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Abstract 

Reservoir fluids are complex mixtures of hydrocarbons containing paraffins, naphtenes and 

aromatic compounds. Theoretical models have been developed to quantitatively represent 

hydrocarbon mixture viscosity. This paper enhances the ability of the Vesovic-Wakeham (VW) 

method to predict the viscosity of aromatic mixtures and hence its ability to model the viscosity of 

petroleum fluids.       

The VW method has been applied to predict the viscosity of aromatic mixtures of benzene 

and alkane. Binary mixtures of benzene + n-hexane (n-C6), n-octane (n-C8), n-decane (n-C10), n-

dodecane (n-C12) or n-hexadecane (n-C16) are assessed at 298 K and 1 bar. The effect of density on the 

pure species parameter was studied and the effect of the reference correlation on the mixture viscosity 

prediction. The VW method predicted viscosity mixtures of benzene and n-C6 within the experimental 

uncertainty, with maximum deviation of 3.9%. For mixtures with heavier alkanes a greater MD of up 

to 20% was obtained. As the alkane critical density exceeded that of benzene, extrapolation of the 

reference correlations was required into the 2-phase region. 

A new reference correlation for benzene has been added to the VW framework and a new 

reference viscosity correlation for p-xylene has been developed. The p-xylene viscosity correlation 

proposed is based upon a body of experimental data that has been critically assessed for internal 

consistency and for agreement with theory. It is applicable in the temperature range from (288 to 673) 

K at pressures up to 1100 bar with maximum deviation (MD) of 2.7%.      
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Abstract 

Reservoir fluids are complex mixtures of hydrocarbons containing paraffins, naphtenes and aromatic 

compounds. Theoretical models have been developed to quantitatively represent hydrocarbon mixture viscosity. 

This paper enhances the ability of the Vesovic-Wakeham (VW) method to predict the viscosity of aromatic 

mixtures and hence its ability to model the viscosity of petroleum fluids.       

The VW method has been applied to predict the viscosity of aromatic mixtures of benzene and alkane. 

Binary mixtures of benzene + n-hexane (n-C6), n-octane (n-C8), n-decane (n-C10), n-dodecane (n-C12) or n-

hexadecane (n-C16) are assessed at 298 K and 1 bar. The effect of density on the pure species parameter was 

studied and the effect of the reference correlation on the mixture viscosity prediction. The VW method predicted 

viscosity mixtures of benzene and n-C6 within the experimental uncertainty, with maximum deviation of 3.9%. 

For mixtures with heavier alkanes a greater MD of up to 20% was obtained. As the alkane critical density 

exceeded that of benzene, extrapolation of the reference correlations was required into the 2-phase region. 

A new reference correlation for benzene has been added to the VW framework and a new reference 

viscosity correlation for p-xylene has been developed. The p-xylene viscosity correlation proposed is based 

upon a body of experimental data that has been critically assessed for internal consistency and for agreement 

with theory. It is applicable in the temperature range from (288 to 673) K at pressures up to 1100 bar with 

maximum deviation (MD) of 2.7%.                

Introduction 

Understanding viscosity behaviour is integral for reliable reservoir modelling. As hydrocarbon fluids 

experience conditions of elevated pressure and temperature whether subsurface or in surface facilities, viscosity 

is required over large regions of phase space. Its knowledge is required for prediction of the mobility of oils and 

reservoir fluids, as well as designs for processing facilities (Baltatu et al., 1999). It was reported by Hernandez 

et al. (2002) that the majority of the predictive methods for the viscosity of oil used in numerical reservoir 

simulators, produce an error of 10-20% for light oil and an order of magnitude off for heavy oils. This leads to 

large error in reserve estimations, which stresses the demand for accurate values of viscosity. Especially 

considering the production of heavy oil and bitumen, where composition and temperature changes can have a 

drastic effect on viscosity. In relation to pipeline facilities for crude oil transport, Degiorgis et al. (2001) 

established that the present viscosity models incorporated in numerical simulators for pipelines, produce errors 

in pressure drop up to 10% for light oils and 300% for heavier oils. This further confronts the requirement for 

precision in oil viscosity predictions.          

 There are different approaches to predict mixture viscosity which are presently applied in the oil 

industry. The more commonly used empirical approach, utilises correlating sets of experimental data. This 

provides easy and quick formulation with the ability to be amendable for tuning, yielding results of accuracy 

over well-defined ranges, dependent on the experimental data used. However, in regions outside the 

experimental data range also when composition changes, the correlation can become highly inaccurate.  

 Another method is to develop a quantitative theoretical description of viscosity. This involves 

understanding concepts of the molecular dynamics due to the dependence of viscosity on molecular interactions. 

