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Abstract 
This paper presents shape factors (α) representing flow in fractured reservoir, including the shape factors for irregularly-

shaped matrix blocks in both 2-Dimensional and 3-Dimensional flow. The shape factors are derived based on numerical simu-

lation of fine-grid single porosity models. These numerical-estimated factors are verified with the known analytical values for 

available standard shapes i.e. square, circle and isosceles right triangle. As a result, an acceptable estimation is obtained with a 

maximum difference of 1%. Having achieved a verification for the standard shapes, the work is extended to irregular shape 

and 3D geometry. In addition, the paper introduces a new scaling law to estimate a universal constant value for dimensionless 

shape factor which can apply to any shape. The scaling law is derived from a combination of Darcy’s law and Warren & 

Root’s matrix-fracture flow model. The dimensionless shape factor, 𝛼 ∙ ∆𝑙
𝑉

𝑆
 gives the most confident value of 𝛼 ∙ ∆𝑙

𝑉

𝑆
= 5.0 

with an error of less than 10%. The variable 
𝑉

𝑆
 denotes volume-to-surface ratio of the matrix blocks while ∆𝑙 represents a char-

acteristic length that similar to the mean radius of the pressure field; it is defined as ∆𝑙  ≡  √𝐴
2

 for 2D shape and ∆𝑙  ≡  √𝑉
3

 

for 3D shape. 

Introduction 
Naturally fractured reservoirs can be simplified as the reservoirs containing less-permeable matrix blocks surrounded by a 

network of interconnected high permeability fractures. Therefore, the system has high permeability contrast and these two po-

rous media are interconnected and in communication. The most common approach to model naturally fractured reservoir is a 

dual (double) porosity model which firstly introduced by Barenblatt et al. (1960) and Warren and Root (1963). The mode is 

illustrated in figure 1 and 2. The dual porosity model treats matrix and fracture network as two continuous media where the 

transfer flux (𝑞𝑚𝑓) flowing between matrix and fracture is governed by a simple transfer function which was firstly proposed 

by Barenblatt (1960) as shown in the following equation: 
𝑄(𝑡)

𝑉
=  𝑞𝑚𝑓(𝑡) =  𝛼 

𝑘𝑚

𝜇
 (�̅�𝑚 − 𝑃𝑓)   (1) 

𝑞𝑚𝑓 represents volumetric flow rate of fluid flowing from the matrix blocks into the fractures per unit volume and has dimen-

sions of volume flow rate per unit reservoir volume (m
3
/s / m

3
) or (1/s). This transfer flux should be inversely proportional to 

fluid viscosity but proportional to matrix permeability, pressure differential and shape factor (α) of the system. This flow mod-

el is used in single phase flow in pseudo-steady-state where pressure gradient in matrix blocks is negligible and �̅�𝑚 represents 

matrix blocks average pressure. According to this equation, the drainage rate from the matrix to the fracture is controlled by 

the shape factor of matrix blocks and has the dimension of reciprocal area (1/L
2
).  

Warren and Root (1963) proposed the following expression for shape factor: 

𝛼 =  
4 𝑁 (𝑁+2)

𝐿2        (2) 

N represents number of parallel sets of fractures i.e. slab column and cubes (N=1,2 or 3 respectively) and L denotes an av-

erage fracture spacing as illustrated in figure 1. For equal fracture spacing, the shape factor value of 1,2 and 3 sets are equal to 

12/ L
2
, 32/ L

2 
and 60/ L

2 
respectively. It is also suggested that L can be estimated from surface-volume ratio. 

In the following decade, Kazemi et al. (1976) introduced a new shape factor formula developed by finite-different method, 

for three-dimensional case the formula is: 

𝛼 = 4 (
1

𝐿𝑥
2 +

1

𝐿𝑦
2 +

1

𝐿𝑧
2)      (3) 

If the assumption of equal fracture spacing is applied (Lx =Ly=Lz), the shape factor for value for one, two and three dimen-

sional cases are equal to 4/ L
2
, 8/ L

2 
and 12/ L

2 
respectively. The factor for three dimensional case is five-times less compare to 

Warren and Root’s formula. The Kazemi’s formula is widely used in dual porosity simulators. It should be noted that this for-

mula is derived under the assumption of no pressure gradient within the matrix block. In addition, Ueda et al. (1989) explained 

that the equation 3 is equivalent to having linear pressure gradient between the center of a matrix block and the fracture.  

A study on 3D shape factor of fine-grid single porosity and single-block dual porosity models by Thomas et al. (1989) con-

cluded that the shape factor accounted for matrix pressure gradient for 3D case obtained from a good match between single 

and dual porosity model is 25/ L
2
 of which the value is between Warren and Root’s and Kazemi’s model. 

Coats (1989) proposed the shape factor exactly as large as twice of Kazemi’s in his implicit compositional simulation 

work. In addition, he also derived an analytical solution of shape factor for constant rate boundary condition, the values for 

one, two and three sets of fractures are 12/ L
2
, 28.45/ L

2
, and 49.58/ L

2 
respectively. 

Udea et al. (1989) suggested the multiplication factors to the Kazemi et al. for one and two fracture sets. His work was 

conducted based on the comparison of single-porosity fine grid and dual porosity models. It concluded that Kazemi’s shape 

factor need to be adjusted by factor of two and three for one and two fracture sets respectively. 

Zimmerman et al. (1993) presented a correct analytical solution derived based on Fourier series analysis. In this work, a 

new shape factor for simple geometries are obtained by differentiating the most slowly decaying exponential term in the Fou-
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rier series solution, eliminating t then comparing the result with the governing equation of Warren and Root. The shape factor 

for cubical is α=3π
2
/L

2
, for column is α=2π

2
/L

2
, for slab-like block is α=π

2
/L

2
, for long cylindrical pipe radius a is α=2.405

2
/a

2
 

or 23.14/D
2
 where 2.405 is the first positive root of Bessel function J0 and finally the shape factor for spherical block is 

α=π
2
/a

2
 where a is the mean radius of the block. In addition, Gottlieb (1988) also derived an analytical solution for isosceles 

right triangular prism using Laplace method, the shape factor is α=5π
2
/L

2
 or 2.5 π

2
/A where A is the triangle’s area. 

Another work done by Zimmerman and Bodvarsson (1995) showed that the shape factor can be derived from the smallest 

eigenvalue of the Laplacian operator for region occupied by the matrix block. It is noted that only the shape factor for geomet-

rically simple shape block can be directly derived from this theoretical approach.  

 For general case of three sets of orthogonal fracture and isotropic model, the shape factor is given by (Zimmerman and 

Bodvarsson,1995) the following equation (4). This equation was later confirmed by Lim and Aziz (1995) and was re-derived 

by Mathias and Zimmerman (2003) by Laplace transforms technique.     

𝛼 = 𝜋2  (
1

𝐿𝑥
2 +

1

𝐿𝑦
2 +

1

𝐿𝑧
2)      (4) 

Equation 4 can be reduced to α=π
2
/L

2
 for one set of fracture or thin slab block having dimensions of Lx=L where Ly, Lz are 

very large (Ly and Lz >> L). For two sets of fracture or column having dimensions of Lx= Ly =L and Lz >> L, α=2π
2
/L

2
 and 

finally for three fracture sets or cubical shape where Lx= Ly = Lz =L, α=3π
2
/L

2
.  

