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ABSTRACT 

 

This paper attempts to tackle the inverse problem of History Matching (HM) on a simplified version of a real reser-

voir model (Midge Reservoir Model donated by BP) that has been used to make reservoir management decisions. 

The ability to make correct reservoir management decisions relies mainly on being able to predict their conse-

quences, which in turn depends on the achieved accuracy in the description of the reservoir's internal structure 

(Gringarten, 1998). This reservoir model is parameterised in 18 regions or compartments, each having homogene-

ous properties. This parameterisation approach is intended to reduce the number of model parameters. These pa-

rameters are mainly the porosities (PORO) and permeability (PERMX, PERMY, PERMZ) in the various compart-

ments, the transmissibility across the faults and the allocation of water to the injection wells (Carter et al. 2006). 

 

Different realisations of the Midge model were generated by searching the parameter space in a systematic way 

using a set reservoir parameters range (first varying single parameters in each region: uni-variate cases, then vary-

ing two different parameters for each region: bi-variate cases). Synthetic production parameters (Field Oil Produc-

tion Rate – FOPR, Field Water Production Rate – FWPR, Field Gas Production Rate – FGPR) were then generated 

from each of the models; these were compared with the results from the true model which is the base case. The op-

timization technique used was to find the minimum of an objective function that best represents the quality of the 

model. For multivariate parameters variations, a hill climbing algorithm was used to search for all possible ‘best 

models’. 

 

In most of the studies, independent of the method used for the history matching, there is usually an assumption that 

there exists a simple unique solution at the “correct” model. They therefore neglect the inherent non-uniqueness of 

the solution of the underlying inverse problem. This, consequently, leads to the assumption that a good history-

matched model is a good representation of the reservoir and therefore gives a good forecast (Carter et al. 2004). 

One of the aims of this study is to challenge these assumptions. Some of the results show the existence of multiple 

solutions for some set values of objective functions, but produce different results at the prediction phase. 
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Abstract 
This paper tackles the inverse problem of History Matching (HM) on a simplified version of a real reservoir model (Midge 

Reservoir Model donated by BP) that has been used to make reservoir management decisions. The ability to make correct res-

ervoir management decisions relies mainly on being able to predict their consequences, which in turn depends on the achieved 

accuracy in the description of the reservoir's internal structure (Gringarten, 1998). This reservoir model is parameterised in 18 

regions or compartments, each having homogeneous properties. This parameterisation approach is intended to reduce the 

number of model parameters. These parameters are mainly the porosities and permeability in the various compartments, the 

transmissibility across the faults and the allocation of water to the injection wells (Carter et al. 2006). 

 

Different realisations of the Midge model were generated by searching the parameter space in a systematic way using a set 

reservoir parameters ranges (first varying single parameters in each region – univariate cases, then varying two different pa-

rameters for each region- bivariate cases). Synthetic production parameters (Field Oil Production Rate – FOPR, Field Water 

Production Rate – FWPR, Field Gas Production Rate – FGPR) were then generated from each of the models; these were com-

pared with the synthetic production data from the true model which is the base case. The optimization technique used was to 

find the minimum of an objective function that best represents the quality of the model. For multivariate parameters variations, 

a hill climbing algorithm was used to search for all possible ‘best models’. 

 

In most of the studies, independent of the method used for the history matching, there is usually an assumption that there exists 

a simple unique solution at the “correct” model. One of the conclusions of this study is that HM produce multiple ‘best’ solu-

tions and by comparing the forecast from these ‘best’ solutions, we can reduce the number of possible solutions. And some of 

the results show the existence of multiple solutions for some set values of objective functions, but produce different results at 

the prediction phase. 

Introduction 
History Matching (HM) is used in reservoir modelling for estimating unknown reservoir properties such as porosity and per-

meability from measured data. This is usually an inverse problem with non-unique solutions. Some of the synthetic production 

data used for this analysis are pressures (e.g. Bottom Hole Pressure – BHP, Well Head Pressures – WHP) and rate data (e.g. 

Field Oil Production Rate – FOPR, Field Water Production Rate – FWPR, Field Gas Production Rate – FGPR, Field Injection 

Rate – FIJR) at the field level or at each of the producing wells (e.g. Well Oil Production Rate – WOPR, Well Water Produc-

ing Rate – WWPR). In other to manage the reservoir optimally, the heterogeneity of the reservoir must be properly character-

ized, thereby improving the predictive capability of the reservoir model. 

HM is a difficult inverse problem and the challenge is to find a model that closely produces the performance of the ac-

tual reservoir.  This can be carried out either manually by trial and error (usually for small number of parameters) or automati-

cally by a simulator (usually for more than 10000 parameter values). The automatic method is usually time-saving and varies 

the model parameters until a set matching criteria is achieved. Since the flow equations involved in the simulation are too 

complex, they cannot be analytically solved in general and therefore the reservoir model behaviour is computed with a flow 

simulator integrating solvers for these equations. The ECLIPSE flow simulator is used for the analysis. The key objectives of 

the study are:  

1. Decide the parameters that will be considered as uncertain for the history matching problem 

2. Write a computer program the will read from a file the values of the uncertain parameters, create the corresponding 

eclipse data set, run the model and finally extract the data that is used in the history match 

3. Write an optimisation code to search for a good quality history match and search for multiple history match solutions. 

4. Show, if possible, that any two high quality solutions cannot be joined in parameter space by a path that only includes 

other high quality solutions. 

Imperial College 
London 
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Comparing this study to the IC Fault Model Approach (Carter et al. 2005) 

The simple model used in (Carter et al. 2005) has a 2D cross section of a reservoir with a sequence of alternating good and 

poor quality sands and a simple fault. The three unknown parameters were high and low permeability of the sands, and the 

throw of the fault. Carter (2006) attempted to capture the effects of modelling errors in the inverse problems using Bayesian 

statistics.  He then used a similar cross-sectional model of a reservoir to test the results. It appeared that the proposed error 

model yields a multi modal objective function that leads to multiple acceptable solutions. The approach used (Carter et al. 

2005) was to generate a large number of models, which could be searched to find the best match according to the criteria cho-

sen. 

For this study, a more complex reservoir model (36 x 35 x 20 cells, parameterised in 18 regions, each having homoge-

neous properties, 4 producer wells and 2 injection wells, 30yr production parameters generated - first 4000 days production 

used for the HM problem while production from 4000 to 10000 days was used for the prediction phase) was used but with 

similar approach to the one used by Carter (2006) to generate a large number of realizations of the reservoir. We then com-

pared all these realizations with our base model and use the sum of squares as the measure of fit between the performance of 

the base case and each realization. By obtaining both the best production and the best parameter-matched models, we then 

study the history matching problem. The result shows that a good fit for the production data at the HM phase does not neces-

sarily give the best match at the prediction phase. The best models may in fact give a bad forecast.  

 

 

 

 

 

 

 

 

 

 

Objective Function and Data 

To measure the extent to which a reservoir model compares to the available data, an objective function was defined quantify-

ing the misfit between the model output and the measurements at each well. The history covers 360 months of production and 

contains 1440 data points. These data are used to control the volumes of produced and injected fluid in the model. There are 6 

drilled wells (4 producers and 2 injectors).The objective function has been formulated as a combination of the sum-of-squares 

error on production rates (Oil, Water & Gas) measured synthetic data from ‘true’ model and compared with rate generated 

from over 300 ‘similar’ models. 

General History Matching Approaches 

From a mathematical standpoint, the history matching process reduces to an optimisation problem for which a large number of 

numerical algorithms are available (Kathrada, 2009). Generally, optimisation algorithms are from two distinct classes:- 

1. Techniques that use derivatives like Levenberg-Marquardt and Quasi-Newton (Kathrada, 2009). They have relatively fast 

convergence but are capable of only finding local minima. 

2. Techniques that do not use derivative information like genetic algorithms and particle swarms. They are slower to con-

verge since they search a wider area of the parameter space but are capable of finding multiple minima. They also lend 

themselves to distributed processing and treating the simulator as a black box (Kathrada, 2009). 

The first method was selected for this study because it is adequate and shows an ensemble of ‘best’ solutions around the global 

optimal of the both the univariate and multivariate function used.  

Deviation between simulated and observed data is given by; 

 

D = ∑ (Si − Oi)
2𝑛

𝑘=0
                                                                                                                                                       (1) 

 

Fig. 2: Midge Model with 25200 cells, 18 compartments, with a 
total of 72 free model parameters. 

Fig. 1: IC Fault Model with fault throw of h, green and pink repre-
sent poor and good quality sands (Kathrada, 2009). 
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Root Mean Square Error (RMSE) 

 

RMSE =
∑ (ws)(Si − Oi)

2𝑛

𝑘=0

∑ ws
𝑛
𝑘=0

                                                                                                                                                                       (2) 

Ws is weighs for each data set 

 

Likelihood Function / Probability (P)  

P =
exp(− ∑ (ws)(Si−Oi)2)

𝑛
𝑘=0

Constant
                                                                                                                                                                               (3)                                                                                                                                         

Multivariate Normal Distribution Function (MVNPDF) 

The probability density function of the d-dimensional multivariate normal distribution is given by 

 

MVNPDF = f(x, µ, Σ) =
1

√|Σ|(2π)d
e−

1
2

(x−µ)Σ−1(x−µ)′

                                                                                                                                 (4) 

 

The multivariate normal distribution is a generalization of the univariate normal to two or more variables. It is a distribution 

for random vectors of correlated variables, each element of which has a univariate normal distribution. In the simplest case, 

there is no correlation among variables, and elements of the vectors are independent univariate normal random variables. 