Consequently, due the complex nature of viscosity, especially in heavy oil containing multiple differentiating 

components, it is difficult to estimate this property. Although the greater complexity in formulation, there is a 

greater reliability and robustness in predictions due to their theoretical basis. 

 Vesovic and Wakeham (1989) introduced the original VW method, known as VW-sphere, which 

utilised Enskog (1922) rigid sphere theory of dense gases in order to estimate mixture viscosity. The theory also 

incorporated the works of Tham and Gubbins (1971), Di Pippo et al. (1977) and Sandler and Fiszdon (1979) 

which improved the predictive capacity in comparison to prior models. However, due to the model basis of rigid 

spheres, the proposed theory was less effective in accurately predicting the viscosity of large linear molecules. 

This eventually led to the work of de Wijn et al. (2008), proposing to model chained molecules as equally sized, 
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tangentially joined and rigid segmented spheres. The method assumes that the collision dynamics can be 

approximated by instantaneous collisions of hard (VW-chain) spheres. In later years, de Wijn et al. (2012) 

extended the work into mixtures of chain molecules with encouraging result in binary alkane mixtures, which 

supported the conclusion that the improved VW-chain model was capable of accurately reproducing the 

viscosity of real liquid mixtures. For the VW method to be able to predict mixture viscosity, pure species 

references viscosity correlations are required for each component within the mixture.        

 With the high demand for accurate and reliable viscosity values of different crudes in industry, it is 

found that for lighter alkanes reference correlations exist (Vogel et al., 1998 and Huber et al., 2004), for 

aromatic hydrocarbons this is not the case. Therefore, predictive methods and correlations are required to be 

developed and tested for aromatic compounds. The objective of this work is to use an established viscosity 

correlation for benzene (Avgeri et al., 2014) modelled as a sphere, to explore the application of the VW method 

for binary mixtures of benzene and alkanes, testing the effectiveness of the model in predicting experimental 

mixture viscosity. The objective of this work is also to add to the current VW method, a viscosity correlation for 

another aromatic compound, p-xylene, valid over a wide range of temperatures and pressures.           

DEVELOPING A CORRELATION FOR THE VISCOSITY OF p-XYLENE 

Experimental Viscosity Data  

A summary of the experimental measurements of the viscosity of p-xylene reported in literature can be 

found in Appendix B. Temperature and pressure range, number of data points measured and the experimental 

technique employed are stated. Measurements were reported in 19 papers providing 444 data points. The 

majority of researchers (16 papers, 62 data points) measured only the value of the liquid viscosity at 

atmospheric pressure and around room temperature.       

A critical assessment of the experimental data was performed to classify the data as primary and 

secondary according to the recommendation of IUPAC Subcommittee of Transport Properties (Assael et al. 

1990). A well-established criterion which involves classifying primary data as data obtained with experimental 

apparatus, for which viscosity is measured with high precision with a full working equation. Additionally, the 

purity of the sample and the purification methods description was used to stratify primary data. However, these 

criteria can limit the range of data representation. Hence, it is necessary to incorporate secondary data that 

covers a wide range of conditions, given consistency with the more accurate primary data or theory. 

Based on these criteria, 11 datasets were considered as primary data. Table 1 gives a summary of the 

primary data specifying, temperature and pressure ranges, the technique employed to perform the 

measurements, the authors’ claimed uncertainty and purity of the sample. 

         

Table 1 – Primary Data Used In Developing the Viscosity Correlation of p-Xylene 

Authors 
Year 
Publ. 

Technique 
Employed 

Purity 
(%) 

Claimed 
Uncertainty 

(%) 

No. of 
Data 

Temperature 
Range  

(K) 

Pressure 
Range  
(bar) 

        
Mamedov and Panchenkov  1955 C 99 2 7 293 – 353 1 

Mamedov et al.  1968 C 99.78 2 129 323 – 548 1 – 400  

Nissema and Koskenniska  1972 C - 0.4 4 293 – 323 1 

Mamedov et al.  1975 C 99.4 2 124 323 – 548 1 – 400  

Kashiwagi and Makita  1982 TC 99 2 60 298 – 348 1 – 1094 

Abdullaev and Akhundov  1983 C - 2 27 473 – 673 1 – 38 

Dymond and Robertson  1985 C 99 1 6 298 – 393 PSat 

Serrano et al.  1990 C 99.98 0.4 4 288 – 303 1 

Vogel and Hendl  1992 C 99.9 0.3 66 383 – 633 0.08 – 2 

Et-Tahir et al.  1995 FB 99 2 12 313 – 353 200 – 1000 

Exarchos et al.  1995 C 99.5 0.4 5 293 – 313 1 

 
       