For case of anisotropic reservoir, the shape factor is given as (Lim and Aziz, 1995) the following relation. 

𝛼 =
𝜋

�̅�

2
 (

𝑘𝑥

𝐿𝑥
2 +

𝑘𝑦

𝐿𝑦
2 +

𝑘𝑧

𝐿𝑧
2)     (5) 

Mora and Wattenbarger (2009) investigated and reproduced the shape factor for all basic geometry by using both numeri-

cal and analytical methods. Their results confirmed the values introduced by Zimmerman et al. and Lim and Aziz. In addition, 

Mora also derived the shape factors for all basic geometry with constant rate boundary condition. The results are equivalent to 

Coats’s figures (1989). 

Although the correct solution for shape factor of simple geometry matrix block can be 

analytically obtained (Zimmerman et al. 1993), little research has been done for the case of 

shape factor for realistically-shaped matrix block.  

In this work, a study on numerical-estimated shape factor is conducted for irregularly-

shaped three dimensional blocks by fine-grid single porosity simulation. In order to 

achieve this ultimate goal, the numerical-derived shape factors for simple shapes such as 

column (two fracture sets), long-parallel pipe and isosceles right triangle prism are verified 

with the known analytical values and from this point, the standard procedure on estimating 

shape factor is developed.  

In addition, this work investigates and develops a method to assign a shape factor for a 

matrix block based on its geometry and some characteristic length. In other words, this is a 

generic shape factor for the case where no analytical results are available and this generic 

value will be adopted without the need of fine-grid simulation. 

A matrix-fracture pressure diffusion flow model and numerical simulation model 
Matrix-fracture flow model and pressure diffusion model 

Fluid flow within a matrix block is governed by a simple mass balance within the matrix block where the rate of accumula-

tion can be related to the matrix-fracture transfer rate. In our case, a pseudo-steady-state assumption is applied then the flow 

rate can be equated to the change in average matrix block pressure, then the following differential equation is obtained: 

∅𝑚  𝑐𝑚  
𝑑�̅�𝑚

𝑑𝑡
=  

𝛼 𝑘𝑚

𝜇
 (𝑃𝑓 − �̅�𝑚)    (6) 

The right term appears in this pressure diffusion equation (6) has the same form as equation (1) where the term represents 

unit volume flow rate between matrix-fracture coupling flow.  

According to equation (6), ∅𝑚  represents porosity of matrix 

block, 𝑐𝑚 is total matrix compressibility which equals to the summa-

tion of pore compressibility ( 𝑐𝑝 ) and fluid compressibility ( 𝑐𝑓 ), 

𝑐𝑚 = 𝑐𝑝 + 𝑐𝑓, �̅�𝑚 represents average matrix block pressure, 𝑃𝑓is frac-

ture pressure that equally distributes and surrounds the matrix block 

because of fracture high permeability, 𝑘𝑚is matrix block permeabil-

ity, 𝜇 is fluid viscosity and 𝛼 represents shape factor of the system. 

The model is simplified and shown in figure 2. 

 

Equation 6 expresses the change in matrix pressure when there is a pressure differential between the fracture and the ma-

trix, hence this pressure difference induces fluid flow between the two mediums. In reality, the close approximation for its 

appropriate boundary condition is a constant fracture pressure. This equation can be simply solved by assuming the constant 

fracture pressure (Pf is constant) and gives the initial condition of matrix pressure with uniform pressure Pm(t=0)=Pi  

Lx

Ly

Lz

Figure 1 A simplified matrix-fracture 

model for three normal fracture sets. 

(3D cubic shape) 

Figure 2 A matrix-fracture pressure diffusion model. 
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∅𝑚  𝑐𝑡  
𝑑�̅�𝑚

𝑑𝑡
=  

𝛼 𝑘𝑚

𝜇
 (𝑃𝑓 − �̅�𝑚)   

Rearrange the equation then; 
1

𝑃𝑓−�̅�𝑚
𝑑�̅�𝑚 =  

𝛼 𝑘𝑚

∅𝑚 𝜇 𝑐𝑡
 𝑑𝑡  

For initial condition Pm(t=0)=Pi and Pf ≡ constant, integrate the equation from t=0 to t we get; 

∫
1

𝑃𝑓−�̅�𝑚
𝑑�̅�𝑚

�̅�𝑚(𝑡)

𝑃𝑖
=  

𝛼 𝑘𝑚

∅𝑚 𝜇 𝑐𝑡
∫  𝑑𝑡

𝑡

𝑡=0
   

Ln (
𝑃𝑓−�̅�𝑚(𝑡)

𝑃𝑓−𝑃𝑖
) = −

𝛼 𝑘𝑚𝑡

∅𝑚 𝜇 𝑐𝑡
  

The solution to equation (6) subjects to the constant pressure boundary and its initial condition is 

�̅�𝑚(𝑡)−𝑃𝑓

𝑃𝑖−𝑃𝑓
 = exp ((−

𝛼 𝑘𝑚

∅𝑚 𝜇 𝑐𝑡
) 𝑡)   (7) 

The term 
�̅�𝑚(𝑡)−𝑃𝑓

𝑃𝑖−𝑃𝑓
 is known as normalised pressure (pD) and related to an exponent of a constant term on the right-hand 

side which represents a shape factor and other reservoir parameters as previously described.  This equation (7) can be simply 

used to find the shape factor from numerical simulation by solving equation (6) with a reservoir simulator, Eclipse. The results 

are then computed to get average matrix pressure (�̅�𝑚) and normalised pressure (pD). Finally, the normalised pressure plotted 

against time (t) in semi-log plot will give the straight line which indicates pseudo-steady-state flow regime. The slope of this 

straight line (-m) represents a product of α and the term 
 𝑘𝑚

∅𝑚 𝜇 𝑐𝑡
, i.e.  

α =
∅𝑚 𝜇 𝑐𝑡 

𝑘𝑚
 m     (8) 

In other words, the pressure results from simulation can be simply visualised as a straight line by taking logarithmic on the 

equation (7), then we get;  

𝐿𝑛 (
�̅�𝑚(𝑡)−𝑃𝑓

𝑃𝑖−𝑃𝑓
) = (−

𝛼 𝑘𝑚

∅𝑚 𝜇 𝑐𝑡
)  𝑡     (7-a) 

 

Numerical simulation model and methodology 

In this study, the black oil simulator (Eclipse E100) was used to generate and simulate all models. The simulation work 

firstly started with developing fine-grid numerical simulation models for standard 2-dimelsional shape (2D), i.e. square, right 

isosceles triangle and circle then the work will be extended to irregular shape block and three dimensional (3D) blocks. For 

simple shape cases, the numerical-solved values are verified with the known analytical values in order to validate the models 

and make sure that they give correct results. 

