal reservoirs. 

 

Since the fractional flow curve is validated to be the same for slightly dipping or horizontal reservoirs, two more plots were 

constructed from the production data and matched with the BL solutions. The two plots are the oil rate (OilRate) versus time 

plot and the water rate (WaterRate) versus time plot at reservoir volume. The Buckley-Leverett solutions for these plots are 

derived by comparing the Cumwater from the production history and the BL solution and picking out the fw from the BL 

solution for each time step of the production history. The data points after breakthrough is used for the construction of the rates 

versus time plots and matching with the BL solution. Using this fw, the WaterRate at each time step for a BL solution is 

calculated from, 

 

𝑞𝑤 = 𝑞𝑡 × 𝑓𝑤                                                                                     (12) 

𝑞𝑜 = 𝑞𝑡 − 𝑞𝑤                                                                                      (13) 

Where qw is the WaterRate and qo is the OilRate 

 

From this workflow, the OilRate versus time plot and the WaterRate versus time plot of the production history can be matched 

with the BL solution for consistency once the CumOil versus CumWater and WC versus CumOil plots have been matched by 

manually manipulating the different parameters for a single set of matched parameters set. The plots that have been manually 

matched for the previous example for the production well with real time production history of 54 years was plotted for the 2 

rates versus time plots and checked for consistency as shown in Figures 8 and 9. This workflow for plotting the rates plots were 

performed by creating a VBA Macro in the same Excel Spreadsheet. A simple workflow for the manual history matching of 

the simple BL solution with the production history for a single solution set that was implemented in an Excel Spreadsheet is 

shown in Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 9 A single manual match for OilRate vs Time 
of a real time producer well 

Figure 8 A single manual match for WaterRate vs 
Time of a real time producer well 

/m3/day 

/m3/day 

/months /months 
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     Figure 10 Workflow for manual history matching of a simple BL solution with the production history for a single solution set  

Construction of the Automated-HM tool – WATERFLOOD 

After construction and validation of production history on the BL spreadsheet for history matching using Buckley-Leverett 

solution, an Automated-HM tool, named WATERFLOOD, was developed on a C# platform. This tool would use the same 

principle as the BL spreadsheet. However, the tool is programmed with a simple optimization algorithm that would be able to 

generate multiple parameters solution sets based on matching the production history with the BL solutions by optimization as 

long as the tolerance on the error for the match is given by the user as input. The tool also has the option of a manual selection 

of parameters for a manual match. A workflow for the tool is shown in Figure 11 which is a deterministic approach to 

Automated-HM using BL solution. The sample code of the calculation of the BL solutions for the tool is shown in Appendix 

H. 

 

The optimization algorithm is a search optimisation algorithm called Multivariate Binary Search Algorithm. When a range of 

the variable parameter is given, using Binary Search method, the algorithm searches for the optimised parameter within the 

range for minimum error. The error, or the objective function is calculated using sum of least squares method. The algorithm is 

also recursive as we are conducting an optimisation search for multivariable parameters. Therefore, the algorithm is recursive 

to optimize all variable parameters within their own range and search values of these parameters for the error that is a 

minimum. This is the workflow for the optimization search algorithm for this Automated-HM tool. 
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    Figure 11 Workflow of a Deterministic Approach to Auto-HM using BL solutions 

Once Injector-Producer pairs has been pre-assessed for interaction and connectivity and information about the connectivity for 

the pairs are known, using the production and injection history for a single producer well, BL solutions are generated for 

multiple solution parameter sets as shown in the workflow in Figure 11. Ranges of parameters in which the solutions lie are 

given to the tool as constraints for the optimization algorithm. These ranges are rough estimates that can be log-based estimates 

or static model-based estimates. Using these multiple parameter solutions sets, a range of average values for each unknown 

parameter for the well can be obtained by the Auto-HM tool. These results can be used to reduce the uncertainty in the 

reservoir parameters and fluid parameters. In addition, the flood pattern range can also be assessed, as the results give an 

explicit range of drainage areas and associated vertical sweep efficiency if the geological net pay thickness is known.  

 

Therefore, based on this workflow that was initially developed in an Excel spreadsheet for a single matched parameter solution 

set, the Auto-HM multiple-solution searching tool, WATERFLOOD, was developed. Figure 12 to Figure 18 show the features 

and the interface of this tool.   
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Figure 12 Main Interface of WATERFLOOD Auto-HM tool showing the multiple solutions of the AUTO-HM of the well on 
the left hand side of the screen 

Figure 13 Production history of well as input Figure 14 Choice of parameters to be varied and 
their ranges as input 
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In Figure 18, multiple BL solutions that have errors less than the tolerance given by the user is shown and plotted against the 

actual production history of the well. These solutions give a range of forecasts for the well based on these BL solutions.  The 

results that were obtained from this tool were validated with the BL spreadsheet that was constructed earlier and checked for 

Figure 15 Auto-HM of a well showing the best fit solution for the 4 plots 

Figure 16 Error Calculation of the 4 
plots 

Figure 17 Manual matching of the parameters 
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consistency.  The parameters solution set that was obtained for the best fit from the Auto-HM tool was used in the spreadsheet 

and the BL solution was generated and matched with the production history of the well. The 4 plots that were generated in the 

spreadsheet are shown in Figure 19.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 Auto-HM of a well showing multiple parameters solutions sets for the 4 plots 

Figure 19 Manual match using BL spreadsheet for best fit parameters solution set from WATERFLOOD tool for 
validation of the tool 

/m3/day 

/m3/day 

/months /months 
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It can be illustrated that the exact same plots are obtained in the spreadsheet for the same parameter solution set as in 

WATERFLOOD. Therefore, it can be verified that the calculations that are implemented in the tool are validated and the 

multiple solution sets that are obtained from the tool are reliable.  

Discussion and Future Recommendations 
 

WATERFLOOD tool is able to generate multiple parameters solution sets from the optimisation technique implemented in the 

tool as explained in the previous sections. As shown in the previous section, when the tool was tested for a real time production 

history of a production well, it generated many plausible parameters solution sets, of about 160 parameters solution sets, for a 

tolerance level of 3.8 and below on the total error for the matching of the 4 plots. The error ranges from 0.82 to 3.26 for these 

160 solution sets. In addition, some of these solution sets had porosity values as high as 0.6, which is not physically possible. 

Hence, since the fitting solutions are non-unique, the selection of parameters and their ranges based on consistent field specific 

data is of utmost importance and the reliance on assumed values should be best avoided. As future development, further 

constraints to the optimisation algorithm can also be implemented such as material balance calculations if pressure data is 

available. This would reduce the number of plausible solution sets and give more reliable results. 

 

The WATERFLOOD tool has been developed based on a very simple optimisation technique. Therefore, the searching time for 

the multiple solutions takes about 30 minutes for cases where 6 parameters are used as unknown variables for the Automated-

HM. In addition, the searching time increases exponentially when an extra parameter is added as a variable parameter for the 

Automated-HM. Therefore, it is also equally important to improve the optimisation technique used for the tool to improve the 

searching time for the solutions. Multiple optimisation techniques that are being used in the current market can be tested and 

analysed for sensitivity in terms of running time and accuracy.  After the analysis of different optimisation techniques, the best 

optimisation technique can be chosen that gives a good balance on both solutions searching speed and accuracy of the results.  

 

WATERFLOOD also has been developed based on constant fractional flow curve regardless of variable total liquid rates at 

reservoir volume. Therefore, if the tool is used for analysis of highly-gravity dominating and highly dipping reservoirs, where 

the Ngv is very high, the results of the multiple BL fitting solutions may give highly erroneous results that are not reliable.  

 

Once reliable average parameter ranges are obtained from the tool for those parameters for which very little information is 

available, their uncertainties are effectively reduced. The ranges of flood areas and volumes that are obtained from 

WATERFLOOD from analysis of each well, flood pattern assessments can be made from which future decisions can be made 

on selection of areas for infill-drilling campaigns and identification of producers without support and identification of 

ineffective injectors. This tool can not only be used on a well basis but also on a sector or field basis to obtain the range of 

average parameters. The results of this tool can also be used as precursors for dynamic simulation models and characterization 

of static models in the future as more information about the parameters are known through the analysis of the WATERFLOOD 

tool.  

Conclusion 
 

In conclusion, the Auto-HM tool, WATERFLOOD, which is developed from a simple one dimensional conventional technique 

called Buckley-Leverett Theory, helps in obtaining additional information on reservoir and fluid properties that are considered 

relatively unknown based on lack of information at a well, sector or field level. This tool therefore helps in reducing the 

uncertainties of these properties and helps in future decision-making for infill-drilling campaigns. The tool also serves as 

precursors to dynamic simulation in the future once more information is known about these properties. 

 

However, there are certain limits on the ability of this tool to obtain reliable information on these properties. The tool can only 

be used for horizontal and slightly dipping reservoirs where the Ngv number is low and therefore there are no changes in the 

fractional flow curves for variable total liquid flow rates throughout the production history of a well. The range of values that 

are given as inputs for the properties which are to be varied should also be based on consistent field specific data which can be 

logs-based or static model-based data. This helps in improving the reliability of the results of this tool. 

 

And as for future recommendations, in addition to the accuracy of the results of this tool, the speed at which the tool searches 

for the solutions also has to be improved. Therefore, many different optimisation techniques has to be tested to develop and 

improve WATERFLOOD to be as accurate and fast as possible in searching these parameters solution sets. Further constraints 

can also be implemented, such as coupling material balance calculations when pressure data is available to reduce the number 

of plausible solutions. This would mould WATERFLOOD to be a very robust tool in decision-making in very large waterflood 

projects in highly matured reservoirs. 
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Nomenclature 
 

1D  = one dimensional 

3D  = 3 dimensional 

fW  = fractional flow of water 

kro  = relative permeability of oil 

krw  = relative permeability of water 

k  = average absolute permeability of formation 

A  = cross-sectional of fluid flow 

h  = net pay thickness 

W  = width of flood area 

qt  = total flow rate of liquid 

θ  = dip angle of reservoir 

∆ ρ  = density difference between oil and water 

µo  = viscosity of oil 

µw  = viscosity of water 

kroe  = relative permeability end point of oil 

krwe  = relative permeability end point of water 

Sor  = irreducible oil saturation 

Swc  = connate water saturation 

No  = Corey oil exponent 

Nw  = Corey water exponent 

Ø  = average porosity of formation 

Wi  = cumulative water injected 

Wid  = cumulative dimensionless number of pore volumes injected 

Swe  = water saturation at the position of the producer 

Npd  = cumulative dimensionless number of pore volumes produced after breakthrough 

fwe  = fractional flow of water at Swe 

Ngv  = gravity number 

qw  = water rate  

qo  = oil rate 
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Appendices 

Appendix A – Critical Milestones 

Table A-1 Milestones in the study of “Combination of Conventional and Optimisation Techniques 

in Performance Prediction of Large Waterflood Projects” 

Paper n° Year Title  Authors Contribution 

T.P. 1337 

PETROLEUM 

TECHNOLOGY 

1942 Mechanism of 

Fluid Displacement 

in Sands 

 

Buckley, S.E, 

Leverett, M.C. 

Developed a mechanism by 

which the production of oil is 

accomplished by the result of its 

displacement from the reservoir 

by water. Also developed the 

equation of the velocity of the 

saturation wave front, from which 

the saturation distribution with 

distance was evaluated.  

T.P. 3309 

AIME 

1952 A Simplified 

Method for 

Computing Oil 

Recovery by Gas 

or Water Drive 

Welge, H.J. Development of a useful 

analytical method for computing 

the average saturation graphically 

from fractional flow curve, and 

hence the oil recovery. 

SPE 559 

 

1963 The Material 

Balance as an 

Equation of a 

Straight Line 

 

Havlena, D., 

Odeh, O.S. 

Presented a straight line method 

of the material balance equation 

which gives a dynamic meaning 

to the otherwise static material 

balance equation. 

SPE 6579 1977 History Matching 

in Two-Phase 

Petroleum 

Reservoirs: 

Incompressible 

Flow 

Van den Bosch, 

B., 

Seinfield, J.H. 