The multivariate normal distribution is parameterized with a mean vector, μ, and a covariance matrix, Σ. These are analogous 

to the mean μ and variance σ
2
 parameters of a univariate normal distribution. The diagonal elements of Σ contain the variances 

for each variable, while the off-diagonal elements of Σ contain the covariances between variables. 

The multivariate normal distribution is often used as a model for multivariate data, primarily because it is one of the few mul-

tivariate distributions that are tractable to work with (Mathworks statistical tool-box, 2010). 

 

 

Local Search Algorithm:  The Hill Climbing (HC) algorithm is an optimization technique which belongs to the family of 

local search. It is relatively simple to implement and can be used to solve problems that have many solutions, some of which 

are better than others. It starts with a random (potentially poor) solution, and iteratively makes small changes to the solution, 

each time improving it a little. When the algorithm cannot see any improvement anymore, it terminates. HC attempts to max-

imize (or minimize) a function f(x), where x are discrete states. Hill climbing will follow the graph from vertex to vertex, al-

ways locally increasing (or decreasing) the value of f, until a local maximum (or local minimum) xm is reached (Rusell and 

Norvig, 2010 - Wikipedia).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Simple Hill Climbing Algorithm (Rusell and Norvig, 
2010 - Wikipedia) 

 

Fig. 3: Multivariate normal probability density function 

 (Rusell and Norvig, 2010 - Wikipedia) 
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Simulations Results & Analysis 
For each model generated, a full field simulation was run and synthetics production data were generated from each well and at 

the field scale. The complete simulation results can be found in Appendix D.  To simplify the analysis process, a few cases 

have been selected for review. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Fig. 5 & 6 above shows the production parameters that were used in the HM analysis at the field and well scales respectively. 

These data were generated for each model using the univariate and multivariate approach discussed earlier. And Table 1 below 

shows a typical production parameters generated for the true model (START) and a univariate model (START1) generated by 

varying the PORO in region 2 of the true model. 

 

Table 1: Field Production Rate (FOPR, FGPR and FWPR) for the ‘true model’ and ‘trial model’ 

 
 

 

 

Fig. 7-10 shows the RMSE obtained by comparing the production parameters (e.g. FOPR) obtained from each model generat-

ed using the univariate approach with the true model. Fig. 7 for example shows that the best parameter-match models are mod-

els 8-12 because they meet the criteria of RSME less than 0.15 set to measure the quality of the match. And Fig. 10 shows the 

best parameter-match models are models 3-7. 

 

 

 

Fig. 6: Well Production Rate (FOPR, 
FGPR,FWPR) 

Fig. 5: Field Production Rate (WOPR, WGPR, 
WWPR) 
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Cases – univariate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figs. 11, 12, 14, 15, 17, and 18 show the MVNPDF plotted for different cases obtained by varying multiple parameters in dif-

ferent regions. And Fig. 13, 16 & 19 shows the results of the HC algorithm identifying the best models for each case investi-

gated. Fig. 16 was obtained by varying both PORO [0.1:0.01:0.3] and PERMX [1:0.1:40] in region 4 and comparing the FOPR 

for different realizations with the ‘true’ case. The result shows that the best models for this case are 12, 15, 16, 17 & 19.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: RMSE obtained by varying the PORO [0.1:0.01:0.3] in 
region 2 and comparing the FOPR for different realizations 
with the ‘true’ case 

Fig. 8: RMSE obtained by varying the PERMX [1:0.1:40] in 
region 2 and comparing the FWPR for different realizations 
with the ‘true’ case 

Fig. 9: RMSE obtained by varying the PERMY [1:0.1:40] in re-
gion 4 and comparing the FOPR for different realizations with 
the ‘true’ case 

Fig. 10: RMSE obtained by varying the PORO [0.1:0.01:0.3] in 
region 4 and comparing the FGPR for different realizations with 
the ‘true’ case 

Fig. 12: Contour Map for Multivariate Normal Probability Density 
Function obtained by varying both PORO [0.1:0.01:0.3] and 
PERMX [1:0.1:40] in region 2 and comparing the FOPR for dif-
ferent realizations with the ‘true’ case 

 

Fig. 3: – Multivariate Normal Probability Density Function ob-
tained by varying both PORO [0.1:0.01:0.3] and PERMX [1:0.1:40] 
in region 2 and comparing the FOPR for different realizations 
with the ‘true’ case 
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Fig. 4: 10 best models were identified around peak of the Multivariate Normal Probability Density Function (MVNPDF) plot shown on 
Fig. 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          

 Fig. 5: 5 best models were identified around peak of the Multivariate Normal Probability Density Function (MVNPDF) plot 

Fig.14: Contour Map for Multivariate Normal Probability Density 
Function obtained by varying both PORO [0.1:0.01:0.3] and 
PERMX [1:0.1:40] in region 4 and comparing the FOPR for differ-
ent realizations with the ‘true’ case 

 

Fig. 13: Multivariate Normal Probability Density Function ob-
tained by varying both PORO [0.1:0.01:0.3] and PERMX 
[1:0.1:40] in region 4 and comparing the FOPR for different 
realizations with the ‘true’ case 
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shown on Fig. 14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                       

 

 

 

Fig. 8: 4 best models were identified around peak of the Multivariate Normal Probability Density Function (MVNPDF) plot shown on 
Fig. 14 

 

Forecast from the Best Models 

The best parameter-match and production-match models were identified from the results discussed above. These models will 

test further at the prediction phase by comparing the forecasts from these wells with the true model. Production data obtained 

up to 4000 days of production were used for the HM analysis. While the production data obtained after this period were as-

sessed during the prediction phase. Fig. 20 and Fig. 21 shows the FWPR and FOPR predictions respectively from 3 best mod-

els – START6, START12 & START13 and compares these with the prediction from the true model (START). 

 

 

 

 

Fig. 6: Contour Map for MVNPDF obtained by varying both 
PORO [0.1:0.01:0.3] and PERMY [1:0.1:40] in region 4 and 
comparing the FOPR for different realizations with the ‘true’ 
case 

Fig. 7: MVNPDF obtained by varying both PORO [0.1:0.01:0.3] 
and PERMY [1:0.1:40] in region 4 and comparing the FOPR 
for different realizations with the ‘true’ case 
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Fig. 9: Plot showing the FWPR predictions from 3 best models and the true model for the case shown in Fig. 18 

 

 

 
 

 

 

Fig. 10: Plot showing the FOPR predictions from 3 best models and the true model for the case shown in Fig. 18 
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Table 2: Shows the best parameters Models described in Fig. 20 & 21: 6, 12 & 13 

Note: Four parameters were considered unknown (PORO, PERMX, PERMY & PERMZ) for each region, making a total of 72 

free model parameters each having a lower and upper bound. Only two parameters were varied for a particular region 

  REGION 4 REGION 4 

 START PORO=0.2 PERMY=40 

START01 0.1 40 

START02 0.11 38 

START03 0.12 36 

START04 0.13 34 

START05 0.14 32 

START06 0.15 30 

START07 0.16 28 

START08 0.17 26 

START09 0.18 24 

START10 0.19 22 

START11 0.2 20 

START12 0.21 19 

START13 0.22 18 

START14 0.23 17 

START15 0.24 16 

START16 0.25 15 

START17 0.26 14 

START18 0.27 13 

START19 0.28 12 

START20 0.29 11 

START21 0.3 10 

 

Fig. 21 and Fig. 22 also compare the Oil saturations (So) predictions from two of the best models – START12 and START13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 22: Oil Saturation (So) plots at the end of the prediction 
period for‘START13’ model  

 

Fig. 21: Oil Saturation (So) plots at the end of the prediction 
period for ‘START12’ model  
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Discussion 

This study used both the univariate and multivariate analysis technique to search the parameter space of a simplified model 

(BP Midge Reservoir Model) for all possible distinctly different solutions in a systematic way, thus creating an ensemble of all 

possible history match solutions. For the univariate analysis a RSME value was set by visual inspection of the matches and 

most of the results show more than one best solution for different cases examined. For the multivariate analysis, we searched 

the MVNPDF plot using a simple hill climbing algorithm for all solutions around the maximum points (points with minima 

error between the true case and the trials cases, the results show a set of solutions around single minima. Multiple ‘best’ solu-

tions were located around the top of the hill.  

 The ensemble of ‘best’ solutions was carried forward for the prediction phase (Fig 19 & 20) to test the forecast from 

these models against the true model. The productions parameters up to 4000 days were used for the HM analysis while the 

data beyond this point was used for the prediction phase. To compare the predictions, Field Oil Production Rate, Field Water 

Production Rate and Oil Saturations were examined. And the result shows that even though these three models (6, 12 & 13) in 

Fig. 19 & 20 gave a ‘perfect’ match during the HM stage, their predictions were different. 

Oil Saturation (So) plots shown in Fig. 21 & 22 for Models 12 & 13 also indicate different So predictions for different regions. 

Conclusions   

The Bayesian method is usually adopted with an objective function which is assumed to have a single ‘best’ model. This study 

used a simplified model donated by BP (Midge Reservoir Model) that is parameterized into 18 regions each having homoge-

neous properties to show that this is may not be the case. Four parameters were considered unknown (PORO, PERMX, PER-

MY & PERMZ) for each region, making a total of 72 free model parameters each having a lower and upper bound. For each of 

the regions we generated different realisations by systematically searching the parameter space and ran simulations for all 

these realizations. Table 2 shows the parameters of the best models that were considered. 

