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EXECUTIVE SUMMARY 
 

A simulation well model can be thought of in terms of three main elements – the geological properties (within the wells 

drainage area), the grid (discretizing the drainage area) and the well connection factors (relating well-flowing to well-block 

pressures). These factors combine to determine the productivity of the well and the flow and pressure fields that develop 

around it. A numerical model is intended to be a representation of reality, which provides a predictive capability that will 

support reservoir management and the decision-maker. Considering the well model, the quality of the numerical representation 

and thus its predictive power depends upon the suitability of these three factors.  

The purpose of this study is to investigate local grid refinement, for several near well models designed to test the grid 

dependence of inflow performance in reservoir simulation. The principal flow regimes are modelled numerically – radial, 

spherical, cylindrical, linear and elliptical – using different well types in a homogeneous, isotropic medium saturated with 

single-phase oil. This ensures that all results are a product of the grid alone.  

Well production simulates a pressure transient test and the simulator output is subjected to pressure transient analysis to 

compare and contrast model parameters under varying gridding schemes. Results are assessed qualitatively, by way of direct 

comparison to pressure and derivative curves, whereby the development of the flow regimes can be observed and the 

implication of the grid characteristics on the numerical model identified. Interpretation of simulation model parameters using 

the pressure data permits a quantitative assessment of accuracy by grid type and the simulator performance vectors allow 

assessment of computational efficiency. Initial simulations make use of Cartesian grid refinement, but the study is extended to 

different grid types (i.e. geometric series, radial and unstructured), varying well-versus-grid orientation, sensitivity to aspect 

ratio and higher-order flux approximation schemes. 

The results provide insight to the effect of gridding on the well model parameters – permeability-thickness product, well-

bore storage, skin, permeability anisotropy and horizontal well length. Generally speaking, total well productivity is modelled 

accurately and is relatively insensitive to the grid; however this is not always true where the well model relies on flow 

converging in three dimensions. In such cases refinement is essential to reproduce the correct behaviour. Well-bore storage 

exhibits a strong dependence on well-block volume and is therefore sensitive to the grid refinement. Less accuracy is observed 

for parameters affecting the flow fields about the well – permeability anisotropy and horizontal well length – and a greater 

dependence on grid type, intensity and extent of the refinement.  It is apparent that the expected values are not always 

honoured by the numerical model, which adversely affects the flow geometry. 

This study concludes that; 

 

1. In cases of three-dimensional flow regimes (e.g. limited entry, horizontal wells), local grid refinement is the only way to 

accurately model well productivity and the geometry of flow in the vicinity of the well. 

2. Analysis of the results from this study has shown that significant improvement can be obtained on the accuracy of well-

model parameters in numerical simulation through local refinement. Between coarse and refined grids improvements of 1-

2% (half the error) can be expected on permeability-thickness product, improvement on the total skin from 0.1 to 2.8 (15-

1000% better accuracy), improvements of between 10 and 40% for accuracy of permeability anisotropy and between 8 and 

19% for the accuracy of horizontal well half-length. With well-bore storage directly linked to well-block volume, the error 

can be reduced by several hundred-thousand percent by the introduction of local refinement, which carries real 

significance to an accurate representation of the near-well flow geometry. 

3. Unstructured gridding is by far the most accurate and adaptable in cases of complex well-geometries and adverse well-

versus-grid orientations. For arbitrary well and grid geometry it achieves provides a close match to the flow regime 

behaviours and an overall improvement on Cartesian refinement.    

4. Cartesian cell aspect ratio is significant when simulating three-dimensional flow, especially where cell length normal to 

the well track greatly exceeds that parallel to it. For best results, aspect ratio within the refinement should be kept cubic (or 

near thereto).  

5. 9-point flux schemes do not exhibit any benefit to near-well modelling, but have been observed to double the 

computational cost. Although an oversight prior performing the simulations in this study, it is thought that 9-point schemes 

do not readily extend to local grid refinement, which is a theoretical problem that prevents the higher-order scheme being 

resolved at the interface of coarse grid and local grid. 

 

 Finally, with a better understanding of how the grid impacts well inflow for simple well geometries it is possible to apply 

lessons learned to more realistic (and perhaps more complex) wells and  systems, with a view to improving the well model and 

therefore providing better predictive capability. Respect for the near well flow geometry results in more accurate representation 

of inflow to the various segments of the well-bore, therefore improving the predictive capability of the well model. 
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Abstract 

Local grid refinements are investigated for several near well models designed to test the grid dependence of inflow 

performance in reservoir simulation. The principal flow regimes are modelled numerically – radial, spherical, cylindrical, 

linear and elliptical – using different well types produced under transient conditions and the performance is evaluated in terms 

of accuracy and computational efficiency. Direct comparison is made to the appropriate analytical models and the simulator 

output is subjected to pressure transient analysis to compare and contrast model parameters under varying gridding schemes. 

Initial simulations make use of Cartesian grid refinement, but the study is extended to different grid types (i.e. geometric series, 

radial and unstructured refinement), varying well-versus-grid orientation, sensitivity to aspect ratio and higher-order flux 

approximation schemes. 

The results provide insight to the effect of gridding on the well model parameters – permeability-thickness product, well-

bore storage, skin, permeability anisotropy and horizontal well length – whereby it is apparent that the expected values are not 

always honoured by the numerical model and adversely affect the flow geometry. Finally, the implications of the observed 

effects are discussed and the lessons learned are used to offer recommendations on gridding for more accurate well 

performance.   

This study concludes that in cases of three-dimensional flow regimes (e.g. limited entry, horizontal wells), local grid 

refinement is the only way to accurately model well productivity and the geometry of flow in the vicinity of the well. Analysis 

of the results from this study has shown that significant improvement can be obtained on the accuracy of well-model 

parameters in numerical simulation through local refinement. Between coarse and refined grids improvements of 1-2% (half 

the error) can be expected on permeability-thickness product, improvement on the total skin from 0.1 to 2.8 (15-1000% better 

accuracy), improvements of between 10 and 40% for accuracy of permeability anisotropy and between 8 and 19% for the 

accuracy of horizontal well half-length. With well-bore storage directly linked to well-block volume, the error can be reduced 

by several hundred-thousand percent by the introduction of local refinement, which carries real significance to an accurate 

representation of the near-well flow geometry. 

Unstructured gridding is by far the most accurate and adaptable in cases of complex well-geometries and adverse well-

versus-grid orientations. For arbitrary well and grid geometry it achieves provides a close match to the flow regime behaviours 

and an overall improvement on Cartesian refinement.    

Introduction 

Reservoir simulation is the art (and science) of dynamically modelling porous media (typically of a heterogeneous and 

anisotropic nature), saturated to varying extents with hydrocarbon fluids. The principle aim of reservoir simulation is to predict 

future performance of the system and to maximize the recovery of hydrocarbons; to assist the cost effective extraction of an 

optimum volume of hydrocarbon within an optimum timeframe, where optimum is stated in an economic context. Due to the 

complexity of this problem it is not possible to determine accurate solutions analytically, but much more reliable to use 

numerical methods. With modern computers and the existence of advanced commercial software, numerical simulation is now 

well established as a tool for reservoir management. In fact it is a necessary tool that provides the only real means to evaluate 

and optimize full field development and production strategies. The output of reservoir simulation impacts management of the 

asset during the entire field lifecycle, from exploration and appraisal, through operation to abandonment, and it is a key input to 

the economic forecast.  

At the most fundamental level, the calculations performed in reservoir simulation can be thought of in two-parts; firstly, 

calculation of fluid saturation and pressure distribution in the field, and secondly, well inflow. The former concerns itself with 

numerical solution of the non-linear partial differential equations - via a system of simultaneous algebraic difference equations 

- that govern flow in porous media and express the mass balance of the system’s fluids. The solution domain, representative of 
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a physical volume, is discretized by allocating to it discrete points that can be connected in various ways to form a network of 

cells. This gives rise to the various modes of numerical modelling; point discretization, termed finite difference, and cell 

discretization, known as finite element (solution variables in each cell are represented by selected functions integrated 

analytically over the cell volume) or finite volume (fluxes through each cell are balanced at its boundaries) (Thompson et al, 

1999). Extensive research on this subject has resulted in much literature and significant improvements in this area and is 

therefore not the concern of this paper.  

This research concerns itself, rather, with the topic of near-well modelling and well inflow in reservoir simulation, which is 

by comparison far more neglected in the literature. This prospect might be considered with some concern given the importance 

of well modelling to history matching and prediction, both of which are key elements in any reservoir simulation workflow. In 

reality, many factors contribute to the performance of a well – the geology, fluid properties and PVT behaviour, reservoir 

boundary conditions, the well completion and tubing efficiency, the operating parameters of the subsurface development and 

even the network of surface process and transmission facilities. These are the high level factors and there are many more at an 

ever finer scale, though fortunately most of these are beyond the scope of this work. The focus here is on modelling the 

continuous subsurface system, which we may delineate from the rest of the system at the well-bore, in particular the zone 

between the well’s sand face (inner boundary) and its drainage radius (outer-boundary) – known as it’s drainage area.  In the 

context of this study, the simulation well model can be thought of in terms of three main elements – the geological properties 

(within the wells drainage area), the grid (discretizing the drainage area) and the well connection factors (relating well-flowing 

to well-block pressures).  

The objective is to investigate the impact of the grid, local to the well, on the simulator’s ability to accurately capture near-

well flow and pressure fields. The principal flow-regimes are studied – radial, spherical, cylindrical, linear and elliptical – by 

way of simple, standard well models – vertical (fully and partially penetrating) and horizontal – in a homogeneous, isotropic 

system. Use is made of analytic pressure transient models to assess the near-well numerical model – for their ability to 

characterise the flow regimes, and, where the system model is known with certainty, to accurately quantify the model 

parameters. This analysis is primarily performed with Cartesian grids and local grid refinement (LGR), but is extended to 

several sensitivities; grid type, well-versus-grid orientation, cell aspect ratio and higher-flux calculation schemes. In addition to 

Cartesian refinement, the study makes use of geometric series, radial and unstructured LGR, whereby unstructured gridding 

takes the form of localised 2.5-D perpendicular bisector (PEBI) grids constructed using 2-D PEBI grids in the horizontal plane 

projected vertically along coordinate lines. The type, level and extent of the grid refinement, along with the flux calculation 

scheme, have implications to both the accuracy and computational cost of the well model and these are quantified.  

With a better understanding of how the grid impacts well inflow for simple models it is possible to apply lessons learned to 

more realistic (and perhaps more complex) wells and  systems, with a view to improving the well model and therefore 

providing better predictive capability. Respect for the near well flow geometry results in more accurate representation of inflow 

to the various segments of the well-bore, therefore improving the predictive capability of the well model. 

Literature Review 

Several elements of the petroleum engineering literature are relevant to this study. The first is gridding for reservoir simulation, 

in particular local grid refinement, which allows for more accurate spatial definition of the well flowing pressure profile as it 

extends away from the well-bore. Likewise the flow field in the vicinity of the well as it develops according to the dominant 

flow regime. Secondly, well connection as a way of relating bottomhole pressure in the well to the pressure of the grid-block(s) 

into which it is connected. In terms of modelling wells in reservoir simulation, some of the most significant works have come 

from the area of well connection factor. These elements are looked at in some detail and the relevant literature summarised 

here and in Appendix A. 

Gridding. Numerical simulation necessitates discretization of the solution domain, resulting in a grid (or mesh) to encompass 

it. These grids are typically classified into two main categories – structured or unstructured – where the main difference is the 

structuring (or ordering) of the data. Structured grids have a data structure that is naturally ordered by their geometry and can 

be logically thought of in terms of orthogonal i, j, k identifiers. Unstructured grid points cannot be represented in such a manner 

and additional information is needed - namely a connectivity matrix (Thompson et al, 1999). Reservoir simulation has 

historically favoured structured grids; Cartesian and curvilinear block-centred or corner point grids, which are less 

computationally expensive. The additional cost of unstructured grids may be justified, however, when the solution domain is of 

considerable geometrical complexity, or involves complex flow-field features, and thus their comparative flexibility can help 

improve the solution accuracy. 

Gridding is an important consideration in any numerical study, but particularly so around wells, geological features or 

where it is necessary to capture steep fluid saturation gradients. Typically the grid is refined near a feature of interest to better 

represent the movement of fluid and the propagation of pressure in that localized zone. Historically, grid refinements were 

extended across the entire grid, but in their modern form, are truly local.  

Local grid refinement was introduced to finite difference type reservoir simulation by von Rosenberg (1982) and 

Heinemann et al. (1983). In the first instance, local grid refinement was Cartesian. Later, Pedrosa and Aziz (1985) proposed a 

hybrid grid method making use of a radial grid in the well regions and a rectangular grid elsewhere. This method was seen to 

improve the near-well model but was limited by the fact that the well had to be at the centre of the Cartesian grid cells and 
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required an approximate method for handling the transition from radial to Cartesian grid blocks. Fung et al. (1993) extended 

the idea of cylindrical refinement to the control-volume-finite-element (CVFE) method originally introduced to reservoir 

simulation by Forsythe (1989). This offered the benefit of radial grids, a greater geometric flexibility and the elimination of 

discretization errors at the local-to-coarse grid interface. Unstructured gridding was introduced to reservoir simulation by 

Heinemann et al. (1989), who made use of 2-D and 2.5-D PEBI grids to demonstrate their improved accuracy and flexibility 

over Cartesian grids and 9-point flux schemes for reservoir flooding patterns under adverse grid-orientation and mobility ratios. 

Heinemann also demonstrated the accuracy of the radial flow representation using PEBI grids. This work was later followed by 

that of Consonni et al. (1993) and Palagi and Aziz (1994), who applied unstructured gridding as local refinements for coning 

and water flood studies, respectively.  

To give a detailed description of the geometry, generation, benefits and limitations of each grid type is not the purpose of 

this review, but is better left to the vast array of literature on the topic of gridding in reservoir simulation. A small, but pertinent 

cross-section of that literature is referenced here. Likewise, local grid refinement as a method for improved well-modelling has 

found varied uses and specialised applications, reflected again by abundant reference to it in the petroleum literature, but it is 

not practical to honour even a fraction of that literature here. It is sufficient to say, however, that local grid refinement has 

proven essential to accurate near-well modelling where flow converges, pressure gradients steepen and saturation profiles 

change rapidly. 

Well to Grid Connection. For radial grid about cylindrical well-bore the well model is trivial, since it quite simply obeys the 

radial form of Darcy’s law with cell pressure, po, taken at a distance from the well-bore, r, equal to the distance of the adjacent 

cell node from the inner cell boundary (i.e. the well-bore) according to the following relationship;  


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The problem of connecting a well into grid-blocks of non-circular dimension was solved during the late 1970s and early 

1980s.  The challenge in connecting a well into a square or rectangular grid was that of relating well pressure to grid-block 

pressure. Typically the grid-block is much larger in size and volume than the well itself, by one or several orders of magnitude, 

and by the very nature of numerical simulation, block pressure and fluid saturations are instantaneously averaged across the 

block volume at each time-step.  This strongly impacts the well model.  

The first noteworthy treatment of this in the literature is the work of van Poollen et al. (1968), whom made use the radial 

form of Darcy’s Law for steady-state flow, as given be Equation (1). They postulated that the calculated pressure of a well is 

the pressure of the node (grid block) in which it is located; therefore the pressure should be compared with the average pressure 

in that portion of the reservoir represented by the node. On this basis, they approximated well-flowing pressure as the average 

pressure in a circle of an equivalent area to that of the well-block, by integration of Equation (1) over the area of a circle, and 

thus the well-model took the form; 
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The work of van Poollen et al. was later superseded by that of Peaceman (1977) and Peaceman (1983), the results of which 

are still current in reservoir simulation today. In the first of these papers, Peaceman further explored the idea of van Poollen et 

al. for square grid-blocks and noted that while it was appropriate for the majority of a numerical model to regard the material 

balance accumulation term, Δpi,j/Δt, as the change in average pressure of the block (i, j) and therefore associate pi,j with the 

average pressure of the block, this was not the proper interpretation of pressure in blocks containing wells. Peaceman 

subsequently introduced the concept of pressure equivalent radius (also known as the Peaceman radius), ro, as a way of relating 

well and block pressure. He defined this as the radius at which the steady-state flowing pressure for the actual well is equal to 

the numerically calculated pressure for the well-block after which he expressed Equation (1) as follows; 
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Through mathematical derivation, confirmed by numerical experiments, Peaceman showed in the second of these papers 

that for an anisotropic medium discretized by rectangular grid-blocks of arbitrary dimension, the general form of the pressure 

equivalent radius is; 
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In a later paper Peaceman (1993) discussed some of the assumptions underlying his previous work – namely uniform grid 

spacing, uniform permeability, well isolation and the planar flow idealisation (neglecting three-dimensional effects) – and 

some of the implications of these when pressure equivalent radius is applied to wells close to boundaries or in stratified 

reservoirs. His discussion focussed on horizontal wells, which will commonly suffer the adverse affects of these assumptions. 

It was demonstrated, for some cases where the given assumptions don’t hold, that alternative methods of calculating the 

pressure equivalent radius are required. 

Nonetheless, it is apparent that for the most part, well connections factors are still calculated in modern software using the 

Peaceman radius applied in three-dimensions. The three-part Peaceman equation (Schlumberger Information Solutions, 2010, 

a) evaluates equivalent radius in each dimension – rox , roy and roz – and  similarly for permeability-thickness product – khx, khy 

and khz – and transmissibility constant – Tx, Ty and Tz – for  each segment of the well-bore as it passes through successive grid-

blocks. Subsequently, the well model retains the same basic form given in Equation (3), but with the addition of damage skin, 

S, and rearranged in terms of ro according to the following definition; 
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T
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Here T and kh are given by the vector combination of their component parts in each dimension and in Equation (6), below, 

the component Peaceman radii are calculated as per Equation (4), which is an expression of rox, but with grid block dimensions 

and permeability ratios exchanged appropriately for the plane of interest; 
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For the unstructured grids used in this study, a similar yet not identical method is used to determine the well connection 

factor. The well model remains unchanged, as given by Equation (5), but the method, as outlined by Gunasekera et al. (1997), 

can be used for calculating the well connection for 2.5D grids with cells aligned along the track of horizontal wells (as is 

applicable in our case). The approach resolves the well track into two components; one which is horizontal along the well 

track, and the other vertical. Peaceman’s well connection for both these components is then added vectorially to obtain the 

overall connection factor, T. Thus, if we let the direction along the well track on the x-y plane be l, normal to the well track in 

the x-y plane be n and vertically be v, the well connection factor is then expressed according to the following set of equations; 
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It is important to note that the permeability tensor used in all well models must be adjusted for the net-to-gross ratio. 

Methodology 

Model Construction. The models used for investigation of the flow regimes, involve several elements – grid, well, rock and 

fluid properties – each of which is described here in basic detail. Since the primary concern of this study is the grid itself, the 

characteristics of the model are designed to minimise the effects of everything else and to ensure that observed effects are 

indeed attributable to the grid only.  

Coarse grid.  The representation of the reservoir system was designed to be sufficiently large so as to behave as an infinite 

system. This means that the pressure transient does not encounter any outer boundaries and that system pressure depletion due 

to production is negligible. It would have been possible to maintain system pressure, by way of injection, however this was not 

considered necessary since the methodology used is not sensitive to well inflow being transient, pseudo-steady-state or steady-

state and the introduction of an injection pattern would have made the simulations more computationally expensive.  

Two grids were used for numerical simulation of the flow regimes (Model-1 and Model-2), differing only in their layering 

to ensure that well placement was through the centre of the grid block regardless of well direction – vertical or horizontal. The 

introduction of Model-2 was for the horizontal wells, as an odd number of layers (each with equal dimension) was required to 

ensure that the well travelled along the mid-point of the reservoir and intersected the mid-point of the associated cells. 

Both models were built using a simple corner-point Cartesian grid with vertical pillars. All cell angles are orthogonal and 

the grid is aligned along the principal x, y and z axes. In any given direction, cell dimensions are constant. The grid is designed 

in such a way that one vertical column of cells is perfectly cubic in its dimension – 200 feet each way. A summary of the grid 

characteristics is given in Appendix B (Table B-1) while an illustration of the grid is provided by Figure 1.  

Grid coordinate system. The grid uses a null coordinate system, meaning that all points in the grid are referenced to the 

upper south-west corner (0,0,0). The coordinate system therefore increases to the east in the i-direction, to the north in the j-

direction and decreases downward (i.e. becomes increasingly negative) in the k-direction.  