Presented a method on estimation 

of porosity, absolute permeability 

and two-phase relative 

permeability-saturation relations 

in a two-phase petroleum 

reservoir by history matching. It 

was focused on incompressible 

flow. 

 

SPE 12579 1984 Identifiability of 

Estimates of Two-

Phase Reservoir 

Properties in 

History Matching 

Watson, A.T., 

Gavalas, G.R., 

Seinfield, J.H. 

 

Developed a study on how 

accurately can one expect to 

estimate spatial porosity, absolute 

permeability and relative 

permeabilities given typical 

production and pressure data.  

SPE 20064 

 

1990 A Study of the 

Post-Breakthrough 

Characteristics of 

Waterfloods 

 

Lo, K.K., 

Warner Jr, 

H.R., Johnson, 

J.B.  

Developed a method of 

estimating OOIP from log(WOR) 

versus cumulative oil plot. 
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SPE 21651 

 

1991 An Analysis of 

Gravity-

Dominated, 

Immiscible Flows 

in Dipping 

Reservoirs 

Walsh, M.P., 

Moon, G.M.  

Developed a term, called the 

Gravity Number, which can be 

used to quantify the effect of 

gravity on the fractional flow of 

water in a two-phase flow 

system. 

SPE 83502 2003 Rate Forecasting of 

a Mature 

Waterflood Using 

Fractional Flow 

and Decline Curve 

Analysis, East 

Wilmington Long 

Beach, California 

 

Al-Sharif, S., 

Rael, E. 

Developed a method to predict oil 

and water rates by coupling the 

hyperbolic curve fitting and 

fractional flow of water 

relationships. 

SPE 101144 

 

2006 Developing a 

Fractional Flow 

Curve from 

Historic Production 

to Predict 

Performance of 

New Horizontal 

Wells, Bekasap 

Field, Indonesia 

Sitorus, J., 

Sofyan, A., 

Abdulfatah, 

M.Y. 

Developed a method for 

estimating reservoir parameters 

by constructing the fractional 

flow curve from History-

matching production data of 

horizontal wells. 
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Appendix B – Critical Literature Review 

 

T.P. 1337 

Mechanism of Fluid Displacement in Sands, 1942 

 

Authors: Buckley, S.E., Leverett, M.C.  

 

Contribution: 

This paper explains the development of a velocity of the saturation wave front equation which is derived 

from the fractional flow curve of water for a 1 dimensional linear flow of oil by water. 

 

Objective of the paper:  

The aim of this work is to describe the mechanism by which water displaces oil in a linear 1 dimensional 

flow by looking at results of experimental observations of the flow of mixtures of oil and water through 

sands.  

 

 

Methodology:  

Using a linear 1 dimensional model, an equation is expressed relating velocity of wave front with the 

derivative of fractional flow curve by using simple material balance assuming incompressible flow. 

 

Conclusion reached: 

 

1) In any reservoir composed of heterogeneous sands, the overall recovery is related to the rate of 

advance of the water. 

2) The magnitude of the effect depends upon the degree and nature of the irregularities of the sand 

and upon the viscosity of the oil. 

 

Comments 

This work shows that for a 1-dimensional, linear, homogeneous and incompressible flow, the rate of 

water advancement is a function of the fractional flow of water. 
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T.P. 3309, AIME 

A Simplified Method for Computing Oil Recovery by Gas or Water Drive, 1952 

 

Authors: Welge, H.J. 

 

Contribution: 

This paper explains the development of a graphical and analytical method using the fundamentals of 

Buckley-Leverett Theory. 

 

Objective of the paper:  

The aim of this work is to derive the average water saturation of the reservoir during oil displacement of 

water in a linear sand section after which the oil recovery can be calculated.  

 

Methodology:  

1) By applying Buckley-Leveret frontal advancement equation at the outlet face of the linear sand 

body, the average saturation at the outlet face can be evaluated by integration of the saturation 

distribution between the inlet and outlet of the sand body and dividing it by the length of the sand 

body.  

2) Graphically, this could be achieved by drawing the slope of the fractional flow curve for points 

after breakthrough, and the average water saturation could be evaluated for that point at the 

intersection of the tangent line and the line where fractional flow equals to unity. 

 

Conclusion reached: 

 

1) The contribution of gravity is of negligible importance unless the angle of dip is comparatively 

large or the flow velocity is relatively small, or both.  

2) If the gravity term is found to be negligible, there will theoretically be no advantage resulting from 

injecting all of the water at the base of the structure.  

 

Comments 

This work shows that the average water saturation and the oil recovery could be evaluated graphically 

from the fractional flow curve after breakthrough of water. 
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SPE 559 

The Material Balance as an Equation of a Straight Line, 1963 

 

Authors: Havlena, D., Odeh, O.S. 

 

Contribution: 

No Contribution. 

 

Objective of the paper:  

The aim of this work is to develop an analytical solution to the material balance equation graphically and 

interpret different drive mechanisms from the graphical analysis. 

 

Methodology:  

The material balance equation is arranged algebraically, resulting in an equation of a straight line and 

analysed for the drive mechanisms using actual production and pressure history. 

 

Conclusion reached: 

 

1) The straight line method of solving the material balance equation differes fromt he commonly 

used one as it imparts a dynamic meaning to the individual calculated points.  

2) Limited success for saturated reservoirs as when a gas cap is to be solved for, an exceptional 

accuracy of basic data such as pressure data is required. 

3) Early history do not conform with the latter points which may be due to inaccuracy of early 

average production-pressure-PVT data or pressure-production effect has not been felt by all the 

active oil-in-place. 
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SPE 6579 

History Matching in Two-Phase Petroleum Reservoirs: Incompressible Flow, 1977 

 

Authors: Van den Bosch, B., Seinfield, J.H. 

 

Contribution: 

This paper gives the constraints in estimating reservoir and fluid properties from history matching of 

production data for incompressible flows. 

 

Objective of the paper:  

This paper explains the method of estimating porosity, absolute permeability and relative permeability-

saturations by a history matching method in a two phase petroleum reservoir where the flow is 

incompressible. 

 

Methodology:  

Using that data that is available, which includes oil flow rates and pressure at the wells, the porosity can 

be estimated on the basis of saturation behaviour, absolute permeability on the basis of pressure behaviour 

and coefficients in the relative permeability on the basis of both saturation and pressure behaviour. 

 

Conclusion reached: 

1) In the case of 1-dimensional and incompressible flow, the ability to estimate the unknown 

parameters depends on the type of flow encountered, specifically whether saturation shocks form. 

2) Ill-determined nature of history-matching problems is present in two-phase problems.  
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SPE 12579 

Identifiability of Estimates of Two-Phase Reservoir Properties in History Matching, 1984 

 

Authors: Watson, A.T., Gavalas, G.R., Seinfield, J.H. 

 

Contribution: 

No Contribution. 

 

Objective of the paper:  

This paper conducts a study to analyse how accurately the reservoir parameters can be estimated from the 

available data in History Matching as the number of parameters to be estimated in a reservoir history 

match is quite large. 

 

Methodology:  

Analytical solutions for pressure and saturation in a one-dimensional waterflood are used to determine the 

accuracy with which history matching is conducted to estimate spatial variable porosity, absolute 

permeability and relative permeabilities. 

 

Conclusion reached: 

1) Only the average value of the porosity can be determined on the basis of water/oil flow 

measurements. 

2) The permeability distribution can be determined from pressure drop data with accuracy depending 

on the mobility ratio. 

3) Exponents in a power function representation of the relative permeabilities can be determined 

from WOR data alone but not nearly as accurate as when pressure drop and flow data are used 

simultaneously. 

 

Comments 

This paper provided a brief idea of the shortcomings of history matching to estimate reservoir parameters 

in a one-dimensional waterflood example. 
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SPE 20064 

A Study of the Post-Breakthrough Characteristics of Waterfloods, 1990 

 

Authors: Lo, K.K., Warner Jr, H.R., Johnson, J.B. 

 

Contribution: 

No Contribution 

 

Objective of the paper:  

This paper gives other practical uses of the plot of log (WOR) versus cumulative oil for waterflood 

analysis after breakthrough which was traditionally used to estimate ultimate oil recovery from 

waterflooding. 

 

Methodology:  

The study, based on one-dimensional Buckley-Leverett Theory, utilizes the dependence of the slope of 

the log (WOR) versus cumulative oil plot on various reservoir parameters. The effect of this slope caused 

by different reservoir layering, flood configurationsand operational changes are presented and applied to 

estimate the original oil in place (OOIP) for two real-time waterflood examples. The OOIP results are 

then compared with those calculated by volumetric methods. 

 

Conclusion reached: 

1) In a fully developed pattern waterflood, a linear relationship exists between the logarithm of the 

WOR and the cumulative oil produced for individual wells, pattern elements, multiple patter 

elements and even the entire field. This slope is independent of the oil/water viscosity ratio. 

2) The pattern element slope of the log(WOR) cumulative oil straight line is independent of the 

pattern geometry, the relative production rates of the producers and infill drilling. Well shut-ins 

lower the watercut and hence affect the slope of the straight line temporarily, although the pattern-

element slope is asymptotically approached as production continues.  

 

Comments 

These results can be used to diagnose waterflood performance. This paper thereby gives a method of 

estimating OOIP which in turn can be used in material balance calculations couple with production and 

injection data to generate pressure data.  
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SPE 21651 

An Analysis of Gravity-Dominated, Immiscible Flows in Dipping Reservoirs, 1991 

 

Authors: Walsh, M.P., Moon, G.M. 

 

Contribution: 

This paper illustrates the effects of gravity dominated immiscible flows on fractional flow of water. 

 

Objective of the paper:  

This study presents a Buckley-Leverett theory extension, which applies to gravity-dominated immiscible 

flows to account for countercurrent flow while fluid injection and production is going on. 

 

Methodology:  

The analysis characterizes the gravity to viscous force ratio by a dimensionless Gravity Number. New 

graphical solution methods are also presented to predict displacement performance for arbitrary initial and 

injected conditions. 

 

Conclusion reached: 

1) A dimensionless Gravity Number effectively describes the role of gravity and viscous forces in 

immiscible displacements. Gravity Numbers with sufficiently low absolute values imply viscous-

dominated flow; such flows are characterized by uni-directional flow. Gravity Numbers with 

sufficiently high absolute values imply gravity-dominated flow; such flows can yield 

countercurrent flow.  

2) Downdip waterfloods or updip waterfloods at sufficiently high Gravity Numbers are characterised 

by final oil saturations much greater than the measured residual oil saturation. It is mainly 

controlled by the Gravity Number. 

3) An approximation to predict oil recovery from downdip gas floods based on using only oil relative 

permeability data is valid provided both the gas viscosity and Gravity Number are sufficiently 

low. 

 

Comments 

Sufficiently low Gravity Numbers do not affect the fractional flow of water. Therefore, the gravity term 

has very little effect on the fractional flow of water.  
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SPE 83502 

Rate Forecasting of a Mature Waterflood Using Fractional Flow and Decline Curve Analysis, East 

Wilmington Long Beach, California, 2003 

 

Authors: Al-Sharif, S., Rael, E. 

 

Contribution: 

No contribution 

 

Objective of the paper:  

This paper gives an extension of the traditional theory of predicting oil and water rates over time by using 

Log(WOR) versus cumulative oil produced relationships, which was based on the assumption of constant 

liquid rate over time. This extension of the theory involves prediction of rates for variable total liquid 

rates over time. 

 

Methodology:  

This paper illustrates a methodology that uses a combination of predicting oil rates by hyperbolic decline 

curve fitting and predicting water rates by fractional flow of water relationships.  

 

Conclusion reached: 

The methodology of applying fractional flow theory to predict water rates, which was analysed on a real 

time data in Long Beach Unit, do give valuable insight into future strategic projects and waterhandling 

plans. 

 

Comments 

This paper gives a first understanding of handling variable total liquid rates for analytical analysis. 
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SPE 101144 

Developing a Fractional Flow Curve from Historic Production to Predict Performance of New Horizontal 

Wells, Bekasap Field, Indonesia, 2006 

 

Authors: Sitorus, J., Sofyan, A., Abdulfatah, M.Y. 

 

Contribution: 

This paper gives an understanding of how reservoir parameters can be estimated by history matching and 

constructing a fractional flow curve. 