Using a weighted sum of squares for the objective function, we found the best production and parameter-matched mod-

els. The optimization technique used was to find the minimum of an objective function that best represents the quality of the 

model. For multivariate parameters variations, a hill climbing algorithm was used to search for all possible ‘best models’. 

From the results, we can deduce the followings: 

 The HM produce multiple ‘best’ solutions which can be carried forward into the forecasting stage  

 By comparing the forecast from the ‘best’, we can reduce the number of possible solutions  

 The result further support the claim that the HM solutions are not unique 

 The HM exercise requires a good optimisation algorithm and detailed result processing identify all possible ‘best models’ 

 This study only identified solutions that are joined in parameter space by a path  that only includes other high quality solu-

tions  

Suggestions for further work 

 Run a simulated annealing algorithm and compare results obtained from the simple hill climbing algorithm 

 Implement the Particle Swarm Optimisation (PSO) to search a wider area of the parameter space for the existence of mul-

tiple minima 

 Use the original complex model supplied by BP to solve the same HM problem and compare the results 
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Nomenclature 

 

Σ  = Covariance matrix 

Kx   = PERMX: Horizontal permeability (x-direction) 

Ky  = PERMY: Horizontal permeability (y-direction) 

Kz   = PERMZ: Vertical permeability 

μ  = Mean Vector 

Mn   = Number of models corresponding to the level n 

N   = Number of observed data 

OF   = Objective function 

Oi  = Observed data 

Ø  = PORO: Porosity 

RMSE  = Root Mean Square Error between observed and simulated data 

S   = Number of data series in the objective function composition 

Si  = Simulated data 

σ
2  

= variance 

So  = Oil saturations 

MVNPDF =  Multivariate Normal Probability Distribution Function 

MVCPDF = Multivariate Cumulative Probability Distribution Function  
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APPENDIX A: CRITICAL LITERATURE REVIEW 

MILESTONES IN HISTORY MATCHING STUDY 

Source Paper n° Year Title Authors Contribution 

SPE  SPE 64765 2000 A Modified Genetic 

Algorithm for Res-

ervoir Characterisa-

tion 

C.E. Romero,J.N. 

Carter, A.C. Grin-

garten, and R.W. 

Zimmerman, SPE 

Members, Imperial 

College, London, 

UK 

This work discusses a functional 

history matching approach where 

an optimization process is no long-

er necessary 

 

SPE 86883 2004 Errors in History 

Matching 

Z. Tavassoli, Jona-

than N. Carter, and 

Peter R. King, Im-

perial College, 

London 

The results show that a good fit for 

the production data does not neces-

sarily have a good estimation for 

the parameters of the reservoir, and 

therefore it may lead to a bad fore-

cast for the performance of the res-

ervoir 

Journal of 

Petroleum 

Science and 

Engineering 

44 (2004) 

143– 153 

2004 Prediction under 

uncertainty in reser-

voir modelling 

 

S. Subbeya, M. 

Christiea, M. Sam-

bridgeb 

This paper presents a new approach 

for generating uncertain reservoir 

performance predictions and quan-

tifying the uncertainty associated 

with forecasting future perfor-

mance 

Journal of 

Petroleum 

Science and 

Engineering 

47 (2005) 15– 

22 

 

2005 Genetic algorithms 

in oil industry: An 

overview 

Oswaldo Velez-

Langs 

 

The study presented here is di-

rected to accumulate the body of 

knowledge which is up to now built 

around the techniques of Evolu-

tionary Computation in the Oil In-

dustry, particularly in the Explora-

tion and Production business. 

Journal of 

Computation-

al Physics 

217 (2006) 

143–158 

2006 Uncertainty quanti-

fication for porous 

media flows 

 

Mike Christie , 

Vasily Demyanov, 

Demet Erbas 

The approach was demonstrated on 

a simple three parameter sampling 

problem that had proved a difficult 

problem in previous studies.  

Objective of the paper: To quantify 

the uncertainties involved in pre-

dicting flows of oil and water 

through oil reservoirs  

Journal of 

Petroleum 

Science and 

Engineering 

59 (2007) 

157–168 

2007 A parallel real-

coded genetic algo-

rithm for history 

matching and its 

application to a real 

petroleum reservoir 

Pedro J. Ballester, 

Jonathan N. Carter 

A new methodology using Real-

coded Genetic Algorithm (GA) was 

presented to tackle History Match-

ing problems 

International 

Petroleum 

Technology 

Conference 

IPTC 12745 

 

2008 Reconciling History 

matching and as-

sessment of Uncer-

tainty in production 

forecasts: A study 

combining experi-

mental design, 

proxy models and 

genetic algorithms. 

Alexandre Castelli-

ni, Chevron ETC; 

Arman Vahedi, 

Updesh Singh, 

Ramzy Shenouda 

sawiris and Thomas 

Roach, Chevron 

Australia Pty. Ltd. 

This paper addresses the limitations 

of conventional techniques and 

provides a practical, structured 

workflow to reconcile the processes 

of data integration and uncertainty 

assessment. 

SPE  

 

SPE 122826 

 

2009 History Matching: Is 

it Necessary to Op-

timize? 

 

L.C. Reis, SPE, 

L.E. dos Reis, LC. 

da Silva, GG. 

Becerra, Petrobras  

This work discusses a functional 

history matching approach where 

an optimization process is no long-

er necessary 
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Paper 1: 

 

SPE 64765 

A Modified Genetic Algorithm for Reservoir Characterisation 

 

Authors: C.E. Romero,J.N. Carter, A.C. Gringarten, and R.W. Zimmerman, SPE Members, Imperial College, London, UK 

 

Contribution to the understanding of the Midge HM model:  

This work discusses a functional history matching approach where an optimization process is no longer necessary 

 

Objective of the paper:  

This paper describes the implementation of a Genetic Algorithm (GA) to carry out hydrocarbon reservoir characterisation by 

conditioning the reservoir simulation model to production data (history matching) on a predefined geological and structural 

model. 

 

Methodology used:  

Genetic Algorithms are a feasible technique for generating reservoir descriptions using production data. The method is capable 

of handling many parameters, which is critical when dealing with large full-field reservoir simulation models. 

 

Conclusion reached:  

This paper has presented results on the application of a modified Genetic Algorithm to a realistic, synthetic model, with re-

spect to main issues of its formulation. This paper describes in detail the formulation of a modified GA using non-standard 

genome and genetic operators. The method is computationally efficient, in that it requires only a modest number of forward 

simulations. 

 

Comments:  

The proposed technique combines the advantages of the pilot point method for the description of petro physical properties, 

with the advantages of GAs for global optimisation. 
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Paper 2: 

 

Paper (SPE 86883) peer approved 28 May 2004. 

Errors in History Matching 

 

Authors: Z. Tavassoli, Jonathan N. Carter, and Peter R. King, Imperial College, London 

 

Contribution to the understanding of the Midge HM model:  

The results show that a good fit for the production data does not necessarily have a good estimation for the parameters of the 

reservoir, and therefore it may lead to a bad forecast for the performance of the reservoir. 

 

Objective of the paper:  

To shows the errors in the common procedure in history matching where we adopt a Bayesian approach with an objective 

function that is assumed to have a single simple minimum at the “correct” model. 

 

Methodology used:  

Generated a large number of realizations of the reservoir and choose one of them as a base case. Using the weighted sum of 

squares for the objective function, the best production- and best parameter-matched models were found. 

 

Conclusion reached:  

In summary, all the results seem to suggest that in using the conventional history-matching methods, one cannot practically 

guarantee to recover the true model, which represents the real geological structure of the reservoir. 

 

Comments:  

This paper discusses the idea that the “true” model (base case model) is not necessarily the most likely to be obtained using 

conventional history-matching methods. 
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Paper 3: 

 

Journal of Petroleum Science and Engineering 44 (2004) 143– 153 

Prediction under uncertainty in reservoir modelling 

 

Authors: S. Subbeya, M. Christiea, M. Sambridgeb 

 

Contribution to the understanding of the Midge HM model:  

This paper presents a new approach for generating uncertain reservoir performance predictions and quantifying the uncertainty 

associated with forecasting future performance. 

 

Objective of the paper:  

Usually, a single history-matched model, conditioned to production data, is obtained. The model is then used to forecast future 

production profiles. Because the history match is non-unique, the forecast production profiles are therefore uncertain, although 

this uncertainty is not usually quantified. This paper aim to demonstrate a methodology to quantify these uncertainties 

 

Methodology used:  

Firstly, multiple reservoir realizations are generated using a new stochastic algorithm. This involves adaptively sampling the 

model parameter space using an algorithm, which biases the sampling towards regions of good fit. Using the complete ensem-

ble of models generated, the posterior distribution is resampled in order to quantify the uncertainty associated with forecasting 

reservoir performance in a Bayesian framework. The strength of the method in performance prediction is demonstrated by 

using an upscaled model to history match fine scale data. The maximum likelihood model is then used in forecasting the fine 

grid performance, and the uncertainty associated with the predictions is quantified. 

 

Conclusion reached:  

This paper has demonstrated an approach for generating uncertain history-matching models, and quantifying uncertainty in 

model performance prediction using the Neighbourhood Approximation algorithm. The approach is able to incorporate both 

data and model errors in quantifying the degree of model fit to the observed data, and in defining the model likelihood. 