Wells. The use of several different well models was required; in the first instance, vertical fully penetrating, vertical 

partially penetrating and horizontal. These well models can be considered ideal. Their trajectories travel exactly along the 

appropriate principal axes (z-axis for vertical wells and x-axis for horizontal wells) and they intersect the centre of the grid 

blocks through which they pass. Areal placement of the wells is at the centre of the field, and similarly for horizontal wells, 

along the vertical mid-point of the reservoir. This was supposed to be the best case for modelling well inflow. Figure 1 

illustrates for the vertical well cases. A similar illustration of the horizontal well is included in Appendix B (Figure B-1). The 

details of the well completion properties are also provided in Appendix B (Table B-2). 

 

 
Figure 1: The location of well and completion within the grid for both fully penetrating (top right) and partially penetrating (bottom 
right) vertical wells. Some example LGR are shown by explosion of the near-well grid (inset at left). 

  

More realistic well trajectories were investigated through sensitivity runs on relative orientation of well-versus-grid. 

Although remaining simplistic, the deviated trajectories were intended to build understanding in a systematic way as to how 

simulated well inflow is affected by changes to the well-grid symmetry. Appropriate illustrations and the details of the well 

completion properties are provided in Appendix B (Figure B-2 and Table B-3). The grid position remained fixed throughout 

the sensitivity study, aligned as usual along the principal axes, and the configuration of wells for the test cases was chosen 

based on an apparent dip in the x-z plane and rotation of the grid in the x-y plane. Apparent dip has been used to express the 

Plan view South elevation
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relative orientation of well-verses-grid in the x-z plane, and similarly, apparent rotation for the orientation of well-versus-grid 

in the x-y plane.  Due to symmetry, only grid rotations of between 0º and 45º were included and it was only thought necessary 

to test an apparent dip of 0º, 90º and one value in between, chosen as 30º, to obtain an understanding of the effect. 

Fine grids. Investigation of the gridding effect on well inflow involved the incorporation of numerous local grid 

refinements (LGR) about the wells. This was done systematically, by first observing the coarse grid simulation results, before 

those of local grids with varying level and lateral extent of refinement. The fine grid cell dimensions were kept cubic (or near 

there to), for initial simulations. Comparison of local grid type (i.e. Cartesian, radial, unstructured and geometric series) and 

varied Cartesian cell aspect ratio was investigated through sensitivity study on those parameters. Figure 1 offers some 

illustration of the gridding of LGR to wells, while the full catalogue of LGR is available in Appendix D. Grid type sensitivity 

was evaluated according to the matrix of test cases given in Appendix B (Table B-8), likewise for aspect ratio sensitivity 

(Table B-6). 

Rock properties. The system was modelled as homogenous and isotropic – to reduce complexity and ensure that results 

obtained would not be affected by variation in system properties. It would pose a problem to correctly reconcile average 

porosity and permeability within the drainage area and this would inhibit comparisons to analytical models, which reflect an 

average porosity and permeability within the radius of investigation. Net-to-gross throughout the reservoir is taken as unity. 

The reservoir system rock properties are tabulated in Appendix B (Table B-4).  

The oil-water relative permeabilities were built using Corey functions, as were the gas-oil relative permeabilities, but since 

water was immobile and there was no free gas in the simulations, description of them is not relevant to this discussion. For the 

given fluid saturations (see Initialisation, below) kro was 0.7 while krg and krw were 0.0.  

Fluid properties. The system was modelled using black oil at pressures sufficiently higher than the saturation pressure 

(bubble point) of the fluid, to ensure single phase flow at all points in the reservoir, including the near-well bore zone and 

inside the well-bore itself. The choice of single phase fluid was necessary to more easily discern the impact of the grid without 

the added complexity of multi-phase flow effects. A summary of the fluid properties, as used for comparisons to analytical 

pressure transient models, is tabulated in Appendix B (Table B-5) 

Initialisation. The model was initialised by equilibration, such that the entire reservoir interval was oil bearing without the 

presence of oil-water or gas-oil contacts. The system fluid saturations – So = 0.8 and Sw = 0.2 – are constant throughout, with 

water rendered immobile by a critical water saturation (Swc) of 0.24. The reservoir pressure datum is at 4100 feet and the 

system is normally pressured with an initial pressure at datum of 1618 psia.  

Flow Regime Modelling. There are several flow regimes which impact near-well flow. These include well-bore storage, 

radial, linear, spherical, cylindrical and elliptical flow. These regimes are present whenever flow converges on the well, though 

they may be distorted in real cases where the affect of reservoir geology and well geometry on flow fields and pressure 

propagation is complex. Analytical models describing these flow regimes are often idealised to consider the reservoir as a 

homogeneous and isotropic medium, with properties that are constant or uniform throughout. More complex models are able to 

account for heterogeneities and anisotropy, but still in a rather simplistic fashion by comparison to reality. These models 

describe the reservoir in terms of its average properties.  

Largely, we can attribute the limitations of such models to the complex mathematics describing flow in porous media. 

Analytical solutions of the partial differential equations that govern flow require some simplifying assumptions. Nonetheless, 

analytic solutions often work well and bring great value to the petroleum engineer for the information they distil from the 

reservoir. Even so, how to make best use of this information is an area of continued application and learning, and it is that 

which we hope to contribute through this research. 

In essence, we refer here to pressure transient modelling, when the well is subjected to a rate change and the pressure 

disturbance (or signal) created has not yet felt the effects of any closed boundaries or pressure support. It is during this period 

of time that the flow regimes can be analysed by way of derivative (or log-log) and specialised (or semi-log) analyses. Making 

use of such analyses for pressure data output by the simulator, it has been possible to investigate inflow performance, 

dependent upon gridding and well connection factor, for how well the expected flow regimes are reproduced.  

A brief outline of the analysis methodology and the flow regime descriptions is provided here. To support the explanation 

the relevant equations for the derivative and specialized analyses are provided in Appendix C. 

Pressure transient analysis. Short-term production histories were simulated in order that pressure transient analyses could 

be performed. The production history involved a twelve hour static period to check the simulation had initialised correctly, 

followed by a twenty-four hour flow period (drawdown) at a rate of 1500 stock tank barrels per day (STBD), and subsequent 

shut-in (build-up) with varying duration selected to ensure that all relevant flow regimes had sufficient time to fully develop 

and be recognised in the pressure derivative. All analyses were carried out using the build-up pressure data. 

Pressure derivative. Analysis of the pressure derivative has the distinct advantage of clear flow regime identification. Both 

pressure (Δp) and derivative (Δp′) are plotted against elapsed time since the beginning of the build-up (Δt) on a log-log scale. In 

order to emphasise the radial flow regime, where pressure change is a linear function of the logarithm of time, the derivative is 

taken with respect to the logarithm of time. Then, by using the natural logarithm, the derivative can be expressed as the normal 

time derivative, multiplied by the superposition time function (Bourdet, 2002). Note here that since this is an analysis of the 

build-up following first drawdown, although the derivative is plotted against elapsed time (Δt), it is generated with respect to 

the relevant superposition time (determined from the rate history).  
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The model parameters are then determined from a pressure and time matching process in dimensionless space using a set of 

independent variables appropriate to the model (Gringarten et al, 1979). In this case, the raw data was plotted, as above, and 

matched with a type-curve (i.e. solution curve) also plotted on log-log axes in terms of dimensionless pressure (pD) and 

dimensionless time group (tD/CD), defined in Appendix C. The dimensionless well condition group (CDe
2S

) completes the 

match. 

By overlaying curves and selecting a match point to obtain Δp corresponding to pD (the pressure match), Δt corresponding 

to tD/CD (the time match) and the curve corresponding to a CDe
2S

 label, the model parameters can be determined. This process 

is performed automatically in the software (see Software, below). 

Specialized plots. Each individual flow regime exhibits a characteristic pressure behaviour that is in some way a function of 

time. The time function varies with the mathematical description of the flow regime and it is on this basis that we may obtain a 

specialized plot specific to it. For a given flow regime and its corresponding plot, the specialized analysis results in a straight 

line from which we may obtain the relevant parameters. Specialized analysis is only accurate where the relevant flow regime 

(i.e. straight line) can be clearly identified on the appropriate plot and for this reason it is often unreliable. A consistent analysis 

will yield the same parameter values as those from the derivative analysis, within an acceptable level of tolerance. Again, the 

process is automated in the software.  

Well-bore storage. At the beginning of a flow period, following a rate change, the measured surface flow rate is an artefact 

of fluid compressibility (and/or changing liquid level). It is not representative of flow from the reservoir and is generally not of 

particular interest to the reservoir engineer during simulation. It appears, however, as a straight line of unit slope on a log-log 

plot, assessed from the time match, and a straight line with slope mWBS tangent to the Δp versus Δt curve at the origin in 

Cartesian space (Bourdet, 2002). 

Fully penetrating vertical well. Radial flow modelling was carried out with well VERT_FP, described in Appendix B. 

Radial flow can be discerned from a log-log plot as the derivative stabilization. The level of the stabilization is inversely 

proportional to the mobility term (khh/µ) which can therefore be quantified from the pressure match. The concept of derivative 

stabilization during radial flow is illustrated in Figure 2. 

Specialized analysis for radial flow is performed using the Horner Method (Horner, 1951), a semi-log technique that plots 

pressure against the log of Horner time enabling determination of permeability-thickness product from the slope, mH, of the 

straight-line section, and total skin from extrapolation of the same straight-line to Δp(Δt = 1hr). 

Partially penetrating vertical well. Simulation of well VERT_PP, described in Appendix B, allowed modelling of the 

spherical flow regime. Spherical flow occurs due to convergence of flow to a zone of limited entry where the connection of 

well-bore to formation occurs across only a fraction of the reservoir thickness. Strictly speaking, a well with limited entry has 

three characteristic flow regimes; (a) radial flow across the open interval with stabilization at khhw, although this flow regime is 

often masked by well-bore storage and skin, (b) spherical flow with Δp proportional to 1/√Δt and negative half-unit slope 

straight line on the log-log plot, and, (c) radial flow over the entire reservoir thickness, as described previously, with 

stabilization at khh and total skin St (Bourdet, 2002). For illustration, these flow regimes are indicated in Figure 3. 

Due to non-uniqueness of the solution with varying kv/kh, zw/h and hw/h there is no type curve set for spherical flow. Instead, 

matching of the derivative curve at the negative unit slope straight line yields the kv/kh ratio. Logically, decreasing kv/kh 

displaces the spherical flow regime toward late times. Well-bore storage is determined from the time match, permeability-

thickness product from the pressure match, and with kv/kh determined from the spherical flow regime, hw can then be discerned 

from the first radial flow stabilization, if present (and assuming interval thickness is known).    

Specialized analysis of spherical flow plots Δp against 1/√Δt and the spherical permeability (ks) can be determined from the 

slope, mSPH, of the straight line section (Bourdet, 2002).The Horner Method can be used to evaluate permeability-thickness 

product and the total skin, as before, using the pressure points corresponding to the late time radial flow regime.  

Horizontal well. Flow converges to a horizontal well according to three characteristic flow regimes; (a) cylindrical flow in 

the vertical plane about the longitudinal axis of the well with stabilization 2L√(kvkh)/µ, (b) a linear flow after the upper and 

lower limits of the interval are reached during which Δp is proportional to √Δt and the derivative exhibits a half-unit slope 

straight line on the log-log plot, and, (c) an elliptical flow in the horizontal plane that corresponds to infinite behaviour in the 

reservoir, thus stabilization, khh/µ, and total skin, St (Bourdet, 2002). Figure 4 illustrates.  

Due to the complex behaviour of horizontal wells, namely the interplay of kv/kh, L/h, and zw/h, the solution is non-unique 

and no type curves are available. Variation of kv/kh shifts the level of the cylindrical flow stabilization; the ratio L/h also affects 

the level of the cylindrical flow stabilisation as well as the timing of the transition to linear flow. Likewise, variation of zw/h 

affects the transition from cylindrical to linear flow. Again, well-bore storage is determined from the time match and 

permeability-thickness product from the pressure match during derivative analysis. The intermediate time linear flow is used to 

estimate L by fitting the solution curve to the derivative half-unit slope straight line. Finally, with khh and L known, the 

cylindrical flow stabilization yields the permeability anisotropy, kv/kh. 

Specialized analysis of the cylindrical and elliptical flow regimes plots Δp versus log Δt, yielding two characteristic straight 

lines.  The slope, mCF, of the cylindrical flow straight line provides the product of well half-length and the geometric average of 

permeability in the vertical plane (Bourdet, 2002). This will allow us to determine kv/kh. Similarly the slope, mEF, of the 

elliptical flow regime provides the product of horizontal permeability and interval thickness as well as the total skin (Bourdet, 

2002). Provided the half-unit slope straight line characterising linear flow is clearly established in the derivative, the 

corresponding pressure points can be analysed on a plot of Δp against √Δt where the slope, mLF, of the straight line provides the 



8 The Grid Dependence of Well Inflow Performance in Reservoir Simulation  

  
Imperial College London Shaun Bambridge 

product of horizontal permeability and the square of well half-length. Making use of the permeability determined previously 

we may then obtain the well half-length (Bourdet, 2002). 

Software. This study involved the use of several commercial software – for model construction, numerical simulation and for 

the pressure transient analyses. Model construction was performed in Petrel version 2010.1 (Schlumberger Information 

Solutions, 2010, b), which was the pre-processor for the majority of simulations. For the grid type sensitivity cases, however, 

radial and geometric series refinements had to be manually built in the ECLIPSE deck. Unstructured grid generation utilized a 

development version of the same software, Petrel version 2011.1 beta.  

Numerical simulations were performed in ECLIPSE 100 version 2010.2 (Schlumberger Information Solutions, 2010, c), 

with the exception of unstructured grid simulation, where it was necessary to use Intersect version 2011.1 beta (Schlumberger 

Information Solutions, 2010, d). All transient analyses of simulated pressure data were carried using Saphir, in Ecrin version 

4.12 (KAPPA Engineering, 2010). 

Results 

The presentation of results is aided by graphical illustration, however due to the large number of simulations and subsequent 

quantity of plots produced, it was necessary to leave most to Appendix. Moreover, while in some cases the figures here may 

lack resolution, the reader is referred to Appendix E, where the full set of results are reproduced in an improved format.   

The LGR referenced in the figures follow a set naming convention for the purpose of identification. Generally the first term 

indicates the type of refinement (e.g. LGR for Cartesian refinement). The second term defines the level of the refinement – 

areal (x,y) by vertical (z) subdivisions of the coarse grid block. The last term defines the areal extent of the refinement in the x-

y plane or its lateral extension in terms of coarse grid blocks. Vertically, all LGR extend fully through the interval modelled. In 

some cases (e.g. for other grid types and gradual refinements) the naming convention is modified slightly and other terms may 

appear. The full catalogue of LGR is provided in Appendix D. 

Flow Regimes. For varied Cartesian LGR the simulation pressure results are presented in terms of the real pressure history, in 

addition to the log-log plot of pressure and derivative. The analytic solution is plotted for the purpose of comparison and a brief 

qualitative discussion is provided with particular focus on the model parameters. Some numerical effects are also evident in the 

data during middle and late times, occurring as the pressure transient propagates away from the well and encounters the 

increased elemental volumes of larger grid-blocks. These effects appear as low amplitude oscillations, but can be ignored. 

Fully penetrating vertical well. The results of modelling radial flow for a fully penetrating vertical well are shown in 

Figure 2. As demonstrated, there are three parameters defining inflow behaviour of this type of well and flow regime in a 

homogeneous, isotropic medium – well-bore storage, skin and permeability-thickness product. 

 

 
Figure 2: Comparison of simulated and analytic pressure history (left) and diagnostic plot (right) for fully penetrating vertical well 
modelled by Cartesian grid refinements. Solid lines in the diagnostic plot represent pressure, while dashed lines represent the 
derivative. 

 

Notice firstly that the well-bore storage term appears to decrease and the radial flow regime is reached more quickly as the 

level of refinement increases. This is indicated by the shift of derivate to the left and the flattening against the radial flow 

stabilization. The well-storage term converges toward the analytical value, as the well-blocks become smaller. In analytical 

terms, the well-bore storage reflects the volume of the well-bore. In simulation, it appears to maintain some relation to the 

volume of the well-block(s) themselves. 

Second, we observe from all derivative stabilizations that the permeability-thickness product is accurately modelled by 

simulation. It does not appear sensitive to the level or extent of the grid refinement. In fact, even the coarse grid obtains a good 

match with the analytical solution. It is clear that all simulations converge to the correct mobility ratio, khh/µ, shown in Figure 

2 by the radial flow stabilization of the derivative. 

Thirdly, skin also appears to be well matched and does not appear to be significantly sensitive to the grid refinement. Given 
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that the permeability-thickness product is accurate, the history plot in Figure 2 indicates an additional pressure drop due to skin 

of less than 2-psia at the point of shut-in for all cases.  

Partially penetrating vertical well. By contrast, the results of modelling spherical flow with a limited entry vertical well are 

shown in Figure 3. Here, in addition to well-bore storage, permeability-thickness product and skin, the well inflow can only be 

fully described by consideration of the length and position of the perforated interval within the pay zone and the permeability 

anisotropy. With respect to permeability-thickness product we observe similar behaviour to the radial flow case.  

As expected, well-bore storage exhibits the same behaviour too and with an increased level of refinement and a reduced 

well-bore storage term, we observe more of the early time spherical flow regime. This demonstrates how well (or not) the 

spherical inflow is modelled, dependent upon the grid, since larger blocks show less resolution in flow geometry. 

What we notice here, however, is that even for very high levels of Cartesian refinement, which come at great computational 

cost to the simulator, it is not possible to model the early time radial flow. This flow regime represents the behaviour very near 

the perforations where flow in the adjacent region becomes orthogonal to the well-bore. There is a convergence toward the first 

stabilisation of the analytic solution, khhw/µ, but it is not reached even with a very fine grid having cubic grid cells.  

 

 
Figure 3: Comparison of simulated and analytic pressure history (left) and diagnostic plot (right) for partially penetrating vertical well 
modelled by Cartesian grid refinements. Solid lines in the diagnostic plot represent pressure, while dashed lines represent the 
derivative. 

 

It is logical then, that with the convergence of flow about the well being modified by the grid, the skin term should be 

affected. This is reflected in the results and is evident in both plots of Figure 3, though more so in the pressure history since 

log-scales compress the effect on the diagnostic plot. The skin, quantifiable from the extent of separation between pressure and 

derivative in the diagnostic plot, is shown to be dependent upon both level and extent of the refinement. For example, a 9 areal 

by 1 vertical refinement, spread over a 3 by 3 column of coarse grid-cells encompassing the well, gives a skin that is reduced 

greatly in comparison to that of the coarse grid. Meanwhile, the benefit in terms of skin from introducing a 19 areal by 1 

vertical refinement in the single column of cells containing the well is also evident. There does however appear to be some law 

of diminishing returns in terms of skin, as the additional benefit from the further refined LGR appears to be limited. The range 

of pressure drop due to grid-induced skin, across the test cases, is in the range of 1 to 24-psia at the time of shut-in. 

Horizontal Well. The propagation of pressure and convergence of flow about a horizontal well is dependent on numerous 

parameters. Permeability-thickness product of the pay zone, permeability anisotropy, perforated well length and well position 

relative to the interval thickness. Together with the well-bore storage and skin terms the analytical model of a horizontal well is 

then completely described. 

 

 
Figure 4: Comparison of simulated and analytic pressure history (left) and diagnostic plot (right) for horizontal well modelled by 
Cartesian grid refinements. Solid lines in the diagnostic plot represent pressure, while dashed lines represent the derivative. 
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With reference to Figure 4, it is clear that the simulator accurately and reliably models the permeability-thickness product 

of the interval, indicated by the convergence of all simulations with the second stabilization, khh/µ, regardless of the 

refinement. The other parameter obtained from the late time elliptical flow regime is total skin, and with skin related pressure 

drops not exceeding 2-psia at the point of shut-in, we may consider these results relatively insensitive to gridding. Well-bore 

storage from the simulations follows the same trend seen in the vertical wells. 

Observe that the cylindrical flow regime is modelled less accurately. Although visually the results are near to the first 

stabilisation of the analytic derivative, due to the log scale, the mobility discrepancy is significant and will result in incorrect 

apparent permeability anisotropy and a distortion of the cylindrical flow field about the well in the numerical model.  

By contrast, however, the most significant aspect of the simulated response is the discrepancy between simulator and 

analytical models during the linear flow regime. Observe that the linear flow regime in the simulations plots to the left of the 

analytical model. The implication is that the modelled well-length is less than the actual well length. This is surprising since the 

well connections are correct and we could expect well productivity to be comparable since khh and St are reproduced with 

reasonable accuracy.  

It follows, that with an erroneous well half-length further error in apparent permeability anisotropy will occur during 

interpretation. Therefore, due only to the gridding effect, we would expect the horizontal well to be comparable to the 

analytical (or actual) well in terms of total productivity, but with incorrect flow and pressure fields affecting the inflow. It has 

been confirmed through simulations of much more refined LGR (i.e. up to 57 areal by 3 vertical subdivisions per coarse cell), 

given in Appendix E, that further refinement offers no significant improvement in reproducing the correct linear flow regime. 