Table 1 Simulation model parameters and initial condition 

 To simulate matrix-facture drainage flow, the grid archi-

tecture was constructed as a ring-like formation so that the 

matrix blocks are surrounded by fractures. Then the signifi-

cant differential pressure between matrix and fracture are 

assigned to be 900 psia and 1000 psia respectively so that the 

reservoir fluid will flow from the fracture into the matrix. As 

discussed earlier that naturally fractured reservoir can be 

simplified as a reservoir containing less-permeable matrix 

surrounded by a network of interconnected high permeability 

fracture, for simulation purpose, the model’s matrix permea-

bility was made as small as 1 mD while it was 1000 mD for 

fracture region surrounding matrix, so that the fracture region 

would be in good pressure communication.   

It is essential to keep fracture pressure as constant as pos-

sible to maintain the constant pressure boundary condition. 

To simulate this behaviour, the fracture pore volume needs to 

be as large as possible compare with the matrix; the fracture 

porosity was made to be 0.90 whereas it was 0.001 for ma-

trix. Although porosity in nature reservoir cannot be as high 

as this value, this figure is used for simulating purpose and it 

does not distort the shape factor value in this study. A sufficiently large number of time steps were inputted so that the matrix 

blocks pressure can reach equilibrium pressure with the surrounding fracture. An acceptable final equilibrium pressure in this 

study should not be larger than 0.1% deviation from the initial fracture pressure. The other input physical properties and model 

initial condition are shown in table 1. 

Input physical properties  Value Field unit 

Matrix porosity (φm) 0.001 
 

Fracture porosity (φf) 0.90 
 

Matrix initial pressure (pmi) 900 psia 

Fracture pressure (pf) 1000 psia 

Reservoir fluid water 
 

Water viscosity (μw) 1 c.p. 

Water density (ρw) 64 lb/ft3 

Water compressibility (cw) 3.40E-06 psi-1 

Rock compressibility (cp and cf) 3.40E-06 psi-1 

Matrix permeability (km) 1 mD 

Simulation parameters Value Field unit 

Grid block size 100x100x100 feet 

Depth of top reservoir 10 feet 

Time step size 0.01 day 

Number of time step 1000 step 
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Figure 3 A simplify model for two fracture sets (10x10 2Dsquare-shape) shows an initial condition and pressure diffusion until it reaches equilibrium. 

An example of fine-grid 2D square shape model with 100 matrix cells is used to illustrate and describe a standard method-

ology for model construction. The model consists of 10x10 matrix cells surrounded by ring of fracture cells and has the width 

of only one cell in the third dimension. The two systems have a significant pressure differential at initial condition. Figure 3 

shows a standard 2D square-shape model, which is a simplified model for two fracture sets case (column geometry), at initial 

condition and at subsequent time steps. The initial pressure is assigned at 900 psia (blue) for the matrix and 1000 psia (red) for 

the fracture.    

From this simulation, the pressure starts to diffuse until the two systems reach pressure equilibration at a final equilibrium 

pressure of 999.75 psia which is very close to the initial pressure, 1000 psia (0.03% deviation<<0.1%) as a result, the model 

satisfies constant pressure boundary condition. It can be seen that pressure diffuses very rapidly at early time and the diffusion 

shape at subsequent flow regime is symmetric as expected. 

The average matrix pressure diffusion is plotted against time (blue line) in the figure 4, pressure diffuses faster during the 

early time compared to the late time regime where it gradually reaches the final pressure equilibration. The normalised pres-

sure is computed and fitted with exponential function on semi-log plot as shown in equation (7) and the shape factor of the 

square shape can be obtained from this exponent by equation (8). Figure 5 shows the normalised pressure trend (red line) plot-

ted against time on semi-log scale, the exponent denotes the product of α and the term 
 𝑘𝑚

∅𝑚 𝜇 𝑐𝑡
. The red curved line at early time 

regime (t<<0.1) represents a short transient period followed by a straight line trend which indicates pseudo-steady-state pres-

sure diffusion regime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

In this example, the shape factor (α) obtained from the exponent is 1.94e-4 m
-2

 or αL
2
 is 18.10, where L in this case is 

L=1000 ft (or L≈304.804 m) and Lx=Ly=L for the square shape, whilst the value is reasonably close to the analytical value of 

2π
2
 or 19.74, with the deviation of 8.3%. 
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Figure 4 An average matrix pressure trend for 10x10 square model. 

The initial matrix blocks pressure is 900 psia while it is 1000 psia in 

the fracture. The trend finally reaches a pressure equilibration at 

999.8 psia which is sufficiently close to the fracture pressure (0.03% 

deviation) so a constant pressure boundary condition is maintained. 

Figure 5 Normalised pressure plotted on semi-log scale. The red curved line 

at early time regime (t<<0.1) represents a short transient period followed by 

an exponentially-fitted straight line which represents pseudo-steady-state 

pressure diffusion regime. The exponent term depends on shape factor of the 

matrix block as shown in eq.8.      
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Extrapolation technique to minimise grid resolution effect 

Since the shape factor of square shape obtained from the previous example deviates from the theoretical value significantly so 

it is essential to have the finer grid model to get the closer estimation. There are three additional grid resolution models for the 

square shape i.e. 12x12, 20x20 and 28x28 cells.  Having computed αL
2
 for each case, the extrapolation technique adapted from 

Yeo and Zimmerman (2000) is then used to extrapolate the number of cells to reach infinity so that this extrapolated shape fac-

tor, α e L
2
 is finally converged to the theoretical value. The αL

2
 for each case are plotted against 1/N, where N

2
 represents num-

ber of matrix cells, αL
2
 value is then extrapolated down to 1/N=0 where it represents infinite cells. The α e L

2
 value obtained 

from the y-interception is 19.63 as shown in the figure 6  below. The deviation is as small as 0.56% from the theoretical value. 

From the fitted curve line shown in the graph, the downward trend line also implies that the extrapolation converges to a single 

value when 1/N reaches zero. Ideally, the curve reaches its maximum value at this point as the trend of αL
2 
increases while 1/N 

reduces according to the graph.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Shape factor for 2-Dimensional geometry 

Shape factor for square shape (long-column geometry) 

A numerical-estimated αL
2
 for the case of a square shape is 19.63 whereas the analytical value is 2π

2
 or 19.74. The numeri-

cal value obtained from fine-grid model and extrapolation technique gives an acceptable result with 0.56% difference. Table 2 

summarises the numerical-estimated shape factor values of square geometry for different grid resolutions and the final equilib-

rium pressure based on these models.      

Table 2 Equilibrium pressure and the numerical-estimated shape factor of 2D square shape for different grid resolution 

models, the more number of cells give more accurate value i.e. for N=28 the value approaches the analytical solution. 