 

Comments:  

To quantify uncertainty in model predictions, the Neighbourhood Approximation algorithm was employed in a Bayesian 

framework and that the true solution lies within the uncertainty bounds predicted by the algorithm. 
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Paper 4: 

 

Journal of Petroleum Science and Engineering 47 (2005) 15– 22 

Genetic algorithms in oil industry: An overview 

 

Authors: Oswaldo Velez-Langs 

 

Contribution to the understanding of the Midge HM model:  

The study presented here is directed to accumulate the body of knowledge which is up to now built around the techniques of 

Evolutionary Computation in the Oil Industry, particularly in the Exploration and Production business. 

 

Objective of the paper:  

The techniques aim at the incorporation into the reservoir models of all data available so that more realistic models can be 

generated for improved prediction capabilities. 

 

Methodology used:  

Intelligent techniques such as neural computing, fuzzy reasoning, and evolutionary computing for data analysis and interpreta-

tion are an increasingly powerful tool for making breakthroughs in the science and engineering fields by transforming the data 

into information and information into knowledge. The process makes use of measurements made on the field to restrict the 

range of values that the parameters might take. 

 

Conclusion reached:  

The work described here presents the state of the art in engineering applications from a point of view of the computational 

theory of the adaptation and the evolution for applications in Oil industry. 

 

Comments:  

The use of this technique offers a true benefit in exploration and production business. 
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Paper 5: 

 

Journal of Computational Physics 217 (2006) 143–158 

Uncertainty quantification for porous media flows 

 

Authors: Mike Christie , Vasily Demyanov, Demet Erbas 

 

Contribution to the understanding of the Midge HM model:  

The approach was demonstrated on a simple three parameter sampling problem that had proved a difficult problem in previous 

studies.  

Objective of the paper: To quantify the uncertainties involved in predicting flows of oil and water through oil reservoirs  

 

Methodology used:  

This paper examines a Bayesian Framework for uncertainty quantification in porous media flows that uses a stochastic sam-

pling algorithm to generate models that match observed data. Machine learning algorithms are used to speed up the identifica-

tion of regions in parameter space where good matches to observed data can be found. 

 

Conclusion reached:  

The best results were obtained using direct prediction of misfit with a trained multi-layer perceptron. This method provided an 

estimate of uncertainty that was very close to the estimate provide using a steady state genetic algorithm which involved a sig-

nificantly higher number of forward model evaluations. 

 

Comments:  

By using the neural network to guide sampling within the context of a stochastic search algorithm, and running the expensive 

forward model principally in regions of good fit, they were able to easily generate a significant number of models that match 

history well. 
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Paper 6: 

 

Journal of Petroleum Science and Engineering 59 (2007) 157–168 

A parallel real-coded genetic algorithm for history matching and its application to a real petroleum reservoir 

 

Authors: Pedro J. Ballester, Jonathan N. Carter  

 

Contribution to the understanding of the Midge HM model:  

A new methodology using Real-coded Genetic Algorithm (GA) was presented to tackle History Matching problems  

 

Objective of the paper:  

Adjust the model parameter values until an optimal between simulated and measured history is achieved 

 

Methodology used:  

Real-coded Genetic Algorithm (GA) 

 

Conclusion reached:  

An improvement in the quality of result and HM model variability. While different models can be generated the study shows 

the importance of applying optimisation methods capable of identifying all possible realizations. 

 

Comments:  

In other to save computation time, different solutions generated from the GA were evaluated in parallel on different comput-

ers. The best solutions were analysed using clustering algorithm 
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Paper 7: 

 

International Petroleum Technology Conference - IPTC 12745 

Reconciling History matching and assessment of Uncertainty in production forecasts: A study combining experimental design, 

proxy models and genetic algorithms. 

 

Authors: Alexandre Castellini, Chevron ETC; Arman Vahedi, Updesh Singh, Ramzy Shenouda sawiris and Thomas Roach, 

Chevron Australia Pty. Ltd. 

 

Contribution to the understanding of the Midge HM model:  

This paper addresses the limitations of conventional techniques and provides a practical, structured workflow to reconcile the 

processes of data integration and uncertainty assessment. 

 

Objective of the paper:  

To efficiently find combinations of parameters that minimize the objective function. 

Methodology used: In order to reduce the number of actual simulations and to accelerate the overall procedure, non-linear re-

sponse surfaces, built with kriging interpolants at each iteration of the optimization routine, filter out unnecessary combina-

tions of parameters. The models that reasonably honour the historical data are selected via cluster analysis techniques and pro-

vide an estimate of future production. The final distribution of the prediction variables defines the range of uncertainty condi-

tioned to production history. 

 

Conclusion reached:  

The strategy ensures multiple and significantly different history-matched models that provide estimation of the future perfor-

mance of the reservoir. 

 

Comments:  

The paper presents a method to tackle complex inverse problems where highly non-linear responses are involved.  
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Paper 8: 

 

SPE 122826 

History Matching: Is it Necessary to Optimize? 

 

Authors: L.C. Reis, SPE, L.E. dos Reis, LC. da Silva, GG. Becerra, Petrobras  

 

Contribution to the understanding of the Midge HM model:  

This work discusses a functional history matching approach where an optimization process is no longer necessary 

 

Objective of the paper:  

To discuss the history matching process in the way it is being applied in most cases.  

 

Methodology used:  

This work discusses the functional history matching approach coupled with uncertainty analysis. Two methodologies were 

proposed: ‘’Risk analysis with filtered RSM’’ and ‘’Risk Analysis with Filtered Neural Network’’. Both use tolerance criteria 

for the objective function to select (or filter) the possible models. They differ from each other only in the proxy model used. 

 

Conclusion reached:  

The methodology discussed in this work proposes a different approach for history matching. 

 

Comments:  

The paper questions the need for optimization in decision making by managers. 
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APPENDIX B: MIDGE MODEL DATA FILE 
 

 

 

 

 

 

 

 

INLUDED IN THE CD COPY 
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APPENDIX C: SYNTETIC PRODUCTION FROM ‘TRUE MODEL’ 
 

TIME 'START1' FOPR 'START' FWPR 'START' FGPR 'START' 

 (DAYS)  (STB/DAY)  (STB/DAY)  (MSCF/DAY) 

0 0 0 0 

365 10381.819 266.44409 9293.1709 

730 10390.167 210.27602 9069.1699 

1096 10345.456 196.45242 8864.3145 

1461 10300.184 193.15553 8659.1328 

1826 10259.078 199.10921 8506.835 

2191 10205.668 225.72102 8571.916 

2557 10107.381 302.28046 9177.2188 

2922 9943.1621 448.4996 10413.41 

3287 9565.5762 594.81335 11703.373 

3652 8962.627 703.11243 12076.069 

4018 8503.0811 755.54272 12438.756 

4383 8133.8262 780.74115 12826.513 

4748 7818.6602 807.33795 13618.858 

5113 7532.5273 846.92407 15050.591 

5479 7256.6606 894.797 17094.832 

5844 6940.5083 928.8374 19156.137 

6209 6379.9507 878.63544 19906.213 

6574 5903.9526 829.91718 20408.561 

6940 5506.874 785.65253 20720.65 

7305 5160.4976 744.45923 20915.617 

7670 4858.2451 706.32977 21021.406 

8035 4585.4448 672.00555 21083.297 

8401 4332.2319 640.24194 21084.707 

8766 4105.4609 611.67664 21102.377 

9131 3907.1436 586.4118 21197.061 

9496 3722.3494 563.33276 21246.785 

9862 3550.3547 542.13538 21277.75 

 

Find attached CD copy containing all other production parameters generated for different cases 
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APPENDIX D: SIMULATION RESULTS 

CASES- BIVARIATE PROBABILITY DISTRIBUTION FUNCTION 

CASE1 

 

Fig. 11: MVNPDF obtained by varying both PERMX 
[1:0.1:40] and PERMY [1:0.1:40] in region 4 and comparing 
the FOPR for different realizations with the ‘true’ case 

 

Fig.  12: Contour Map for MVNPDF obtained by varying 
both PERMX [1:0.1:40] and PERMY [1:0.1:40] in region 4 
and comparing the FOPR for different realizations with the 
‘true’ case 

 

Fig. 13: MVCPDF obtained by varying both PERMX 
[1:0.1:40] and PERMY [1:0.1:40] in region 4 and comparing 
the FOPR for different realizations with the ‘true’ case 

 

Fig.  14: Contour Map for MVCPDF obtained by varying 
both PERMX [1:0.1:40] and PERMY [1:0.1:40] in region 4 
and comparing the FOPR for different realizations with the 
‘true’ case 

 

Figure 15: Contour Map for MVNPDF obtained by varying both PERMX [1:0.1:40] and PERMY [1:0.1:40] in region 4 and comparing the 
FOPR for different realizations with the ‘true’ case 
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CASE 2 

 

Fig. 16: MVNPDF obtained by varying both PORO 
[0.1:0.01:0.3] and PERMY [1:0.1:40] in region 3 and compar-
ing the FWPR for different realizations with the ‘true’ case 

 

Fig.  17: Contour Map for MVNPDF obtained by varying 
both PORO [0.1:0.01:0.3] and PERMY [1:0.1:40] in region 3 
and comparing the FWPR for different realizations with the 
‘true’ case 

 

Fig. 18: MVCPDF obtained by varying both PORO 
[0.1:0.01:0.3] and PERMY [1:0.1:40] in region 3 and compar-
ing the FWPR for different realizations with the ‘true’ case 