Sensitivity Cases. An array of sensitivity cases were run for relative orientation of well-versus-grid, cell aspect ratio, 9-point 

versus 5-point flux schemes, and grid-type. Only select results are outlined here, while the remainder are set out in Appendix E.  

Well-versus-grid orientation. Even for a modest change in well-versus-grid orientation such as a 30º dip in the x-z plane 

and an equivalent rotation in the x-y plane we see a definite effect on the inflow performance of the well. This is a much more 

realistic geometry for a well, which rarely intersects a reservoir (or grid) in a perfectly vertical fashion (i.e. through the centre 

of a single column of cells). A deviated well such as this has a radial flow adjacent the perforations, aligned in the plane normal 

to the longitudinal axis of the well-bore. The corresponding early time stabilization (though normally a very short-lived one) is 

knh/(µcosθ), which is affected by the permeability anisotropy. There is then a transitional period as the macroscopic radial flow 

regime develops and the derivative stabilizes at khh/µ. As expected from previous results, this is modelled well with LGR.  

The point to note, however, is the gridding induced skin factor. Due to the inclination, the transmissibility in the vicinity of 

the well-bore is increased, which acts as an apparent negative skin in comparison to the vertical case. This corresponds to a 

smaller drawdown for the same rate of production. We observe this effect, but with even greater magnitude in the numerical 

models than in the analytical, and resulting in small grid induced pressure gain of up to 3-psia at the time of shut-in for the 

cases run.  

Of the three cases studied for deviated wells this represents the worst case. In terms of the coarse grids, the effect was 

slightly less pronounced for a rotation of 0º, but more pronounced for a rotation of 45º. However, with refinement, a better fit 

for the analytical model was achieved in both cases. Refinement had the greatest benefit for a 45º grid rotation. 

Similarly, using the horizontal well models, the well-versus-grid orientation effect was investigated for several test cases. 

The results for an apparent dip of 90º in the x-z plane and rotation of 30º in the x-y plane are illustrated in Figure 5. According 

the trend, behaviour of total system permeability-thickness product and well-bore storage are as expected. It is clear that the 

capability of the simulator to reproduce the near-well flow is poor, even using local refinement, though the accuracy of the 

flow regimes in the numerical models does not appear to be particularly sensitive to the level or extent of the refinement.  

The linear regime is not well matched, in general, neither the early time cylindrical flow regime, while total system skin is 

well matched. For this case, a maximum grid induced pressure drop due to skin at the point of shut-in of less than 1-psia.  

 

 
Figure 5: Comparison of simulated and analytic pressure history (left) and diagnostic plot (right) for well-versus-grid orientation case 
– horizontal well, grid orthogonal to the k-direction and rotated 30º in the x-y plane. Solid lines in the diagnostic plot represent 
pressure, while dashed lines represent the derivative. 
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The implication, as we saw with the initial horizontal well model, is that despite well productivity being a match, the near 

well flow fields are not well modelled. The inflow performance resembles that of a shorter horizontal well with a distortion in 

the permeability anisotropy. Note also the discrepancy between simulated and analytic pressure curves during early time in the 

diagnostic plot, which represents a simulated build-up lagging the analytical and can be taken as further evidence for the 

modification of the well model due to the grid effect.  

For the other test case, set out in Appendix E, the rotation of 45º in the x-y plane offers a similar quality of productivity 

match, but with even more erratic derivative behaviour. Clearly Cartesian grids do not handle adverse grid orientation well. 

Cell aspect ratio. The test cases for cell aspect ratio are indicated in Appendix B (Table B-6) and all results are set out in 

Appendix E. It has been shown that inflow to a fully penetrating vertical well is insensitive to aspect ratio in the x-y plane (i.e. 

DX/DY). Numerical experiments run for aspect ratios between 1 and 6.33 exhibit near identical behaviours. Only well-bore 

storage, as expected, exhibits the normal dependence on well-block volume. No experiments have been conducted for x-z or y-z 

plane aspect ratios since flow is horizontal planar and symmetrical, so no anomalous behaviour is expected. 

By contrast, the flow regimes about a horizontal well do appear sensitive to cell aspect ratios. Numerical experiments for 

aspect ratios in the x-z plane (i.e. DX/DZ) of between 1 and 57 demonstrate that the capability of the simulator to reproduce the 

correct inflow behaviour deteriorates with increasing aspect ratio – where an aspect ratio of 1 (i.e. cells of cubic dimension) is 

optimum. At least partially, this is attributable to the well-bore storage effect, but it is also due to modification of the flow-

fields about the well due simply to cell geometry. Increasing x-z plane aspect ratio compromises first the cylindrical flow about 

the well bore, followed by the linear flow when increased further. The implication for the model parameters determined from 

these flow regimes and apparent during the simulations has been discussed previously.  

For aspect ratios in the x-y plane, numerical experiments were conducted for cases with ratios between 1 and 19 and for 

their reciprocals (i.e. DY/DX as opposed to DX/DY). This contrasts not only the affect of aspect ratio in general, but also the 

alignment of the lengthwise cell dimension parallel and normal to the well. It seems logical that the alignment of refined cells 

parallel to the well recreates inflow behaviour more accurately. This supposition is supported by the results.  

For x-y plane aspect ratios of 1 and greater, the results are reasonable and appear insensitive to the grid. The numerical 

experiments approximate the analytic solution as well as we could expect from previous results. These results represent the 

effect of cell length parallel to the well. Meanwhile, increased lengthwise cell dimension normal to the well has a similar effect 

(not identical) on the inflow behaviour to that of increasing x-z plane aspect ratio normal to the well, as discussed above.  

Flux calculation schemes. By default, the simulator configuration is for 5-point flux calculation. Such an approach 

considers planar flux into any cell being resultant from an exchange between the cell itself and its four adjacent neighbours 

based on a finite difference scheme. The total flux for any cell is then the sum of the flux from each of the three planes aligned 

with the principal axes – x-y, x-z and y-z planes. A 9-point flux calculation is similar, but considers all eight neighbouring cells 

by including the diagonals. This technique is more computationally expensive but has particular value in water-flood 

applications where the direction of flood front propagation is out of alignment with the grid (Yanosik and McCracken, 1976). 

Since well inflow naturally tends to be planar-radial normal to the well-bore and adjacent the perforations, it was thought 

that 9-point flux could be used to more accurately model the inflow behaviour, since it would consider the flow diagonally into 

the well-block and thus be more radial in nature. A comparison between flux schemes was made using a selection of existing 

test cases, tabulated in Appendix B (Table B-7).  

It is evident from the results, however, that they do not comply with expectation. For the vertical well cases (fully and 

partially penetrating) and the horizontal well case, without exception, the simulated pressure history for 9-point flux plots 

below that for 5-point flux. An increased discrepancy with the analytical model representing an increase in grid related skin. 

For the limited number of numerical experiments conducted inspection of the pressure histories indicates that the additional 

skin related pressure drop at the point of shut-in is between 0.1 and 6-psia. In terms of the pressure derivative and thus the 

accuracy with which flow regimes and inflow model parameters are reproduced in the simulations, it is apparent that the results 

are insensitive to flux calculation. The derivatives closely match those of the 5-point flux scheme and there is no evident 

improvement. All results are presented in Appendix E.   

These observations also hold when we introduce the 9-point flux scheme to the horizontal wells from the well-versus-grid 

orientation cases. These cases, having wells misaligned with the principal axes of the grid, might be expected to show some 

improvement with the 9-point scheme, but again, they do not. The simulated pressure histories and the derivatives show 

negligible variation on the 5-point flux experimental values.  

It is only the deviated well cases, where the relative orientation of well-versus-grid introduces a negative pseudo-skin that 

the 9-point flux scheme offers any value; though even here it is minimal. Since the 9-point flux scheme invariably results in a 

pressure history that plots below that of the corresponding 5-point flux simulation, this often results in a higher pseudo-skin 

that compensates for the inclination effect and better reproduces the analytic model. However, according the observed 

behaviour, wherever the 5-point flux result is already accurate, as was the case for HZ_90IN_45AZ, the 9-point flux result will 

suffer the same increase in pseudo-skin and will therefore diverge from the analytic solution. 

Grid type. Thus far, all numerical experiments have involved Cartesian grids and we have observed how grid refinement in 

the vicinity of the well better reproduces the correct well inflow behaviour. However we have also observed that the fineness of 

the LGR and its extension away from the well connection are not always sufficient to accurately model the flow geometry. 

This leads us logically into looking at alternate grid types – to geometric series, radial and unstructured refinements. The 

matrix of test cases run to compare grid type is given in Appendix B (Table B-8). 
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  Geometric series refinement. Several numerical experiments were designed for the vertical well (both fully and partially 

penetrating) and horizontal well, making use of Cartesian refinements configured in the x, y and sometimes z dimensions 

according to a geometric series extending away from the well connections. The intention was to better spatially represent the 

well-flowing pressure profile and limit the well-block volume to reduce well-bore storage, with fewer overall grid-blocks.  

The results, unfortunately, did not entirely conform to expectations. The permeability-thickness product was well modelled 

in all cases and the flow regimes were generally well represented in the pressure derivative, provided that a sufficient number 

of refined cells were introduced. The optimum was 11 by 11 areal divisions, with vertical refinement providing some additional 

benefit. Well-bore storage was accurately modelled due to the minimised well-blocks.  

Conversely, total skin was poorly modelled. There was typically an improvement from the coarse grid, except for the fully 

penetrating vertical well, which exhibits purely planar flow and where we have seen the coarse grid accurately reproduces the 

pressure history in any case. Yet the geometric series LGR still compared poorly to the analytic models. Comparison to the 

analytic solution indicated a grid induced pressure loss due to skin at the point of shut-in between 1 and 16-psia for the cases 

modelled. Furthermore, despite the smaller number of cells, it became clear that the geometric series refinements came at 

significantly greater computational cost. 

Radial refinement. Radial refinements provide a viable alternative for this problem and one which has been successfully 

applied by others (Pedrosa and Aziz, 1986). When it comes to near-well modelling, we would expect radial grids to better 

respect the flow geometry and thus better capture the near-well flow regimes. Also, since radial grids do not rely on wells 

being connected into the grid in the same way as Cartesian grids, simulated well-bore storage should provide good match to the 

analytical model. There are some limitations to the application of radial LGR – namely that they can only be applied within a 

single column of cells or within an amalgamation of four adjacent columns, and only with vertical wells. Their application 

here, was thus simply to the fully and partially penetrating vertical well cases. 

 

 
Figure 6: Comparison of simulated and analytic pressure history (left) and diagnostic plot (right) for fully penetrating vertical well 
modelled by radial grid refinements. Solid lines in the diagnostic plot represent pressure, while dashed lines represent the derivative. 

 

Figure 6 illustrates the results of simulation with radial refinement for fully penetrating vertical well. Results show very 

good accuracy on all model parameters and thus close approximation to the analytical solution. Well-bore storage, 

permeability-thickness product, and total skin are all in close agreement. There are some numerical effects of changing grid 

block volumes as we step out from the well that appear as oscillations in the pressure derivative, but these are to be expected. 

The oscillations have been minimised by increasing the number of radial divisions from four to eight. The lateral extent of the 

radial divisions inside the LGR did not appear to have a significant effect, but best results were achieved for LGR with 8 radial 

divisions extending laterally with an outer radius of 66 feet (or two-thirds of the well block diameter). 

 

 
Figure 7: Comparison of simulated and analytic pressure history (left) and diagnostic plot (right) for partially penetrating vertical well 
modelled by radial grid refinements. Solid lines in the diagnostic plot represent pressure, while dashed lines represent the derivative. 
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Figure 7 shows results for the partially penetrating vertical well. While requiring additional refinement to correctly model 

the three-dimensional nature of well inflow, as opposed to planar, the results are equally satisfactory. There is vast 

improvement with respect to the coarse grid and all model parameters are in close agreement with the analytical solution; total 

skin being least well matched, but still with a grid related pressure loss due to skin of less than 2-psia at the point of shut-in. 

Quite possibly the most impressive aspect of using radial refinement with limited entry well was the ability to reproduce the 

radial inflow adjacent the perforations, appearing in the derivative during early time and matched with high accuracy to the 

first stabilization plotted in Figure 7. This represents a vast improvement on Cartesian grids, which even for high levels of 

refinement have not been able to achieve such detail in matching the correct inflow behaviour. The implication is that the flow 

and pressure fields are being correctly modelled numerically from the microscopic to the macroscopic level. 

As noted, in comparison to the fully penetrating radial flow model, the limited entry case required a more refined LGR for 

comparative accuracy. This seems reasonable since there are three flow regimes acting in three-dimensions, as opposed to one 

regime acting in two-dimensions. In terms of efficiency, for both cases presented here, radial LGR required fewer cells but 

were significantly more computationally expensive. 

Unstructured refinement. Although not widely adopted by practicing engineers, unstructured grids have found applications 

in reservoir simulation due to their ability to better conform to geological features and better reflect the true flow geometry. It 

is these qualities that we have sought to investigate during this study – from a well modelling perspective, to exploit a grid 

which can better fit the geometry of well and inflow, much like the radial grid, only adaptive to more complex well geometries. 

Here we utilize the horizontal well models, set-up with differing well-versus-grid orientations, to investigate unstructured 

gridding for this application. 

If to compare the results in Figure 8 and Figure 9 with the corresponding test cases using Cartesian grid refinement, shown 

previously in Figure 4 and Figure 5, we note some marked improvement. As we have come to expect, the overall well 

productivity compares well in all cases with the analytical model, but most significant, are the improvements unstructured 

gridding provides to modelling the near-well cylindrical and linear flow regimes. Even more impressive, the ability to do so 

despite changes to the well-versus-grid orientation. This represents a significant improvement on Cartesian grids, reflected in 

the quality of the pressure and derivative match in the diagnostic plots. 

 

 
Figure 8: Comparison of simulated and analytic pressure history (left) and diagnostic plot (right) for a horizontal well modelled by 
unstructured grid refinements. Solid lines in the diagnostic plot represent pressure, while dashed lines represent the derivative. 

 

 
Figure 9: Comparison of simulated and analytic pressure history (left) and diagnostic plot (right) for horizontal well-versus-grid 
orientation case modelled using unstructured refinement – grid orthogonal to the k-direction and rotated 30º in the x-y plane. Solid 
lines in the diagnostic plot represent pressure, while dashed lines represent the derivative. 
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Analysis 

On the basis of the results presented, it seems pertinent to evaluate the gridding performance in terms of accuracy and 

computational efficiency. To this point we have compared and contrasted results qualitatively, by way of visual comparison to 

analytic models; however, when comparing experimental data, it is preferable to establish some suitable metrics to allow 

quantitative comparison. This poses several challenges in our case.  

Firstly, in terms of accuracy, comparisons can be made on the basis of the model parameters. However, to do so has meant 

interpretation of the simulator data using pressure transient analysis. In some cases, the solution is non-unique and therefore the 

model parameters contain some uncertainty. Fortunately, knowing as we do the exact reservoir and well geometries, we are 

able to constrain some of the model variables to achieve a more accurate interpretation. Nonetheless, some uncertainty persists 

and in some models more than others – essentially, the greater the number of parameters, the less unique the solution.  

Secondly, to evaluate computational efficiency has involved comparison between different well models and the 

performance of different simulator software. Solution convergence for different well models occurs at different rates and a 

suitable metric to universally compare results on the basis of grid-type alone was not found. Instead, results for each well-type 

were normalised to that of its corresponding coarse grid and grouped by refinement type. Comparisons were made on a per 

well-type basis. Also, since the alternate simulation software each differs in their solver engine, it would be haphazard to 

directly compare the results of one with the other. This affects comparison of unstructured gridding with the other grid types. 

Accuracy. Many of the simulation results have not been subjected to full pressure transient analysis and have been included for 

qualitative comparison only. However, a generous cross-section of them – namely those appearing in Figures 2 through Figure 

9, some 36 simulated pressure histories – have been interpreted. Each of the individual analyses is provided in Appendix F.  

Based on the interpretations, the accuracy of the results may be expressed in terms of root mean squared error. Although it 

would have been preferable, we were not able to calculate this error from the pressure and derivative curves themselves, since 

simulated and analytical data was not synchronised. Instead, the error calculation was made using the model parameters 

determined from the interpretations, in terms of deviation from the analytical model for all analyses of a given well-type. The 

error values have been grouped by parameter – permeability-thickness product, total skin, permeability anisotropy and 

horizontal well half-length – and presented graphically in Figure 10.  Where there is no visible error value in the figure, either 

the parameter is not relevant to the given well model, or the grid was not used / assessed. Almost without exception, we 

observe that local refinement offers a significant improvement on the coarse grid and in general that radial and unstructured 

refinements perform better than Cartesian – though not in every area. 

 

 
Figure 10: Summary of gridding performance, by well type, in terms of accuracy on key model parameters referenced to the analytical 
model and expressed as root mean squared error.  
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The other model parameter, omitted from Figure 10, is well-bore storage. Its omission from the figure is a consequence of 

its limited importance on the normal time scales of reservoir simulation. It is true, however, that with the well-bore storage 

term being closely linked to well-block volume in the numerical well model, it is important that this be minimised to increase 

the resolution of the near-well flow geometry. All types of local refinement, when configured with well-blocks approaching the 

well-bore volume, achieve a minimised well-bore storage, but radial grids do so with the greatest effect. Cartesian and 

unstructured grids suffer a threshold for the reduction of well-block volume since their connection to the grid necessitates the 

use of a pressure equivalent radius whose dimension must be less than that of the grid-block itself.  

It is important that these results are viewed with some degree of caution, since the local refinements tested throughout this 

study are by no means optimised to match the model parameters as closely as possible, rather designed to test different aspects 

of local refinement and understand the effect. It is expected that the results and analysis presented here lead to correct 

conclusions, but in some cases the comparisons may be slightly unfair on one grid or the other, especially where further 

optimisation is possible. 

Computational Efficiency. As simulator performance is complex, it is difficult to pick any clear relationships between grid 

and cost. As far as this study is concerned, since it involves only single well models, the cost of numerical simulation appears 

to be primarily dependent upon the number of cells and number of non-neighbour connections, as well as the number of linear 

and non-linear iterations, which reflect the capability of the simulator to converge. Due to the sheer quantity, it would be 

inappropriate to list all simulator performance vectors here, thus they have been tabulated, in full, in Appendix H.  

 

 
Figure 11: Scatter diagrams for computational cost. Cost versus level of refinement (at left) and normalised cost versus normalised 
iteration ratio (at right) for vertical and horizontal wells grouped by grid type. 

 

Nonetheless, for the purpose of this discussion, computational efficiency is illustrated in Figure 11, where the relative cost 

of simulation by well model and grid-type is demonstrated. The figure plots computational cost versus the number of cells in 

the refinement, and the same cost, normalised for each refinement to the corresponding coarse grid, versus the iteration ratio 

normalised in the same way. Computational cost is defined as the total CPU time per cell, per time-step. The iteration ratio is 

defined as the number of linear iterations per non-linear iteration and is intended to reflect the effort required by the simulator 

to achieve convergence.  Only the initial well models are plotted – vertical well (both fully and partially penetrating) and 

horizontal well – with data grouped by grid type, since for the most part the sensitivity cases exhibit similar behaviour but with 

slightly different scatter.  

Primarily, we observe that the horizontal and fully penetrating vertical wells, modelled by Cartesian grids, follow a similar 

trend line with cost approximately increasing linearly in proportion to the size of the refinement (remembering that the level of 

refinement in Figure 11 is plotted on log-scale). The partially penetrating well appears to be more computationally expensive. 

Quite clearly, we observe the much greater computational cost of the geometric series and radial grids, whose cost increases 

rapidly as the refinement size is increased. Unstructured grids have a high initial cost, even for the coarse grid, but exhibit little 

dependence on refinement level since they suffer negligible increase in cost as the number of cells increases. This is probably 

more a contrast in the software than the grid performance itself.  

The plot of normalised parameters is intended to place all grid types along an individual line for each well model, and it 

does so with moderate success. The partially penetrating vertical well exhibits somewhat anomalous behaviour. This plot 

demonstrates that the geometric series refinements, followed by radial, have the most trouble converging. It shows that 

simulation cost is roughly a linear function of iteration ratio for a given well type, with the partially penetrating well model 

being the most expensive.  

Although not shown in the figure, it was determined that 9-point flux schemes were approximately twice as 

computationally expensive as the standard 5-point flux scheme for the cases compared.  
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Discussion 

Implications for Reservoir Simulation. We have seen how the attributes of the grid local to the well impact the quality with 

which numerical models are capable of producing the correct behaviour and assessment of gridding has been made through 

qualitative and quantitative comparison to the analytical models. It is the implication of these results to practical reservoir 

simulation that must now be addressed.  