Case α (1/m2) αL2 1/N Equilibrium pressure % pressure deviation 

square N=10 1.95E-04 18.10 0.100 999.748 0.03% 

square N=12 1.39E-04 18.55 0.083 999.693 0.03% 

square N=20 5.19E-05 19.28 0.050 999.474 0.05% 

square N=28 2.67E-05 19.43 0.036 999.322 0.07% 

  

Shape factor for circular shape (cylindrical parallel pipe or radial flow geometry) 

The long-parallel pipe represents radial flow geometry can be simplified to a 2D circular shape as shown in figure 8. Three 

numerical simulation models of different grid resolutions with N=15, 21 and 31 were constructed in the same way of the 

square shape. Since the circular-shape hypotenuse is formed by number of fine-square grids, it requires larger amount of cells 

to form these circle models compare to the first example of square shape as shown in figure 7 and 9. The model has a diameter 

as its characteristic length, so for circular shape N denotes number of grid which forms a diameter. Table 3 shows the numeri-

cal-computed value of αL
2
 and the final equilibrium pressure for each model. Noted that αL

2
 converges to the analytical value 

when the model has finer grid. Because the models have larger number of matrix cells so it is necessary to reduce matrix 

porevolume to maintain constant pressure boundary in the fracture and hence the porosity value is reduced by factor of ten for 

N=10 

N=28 N=20 

N=12 

Permeability (mD)1 1000

Figure 6 Extrapolation technique used to estimate shape factor more accurately by ex-

tending number of cells to infinity (1/N→0). In this example, an extraploation of the 

shape factor for 2D square shape give αL2 of 19.63 whereas the analytical solution is 2π2 

or 19.74 

Figure 7 2D square simulation models of different grid reso-

lution. The models give the slightly different shape factors 

due to grid resolution effect.  

y = -158.78x2 + 0.4857x + 19.63

12

13

14

15

16

17

18

19

20

0 0.02 0.04 0.06 0.08 0.1 0.12

α
L2

(d
im

e
n

si
o

n
le

ss
)

1/N

Extraploated α L2 for square shape 

N=28,20,12 and 10 Poly. (N=28,20,12 and 10)

Estimated α e L2 is 19.63 
whilst the theoretical value is 

19.74



6  Shape factor for irregularly-shaped matrix blocks 

 

 

 

the circle-shape models. From this table, the final equilibrium pressure approaches 1000 psia with the deviation of only 

0.002%, as a result, the boundary pressure is constantly maintained.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 Equilibrium pressure and the numerical-estimated shape factor of 2D circular models for different grid resolution. 

Case  α (1/m2)  αL2  1/N Equilibrium pressure % pressure deviation 

circle N=15 1.18E-04 17.60 0.067 999.987 0.001% 

circle N=21 5.73E-05 17.73 0.048 999.983 0.002% 

circle N=31 2.57E-05 17.83 0.032 999.978 0.002% 

  

The extrapolation of αL
2
 for circular shape is 

plotted in figure 10. αL
2 

computed from differ-

ent grid resolution models were extrapolated 

against 1/N. The numerical-estimated shape 

factor (αL
2
) for the case of a square shape is 

17.99 whereas the analytical value is 18.17. 

Noted that some authors report the analytical 

alpha of 23.14/D
2
 or it is equivalent to 18.17/L

2
 

if the area is used as a scaling parameter instead 

of the diameter. The numerical value obtained 

from fine-grid model and extrapolation tech-

nique gives an acceptable result with 0.97% 

discrepancy. The circular shape factor is slightly 

less than that of the square. This is logical since 

the circle has shorter perimeter to the square of 

the same area. This idea will be expanded when 

it comes to scaling law section. 

 

 

 

Shape factor for isosceles right triangle 

(one diagonal fracture addition to the square shape) 

Right isosceles right triangle is a simplified model for a matrix-fracture system that contains three fracture sets of which an 

additional diagonal fracture superimposes on the square geometry. The same methodology was applied to obtain αL
2 

for this 

flow geometry. The shape factor of four different grid resolution models of N=6, 10, 14 and 20 were computed and extrapolat-

ed to get an extrapolated final αL
2
. Note that the triangular shape model is not a perfect triangle because it is formed by number 

of small square cells, in fact it is a staircase-shaped hypotenuse model as see in the figure11. 

Table 4 Equilibrium pressure and the numerical-estimated shape factor of isosceles right triangle models for different grid resolution. 

Case  α (1/m2)  αL2  1/N Equilibrium pressure % pressure deviation 

isosceles right triangle N=6 1.11E-03 21.73 0.167 999.924 0.008% 

isosceles right triangle N=10 4.55E-04 23.23 0.100 999.874 0.013% 

isosceles right triangle N=14 2.46E-04 23.95 0.071 999.824 0.018% 

isosceles right triangle N=20 1.23E-04 24.07 0.050 999.738 0.026% 

N=15 N=21 N=31

Permeability (mD)1 1000Figure 8 Long-parallel 

pipe model: the model is 

simplified to 2D circular 

shape 

Figure 9 2D circle models for different grid resolution i.e. N=15, 21 and 31. The finer grid give the more accurate 

shape factor compare to the analytical value. 
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Figure 10 Extrapolation of the shape factor for 2D circular shape, the estimated αL2 is 

17.99 whilst the analytical solution is 18.17.  
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The results for each simulation model are tabulated in the table 4. The final equilibrium pressure approaches the initial frac-

ture pressure followed constant pressure condition. The maximum pressure deviation is only 0.026% for N=20.  

The extrapolation curve for the right triangular shape is shown in the figure 12. In the like manner as square and circle, the 

extrapolated value converges to a single value which is very close to the theoretical value. For this case, an extrapolated αL
2
 is 

24.64 whereas the analytical value based on area scaling is 2.5π
2
 or 24.67. In other words, the deviation is as small as 0.12%. 

From verification of the standard shapes i.e. square circle and isosceles right triangle, the numerical-derived shape factor 

values are accurately estimated compared to the analytical values. So the methodology can be applied and extended to 2D ir-

regular shape and 3D modelling.   

 

Shape factor for 2D irregularly-shaped matrix blocks 

Having obtained numerical-estimated shape factor for standard shapes, the work is extended to 2D irregular shape. The 

shape was designed as a combination of square and triangle; in other words, it is neither so close to the rectangle or triangle as 

shown in figure 13. Because the model shape is irregular where there is no analytical solution, it is unnecessary to construct 

several models and extrapolate as done in the previous shapes. In addition, it is not easy to get the high level of model similari-

ty with different grid resolutions for irregular shape. As a result, to avoid the need of having more than one model for extrapo-

lation, the model was designed so it contains as much cells as possible. Table 5 shows the detail of model parameters and its 

initial condition. In addition, the simulation results of final equilibrium pressure and the shape factor are tabulated in the table 

6. 