 

Figure 19: Contour Map for MVCPDF obtained by varying 
both PORO [0.1:0.01:0.3] and PERMY [1:0.1:40] in region 3 
and comparing the FWPR for different realizations with the 
‘true’ case 

 

Figure 20: Contour Map for MVNPDF obtained by varying both PORO [0.1:0.01:0.3] and PERMY [1:0.1:40] in region 3 and comparing 
the FWPR for different realizations with the ‘true’ case 
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CASE 3 

 

Fig. 21: MVNPDF obtained by varying both PORO 
[0.1:0.01:0.3] and PERMX [1:0.1:40] in region 5 and compar-
ing the FWPR for different realizations with the ‘true’ case 

 

Fig. 22: Contour Map for MVNPDF obtained by varying both 
PORO [0.1:0.01:0.3] and PERMX [1:0.1:40] in region 5 and 
comparing the FWPR for different realizations with the 
‘true’ case 

 

Fig. 23: MVCPDF obtained by varying both PORO 
[0.1:0.01:0.3] and PERMX [1:0.1:40] in region 5 and compar-
ing the FWPR for different realizations with the ‘true’ case 

 

Fig. 24: Contour Map for MVCPDF obtained by varying both 
PORO [0.1:0.01:0.3] and PERMX [1:0.1:40] in region 5 and 
comparing the FWPR for different realizations with the 
‘true’ case 

 

Figure 25: Contour Map for MVNPDF obtained by varying both PORO [0.1:0.01:0.3] and PERMX [1:0.1:40] in region 5 and comparing 
the FWPR for different realizations with the ‘true’ case 
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CASE 4 

 

Fig. 26: MVNPDF obtained by varying both PORO 
[0.1:0.01:0.3] and PERMX [1:0.1:40] in region 2 and compar-
ing the FOPR for different realizations with the ‘true’ case 

 

Fig. 27: Contour Map for MVNPDF obtained by varying both 
PORO [0.1:0.01:0.3] and PERMX [1:0.1:40] in region 2 and 
comparing the FOPR for different realizations with the ‘true’ 
case 

 

Fig. 28: MVCPDF obtained by varying both PORO 
[0.1:0.01:0.3] and PERMX [1:0.1:40] in region 2 and compar-
ing the FOPR for different realizations with the ‘true’ case 

 

Fig. 29: Contour Map for MVCPDF obtained by varying both 
PORO [0.1:0.01:0.3] and PERMX [1:0.1:40] in region 2 and 
comparing the FOPR for different realizations with the ‘true’ 
case 

 

Fig. 30: Contour Map for MVNPDF obtained by varying both PORO [0.1:0.01:0.3] and PERMX [1:0.1:40] in region 2 and comparing the 
FOPR for different realizations with the ‘true’ case 

CASE 5 
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Fig. 31: MVNPDF obtained by varying both PORO 
[0.1:0.01:0.3] and PERMX [1:0.1:40] in region 4 and compar-
ing the FOPR for different realizations with the ‘true’ case 

 

Fig.  32: Contour Map for MVNPDF obtained by varying 
both PORO [0.1:0.01:0.3] and PERMX [1:0.1:40] in region 4 
and comparing the FOPR for different realizations with the 
‘true’ case 

 

Fig. 33: MVCPDF obtained by varying both PORO 
[0.1:0.01:0.3] and PERMX [1:0.1:40] in region 4 and compar-
ing the FOPR for different realizations with the ‘true’ case 

 

Fig. 34: Contour Map for MVCPDF obtained by varying both 
PORO [0.1:0.01:0.3] and PERMX [1:0.1:40] in region 4 and 
comparing the FOPR for different realizations with the ‘true’ 
case 

 

Figure 35: Contour Map for MVNPDF obtained by varying both PORO [0.1:0.01:0.3] and PERMX [1:0.1:40] in region 4 and comparing 
the FOPR for different realizations with the ‘true’ case 

 

CASE 6 
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Fig. 36: MVNPDF obtained by varying both PERMZ 
[0.001:0.0001:0.01] and PERMX [1:0.1:40] in region 6 and 
comparing the FGPR for different realizations with the ‘true’ 
case 

 

Fig. 37: Contour Map for MVNPDF obtained by varying both 
PERMZ [0.001:0.0001:0.01] and PERMX [1:0.1:40] in region 
6 and comparing the FGPR for different realizations with 
the ‘true’ case 

 

Fig. 38: MVCPDF obtained by varying both PERMZ 
[0.001:0.0001:0.01] and PERMX [1:0.1:40] in region 6 and 
comparing the FGPR for different realizations with the ‘true’ 
case 

 

Fig. 39: Contour Map for MVCPDF obtained by varying both 
PERMZ [0.001:0.0001:0.01] and PERMX [1:0.1:40] in region 
6 and comparing the FGPR for different realizations with 
the ‘true’ case 

 

Fig. 40: Figure 47: Contour Map for MVNPDF obtained by varying both PERMZ [0.001:0.0001:0.01] and PERMX [1:0.1:40] in region 6 
and comparing the FGPR for different realizations with the ‘true’ case 

CASE 7 
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Fig. 41: MVNPDF obtained by varying both PERMZ 
[0.001:0.0001:0.01] and PERMY [1:0.1:40] in region 6 and 
comparing the FGPR for different realizations with the ‘true’ 
case 

 

Fig. 42: Contour Map for MVNPDF obtained by varying both 
PERMZ [0.001:0.0001:0.01] and PERMY [1:0.1:40] in region 6 and 
comparing the FGPR for different realizations with the ‘true’ case 

 

Fig. 43: MVCPDF obtained by varying both PERMZ 
[0.001:0.0001:0.01] and PERMY [1:0.1:40] in region 6 and 
comparing the FGPR for different realizations with the ‘true’ 
case 

 

Fig. 44: Contour Map for MVCPDF obtained by varying both 
PERMZ [0.001:0.0001:0.01] and PERMY [1:0.1:40] in region 6 and 
comparing the FGPR for different realizations with the ‘true’ case 

 

Fig. 45: Contour Map for MVNPDF obtained by varying both PERMZ [0.001:0.0001:0.01] and PERMY [1:0.1:40] in region 6 and com-
paring the FGPR for different realizations with the ‘true’ case 

 

 

CASE 8 
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Fig. 46: MVNPDF obtained by varying both PERMZ 
[0.001:0.0001:0.01] and PERMY [1:0.1:40] in region 7 and com-
paring the FGPR for different realizations with the ‘true’ case 

 

Fig. 47: Contour Map for MVNPDF obtained by varying both 
PERMZ [0.001:0.0001:0.01] and PERMY [1:0.1:40] in region 7 and 
comparing the FGPR for different realizations with the ‘true’ case 

 

Fig. 48: MVCPDF obtained by varying both PERMZ 
[0.001:0.0001:0.01] and PERMY [1:0.1:40] in region 7 and com-
paring the FGPR for different realizations with the ‘true’ case 

 

Fig. 49: Contour Map for MVCPDF obtained by varying both 
PERMZ [0.001:0.0001:0.01] and PERMY [1:0.1:40] in region 7 and 
comparing the FGPR for different realizations with the ‘true’ case 

 

Figure 50: Contour Map for MVNPDF obtained by varying both PERMZ [0.001:0.0001:0.01] and PERMY [1:0.1:40] in region 7 and 
comparing the FGPR for different realizations with the ‘true’ case 

 

 

 

CASE 9 
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Figure 51: MVNPDF obtained by varying both PERMZ 
[0.001:0.0001:0.01] and PERMY [1:0.1:40] in region 8 and 
comparing the FGPR for different realizations with the ‘true’ 
case 

 

Figure 52: Contour Map for MVNPDF obtained by varying both 
PERMZ [0.001:0.0001:0.01] and PERMY [1:0.1:40] in region 8 and 
comparing the FGPR for different realizations with the ‘true’ case 

 

Figure 53: MVCPDF obtained by varying both PERMZ 
[0.001:0.0001:0.01] and PERMY [1:0.1:40] in region 8 and 
comparing the FGPR for different realizations with the ‘true’ 
case 

 

Figure 54: Contour Map for MVCPDF obtained by varying both 
PERMZ [0.001:0.0001:0.01] and PERMY [1:0.1:40] in region 7 and 
comparing the FGPR for different realizations with the ‘true’ case 

 

Figure 55: Contour Map for MVNPDF obtained by varying both PERMZ [0.001:0.0001:0.01] and PERMY [1:0.1:40] in region 7 and 
comparing the FGPR for different realizations with the ‘true’ case 
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CASE 10 

 

Figure 56: MVNPDF obtained by varying both PERMX 
[1:0.1:40]  and PERMY [1:0.1:40] in region 8 and comparing 
the FGPR for different realizations with the ‘true’ case 

 

Figure 57: Contour Map for MVNPDF obtained by varying 
both PERMX [1:0.1:40]  and PERMY [1:0.1:40] in region 8 
and comparing the FGPR for different realizations with the 
‘true’ case 

 

Figure 58: MVCPDF obtained by varying both PERMX 
[1:0.1:40]  and PERMY [1:0.1:40] in region 8 and comparing 
the FGPR for different realizations with the ‘true’ case 

 

Figure 59: Contour Map for MVCPDF obtained by varying 
both PERMX [1:0.1:40]  and PERMY [1:0.1:40] in region 8 
and comparing the FGPR for different realizations with the 
‘true’ case 