 

Objective of the paper:  

This paper demonstrates a technique to develop a reservoir scale fractional flow curve from historic 

production data. The curve becomes the basis for an analogous model that allows the estimation of oil rate 

production forecasts and reserves for existing or proposed new wells. 

 

Methodology:  

A simplified material balance algorithm and the corey equation are solved simultaneously to develop a 

fw(fractional flow of water) versus Sw(water saturation) relationship from historical production data. A 

number of iterations are made until a reasonably good match is achieved.  

 

Conclusion reached: 

1) Many plausible solutions may exist, thus information from logs and cores are as important as 

production data.  

2) Curves generated may be different in terms of relative permeability values, however they have 

similar values with respect to fractional flow of water.  

3) The result may offer knowledge of expected drainage volume. The range can be used to further 

estimate future well reserves and performance.  

4) Scoping studies for horizontal wells in Sumatra fields show the applicability of this method as a 

screening tool prior to simulation. 

 

Comments 

This paper develops an idea of multiple plausible solutions from history matching production data for 

estimation of reservoir parameters. 
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Appendix C – VBA code for manual matching of rates in BL solution 

 

Private Sub CommandButton1_Click() 

 

Dim count As Integer 

Dim count2 As Integer 

Dim count3 As Integer 

Dim count4 As Long 

Dim lookup As Double 

Dim count5 As Integer 

Dim swi As Double 

 

Range("P6").Value = Application.CountIf(Range("F9:F1609"), ">0") 

count = Range("P6").Value 

Range("R6").Value = Application.CountIf(Range("N9:N1609"), ">0") 

count2 = Range("R6").Value 

count3 = 0 

count4 = 1 

swi = Range("N6").Value 

 

ReDim sw(0 To count) As Double 

 

 

 

 

    For i = 0 To count 

     

        If Val(Cells(count3 + 9, 7).Value) = 0 Then 

         

            'Cells(1, 1).Value = Val(Cells(9, 7).Value) 

            sw(count3) = Range("O9").Value 

            'Cells(count3 + 9, 19).Value = count3 

            count3 = count3 + 1 

             

        End If 

         

           

           

                    If Val(Cells(i + 9, 7).Value) > 0 Then 

 

                        lookup = Val(Cells(i + 9, 8).Value) 

                        'Cells(count3 + 9, 12).Value = lookup 

                        'Cells(count3 + 9, 23).Value = Cells(count4 + (1609 - count2 - 1), 14).Value 

                        'Cells(count3 + 9, 19).Value = lookup 

                 

                        For j = 1 To count2 

                 

                 

                            If lookup <= (Cells(count4 + (1609 - count2 - 1), 14).Value) Then 
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                                sw(count3) = Val(Cells(count4 + 1609 - count2 - 1, 15)) 

                                'Cells(count3 + 9, 19).Value = sw(count3) 

                                count3 = count3 + 1 

                                Exit For 

                                 

                            End If 

                     

                                        If lookup > (Cells(count4 + (1609 - count2 - 1), 14).Value) And lookup <= 

(Cells(count4 + (1609 - count2), 14).Value) Then 

                     

                                            sw(count3) = Val(Cells(count4 + 1609 - count2, 15)) 

                                            'Cells(count3 + 9, 19).Value = sw(count3) 

                                            count3 = count3 + 1 

                                            Exit For 

                                         

                                                Else 

                                                 

                                                     count4 = count4 + 1 

                                        End If 

                                                                                 

                             

                     

                        Next j 

                             

                    End If 

           

         

            If count3 - 1 = count Then 

             

                Exit For 

                 

            End If 

             

    Next i 

     

 

         

        For k = 1 To count 

         

            Cells(k + 8, 19).Value = sw(k - 1) 

 

        Next k 

 

End Sub 
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Appendix D – Simulator Input Data File for Case 1 – Variable Rate Scenario 

 
 

RUNSPEC   == memory dimensioning of the run ============================= 

 

TITLE     -- title of the run 

PHASE 4: MODEL a: 3D, HOMOGENEOUS, OIL-WATER SYSTEM 

 

DIMENS    -- dimensions of the model 

-- NX    NY   NZ 

   48    50     50 / --2D Model XY Section 

 

OIL       -- two phase black oil 

WATER     -- water is present, but no gas 

METRIC    -- unit specification 

START     -- starting date for simulation run 

  1 'JAN' 1983 / 

 

EQLDIMS   -- equilibration table size 

    1  100   10    1   20 / 

TABDIMS   -- size of saturation and pvt tables 

    1    1   101   40 / 

WELLDIMS  -- max numb of WELLS/CONN per WELL/GROUPS/WELLperGROUP 

    2    25    1    2 / 

 

UNIFIN 

UNIFOUT 

MONITOR 

-- UNIFOUT 

FMTOUT 

 

NSTACK    -- usually 10 

    50 / 

 

GRID      == geometry of our model ===================================== 

EQUALS    -- set top depth, block sizes and rock properties 

          -- valid for a given range of blocks: I1 I2   J1 J2   K1 K2 

      'DX'     8   /                        -- default box => all blocks 

      'DY'     8   / 

--      'PORO'   0.3 / 

      'DZ'     10  / -- thickness of the layers 

--      'PERMX'  50   / 

-- 'PERMY'  50   / 

-- 'PERMZ'  50   / 

 

/ 

 

INCLUDE 

'PORO.DAT' 
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/ 

 

 

INCLUDE 

'perm.dat' 

/ 

MULTIPLY 

PERMX 1000 / 

/ 

COPY 

 PERMX PERMY/ 

 PERMX PERMZ/ 

/ 

 

MULTIPLY 

PERMZ 0.1 / 

/ 

 

BOX 

1 48 1 50 1 1/ 

 

TOPS 

2400*70/ 

 

ENDBOX 

 

 

-- request init and grid file, necessary for post processing of the simulation with floviz 

INIT 

GRIDFILE 

 2 / 

 

PROPS     == pvt and relperm tables ============================= 

 

 

-- Specify properties of water phase 

PVTW 

-- P_reference  FVF  Compressibility Viscosity@Pref  

     295      1.00      0.00000000000000000001           1.5 /  

 

-- Specify properties of rock matrix 

ROCK 

-- P_reference  Compressibility    

     295.0         0 /         

  

-- Specify densities for all phases at surface conditions 

 

DENSITY 

-- oil    wat    gas 
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   700   1000  100 /  

  

-- Specify properties of dead oil (no dissolved gas) 

PVDO 

--P_oil   FVF  Viscosity 

 

100 1.071 30 

200 1.070 30 

300 1.069 30 

400 1.068 30 

500 1.067 30 

600 1.066 30 

700 1.065 30 

800 1.064 30 

900 1.063 30 

1000 1.062 30 

1100 1.061 30 

1200 1.060 30 

1300 1.059 30 

1400 1.058 30 

1500 1.057 30 

1600 1.056 30 

1700 1.055 30 

 

 

 

 

 

/ 

 

--PVCDO 

--100 1.071 0.000000001 20 0.0 / 

 

 

SWOF     -- Wat-oil Relative Permeabilities and Pcow      

--sw krw krow Pc   

0.00E+00 0.00E+00 1.00E+00 0   

1.00E-02 1.00E-04 9.80E-01 0   

2.00E-02 4.00E-04 9.60E-01 0   

3.00E-02 9.00E-04 9.41E-01 0   

4.00E-02 1.60E-03 9.22E-01 0   

5.00E-02 2.50E-03 9.03E-01 0   

6.00E-02 3.60E-03 8.84E-01 0   

7.00E-02 4.90E-03 8.65E-01 0   

8.00E-02 6.40E-03 8.46E-01 0   

9.00E-02 8.10E-03 8.28E-01 0   

1.00E-01 1.00E-02 8.10E-01 0   

1.10E-01 1.21E-02 7.92E-01 0   

1.20E-01 1.44E-02 7.74E-01 0   
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1.30E-01 1.69E-02 7.57E-01 0   

1.40E-01 1.96E-02 7.40E-01 0   

1.50E-01 2.25E-02 7.23E-01 0   

1.60E-01 2.56E-02 7.06E-01 0   

1.70E-01 2.89E-02 6.89E-01 0   

1.80E-01 3.24E-02 6.72E-01 0   

1.90E-01 3.61E-02 6.56E-01 0   

2.00E-01 4.00E-02 6.40E-01 0   

2.10E-01 4.41E-02 6.24E-01 0   

2.20E-01 4.84E-02 6.08E-01 0   

2.30E-01 5.29E-02 5.93E-01 0   

2.40E-01 5.76E-02 5.78E-01 0   

2.50E-01 6.25E-02 5.63E-01 0   

2.60E-01 6.76E-02 5.48E-01 0   

2.70E-01 7.29E-02 5.33E-01 0   

2.80E-01 7.84E-02 5.18E-01 0   

2.90E-01 8.41E-02 5.04E-01 0   

3.00E-01 9.00E-02 4.90E-01 0   

3.10E-01 9.61E-02 4.76E-01 0   

3.20E-01 1.02E-01 4.62E-01 0   

3.30E-01 1.09E-01 4.49E-01 0   

3.40E-01 1.16E-01 4.36E-01 0   

3.50E-01 1.23E-01 4.23E-01 0   

3.60E-01 1.30E-01 4.10E-01 0   

3.70E-01 1.37E-01 3.97E-01 0   

3.80E-01 1.44E-01 3.84E-01 0   

3.90E-01 1.52E-01 3.72E-01 0   

4.00E-01 1.60E-01 3.60E-01 0   

4.10E-01 1.68E-01 3.48E-01 0   

4.20E-01 1.76E-01 3.36E-01 0   

4.30E-01 1.85E-01 3.25E-01 0   

4.40E-01 1.94E-01 3.14E-01 0   

4.50E-01 2.03E-01 3.03E-01 0   

4.60E-01 2.12E-01 2.92E-01 0   

4.70E-01 2.21E-01 2.81E-01 0   

4.80E-01 2.30E-01 2.70E-01 0   

4.90E-01 2.40E-01 2.60E-01 0   

5.00E-01 2.50E-01 2.50E-01 0   

5.10E-01 2.60E-01 2.40E-01 0   

5.20E-01 2.70E-01 2.30E-01 0   

5.30E-01 2.81E-01 2.21E-01 0   

5.40E-01 2.92E-01 2.12E-01 0   

5.50E-01 3.03E-01 2.03E-01 0   

5.60E-01 3.14E-01 1.94E-01 0   

5.70E-01 3.25E-01 1.85E-01 0   

5.80E-01 3.36E-01 1.76E-01 0   

5.90E-01 3.48E-01 1.68E-01 0   

6.00E-01 3.60E-01 1.60E-01 0   

6.10E-01 3.72E-01 1.52E-01 0   
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6.20E-01 3.84E-01 1.44E-01 0   

6.30E-01 3.97E-01 1.37E-01 0   

6.40E-01 4.10E-01 1.30E-01 0   

6.50E-01 4.23E-01 1.23E-01 0   

6.60E-01 4.36E-01 1.16E-01 0   

6.70E-01 4.49E-01 1.09E-01 0   

6.80E-01 4.62E-01 1.02E-01 0   

6.90E-01 4.76E-01 9.61E-02 0   

7.00E-01 4.90E-01 9.00E-02 0   

7.10E-01 5.04E-01 8.41E-02 0   

7.20E-01 5.18E-01 7.84E-02 0   

7.30E-01 5.33E-01 7.29E-02 0   

7.40E-01 5.48E-01 6.76E-02 0   

7.50E-01 5.63E-01 6.25E-02 0   

7.60E-01 5.78E-01 5.76E-02 0   

7.70E-01 5.93E-01 5.29E-02 0   

7.80E-01 6.08E-01 4.84E-02 0   

7.90E-01 6.24E-01 4.41E-02 0   

8.00E-01 6.40E-01 4.00E-02 0   

8.10E-01 6.56E-01 3.61E-02 0   

8.20E-01 6.72E-01 3.24E-02 0   

8.30E-01 6.89E-01 2.89E-02 0   

8.40E-01 7.06E-01 2.56E-02 0   

8.50E-01 7.23E-01 2.25E-02 0   

8.60E-01 7.40E-01 1.96E-02 0   

8.70E-01 7.57E-01 1.69E-02 0   

8.80E-01 7.74E-01 1.44E-02 0   

8.90E-01 7.92E-01 1.21E-02 0   

9.00E-01 8.10E-01 1.00E-02 0   

9.10E-01 8.28E-01 8.10E-03 0   

9.20E-01 8.46E-01 6.40E-03 0   

9.30E-01 8.65E-01 4.90E-03 0   

9.40E-01 8.84E-01 3.60E-03 0   

9.50E-01 9.03E-01 2.50E-03 0   

9.60E-01 9.22E-01 1.60E-03 0   

9.70E-01 9.41E-01 9.00E-04 0   

9.80E-01 9.60E-01 4.00E-04 0   

9.90E-01 9.80E-01 1.00E-04 0   

1.00E+00 1.00E+00 0.00E+00 0   

/      

 