C – Capillary; FB – Falling Body; RB – Rolling Body; TC – Torsional Crystal 
 

 Figure 1 graphically represents the temperature and pressure range of the measurements outlined in 

Table 1 differentiating between primary and secondary data. It shows that the primary data cover a wide range 

of temperatures and pressures of interest. The vapour phase extend through the temperature range (338 to 613) 
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K at pressures up to 25 bar. The liquid phase temperature, ranges from (288 to 548) K with pressures up to 1100 

bar. The supercritical region extends to temperature ranging from (623 to 673) K at pressures up to 38 bar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experimental measurements of viscosity are usually reported at a given temperature and pressure, 

where experimentally determined densities are given. When developing a viscosity correlation that utilises the 

existing theory for guidance, temperature and density are the natural variables. As a result, an EOS is required to 

convert (T, P) pairs into corresponding (T, ρ) pairs. Using EOS-generated density offers supplementary level of 

consistency, further reducing the uncertainty of the developed correlation. For the purpose of this work, the 

latest reference EOS developed by Zhou et al. (2012) has been used, it covers the thermodynamic space from 

the triple point to 673 K, and up to 4000 bar. Uncertainties in density are estimated to be ±0.2 % in the liquid 

region and ±1.0 % elsewhere (Zhou et al., 2012). 

Methodology and Analysis 

When developing correlations of transport properties, it is beneficial to incorporate theoretical guidance 

to the correlation functional form in terms of temperature and density. Viscosity η is expressed as the sum of 

four contributions (Millat et al., 2005): 

                                                                                                                                                    

where ρ is the molar density, T is the temperature and the different contributions to viscosity,  0,  1, Δ  and Δ 𝑐 

are the zero-density viscosity, the initial-density coefficient, the residual viscosity and the critical enhancement, 

respectively. Due to lack of experimental data within the critical enhancement region its effect was neglected. 

Breaking down the viscosity contribution, offers a better analysis of the individual effects. Theories at present, 

give sufficient understanding of the low density region, dilute-gas regime and behaviour near the critical point, 

where the density variations exhibits a divergence of the viscosity (Assael et al., 2014). 

 

The Zero-Density Limit 

At the zero-density limit, viscosity is challenging to measure directly through experimentation. 

Therefore, measured data at the low density region are extrapolated at a given isotherm. The values are then 

fitted to the linear equation (Millat et al., 2005): 

                                                                                                                                                                                         

Vogel and Hendl (1992) were the only authors which reported viscosity of p-xylene at pressures below 

3 bar, and covered a wide temperature range from (383 - 633) K. A viscometer which fulfils the requirements to 

be accepted as primary data was used, justifying its usage to represent the zero-density limit viscosity. 

 The standard relationship in kinetic theory is used to represent the viscosity in the zero-density limit, 

η0(T), given by: 

Figure 1 – Distribution of the available experimental viscosity data of p-xylene. Primary Data: (–) Mamedov and 

Panchenkov (1955) and Mamedov et al. (1968, 1975), (☐) Nissema and Koskenniska (1972), (♦) Kashiwagi and Makita 

(1982), (●) Abdullaev and Akhundov (1983), (∆) Dymond and Robertson (1985), (◇) Serrano et al. (1990) (+) Vogel and 

Hendl (1992), (■) Et-Tahir et al. (1995), (▲) Exarchos et al. (1995), Secondary Data: (✕), VLE: (––) 
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where T is the temperature in Kelvin, M is the molar mass, Sη is the effective collision cross-section in nm
2
 and 

η0(T) in μPa·s. The numerical constant in Eq. (3) was obtained using the recommended values of fundamental 

constants (Mohr et al., 2012) and relative molecular mass of 106.165 (Wieser and Coplen, 2011). 

Zero-density viscosity is usually fitted through using three terms which includes an energy scaling 

parameter, ε/k, a size scaling parameter, σ, and finally an elected functional form for cross-sectional area, Sη. 