 

Figure 60: Contour Map for MVNPDF obtained by varying both PERMX [1:0.1:40]  and PERMY [1:0.1:40] in region 8 and 
comparing the FGPR for different realizations with the ‘true’ case 
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CASES – UNIVARIATE PROBABILITY 

 
 

 

Fig. 61: RMSE obtained by varying the PORO [0.1:0.01:0.3] 
in region 2 and comparing the FOPR for different realiza-
tions with the ‘true’ case 

 

Fig. 62: PDF obtained by varying the PORO [0.1:0.01:0.3] in 
region 2 and comparing the FOPR for different realizations 
with the ‘true’ case 

 

Fig. 63:  RMSE obtained by varying the PERMY [1:0.1:40] in 
region 3 and comparing the FWPR for different realizations 
with the ‘true’ case 

 

Fig. 64: PDF obtained by varying the PERMY [1:0.1:40] in 
region 3 and comparing the FWPR for different realizations 
with the ‘true’ case 

 

Fig. 65: RMSE obtained by varying the  PORO [0.1:0.01:0.3]  
in region 3 and comparing the FWPR for different realiza-

 

Fig. 66: PDF obtained by varying the  PORO [0.1:0.01:0.3]  
in region 3 and comparing the FWPR for different realiza-
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Fig. 67: RMSE obtained by varying the  PORO [0.1:0.01:0.3]  
in region 5 and comparing the FWPR for different realiza-
tions with the ‘true’ case 

 

Figure 68: PDF obtained by varying the  PORO [0.1:0.01:0.3]  
in region 5 and comparing the FWPR for different realiza-
tions with the ‘true’ case 

 

Fig. 69:   RMSE obtained by varying the PERMX [1:0.1:40] in 
region 2 and comparing the FWPR for different realizations 
with the ‘true’ case 

 

 

 

Fig. 70: PDF obtained by varying the PERMX [1:0.1:40] in 
region 2 and comparing the FWPR for different realizations 
with the ‘true’ case 

 

 

Fig. 71: RMSE obtained by varying the PERMX [1:0.1:40] in 
region 5 and comparing the FGPR for different realizations 
with the ‘true’ case 

 

Fig. 72: PDF obtained by varying the PERMX [1:0.1:40] in 
region 5 and comparing the FGPR for different realizations 
with the ‘true’ case 
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APPENDIX E: COMPUTER PROGRAM RESULTS 
 

BIVARIATE PROBABILITY DISTRIBUTION FUNCTION 

CASE1 

mu = [0.2736 0.9504]; 

Sigma = [0.0217 0.0136; 0.0136 0.0729]; 

x1 = -2:.2:2; x2 = -2:.2:2; 

[X1,X2] = meshgrid(x1,x2); 

F = MVNPDF([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-2 2 -2 2 0 5]) 

xlabel('x1'); ylabel('x2'); zlabel('Probability Density'); 

 

F = mvncdf([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-2 2 -2 2 0 1]) 

xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability'); 

 

contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]); 

xlabel('x'); ylabel('y'); 

line([0 0 1 1 0],[1 0 0 1 1],'linestyle','--','color','k'); 

mvncdf([-2 -2],[2 2],mu,Sigma) 

ans = 0.9999 

   0. F= -4.257540 x= -1.269000 y=  0.797000 

   1. F= -4.219874 x=  0.150000 y= -0.921000 

   2. F= -4.103055 x=  0.705000 y=  1.186000 

   3. F= -4.223490 x= -1.753000 y= -2.008000 

   4. F= -4.224394 x=  0.721000 y= -0.801000 

   5. F= -4.257540 x= -1.894000 y=  0.535000 

   6. F= -4.186955 x=  0.350000 y=  1.529000 

   7. F= -4.103055 x= -1.465000 y=  0.130000 

   8. F= -4.162080 x=  0.462000 y= -0.638000 

   9. F= -4.209596 x=  1.152000 y=  1.832000 

  10. F= -4.185335 x=  0.455000 y=  1.533000 

  11. F= -4.254905 x=  0.860000 y=  0.771000 

  12. F= -4.258041 x= -0.977000 y=  1.955000 

  13. F= -4.224344 x= -1.001000 y= -2.005000 

  14. F= -4.237827 x= -2.038000 y=  0.907000 

  15. F= -4.159221 x= -2.017000 y= -1.890000 

  16. F= -4.099121 x=  0.414000 y= -0.019000 

  17. F= -4.186955 x=  1.086000 y= -1.527000 

  18. F= -4.219072 x= -1.127000 y=  0.986000 

  19. F= -1.149257 x=  0.520000 y= -1.729000 

Best Found 

F= -4.258041 x=  0.273000 y=  0.952000 
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CASE2 

mu = [0.1153 1.6663]; 

Sigma = [0.01 0.0136; 0.0136 0.0729]; 

x1 = -2:.2:2; x2 = -2:.2:2; 

[X1,X2] = meshgrid(x1,x2); 

F = MVNPDF([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-2 2 -2 2 0 5]) 

xlabel('x1'); ylabel('x2'); zlabel('Probability Density'); 

 

F = mvncdf([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-2 2 -2 2 0 1]) 

xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability'); 

 

contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]); 

xlabel('x'); ylabel('y'); 

line([0 0 1 1 0],[1 0 0 1 1],'linestyle','--','color','k'); 

 

mvncdf([-2 -2],[2 2],mu,Sigma) 

 

ans = 1.0000 

 

       0. F= -6.823430 x=  0.739000 y=  1.723000 

   1. F= -5.783104 x= -1.839000 y= -1.498000 

   2. F= -3.177750 x=  0.171000 y=  0.117000 

   3. F= -5.783104 x= -0.241000 y= -0.394000 

   4. F= -5.783104 x= -0.244000 y=  1.477000 

   5. F= -5.782063 x=  1.075000 y= -1.344000 

   6. F= -5.762378 x= -1.463000 y=  0.065000 

   7. F= -6.356151 x=  0.430000 y= -0.872000 

   8. F= -5.782063 x= -0.712000 y=  1.081000 

   9. F= -5.783104 x= -1.962000 y=  1.197000 

  10. F= -5.747011 x=  1.487000 y=  1.481000 

  11. F= -3.134999 x=  1.723000 y=  2.002000 

  12. F= -6.768634 x= -0.400000 y=  0.609000 

  13. F= -0.399312 x= -1.690000 y= -0.990000 

  14. F= -5.782063 x= -1.204000 y=  0.306000 

  15. F= -6.757206 x=  1.444000 y= -0.990000 

  16. F= -6.816367 x= -0.878000 y=  0.552000 

  17. F= -6.823290 x= -0.069000 y=  0.663000 

  18. F= -5.770792 x= -0.470000 y=  1.114000 

  19. F= -6.823430 x=  0.823000 y= -0.574000 

 

Best Found 

F= -6.823430 x= 0.115000 y=  1.666000 
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CASE3 

mu = [0.0047 0.6002]; 

Sigma = [0.5 0.002; 0.002 0.035]; 

x1 = -2:.2:2; x2 = -2:.2:2; 

[X1,X2] = meshgrid(x1,x2); 

F = MVNPDF([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-2 2 -2 2 0 1.5]) 

xlabel('x1'); ylabel('x2'); zlabel('Probability Density'); 

 

F = mvncdf([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-2 2 -2 2 0 1]) 

xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability'); 

 

contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]); 

xlabel('x'); ylabel('y'); 

line([0 0 1 1 0],[1 0 0 1 1],'linestyle','--','color','k'); 

 

mvncdf([-2 -2],[2 2],mu,Sigma) 

 

ans = 0.9953 

    

   0. F= -1.073955 x= -0.459000 y= -1.290000 

   1. F= -1.073955 x=  0.604000 y= -2.016000 

   2. F= -1.073955 x= -1.763000 y=  1.297000 

   3. F= -1.073955 x=  0.251000 y= -1.416000 

   4. F= -0.122651 x=  1.087000 y= -1.068000 

   5. F= -1.203211 x= -1.181000 y= -0.085000 

   6. F= -0.122651 x=  1.393000 y= -1.023000 

   7. F= -1.073955 x=  1.353000 y= -0.500000 

   8. F= -1.176313 x=  1.819000 y= -0.662000 

   9. F= -1.202190 x=  0.799000 y=  2.048000 

  10. F= -1.073955 x= -1.415000 y= -0.427000 

  11. F= -1.073955 x= -0.553000 y= -0.337000 

  12. F= -1.192369 x= -1.563000 y=  1.950000 

  13. F= -1.073955 x=  2.004000 y= -1.356000 

  14. F= -1.203211 x= -1.764000 y=  0.965000 

  15. F= -1.203211 x=  0.679000 y=  2.003000 

  16. F= -1.203211 x= -1.477000 y= -1.275000 

  17. F= -1.176312 x=  0.480000 y=  0.167000 

  18. F= -1.192369 x=  0.083000 y=  0.949000 

  19. F= -1.073955 x= -0.532000 y=  1.300000 

 

Best Found 
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F= -1.203211 x=  0.005000 y=  0.599000 

 

 

 

CASE4 

mu = [0 0.2751]; 

Sigma = [0.5 0; 0 0.4584]; 

x1 = -5:.2:5; x2 = -5:.2:5; 

[X1,X2] = meshgrid(x1,x2); 

F = MVNPDF([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-5 5 -5 5 0 0.4]) 

xlabel('x1'); ylabel('x2'); zlabel('Probability Density'); 