 

 

 

 

------------------------------ Solution Section -------------------------------- 

-- Implies the beginning of Solution section 

SOLUTION    

 



Combination of  Conventional and Optimisation Techniques for Performance Prediction in Large Waterflood Project                                          33 

 

-- Specify initial state of the reservoir 

--EQUIL 

--    DATUM  DATUM   OWC    OWC    GOC    GOC    

--    depth  press  depth   PcOW  depth   PcOG  

--      70.0   1400  80.0  0.0    200.0  0.0 /  

 

PRESSURE 

120000*1400 / 

 

SWAT 

120000*0 / 

 

 

 

--------------------------- 

RPTSOL 

'RESTART=2' / 

 

SUMMARY    == output written to summary *.RSM file ==================== 

RUNSUM     -- additional table in *.PRT file 

SEPARATE   -- write a seperate *.RSM file 

 

WOPR       -- 'W'ell 'O'il 'P'roduction 'R'ate 

'P1' 

/ 

WWPR       -- 'W'ell 'W'ater 'P'roduction 'R'ate 

'P1' 

/ 

WWIR       -- 'W'ell 'W'ater injection 'R'ate 

'P1' 

/ 

WBHP       -- and the bottom hole pressure of 'PROD' 

 'P1' 

 'I1' 

/ 

FPR        -- Average reservoir pressure 

FOPR 

FWPR 

FWIR 

FOPT       -- Cumulative oil production of the field, ('F'ield 'O'il 'P'roduction 'T'otal) 

FWPT       -- Cumulative water production of the field, ('F'ield 'O'il 'P'roduction 'T'otal) 

FWIT       -- Cumulative water injection of the field 

FOE        -- request oil recovery 

FOPV        -- field oil pore volume 

FWPV        -- field water pore volume 

 

SCHEDULE   == operations to be simulated ============================== 

RPTSCHED   -- CONTROLS ON OUTPUT AT EACH REPORT TIME 

-- 'WELLS=2' 'WELSPECS'/ 
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'SWAT' 'PRES'/ 

--RPTRST 

-- 3 0 1 0 0 1 / 

--/ 

 

DRSDT     -- Free gas is not allowed to re-dissolve within oil 

  0 / 

 

RPTRST    -- request restart file 

'BASIC=2' 

/ 

 

-- Sets simulator control parameters 

TUNING 

1* 1 1* 1* 3/ 

/ 

/ 

 

WELSPECS   == WELL SPECIFICATION DATA ================================ 

--   WELL   GROUP LOCATION  BHP   PI 

--Name  Group   I     J     Datum     Phase 

'P1'  'G'     48    50       555      'OIL'    / 

/ 

 

 

-- Specification for completion of oil producing well  

COMPDAT 

--Name   I    J   K1   K2   Status  Sattab Trfact  Diam  EffKh  Skin   

  'P1'   48   50   48   50   'OPEN'    1*     1*   0.1    1*    0.0 / 

/ 

 

-- Control data for oil producing well 

WCONPROD 

--Name Status  Mode "o_rate" "w_ rate" "g_rate" "l_rate" "rf_rate"    BHP 

  'P1' 'OPEN' 'RESV'   1*      1*        1*        1*      65      200/ 

/ 

 

-- Specification data for injector well on the left 

WELSPECS 

--Name  Group   I     J    Datum  Phase 

  'I1'   'G'    1    1   85  'WATER' / 

/ 

 

-- Specification for completion of injector well 

COMPDAT 

--Name   I    J   K1   K2   Status  Sattab Trfact  Diam  EffKh  Skin 

  'I1'   1    1   1   1   'OPEN'    1*     1*   0.1    1*    0.0 / 

/ 
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-- Control data for water injecting well 

WCONINJE 

--Name  Type   Status  Mode "w_rate" "rf_rate"  BHP 

  'I1' 'WATER' 'OPEN' 'RATE'    65        1*     1500 / 

/ 

 

-- Total duration of simulation run / frequency of reports of restart files 

TSTEP 

50*30.5 

 / 

 

 

WELTARG 

'P1' RESV 10 / 

'I1' WRATE 10/ 

/ 

 

-- Total duration of simulation run / frequency of reports of restart files 

TSTEP 

50*30.5 

 / 

 

WELTARG 

'P1' RESV 35 / 

'I1' WRATE 35/ 

/ 

 

-- Total duration of simulation run / frequency of reports of restart files 

TSTEP 

50*30.5 

 / 

 

 

WELTARG 

'P1' RESV 95 / 

'I1' WRATE 95/ 

/ 

 

-- Total duration of simulation run / frequency of reports of restart files 

TSTEP 

50*30.5 

 / 

 

WELTARG 

'P1' RESV 25 / 

'I1' WRATE 25/ 

/ 

 

-- Total duration of simulation run / frequency of reports of restart files 
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TSTEP 

50*30.5 

 / 

 

 

 

WELTARG 

'P1' RESV 125/ 

'I1' WRATE 125/ 

/ 

 

-- Total duration of simulation run / frequency of reports of restart files 

TSTEP 

50*30.5 

 / 

 

 

 

END 
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Appendix E – Simulator Input Data File for Case 1 – Average Rate Scenario 

 

RUNSPEC   == memory dimensioning of the run ============================= 

 

TITLE     -- title of the run 

PHASE 4: MODEL a: 3D, HOMOGENEOUS, OIL-WATER SYSTEM 

 

DIMENS    -- dimensions of the model 

-- NX    NY   NZ 

   48    50     50 / --2D Model XY Section 

 

OIL       -- two phase black oil 

WATER     -- water is present, but no gas 

METRIC    -- unit specification 

START     -- starting date for simulation run 

  1 'JAN' 1983 / 

 

EQLDIMS   -- equilibration table size 

    1  100   10    1   20 / 

TABDIMS   -- size of saturation and pvt tables 

    1    1   101   40 / 

WELLDIMS  -- max numb of WELLS/CONN per WELL/GROUPS/WELLperGROUP 

    2    25    1    2 / 

 

UNIFIN 

UNIFOUT 

MONITOR 

-- UNIFOUT 

FMTOUT 

 

NSTACK    -- usually 10 

    50 / 

 

GRID      == geometry of our model ===================================== 

EQUALS    -- set top depth, block sizes and rock properties 

          -- valid for a given range of blocks: I1 I2   J1 J2   K1 K2 

      'DX'     8   /                        -- default box => all blocks 

      'DY'     8   / 

--      'PORO'   0.3 / 

      'DZ'     10  / -- thickness of the layers 

--      'PERMX'  50   / 

-- 'PERMY'  50   / 

-- 'PERMZ'  50   / 

 

/ 

 

INCLUDE 

'PORO.DAT' 

/ 
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INCLUDE 

'perm.dat' 

/ 

MULTIPLY 

PERMX 1000 / 

/ 

COPY 

 PERMX PERMY/ 

 PERMX PERMZ/ 

/ 

 

MULTIPLY 

PERMZ 0.1 / 

/ 

 

BOX 

1 48 1 50 1 1/ 

 

TOPS 

2400*70/ 

 

ENDBOX 

 

 

-- request init and grid file, necessary for post processing of the simulation with floviz 

INIT 

GRIDFILE 

 2 / 

 

PROPS     == pvt and relperm tables ============================= 

 

 

-- Specify properties of water phase 

PVTW 

-- P_reference  FVF  Compressibility Viscosity@Pref  

     295      1.00      0.00000000000000000001           1.5 /  

 

-- Specify properties of rock matrix 

ROCK 

-- P_reference  Compressibility    

     295.0         0 /         

  

-- Specify densities for all phases at surface conditions 

 

DENSITY 

-- oil    wat    gas 

   700   1000  100 /  
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-- Specify properties of dead oil (no dissolved gas) 

PVDO 

--P_oil   FVF  Viscosity 

 

100 1.071 30 

200 1.070 30 

300 1.069 30 

400 1.068 30 

500 1.067 30 

600 1.066 30 

700 1.065 30 

800 1.064 30 

900 1.063 30 

1000 1.062 30 

1100 1.061 30 

1200 1.060 30 

1300 1.059 30 

1400 1.058 30 

1500 1.057 30 

1600 1.056 30 

1700 1.055 30 

/ 

 

--PVCDO 

--100 1.071 0.000000001 20 0.0 / 

 

 

SWOF     -- Wat-oil Relative Permeabilities and Pcow      

--sw krw krow Pc   

0.00E+00 0.00E+00 1.00E+00 0   

1.00E-02 1.00E-04 9.80E-01 0   

2.00E-02 4.00E-04 9.60E-01 0   

3.00E-02 9.00E-04 9.41E-01 0   

4.00E-02 1.60E-03 9.22E-01 0   

5.00E-02 2.50E-03 9.03E-01 0   

6.00E-02 3.60E-03 8.84E-01 0   

7.00E-02 4.90E-03 8.65E-01 0   

8.00E-02 6.40E-03 8.46E-01 0   

9.00E-02 8.10E-03 8.28E-01 0   

1.00E-01 1.00E-02 8.10E-01 0   

1.10E-01 1.21E-02 7.92E-01 0   

1.20E-01 1.44E-02 7.74E-01 0   

1.30E-01 1.69E-02 7.57E-01 0   

1.40E-01 1.96E-02 7.40E-01 0   

1.50E-01 2.25E-02 7.23E-01 0   

1.60E-01 2.56E-02 7.06E-01 0   

1.70E-01 2.89E-02 6.89E-01 0   

1.80E-01 3.24E-02 6.72E-01 0   
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1.90E-01 3.61E-02 6.56E-01 0   

2.00E-01 4.00E-02 6.40E-01 0   

2.10E-01 4.41E-02 6.24E-01 0   

2.20E-01 4.84E-02 6.08E-01 0   

2.30E-01 5.29E-02 5.93E-01 0   

2.40E-01 5.76E-02 5.78E-01 0   

2.50E-01 6.25E-02 5.63E-01 0   

2.60E-01 6.76E-02 5.48E-01 0   

2.70E-01 7.29E-02 5.33E-01 0   

2.80E-01 7.84E-02 5.18E-01 0   

2.90E-01 8.41E-02 5.04E-01 0   

3.00E-01 9.00E-02 4.90E-01 0   

3.10E-01 9.61E-02 4.76E-01 0   

3.20E-01 1.02E-01 4.62E-01 0   

3.30E-01 1.09E-01 4.49E-01 0   

3.40E-01 1.16E-01 4.36E-01 0   

3.50E-01 1.23E-01 4.23E-01 0   

3.60E-01 1.30E-01 4.10E-01 0   

3.70E-01 1.37E-01 3.97E-01 0   

3.80E-01 1.44E-01 3.84E-01 0   

3.90E-01 1.52E-01 3.72E-01 0   

4.00E-01 1.60E-01 3.60E-01 0   

4.10E-01 1.68E-01 3.48E-01 0   

4.20E-01 1.76E-01 3.36E-01 0   

4.30E-01 1.85E-01 3.25E-01 0   

4.40E-01 1.94E-01 3.14E-01 0   

4.50E-01 2.03E-01 3.03E-01 0   

4.60E-01 2.12E-01 2.92E-01 0   

4.70E-01 2.21E-01 2.81E-01 0   

4.80E-01 2.30E-01 2.70E-01 0   

4.90E-01 2.40E-01 2.60E-01 0   

5.00E-01 2.50E-01 2.50E-01 0   

5.10E-01 2.60E-01 2.40E-01 0   

5.20E-01 2.70E-01 2.30E-01 0   

5.30E-01 2.81E-01 2.21E-01 0   

5.40E-01 2.92E-01 2.12E-01 0   

5.50E-01 3.03E-01 2.03E-01 0   

5.60E-01 3.14E-01 1.94E-01 0   

5.70E-01 3.25E-01 1.85E-01 0   

5.80E-01 3.36E-01 1.76E-01 0   

5.90E-01 3.48E-01 1.68E-01 0   

6.00E-01 3.60E-01 1.60E-01 0   

6.10E-01 3.72E-01 1.52E-01 0   

6.20E-01 3.84E-01 1.44E-01 0   

6.30E-01 3.97E-01 1.37E-01 0   

6.40E-01 4.10E-01 1.30E-01 0   

6.50E-01 4.23E-01 1.23E-01 0   

6.60E-01 4.36E-01 1.16E-01 0   

6.70E-01 4.49E-01 1.09E-01 0   
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6.80E-01 4.62E-01 1.02E-01 0   