 

Table 5 Model parameters and initial condition for 2D irregular shape  

Input physical properties  Value Field unit 

Matrix porosity (φm) 0.0001 
 

Fracture porosity (φf) 0.99 
 

Matrix initial pressure (pmi) 900 psia 

Fracture pressure (pf) 1000 psia 

Fracture permeability (kf) 1000 mD 

Matrix permeability (km) 1 mD 

Simulation parameters Value Field unit 

Number of cells in the model 510 cell 

Number of matrix cells 199 cell 

Number of fracture cells 311 cell 

Grid block size 100x100x100 feet 

Depth of top reservoir 10 feet 

Time step size 0.0001 day 

Number of time step 2000 step 

 

N=6 N=10

N=14 N=20

Permeability (mD)1 1000

y = -62.876x2 - 7.0409x + 24.644
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Extraploated α L2 for isosceles right triangular shape 

N=6, 10, 14 and 20 Poly. (N=6, 10, 14 and 20)

Estimated α e L2 is 24.64 whilst the 

theoretical value is 24.67

Figure 11 Isosceles right triangle models for 

different grid resolution i.e. N=6, 10, 14 and 20 
Figure 12 Extrapolation of the shape factor for 2D Isosceles right triangle, the estimated 

αL2 is 24.64 whilst the analytical solution is 24.67. 

Figure 13 Grid architecture for 2D irregular shape matrix 

blocks adapted from actual irregular blocks in thin section view 

Permeability 1 10
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Table 6 Simulation results for 2D irregular shape 

According to the results, the dimensionless shape factor, αL
2
 is es-

timated to be 26.42 which is quite similar to that of the right triangle 

since the irregular shape can split into small triangles. The final equilib-

rium pressure satisfies the constant pressure boundary condition, the 

deviation is only 0.001%.  

 
 

Scaling laws for a generic shape factor: 2D geometry 
As previously mentioned, the ultimate goal of this work is to estimate a generic shape factor value which can be applied to 

any matrix shape without the need of fine-grid numerical simulation. This value should be estimated based on some representa-

tive scaling technique and should gives the minimum deviation. For this work, a single universal value with a deviation of 10% 

is considered as an acceptable figure. In other words, this generic constant must be compared to the known analytical solution 

value and give an error of less than 10%.  

The scaling technique starts with the matrix-fracture flow equation (1) where 
𝑄(𝑡)

𝑉
 represents a unit-volume flow rate: 

𝑄(𝑡)

𝑉
=  𝑞𝑚𝑓(𝑡) =  𝛼 

𝑘𝑚

𝜇
 (�̅�𝑚 − 𝑃𝑓)   

The total flux flowing from fracture to matrix is: 

 𝑄(𝑡) =  𝛼 𝑉 
𝑘𝑚

𝜇
 (𝑃𝑓 − �̅�𝑚)    (1-a) 

The volumetric flow rate for the typical fracture system for a single phase can be expressed by Darcy’s law, therefore: 

𝑄(𝑡) =  
𝑘𝑚 

𝜇 ∆𝑙
𝑆 (𝑃𝑓 − �̅�𝑚)      (9) 

Where S denotes the outer surface area of the matrix and ∆𝑙 is a characteristic length that represents mean path line of the 

flow field between the point of average pressure in matrix (centroid of the pressure field within matrix) and the surrounding 

fracture where the pressure maintains constant. In other words we can imagine that ∆𝑙 is a characteristic length that similar to 

the mean radius of the flow field.  

Assign (1-a) = (9) hence: 

𝛼 =  
(𝑆

𝑉⁄ )

∆𝑙
       (10) 

Equation (10) has dimension of reciprocal area (1/m
2
), the term S denotes the outer surface area of the matrix, V is the ma-

trix volume and ∆𝑙 is a characteristic length that represents a path line of the flow between the point of average pressure in ma-

trix (centroid of the pressure field within matrix) and a point in the surrounding fracture where the pressure maintains constant. 

In other words we can imagine that ∆𝑙 is a characteristic length that is similar to the mean radius of the flow field. Equation 

(10) cannot directly apply because the characteristic length ∆𝑙 cannot be explicitly found from the shape geometry. Neverthe-

less, the expression gives an instructive view of how α depends on geometry of the matrix block. One of a simple example for 

3D shape is a cubical shape which has an equal length of L. In this case, S/V is 6L
2
/L

3
 = 6/L and ∆𝑙 can be simplified to √𝑉

3
 or 

L and hence the dimensionless alpha, 𝛼 ∆𝑙 
𝑉

𝑆
=  𝛼 

𝐿2

6
. The term αL

2
 can be obtained from the numerical simulation as a result  

𝛼 ∆𝑙 
𝑉

𝑆
  is then computed explicitly. The first scaling law to get a dimensionless alpha is 𝛼 ∆𝑙 

𝑉

𝑆
 

For 3D shape:∆𝑙  ≡  √𝑉
3

     (11) 

Hence 𝛼 ∙ ∆𝑙
𝑉

𝐴
 becomes 𝛼 ∙(𝑉

4
3 /A) 

For the case of 2D shape, the surface area (S) is the product of Perimeter (Π) and width (w) i.e. S=Π∙w and similarly V=A∙w 

and hence the term S/V = Π/A. The term ∆𝑙 can be simplified to √𝐴
2

 and hence 𝛼 ∙ ∆𝑙
𝑉

𝑆
 becomes 𝛼 ∙(A1.5

/Π). 

For 2D shape: ∆𝑙  ≡  √𝐴
2

     (12) 

Apart from this scaling technique, there are number of ways to create scaling factors to get the dimensionless alpha. The 

key idea is that the scaling parameters must have a dimension of length square (L
2
) so that the multiplication term of scaling 

factor and alpha becomes dimensionless. In this work, there are four scaling factors being investigated i.e. area (A), perimeter 

square (Π
2
), (A/Π)

2
 and  ∆𝑙 

𝑉

𝑆
. The scaled alpha in dimensionless form for 2D shapes is tabulated in the table 7.  

 
 

 

 

Parameter Value 

 α (1/m2) 1.43E-04 

 αL2 26.42 

Equilibrium pressure (psia) 999.994 

% pressure deviation 0.001% 
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Table 7 Scaling laws to estimate dimensionless shape factor of various geometries for 2D model 

Matrix Shape α A α Π2 α (A/Π)2 
α (A1.5/Π) 

or 𝜶 ∙ ∆𝒍
𝑽

𝑺
 

Deviation from average  

α A α Π2 α (A/Π)2 α (A1.5/Π) or 𝜶 ∙ ∆𝒍
𝑽

𝑺
 

Square 19.63 314.1 1.23 4.91 -11% -37% 9% 0% 

Isosceles right triangle 24.64 574.5 1.06 5.10 11% 14% -6% 4% 

Circle 17.99 226.1 1.43 5.07 -19% -55% 27% 3% 

Irregular shape2D 26.42 892.6 0.78 4.55 19% 78% -30% -7% 

average 22.17 501.8 1.12 4.91 
    

standard deviation (S.D.) 4.00 299.61 0.28 0.26 
    

S.D. and mean % diff. 18% 60% 24% 5% 
    

 

According to the table, if the area (A) is used as a scaling parameter, the dimensionless values vary between 17.99 (circle) 

and 26.42 (irregular shape) with a deviation of +-19% from the average value and the standard deviation of 18%. For the case 

of the perimeter square (Π
2
), the standard deviation goes up to 60% while it is 24% for the case of (A/Π)

2
. In other words, these 

two scaling factors are not as good as the area. Finally, if the scaling factor is A
1.5

/Π (or ∆𝑙 
𝑉

𝑆
), the variation is minimum i.e. 

only 7% . Therefore, it can conclude that using A
1.5

/Π (or ∆𝑙 
𝑉

𝑆
) as a scaling parameter gives the smallest error (7%) with only 

5% of the standard deviation.  
 