 

F = mvncdf([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-5 5 -5 5 0 1]) 

xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability'); 

 

contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]); 

xlabel('x'); ylabel('y'); 

line([0 0 1 1 0],[1 0 0 1 1],'linestyle','--','color','k'); 

 

mvncdf([-5 -5],[5 5],mu,Sigma) 

 

ans = 1 

 

     0. F= -0.312700 x=  0.294000 y= -1.525000 

   1. F= -0.332439 x=  1.271000 y= -2.008000 

   2. F= -0.332440 x= -1.611000 y= -0.551000 

   3. F= -0.332278 x= -0.024000 y=  1.654000 

   4. F= -0.332293 x=  0.725000 y= -0.981000 

   5. F= -0.332439 x=  0.995000 y=  0.950000 

   6. F= -0.332440 x=  0.703000 y=  2.007000 

   7. F= -0.332439 x=  0.608000 y=  1.772000 

   8. F= -0.332440 x=  1.414000 y= -1.871000 

   9. F= -0.332293 x= -0.861000 y= -0.181000 

  10. F= -0.332440 x=  1.854000 y= -0.569000 

  11. F= -0.332293 x=  0.389000 y=  1.736000 

  12. F= -0.332379 x=  1.440000 y=  1.034000 

  13. F= -0.332293 x=  1.701000 y=  1.166000 

  14. F= -0.332439 x=  1.239000 y=  2.048000 

  15. F= -0.312700 x= -0.443000 y=  0.532000 

  16. F= -0.332379 x=  1.682000 y=  1.291000 

  17. F= -0.332434 x=  1.311000 y= -2.046000 

  18. F= -0.332278 x= -1.856000 y= -1.242000 

  19. F= -0.332293 x= -1.580000 y= -0.228000 

 

Best Found 

F= -0.332440 x= -0.000000 y=  0.275000  
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CASE5 

mu = [7.2309 29.7057]; 

Sigma = [33.1234 -12.499; -12.499 260.4879]; 

x1 = -100:2:100; x2 = -100:2:100; 

[X1,X2] = meshgrid(x1,x2); 

F = MVNPDF([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-100 100 -100 100 0 .002]) 

xlabel('x1'); ylabel('x2'); zlabel('Probability Density'); 

 

F = mvncdf([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-100 100 -100 100 0 1]) 

xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability'); 

 

contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]); 

xlabel('x'); ylabel('y'); 

line([0 0 1 1 0],[1 0 0 1 1],'linestyle','--','color','k'); 

 

mvncdf([-100 -100],[5 5],mu,Sigma) 

 

ans = 0.0161 

 

   0. F= -0.000360 x=  1.284000 y=  0.721000 

   1. F= -0.000360 x=  1.221000 y=  2.029000 

   2. F= -0.000360 x=  0.181000 y= -1.685000 

   3. F= -0.000360 x= -2.008000 y= -0.133000 

   4. F= -0.000360 x= -1.676000 y=  0.981000 

   5. F= -0.000360 x=  0.749000 y= -1.632000 

   6. F= -0.000360 x= -1.917000 y= -0.981000 

   7. F= -0.000360 x= -0.638000 y= -1.551000 

   8. F= -0.000360 x=  1.327000 y= -1.644000 

   9. F= -0.000360 x=  0.207000 y= -1.241000 

  10. F= -0.000360 x=  1.227000 y= -0.335000 

  11. F= -0.000360 x= -1.790000 y=  0.235000 

  12. F= -0.000360 x=  1.377000 y=  0.180000 

  13. F= -0.000360 x= -0.919000 y=  0.595000 

  14. F= -0.000360 x= -1.021000 y= -0.635000 

  15. F= -0.000360 x= -1.995000 y= -0.278000 

  16. F= -0.000360 x= -0.051000 y=  1.080000 

  17. F= -0.000360 x= -1.929000 y= -1.117000 

  18. F= -0.000360 x= -0.142000 y=  1.488000 

  19. F= -0.000360 x= -0.223000 y= -0.565000 

 

Best Found 

F= -0.000360 x=  4.023000 y=  4.023000 
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CASE6 

mu = [0.0107 50.4777]; 

Sigma = [0.5 0.0017; 0.0017 1.0285]; 

x1 = -100:2:100; x2 = -100:2:100; 

[X1,X2] = meshgrid(x1,x2); 

F = MVNPDF([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-100 100 -100 100 0 .2]) 

xlabel('x1'); ylabel('x2'); zlabel('Probability Density'); 

 

F = mvncdf([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-100 100 -100 100 0 1]) 

xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability'); 

 

contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]); 

xlabel('x'); ylabel('y'); 

line([0 0 1 1 0],[1 0 0 1 1],'linestyle','--','color','k'); 

 

mvncdf([-100 -100],[100 100],mu,Sigma) 

 

ans = 1 

 

   0. F= -0.000401 x=  0.600000 y= -1.210000 

   1. F= -0.000401 x= -1.216000 y=  0.186000 

   2. F= -0.000401 x= -1.910000 y= -1.866000 

   3. F= -0.000401 x=  1.615000 y= -0.220000 

   4. F= -0.000401 x= -0.412000 y= -1.621000 

   5. F= -0.000401 x=  1.631000 y= -0.282000 

   6. F= -0.000401 x=  0.094000 y= -2.000000 

   7. F= -0.000401 x=  1.634000 y=  0.030000 

   8. F= -0.000401 x= -0.694000 y= -1.431000 

   9. F= -0.000401 x= -1.440000 y=  0.101000 

  10. F= -0.000401 x= -0.642000 y= -0.293000 

  11. F= -0.000401 x=  0.177000 y= -0.085000 

  12. F= -0.000401 x=  0.911000 y=  0.340000 

  13. F= -0.000401 x= -0.702000 y=  0.453000 

  14. F= -0.000401 x=  1.214000 y=  0.704000 

  15. F= -0.000401 x= -0.862000 y=  1.441000 

  16. F= -0.000401 x= -0.742000 y=  0.752000 

  17. F= -0.000401 x= -1.922000 y=  0.855000 

  18. F= -0.000401 x=  0.823000 y=  1.009000 

  19. F= -0.000401 x=  1.979000 y= -0.788000 

 

Best Found 

F= -0.000401 x=  4.023000 y=  4.023000 
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CASE7 

mu = [0.4726 0.7764]; 

Sigma = [0.0812 0.0875; 0.0875 0.1733]; 

x1 = -5:1:5; x2 = -5:1:5; 

[X1,X2] = meshgrid(x1,x2); 

F = MVNPDF([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-5 5 -5 5 0 .5]) 

xlabel('x1'); ylabel('x2'); zlabel('Probability Density'); 

 

F = mvncdf([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-5 5 -5 5 0 1]) 

xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability'); 

 

contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]); 

xlabel('x'); ylabel('y'); 

line([0 0 1 1 0],[1 0 0 1 1],'linestyle','--','color','k'); 

 

mvncdf([-100 -100],[100 100],mu,Sigma) 

 

ans = 1 

 

   0. F= -0.000401 x=  0.600000 y= -1.210000 

   1. F= -0.000401 x= -1.216000 y=  0.186000 

   2. F= -0.000401 x= -1.910000 y= -1.866000 

   3. F= -0.000401 x=  1.615000 y= -0.220000 

   4. F= -0.000401 x= -0.412000 y= -1.621000 

   5. F= -0.000401 x=  1.631000 y= -0.282000 

   6. F= -0.000401 x=  0.094000 y= -2.000000 

   7. F= -0.000401 x=  1.634000 y=  0.030000 

   8. F= -0.000401 x= -0.694000 y= -1.431000 

   9. F= -0.000401 x= -1.440000 y=  0.101000 

  10. F= -0.000401 x= -0.642000 y= -0.293000 

  11. F= -0.000401 x=  0.177000 y= -0.085000 

  12. F= -0.000401 x=  0.911000 y=  0.340000 

  13. F= -0.000401 x= -0.702000 y=  0.453000 

  14. F= -0.000401 x=  1.214000 y=  0.704000 

  15. F= -0.000401 x= -0.862000 y=  1.441000 

  16. F= -0.000401 x= -0.742000 y=  0.752000 

  17. F= -0.000401 x= -1.922000 y=  0.855000 

  18. F= -0.000401 x=  0.823000 y=  1.009000 

  19. F= -0.000401 x=  1.979000 y= -0.788000 

 

Best Found 
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F= -0.000401 x=  4.023000 y=  4.023000 

 

 

 

CASE8 

mu = [0.7778 1.0062]; 

Sigma = [0.02 0.001; 0.001 0.1001]; 

x1 = -5:1:5; x2 = -5:1:5; 

[X1,X2] = meshgrid(x1,x2); 

F = MVNPDF([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-5 5 -5 5 0 1]) 

xlabel('x1'); ylabel('x2'); zlabel('Probability Density'); 

 

F = mvncdf([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-5 5 -5 5 0 1]) 

xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability'); 

 

contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]); 

xlabel('x'); ylabel('y'); 

line([0 0 1 1 0],[1 0 0 1 1],'linestyle','--','color','k'); 

 

mvncdf([-100 -100],[100 100],mu,Sigma) 

 

ans = 1 

 