Typically, the two functional forms used is firstly the Lennard-Jones model which approximates the interactions 

between molecules as an effective spherical Lennard-Jones (12-6) potential (Neufeld et al., 1972). The second is 

the universal correlation, which arises from implementing a universal correlation for Sη utilising experimental 

data. The benefit of these functional forms is the ability to extrapolate viscosities reasonably, out of the 

measured data range.  Figure 2 shows the result of implementing Vogel and Hendl (1992) data with the 

Lennard-Jones model and universal correlation. It can be concluded that with careful consideration of the 

scaling parameters (ε and σ) the two functional forms can reproduce the data within systematic deviations of 

0.65%, which is greater than double the claimed uncertainty of the measured data. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

This result indicates that for aromatic molecules the universal correlation and Lennard-Jones model 

cannot reproduce the zero-density viscosity within the experimental uncertainty. In order to reproduce 

accurately the zero-density viscosity within the experimental uncertainty, an empirical approach has been 

adopted by obtaining experimental values of Sη from fitting each primary data point to the form: 

                                                                                (     
 )     

  

 
 

  

  
                                                                     

where A0, B0 and C0 are adjustable fitting coefficients obtained using nonlinear least-square (nls) techniques in R 

statistical software (R Development Core Team, 2008). Table 2 provides the values obtained and Figure 2 

illustrates that the empirical correlation fits the primary data within 0.17%, substantially below the claimed 

uncertainty region of 0.3%. 

 

 

Table 2 – Coefficients for the Empirical Fitting of the Zero-Density Limit Viscosity, Eq.(4) 

A0  
[-] 

B0  
[K] 

C0  
[K

2
] 

-1.4933 473.2 -57033 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

350 400 450 500 550 600 650

1
0

0
·(
η

co
rr

 -
η

ex
p

 )/
η

ex
p

 

T, K 

Figure 2 – Percentage deviations [𝟏𝟎𝟎  𝜼𝒄𝒐𝒓𝒓  𝜼𝒆𝒙𝒑 𝜼𝒆𝒙𝒑 ] from the experimental data of Vogel and Hendl (1992) in the 

limit of zero-density, of the values calculated by: (●) Empirical; (■) Lennard-Jones Correlation; (♦) Universal 
Correlation 
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The Initial Density Dependence 

In the vapour phase, at subcritical conditions, a viscosity trend showing an initial increase or decrease 

with increasing density before viscosity increases at higher densities is witnessed below a particular temperature 

(Friend and Rainwater, 1984). A model that accounts for this behaviour of the initial-density coefficient, η1, is in 

terms of the second viscosity virial coefficient, Bη, defined by (Millat et al., 2005): 

                                                                                                                                                                                   

where η1 is in μPa·s·L·mol
-1

 and Bη in L·mol
-1

. Proposed schemes to describe the second viscosity virial 

coefficient were initially founded on models of moderately dense gas as mixture of monomers and dimers which 

interact analogous to the LJ (12-6) potential. However, currently it is based on universal correlations made with 

the careful consideration of the experimental data and theory (Friend and Rainwater, 1984).  

 Out of the authors which measured data in the vapour phase, only data of Vogel and Hendl (1992) were 

sufficiently detailed to allow for the development of an initial-density correlation. Hence, it has been used as the 

primary dataset and tested with the universal correlation using optimal choice of scaling parameters ε and σ. It 

was found to predict values recorded by Vogel and Hendl (1992) outside the range of claimed uncertainty. For 

greater accuracy an empirical approach was undertaken with the initial density dependence shown by the 

functional form:    

                                                                                      (   
  

 
 

  

  
)                                                                         

where A1, B1 and C1 are adjustable fitting coefficients and ρ is the molar density in mol·L
-1

. The Vogel and 

Hendl (1992) primary dataset contains 66 data points fitted to Eq. (6), which meant the zero-density correlation 

was extrapolated to 338 K to include the 11 data points in this temperature range. Table 3 provides the fitted 

coefficients obtained with Figure 3 showing the deviations of the initial density correlation from experimental 

data. An illustrated fit within 0.25% was within the claimed experimental uncertainty of 0.3%. It can be 

concluded that the extrapolation of the zero-density correlation to 338 K is valid because the 11 data points in 

the temperature range (338 to 633) K was predicted within the experimental uncertainty. 

    

Table 3 – Coefficients for the Empirical Fitting of the Initial Density Dependence, Eq.(6) 

A1  

[µPa·s·L·mol
-1
] 

B1  

[µPa·s·K·L·mol
-1
] 

C1  

[µPa·s·K
2
·L·mol

-1
] 

13.2814 -10862.4 1664060 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 shows the deviation of all the datasets available in the vapour phase from the correlation given 

by Eqs. (2-6). Both datasets show deviations within their claimed uncertainty of 2 % and 0.3 %, respectively, 

with no evident systematic trend either in density or temperature. It also can be noted that the data of Abdullaev 
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Figure 3 – Percentage deviations [𝟏𝟎𝟎  𝜼𝒄𝒐𝒓𝒓  𝜼𝒆𝒙𝒑 𝜼𝒆𝒙𝒑 ] of the available experimental data in the vapour phase at 

pressures below 2 bar from the calculated values: (●) Abdullaev and Akhundov (1983), (+) Vogel and Hendl (1992) 
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and Akhundov (1983) extends Vogel and Hendl (1992) in the supercritical region by 40 K and the correlation 

was still able to extrapolate outside of the primary data range and produce values within the experimental 

uncertainty. Therefore, it can be stated that the developed correlation has the correct temperature dependence 

when extrapolated to lower and higher temperatures. 