Key parameters of any well-model are permeability-thickness product and skin. These parameters determine the overall 

well productivity and without accuracy on these parameters our well model will be inadequate. Fortunately, the work done 

previously, by Peaceman and others, has given rise to well connection factors which effectively connect well to grid and for 

most cases result in the correct well productivity. There are limitations, however, such as the limited entry and horizontal well 

cases, where the three-dimensional nature of flow affects the accuracy of numerical well productivity – in some cases 

significantly. Peaceman himself recognised that there were certain assumptions underlying his work and in some cases 

alternate well models were required.  

Productivity is one important element of the well model, but should not overshadow the value of having correct inflow 

behaviour – correct flow and pressure fields around the well. Productivity index (PI) multipliers are available in the software to 

correct mismatched productivity due to gridding (and local geology), but these will offer no improvement to the flow regime 

description in the simulation. Even where the geology is known, it has been shown that the only way to obtain accurate 

approximation to the flow geometry about a well is through grid refinement. 

Certainly the flow in the simulator converges on the well regardless of the grid, but the nature of that convergence is only 

correct if the grid honours the flow geometry. This has been reflected in discrepancies with the analytic pressure derivates 

shown in the results and appears as grid induced skin or apparent permeability anisotropy. Incorrect convergence due to poor 

near-well gridding often places the well model automatically in error. This becomes more significant with increased 

complexity of the well model.  

While certain parameters can be corrected by PI multipliers, others, such as permeability anisotropy and horizontal well-

length cannot. Assuming completion details and geology are known (or honour some geostatistical upscaling technique) and 

were fixed during model construction, these parameters should not be modified to correct their apparent exaggeration by the 

grid. It is the grid that requires correction. It can be argued that these parameters are the most critical, not to total well 

productivity, but to the well inflow behaviour, since they have the greatest impact on the geometry of flow about the well. It 

has been clearly demonstrated that a grid which honours the flow geometry achieves much more accurate inflow performance – 

the results for radial grids about vertical wells and unstructured grids about horizontal wells provide ideal examples.  

The implication of honouring (or not) the flow regime about a well may not be so apparent in single-phase simulations such 

as these, but the value will certainly be recognised when modelling real cases. For example, to history match multi-phase rates 

from a horizontal well with true three-dimensional flow geometry, located near an oil-water or gas water contact, may prove 

problematic. It will become all the more difficult if the modelled flow geometry represents a well just two thirds the length 

with an apparent permeability anisotropy nearly twice the actual value – as was the case with our coarse grid simulation of a 

horizontal well. It is important for the modeller to understand the significance of gridding around the well or else these effects 

may not be immediately obvious. Application of PI multipliers may have some value to the history match problem at hand, but 

will certainly not improve the predictive capability of the well-model as reservoir conditions change. 

Honouring the flow geometry about wells through gridding might also find key application to the simulation of multi-

lateral wells. Here, flow geometry is complex, wells are highly deviated and there will almost certainly be misalignment of 

well and grid for at least one lateral, if not all. Furthermore, the inflow to each well segment (or lateral) will likely be affected 

by some or all of the others. This study has shown that even with intensive local Cartesian refinement about relatively simple 

wells, the flow regime definition and apparent model parameters can be inaccurate, a situation that can be improved through 

the use of unstructured gridding. The expectation is that this will be exaggerated significantly in multi-lateral wells. 

Based on some key observations of this work – primarily the importance of grid geometry near wells, the detrimental effect 

of adverse well-versus-grid orientation and unfavourable cell aspect ratios, the limited application of radial refinement and the 

ineffectiveness of 9-point flux schemes to improving simulated well inflow performance – the overwhelming perception is of 

the value in unstructured gridding near wells to offer the most versatility and most accurately simulate inflow performance. 

Recommendations for Further Research. How to use pressure transient analysis to refine real grids with real well geometries 

and in real reservoir models is an area worthy of further effort. Such an idea, while not exactly a new one, is not a part of 

conventional reservoir simulation work-flows and perhaps not intuitive to the reservoir engineering community at large, but 

could offer value to the well model. The challenge would be reconciling the real geology first, before optimising the grid. The 

availability of well test data could help, or perhaps well test simulations using sector models taken from the geostatistical 

realizations could be used (or both), but clearly further research would be required to determine if there is any value in such an 

approach. 

When conducting a pressure transient analysis for simulated data from a fully penetrating well it has been observed that the 

well-blocks act somewhat like a finite conductivity fracture, with fracture half-length equal to the half-width of the cell (e.g. xf 

= 0.5DX) and the fracture width equivalent to the other areal dimension of the cell (e.g. wf =DY). The conductivity then is 

equivalent to the well connection factor. This enables very good match to the pressure and derivative on diagnostic plot and 

makes some sense since the passage of fluids from well-block to well is no longer one of flow in porous media, but a little like 
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linear flow inside a finite conductivity fracture controlled by the well connection factor (instead of fracture conductivity). 

There may be no useful meaning in this, but it is worth some further thought. 

Furthermore, it may be possible to determine some correlations for the correction of grid induced pseudo-skin by way of PI 

multipliers, which would require a carefully designed set of experiments catering to that objective, and finally, investigation of 

the gridding effect with some more realistic examples of well geometry, reservoir geology and/or multi-phase fluids is 

expected to yield interesting results that might also lead to new workflows for gridding to wells for real applications.  

Conclusions 

1. In cases of three-dimensional flow regimes (e.g. limited entry, horizontal wells), local grid refinement is the only way to 

accurately model well productivity and the geometry of flow in the vicinity of the well. 

2. Analysis of the results from this study has shown that significant improvement can be obtained on the accuracy of well-

model parameters in numerical simulation through local refinement. Between coarse and refined grids improvements of 1-

2% (half the error) can be expected on permeability-thickness product, improvement on the total skin from 0.1 to 2.8 (15-

1000% better accuracy), improvements of between 10 and 40% for accuracy of permeability anisotropy and between 8 and 

19% for the accuracy of horizontal well half-length. With well-bore storage directly linked to well-block volume, the error 

can be reduced by several hundred-thousand percent by the introduction of local refinement, which carries real 

significance to an accurate representation of the near-well flow geometry. 

3. Unstructured gridding is by far the most accurate and adaptable in cases of complex well-geometries and adverse well-

versus-grid orientations. For arbitrary well and grid geometry it provides a close match to the flow regime behaviours and 

an overall improvement on Cartesian refinement.    

4. Cartesian cell aspect ratio is significant when simulating three-dimensional flow, especially where cell length normal to 

the well track greatly exceeds that parallel to it. For best results, aspect ratio within the refinement should be kept cubic (or 

near thereto).  

5. 9-point flux schemes do not exhibit any benefit to near-well modelling, but have been observed to double the 

computational cost. Although an oversight prior performing the simulations in this study, it is thought that 9-point schemes 

do not readily extend to local grid refinement, which is a theoretical problem that prevents the higher-order scheme being 

resolved at the interface of the coarse grid and local grid. 

Nomenclature 

 B = oil formation volume factor, rbbl/stb mSPH = slope Horner straight line, psi-√hr   

 ct = total compressibility, psi
-1

  mWBS = slope well-bore storage straight line, psi/hr   

 CD = dimensionless storage, dimensionless  po     = well-block pressure, psia 

  Dl = grid block dimension in l-direction, ft  pwf    = well flowing pressure, psia 

  Dn = grid block dimension in n-direction, ft pD      = dimensionless pressure, dimensionless 

  Dv = grid block dimension in v-direction, ft  p      = average reservoir pressure, psia 

 DX = grid block dimension in i-direction, ft  q      = oil production rate, stb/d 

 DY = grid block dimension in j-direction, ft  rb        = well-block equivalent radius, ft  

 DZ = grid block dimension in k-direction, ft  rl      = pressure equivalent radius for n-v plane, ft  

 hl = horizontal plane distance along well-bore, ft  ro     = pressure equivalent radius, ft   

 hv = vertical plane distance along well-bore, ft  rox     = pressure equivalent radius for y-z plane, ft  

 hw = perforated interval length, ft  roy      = pressure equivalent radius for x-z plane, ft 

 hx = i-component distance along well-bore, ft  roz      = pressure equivalent radius for x-y plane, ft 

 hy = j-component distance along well-bore, ft  roz    = pressure equivalent radius for x-y plane, ft   

 hz = k-component distance along well-bore, ft  rv      = pressure equivalent radius for l-n plane, ft   

 h =  net pay zone thickness, ft rw        = well bore radius, ft   

 i,j,k = unit vectors for Cartesian coordinate system  r       = radius at a given point of interest, ft  

 kh = horizontal permeability, mD So        = oil saturation, dimensionless 

 kl = l-component horizontal permeability, mD  St      = total skin, dimensionless 

 kn = permeability normal to the well-bore, mD  Sw      = water saturation, dimensionless 

 krw = gas relative permeability, dimensionless Swc     = critical water saturation, dimensionless 

 kro =  oil relative permeability, dimensionless  S         = damage skin, dimensionless 

 krw = water relative permeability, dimensionless tD     = dimensionless time, dimensionless 

 ks = spherical permeability, mD  Tl     = l-component transmissibility, mD-ft  

 kv = vertical permeability, mD  Tv     = v-component transmissibility, mD-ft  

 kx = permeability in the i-direction, mD  Tx     = i-component transmissibility, mD-ft 

 ky = permeability in the j-direction, mD  Ty     = j-component transmissibility, mD-ft 

 kz = permeability in the k-direction, mD  Tz     = k-component transmissibility, mD-ft 

 k = permeability, mD  T      = total transmissibility, mD-ft 

 khx = i-component permeability thickness product, mD-ft wf     = fracture width, ft 
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 khy =  j-component permeability thickness product, mD-ft xf      = fracture half-length, ft                 

 khz = k-component permeability thickness product, mD-ft x,y,z  = Cartesian axes 

 l,n,v = unit vectors for unstructured grid system zw        = distance base pay-zone to perf. mid-point, ft   

 Δpi,j  = grid-block incremental pressure change, psia Δt        = time-step increment, hrs 

 L = well half-length, ft θ       = well inclination, degrees 

 mCF=  slope cylindrical flow straight line, psi/cycle µ       = oil viscosity, cp 

 Δp = build-up pressure, psia ϕ       = porosity, dimensionless 

 Δp’ = build-up pressure derivative, psia 
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Appendix A: Critical Literature Review 

Summary 

 

Table A-1: Milestones in the development of near-well modelling techniques in reservoir simulation. 

SPE Paper No. Year Title Author(s) Contribution

2022 1968
Treatment of Individual Wells and Grid 

in Reservoir Modeling
van Poollen, H.K. and Breitenback, E.A

First significant attempt to relate well to grid-block 

pressures in reservoir simulation.

6983 1977
Interpretation of Well-Block Pressures 

in Numerical Reservoir Simulation
Peaceman, D.W.

Developed the first accurate interpretation of well-block 

pressures in reservoir simulation for square grid-blocks in 

isotropic medium.

10974 1982
Local Mesh Refinement for Finite 

Difference Methods
von Rosenberg, D.U. 

Introdcued local grid refinements to Cartesian finite 

difference simulation that were truly local to the well, 

unlike previous refinements which   extended to the 

boundaries of the grid

12255 1983

Using Local Grid Refinement in a 

Multiple Application Reservoir 

Simulator

Heinemann, Z.E. and von Hantelmann, 

G.V.

Another early introduction of local grid refinement to finite 

difference type numerical reservoir simulation

10528 1983

Interpretation of Well-Block Pressures 

in Numerical Reservoir Simulation 

With Nonsquare Grid Blocks and 

Anisotropic Permability

Peaceman, D.W.
Determined the general form of the well-connection factor 

for rectangular grid-blocks and anisotropic medium

13507 1985
Use of a Hybrid Grid in Reservoir 

Simulation
Pedrosa, O.A. Jr and Aziz, K. 

Introduced radial local grid refinements into a finite 

difference Cartesian grid to improve near-well modelling 

18412 1989
Modelling Reservoir Geometry with 

Irregular Grids. 

Heinemann, Z.E., Brand, C.W., Munka, 

M., and Chen, Y.M. 
Introduced unstructured gridding to reservoir simulation

18412 1991
Modelling Reservoir Geometry with 

Irregular Grids

Z.E. Heinemann, C.W. Brand, M. 

Munka, and Y.M Chen

First to use perpendicular bisector (PEBI) grids to describe 

reservoir geometry. Made use of full and anisotropic but 

symmetric permeability tensors. These are known as k-

orthogonal grids, or generalized PEBI (GPEBI)

25563 1993

Flexible Gridding Techniques for 

Coning Studies in Vertical and 

Horizontal Wells

Consonni, P., Thiele, M.R., Palagi, C.L., 

and Aziz, K.

An early practicle application of unstructured gridding to 

well-modelling  for water coning study.

25266 1993
Hybrid-CVFE Method for Flexible Grid 

Reservoir Simulation
L.S.K Fung, L. Buchanan, and R. Sharma

First application of radial near-well gridding with CVFE 

method reservoir simulators

22889 1994
Use of Voronoi Grid in Reservoir 

Simulation
C.L. Palagi and K. Aziz

First to describe a method of implementing Voronoi grids 

for field scale simulations

37998 1997
The Generation and Applicaton of k-

Orthogonal Grid Systems
D. Gunasekera, J. Cox, and P. Lindsey

The process of generating good k-orthogonal PEBI and 

composite tetrahedral grids applicable to a wide class of 

reservoir simulation problems.
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SPE 6893 (1978) 

Paper Title: Interpretation of Well-Block Pressures in Numerical Reservoir Simulation  

Author(s): Peaceman, D.W.  

Contribution to knowledge: A work of key importance to the understanding on the connection of wells to 

grid-blocks in numerical reservoir simulators. The paper advanced the concept of pressure-equivalent 

radius, and its derivation, respecting radial inflow in the vicinity of the well, but also accounting grid-

block dimensions.  

Furthermore, the paper provided showed how build-up test data can be used for the purpose of history 

matching well-block pressures.    

Objective of the paper: To determine a correction to the recognized problem that well-block pressure 

modelled through numerical simulation does not match the bottom-hole flowing pressure of the well. This 

was an issue not well addressed by the literature of the time. 

Methodology used: 

1. Defined pressure equivalent radius, ro, as the distance at which steady-state flowing pressure of the  

well is equal to the numerically calculated pressure for the well-block, such that 𝑞 =
2𝜋𝑘ℎ

𝜇

𝑝𝑜−𝑝𝑤𝑓

ln(
𝑟𝑜

𝑟𝑤⁄ )
 

2. According the given equation, provides numerical evaluation of ro determined from a straight-line of 

slope ½ π plotted through a pressure term, (pi,j – po)kh/qµ, calculated using the numerical solution of 

grid block pressures, versus the logarithm of distance from the well, up to 6 Δx. This method 

determines ro from the intercept of the straight-line with pi,j – po = 0, as ro = 0.2 Δx, where Δx is the 

cell side length.  

3. Provides mathematical proof using a finite-difference-type flux calculation describing flow into the 

well-block as the sum of influx from its four orthogonal neighbours. This gives the approximate result 

that ro = 0.208 Δx. Approximate because it assumes the pressure of the neighbouring cells lie exactly 

on the straight line, when they actually lies very near it, but not exactly on it. 

4. Provides exact calculation of ro from a numerical steady-state pressure distribution between injector 

and producer together with a corresponding analytical model for a repeated five-spot pattern given by 

Muskat (1934). As the number of intermediate grid blocks increases, the value of ro converges to 

0.1982 Δx. 

5. Demonstrates that the pressure equivalent radius, derived for steady-state radial flow, can also be 

derived, by similar means, with the same result for transient conditions.  

 Conclusion reached: 

1. Well block flowing pressure, po = p(ro) = p(0.2Δx) which can be related to the well-flowing pressure 

using the conventional steady-state radial inflow equation. 

2. Build-up pressures should be measured at a time equal to 67.5∅𝜇𝑐𝑡∆𝑥
2/𝑘 for history matching with 

simulator well-block pressures.  

Comments:  
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SPE 7697 (1981) 

Paper Title: Representing Wells in Numerical Reservoir Simulation: Part 1 - Theory 

Author(s): Williamson, A.S; Chappelear, J.E. 

Contribution to knowledge: This paper offers several perspectives on the limitations of existing methods 

of well representation in reservoir simulation and provides improved methods for application of analytical 

source functions as well representations. Also describes attempts to decouple the well bore with grid-

block and better model flowing pressure in terms of the lift profile dependencies. 

Objective of the paper: To extend the theoretical basis of the source representation of wells in numerical 

simulation and to give a number of useful applications for the basic method. Moreover, to elaborate 

several areas of limitation with existing well modelling techniques in reservoir and stimulate further 

research (or publication thereof) on the topic. 

Methodology used: 

1. An analytic solution is constructed with a given well bottomhole flowing pressure and with pressures 

which coincide with the nodal pressures of surrounding adjacent grid blocks. This equation is similar 

in form to previous derivations, but includes a matrix term of geometrical terms obtained by fitting an 

analytic expression for the local pressure distribution near the well to the pressures in the four nodes 

in blocks adjacent to the well block. 

2. Extending this theory to two or wells in a single well block, the paper describes two methods of 

handling such problems; either (a) by replacing the multiple wells with a single pseudo-well or (b) a 

more rigorous treatment of each individual well using a source term for each individual well, 

specification of the interference between wells and a source term for the well-block itself. 

3. It is further shown how local heterogeneities such as permeability or net thickness variation between 

grid-blocks and also near-well damage (i.e. skin) can be included into the given source function.  

4. Similar to Peaceman (1978), the paper describes non-steady transient pressure / flow behaviour (i.e. 

step-type change) which does not compromise the use of source functions to represent the well, 

however goes on to define continuous changes to well and local nodal pressures for which steady-flow 

assumptions are unlikely to yield acceptable results until the pressure transients have migrated through 

the region of the well encompassed by the well grid-block. For the latter case a perturbation analysis 

is performed to quantify the ratio of transient to steady well flow contributions. 

5. The paper further describes a methodology for the calculation of sand-face pressure gradient. 

Conclusion reached: 

1. The pressure boundary conditions on a well surface can be represented in a manner suitable for 

inclusion in a reservoir simulator. 

2. Saturation boundary conditions have usually been included in well models in a very approximate 

manner. 

3. A well boundary can be approximated by sources of a particular form. 

Comments:
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SPE 9770 (1981) 

Paper Title: Representing Wells in Numerical Reservoir Simulation: Part 2 - Implementation 

Author(s): Chappelear, J.E; Williamson, A.S. 

Contribution to knowledge: While not contributing any new theoretical material, it elaborates on the 

theory presented in the earlier supplementary paper (Part 1, SPE 7697) by the same authors; discusses the 

implementation of the well model into numerical simulator.  

Objective of the paper: To detail numerical aspects of well model implementation in the reservoir 

simulator, with particular treatment of black-oil, compositional and thermal well models. In addition, and 

like Part 1, to evoke further research / publication on the topic of well modelling in reservoir simulation. 

Methodology used: 

1. The well model is given by 𝑞𝑝 =
2𝜋(𝑘.∆𝑧)𝑘𝑟𝑝(𝑝𝑤𝑒𝑙𝑙+

1
2⁄ ∑ 𝑔(𝜌

𝑘′
+𝜌

𝑘′+1
)𝑘−1

𝑘′=1
𝑧
𝑘′
−𝑝𝑛𝑜𝑑𝑒)

𝜇𝑝𝐵𝑝[𝑙𝑛(
𝑟𝑒

𝑟𝑤⁄ )−0.9984+𝑆+𝐷𝑞𝑔]
, where the terms are 

essentially according to Darcy’s law within square grid blocks and include gravity, as defined in the 

paper.  

2. For reasons pertaining to matching historical production during history matching and honouring rate 

constraints during prediction, the well model is rate constrained and bottomhole flowing pressure is 

chosen to honour the constraints. 

3. The well model is incorporated for an IMPES-type simulator as follows: 

a.  Everything in the well model is evaluated at the beginning of the time-step to determine the 

well constraint; 

b.  Node and well flowing pressures are determined at the new time-step, keeping the constraint 

fixed; 

c. Gravity heads and productivity indices for each completion interval are computed using grid-

block values and are not recomputed within the given time-step; 

d. The well is rate constrained if productivity index is larger than the imposed rate constraints, 

else it is pressure constrained. In either case a well rate is allocated and used to compute pwell  

e. Material balance equations are then solved, the well model is recalled to calculate pwell and the 

process is repeated iteratively until material balance errors are within a pre-specified tolerance. 

Conclusion reached: 

A wide variety of constraints and conditions was found valuable in representing well behaviour in 

reservoir simulations.  

Comments: 

The paper also raises questions for further work, pertaining to how one might measure / check the well 

model (e.g. against analytic solutions, by comparison of solutions given in different grid-types, 

experiments or theoretical investigations. 
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SPE 10528 (1983) 

Paper Title: Interpretation of Well-Block Pressures in Numerical Reservoir Simulation with Nonsquare 

Grid Blocks and Anisotropic Permeability 

Author(s): Peaceman, D.W.  