6.90E-01 4.76E-01 9.61E-02 0   

7.00E-01 4.90E-01 9.00E-02 0   

7.10E-01 5.04E-01 8.41E-02 0   

7.20E-01 5.18E-01 7.84E-02 0   

7.30E-01 5.33E-01 7.29E-02 0   

7.40E-01 5.48E-01 6.76E-02 0   

7.50E-01 5.63E-01 6.25E-02 0   

7.60E-01 5.78E-01 5.76E-02 0   

7.70E-01 5.93E-01 5.29E-02 0   

7.80E-01 6.08E-01 4.84E-02 0   

7.90E-01 6.24E-01 4.41E-02 0   

8.00E-01 6.40E-01 4.00E-02 0   

8.10E-01 6.56E-01 3.61E-02 0   

8.20E-01 6.72E-01 3.24E-02 0   

8.30E-01 6.89E-01 2.89E-02 0   

8.40E-01 7.06E-01 2.56E-02 0   

8.50E-01 7.23E-01 2.25E-02 0   

8.60E-01 7.40E-01 1.96E-02 0   

8.70E-01 7.57E-01 1.69E-02 0   

8.80E-01 7.74E-01 1.44E-02 0   

8.90E-01 7.92E-01 1.21E-02 0   

9.00E-01 8.10E-01 1.00E-02 0   

9.10E-01 8.28E-01 8.10E-03 0   

9.20E-01 8.46E-01 6.40E-03 0   

9.30E-01 8.65E-01 4.90E-03 0   

9.40E-01 8.84E-01 3.60E-03 0   

9.50E-01 9.03E-01 2.50E-03 0   

9.60E-01 9.22E-01 1.60E-03 0   

9.70E-01 9.41E-01 9.00E-04 0   

9.80E-01 9.60E-01 4.00E-04 0   

9.90E-01 9.80E-01 1.00E-04 0   

1.00E+00 1.00E+00 0.00E+00 0   

/      

 

 

 

 

 

------------------------------ Solution Section -------------------------------- 

-- Implies the beginning of Solution section 

SOLUTION    

 

-- Specify initial state of the reservoir 

--EQUIL 

--    DATUM  DATUM   OWC    OWC    GOC    GOC    

--    depth  press  depth   PcOW  depth   PcOG  

--      70.0   1400  80.0  0.0    200.0  0.0 /  
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PRESSURE 

120000*1400 / 

 

SWAT 

120000*0 / 

 

 

 

--------------------------- 

RPTSOL 

'RESTART=2' / 

 

SUMMARY    == output written to summary *.RSM file ==================== 

RUNSUM     -- additional table in *.PRT file 

SEPARATE   -- write a seperate *.RSM file 

 

WOPR       -- 'W'ell 'O'il 'P'roduction 'R'ate 

'P1' 

/ 

WWPR       -- 'W'ell 'W'ater 'P'roduction 'R'ate 

'P1' 

/ 

WWIR       -- 'W'ell 'W'ater injection 'R'ate 

'P1' 

/ 

WBHP       -- and the bottom hole pressure of 'PROD' 

 'P1' 

 'I1' 

/ 

FPR        -- Average reservoir pressure 

FOPR 

FWPR 

FWIR 

FOPT       -- Cumulative oil production of the field, ('F'ield 'O'il 'P'roduction 'T'otal) 

FWPT       -- Cumulative water production of the field, ('F'ield 'O'il 'P'roduction 'T'otal) 

FWIT       -- Cumulative water injection of the field 

FOE        -- request oil recovery 

FOPV        -- field oil pore volume 

FWPV        -- field water pore volume 

 

SCHEDULE   == operations to be simulated ============================== 

RPTSCHED   -- CONTROLS ON OUTPUT AT EACH REPORT TIME 

-- 'WELLS=2' 'WELSPECS'/ 

'SWAT' 'PRES'/ 

--RPTRST 

-- 3 0 1 0 0 1 / 

--/ 

 

DRSDT     -- Free gas is not allowed to re-dissolve within oil 
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  0 / 

 

RPTRST    -- request restart file 

'BASIC=2' 

/ 

 

-- Sets simulator control parameters 

TUNING 

1* 1 1* 1* 3/ 

/ 

/ 

 

WELSPECS   == WELL SPECIFICATION DATA ================================ 

--   WELL   GROUP LOCATION  BHP   PI 

--Name  Group   I     J     Datum     Phase 

'P1'  'G'     48    50       555      'OIL'    / 

/ 

 

 

-- Specification for completion of oil producing well  

COMPDAT 

--Name   I    J   K1   K2   Status  Sattab Trfact  Diam  EffKh  Skin   

  'P1'   48   50   48   50   'OPEN'    1*     1*   0.1    1*    0.0 / 

/ 

 

-- Control data for oil producing well 

WCONPROD 

--Name Status  Mode "o_rate" "w_ rate" "g_rate" "l_rate" "rf_rate"    BHP 

  'P1' 'OPEN' 'RESV'   1*      1*        1*        1*      65      200/ 

/ 

 

-- Specification data for injector well on the left 

WELSPECS 

--Name  Group   I     J    Datum  Phase 

  'I1'   'G'    1    1   85  'WATER' / 

/ 

 

-- Specification for completion of injector well 

COMPDAT 

--Name   I    J   K1   K2   Status  Sattab Trfact  Diam  EffKh  Skin 

  'I1'   1    1   1   1   'OPEN'    1*     1*   0.1    1*    0.0 / 

/ 

 

-- Control data for water injecting well 

WCONINJE 

--Name  Type   Status  Mode "w_rate" "rf_rate"  BHP 

  'I1' 'WATER' 'OPEN' 'RATE'    65        1*     1500 / 

/ 
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-- Total duration of simulation run / frequency of reports of restart files 

TSTEP 

300*30.5 

 / 

 

 

 / 

 

 

 

END 
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Appendix F – Simulator Input Data File for Case 2 – Variable Rate Scenario 

 

RUNSPEC   == memory dimensioning of the run ============================= 

 

TITLE     -- title of the run 

PHASE 4: MODEL a: 3D, HOMOGENEOUS, OIL-WATER SYSTEM 

 

DIMENS    -- dimensions of the model 

-- NX    NY   NZ 

   48    50     50 / --2D Model XY Section 

 

OIL       -- two phase black oil 

WATER     -- water is present, but no gas 

METRIC    -- unit specification 

START     -- starting date for simulation run 

  1 'JAN' 1983 / 

 

EQLDIMS   -- equilibration table size 

    1  100   10    1   20 / 

TABDIMS   -- size of saturation and pvt tables 

    1    1   101   40 / 

WELLDIMS  -- max numb of WELLS/CONN per WELL/GROUPS/WELLperGROUP 

    2    25    1    2 / 

 

UNIFIN 

UNIFOUT 

MONITOR 

-- UNIFOUT 

FMTOUT 

 

NSTACK    -- usually 10 

    50 / 

 

GRID      == geometry of our model ===================================== 

EQUALS    -- set top depth, block sizes and rock properties 

          -- valid for a given range of blocks: I1 I2   J1 J2   K1 K2 

      'DX'     8   /                        -- default box => all blocks 

      'DY'     8   / 

--      'PORO'   0.3 / 

      'DZ'     1.5  / -- thickness of the layers 

--      'PERMX'  50   / 

-- 'PERMY'  50   / 

-- 'PERMZ'  50   / 

 

/ 

 

INCLUDE 

'PORO.DAT' 

/ 
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INCLUDE 

'perm.dat' 

/ 

MULTIPLY 

PERMX 100 / 

/ 

COPY 

 PERMX PERMY/ 

 PERMX PERMZ/ 

/ 

 

MULTIPLY 

PERMZ 0.1 / 

/ 

 

BOX 

1 48 1 50 1 1/ 

 

TOPS 

2400*70/ 

 

ENDBOX 

 

 

-- request init and grid file, necessary for post processing of the simulation with floviz 

INIT 

GRIDFILE 

 2 / 

 

PROPS     == pvt and relperm tables ============================= 

 

 

-- Specify properties of water phase 

PVTW 

-- P_reference  FVF  Compressibility Viscosity@Pref  

     295      1.00      0.00000000000000000001           1.5 /  

 

-- Specify properties of rock matrix 

ROCK 

-- P_reference  Compressibility    

     295.0         0 /         

  

-- Specify densities for all phases at surface conditions 

 

DENSITY 

-- oil    wat    gas 

   700   1000  100 /  
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-- Specify properties of dead oil (no dissolved gas) 

PVDO 

--P_oil   FVF  Viscosity 

 

100 1.071 7 

200 1.070 7 

300 1.069 7 

400 1.068 7 

500 1.067 7 

600 1.066 7 

700 1.065 7 

800 1.064 7 

900 1.063 7 

1000 1.062 7 

1100 1.061 7 

1200 1.060 7 

1300 1.059 7 

1400 1.058 7 

1500 1.057 7 

1600 1.056 7 

1700 1.055 7 

 

 

 

 

 

/ 

 

--PVCDO 

--100 1.071 0.000000001 20 0.0 / 

 

 

SWOF     -- Wat-oil Relative Permeabilities and Pcow      

--sw krw krow Pc   

0.00E+00 0.00E+00 1.00E+00 0   

1.00E-02 1.00E-04 9.80E-01 0   

2.00E-02 4.00E-04 9.60E-01 0   

3.00E-02 9.00E-04 9.41E-01 0   

4.00E-02 1.60E-03 9.22E-01 0   

5.00E-02 2.50E-03 9.03E-01 0   

6.00E-02 3.60E-03 8.84E-01 0   

7.00E-02 4.90E-03 8.65E-01 0   

8.00E-02 6.40E-03 8.46E-01 0   

9.00E-02 8.10E-03 8.28E-01 0   

1.00E-01 1.00E-02 8.10E-01 0   

1.10E-01 1.21E-02 7.92E-01 0   

1.20E-01 1.44E-02 7.74E-01 0   

1.30E-01 1.69E-02 7.57E-01 0   
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1.40E-01 1.96E-02 7.40E-01 0   