 On the basis of the agreement with the primary data set, an estimated combined uncertainty with a 

coverage factor of 2 to the viscosity correlation in the vapour phase, below 2 bar, of 0.25% in the temperature 

range (338 to 633) K. Outside this range an estimated uncertainty increase to 1% at 673 K. 

         

The Residual Viscosity 

There is limited theoretical guidance for the residual viscosity contribution. Thus, the availability of 

accurate experimental data which can cover a large range of temperature and pressure is crucial to develop a 

valid correlation. The first stage of choosing primary data was to collate and compare the high ranged 

temperature and pressure data, to perform an initial fitting. The second stage was then to add the ambient and 

saturation data to the fitting.  

 Amongst the available viscosity datasets only 5 cover a large range of temperature and pressure. 

Mamedov et al. (1968, 1975) measurements were obtained using a capillary viscometer. Kashiwagi and Makita 

(1982) used a Torsional Crystal and Et-Tahir et al. (1995) used a Falling Body viscometer. The primary dataset 

covered the temperature range (293 to 548) K and pressures from 1 bar up to 1100 bar.  

With the aim of performing the comparison between different datasets, a quadratic polynomial fit in 

density to Kashiwagi and Makita (1982) data was used as a base line. Figure 4 clearly shows that Mamedov et 

al. (1968, 1975) exhibits a systematic deviation from the primary data at lower densities. However, this 

difference is within the experimental accuracy in the order of 2%.  

 

 

 

 

 

 

 

 

 

 

 

Analysis of the data Kashiwagi and Makita (1982) and Mamedov et al. (1968, 1975)  indicated 

agreement between these datasets within the claimed uncertainty over the whole range of temperatures and 

pressures which justified their inclusion within the primary dataset. 

The primary dataset was accompanied by four sets of viscosity measurements of liquid p-xylene at 

atmospheric pressure covering the temperature range (288 to 353) K and one set of measurements along the 

saturation line from the temperature range (298 to 393) K. In summary, 351 data points covering the 

temperature range (298 to 548) K and pressures up to 1100 bar measured in 3 different viscometer types, were 

used as primary data for development of the residual viscosity contribution.      

All the viscosity data were converted from the η(T,P) to η(T,ρ) using the EOS of Zhou et al. (2012). 

When removing the zero-density and initial density dependence contributions, Eqs. (4 and 6) respectively, from 

the residual viscosity the typical features of η(T,ρ) is shown. This is the viscosity exponential-like increase at 

temperatures and densities near the solidification line, also no existing data within the 2-phase region. This can 

cause the viscosity correlation to display non-monotonic behaviour within this region. The fitting has been 

constrained to ensure that the correlation is continuous and a monotonically increasing function of density at all 

isotherms. Therefore, this gives the possibility for a reference correlation and the ability to represent p-xylene in 

calculating mixture viscosity in corresponding states or VW method (Vesovic and Wakeham, 1989). 
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Figure 4 – Percentage deviations [𝟏𝟎𝟎  𝜼𝒆𝒙𝒑  𝜼𝒇𝒊𝒕 𝜼𝒆𝒙𝒑 ] of the primary experimental viscosity data at 323 K and 348 K 

from the quadratic fit in density to Kashiwagi and Makita (1982) data. 323 K data: (–) Mamedov et al. (1968, 1975). 348 K 
data: (–) Mamedov et al. (1968, 1975)  
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The residual viscosity is presented here as a function in reduced density,          and reduced 

temperature,        ,                    

                                                     
 

 ⁄ ∑       
  

                

   
  

 
 ⁄

  
   ∑       

   

           

                                       

where Di and Ei are adjustable coefficients. In this instance, fractional powers have been used to allow more 

flexibility in fitting the experimental data, for smooth 2-phase representation. Residual viscosity of supercritical 

fluids is independent temperature (Vesovic et al., 1998).  The Di terms in Eq. (7) accounts for this behaviour. 

Liquids, however, exhibit a strong temperature dependence (Assael et al., 1992). The Ei term accounts for the 

liquid viscosity behaviour. Avgeri et al. (2014) proposed functional form suggested from the hard-sphere model, 

          
     

     which was employed in this correlation providing the best results. 