Shape factor for 3-Dimensional geometry 

Having achieved an estimation of a generic dimensionless shape factor for 2D shape, the work is extended to 3D geometry. 

The simplest 3D geometry is cubical shape so it was used as a testing model against the known analytical solution. The numer-

ical simulation model for 3D cube was constructed by following the standard procedure done in the 2D shape. Apart from 3D 

cube, an additional model for a 3D equilateral square pyramid was constructed to find the shape factor. And finally, a 3D irreg-

ular shape model, as a key experiment, is modeled and tested against the scaling law to obtain a universal constant for dimen-

sionless shape factor.    

Shape factor for 3D cubical shape (a reservoir having three normal fracture sets) 

The model architecture for a 3D cube is based on the same idea that of 2D shape; the simulation model consists of matrix 

cells surrounded by fracture shell as shown in figure 14. The model properties and its initial condition are tabulated in table 8.  

Table 8 Input parameters for 3D cube simulation model 

Input physical properties  Value Field unit 

Matrix porosity (φm) 0.0001   

Fracture porosity (φf) 0.99   

Matrix initial pressure (pmi) 900 psia 

Fracture pressure (pf) 1000 psia 

Matrix permeability (km) 1 mD 

Fracture permeability (kf) 1000 mD 

Reservoir fluid water   

Water viscosity (μw) 1 c.p. 

Modified water density (ρw) 0.624 lb/ft3 

Water compressibility (cw) 3.40E-06 psi-1 

Rock compressibility (cp and cf) 3.40E-06 psi-1 

Simulation parameters Value Field unit 

Number of cells in the model 12x12x12 cell 

Number of matrix cells 10x10x10 cell 

Number of fracture cells 728 cell 

Grid block size 1x1x1 feet 

Depth of top reservoir 10 feet 

Time step size 0.0001 day 

Number of time step 2000 step 
Permeability (mD)1 1000

Fracture shell 
(1000 mD)

Matrix

(1 mD)

Figure 14 3D cube model cross-sectional view 

shows matrix and fracture permeability. 
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Permeability (mD)1 1000

Fracture shell 
(vlomue between 
wireframe and 
solid block)
(1000 mD)

 
Table 9 Simulation results for 3D cubic shape 

According to table 9, the simulation results show that the 3D cubical model 

satisfies a constant pressure boundary condition and the final equilibrium 

pressure deviates from initial pressure only 0.001%. The model gives a 

numerical-derived αL
2
 of 29.15 whereas the analytical solution is 3π

2
 or 

29.61that is the deviation of 1.5%. Note that L denotes cubical root of vol-

ume or the length of each side for this particular 3D cube model. This 

model is equivalent to a fracture reservoir having three normal fracture sets 

as shown in figure 1.  

 

 

Shape factor for 3D equilateral square pyramid 
Table 10 Input parameters for 3D square pyramid model 

 A model of 3D square pyramid with all four side-faces of 

equilateral triangles was constructed to find a shape factor for 

testing the scaling law. The model consists of small cells form a 

staircase-shaped hypotenuse pyramid as shown in the figure 15. 

The model basic properties are the same as that of 3D cube 

model as shown in table 10.  

Table 11 shows the numerical-derived shape factor for 3D 

square pyramid. The model gives αL
2
 of 33.33 and the final 

equilibrium pressure is very close to 1000 psia so a constant 

pressure condition is maintained as expected. 

 

 

Table 11 Simulation results for 3D square pyramid 

Parameter Value 

 α (1/m2) 4.43 

 αL2 33.33 

Equilibrium pressure (psia) 999.989 

% pressure deviation 0.001% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shape factor for 3D irregularly-shaped matrix block 
As the 3D cube model is formed by six orthogonal planes, similarly, a 3D irregularly-shaped model is formed by six 

oblique planes so the shape is like a tapered block as shown in figure 16 and 17. Figure 16 aims to illustrate the 3D irregular 

shape in different orthographic projection views so that the model’s profile can be captured and  the shape can be perceived. In 

addition, figure 17 explicitly illustrates the irregular shape by giving its x, y and z coordinates.  

 

 

Parameter Value 

α (1/m2) 3.14 

αL2 29.15 

αL2 (theoretical value) 29.61 

Equilibrium pressure (psia) 999.985 

% pressure deviation 0.001% 

Simulation parameters Value Field unit 

Number of cells in the model 14x14x14 cell 

Number of matrix cells 728 cell 

Number of fracture cells 2016 cell 

Grid block size 1x1x1 feet 

Depth of top reservoir 10 feet 

Time step size 0.0001 day 

Number of time step 2000 step 

Figure 15 3D square pyramid model cross-sectional view shows matrix and fracture permeability. 
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Figure 16 Orthographic projections for 3D irregular shape showing the model’s profile of the front, the top and the right views. The iso-

metric and cross-sectional views are also included here.  

 

 
Figure 17 Coordinates of 3D irregular shape model. The coordinate uses the Cartesian convention of x-axis (red), y-axis (green) and z-

axis (blue).  

 

 

Permeability (mD)1 1000

Fracture shell 
(vlomue between 
wireframe and 
solid block)

1000 mD

Permeability (mD)1 1000

Matrix body
1 mD

(7, 31, 3)

(37, 3, 39)

(32, 33, 3)

(32, 33, 32)

(37, 3, 28)

(3, 7, 28)

(3, 7, 8)

(7, 31, 32)

(0, 0, 0)
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Table 12 Input parameters for 3D irregular shape model 

As the model is considered as a numerous models, the grid size 

is very small and the model contains large number of cells. There-

fore, the time step is reduced to 0.0004 second (5e-9 day) in order 

to capture the early-time pressure response and to obtain the shape 

factor accurately. The time step and other simulation model param-

eters for 3D irregular shape are tabulated in table12. Note that 

model’s volume and surface area are explicitly computed for uses 

in scaling law investigation. 

According to the simulation results, the model’s pressure re-

sponse follows the constant pressure boundary condition and both 

early time and late time pressure data are valid as shown in figure 

18. The recorded pressure trend is smooth and it follows exponen-

tial fit as see in figure 19.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 13 Simulation results for 3D irregular shape. 

From the simulation results in table 13, the numerical-estimated shape 

factor, αL
2
 is 30.23, again, L denotes the cubic root of matrix volume as sug-

gested in equation (11). The results also show that the final equilibrium devi-

ates from initial pressure for only 0.001% so the constant pressure condition 

is maintained. 