Contribution to knowledge: A definitive treatment of well connection factor still widely adopted today; 

determined the general relationship for bottomhole pressure (BHP) and well-block pressure (WBP) to 

account for cell aspect ratio and permeability anisotropy, both in terms of planar radial flow. 

Objective of the paper: To investigate the effect of nonsquare grid (Δx ≠ Δy), or aspect ratio (α) and 

anisotropic permeability (kx ≠ ky) on the pressure equivalent radius (ro) of the well-block. 

Methodology used:  

1. A similar analytic derivation can be made for nonsquare grid-blocks as that in Peaceman’s earlier 

work on square grid-blocks (Peaceman, 1978), suggesting a quotient 
𝑟𝑜

∆𝑥
= 𝑒𝑥𝑝 (

ln(𝛼)−𝜋𝛼

1+𝛼2
) 

2. Numerical experiments were performed using a repeated five spot pattern for various aspect ratios and  

grid refinements. Due to symmetry, only ¼ of the pattern needed to be considered. The domain was 

discretised into M x N dimensions in the i- and j-directions and the results of the simulations used to 

determine the equivalent well-block radii according to Muskat’s (1937) relationship for pressure drop 

between injector and producer.  

𝑟𝑜

∆𝑥
= √2𝑀. 𝑒𝑥𝑝 [−0.6174 −

𝜋𝑘ℎ

𝑞𝜇
(𝑝𝑀,𝑁 − 𝑝𝑜,𝑜)] and 

𝑟𝑜

∆𝑦
= √2𝑁. 𝑒𝑥𝑝 [−0.6174 −

𝜋𝑘ℎ

𝑞𝜇
(𝑝𝑀,𝑁 − 𝑝𝑜,𝑜)] 

3. The several theories are tested by plotting aspect ratio versus the relevant quotients; 

a. WBP as the areal average of a circle with the same area as that of the well-block (van Poollen 

et al, 1968) is disproven since the quotient ro/(ΔxΔy)
½
 does not equal the constant of 

integration, as his theory suggests; 

b. Extrapolated values of ro/Δx determined from numerical experiments are divided by the 

analytic quotient determined as per Peaceman’s earlier work (see 1 above). Failure of this ratio 

to remain constant with varying aspect ratio is proof enough to invalidate it; 

c. According to the reasoning given in the paper, it is supposed that the correct quotient should 

be the ratio of ro to the diagonal of the grid block, ro /(Δx
2
 + Δy

2
 )

½
, and this is indeed 

demonstrated concluding that ro = 0.14(Δx
2
 + Δy

2
 )

½
. 

4. Finally, using the differential equation for steady-state pressure 𝑘𝑥
𝛿2𝑝

𝛿𝑥2
+ 𝑘𝑦

𝛿2𝑝

𝛿𝑥2
= 0 and making a 

change of variables u = x.(ky/kx)
¼
 and v = y.(kx/ky)

¼
 to convert to Laplace’s equation, a derivation was 

performed to arrive at a general equation for ro in anisotropic media. 

Conclusion reached: In general, WBP can be related to BHP as follows, 𝑝𝑜 − 𝑝𝑤𝑓 =
𝑞𝑢

2𝜋√𝑘𝑥𝑘𝑦ℎ
𝑙𝑛 (

𝑟𝑜

𝑟𝑤
), 

where 𝑟𝑜 =
0.28[∆𝑥2√𝑘𝑦 𝑘𝑥⁄ +∆𝑦2√𝑘𝑥 𝑘𝑦⁄ ]

1
2⁄

√𝑘𝑦 𝑘𝑥⁄
4

+ √𝑘𝑥 𝑘𝑦⁄
4

, which holds for nonsquare grid and anisotropic media. 
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SPE 11759 (1985) 

Paper Title: The Proper Interpretation of Field-Determined Buildup Pressure and Skin Values for 

Simulator Use 

Author(s): Odeh, A.S. 

Contribution to knowledge: First to recognise the fundamental difference between field determined and 

numerical simulator skin values, and to determine a correction factor to allow the reconciliation between 

them. Extended the idea first proposed by Peaceman (1978), for the special case of two-dimensional flow 

and square grid blocks, to the general case of three-dimensional flow and nonsquare grid-blocks, whereby 

real well pressure build-up data can be compared with numerically generated well-block pressure.  

Objective of the paper: There are essentially two objectives of the paper: 

1. To consider the necessity to scale skin field determined skin parameters to give an acceptable match 

between real pressure drop due to skin and the model-calculated value.  

2. To determine an equation that gives the build-up time, Δt, when the well pressure becomes equal to 

the cell pressure after accounting for both three-dimensional flow and the well completion.  

Methodology used:  

1. The physical elements of skin are stated and mathematically defined. In this case, the elements are 

damage skin, termed sA, located in a narrow region of altered permeability close to the well-bore, and 

restricted entry skin sR, resulting from the convergence of flow to partially penetrating completions. 

2. The radial flow equation describing flow close to the well-bore, and used by the simulator, is defined 

to demonstrate that sR is accounted for inherently, but that sA is not. 

3. A scaling factor is developed that corrects the skin factor used in the simulator inflow equation, based 

on the well connection kh being equivalent to ΣΔkiΔzi of the well-blocks, while the real value is the 

average kh of the drainage area.  

4. A derivation is offered for the case where production time, t, is much greater than build-up time, Δt, 

and therefore a build-up time can be determined when the simulator well-block pressure equals the 

actual build-up pressure for use in history matching. This idea follows from Peaceman (1978) but 

extends the special case in Peaceman’s paper to the general case. 

Conclusion reached:  

1. The simulator inflow equation, with corrected skin, is 𝑞𝑖 =
7.08×10−3𝑘𝑖∆𝑧𝑖∆𝑝𝑖

𝐵𝜇[𝑙𝑛(
𝑟𝑜

𝑟𝑤⁄ )+
∑ ∆𝑧𝑖𝑘𝑖
ℎ𝑝
𝑖=1

𝑘ℎ̅̅ ̅̅
𝑠𝐴]

 

2. The shut-in pressure of an actual well will equal the well-block pressure after a shut-in time,          

∆𝑡 = [(
𝑟𝑜

𝑟𝑤⁄ )
2
]

𝑘ℎ̅̅ ̅̅

∑ ∆𝑧𝑖𝑘𝑖
ℎ𝑝
𝑖=1

⁄

(
1687𝑟𝑤

2∅𝜇𝑐𝑡

𝑘̅
) 𝑒−2𝑠𝑅  

Comments: The paper does not offer any numerical tests or proofs of the theoretical statements presented 

but they appear to be sound.  
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SPE 18412 (1991) 

Paper Title: Modelling Reservoir Geometry with Irregular Grids 

Author(s): Heinemann, Z.E; Brand, C.W; Munka, M; Chen, Y.M. 

Contribution to knowledge: Irregular (unstructured) grid block systems for simulation of complicated 

reservoirs are proposed, making use of perpendicular bisector (PEBI) grids and a finite-volume method 

for discretization of multi-phase flow equations.  

An evaluation of irregular grid performance is demonstrated through several numerical examples 

complete with comparison to Cartesian grids; 

1. PEBI grids have as good (or better) performance with respect to grid-orientation effect as the nine-

point Cartesian grid up to mobility ratios of at least 50 

2. Computational efficiency (i.e. CPU time per grid-block) is approximately the same for both PEBI and 

Cartesian grid, but the same simulation can be achieved with fewer PEBI grid-blocks 

3. PEBI grids can perfectly represent analytical solutions to radial flow performance around wells 

Objective of the paper: To demonstrate the flexibility of PEBI grids in reservoir simulation and to 

compare the performance of PEBI grids with traditional grids based on Cartesian coordinate systems. 

Methodology used:  

6. Finite-volume discretization of the multi-phase flow equations using an integral approach similar to 

that described by Pedrosa and Aziz (1986) and Ngheim (1988) 

7. Spatial discretization using a PEBI grid satisfying the conditions of Delaunay triangulation. The 2D 

PEBI grid was constructed in an areal sense only and projected vertically through the model layers. 

Conclusion reached:  

3. PEBI grids offer a higher flexibility to represent the reservoir geometry since the location of grid-

points can be chosen freely 

4. PEBI grids are well suited to calculating radial flow and well performance as they can be constructed 

with higher cell density around wells and with a smooth transition to the coarse-grid region 

5. The grid-orientation effect is lower for PEBI grids than for five-point Cartesian grid, but slightly 

higher than that for the nine-point Cartesian scheme. 

Comments: 

The approach used for finite-volume discretization of the differential equations accounts for anisotropy by 

way of a permeability tensor which is symmetric and orthogonal to block surfaces. This is known as k-

orthogonal PEBI gridding. 
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SPE 25563 (1993) 

Paper Title: Flexible Gridding Techniques for Coning Studies in Vertical and Horizontal Wells 

Author(s): Consonni, P; Thiele, M.R; Palagi, C.L; Aziz, K. 

Contribution to knowledge: Nothing significant; the paper appears to use a globally unstructured grid 

complete with Cartesian or radial local refinements around wells. As such, the framing of the problem 

thus results in a discussion centred on the local refinements, which are not unstructured and thus say 

nothing conclusive on the topic of interest. 

Objective of the paper: To investigate the applicability of flexible gridding - in particular hybrid grids 

with local mesh refinements - for the modelling of water coning in vertical and horizontal wells within 

both homogeneous and heterogeneous systems. 

Methodology used: 

A neat systematic methodology was used, outlined as follows; 

1. Simple sector geometry including a single producer and single injector was established 

2. System fine grid simulation using average petrophysical properties generated as reference case 

3. Vertical layering on coarse grid optimised to reproduce coning break-through times between fine and 

coarse grids 

4. Various local mesh refinements introduced to the coarse grid in the vicinity of the producer in 

attempts to reproduce the water-cut curves (both break-through and shape) between fine and course 

grids  

5. Diagonal coarse grid introduced (with and without local mesh refinements) in an attempt to reproduce 

the water-cut curves between fine and course grids. 

This procedure was repeated for homogeneous and heterogeneous systems involving vertical and 

horizontal wells. 

Conclusion reached: 

1. For vertical wells the refinement itself is more important than its geometry provided that there are 

enough points around the wells. Heterogeneity requires that a larger area be defined 

2. For horizontal wells the Voronoi grid becomes particularly useful as it avoids orientation problems by 

aligning the refinement along the well 

3. When heterogeneities are considered, the dominant feature to resolve remains the upscaling of 

petrophysical properties, irrespective of the type of grid used 

Comments: It provides interesting perspectives on the value of hybrid grids (i.e. those using both 

structured and unstructured elements) to water-coning and/or water breakthrough modelling and on the 

challenges of upscaling reservoir properties from the structured fine grid to an unstructured course grid. 
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SPE 25266 (1994) 

Paper Title: Hybrid-CVFE Method for Flexible-Grid Reservoir Simulation 

Author(s): Fung, S.K; Buchanan, L; Sharma, R. 

Contribution to knowledge: Demonstrates the flexibility, accuracy and efficiency of hybrid gridding 

techniques by coupling control volume finite element (CVFE) unstructured gridding with local radial and 

curvilinear refinements around wells.  

Objective of the paper: To combine the benefits of curvilinear cylindrical or elliptical grids, which 

accurately model near-well regions, with those of CVFE grids to represent the reservoir region, which 

offer greater geometric flexibility and lower grid orientation effects.  

The objective was to improve on existing hybrid-Cartesian methods available at the time, by allowing 

more freedom in selecting the size and location of local refinements, previously constrained by 

rectangular grid cells, while eliminating the approximate method of handling the transition between 

regular and cylindrical grids. 

Methodology used:  

1. The numerical formulation follows the CVFE discretization by the method of weighted residuals, as 

described by Finlayson in 1972. 

2. The CVFE grid is generated using an automated triangulation routine. A smoothing technique, as 

proposed by Cavendish in 1974, is then applied to perturb the triangulation so that elements are closer 

to equilateral triangles. The Delaunay criterion is then checked by using a swap-test algorithm, after 

Cline and Renka, 1984. 

3. The local curvilinear grid refinement is achieved by eliminating a sufficient number of triangular 

CVFE elements where the cylindrical grid is positioned. Transmissibilities inside the cylindrical grid 

are calculated by the finite difference approach. Transmissibilities at the interface of local curvilinear 

and global CVFE grids are determined by considering radial flow between adjacent nodes. 

4. The model was validated against analytical solutions to two test cases; single well in a cylindrical 

reservoir using the pressure distribution obtained from van Everdingen and Hurst (1977), and, three 

wells producing at different rates within a rectangular reservoir using the method of images. 

5. A number of numerical examples were performed to compare the performance of different grid 

arrangements. 

Conclusion reached: There are several advantages of the hybrid-CVFE method; greater geometrical 

flexibility, enhanced treatment of near-well processes, minimised grid distortion effects at the transition, 

continuity of pressure derivatives at the hybrid grid interface, and a sound level of accuracy and 

computational efficiency. 

Comments: The full permeability tensor for transmissibility calculations is included on the CVFE surface 
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SPE 27998 (1994)   

Paper Title: Interactive Generation of Irregular Simulation Grids and It’s Practical Applications 

Author(s): Heinemann, Z.E. 

Contribution to knowledge: Nothing significant; the paper does not develop or test any new ideas, but 

rather discusses several new concepts and tools in reservoir simulation and how they might be used in 

practice.  

Objective of the paper: To make several new tools in reservoir simulation practical for everyday use; 

PEBI and Median grids with the use of the Control Volume Method, modelling of non-vertical faults, 

windowing technique, dual time-stepping, vertical and horizontal well models. 

Methodology used: The paper describes, from a high level, a method for automated and interactive grid 

generation. 

Conclusion reached: Not applicable 

Comments: This is a useful and informative paper for the practising engineer working in the field of 

reservoir simulation, but not one which contributes much relevant material for this review.  
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SPE 22889 (1994) 

Paper Title: Use of Voronoi Grid in Reservoir Simulation 

Author(s): Palagi, C.L; Aziz, K 

Contribution to knowledge: Primarily, this paper develops a method of implementing Voronoi grids in 

reservoir simulation, and a means of assigning petrophysical properties to the grid independent of the 

location of known data. It also extends the applicability of existing well models. 

Objective of the paper: To describe a practical gridding technique for the use of Voronoi grids in reservoir 

simulation; including the generation of grid blocks, the assignment of physical properties and the 

treatment of wells. 

Methodology used:  

1. The grid is constructed in a modular fashion through use or user-selected modules of easy to handle 

geometry. These modules provide a variety of grid options. Grid modules can be located translated, 

scaled and rotated on a horizontal plane, within the domain, to model particular features that are later 

connected to each other (or the background grid) using Voronoi blocks. A 3D geometry is achieved by 

projecting the gridding vertically through the model layers. 

2. Discretization of the flow equations in the Voronoi blocks follows the method proposed by Heinrich 

in 1987. The discretization of flow equations elsewhere uses a control volume finite difference 

(CVFD) scheme. 

3. Assignment of physical properties to each block and its connections is determined using interpolation 

of known “property-points” which are independent of the grid itself. Interpolation is based on the 

method proposed by Isaaks and Srivastava in 1989 and involves subdivision of each Voronoi block 

into internal triangles. 

4. The well models follow work published by Peaceman in 1978, and Abou-Kassem and Aziz in 1985. 

Conclusion reached: 

1. The combination of several modules in a single physical domain allows a good representation of 

vertical and horizontal wells and major geological features. 

2. The specification of physical properties at locations that are independent of grid-points provides a 

practical way to simulate field-scale problems with irregular grids.  

Comments: The paper also investigates grid orientation effects, concluding that hybrid-Cartesian and 

hybrid-hexagonal grids are less sensitive to grid orientation than purely hexagonal or nine-point Cartesian 

grids, due primarily to their ability to incorporate cylindrical modules to represent radial flow around 

wells. 

Although not explicit in the paper, it is not thought that the treatment of permeability used here honours 

the full tensor formulation for handling truly isotropic problems.  
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SPE 37028 (1996) 

Paper Title: Development and Applications of a Three-Dimensional Voronoi-Based Flexible Grid Black 

Oil Reservoir Simulator 

Author(s): Kuwauchi, Y; Abbaszadeh, M; Shirakawa, S; Yamazaki, N. 

Contribution to knowledge: This paper applies similar methods as those previously discussed by Palagi 

and Aziz to develop a reservoir simulator using Voronoi based gridding, but demonstrates far more rigour 

in the selection of an appropriate methodology. It offers rigorous assessment of gridding techniques, 

discretization methods and provides simulator validation through more complex reservoir examples not 

previously treated in the literature. 

Objective of the paper: To present a methodology for the development and application of a black-oil 

reservoir simulator based on the Voronoi flexible gridding scheme and control volume finite element 

(CVFE) method for discretization of the flow equations. To verify simulator performance, using 

analytical solutions, in the context of difficult reservoir problems. 

Methodology used: 

1. The two-dimensional Voronoi (PEBI) grid is used in the horizontal plane and stacked vertically. Its 

selection is based on flexibility, accuracy and practicality. Similar to Palagi and Aziz (1994) a system 

of background and sub-grids is adopted, supporting the use of both cylindrical and Cartesian grids 

combined using Voronoi transitions.  

2. Discretization of the flexible grid is implemented using the CVFE method, which is demonstrated to 

have higher accuracy (i.e. pressure gradient with second-order accuracy).  

3. Physical parameters are defined on the Voronoi points. They are assigned to the background grid and 

values are calculated by linear interpolation on the Voronoi points.  Sub-grids enable manual 

modification.  

4. Verification was performed by comparison with analytical models; line source solution after Hurst, 

finite conductivity fracture near a  producing well according to Abbaszadeh and Cinco-Ley (1995), 

horizontal well intersecting random fractures as described by Guo et al (1994), and, Tracer flow in a 

reservoir containing fracture barrier after Sato and Abbaszadeh (1994).  

5. Further application to other reservoir engineering problems is defined by way of the flexible Voronoi 

gridding; namely, infill wells, multilaterals, random faults, and geostatistical heterogeneity. 

Conclusion reached: 

1. Flexible gridding of Voronoi is most suited to representing reservoir geological features 

2. CVFE methods are most suitable for upstream weighted mobility calculations 

3. The described Voronoi simulator can be reliably applied to well test simulation and recovery 

performance prediction in complex reservoirs 

Comments: 
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SPE 37998 (1997) 

Paper Title: The Generation and Application of K-Orthogonal Grid Systems 

Author(s): Gunasekera, D; Cox, J; and Lindsey, P. 

Contribution to knowledge: The definition and generation of composite tetrahedral grids, the process of 

generating good K-orthogonal PEBI and composite tetrahedral grids, algorithms for computing volumes, 

transmissibilities, well connections and cell renumbering for general K-orthogonal grids. 

Objective of the paper: To develop a robust unstructured grid generation technique, which provides 

alternative to earlier methods proposed by Heinemann, Aavatsmark and Durlofsky, so as to overcome 

some of their respective drawbacks. In particular, the drawbacks were; poor handling of layers with 

contrasting permeability by Voronoi grids, cell boundary overlap in highly anisotropic systems in 

Voronoi grids, and the high number of cells in triangular grids. 

Methodology used:  

1. Discretization by way of a fully implicit control volume formulation to determine the flow terms. This 

scheme is applicable to any grid that satisfies the K-orthogonality condition. 

2. K-orthogonal grid generation by scaling - the physical domain is transformed into a computational 

domain in which orthogonality corresponds to K-orthogonality in the physical domain, points are 

triangulated in the computational space prior transformation back to the physical domain. The 

transformation is applied by scaling the z-coordinate of the model using horizontal and vertical 

permeabilities. Triangles (or tetrahedra) are aggregated in computational space to reduce the overall 

number of cells in the model. 

3. Grid generation follows a systematic process involving (a) point distribution according to the global 

grid type and local grid style suited to modelling system features, (b) triangulation (or 

tetrahedralization) involving a Delaunay tessellation and a incremental point insertion method 

proposed by Bowyer in 1981, and, (c) Cell generation and triangle aggregation. 

4. Cell property generation, grid smoothing, deviated coordinate lines well connection factors and cell 

renumbering algorithms are subsequently described. 

5. Validation step is performed using several simulations compared to analytical models.  

Conclusion reached: 

1. The unstructured gridding technique developed produces K-orthogonal grids applicable to a wide 

class of reservoir simulation problems. 

2. The two-point transmissibility formula, other cell property calculations and well connection factor 

calculations are derived for general unstructured grids. 

3. The deviation from K-orthogonality reported on a cell basis could be used to identify regions for local 

application of multi-point flux approximation schemes (MPFA). 