 Table 4 shows the optimal coefficients for Eq. (7) which were obtained using the R software for 

statistical computing (R Development Core Team, 2008) to fit all the primary data. The critical temperature, Tc, 

616.168 K and critical density, ρc, 2.69392 mol·L
-1

 of p-xylene were taken from Zhou et al. (2012). 

             

Table 4 – Coefficients for the Representation of the Residual Viscosity, Eq. (7) 

        

1.5  122.919            15.337 

2 -282.329 - 

3  279.348 - 

4 -146.776 - 

5 28.361 - 

11          -0.004585             -0.0004382 

15 -              0.00002307 
 

Figure 5  shows the agreement with the experimental data in the liquid region for temperatures from 

(298 to 548) K and pressures from saturation to 1100 bar. The experimental data are reproduced by the present 

correlation within 2.7 % with no systematic data trend. The data of Dymond and Robertson (1985) measured 

along the saturation line are reproduced within 1 %, within the claimed uncertainty of the data. Nissema and 

Koskenniska (1972) exhibit average absolute deviation (AAD) of 0.3 %, bias of 0.3 % and maximum deviation 

of 0.7 %, just above the claimed uncertainty. Overall, the developed correlation is able to reproduce the data 

mostly within 2 % with less than 2 % of the primary data outside this threshold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 compares the agreement of the primary data for Kashiwagi and Makita (1982) and Mamedov 

et al. (1968, 1975) at the same isotherms. Both claimed uncertainty of 2 %, however, they used different 

Figure 5 – Percentage deviations [𝟏𝟎𝟎  𝜼𝒆𝒙𝒑  𝜼𝒄𝒐𝒓𝒓 𝜼𝒆𝒙𝒑 ] of primary experimental viscosity data in the liquid region: 

(–) Mamedov and Panchenkov (1955) and Mamedov et al. (1968, 1975), (☐) Nissema and Koskenniska (1972), (♦) 

Kashiwagi and Makita (1982), (∆) Dymond and Robertson (1985), (◇)Serrano et al. (1990), (■) Et-Tahir et al. (1995), (▲) 

Exarchos et al. (1995) 
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viscometers (See Table 1). Kashiwagi and Makita (1982) data is mainly over predicted exhibiting systematic 

deviation at the higher densities at 348 K, whereas Mamedov et al. (1968, 1975) are mainly under predicted 

with systematic deviation at lower densities for both isotherms 323 K and 348 K. At 348 K, there is up to 1.5 % 

difference in the predicted viscosity deviation of the authors. Despite these systematic differences, the 

developed correlation is shown to reproduce the data within the claimed uncertainty of 2 %. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 illustrates the agreement of the developed viscosity correlation with the primary experimental 

data at atmospheric pressure, that cover the temperature range (298 to 373) K in the liquid phase. All the data 

are reproduced within 1.5 % with the exception of a single datum of Mamedov and Panchenkov (1955) at 353 

K. However, taking into account that these measurement where taken at room temperature in different 

laboratories, it can be concluded that the suggested correlation represents the primary experimental data well. 

Nissema and Koskenniska (1972), Serrano et al. (1990) and Exarchos et al. (1995) claimed low uncertainty of 

0.4 %, observing Figure 7 emphasises a good agreement with the correlation as it predicts close to this claimed 

uncertainty. Dymond and Robertson (1985) data does show a systematic deviation at the lower densities, though 

the predictions are within the claimed uncertainty of 1 %.   
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Figure 7 – Percentage deviations [𝟏𝟎𝟎  𝜼𝒆𝒙𝒑  𝜼𝒄𝒐𝒓𝒓 𝜼𝒆𝒙𝒑 ] of primary experimental viscosity data measured at 1 bar:  

(–) Mamedov and Panchenkov (1955) and Mamedov et al. (1968, 1975), (☐) Nissema and Koskenniska (1972), (♦) 

Kashiwagi and Makita (1982), (∆) Dymond and Robertson (1985), (◇)Serrano et al. (1990), (■) Et-Tahir et al. (1995), 

(▲) Exarchos et al. (1995) 

Figure 6 – Percentage deviations [𝟏𝟎𝟎  𝜼𝒆𝒙𝒑  𝜼𝒄𝒐𝒓𝒓 𝜼𝒆𝒙𝒑 ] of the primary experimental viscosity data at 323 

K and 348 K in the liquid region. 323 K data: (◇/♦) Kashiwagi and Makita (1982)/Mamedov et al. (1968, 