1.50E-01 2.25E-02 7.23E-01 0   

1.60E-01 2.56E-02 7.06E-01 0   

1.70E-01 2.89E-02 6.89E-01 0   

1.80E-01 3.24E-02 6.72E-01 0   

1.90E-01 3.61E-02 6.56E-01 0   

2.00E-01 4.00E-02 6.40E-01 0   

2.10E-01 4.41E-02 6.24E-01 0   

2.20E-01 4.84E-02 6.08E-01 0   

2.30E-01 5.29E-02 5.93E-01 0   

2.40E-01 5.76E-02 5.78E-01 0   

2.50E-01 6.25E-02 5.63E-01 0   

2.60E-01 6.76E-02 5.48E-01 0   

2.70E-01 7.29E-02 5.33E-01 0   

2.80E-01 7.84E-02 5.18E-01 0   

2.90E-01 8.41E-02 5.04E-01 0   

3.00E-01 9.00E-02 4.90E-01 0   

3.10E-01 9.61E-02 4.76E-01 0   

3.20E-01 1.02E-01 4.62E-01 0   

3.30E-01 1.09E-01 4.49E-01 0   

3.40E-01 1.16E-01 4.36E-01 0   

3.50E-01 1.23E-01 4.23E-01 0   

3.60E-01 1.30E-01 4.10E-01 0   

3.70E-01 1.37E-01 3.97E-01 0   

3.80E-01 1.44E-01 3.84E-01 0   

3.90E-01 1.52E-01 3.72E-01 0   

4.00E-01 1.60E-01 3.60E-01 0   

4.10E-01 1.68E-01 3.48E-01 0   

4.20E-01 1.76E-01 3.36E-01 0   

4.30E-01 1.85E-01 3.25E-01 0   

4.40E-01 1.94E-01 3.14E-01 0   

4.50E-01 2.03E-01 3.03E-01 0   

4.60E-01 2.12E-01 2.92E-01 0   

4.70E-01 2.21E-01 2.81E-01 0   

4.80E-01 2.30E-01 2.70E-01 0   

4.90E-01 2.40E-01 2.60E-01 0   

5.00E-01 2.50E-01 2.50E-01 0   

5.10E-01 2.60E-01 2.40E-01 0   

5.20E-01 2.70E-01 2.30E-01 0   

5.30E-01 2.81E-01 2.21E-01 0   

5.40E-01 2.92E-01 2.12E-01 0   

5.50E-01 3.03E-01 2.03E-01 0   

5.60E-01 3.14E-01 1.94E-01 0   

5.70E-01 3.25E-01 1.85E-01 0   

5.80E-01 3.36E-01 1.76E-01 0   

5.90E-01 3.48E-01 1.68E-01 0   

6.00E-01 3.60E-01 1.60E-01 0   

6.10E-01 3.72E-01 1.52E-01 0   

6.20E-01 3.84E-01 1.44E-01 0   
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6.30E-01 3.97E-01 1.37E-01 0   

6.40E-01 4.10E-01 1.30E-01 0   

6.50E-01 4.23E-01 1.23E-01 0   

6.60E-01 4.36E-01 1.16E-01 0   

6.70E-01 4.49E-01 1.09E-01 0   

6.80E-01 4.62E-01 1.02E-01 0   

6.90E-01 4.76E-01 9.61E-02 0   

7.00E-01 4.90E-01 9.00E-02 0   

7.10E-01 5.04E-01 8.41E-02 0   

7.20E-01 5.18E-01 7.84E-02 0   

7.30E-01 5.33E-01 7.29E-02 0   

7.40E-01 5.48E-01 6.76E-02 0   

7.50E-01 5.63E-01 6.25E-02 0   

7.60E-01 5.78E-01 5.76E-02 0   

7.70E-01 5.93E-01 5.29E-02 0   

7.80E-01 6.08E-01 4.84E-02 0   

7.90E-01 6.24E-01 4.41E-02 0   

8.00E-01 6.40E-01 4.00E-02 0   

8.10E-01 6.56E-01 3.61E-02 0   

8.20E-01 6.72E-01 3.24E-02 0   

8.30E-01 6.89E-01 2.89E-02 0   

8.40E-01 7.06E-01 2.56E-02 0   

8.50E-01 7.23E-01 2.25E-02 0   

8.60E-01 7.40E-01 1.96E-02 0   

8.70E-01 7.57E-01 1.69E-02 0   

8.80E-01 7.74E-01 1.44E-02 0   

8.90E-01 7.92E-01 1.21E-02 0   

9.00E-01 8.10E-01 1.00E-02 0   

9.10E-01 8.28E-01 8.10E-03 0   

9.20E-01 8.46E-01 6.40E-03 0   

9.30E-01 8.65E-01 4.90E-03 0   

9.40E-01 8.84E-01 3.60E-03 0   

9.50E-01 9.03E-01 2.50E-03 0   

9.60E-01 9.22E-01 1.60E-03 0   

9.70E-01 9.41E-01 9.00E-04 0   

9.80E-01 9.60E-01 4.00E-04 0   

9.90E-01 9.80E-01 1.00E-04 0   

1.00E+00 1.00E+00 0.00E+00 0   

/      

 

 

 

 

 

------------------------------ Solution Section -------------------------------- 

-- Implies the beginning of Solution section 

SOLUTION    

 

-- Specify initial state of the reservoir 
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--EQUIL 

--    DATUM  DATUM   OWC    OWC    GOC    GOC    

--    depth  press  depth   PcOW  depth   PcOG  

--      70.0   1400  80.0  0.0    200.0  0.0 /  

 

PRESSURE 

120000*1400 / 

 

SWAT 

120000*0 / 

 

 

 

--------------------------- 

RPTSOL 

'RESTART=2' / 

 

SUMMARY    == output written to summary *.RSM file ==================== 

RUNSUM     -- additional table in *.PRT file 

SEPARATE   -- write a seperate *.RSM file 

 

WOPR       -- 'W'ell 'O'il 'P'roduction 'R'ate 

'P1' 

/ 

WWPR       -- 'W'ell 'W'ater 'P'roduction 'R'ate 

'P1' 

/ 

WWIR       -- 'W'ell 'W'ater injection 'R'ate 

'P1' 

/ 

WBHP       -- and the bottom hole pressure of 'PROD' 

 'P1' 

 'I1' 

/ 

FPR        -- Average reservoir pressure 

FOPR 

FWPR 

FWIR 

FOPT       -- Cumulative oil production of the field, ('F'ield 'O'il 'P'roduction 'T'otal) 

FWPT       -- Cumulative water production of the field, ('F'ield 'O'il 'P'roduction 'T'otal) 

FWIT       -- Cumulative water injection of the field 

FOE        -- request oil recovery 

FOPV        -- field oil pore volume 

FWPV        -- field water pore volume 

 

SCHEDULE   == operations to be simulated ============================== 

RPTSCHED   -- CONTROLS ON OUTPUT AT EACH REPORT TIME 

-- 'WELLS=2' 'WELSPECS'/ 

'SWAT' 'PRES'/ 
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--RPTRST 

-- 3 0 1 0 0 1 / 

--/ 

 

DRSDT     -- Free gas is not allowed to re-dissolve within oil 

  0 / 

 

RPTRST    -- request restart file 

'BASIC=2' 

/ 

 

-- Sets simulator control parameters 

TUNING 

1* 1 1* 1* 3/ 

/ 

/ 

 

WELSPECS   == WELL SPECIFICATION DATA ================================ 

--   WELL   GROUP LOCATION  BHP   PI 

--Name  Group   I     J     Datum     Phase 

'P1'  'G'     48    50       94.25      'OIL'    / 

/ 

 

 

-- Specification for completion of oil producing well  

COMPDAT 

--Name   I    J   K1   K2   Status  Sattab Trfact  Diam  EffKh  Skin   

  'P1'   48   50   48   50   'OPEN'    1*     1*   0.1    1*    0.0 / 

/ 

 

-- Control data for oil producing well 

WCONPROD 

--Name Status  Mode "o_rate" "w_ rate" "g_rate" "l_rate" "rf_rate"    BHP 

  'P1' 'OPEN' 'RESV'   1*      1*        1*        1*      65      200/ 

/ 

 

-- Specification data for injector well on the left 

WELSPECS 

--Name  Group   I     J    Datum  Phase 

  'I1'   'G'    1    1   70.75  'WATER' / 

/ 

 

-- Specification for completion of injector well 

COMPDAT 

--Name   I    J   K1   K2   Status  Sattab Trfact  Diam  EffKh  Skin 

  'I1'   1    1   1   1   'OPEN'    1*     1*   0.1    1*    0.0 / 

/ 

 

-- Control data for water injecting well 
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WCONINJE 

--Name  Type   Status  Mode "w_rate" "rf_rate"  BHP 

  'I1' 'WATER' 'OPEN' 'RATE'    65        1*     1500 / 

/ 

 

-- Total duration of simulation run / frequency of reports of restart files 

TSTEP 

50*30.5 

 / 

 

 

WELTARG 

'P1' RESV 10 / 

'I1' WRATE 10/ 

/ 

 

-- Total duration of simulation run / frequency of reports of restart files 

TSTEP 

50*30.5 

 / 

 

WELTARG 

'P1' RESV 35 / 

'I1' WRATE 35/ 

/ 

 

-- Total duration of simulation run / frequency of reports of restart files 

TSTEP 

50*30.5 

 / 

 

 

WELTARG 

'P1' RESV 95 / 

'I1' WRATE 95/ 

/ 

 

-- Total duration of simulation run / frequency of reports of restart files 

TSTEP 

50*30.5 

 / 

 

WELTARG 

'P1' RESV 25 / 

'I1' WRATE 25/ 

/ 

 

-- Total duration of simulation run / frequency of reports of restart files 

TSTEP 
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50*30.5 

 / 

 

 

 

WELTARG 

'P1' RESV 125/ 

'I1' WRATE 125/ 

/ 

 

-- Total duration of simulation run / frequency of reports of restart files 

TSTEP 

50*30.5 

 / 

 

 

 

END 
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Appendix G – Simulator Input Data File for Case 2 – Average Rate Scenario 

 

 

RUNSPEC   == memory dimensioning of the run ============================= 

 

TITLE     -- title of the run 

PHASE 4: MODEL a: 3D, HOMOGENEOUS, OIL-WATER SYSTEM 

 

DIMENS    -- dimensions of the model 

-- NX    NY   NZ 

   48    50     50 / --2D Model XY Section 

 

OIL       -- two phase black oil 

WATER     -- water is present, but no gas 

METRIC    -- unit specification 

START     -- starting date for simulation run 

  1 'JAN' 1983 / 

 

EQLDIMS   -- equilibration table size 

    1  100   10    1   20 / 

TABDIMS   -- size of saturation and pvt tables 

    1    1   101   40 / 

WELLDIMS  -- max numb of WELLS/CONN per WELL/GROUPS/WELLperGROUP 

    2    25    1    2 / 

 

UNIFIN 

UNIFOUT 

MONITOR 

-- UNIFOUT 

FMTOUT 

 

NSTACK    -- usually 10 

    50 / 

 

GRID      == geometry of our model ===================================== 

EQUALS    -- set top depth, block sizes and rock properties 

          -- valid for a given range of blocks: I1 I2   J1 J2   K1 K2 

      'DX'     8   /                        -- default box => all blocks 

      'DY'     8   / 

--      'PORO'   0.3 / 

      'DZ'     1.5  / -- thickness of the layers 

--      'PERMX'  50   / 

-- 'PERMY'  50   / 

-- 'PERMZ'  50   / 

 

/ 

 

INCLUDE 

'PORO.DAT' 
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/ 

 

 

INCLUDE 

'perm.dat' 

/ 

MULTIPLY 

PERMX 100 / 

/ 

COPY 

 PERMX PERMY/ 

 PERMX PERMZ/ 

/ 

 

MULTIPLY 

PERMZ 0.1 / 

/ 

 

BOX 

1 48 1 50 1 1/ 

 

TOPS 

2400*70/ 

 

ENDBOX 

 

 

-- request init and grid file, necessary for post processing of the simulation with floviz 

INIT 

GRIDFILE 

 2 / 

 

PROPS     == pvt and relperm tables ============================= 

 

 

-- Specify properties of water phase 

PVTW 

-- P_reference  FVF  Compressibility Viscosity@Pref  

     295      1.00      0.00000000000000000001           1.5 /  

 

-- Specify properties of rock matrix 

ROCK 

-- P_reference  Compressibility    

     295.0         0 /         

  

-- Specify densities for all phases at surface conditions 

 

DENSITY 

-- oil    wat    gas 
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   700   1000  100 /  

  

-- Specify properties of dead oil (no dissolved gas) 

PVDO 

--P_oil   FVF  Viscosity 

 

100 1.071 7 

200 1.070 7 

300 1.069 7 

400 1.068 7 

500 1.067 7 

600 1.066 7 

700 1.065 7 

800 1.064 7 

900 1.063 7 

1000 1.062 7 

1100 1.061 7 

1200 1.060 7 

1300 1.059 7 

1400 1.058 7 

1500 1.057 7 

1600 1.056 7 

1700 1.055 7 

 

 

 

 

 

/ 

 