Comments:  
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SPE 37999 (1997) 

Paper Title: A Control Volume Scheme for Flexible Grids in Reservoir Simulation 

Author(s): Verma, S; and Aziz, K. 

Contribution to knowledge: A new finite-difference approach that can be applied to existing flexible grid 

types to reduce the number of cells required for complex reservoir simulation. First to attempt grid 

alignment along streamlines. 

Objective of the paper: To present a method capable of modelling full, anisotropic and asymmetric 

permeability tensors and permeability heterogeneity, to overcome the limitations of Cartesian and locally 

orthogonal Voronoi or k-orthogonal PEBI grids. 

Methodology used: 

1. Flow equations according to the Method proposed by Lake in 1989, valid for multi-component, multi-

phase systems, derived from mass conservation and Darcy Law fundamentals. 

2. The numerical method applies to grids (triangulations/tetrahedralizations) obeying the Voronoi 

criterion, but allows permeability to vary inside the element by breaking it down into a sub-set of 

control volumes about each vertex within which properties are constant.  The discretization scheme 

maintains flux continuity across grid block faces inside each tetrahedron and potential continuity at a 

specific point on each interface.  

3. Interblock transmissibility (i.e. between tetrahedra) is based upon the same principles as those used 

for Cartesian grids. Intrablock transmissibilities (i.e. between the six faces connecting the four internal 

control volumes about the vertices of each tetrahedron) result in six flow terms inside each 

tetrahedron. A face potential is introduced at each interface, which when combined with potentials at 

the nodes can be used to estimate velocities at the interface, and in turn, the velocities to estimate the 

flux. 

4. Control volume finite element (CVFE), boundary adapting grids (BAG) are used in two numerical 

examples; (a) coning in a horizontal well, and (b) aligning grid along streamlines.  

5. Several numerical examples were performed comparing results of fine grid simulation with ECLIPSE 

(reference case) with those of FLEX (the developed simulator); water coning in a horizontal well, and, 

grid aligned along streamlines. 

Conclusion reached: Flexible grids can be exploited to significantly reduce the number of blocks required 

for complex reservoir simulation problems. 

Comments: Not sure that the numerical cases and their respective results, demonstrated well the objective 

of the paper, which was to model full anisotropic and heterogeneous systems that improves the results of 

Voronoi or k-orthogonal PEBI grids, since no relevant comparisons were made. 
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SPE 76783 (2002) 

Paper Title: PEBI Grid Selection for Numerical Simulation of Transient Tests 

Author(s): Escobar, F.H; Tiab, D. 

Contribution to knowledge: Provides an investigation of the applicability of various PEBI grid types to 

model pressure transient behaviour of different well types 

Objective of the paper: To establish and recommend the use of specific PEBI grid types – hexagonal, 

elliptical, rectangular, circular and variable – for the simulation of transient pressure behaviour in vertical 

wells, vertical hydraulically fractured wells and horizontal wells.  

Methodology used: 

1. For each of the selected well types a number of simulations were performed using the different PEBI 

grid geometries and the results compared to analytical solutions. The arithmetic error was used to 

quantify the discrepancy between numerical and analytical results. 

2. Analytical models were provided by Cinco-Ley (1976) for vertical fractured well and by Goode and 

Thambynayagam (1987) for horizontal wells. No reference is given to the analytical model used for 

undamaged vertical well, nor vertical well with damage skin and well-bore storage.  

Conclusion reached: 

1. For unfractured vertical wells, the circular and variable PEBI grids provide best results with fewer 

grid-points. The application of circular PEBI grids can be extended to vertical wells having well-bore 

storage and skin 

2. For fractured vertical wells, the elliptical PEBI grid provided the best results for fracture 

conductivities > 1. All PEBI grid simulation was unreliable for fracture conductivities < 1. Elliptical 

PEBI grids were able to reliably handle non-orthogonal fracture systems that are rotated in any 

direction on the Cartesian plane. 

3. All PEBI grid geometries provide good results for horizontal wells at any angle, with the elliptical 

grid being deemed most suitable. 

Comments: This paper appears to be basic and trivial, but nonetheless does provide some useful 

recommendations to the practicing reservoir engineer involved in reservoir simulation. 
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SPE 79684 (2003) 

Paper Title: Locally Stream-Line-Pressure-Potential-Based PEBI (SPP-PEBI) Grids 

Author(s): Mlacnik, M.J; Harrer, A. W; Heinemann, Z.E. 

Contribution to knowledge: A successful procedure to generate and handle 2.5D PEBI grids based on 

streamlines and pressure potentials using the windowing technique 

Objective of the paper: To present the first step to a general applicable procedure that allows to 

dynamically integrate streamline -pressure-potential-based grids into full field models. 

Methodology used: 

1. Fully implicit solution for the full model is calculated, but inner blocks of the windows, represented 

by  fine scale Cartesian grids, are solved for pressure only. Saturations and mole fractions are not 

updated, but this step provides the boundary influx for the windows and the pressure distribution that 

allows to determine the grid points of a streamline - pressure potential grid.  

2. Based on the point distribution a new set of window grids are constructed using the PEBI algorithm, 

which is subsequently solved for the same overall time-step using the boundary flux determined 

during the first step. 

3. The method makes use of local time-steps, modified as required, to ensure convergence of the window 

solutions. 

4. Quality check is performed following convergence of the last local time-step by ensuring both implicit 

and explicit boundary fluxes of all components are within a specified tolerance across the window 

boundary blocks.  

Conclusion reached: 

1. A successful procedure to generate and handle 2.5D PEBI grids based on streamlines and pressure 

potentials has been presented. 

2. SPP-PEBI grids can be generated and exchanged during a simulation run using the windowing 

technique. 

3. SPP-PEBI grids can handle displacement problems at adverse mobility ratio with less CPU time and 

higher accuracy than 5 or 9-point stencils for small scale examples. 

4. Calculated results can be improved in full-field simulations. 

Comments: Results obtained from SPP-PEBI grids could probably be further improved by smoothing 

algorithms and appropriate upscaling techniques. 
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SPE 84373 (2003) 

Paper Title: Use of PEBI Grids for a Heavily Faulted Reservoir in the Gulf of Mexico 

Author(s): Melichar, H; Reingruber, A.J; Shotts, D.R; Dobbs, W.C. 

Contribution to knowledge: The application of PEBI gridding techniques to full-field reservoir simulation 

and comparison with structured Cartesian or corner-point grids for the same application; introduced a 

technique to interface PEBI grid fault connections with standard reservoir simulators – piecewise 

orthogonalization. 

Objective of the paper: To compare different gridding techniques and determine gridding efficiency 

within the context of a complex (highly faulted) full-field reservoir simulation aimed at development well 

optimisation and where revised reservoir descriptions are available frequently via drilling updates. 

Methodology used: 

1. Three different simulation models were built for the subject reservoir system; a rectangular grid that 

uses stair-step approach to model faults, a curvilinear grid that follows the main bounding faults, and a 

PEBI grid. 

2. The PEBI grid utilises unstructured grid patches to model structural features and wells interfaced with 

the rectangular point-distributed grid. The goal was to keep the node distribution regular and to model 

geological features by adaptation of block faces without shifting centre points. Individual patches are 

connected to the main grid by non-neighbour connections and are handled efficiently by the 

conventional simulator. Underlying main grid blocks were set inactive wherever a patch has been 

introduced. 

3. Fault modelling is achieved through a new technique which enables the interfacing of PEBI grid fault 

connections by piecewise orthogonalization of fault block faces in the direction of the adjoining 

block-pair connections. Once a set of communicating block pairs is given the piecewise 

orthogonalization of corresponding faces was processed. 

Conclusion reached: 

1. The unstructured PEBI gridding technique was successfully combined with a conventional reservoir 

simulator based on structured gridding through the use of grid patches. 

2. Simulation using PEBI grids was considerably more practical that similar models based on Cartesian 

or curvilinear grids. The flexible aspects of the PEBI grid allowed accurate and rapid gridding of the 

complex structural reservoir system, the computational and dynamic flow model was improved and 

run times were shorter. 

Comments: All gridding alternatives investigated offered similar results in terms of pressure decline, 

production rates and recoveries, but it was the flexibility, user-friendliness and computational efficiency 

of the PEBI grid that set it apart in this real-world example.  
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SPE 79685 (2003) 

Paper Title: Use of PEBI Grids for Complex Advanced Process Simulators 

Author(s): Skoreyko, F; Sammon, P.H; and, Melichar, H. 

Contribution to knowledge: Successfully demonstrated that PEBI gridding techniques could be applied 

for complex thermal processes, namely steam assisted gravity drainage (SAGD), in a full-field setting.  

Objective of the paper: To extend previous work with PEBI grids in the simulation of relatively simple 

processes and investigate PEBI-based gridding for a complex thermal process (SAGD) in a full-field 

setting, by way of comparing several metrics – computing time and accuracy – between PEBI grids and a 

conventional corner-point grid with local refinement.  

Methodology used: 

1. Simulation was of a large, heavy oil field produced under SAGD using nine horizontal well pairs. 

2. Two simulation cases were developed; a corner-point grid model with local refinements (the reference 

case) which had 241000 cells and a PEBI-grid model which had 129000 cells.  

3. The PEBI-grid generation technology was based on the work of Heinemann in 1994, which used 

Cartesian gridding wherever reasonable with local refinements near wells and structural features that 

are interfaced to the background grid by way of PEBI grid transitions.   

4. The discretization method is related to the control volume finite element (CVFE) technique, after 

Forsyth (1989). 

5. Single well-pair cases were run prior the full-field SAGD simulations to determine the largest grid cell 

sizes in the vicinity of the horizontal wells required to accurately model the SAGD process. 

Conclusion reached: 

1. The added flexibility of PEBI gridding allowed for better alignment near horizontal wells  

2. Through PEBI-gridding it was possible to halve the number of cells in the model, while still 

maintaining the required definition and grid resolution at the points of interest 

3. The ILU-based sparse matrix solver was shown to be capable of computing in an unstructured grid 

environment 

4. PEBI-based gridding can be used efficiently to model complex processes in a full-field setting. In this 

case, these grids demonstrably improved accuracy and improved run-time by 32% over the 

conventional corner-point model. 

Comments: 
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Appendix B: Model Construction 

Grid 

 

Table B-1: Summary of grid properties and dimensions for the two models used in simulation. 

Initial Well Models 

 

Table B-2: Summary of well and completion properties for initial simulations 

 

Figure B-1: The location of well and completion within the grid for the horizontal well. Some example 

LGR are shown by explosion of the near-well grid (inset at left). 

 

 

 

 

NX NY NZ DX DY DZ Grid Cells Depth (top) Depth (bottom) Bulk Volume

# # # ft ft ft # ft ft MMbbl

Model-1 101 101 20 200 200 10 204020 4000 4200 14535

Model-2 101 101 19 200 200 10.53 193819 4000 4200 14535

Well Name VERT_FP VERT_PP HZ_90IN_90AZ

Well Type
vertical (fully 

penetrating)

vertical (partially 

penetrating)
horizontal

Casing Diameter inch 7 7 7

Casing Setting Depth ft MD (TVD) 4250 (4250) 4250 (4250) 7350 (4100)

Top Perforation ft MD (TVD) 4000 (4000) 4080 (4080) 6718.8 (4100)

Bottom Perforation ft MD (TVD) 4200 (4200) 4120 (4120) 7318.8 (4100)

Perforation Length ft 200 40 600

Well Reference Depth ft MD (TVD) 4095 (4095) 4095 (4095) 4100 (4100)

Completion Skin - 0 0 0
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Well-Versus-Grid Orientation Well Models 

Table B-3: Summary of well and completion properties for the well-versus-grid orientation sensitivity 

runs.  

Inclination and azimuth are used in the conventional sense, to represent true deviation of the well-bore 

with respect to the vertical and horizontal. Inclination is defined relative to the vertical, while azimuth is 

defined relative to the direction north. Apparent dip has been used to express the relative orientation of 

well-verses-grid in the x-z plane, and similarly, apparent rotation for the orientation of well-versus-grid in 

the x-y plane. 

 

Figure B-2: Plan view of the well configuration for well-versus-grid orientation sensitivity runs each with 

apparent grid rotations of 0º, 30º and 45º; deviated vertical wells (superimposed at left) complete with 

south elevation (left inset) and east elevation (right inset), and horizontal wells (superimposed at right). 

 

 

 

Well Name W_30IN_90AZ W_34IN_60AZ W_39IN_45AZ HZ_90IN_90AZ HZ_90IN_60AZ HZ_90IN_45AZ

Well Type
deviated (fully 

penetrating)

deviated (fully 

penetrating)

deviated (fully 

penetrating)
horizontal horizontal horizontal

Casing Diameter inch 7 7 7 7 7 7

Casing Setting Depth ft MD (TVD) 4250 (4216.5) 4250 (4208) 4300 (4236) 7350 (4100) 7450 (4100) 7600 (4100)

Top Perforation ft MD (TVD) 4000 (4000) 4000 (4000) 4000 (4000) 6718.8 (4100) 6718.8 (4100) 6718.8 (4100)

Bottom Perforation ft MD (TVD) 4230.9 (4200) 4240.4 (4200) 4258.4 (4200) 7318.8 (4100) 7411.6 (4100) 7567.3 (4100)

Perforation Length ft 230.9 240.4 258.4 600 692.8 848.5

Well Reference Depth ft TVD 4095 4095 4095 4100 4100 4100

Completion Skin - 0 0 0 0 0 0

Apparent Dip degree 30 30 30 90 90 90

Apparent Rotation degree 0 30 45 0 30 45

Well Inclination degree 30 34 39 90 90 90

Well Azimuth degree 90 60 45 90 60 45

X-axis

Y
-a

x
is

X-axis

Y
-a

x
is
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Rock Properties 

 

Table B-4: Summary of reservoir rock properties used to define the porous media in the simulations. 

Fluid Properties 

 

Table B-5: Average fluid properties representative of the model used in simulation and for comparison 

with analytic solutions. 

Viscosity and volume factors are representative of an average reservoir condition interpolated from the 

simulator input data, whereas density represents a stock-tank condition. Hydrocarbon compressibility 

values have been determined from the formation volume factors input to the simulator and represent an 

average reservoir condition. 

Aspect Ratio Sensitivity Cases 

 

Table B-6: Summary of test cases used for sensitivity on Cartesian grid aspect ratio 

9-Point Versus 5-Point Flux Sensitivity Cases 

 

Table B-7: Summary of test cases used for comparison of 9-point with 5-point flux schemes.  

 

 

 

ϕ - 0.2

kx mD 200

ky mD 200

kz mD 200

cf psi-1 1x10-5

Density (ρw) Viscosity (µ) Compressibility Volume Factor

lbm/ft3 cp psi-1 rbbl/sbbl

Oil 52.06 0.688 1.03x10-5 1.144

Water 63.7 0.396 2.84x10-6 1.015

Gas 0.051 0.016 6.32x10-4 0.01

1 2.11 3.8 6.33

1 2.11 6.33 19 57

0.053 0.158 1 6.3 19

DX/DY (DY=DZ)

VERT_FP

HZ_90IN_90AZ

HZ_90IN_90AZ

ASPECT RATIO

DX/DY (DY=DZ)

DX/DZ (DX=DY)

1 2

VERT_FP Coarse LGR_3x1_1

VERT_PP Coarse LGR_19x1_1

W_30IN_90AZ Coarse LGR_39x2_2x1

W_34IN_60AZ Coarse LGR_39x2_2x1

W_39IN_45AZ Coarse LGR_39x2_2xD

HZ_90IN_90AZ LGR_19x1_3x3 LGR_19x1_5x1

HZ_90IN_60AZ Coarse LGR_19x1_3x3

HZ_90IN_45AZ Coarse LGR_19x1_Track

TEST CASES
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Grid Type Sensitivity Cases 

 

Table B-8: Summary of test cases used for sensitivity on grid type 

 

 

VERT_FP VERT_PP W_30IN_90AZ W_34IN_60AZ W_39IN_45AZ HZ_90IN_90AZ HZ_90IN_60AZ HZ_90IN_45AZ

X X X X X X X X

X X

X X X

X X XUnstructured LGR

Cartesian LGR 

Radial LGR

Geometric Series LGR

WELL NAME
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Appendix C: Formulae for Pressure Transient Analyses 

Derivative Analysis 

Equation (C-1) defines the superposition time function for build-up analysis. Equations (C-2) to (C-4) 

outline the functions to be plotted. 

tt
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)(   ................................................................................................................................................ ................  (C-1) 
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Dimensionless pressure for pressure match; 

p
qB

kh
pD D

2.141
  ............................................................................................................................. ..........................  (C-5) 

Dimensionless time group for time match;  

C

tkh

C

t

D

D D



000295.0   ............................................................................................................................. ......................  (C-6) 

Dimensionless well condition group for curve match; 

S
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S
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C
eC 2

2
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
   ....................................................................................................................................................   (C-7) 

Specialized Analyses 

For each flow regime, the formulae used to determine the relevant parameters from the specialised 

analyses are given by Equations (C-8) through (C-16) 

Well-bore storage; 

WBSm
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C

24
   ............................................................................................................................. ....................................  (C-8) 

Radial flow (Horner Analysis); 
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Spherical flow for a vertically centred zone of limited entry; 

3
2
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3
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Cylindrical flow taken from the first straight line on the semi-log analysis of horizontal well; 

CF
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m

qB
Lkk

3.81
   ................................................................................................ .....................................................  (C-13) 

Elliptical flow taken from the second straight line on a semi-log analysis of horizontal well; 
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Linear Flow; 
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Appendix D: LGR Catalogue 

The following pages provide illustration of all LGR referenced in the figures of the main body and 

Appendix E of this report.   For each individual LGR the diagrams consist of an areal view (x-y plane) to 

illustrate the lateral near-well discretization, and a cross-section through the column of cells containing 

the well (x-z plane) to illustrate the vertical near-well discretization. In most illustrations we attempt to 

show some course grid cells to illustrate the refinement as opposed to the background grid. The LGR are 

listed in the order that they appear in the figures of Appendix E. 
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  VERT_FP: RadLGR_8R_66 VERT_FP: RadLGR_8R_99 VERT_FP: GeoXY_5x20

VERT_FP: LGR_3x1_1 VERT_FP: LGR_3x1+ VERT_FP: LGR_9x1_3x1+

VERT_FP: LGR_9x3_3x3+ VERT_FP: RadLGR_4R_33 VERT_FP: RadLGR_8R_33
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  VERT_PP: LGR_77x4_11x2_3x3 VERT_PP: RadLGR_8R_66 VERT_PP: RadLGR_16R_66

VERT_FP: GeoXY_7x20 VERT_FP: GeoXY_9x20 VERT_FP: GeoXY_11x20

VERT_PP: LGR_19x1_1 VERT_PP: LGR_9x1_3x3 VERT_PP: LGR_39x1_1
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VERT_PP: RadLGR_16Rx3_66 VERT_PP: RadLGR_24RxGeo_66 VERT_PP: GeoXY_11x60

VERT_PP:GeoXYZ_11x46 VERT_PP: GeoXY_11x100 HZ_90IN_90AZ: LGR_19x1_3x1

HZ_90IN_90AZ: LGR_19x1_3x3 HZ_90IN_90AZ: LGR_19x1_5x1 HZ_90IN_90AZ: LGR_19x1_15x3
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HZ_90IN_90AZ: LGR_19x1_5x3 HZ_90IN_90AZ: LGR_19x1_5x5 HZ_90IN_90AZ: LGR_19x1_7x3

HZ_90IN_90AZ: LGR_57x3_5x1 HZ_90IN_90AZ: GeoY_11x1_3x1 HZ_90IN_90AZ: GeoXY_11x1_5x1

HZ_90IN_90AZ: GeoXY_11x3_5x1 HZ_90IN_90AZ: GeoXYZ_11x36_5x1 HZ_90IN_90AZ: UGR_50x3x50x1_5x1



48  Appendix D 

 
Shaun Bambridge Imperial College London 

  W_30IN_90AZ: LGR_9x1_2x1 W_30IN_90AZ: LGR_19x1_2x1 W_30IN_90AZ: LGR_19x1_2x1_3x1+

HZ_90IN_90AZ: UGR_50x3x50x1_7x3 HZ_90IN_90AZ: UGR_50x5x50x1_5x1 HZ_90IN_90AZ: UGR_50x5x50x3_5x3

HZ_90IN_90AZ: UGR_30x3x50x1_5x1 HZ_90IN_90AZ: UGR_50x3x50x1_5x3 HZ_90IN_90AZ: UGR_50x5x50x1_5x3
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W_34IN_60AZ: LGR_39x2_2x1 W_34IN_60AZ: LGR_9x1_4x3 W_39IN_45AZ: LGR_9x1_2xD

W_39IN_45AZ: LGR_19x1_2xD W_39IN_45AZ: LGR_39x2_2xD HZ_90IN_60AZ: LGR_9x1_Az30

W_30IN_90AZ: LGR_39x2_2x1 W_34IN_60AZ: LGR_9x1_2x1 W_34IN_60AZ: LGR_19x1_2x1
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  HZ_90IN_60AZ: UGR_90x9x50x3_5x5 HZ_90IN_45AZ: LGR_9x1_Az45 HZ_90IN_45AZ: LGR_19x1_Az45

HZ_90IN_60AZ: LGR_19x1_Az30 HZ_90IN_60AZ: LGR_57x3_Az30 HZ_90IN_60AZ: LGR_19x1_3x3

HZ_90IN_60AZ: UGR_50x5x50x1_Az30 HZ_90IN_60AZ: UGR_50x5x50x3_Az30+ HZ_90IN_60AZ: UGR_90x9x50x3_Az30+
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HZ_90IN_45AZ: UGR_50x7x50x1_Az45+ HZ_90IN_45AZ: UGR_63x7x100x1_Az45+ HZ_90IN_45AZ: UGR_63x7x100x3_Az45+

VERT_FP: LGR_19x1_13x13 VERT_FP: LGR_9x19x1_13x13 VERT_FP: LGR_5x19x1_13x13

HZ_90IN_45AZ: LGR_57x3_Az45 HZ_90IN_45AZ: LGR_57x3_4x3 HZ_90IN_45AZ: UGR_50x5x50x1_Az45
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 HZ_90IN_90AZ: LGR_1x19x1_15x11 HZ_90IN_90AZ: LGR_19x3x1_15x11 HZ_90IN_90AZ: LGR_19x1x1_15x11

VERT_FP: LGR_3x19x1_13x13 HZ_90IN_90AZ: LGR_19x1_15x11 HZ_90IN_90AZ: LGR_9x1_15x11

HZ_90IN_90AZ: LGR_3x1_15x11 HZ_90IN_90AZ: LGR_1x3_15x11 HZ_90IN_90AZ: LGR_3x19x1_15x11
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Appendix E: Simulation Results 

Fully Penetrating Vertical Well (VERT_FP) 

 

Figure E-1: Results of simulation for VERT_FP using Cartesian refinement. 