1975). 348 K data: (☐/■) Kashiwagi and Makita (1982)/Mamedov et al. (1968, 1975) 

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

800 820 840 860 880 900 920

1
0

0
·(
η

ex
p

 - 
η

co
rr

)/
η

ex
p
 

ρ, kg/m3 



The Influence of Aromatic Compounds on Viscosity            9                                                                                      

`  

Table 5 – Evaluation of the p-Xylene Viscosity Correlation against the Primary Experimental 
Data 

Authors Year Publ. 
AAD 
(%) 

Bias 
(%) 

MD 
 (%) 

Mamedov and Panchenkov  1955 1.0  1.0  2.6 

Mamedov et al.  1968 0.8 -0.1  2.4 

Nissema and Koskenniska  1972 0.3  0.3  0.7 

Mamedov et al.  1975 0.7 -0.2 -2.2 

Kashiwagi and Makita  1982 0.5  0.0  1.9 

Abdullaev and Akhundov  1983 1.0  0.5  2.6 

Dymond and Robertson  1985 0.4  0.0  1.0 

Serrano et al.  1990 0.6  0.6  0.8 

Vogel and Hendl  1992 0.1  0.0 -0.2 

Et-Tahir et al.  1995 1.5 -0.5  2.6 

Exarchos et al.  1995 0.5 -0.5  0.8 

Entire Primary Data Set 
 

0.6 0.0 2.6 

 

       
 ⁄ ∑|(          )     ⁄ |              

 ⁄ ∑(          )     ⁄  

  

Table 5 summarizes the agreement between the primary data and the proposed viscosity correlation, 

Eqs. (1-4 and 6-7), for p-xylene in the vapour, liquid and supercritical regions. The correlation reproduces the 

entire primary data with the average absolute deviation (AAD) of 0.6 %, zero bias and maximum deviation 

(MD) of 2.7 % 

Overall Viscosity Correlation 

 The viscosity correlation of p-xylene as a function of temperature and density is represented by Eqs. (1-

4 and 6-7), with the coefficients provided in Table 2-4. The correlation is valid from the lower temperature 

range of 288 K to the upper limit which is pressure dependent. For densities coinciding of pressures below 3 bar 

the viscosity correlation is valid up to 673 K, whereas at higher pressures the correlation is valid till 548 K. 

 Figure 8 illustrates the behaviour of the viscosity correlation as a function of density along isotherms 

300 K and 600 K. At higher densities a steep increase in viscosity is observed. It can be also seen that the 

correlation is well-behaved within the 2-phase region, where no data is available to constrain the correlation. For 

all isotherms, monotonic behaviour is exhibited. Therefore, the correlation is suitable for a corresponding states 

correlation for aromatic hydrocarbons or to represent a specific component in calculating mixture viscosity in 

VW model (Vesovic and Wakeham, 1989).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 – Viscosity of p-xylene as a function of density along isotherms. 300 K: (––) liquid phase, 
(---) 2-phase region. 600 K: (––) liquid phase, (---) 2-phase region. 
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Computer-Program Verification 

 Table 6 is provided to assist the user in the computer-program verification. The viscosity calculations 

are based on the tabulated temperatures and densities. 

  

Table 6 – Sample Points for Computer Verification of the Correlation Equations 

T  

[K] 

ρ  

[kg/m
3
] 

η  

[µPa⋅s] 

T  

[K] 

ρ  

[kg/m
3
] 

η  

[µPa⋅s] 

T  

[K] 

ρ  

[kg/m
3
] 

η  

[µPa⋅s] 

300 0 6.604 400 0 8.573 600 0 12.777 

300 2.5 6.504 400 2.5 8.495 600 2.5 12.776 

300 700 171.936 400 700 157.208 600 700 155.664 

MODELLING THE VISCOSITY OF AROMATIC-ALKANE BINARY MIXTURES 

This section describes the VW method to predict viscosity of benzene-alkane mixtures. The choice of 

density to compute the pure species parameters has been investigated. A recommendation is made and the 

results for benzene-alkane mixtures are discussed.   