--PVCDO 

--100 1.071 0.000000001 20 0.0 / 

 

 

SWOF     -- Wat-oil Relative Permeabilities and Pcow      

--sw krw krow Pc   

0.00E+00 0.00E+00 1.00E+00 0   

1.00E-02 1.00E-04 9.80E-01 0   

2.00E-02 4.00E-04 9.60E-01 0   

3.00E-02 9.00E-04 9.41E-01 0   

4.00E-02 1.60E-03 9.22E-01 0   

5.00E-02 2.50E-03 9.03E-01 0   

6.00E-02 3.60E-03 8.84E-01 0   

7.00E-02 4.90E-03 8.65E-01 0   

8.00E-02 6.40E-03 8.46E-01 0   

9.00E-02 8.10E-03 8.28E-01 0   

1.00E-01 1.00E-02 8.10E-01 0   

1.10E-01 1.21E-02 7.92E-01 0   

1.20E-01 1.44E-02 7.74E-01 0   
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1.30E-01 1.69E-02 7.57E-01 0   

1.40E-01 1.96E-02 7.40E-01 0   

1.50E-01 2.25E-02 7.23E-01 0   

1.60E-01 2.56E-02 7.06E-01 0   

1.70E-01 2.89E-02 6.89E-01 0   

1.80E-01 3.24E-02 6.72E-01 0   

1.90E-01 3.61E-02 6.56E-01 0   

2.00E-01 4.00E-02 6.40E-01 0   

2.10E-01 4.41E-02 6.24E-01 0   

2.20E-01 4.84E-02 6.08E-01 0   

2.30E-01 5.29E-02 5.93E-01 0   

2.40E-01 5.76E-02 5.78E-01 0   

2.50E-01 6.25E-02 5.63E-01 0   

2.60E-01 6.76E-02 5.48E-01 0   

2.70E-01 7.29E-02 5.33E-01 0   

2.80E-01 7.84E-02 5.18E-01 0   

2.90E-01 8.41E-02 5.04E-01 0   

3.00E-01 9.00E-02 4.90E-01 0   

3.10E-01 9.61E-02 4.76E-01 0   

3.20E-01 1.02E-01 4.62E-01 0   

3.30E-01 1.09E-01 4.49E-01 0   

3.40E-01 1.16E-01 4.36E-01 0   

3.50E-01 1.23E-01 4.23E-01 0   

3.60E-01 1.30E-01 4.10E-01 0   

3.70E-01 1.37E-01 3.97E-01 0   

3.80E-01 1.44E-01 3.84E-01 0   

3.90E-01 1.52E-01 3.72E-01 0   

4.00E-01 1.60E-01 3.60E-01 0   

4.10E-01 1.68E-01 3.48E-01 0   

4.20E-01 1.76E-01 3.36E-01 0   

4.30E-01 1.85E-01 3.25E-01 0   

4.40E-01 1.94E-01 3.14E-01 0   

4.50E-01 2.03E-01 3.03E-01 0   

4.60E-01 2.12E-01 2.92E-01 0   

4.70E-01 2.21E-01 2.81E-01 0   

4.80E-01 2.30E-01 2.70E-01 0   

4.90E-01 2.40E-01 2.60E-01 0   

5.00E-01 2.50E-01 2.50E-01 0   

5.10E-01 2.60E-01 2.40E-01 0   

5.20E-01 2.70E-01 2.30E-01 0   

5.30E-01 2.81E-01 2.21E-01 0   

5.40E-01 2.92E-01 2.12E-01 0   

5.50E-01 3.03E-01 2.03E-01 0   

5.60E-01 3.14E-01 1.94E-01 0   

5.70E-01 3.25E-01 1.85E-01 0   

5.80E-01 3.36E-01 1.76E-01 0   

5.90E-01 3.48E-01 1.68E-01 0   

6.00E-01 3.60E-01 1.60E-01 0   

6.10E-01 3.72E-01 1.52E-01 0   
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6.20E-01 3.84E-01 1.44E-01 0   

6.30E-01 3.97E-01 1.37E-01 0   

6.40E-01 4.10E-01 1.30E-01 0   

6.50E-01 4.23E-01 1.23E-01 0   

6.60E-01 4.36E-01 1.16E-01 0   

6.70E-01 4.49E-01 1.09E-01 0   

6.80E-01 4.62E-01 1.02E-01 0   

6.90E-01 4.76E-01 9.61E-02 0   

7.00E-01 4.90E-01 9.00E-02 0   

7.10E-01 5.04E-01 8.41E-02 0   

7.20E-01 5.18E-01 7.84E-02 0   

7.30E-01 5.33E-01 7.29E-02 0   

7.40E-01 5.48E-01 6.76E-02 0   

7.50E-01 5.63E-01 6.25E-02 0   

7.60E-01 5.78E-01 5.76E-02 0   

7.70E-01 5.93E-01 5.29E-02 0   

7.80E-01 6.08E-01 4.84E-02 0   

7.90E-01 6.24E-01 4.41E-02 0   

8.00E-01 6.40E-01 4.00E-02 0   

8.10E-01 6.56E-01 3.61E-02 0   

8.20E-01 6.72E-01 3.24E-02 0   

8.30E-01 6.89E-01 2.89E-02 0   

8.40E-01 7.06E-01 2.56E-02 0   

8.50E-01 7.23E-01 2.25E-02 0   

8.60E-01 7.40E-01 1.96E-02 0   

8.70E-01 7.57E-01 1.69E-02 0   

8.80E-01 7.74E-01 1.44E-02 0   

8.90E-01 7.92E-01 1.21E-02 0   

9.00E-01 8.10E-01 1.00E-02 0   

9.10E-01 8.28E-01 8.10E-03 0   

9.20E-01 8.46E-01 6.40E-03 0   

9.30E-01 8.65E-01 4.90E-03 0   

9.40E-01 8.84E-01 3.60E-03 0   

9.50E-01 9.03E-01 2.50E-03 0   

9.60E-01 9.22E-01 1.60E-03 0   

9.70E-01 9.41E-01 9.00E-04 0   

9.80E-01 9.60E-01 4.00E-04 0   

9.90E-01 9.80E-01 1.00E-04 0   

1.00E+00 1.00E+00 0.00E+00 0   

/      

------------------------------ Solution Section -------------------------------- 

-- Implies the beginning of Solution section 

SOLUTION    

 

-- Specify initial state of the reservoir 

--EQUIL 

--    DATUM  DATUM   OWC    OWC    GOC    GOC    

--    depth  press  depth   PcOW  depth   PcOG  

--      70.0   1400  80.0  0.0    200.0  0.0 /  



Combination of  Conventional and Optimisation Techniques for Performance Prediction in Large Waterflood Project                                          59 

 

 

PRESSURE 

120000*1400 / 

 

SWAT 

120000*0 / 

 

 

 

--------------------------- 

RPTSOL 

'RESTART=2' / 

 

SUMMARY    == output written to summary *.RSM file ==================== 

RUNSUM     -- additional table in *.PRT file 

SEPARATE   -- write a seperate *.RSM file 

 

WOPR       -- 'W'ell 'O'il 'P'roduction 'R'ate 

'P1' 

/ 

WWPR       -- 'W'ell 'W'ater 'P'roduction 'R'ate 

'P1' 

/ 

WWIR       -- 'W'ell 'W'ater injection 'R'ate 

'P1' 

/ 

WBHP       -- and the bottom hole pressure of 'PROD' 

 'P1' 

 'I1' 

/ 

FPR        -- Average reservoir pressure 

FOPR 

FWPR 

FWIR 

FOPT       -- Cumulative oil production of the field, ('F'ield 'O'il 'P'roduction 'T'otal) 

FWPT       -- Cumulative water production of the field, ('F'ield 'O'il 'P'roduction 'T'otal) 

FWIT       -- Cumulative water injection of the field 

FOE        -- request oil recovery 

FOPV        -- field oil pore volume 

FWPV        -- field water pore volume 

 

SCHEDULE   == operations to be simulated ============================== 

RPTSCHED   -- CONTROLS ON OUTPUT AT EACH REPORT TIME 

-- 'WELLS=2' 'WELSPECS'/ 

'SWAT' 'PRES'/ 

--RPTRST 

-- 3 0 1 0 0 1 / 

--/ 
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DRSDT     -- Free gas is not allowed to re-dissolve within oil 

  0 / 

 

RPTRST    -- request restart file 

'BASIC=2' 

/ 

 

-- Sets simulator control parameters 

TUNING 

1* 1 1* 1* 3/ 

/ 

/ 

 

WELSPECS   == WELL SPECIFICATION DATA ================================ 

--   WELL   GROUP LOCATION  BHP   PI 

--Name  Group   I     J     Datum     Phase 

'P1'  'G'     48    50       94.25      'OIL'    / 

/ 

 

 

-- Specification for completion of oil producing well  

COMPDAT 

--Name   I    J   K1   K2   Status  Sattab Trfact  Diam  EffKh  Skin   

  'P1'   48   50   48   50   'OPEN'    1*     1*   0.1    1*    0.0 / 

/ 

 

-- Control data for oil producing well 

WCONPROD 

--Name Status  Mode "o_rate" "w_ rate" "g_rate" "l_rate" "rf_rate"    BHP 

  'P1' 'OPEN' 'RESV'   1*      1*        1*        1*      65      200/ 

/ 

 

-- Specification data for injector well on the left 

WELSPECS 

--Name  Group   I     J    Datum  Phase 

  'I1'   'G'    1    1   70.75  'WATER' / 

/ 

 

-- Specification for completion of injector well 

COMPDAT 

--Name   I    J   K1   K2   Status  Sattab Trfact  Diam  EffKh  Skin 

  'I1'   1    1   1   1   'OPEN'    1*     1*   0.1    1*    0.0 / 

/ 

 

-- Control data for water injecting well 

WCONINJE 

--Name  Type   Status  Mode "w_rate" "rf_rate"  BHP 

  'I1' 'WATER' 'OPEN' 'RATE'    65        1*     1500 / 

/ 
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-- Total duration of simulation run / frequency of reports of restart files 

TSTEP 

300*30.5 

 / 

 

 

 

 

 

END 
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Appendix H – Sample calculation algorithm in WATERFLOOD tool  

 

 

 

public Tuple<List<double>, List<double>, List<double>, List<double>, List<double>, List<double>> 

Calculate(ListParam ParamList) 

        { 

 

             

             

            //Reset(); 

 

            double Krocw = ParamList.GetParam("Krocw (fraction)").value; 

            double Krwro = ParamList.GetParam("Krwro (fraction)").value; 

            double swLookup = ParamList.GetParam("Swi").value; 

            double Swc = ParamList.GetParam("Swc (fraction)").value; 

            double Sor = ParamList.GetParam("Sor (fraction)").value; 

            double Nw = ParamList.GetParam("Nw (Corey Exp)").value; 

            double No = ParamList.GetParam("No (Corey Exp)").value; 

            double uo = ParamList.GetParam("MiuO (mPa.s)").value; 

            double uw = ParamList.GetParam("MiuW (Corey Exp)").value; 

            double delta = ParamList.GetParam("Porosity (Fraction)").value; 

            double ho = ParamList.GetParam("ho (m)").value; 

            double hhor = ParamList.GetParam("Hhor (m)").value; 

            double kmain = (ParamList.GetParam("kmain (md)").value); 

            double deltap = ParamList.GetParam("Delta P (kg/m3)").value; 

            double qangle = ParamList.GetParam("Q Angle (Degrees)").value; 

            double wellspacing = ParamList.GetParam("Wellspacing (m)").value; 

            double qgross = ParamList.GetParam("QGross (m3/d)").value; 

            double waban = ParamList.GetParam("BS & Waban (fraction)").value; 

 

 

 

 

            double step = (1 - Sor - Swc) / 1000.0; // 1 - B23 - B22; 

 

            double sw = Swc; 

            double krw = Krwro * Math.Pow(((sw - Swc) / (1 - Swc - Sor)), Nw); 

            double Kro = (1 - Sor >= sw + 0.01) ? Krocw * Math.Pow(((1 - sw - Sor) / (1 - Swc - Sor)), No) : 

0; 

            double fw = 0; 

            double swe = sw; 

            double initialSwe = swe; 