 

Figure E-2: Results of simulation for VERT_FP using radial refinement. 
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Figure E-3: Results of simulation for VERT_FP using geometric series refinement. 

Partially Penetrating Vertical Well (VERT_PP) 

 

Figure E-4: Results of simulation for VERT_PP using Cartesian refinement. 
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Figure E-5: Results of simulation for VERT_PP using radial refinement. 

 

Figure E-6: Results of simulation for VERT_PP using geometric series refinement. 
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Horizontal Well Aligned with Grid (HZ_90IN_90AZ) 

 

Figure E-7: Primary results of simulation for HZ_90IN_90AZ using Cartesian refinement. 

 

Figure E-8: Additional results of simulation for HZ_90IN_90AZ using Cartesian refinement. 
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Figure E-9: Results of simulation for HZ_90IN_90AZ using geometric series refinement. 

 

Figure E-10: Primary results of simulation for HZ_90IN_90AZ using unstructured refinement. 
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Figure E-11: Additional results of simulation for HZ_90IN_90AZ using unstructured refinement. 

Deviated Well, Apparent Dip 30º and Apparent Rotation 0º (W_30IN_90AZ) 

 

Figure E-12: Results of simulation for W_30IN_90AZ using Cartesian refinement. 
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Deviated Well, Apparent Dip 30º and Apparent Rotation 30º (W_34IN_60AZ) 

 

Figure E-13: Results of simulation for W_34IN_60AZ using Cartesian refinement. 

Deviated Well, Apparent Dip 30º and Apparent Rotation 45º (W_39IN_45AZ) 

 

Figure E-14: Results of simulation for W_39IN_45AZ using Cartesian refinement. 
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Horizontal Well, Apparent Dip 90º and Apparent Rotation 30º (HZ_90IN_60AZ) 

 

Figure E-15: Results of simulation for HZ_90IN_60AZ using Cartesian refinement. 

 

Figure E-16: Results of simulation for HZ_90IN_60AZ using unstructured refinement. 
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Horizontal Well, Apparent Dip 90º and Apparent Rotation 45º (HZ_90IN_45AZ) 

 

Figure E-17: Results of simulation for HZ_90IN_45AZ using Cartesian refinement. 

 

Figure E-18: Results of simulation for HZ_90IN_45AZ using unstructured refinement. 
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Aspect Ratio Sensitivity Cases 

 

Figure E-19: Results of simulation for VERT_FP to test DX/(DY=DZ) aspect ratios. The associated 

aspect ratios are shown in parenthesis. 

 

Figure E-20: Results of simulation for HZ_90IN_90AZ to test (DX=DY)/DZ aspect ratios. The 

associated aspect ratios are shown in parenthesis. 

1560

1570

1580

1590

1600

1610

1620

01/Jan 00:00 02/Jan 00:00 03/Jan 00:00 04/Jan 00:00

P
re

s
s
u

re
, 

p
s
ia

Analytic Solution

LGR_19x1_13x13 (1)

LGR_9x19x1_13x13 (2.11)

LGR_5x19x1_13x13 (3.8)

LGR_3x19x1_13x13 (6.33)

0.1

1

10

100

1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02

D
P

 a
n

d
 D

P
',
 p

s
ia

Dt, hrs

Analytic Pressure Analytic Derivative LGR_19x1_13x13 (1)

LGR_19x1_13x13 (1) LGR_9x19x1_13x13 (2.11) LGR_9x19x1_13x13 (2.11)

LGR_5x19x1_13x13 (3.8) LGR_5x19x1_13x13 (3.8) LGR_3x19x1_13x13 (6.11)

LGR_3x19x1_13x13 (6.11)

1595

1600

1605

1610

1615

1620

01/Jan 00:00 02/Jan 00:00 03/Jan 00:00 04/Jan 00:00 05/Jan 00:00 06/Jan 00:00

P
re

s
s
u

re
, 

p
s
ia

Analytic Solution

LGR_19x1_15x11 (1)

LGR_9x1_15x11 (2.11)

LGR_3x1_15x11 (6.33)

Coarse (19)

LGR_1x3_15x11 (57)

0.1

1

10

100

1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02

D
P

 a
n

d
 D

P
',
 p

s
ia

Dt, hrs

Analytic Solution Analytic Derivative LGR_19x1_15x11 (1) LGR_19x1_15x11 (1)

LGR_9x1_15x11 (2.11) LGR_9x1_15x11 (2.11) LGR_3x1_15x11 (6.33) LGR_3x1_15x11 (6.33)

Coarse (19) Coarse (19) LGR_1x3_15x11 (57) LGR_1x3_15x11 (57)



Appendix E  63 

 
Shaun Bambridge Imperial College London 

 

 

Figure E-21: Results of simulation for HZ_90IN_90AZ to test DX/DY aspect ratios. The associated 

aspect ratios are shown in parenthesis. 

5-Point versus 9-Point Flux Sensitivity Cases 

 

Figure E-22: Results of simulation for VERT_FP to test flux schemes. 
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Figure E-23: Results of simulation for VERT_PP to test flux schemes. 

 

Figure E-24: Results of simulation for HZ_90IN_90AZ to test flux schemes. 
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Figure E-25: Results of simulation for W_30IN_90AZ to test flux schemes. 

 

Figure E-26: Results of simulation for W_34IN_60AZ to test flux schemes. 
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Figure E-27: Results of simulation for W_39IN_45AZ to test flux schemes. 

 

Figure E-28: Results of simulation for HZ_90IN_60AZ to test flux schemes 
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Figure E-29: Results of simulation for HZ_90IN_45AZ to test flux schemes 
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Appendix F: Pressure Transient Analyses 

Fully Penetrating Vertical Well (VERT_FP) 

 

Table F-1: Summary of the interpretation results for VERT_FP well model complete with root mean 

squared error calculations expressed in absolute and relative terms. 

 

Figure F-1: Analysis of well VERT_FP, coarse grid 

 

C khh kh St Pi C khh kh St Pi

bbl/psi mD-ft mD - psia % % % - %

VERT_FP (ANALYTIC) 0.000113 28000.000 140.000 0.000 1616.430 0.000 0.000 0.000 0.000 0.000

Coarse 0.3 27400.000 137.000 -0.150 1616.460 265386.726 -2.143 -2.143 -0.150 0.002

RMS Error, Absolute 0.300 600.000 3.000 0.150 0.030

RMS Error, Relative (%) 265387 2.14 2.14 - 0.002

LGR_3x1_1 0.11 27400.000 137.000 0.090 1616.460 97245.133 -2.143 -2.143 0.090 0.002

LGR_3x1+ 0.07 28000.000 140.000 -0.040 1616.440 61846.903 0.000 0.000 -0.040 0.001

LGR_9x1_3x1+ 0.008 28000.000 140.000 0.150 1616.440 6979.646 0.000 0.000 0.150 0.001

LGR_9x3_3x3 0.008 28000.000 140.000 0.025 1616.440 6979.646 0.000 0.000 0.025 0.001

RMS Error, Absolute 0.065 300.000 1.500 0.091 0.017

RMS Error, Relative (%) 57834 1.07 1.07 - 0.001

Rad_4R_33 0.00012 28000.000 140.000 0.050 1616.430 6.195 0.000 0.000 0.050 0.000

Rad_8R_33 0.0001 28000.000 140.000 0.050 1616.430 -11.504 0.000 0.000 0.050 0.000

Rad_8R_66 0.00005 27600.000 138.000 0.000 1616.460 -55.752 -1.429 -1.429 0.000 0.002

Rad_8R_99 0.00005 27300.000 136.500 0.040 1616.460 -55.752 -2.500 -2.500 0.040 0.002

RMS Error, Absolute 0.000045 403 2.02 0.041 0.021

RMS Error, Relative (%) 40 1.44 1.44 - 0.001

Values Errors

Cartesian Refinement

Radial Refinement

Coarse Grid
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Figure F-2: Analysis of well VERT_FP, LGR_3x1_1 

 

Figure F-3: Analysis of well VERT_FP, LGR_3x1+ 
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Figure F-4: Analysis of well VERT_FP, LGR_9x1_3x1+ 

 

Figure F-5: Analysis of well VERT_FP, LGR_9x3_3x3 
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Figure F-6: Analysis of well VERT_FP, RadLGR_4R_33 

 

Figure F-7: Analysis of well VERT_FP, RadLGR_8R_33 
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Figure F-8: Analysis of well VERT_FP, RadLGR_8R_66 

 

Figure F-9: Analysis of well VERT_FP, RadLGR_8R_99 
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Partially Penetrating Vertical Well (VERT_PP) 

 

Table F-2: Summary of the interpretation results for VERT_PP well model complete with root mean 

squared error calculations expressed in absolute and relative terms. 

 

Figure F-10: Analysis of well VERT_PP, coarse grid 

 

 

 

 

 

C khh kh kv/kh St Pi C khh kh kv/kh St Pi

bbl/psi mD-ft mD - - psia % % % % - %

VERT_PP (ANALYTIC) 0.000023 28000 140 1.000 15.60 1616.43 0.000 0.000 0.000 0.000 0.000 0.000

Coarse 0.065 27000 135 - 18.70 1616.47 282508.696 -3.571 -3.571 - 3.100 0.002

RMS Error, Absolute 0.065 1000 5.00 - 3.10 0.040

RMS Error, Relative (%) 282509 3.57 3.57 - 19.87 0.0025

LGR_19x1_1 0.00047 27000 135 0.800 15.70 1616.48 1943.478 -3.571 -3.571 -20.000 0.100 0.003

LGR_9x1_3x3 0.001 27600 138 0.820 15.80 1616.45 4247.826 -1.429 -1.429 -18.000 0.200 0.001

LGR_39x1_1 0.0002 27400 137 0.710 16.20 1616.46 769.565 -2.143 -2.143 -29.000 0.600 0.002

LGR_77x4_11x2_3x3 0.00009 27500 138 0.980 15.50 1616.46 291.304 -1.786 -1.786 -2.000 -0.100 0.002

RMS Error, Absolute 0.00055 665 3.33 0.20 0.32 0.034

RMS Error, Relative (%) 2372 2.38 2.38 19.81 2.08 0.002

RadLGR_8R_66 0.00004 27400 137 1.000 16.40 1616.46 73.913 -2.143 -2.143 0.000 0.800 0.002

RadLGR_16R_66 0.000022 27400 137 0.800 16.10 1616.46 -4.348 -2.143 -2.143 -20.000 0.500 0.002

RadLGR_16Rx3_66 0.00002 27500 138 0.880 15.90 1616.46 -13.043 -1.786 -1.786 -12.000 0.300 0.002

RadLGR_16RxGeo_66 0.00002 27400 137 0.870 15.60 1616.46 -13.043 -2.143 -2.143 -13.000 0.000 0.002

RMS Error, Absolute 0.000009 577 2.88 0.134 0.495 0.030

RMS Error, Relative (%) 38 2.06 2.06 13.35 3.17 0.002

Cartesian Refinement

Radial Refinement

Coarse Grid

Values  Errors
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Figure F-11: Analysis of well VERT_PP, LGR_19x1_1 

 

Figure F-12: Analysis of well VERT_PP, LGR_9x1_3x3 
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Figure F-13: Analysis of well VERT_PP, LGR_39x1_1 

 

Figure F-14: Analysis of well VERT_PP, LGR_77x4_11x2_3x3 
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Figure F-15: Analysis of well VERT_PP, RadLGR_8R_66 

 

Figure F-16: Analysis of well VERT_PP, RadLGR_16R_66 
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Figure F-17: Analysis of well VERT_PP, RadLGR_16Rx3_66 

 

Figure F-18: Analysis of well VERT_PP, RadLGR_24RxGeo_66 
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Horizontal Well Aligned With Grid (HZ_90IN_90AZ) 

 

Table F-3: Summary of the interpretation results for HZ_90IN_90AZ well model complete with root 

mean squared error calculations expressed in absolute and relative terms. 

 

Figure F-19: Analysis of well HZ_90IN_90AZ, coarse grid 

C khh kh L kv/kh St Pi C khh kh L kv/kh St Pi

bbl/psi mD-ft mD ft - - psia % % % % % - %

HZ_90IN_90AZ (ANALYTIC) 0.00034 28000 140.0 300 1.00 -4.65 1618.02 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Coarse 0.05 27500 137.5 190 1.82 -4.44 1618.03 14605.882 -1.786 -1.786 -36.667 82.000 0.210 0.001

RMS Error, Absolute 0.050 500 2.50 110 0.82 0.21 0.010

RMS Error, Relative (%) 14606 1.79 1.79 37 82 4.52 0.001

LGR_19x1_3x1 0.0006 27600 138.00 213 1.60 -4.50 1618.03 76.471 -1.429 -1.429 -29.000 60.000 0.150 0.001

LGR_19x1_3x3 0.0006 28300 141.50 215 1.50 -4.47 1618.01 76.471 1.071 1.071 -28.333 50.000 0.180 -0.001

LGR_19x1_5x1 0.0006 28000 140.00 243 1.24 -4.55 1618.02 76.471 0.000 0.000 -19.167 24.000 0.100 0.000

LGR_19x1_15x3 0.0006 28500 142.50 234 1.38 -4.50 1618.01 76.471 1.786 1.786 -22.000 38.000 0.150 -0.001

RMS Error, Absolute 0.00026 354 1.77 75 0.45 0.15 0.009

RMS Error, Relative (%) 76 1.26 1.26 25 45 3.18 0.001

UGR_50x3x50x1_5x1 0.0005 28000 140.00 235 1.21 -4.510 1618.02 47.059 0.000 0.000 -21.667 21.000 0.140 0.000

UGR_50x3x50x1_7x3 0.003 27500 137.50 250 1.50 -4.620 1618.01 782.353 -1.786 -1.786 -16.667 50.000 0.030 -0.001

UGR_50x5x50x1_5x1 0.002 27500 137.50 245 1.40 -4.420 1618.01 488.235 -1.786 -1.786 -18.333 40.000 0.230 -0.001

UGR_50x5x50x3_5x3 0.0009 27500 137.50 255 1.45 -4.610 1618.01 164.706 -1.786 -1.786 -15.000 45.000 0.040 -0.001

RMS Error, Absolute 0.00159 433 2.17 54 0.41 0.137 0.009

RMS Error, Relative (%) 469 1.55 1.55 18 41 2.94 0.001

Coarse Grid

Cartesian Refinement

Unstructured 

Refinement

Values  Errors
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Figure F-20: Analysis of well HZ_90IN_90AZ, LGR_19x1_3x1 

 

Figure F-21: Analysis of well HZ_90IN_90AZ, LGR_19x1_3x3 
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Figure F-22: Analysis of well HZ_90IN_90AZ, LGR_19x1_5x1 

 

Figure F-23: Analysis of well HZ_90IN_90AZ, LGR_19x1_15x3 
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Figure F-24: Analysis of well HZ_90IN_90AZ, UGR_50x3x50x1_5x1 

 

Figure F-25: Analysis of well HZ_90IN_90AZ, UGR_50x3x50x1_7x3 
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Figure F-26: Analysis of well HZ_90IN_90AZ, UGR_50x5x50x1_5x1 

 

Figure F-27: Analysis of well HZ_90IN_90AZ, UGR_50x5x50x3_5x3 
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Horizontal Well, Apparent Dip 90º and Apparent Rotation 30º (HZ_90IN_60AZ) 

 

Table F-4: Summary of the interpretation results for HZ_90IN_90AZ well model complete with root 

mean squared error calculations expressed in absolute and relative terms. 

 

Figure F-28: Analysis of well HZ_90IN_60AZ, coarse grid 

C khh kh L kv/kh St Pi C khh kh L kv/kh St Pi

bbl/psi mD-ft mD ft - - psia % % % % % - %

HZ_90IN_60AZ (ANALYTIC) 0.00039 28000 140.0 346 1.00 -5.00 1618.02 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Coarse 0.080 28300 141.5 280 1.69 -4.93 1618.02 20412.821 1.071 1.071 -19.075 69.000 0.070 0.000

RMS Error, Absolute 0.080 300 1.50 66 0.69 0.07 0.00

RMS Error, Relative (%) 20413 1.07 1.07 19 69 1.40 0.00

LGR_9x1_Az30 0.008 28000 140 225 1.40 -4.71 1618.03 1951.282 0.000 0.000 -34.971 40.000 0.290 0.001

LGR_19x1_Az30 0.0032 28000 140 278 1.60 -4.96 1618.02 720.513 0.000 0.000 -19.653 60.000 0.040 0.000

LGR_57x3_Az30+ 0.0018 28000 140 278 1.50 -4.78 1618.02 361.538 0.000 0.000 -19.653 50.000 0.220 0.000

LGR_19x1_3x3 0.0033 28000 140 270 1.79 -4.94 1618.02 746.154 0.000 0.000 -21.965 79.000 0.060 0.000

RMS Error, Absolute 0.0044 0.00 0.00 43 0.59 0.22 0.005

RMS Error, Relative (%) 1130 0.00 0.00 13 59 4.48 0.000

UGR_50x5x50x1_Az30 0.003 27000 135 300 1.40 -5.00 1618.01 669.231 -3.571 -3.571 -13.295 40.000 0.000 -0.001

UGR_50x5x50x3_Az30+ 0.001 27000 135 312 1.39 -5.02 1618.01 156.410 -3.571 -3.571 -9.827 39.000 -0.020 -0.001

UGR_90x9x50x3_Az30+ 0.0025 26800 134 310 1.48 -5.02 1618.05 541.026 -4.286 -4.286 -10.405 48.000 -0.020 0.002

UGR_90x9x50x3_5x5 0.001 26800 134 310 1.51 -5.03 1618.01 156.410 -4.286 -4.286 -10.405 51.000 -0.030 -0.001

RMS Error, Absolute 0.0018 1105 5.52 9 0.45 0.368 0.017

RMS Error, Relative (%) 455 3.94 3.94 3 45 7.35 0.001

Values  Errors

Coarse Grid

Cartesian Refinement

Unstructured 

Refinement
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Figure F-29: Analysis of well HZ_90IN_60AZ, LGR_9x1_Az30 

 

Figure F-30: Analysis of well HZ_90IN_60AZ, LGR_19x1_Az30 
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Figure F-31: Analysis of well HZ_90IN_60AZ, LGR_57x3_Az30+ 

 

Figure F-32: Analysis of well HZ_90IN_60AZ, LGR_19x1_3x3 
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Figure F-33: Analysis of well HZ_90IN_60AZ, UGR_50x5x50x1_Az30 

 

Figure F-34: Analysis of well HZ_90IN_60AZ, UGR_50x5x50x3_Az30+ 
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Figure F-35: Analysis of well HZ_90IN_60AZ, UGR_90x9x50x3_Az30+ 

 

Figure F-36: Analysis of well HZ_90IN_60AZ, UGR_90x9x50x3_5x5 
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Appendix G: Peculiarities of Working with Unstructured Refinement 

The simulation of unstructured grids introduced several peculiarities related to software functionality. 