 

 

 
Scaling laws for a generic shape factor: 3D and 2D geometry 

 
As previously suggested, the usefulness of the scaling law is to obtain a universal constant for dimensionless shape factor 

which can apply to any shape without the need of fine-grid numerical simulation. Among the various scaling laws experiments 

from previous section (table 7), the two best dimensionless factor that give a minimum deviation is 𝜶 ∆𝒍 
𝑽

𝑺
 and αL

2
 respective-

ly. Therefore, these two scaling factors (𝜶 ∆𝒍 
𝑽

𝑺
 and αL

2
) are additionally applied to 3D geometry as well. Equation (11) and 

(12) define a characteristic length (∆𝑙) for scaling; in 3D geometry, ∆𝑙 and L are a cubic root of volume (V) and S represents 

outer surface area of the matrix block. Table14 shows a comparison of two scaling laws i.e. 𝜶 ∆𝒍 
𝑽

𝑺
 and αL

2
 for 2D and 3D ge-

ometry including that of the irregular shape blocks. 
 

 

Simulation parameters Value Field unit 

Number of cells in the model 39x35x34 cell 

Number of matrix cells 21075 cell 

Number of fracture cells 46410 cell 

Grid block size 1x1x1 feet 

Depth of top reservoir 10 feet 

Time step size 5.00E-09 day 

Number of time step 2000 step 

Matrix volume 21075 ft3 

Surface area 4595 ft2 

Parameter Value 

 α (1/m2) 0.43 

 αL2 30.23 

Equilibrium pressure (psia) 999.987 

% pressure deviation 0.001% 

y = 0.288e-3.697 e5x

R² = 1.000
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Figure 18 Matrix-averaged pressure of 3D irregular shape model. The 

trend reaches pressure equilibration at 999.99 psia so the constant 

pressure boundary condition is maintained. 

Figure 19 A straight line trend of normalised pressure and its exponent 

for 3D irregular shape model. The model gives an exponent of 3.7e5 hence 

αL2 = 30.23 according to its geometry. 
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Table 14 Scaling laws to estimate dimensionless shape factor of different geometries for 2D and 3D model including the irregular shape 

Matrix Shape αL2 𝛂 ∙ ∆𝐥 (V/S) 
Deviation from average 

αL2 𝛂 ∙ ∆𝐥 (V/S) 

Square 19.63 4.91 -24% -2% 

Isosceles right triangle 24.64 5.10 -5% 2% 

Circle 17.99 5.08 -31% 1% 

Irregular shape2D 26.42 4.54 2% -9% 

3D cube 29.15 4.86 12% -3% 

3D square pyramid 33.33 5.57 29% 11% 

3D Irregular 30.23 5.02 17% 0% 

average 25.91 5.01 
  

standard deviation 5.60 0.31 
  

S.D. and mean % diff. 22% 6% 
  

According to the table, if ∆𝑙
𝑉

𝑆
 is used as a scaling parameter, the dimensionless shape factor varies between 4.54 and 5.57 

for the 2D irregular shape and 3D square pyramid that is a deviation of -9 and 11% respectively. This scaling factor gives the 

standard deviation of 6%. If L
2
 is used instead, the standard deviation goes up to 22% while the variation of the factor varies 

between 17.99 and 33.33 for circle and 3D square pyramid that is the deviation of -31 and 29% respectively. Note that the av-

erage value of the dimensionless factor is almost the same as that of the 3D irregular shape i.e. 5.01 and 5.02 respectively.  

Overall, it can conclude that using  𝛼 ∙ ∆𝑙
𝑉

𝑆
  as a scaling parameter gives the most confident value, the dimensionless shape 

factor derived from this method is 𝛼 ∙ ∆𝑙
𝑉

𝑆
= 5.0 with a maximum error of 10%. 

Discussion 
The numerical-derived pressure responses have shown that, when matrix-fracture flow behaviour is governed by linear 

pressure diffusion equation under pseudo steady-state condition and constant boundary pressure, the shape factor (𝛼) depends 

on the matrix block’s geometry. To be more precise, it depends largely on fracture spacing (𝐿), matrix’s surface area (𝑆) , its 

volume (𝑉) and geometry’s characteristic length (∆𝑙) according to the scaling laws. Another observation is that different geom-

etries have different α because of their different surface-to-volume ratio. A classic example is a comparison between square 

and circular shapes of the same area (from eq. 12: same ∆𝑙 as well); the circle always has shorter perimeter implying that the 

circle has lower sure face-to-volume ratio (S/V) and hence higher V/S. As a result, the circle always has higher 𝛼 ∙ ∆𝑙
𝑉

𝑆
 than the 

square, as shown in table 14. From this idea, therefore, the matrix of the same shape and size should give the same dimension-

less shape factor because of the constant surface-to-volume ratio.  

Simulation models for different open-to-flow area of the same matrix block 

To test this assumption, three identical 20x20 square shape models were constructed with the same L, A and V -the only dif-

ference is experimented parameter i.e. area-opened-to-flow. In other words, three identical models have the same geometry but 

different area-opened-to-flow ratio (fwet). In addition, the 20x20 2D square model of the previous section is used as a controlled 

experiment. The different models as shown in figure20 have the same parameters as tabulated in table1 in the previous section.  

 
Figure 20 Simulation models for differently-wetted matrix’s outer surface. The base case has fully-wetted area while another two cases have the same 

fwet ratio but different formations (fwet =0.5) and the last model represents cave-like geometry where only little area is opened to flow (fwet=0.025). 

20x20 fully wetted

(base case)
partially wetted 1 

fwet=0.5

(alternation half close- half open)

partially wetted 2 

fwet=0.5

(checkerboard pattern)

partially wetted 3

fwet=0.025

(cave-like geomerty)

open to flowclosematrix fracture (1000 open to flowclose open to flowclose
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From the results, the base case model 

where the outer surface is fully opened gives 

the fastest pressure diffusion. The model 

quickly reaches pressure equilibration (t ≥ 

0.7 day) compared to partially-wetted models 

as illustrated in figure 21. From this figure, 

the models were put at the same initial condi-

tion. As the time progresses, pressure starts 

to diffuse through the opened cells as can be 

seen in the figure. Note that the diffusion 

patterns are different for wet1 and wet2 mod-

els despite the same area-opened-to-flow 

(fwet=0.5). For wet1, the pressure diffuses  

through the opened cells and encircles the 

closed part resulting in a cyclone-like pattern. 

For wet2, the checker board shape, the diffu-

sion pattern is very similar to the fully wetted 

model due to the fact that the flow path is 

less tortuous compared to that of wet1. 