 

            double fwe = fw; 

            double delSwe = 0; // null? 

            double delFwe = 0; 

            double ddel = 0; 

            double slope = 0; 
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            double maxSlope = double.MinValue; 

            double maxSlopeIndex = 0; 

 

            //double xWidTime = 7.57; 

            double onePv = (delta * ho * hhor * wellspacing) / 1000000.0; 

            double xWidTime = onePv / (qgross * 365) * 1000000; 

 

            // double swLookup = 0.2; 

            bool changed = false; 

            int swLookupIndex = 0; 

 

             

 

            List<double> slopes = new List<double>(); 

            int count = 0; 

 

            while (krw <= 1) 

            { 

            

                sw = sw + step; 

 

                krw = Krwro * Math.Pow(((sw - Swc) / (1 - Swc - Sor)), Nw); 

 

                Kro = (1 - Sor >= sw + 0.01) ? Krocw * Math.Pow(((1 - sw - Sor) / (1 - Swc - Sor)), No) : 0; 

 

                fw = (1 - (kmain * POW_1015 * Kro * ho * hhor * deltap * 9.8 * Math.Sin(qangle * RAD_C) / 

(uo * qgross * TIME_C))) / (1 + (Kro / krw) * (uw / uo)); 

 

                delSwe = sw - swe; 

                delFwe = fw - fwe; 

 

                swe = sw; 

                fwe = fw; 

 

                ddel = delFwe / delSwe; 

 

                slope = fwe / (swe - initialSwe); 

 

                slopes.Add(slope); 

 

                if (slope > maxSlope) 

                { 

                    maxSlope = slope; 

                    maxSlopeIndex = slopes.Count; 

                } 

 

                count++; 
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                if (count > 100000) 

                    throw new Exception("The loop might have fall into infinite loop"); 

            } 

 

 

 

 

            List<double> OilRateData = new List<double>(); 

            List<double> WaterRateData = new List<double>(); 

            List<double> Waterinjcheck = new List<double>(); 

            List<double> grossratecheck = new List<double>(); 

 

            double swex = maxSlopeIndex * step + Swc; 

            ParamList.GetParam("BS & Waban (fraction)").value = swex; 

            double initialSwex = swex; 

 

            double krwx = Krwro * Math.Pow(((swex - Swc) / (1 - Swc - Sor)), Nw); 

 

            double krox = (1 - Sor) >= swex + 0.01 ? Krocw * Math.Pow(((1 - swex - Sor) / (1 - Swc - Sor)), 

No) : 0; 

 

            double mswc = swex - Swc; 

 

            double fwex = (1 - (kmain * POW_1015 * krox * ho * hhor * deltap * 9.8 * Math.Sin(qangle * 

RAD_C) / (uo * qgross * TIME_C))) / (1 + krox / krwx * uw / uo); 

 

            double ifwex = 1 - fwex; 

 

            List<double> swexs = new List<double>(); 

            swexs.Add(swex); 

 

            List<double> mswcs = new List<double>(); 

            mswcs.Add(mswc); 

 

            List<double> fwexs = new List<double>(); 

            fwexs.Add(fwex); 

 

            double waterRate = fwex * qgross; 

            double oilRate = qgross - waterRate; 

 

            OilRateData.Add(oilRate); 

            WaterRateData.Add(waterRate); 

 

            for (int i = 0; i < slopes.Count; i++) 

            { 

 

                if (swex >= swLookup && !changed) 

                { 

                    swLookupIndex = i; 
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                    changed = true; 

                } 

                 

                 

                swex = (1 - Sor > swex + step) ? swex + step : swex; 

                swexs.Add(swex); 

 

                krwx = Krwro * Math.Pow(((swex - Swc) / (1 - Swc - Sor)), Nw); 

 

                krox = (1 - Sor) >= swex + 0.01 ? Krocw * Math.Pow(((1 - swex - Sor) / (1 - Swc - Sor)), No) : 

0; 

 

                mswc = swex - Swc; 

                mswcs.Add(mswc); 

 

 

                fwex = (1 - (kmain * POW_1015 * krox * ho * hhor * deltap * 9.8 * Math.Sin(qangle * 

RAD_C) / (uo * qgross * TIME_C))) / (1 + krox / krwx * uw / uo); 

                fwexs.Add(fwex); 

 

                ifwex = 1 - fwex; 

 

                waterRate = fwex * qgross; 

                oilRate = qgross - waterRate; 

 

                OilRateData.Add(oilRate); 

                WaterRateData.Add(waterRate); 

            } 

 

            double swexpre = swexs[0] - step; 

 

            double krwxpre = Krwro * Math.Pow(((swexpre - Swc) / (1 - Swc - Sor)), Nw); 

 

            double kroxpre = (1 - Sor) >= swexpre + 0.01 ? Krocw * Math.Pow(((1 - swexpre - Sor) / (1 - Swc 

- Sor)), No) : 0; 

 

            double fwexpre = (1 - (kmain * POW_1015 * kroxpre * ho * hhor * deltap * 9.8 * 

Math.Sin(qangle * RAD_C) / (uo * qgross * TIME_C))) / (1 + kroxpre / krwxpre * uw / uo); 

 

            // slope modified 

            double wid = ((fwexs[1] - fwexpre) >= 0) ? (swexs[1] - swexpre) / (fwexs[1] - fwexpre) : 0; 

            //changed slope equation 

 

            double npd = wid; 

 

            double rf = npd / (1 - Swc); 

 

            double time = xWidTime * wid; 
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            double cumOil = npd * onePv * 1000000; 

 

            double cumWater = wid * onePv * 1000000; 

            double cumWaterP = cumWater - cumOil; 

 

            List<double> CumOilData = new List<double>(); 

            List<double> WaterCutData = fwexs; 

            List<double> CumWaterPData = new List<double>(); 

            List<double> CumWaterData = new List<double>(); 

            List<double> TimeYearsList = new List<double>(); 

 

            CumOilData.Add(cumOil); 

            CumWaterData.Add(cumWater); 

            CumWaterPData.Add(cumWaterP); 

            TimeYearsList.Add(time); 

             

            for (int i = 1; i < slopes.Count; i++) 

            { 

                double f1 = fwexs[i-1]; 

                double s1 = swexs[i-1]; 

                double f2, s2; 

                if (i+1 == slopes.Count-1) 

                { 

                    f2 = 0; 

                    s2 = 0; 

                } 

                else 

                { 

                    f2 = fwexs[i + 1]; 

                    s2 = swexs[i + 1]; 

                } 

 

                wid = (f2 - f1 > 0) ? (s2 - s1) / (f2 - f1) : wid; 

 

                npd = mswcs[i] + (1 - fwexs[i]) * wid; 

 

                rf = npd / (1 - Swc); 

 

                time = xWidTime * wid; 

 

                cumOil = npd * onePv * 1000000; 

                CumOilData.Add(cumOil); 

 

                cumWater = wid * onePv * 1000000; 

                cumWaterP = cumWater - cumOil; 

                CumWaterData.Add(cumWater); 

                CumWaterPData.Add(cumWaterP); 

                TimeYearsList.Add(time); 

            } 
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            double cumOilSwc = CumOilData[swLookupIndex]; 

            double cumWaterPSwc = CumWaterPData[swLookupIndex]; 

            double cumWaterSwc = CumWaterData[swLookupIndex]; 

            for (int i = 0; i < CumOilData.Count; i++) 

            { 

                 CumOilData[i] = (CumOilData[i] - cumOilSwc >= 0) ? CumOilData[i] - cumOilSwc : 0; 

                 

                CumWaterPData[i] = (CumWaterPData[i] - cumWaterPSwc >= 0) ? CumWaterPData[i] - 

cumWaterPSwc : 0; 

                CumWaterData[i] = (CumWaterData[i] - cumWaterSwc >= 0) ? CumWaterData[i] - 

cumWaterSwc : 0; 

            } 

             

            int counter=0; 

 

             

 

 

            List<double> OilRateDatax = new List<double>(); 

            List<double> WaterRateDatax = new List<double>(); 

            List<double> swcheck = new List<double>(); 

            List<double> TimeDiffList = new List<double>(); 

            List<double> TimeDiffListx = new List<double>(); 

            List<double> TimeDiffListy = new List<double>(); 

            int counter2 = 0; 

            int counter3 = 0; 

 

           for (int i = 0; i < _modelCumOilcheck.Count; i++) 

            { 

                Waterinjcheck.Add(_modelCumOilcheck[i] + _modelCumWatercheck[i]); 

                grossratecheck.Add(_modelWaterRatecheck[i]+_modelOilRatecheck[i]); 

 

                for (int j = 0; j < CumOilData.Count; j++) 

                { 

                    if (CumWaterData[i] == 0) 

                    { 

                        counter = counter + 1; 

                    } 

 

                    if (counter + 1 >= CumWaterData.Count) 

                        break; 

 

 

                    // NEED TO CHECK THE TIME FOR BL 

                        if (Waterinjcheck[i] < CumWaterData[counter]) 

                    { 

                        WaterRateDatax.Add(fwexs[counter-1] * grossratecheck[i]); 

                        OilRateDatax.Add(grossratecheck[i]-  WaterRateDatax[i]); 
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                        swcheck.Add(swexs[counter - 1]); 

                        TimeDiffList.Add((TimeYearsList[counter-1])); 

                                 

                                 

                         break; 

                    } 

                    

 

                    if (counter+1 >= CumWaterData.Count) 

                            break; 

                             

                     // NEED TO CHECK THE TIME FOR BL    

                    if (Waterinjcheck[i] >= CumWaterData[counter] && Waterinjcheck[i] <= 

CumWaterData[counter + 1]) 

                    { 

                        

                        counter2=0; 

                        WaterRateDatax.Add(fwexs[counter] * grossratecheck[i]); 

                        OilRateDatax.Add(grossratecheck[i] - WaterRateDatax[i]); 

                        swcheck.Add(swexs[counter]); 

                        TimeDiffList.Add((TimeYearsList[counter  

                        counter = counter + 1; 

                         

                        break; 

                    } 

         

                    else 

                    { 

                        counter = counter + 1; 

                    } 

 

                     

                } 

 

 

                if (counter + 1 >= CumWaterData.Count) 

                    break; 

                 

 

                if (OilRateDatax.Count == _modelTimecheck.Count) 

                    break;                 

                

            } 

 

           double timex = 0; 

 

            //check for the timesteps!!! 

 

           for (int k = counter2; k < OilRateDatax.Count; k++) 
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           { 

               

 

 

               

               if (k + 1 >= OilRateDatax.Count) 

               { 

                   counter3 = counter3 + 1; 

                   break; 

               } 

 

 

               if (TimeDiffList[k] != TimeDiffList[k+1]) 

               { 

                   timex = TimeDiffList[k]; 

               } 

 

               

           } 

           double check = TimeYearsList[0]; 

 

           for (int i = 0; i < CumOilData.Count; i++) 

           { 

               TimeYearsList[i] = TimeYearsList[i] - check; 

           } 

 

           for (int i = 0; i < _modelCumOil.Count; i++) 

           { 

               for (int j = 0; j < CumOilData.Count; j++) 

               { 

                    

 

                   if (Waterinjcheck[i] < CumWaterData[counter2]) 

                   { 

                       TimeDiffListx.Add((TimeYearsList[counter2] - TimeYearsList[counter2 - 1]) / 

(CumWaterData[counter2] - CumWaterData[counter2 - 1]) * (Waterinjcheck[i] - 

CumWaterData[counter2 - 1]) + TimeYearsList[counter2 - 1]); 

                       break; 

                   } 

                   else 

                       counter2 = counter2 + 1; 

 

                   if (counter2 >= CumWaterData.Count) 

                       break; 

                    

               } 

 

               if (counter2 >= CumWaterData.Count) 

                   break; 
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               if (TimeDiffListx.Count == _modelTimecheck.Count) 

                   break; 

           } 

 

 

 

 

 

 

            return new Tuple<List<double>, List<double>, List<double>, List<double>, List<double>, 

List<double>>(CumOilData, CumWaterPData, WaterCutData, _modelTimecheck, OilRateDatax, 

WaterRateDatax); 

        } 
 
 

 