Numerical modelling using unstructured refinement was run using a different software (see Software in 

the main body of the report), which was unable to support the dead-oil fluid model and was not 

compatible with the time-stepping output from the pre-processor.  

An equivalent live-oil fluid model was generated by modification of the stock tank oil density such that 

reservoir fluid density and reservoir pressure were maintained constant between simulations under both 

static and dynamic conditions. The live-oil’s saturation pressure (bubble point) was set well below the 

simulated bottomhole flowing pressure to ensure fluid remained single-phase in the reservoir at all times.  

Since unstructured grids could only be successfully exported and run using time-steps which were whole 

number multiples of a day, and given that accurate description of the pressure transients required time 

steps in the order of seconds, it was necessary to transform the model parameters, using the dimensionless 

pressure and dimensionless time variables given in Appendix C. This involved a modification of 

parameters by a factor of 86400 – dictated by the transformation of second equivalent time-steps into days 

and resulted in very low rates from very low permeability rock over extremely large time-steps. Finally, 

prior to analysis, the time-stamp of data output from the simulator was modified back in accordance with 

all other simulations. 

Furthermore, due to rounding of the oil rate in the simulator, 0.01736 STBD rounded to 0.02 STBD, this 

had to be reflected in the rate input to the pressure transient interpretations – an increase from 1500 STBD 

to 1728.1 STBD.  
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Appendix H: Simulator Performance Vectors 

Fully Penetrating Vertical Well (VERT_FP) 

 
 

Table H-1: Summary of simulator performance vectors for the VERT_FP well model 

Partially Penetrating Vertical Well (VERT_PP) 
 

 
 

Table H-2: Summary of simulator performance vectors for the VERT_PP well model 

Horizontal Well Aligned With Grid (HZ_90IN_90AZ) 

 

Table H-3: Summary of simulator performance vectors for the HZ_90IN_90AZ well model 

 

Normalised Iteration 

Active Cells LGR Cells NNC TCPU Time Steps Linear It. Non Lin. It. Cost Cost Ratio

Model Simulator # # # (s) # # # (ms/cell-step) -

VERT_FP

Coarse ECLIPSE 204020 0 0 143 108 108 108 6.49 1.00 1.00

LGR_3x1_1 ECLIPSE 204200 180 240 179 96 130 130 9.13 1.41 1.20

LGR_3x1+ ECLIPSE 204920 900 840 178 96 135 129 9.05 1.39 1.25

LGR_3x1_3x3 ECLIPSE 205640 1620 720 180 96 137 129 9.12 1.40 1.27

LGR_9x1_3x1+ ECLIPSE 206360 2340 1440 202 100 195 140 9.79 1.51 1.81

LGR_9x3_3x3+ ECLIPSE 211040 7020 4320 208 99 192 137 9.96 1.53 1.78

GeoXY_5x20 ECLIPSE 204520 500 400 398 132 677 250 14.74 2.27 6.27

GeoXY_7x20 ECLIPSE 205000 980 560 397 123 808 220 15.74 2.43 7.48

GeoXY_9x20 ECLIPSE 205640 1620 720 482 116 1225 197 20.21 3.11 11.34

GeoXY_11x20 ECLIPSE 206440 2420 880 590 115 1612 197 24.85 3.83 14.93

RadLGR_4R_33 ECLIPSE 204100 80 0 292 111 330 190 12.89 1.99 3.06

RadLGR_8R_33 ECLIPSE 204180 160 0 315 110 519 188 14.03 2.16 4.81

RadLGR_8R_66 ECLIPSE 204180 160 0 308 111 497 189 13.59 2.09 4.60

RadLGR_8R_99 ECLIPSE 204180 160 0 309 112 490 192 13.51 2.08 4.54

Normalised Iteration 

Active Cells LGR Cells NNC TCPU Time Steps Linear It. Non Lin. It. Cost Cost Ratio

Model Simulator # # # (s) # # # (ms/cell-step) -

VERT_PP

Coarse ECLIPSE 204020 0 0 154 110 110 110 6.86 1.00 1.00

LGR_19x1_1 ECLIPSE 211240 7220 1520 489 159 618 309 14.56 2.12 2.00

LGR_9x1_3x3 ECLIPSE 218600 14580 2160 410 144 390 259 13.02 1.90 1.51

LGR_39x1_1 ECLIPSE 234440 30420 3120 621 156 848 306 16.98 2.47 2.77

LGR_39x2_1 ECLIPSE 264860 60840 6240 724 152 894 293 17.98 2.62 3.05

LGR_77x1_11x1+ ECLIPSE 332280 128260 8800 1112 153 1123 299 21.87 3.19 3.76

LGR_77x4_11x2_3x3 ECLIPSE 341960 137940 10560 1159 153 1122 299 22.15 3.23 3.75

RadLGR_8R_33 ECLIPSE 204180 160 0 462 152 757 307 14.89 2.17 2.47

RadLGR_8R_66 ECLIPSE 204180 160 0 456 149 695 297 14.99 2.18 2.34

RadLGR_16R_66 ECLIPSE 204340 320 0 497 151 885 308 16.11 2.35 2.87

RadLGR_16Rx3_66 ECLIPSE 204980 960 240 594 148 1402 297 19.58 2.85 4.72

RadLGR_24RxGeo_66 ECLIPSE 205124 1104 136 729 148 1897 304 24.01 3.50 6.24

GeoXY_11x60 ECLIPSE 211280 7260 2640 909 156 2404 307 27.58 4.02 7.83

GeoXY_11x100 ECLIPSE 216120 12100 4400 1150 155 3072 304 34.33 5.00 10.11

GeoXYZ_11x46 ECLIPSE 209586 5566 2024 1088 155 3022 303 33.49 4.88 9.97

Normalised Iteration 

Active Cells LGR Cells NNC TCPU Time Steps Linear It. Non Lin. It. Cost Cost Ratio

Model Simulator # # # (s) # # # (ms/cell-step) -

HZ_90IN_90AZ

Coarse 193819 0 0 214 155 155 155 7.12 1.00 1.00

LGR_19x1_3x1 ECLIPSE 214396 20577 2888 289 142 321 152 9.49 1.33 2.11

LGR_19x1_3x3 ECLIPSE 255550 61731 4332 320 142 298 152 8.82 1.24 1.96

LGR_19x1_5x1 ECLIPSE 228114 34295 4332 273 142 309 152 8.43 1.18 2.03

LGR_57x3_5x1 ECLIPSE 1119784 925965 38988 2601 142 749 153 16.36 2.30 4.90

LGR_19x1_5x3 ECLIPSE 296704 102885 5776 400 142 317 152 9.49 1.33 2.09

LGR_19x1_5x5 ECLIPSE 365294 171475 7720 507 142 290 152 9.77 1.37 1.91

LGR_19x1_7x3 ECLIPSE 337858 144039 7220 470 142 317 152 9.80 1.38 2.09

LGR_19x1_15x3 ECLIPSE 502474 308655 12996 781 142 317 152 10.95 1.54 2.09

GeoY_11x1_3x1 ECLIPSE 200716 6897 1672 232 142 362 152 8.14 1.14 2.38

GeoXY_11x1_5x1 ECLIPSE 205314 11495 2508 246 142 372 152 8.44 1.18 2.45

GeoXY_11x1_7x1 ECLIPSE 193819 11913 2584 245 142 372 152 8.90 1.25 2.45

GeoXY_11x3_5x1 ECLIPSE 228304 34485 7524 356 143 632 155 10.90 1.53 4.08

GeoXY_11x5_5x1 ECLIPSE 251294 57475 12540 480 142 846 153 13.45 1.89 5.53

GeoXYZ_11x35_5x1 ECLIPSE 214994 21175 4620 505 143 1259 155 16.43 2.31 8.12

Coarse INTERSECT 193819 0 0 1121 260 659 260 22.25 1.00 2.53

UGR_50x3x50x1_5x1 INTERSECT 196023 2204 - 1123 260 701 260 22.03 0.99 2.70

UGR_30x3x50x1_5x1 INTERSECT 196099 2280 - 1053 260 747 260 20.65 0.93 2.87

UGR_50x3x50x1_5x3 INTERSECT 198341 4522 - 1078 260 699 260 20.90 0.94 2.69

UGR_50x3x50x1_7x3 INTERSECT 200051 6232 - 1059 260 697 260 20.36 0.92 2.68

UGR_50x5x50x1_5x1 INTERSECT 196593 2774 - 1121 260 715 260 21.93 0.99 2.75

UGR_50x5x50x1_5x3 INTERSECT 198911 5092 - 1082 260 716 260 20.92 0.94 2.75

UGR_50x5x50x3_5x3 INTERSECT 209665 15846 - 1152 260 906 260 21.13 0.95 3.48



90  Appendix H 

 
Shaun Bambridge Imperial College London 

Deviated Well, Apparent Dip 30º and Apparent Rotation 0º (W_30IN_90AZ) 

 

Table H-4: Summary of simulator performance vectors for the W_30IN_90AZ well model 

Deviated Well, Apparent Dip 30º and Apparent Rotation 30º (W_34IN_60AZ) 

 
 

Table H-5: Summary of simulator performance vectors for the W_34IN_90AZ well model 

Deviated Well, Apparent Dip 30º and Apparent Rotation 45º (W_39IN_45AZ) 

 

Table H-6: Summary of simulator performance vectors for the W_39IN_45AZ well model 

Horizontal Well, Apparent Dip 90º and Apparent Rotation 30º (HZ_90IN_60AZ) 

 
 

Table H-7: Summary of simulator performance vectors for the HZ_90IN_60AZ well model 

 

 

 

 

 

Normalised Iteration 

Active Cells LGR Cells NNC TCPU Time Steps Linear It. Non Lin. It. Cost Cost Ratio

Model Simulator # # # (s) # # # (ms/cell-step) -

W_30IN_90AZ

Coarse ECLIPSE 204020 0 0 140 104 104 104 6.60 1.00 1.00

LGR_9x1_2x1 ECLIPSE 207260 3240 1080 190 97 177 130 9.45 1.43 1.36

LGR_19x1_2x1 ECLIPSE 218460 14440 2280 318 107 369 169 13.60 2.06 2.18

LGR_19x1_2x1_3x1+ ECLIPSE 219000 14980 2940 320 106 365 167 13.78 2.09 2.19

LGR_19x1_2x1_3x1_3x3 ECLIPSE 219180 15160 3040 308 106 365 167 13.26 2.01 2.19

LGR_39x2_2x1 ECLIPSE 325700 121680 9360 645 109 647 177 18.17 2.75 3.66

LGR_9x1_3x3 ECLIPSE 218600 14580 2160 206 97 192 131 9.72 1.47 1.47

LGR_9x1_4x3 ECLIPSE 223460 19440 2520 207 96 180 128 9.65 1.46 1.41

Normalised Iteration 

Active Cells LGR Cells NNC TCPU Time Steps Linear It. Non Lin. It. Cost Cost Ratio

Model Simulator # # # (s) # # # (ms/cell-step) -

W_34IN_60AZ

Coarse ECLIPSE 204020 0 0 134 104 104 104 6.32 1.00 1.00

LGR_9x1_2x1 ECLIPSE 207260 3240 1080 187 97 190 130 9.30 1.47 1.46

LGR_19x1_2x1 ECLIPSE 218460 14440 2280 274 104 369 159 12.06 1.91 2.32

LGR_19x1_2x1_3x1+ ECLIPSE 219000 14980 2940 280 104 376 160 12.29 1.95 2.35

LGR_19x1_2x1_3x1_3x3 ECLIPSE 219180 15160 3040 267 102 354 153 11.94 1.89 2.31

LGR_39x2_2x1 ECLIPSE 325700 121680 9360 628 107 655 170 18.02 2.85 3.85

LGR_9x1_3x3 ECLIPSE 218600 14580 2160 199 95 187 125 9.58 1.52 1.50

LGR_9x1_4x3 ECLIPSE 223460 19440 2520 205 95 183 125 9.66 1.53 1.46

Normalised Iteration 

Active Cells LGR Cells NNC TCPU Time Steps Linear It. Non Lin. It. Cost Cost Ratio

Model Simulator # # # (s) # # # (ms/cell-step) -

W_39IN_45AZ

Coarse ECLIPSE 204020 0 0 137 104 104 104 6.46 1.00 1.00

LGR_9x1_2xD ECLIPSE 207260 3240 1440 205 99 228 135 9.99 1.55 1.69

LGR_19x1_2xD ECLIPSE 218460 14440 3040 353 115 504 196 14.05 2.18 2.57

LGR_39x2_2xD ECLIPSE 325700 121680 12480 774 115 842 196 20.66 3.20 4.30

Normalised Iteration 

Active Cells LGR Cells NNC TCPU Time Steps Linear It. Non Lin. It. Cost Cost Ratio

Model Simulator # # # (s) # # # (ms/cell-step) -

HZ_90IN_60AZ

Coarse ECLIPSE 193819 0 0 191 152 153 152 6.48 1.00 1.01

LGR_9x1_Az30 ECLIPSE 201514 7695 2394 198 139 205 142 7.07 1.09 1.44

LGR_19x1_Az30 ECLIPSE 228114 34295 5054 271 141 305 148 8.43 1.30 2.06

LGR_57x3_Az30 ECLIPSE 1119784 925965 45486 2870 142 773 152 18.05 2.78 5.09

LGR_19x1_Az30+ ECLIPSE 241832 48013 5415 295 141 313 148 8.65 1.33 2.11

LGR_19x1_3x3 ECLIPSE 255550 61731 4332 318 141 293 148 8.83 1.36 1.98

Coarse INTERSECT 193819 0 - 962 260 656 260 19.09 1.00 2.52

UGR_50x5x50x1_Az30 INTERSECT 198056 4237 - 1108 260 753 260 21.52 1.13 2.90

UGR_50x5x50x3_Az30+ INTERSECT 211356 17537 - 1106 260 757 260 20.13 1.05 2.91

UGR_90x9x50x3_Az30+ INTERSECT 213522 19703 - 1205 260 757 260 21.71 1.14 2.91

UGR_90x9x50x3_5x5 INTERSECT 221559 27740 - 1223 260 757 260 21.23 1.11 2.91
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Table H-8: Summary of simulator performance vectors for the HZ_90IN_45AZ well model 

Aspect Ratio Sensitivity Cases 

 
 

Table H-9: Summary of simulator performance vectors for the HZ_90IN_45AZ well model 

5-Point Versus 9-Point Flux Sensitivity Cases 

 

Table H-10: Summary of simulator performance vectors for the 9-point flux scheme simulations 

Normalised Iteration 

Active Cells LGR Cells NNC TCPU Time Steps Linear It. Non Lin. It. Cost Cost Ratio

Model Simulator # # # (s) # # # (ms/cell-step) -

HZ_90IN_45AZ

Coarse ECLIPSE 193819 0 0 475 412 411 411 5.95 1.00 1.00

LGR_9x1_Az45 ECLIPSE 203053 9234 2736 533 402 537 404 6.53 1.10 1.33

LGR_19x1_Az45 ECLIPSE 234973 41154 5776 696 403 760 406 7.35 1.24 1.87

LGR_57x3_Az45 ECLIPSE 1304977 1111158 51984 6862 403 1452 408 13.05 2.19 3.56

LGR_19x1_Az45+ ECLIPSE 262409 68590 6498 807 402 764 404 7.65 1.29 1.89

LGR_19x1_4x3 ECLIPSE 276127 82308 5054 853 402 711 404 7.68 1.29 1.76

Coarse INTERSECT 193819 0 - 895 228 559 228 20.25 1.00 2.45

UGR_50x5x50x1_Az45 INTERSECT 199690 5871 - 950 228 763 228 20.87 1.03 3.35

UGR_50x7x50x1_Az45+ INTERSECT 201001 7182 - 956 228 771 228 20.86 1.03 3.38

UGR_63x7x100x1_Az45+ INTERSECT 197125 3306 - 921 228 769 228 20.49 1.01 3.37

UGR_63x7x100x3_Az45+ INTERSECT 204877 11058 - 955 228 781 228 20.44 1.01 3.43

Normalised Iteration 

Active Cells LGR Cells NNC TCPU Time Steps Linear It. Non Lin. It. Cost Cost Ratio

Model Simulator # # # (s) # # # (ms/cell-step) -

VERT_FP

LGR_19x1_13x13 ECLIPSE 1342990 1159171 18772 3391 114 367 193 22.15 3.41 1.90

LGR_9x19x1_13x13 ECLIPSE 742900 549081 13832 1049 99 180 136 14.26 2.20 1.32

LGR_5x19x1_13x13 ECLIPSE 498864 305045 11856 648 97 156 131 13.39 2.06 1.19

LGR_3x19x1_13x13 ECLIPSE 376846 183027 10868 443 95 141 126 12.37 1.91 1.12

HZ_90IN_90AZ

Coarse ECLIPSE 193819 0 0 196 157 157 157 6.44 1.00 1.00

LGR_19x1_15x11 ECLIPSE 1325554 1131735 18772 2328 142 313 152 12.37 1.92 2.06

LGR_9x1_15x11 ECLIPSE 447754 253935 8892 652 140 211 145 10.40 1.61 1.46

LGR_3x1_15x11 ECLIPSE 222034 28215 2964 226 139 151 142 7.32 1.14 1.06

LGR_1x3_15x11 ECLIPSE 203224 9405 2964 201 138 141 139 7.17 1.11 1.01

LGR_9x19x1_15x11 ECLIPSE 729904 536085 13072 1199 142 271 152 11.57 1.80 1.78

LGR_5x19x1_15x11 ECLIPSE 491644 297825 10792 762 142 257 152 10.91 1.69 1.69

LGR_3x19x1_15x11 ECLIPSE 372514 178695 9652 522 142 247 152 9.87 1.53 1.63

LGR_1x19x1_15x11 ECLIPSE 253384 59565 8512 314 142 234 152 8.73 1.35 1.54

LGR_19x9x1_15x11 ECLIPSE 729904 536085 14592 1059 139 213 142 10.44 1.62 1.50

LGR_19x5x1_15x11 ECLIPSE 491644 297825 12920 648 139 184 142 9.48 1.47 1.30

LGR_19x3x1_15x11 ECLIPSE 372514 178695 12084 458 139 172 142 8.85 1.37 1.21

LGR_19x1x1_15x11 ECLIPSE 253384 59565 11248 274 138 167 139 7.84 1.22 1.20

Normalised Iteration 

Active Cells LGR Cells NNC TCPU Time Steps Linear It. Non Lin. It. Cost Cost Ratio

Model Simulator # # # (s) # # # (ms/cell-step) -

VERT_FP

Coarse ECLIPSE 204020 0 400000 311 108 108 108 14.11 1.00 1.00

LGR_3x1_1 ECLIPSE 204200 180 400240 419 101 154 143 20.32 1.44 1.08

VERT_PP ECLIPSE

Coarse ECLIPSE 204020 0 400000 347 113 113 113 15.05 1.00 1.00

LGR_19x1_1 ECLIPSE 211240 7220 401520 1041 158 630 302 31.19 2.07 2.09

HZ_90IN_90AZ ECLIPSE

Coarse ECLIPSE 193819 0 380000 383 155 155 155 12.75 1.00 1.00

LGR_19x1_3x3 ECLIPSE 255550 61731 384332 629 142 299 152 17.33 1.36 1.97

LGR_19x1_5x1 ECLIPSE 228114 34295 384332 552 142 317 152 17.04 1.34 2.09

W_30IN_90AZ ECLIPSE

Coarse ECLIPSE 204020 0 400000 303 107 107 107 13.88 1.00 1.00

LGR_39x2_2x1 ECLIPSE 325700 121680 409360 1148 110 678 181 32.04 2.31 3.75

W_34IN_60AZ ECLIPSE

Coarse ECLIPSE 204020 0 400000 317 107 107 107 14.52 1.00 1.00

LGR_39x2_2x1 ECLIPSE 325700 121680 409360 1210 108 705 174 34.40 2.37 4.05

W_39IN_45AZ ECLIPSE

Coarse ECLIPSE 204020 0 400000 314 106 106 106 14.52 1.00 1.00

LGR_39x2_2xD ECLIPSE 325700 121680 412480 1438 118 878 206 37.42 2.58 4.26

HZ_90IN_60AZ ECLIPSE

Coarse ECLIPSE 193819 0 380000 375 153 154 153 12.65 1.00 1.01

LGR_19x1_3x3 ECLIPSE 255550 61731 384332 582 141 297 148 16.15 1.28 2.01

HZ_90IN_45AZ ECLIPSE

Coarse ECLIPSE 193819 0 380000 859 412 411 411 10.76 1.00 1.00

LGR_19x1_Az45 ECLIPSE 234973 41154 385776 1253 403 785 406 13.23 1.23 1.93