Therefore, the diffusion is smoother and fast-

er as can also be observed from figure 22. It 

is confirmed that wet2 reaches pressure equi-

libration at almost the same time as fully 

wetted and faster than wet1. From the figure 

at time t=0.7; the pressure for wet2 and fully 

wetted almost reaches the final pressure (red) 

whereas wet1 still have some yellow zone in 

middle part which means the pressure is still 

far from final equilibration. For wet3; it is 

clear that the pressure diffuses very slowly 

since the area-opened-to-flow is small 

(fwet=0.025). The diffusion pattern is similar 

to a semi-circle front because of the sym-

metry. It takes more than 20 days to reach the 

equilibrium while other models reach the 

final state within 3 days.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As discussed that the pressure diffusion for wet1 is slower than wet2 despite the same the same area-opened-to-flow 

(fwet=0.5), due to the fact that its flow path is more tortuous. Figure 22 also illustrated this response as can see that wet2 (green) 

Pressure (psia)900 1000

Partially wetted 1

t=0

time (day)

t=0.01

t=0.1

t=0.3

t=0.5

t=0.7

Partially wetted 2 Partially wetted 3Fully wetted

Figure 21 pressure diffusion for different partially wetted model. The model’s physical properties are the same as presented in table 1. 
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diffuses faster and reaches equilibrium (about t=3days) faster than wet1 where as it takes much longer for wet3 which is an 

extreme case. Therefore, the normalized pressure for wet3 gives the smallest slope, followed by wet1 and wet2 respectively, as 

shown in figure 23. As a result, wet3 has the smallest shape factor (α), next came wet1, wet2 and fully wet models respective-

ly. Table 15 shows these results as accordingly described, in addition, the scaling laws were tested on these partially opened 

surface models. All parameters were used in the same way as previously described except that the surface area of the matrix 

being modified by an area-opened-to-flow ratio (fwet). This modified surface area (Πwet) is expressed as follow; 

 Πwet = fwet ∙ Π      (13) 

According to table 15, the shape factor (α) for wet2 is very close to fully wet model (12% deviation) as they have similar 

pressure diffusion. However, when the scaling laws of Πwet are applied, the deviation is larger. This is due to the surface opened 

to flow area of wet2 is suppressed while the pressure diffusion for the two cases are similar. In addition, the deviation of α be-

tween wet1 and fully wet is higher but becomes smaller when scaled by Πwet; these are clearly shown in the last three column of 

the table. For the case of wet3, where fwet is very small, although the shape factor (α) is smaller by one order of magnitude (E-6 

vs. E-5), the usefulness of scaling factor 𝛼 ∙ ∆𝑙
𝑉

𝑆
   brings it to the same order (11.80 vs. 8.44 for wet3 and wet2 respectively). 

For the case of partially wetted surface, although the scaling factor 𝛼 ∙ ∆𝑙
𝑉

𝑆
   does not give as confident value as that of fully 

opened, the factor is instructive in showing how the different wetting surface influences the shape factor and most importantly, 

it gives value of the same order of magnitude. These results show that the shape factor depends not only on geometrical factors 

i.e. surface-to-volume ratio (S/V), characteristic length (∆𝑙) and area-opened-to-flow ratio (fwet), it also depends on the physics 

of pressure diffusion within the matrix blocks. 

Table 15 Scaling laws to estimate dimensionless shape factor for different wetting matrix outer surface 

Matrix 

Shape 

α  Area (L2) 
Perimeter 

(Π) 
fwet 

Perimeter 

opened to flow αL2 α Πwet
2 α (A/ Πwet)

2 
α (A1.5/ Πwet) 

or α ∙ ∆l
V

S
 

 (m-2)  (m2) (m)   (Πwet), (m) 

fully wet 5.19E-5 3.72E+5 2.44E+3 1 2.44E+3 19.28 308.46 1.20 4.82 

wet1 3.48E-5 3.72E+5 2.44E+3 0.5 1.22E+3 12.93 51.71 3.23 6.46 

wet2 4.54E-5 3.72E+5 2.44E+3 0.5 1.22E+3 16.89 67.54 4.22 8.44 

wet3 3.18E-6 3.72E+5 2.44E+3 0.025 6.10E+1 1.18 0.01 118.02 11.80 

   

Conclusion 
 Table 16 Numerical-estimated shape factor for standard shapes compare to analytical solution 

From this study, the numerical-estimated 

shape factors are verified with the known ana-

lytical values. The results are tabulated in this 

table. The shape factor for irregular shapes are 

numerically estimated and made dimension-

less with the scaling factor 𝛼 ∙ ∆𝑙
𝑉

𝑆
 . This 

shape factor gives the most confident value of 

𝜶 ∙ ∆𝒍
𝑽

𝑺
= 5.0 with an error less than 10%. The 

variable 
𝑉

𝑆
 denotes volume-to-surface ratio of 

the matrix blocks and ∆𝑙 represents a charac-

teristic length that similar to the mean radius 

of the pressure field; it is defined as ∆𝑙  ≡

 √𝐴
2

 for 2D shape and ∆𝑙  ≡  √𝑉
3

 for 3D 

shape. While, the conventional dimensionless 

shape factor using fracture spacing or area of 

the matrix block (αL
2
) gives more than 30% 

deviation. This scaling law suggests that shape 

factor depends largely on surface-volume ratio 

(S/V) and the characteristic length ∆𝑙.     
An analysis on pressure diffusion for different wetting surface area suggested that the shape factor does not only depend on 

geometrical factors i.e. surface-to-volume ratio (S/V), characteristic length (∆𝑙) and area-opened-to-flow ratio (fwet), but it also 

depends on the physics of pressure diffusion within the matrix blocks. 

Matrix shape Description 
𝜶 ∙ ∆𝒍

𝑽

𝑺
 Difference 

Analytical 

solution 

Numerical-

estimated  
% 

  

 Square  

(Two normal 

fractures) 

4.94 4.91 0.56 

  

 Circle 

(Radial geometry 

parallel pipe) 

5.13 5.08 0.97 

  

Isosceles right 

triangle  
5.11 5.10 0.12 

  

 3D cube  

(Three fracture 

sets) 

4.94 4.86 1.5 

Any shape 𝜶 ∙ ∆𝒍
𝑽

𝑺
= 5.0 
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Suggested future work 
This work is done based on a linear diffusion equation with the pseudo steady-state assumption. To understand the 

physics of flow behaviour more precisely, it is suggested to extend the work to include the non-linear term in a transient flow 

regime. In addition, a multi-phase matrix-fracture flow and the non-Darcy flow should provide more insights of pressure diffu-

sion behaviour for the system. Finally, an investigation on a characteristic length representing centriod of pressure field for 

each flow regime (for every time step) may give a universal scaling law more accurately.    

Nomenclature 
𝛼  shape factor (1/m

2
) 

αL
2
 dimensionless Shape factor based on fracture spacing (or area) 

𝛼 ∙ ∆𝑙
𝑉

𝑆
  dimensionless Shape factor based on scaling parameter ∆𝑙

𝑉

𝑆
 

 A area (m
2
) 

cf fluid compressibility (1/psia) 

cm and cp rock compressibility (1/psia) 

ct total compressibility (1/psia) 

km matrix permeability (mD) 

kf fracture permeability (mD) 

∆𝑙  characteristic length; for 2D: ∆𝑙 ≡ √𝐴
2

 ; for 3D: ∆𝑙 ≡ √𝑉
3

  

Lx, Ly, Lz  fracture spacing in x, y and z direction  

Π perimeter (m) 

∅𝑓  fracture porosity 

∅𝑚  matrix porosity 

pD normalised pressure (dimensionless) 

𝑝𝑓  fracture pressure (psia) 

�̅�𝑚  average matrix pressure (psia) 

𝑞𝑚𝑓  matrix-fracture flow rate he fractures per unit volume (1/s) 

Q flow rate (m
3
/s) 

S outer-surface area (m
2
) 

𝜇  viscosity (c.p.) 

V volume (m
3
) 
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