   0. F= -0.000401 x=  0.600000 y= -1.210000 

   1. F= -0.000401 x= -1.216000 y=  0.186000 

   2. F= -0.000401 x= -1.910000 y= -1.866000 

   3. F= -0.000401 x=  1.615000 y= -0.220000 

   4. F= -0.000401 x= -0.412000 y= -1.621000 

   5. F= -0.000401 x=  1.631000 y= -0.282000 

   6. F= -0.000401 x=  0.094000 y= -2.000000 

   7. F= -0.000401 x=  1.634000 y=  0.030000 

   8. F= -0.000401 x= -0.694000 y= -1.431000 

   9. F= -0.000401 x= -1.440000 y=  0.101000 

  10. F= -0.000401 x= -0.642000 y= -0.293000 

  11. F= -0.000401 x=  0.177000 y= -0.085000 

  12. F= -0.000401 x=  0.911000 y=  0.340000 

  13. F= -0.000401 x= -0.702000 y=  0.453000 

  14. F= -0.000401 x=  1.214000 y=  0.704000 

  15. F= -0.000401 x= -0.862000 y=  1.441000 

  16. F= -0.000401 x= -0.742000 y=  0.752000 

  17. F= -0.000401 x= -1.922000 y=  0.855000 

  18. F= -0.000401 x=  0.823000 y=  1.009000 

  19. F= -0.000401 x=  1.979000 y= -0.788000 

 

Best Found 

F= -0.000401 x=  4.023000 y=  4.023000 
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CASE9 

mu = [0.7764 1.7165]; 

Sigma = [0.02 0.07; 0.07 0.41]; 

x1 = -5:1:5; x2 = -5:1:5; 

[X1,X2] = meshgrid(x1,x2); 

F = MVNPDF([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-5 5 -5 5 0 1]) 

xlabel('x1'); ylabel('x2'); zlabel('Probability Density'); 

 

F = mvncdf([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-5 5 -5 5 0 1]) 

xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability'); 

 

contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]); 

xlabel('x'); ylabel('y'); 

line([0 0 1 1 0],[1 0 0 1 1],'linestyle','--','color','k'); 

 

mvncdf([-100 -100],[100 100],mu,Sigma) 

 

ans = 1 

 

   0. F= -0.000401 x=  0.600000 y= -1.210000 

   1. F= -0.000401 x= -1.216000 y=  0.186000 

   2. F= -0.000401 x= -1.910000 y= -1.866000 

   3. F= -0.000401 x=  1.615000 y= -0.220000 

   4. F= -0.000401 x= -0.412000 y= -1.621000 

   5. F= -0.000401 x=  1.631000 y= -0.282000 

   6. F= -0.000401 x=  0.094000 y= -2.000000 

   7. F= -0.000401 x=  1.634000 y=  0.030000 

   8. F= -0.000401 x= -0.694000 y= -1.431000 

   9. F= -0.000401 x= -1.440000 y=  0.101000 

  10. F= -0.000401 x= -0.642000 y= -0.293000 

  11. F= -0.000401 x=  0.177000 y= -0.085000 

  12. F= -0.000401 x=  0.911000 y=  0.340000 

  13. F= -0.000401 x= -0.702000 y=  0.453000 

  14. F= -0.000401 x=  1.214000 y=  0.704000 

  15. F= -0.000401 x= -0.862000 y=  1.441000 

  16. F= -0.000401 x= -0.742000 y=  0.752000 

  17. F= -0.000401 x= -1.922000 y=  0.855000 

  18. F= -0.000401 x=  0.823000 y=  1.009000 

  19. F= -0.000401 x=  1.979000 y= -0.788000 

Best Found 

F= -0.000401 x=  4.023000 y=  4.023000 
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CASE10 

mu = [1.7139 1.6559]; 

Sigma = [0.42 0.14; 0.14 0.06]; 

x1 = -5:1:5; x2 = -5:1:5; 

[X1,X2] = meshgrid(x1,x2); 

F = MVNPDF([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-5 5 -5 5 0 0.5]) 

xlabel('x1'); ylabel('x2'); zlabel('Probability Density'); 

 

F = mvncdf([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-5 5 -5 5 0 1]) 

xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability'); 

 

contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]); 

xlabel('x'); ylabel('y'); 

line([0 0 1 1 0],[1 0 0 1 1],'linestyle','--','color','k'); 

 

mvncdf([-100 -100],[100 100],mu,Sigma) 

 

ans = 1 

 

   0. F= -0.000401 x=  0.600000 y= -1.210000 

   1. F= -0.000401 x= -1.216000 y=  0.186000 

   2. F= -0.000401 x= -1.910000 y= -1.866000 

   3. F= -0.000401 x=  1.615000 y= -0.220000 

   4. F= -0.000401 x= -0.412000 y= -1.621000 

   5. F= -0.000401 x=  1.631000 y= -0.282000 

   6. F= -0.000401 x=  0.094000 y= -2.000000 

   7. F= -0.000401 x=  1.634000 y=  0.030000 

   8. F= -0.000401 x= -0.694000 y= -1.431000 

   9. F= -0.000401 x= -1.440000 y=  0.101000 

  10. F= -0.000401 x= -0.642000 y= -0.293000 

  11. F= -0.000401 x=  0.177000 y= -0.085000 

  12. F= -0.000401 x=  0.911000 y=  0.340000 

  13. F= -0.000401 x= -0.702000 y=  0.453000 

  14. F= -0.000401 x=  1.214000 y=  0.704000 

  15. F= -0.000401 x= -0.862000 y=  1.441000 

  16. F= -0.000401 x= -0.742000 y=  0.752000 

  17. F= -0.000401 x= -1.922000 y=  0.855000 

  18. F= -0.000401 x=  0.823000 y=  1.009000 

  19. F= -0.000401 x=  1.979000 y= -0.788000 

 

Best Found 

F= -0.000401 x=  4.023000 y=  4.023000 



                                                               Construction of the Midge History Matching Model                                                                                                                                             
47 

 

 

 

APPENDIX F: HILL CLIMBING ALGORITHM 
 

Algorithm: Simple Hill Climbing: 

 

Step 1: Evaluate the initial state. It it is also a goal state, then returns it and quit. 

            Otherwise continue with the initial state as the current state. 

Step 2: Loop until a solution is found or until there are no new operators left to be applied in the current state: 

 

(a) Select an operator that has not yet been applied to the current state and apply it to produce a new state. 

(b) Evaluate the new state. 

(i) If it is a goal state, then return it and quit . 

(ii) If it is not a goal state, but it is better than the current state, then make it the current state. 

(iii) If it is not better than the current state, then continue in the loop (Stuart Rusell, 2010) 

 

function [ F ] = myfunc( str ) 

% Function to be MINIMIZED 

% By Kyriakos Tsourapas 

% You may contact me through the Mathworks site 

% University of Essex 2002 

 

[x, y] = myconvert( str ); 

mu = [0.0895  0.0760]; 

Sigma = [0.0022   0.0023 

0.0023    0.0025]; 

x1 = -10:.2:10; x2 = -10:.2:10; 

[X1,X2] = meshgrid(x1,x2); 

F = MVNPDF([X1(:) X2(:)],mu,Sigma); 

F=-F 

F = reshape(F,length(x2),length(x1)); 

surf(x1,x2,F); 

caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

axis([-10 10 -10 10 0 100]) 

 

%caxis([min(F(:))-.5*range(F(:)),max(F(:))]); 

%axis([-2 10 -2 10 0 -1]) 

xlabel('x1'); ylabel('x2'); zlabel('Probability Density'); 

%F = x^2 + y^2; 

End 

% START THE HILL CLIMBING 

 % LOOK IN start_points STARTING POINTS 

while t < start_points 

    local = FALSE; 

     

    % CREATE A NEW STRING AT RANDOM, WITHIN THE LIMITS 

    num1 = 10; % just to get in the loop 

    num2 = 10; % just to get in the loop 

    while num1 < lowlimit | num1 > uplimit | num2 < lowlimit | num2 > uplimit 

        str = rand(26,1); 

  

        for i=1:size(str,1) 

            if str(i) < 0.5  

                str(i) = 0; 
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            else 

                str(i) = 1; 

            end 

        end 

        [num1, num2] = myconvert(str); 

    end 

  

    % SEARCH UNTIL LOCAL OPTIMUM IS REACHED 

    while ~local 

        k = 1; 

        F = myfunc(str); 

        % CREATE 26 DIFFERENT STRINGS AND KEEP THE BEST 

        % BY FLIPPING A SIGLLE BIT AT A TIME 

        while k < 27         

            new_str = newstr(str, k); 

            newF = myfunc(new_str); 

             

            if k == 1 

                bestStr_sofar = new_str; 

            else 

                bestF_sofar = myfunc(bestStr_sofar); 

                if newF < bestF_sofar 

                    bestStr_sofar = new_str; 

                end 

            end 

                 

             k = k + 1; 

        end 

         % COMPARE THE BEST OF THE 26 STRINGS WITH 

        % THE STARTING STRING 

        if F > bestF_sofar 

            str = bestStr_sofar; 

        else 

            local = TRUE; 

        end 

         

    end 

  

    F = myfunc(str); 

  

    if (t == 0) | (F < bestF) 

        bestF = F; 

        best_str = str; 

    end 

     

    disp( sprintf('%4d. F=%10f x=%10f y=%10f', t, F, num1, num2) ); 

    t = t + 1; 

end 

  

[num1, num2] = myconvert(best_str); 

bestF = myfunc(best_str); 

disp( sprintf('\nBest Found\nF=%10f x=%10f y=%10f', bestF, num1, num2) ); 

 