Theory and Methodology 

Enskog’s expression describes the viscosity of pure fluid containing rigid spheres of diameter σ 

(Chapman and Cowling, 1952): 

                                                                                   (
 

 
    

 

 
     )                                                                     

where β is constant (1/4 + 3/π)
-1

 and χ is the radial distribution function. α is a parameter, proportional to the 

excluded volume per molecule, Vexcl,: 

                                                                                     
 

  
    

  
 

 
                                                                            

When non-spherical molecules are involved, linear molecules are modelled as equally sized 

tangentially joined and rigid segmented spheres. Viscosity of fluids made up of C chains with m segments can 

be modelled in the dense-fluid region consisting of mC hard spheres, referred as segmented fluids, given by a 

modification of Eq. (8), (de Wijn et al., 2008):                

                                                                                   ̃ (
 

 ̃
  ̃ ̃  

 

 ̃
 ̃  ̃  ̃)                                                                  

where the modified quantities (marked with a tilde) are defined on a per segment basis: 

                                                                                                       ̃                                                                                        
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 ̃       

   
 

 
      

 

 
                                                               

                                                                           ̃     ̃    (  
 

 
(
   

 
))                                                              

where  ̃        is the excluded volume of the free segment. When m = 1 the fluid reproduces the hard sphere 

fluid behavior. The reader is referred to de Wijn et al. (2012) for the equations used to calculate viscosity 

mixtures. 

  

Estimation of Pure Species Parameters  

To predict mixture viscosities, first it is required to estimate the parameters for each component in the 

mixture, where empirical correlations are conventionally used. However, their application ranges from the 

regions of experimental data placing limitations to the robustness. In this study the empirical correlation used for 

benzene was Avgeri et al. (2014) and for n-alkanes Assael et al. (1992), however due to reason explored later in 

the report, for n-hexane Lemmon et al. (2013) was used.     
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The radial distribution function at contact,  ̃ , can be calculated from viscosity by inverting the 

quadratic form of the effective pure spices properties, Eq. (10), (Vesovic and Wakeham, 1989): 

                                                       ̃  
 

  ̃  ̃ 
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 ̃  ̃   ̃  
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 ]                                           

To ensure physical behavior of χ, Sandler and Fiszdon (1979) showed that to switch from  ̃  path to the  ̃  path 

of the solution at a particular density defined  ̃ 
      

 , where the switch over density,   
 , is obtained from: 
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)  

  
 

  
 
                                                                               

Eq.(16) makes  ̃  a parameter dependent on temperature,  

                                                                                         ̃  
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(  
 

√ 
)

  

                                                                 

The parameters  ̃  and  ̃   are calculated at the mixture temperature, but there are multiple options for 

the density at which  ̃  is calculated. Vesovic and Wakeham (1989) proposed equal molar density, whereas de 

Wijn et al. (2012) used reduced density for VW-chains. However, n-alkanes required conditions at unrealistic 

densities producing negative viscosities. Therefore, same mass density was employed which provided generally 

accurate, well-behaved values of pure n-alkane viscosity. With the experimental data acquired for this 

investigation, most pure species prediction was within the range of the claimed uncertainty. 

    

Estimation of Mixture Interaction Parameters 

The mixture interaction parameters ( ̃    ̃     ̃   
) are obtained from pure species parameters by 

employing the mixing rules recommended by de Wijn et al. (2012). A number of mixing rules to evaluate 

 ̃   are available and descriptions can be found in the appendix of de Wijn et al. (2012). For this study, Anstaz 5 

was used and analyzed in a later section of this report (also see Appendix C). 

   

Experimental Data 

The data for binary mixtures of benzene + n-C6, n-C8, n-C10, n-C12 or n-C16 were collected for analysis. 

All authors reported experimental densities which were used for the VW model. The experimental technique, 

temperatures, pressures and claimed uncertainty are recorded in Table 7. The experimental data is all reported at 

298 K and 1 bar. 
Table 7 – Experimental Data for Mixture Viscosities 

Authors 
Year 
Publ. 

Technique 
Employed 

No. of 
Data 

Phase 
Temperature  

(K) 

Pressure 
Range  
(bar) 

MD 
(%) 

Benzene + n-C6  

Awwad et al.  1986 C 12 L 298 1 3.9 

Lal et al.  2000 C 16 L 298 1 1.7 

Benzene + n-C8 

Awwad et al.  1986 C 11 L 298 1 13.7 

Benzene + n-C10 

Awwad et al.  1986 C 12 L 298 1 13.4 

Lal et al.  2000 C 16 L 298 1 12.6 

Benzene + n-C12 

Awwad et al.  1986 C 12 L 298 1 13.2 

Benzene + n-C16 

Awwad et al.  1986 C 12 L 298 1 21.2 

Lal et al.  2000 C 16 L 298 1 20.6 

C – Capillary; FB – Falling Body; RB – Rolling Body; TC – Torsional Crystal 

During the process of the work, it was observed that the reference correlation for benzene (Avgeri et al., 2014) 

does not extrapolate well and becomes negative at very high densities. This constraint limits the conditions of 

applicability of the VW method, especially for mixtures with n-C16. 
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Results and Discussion 

In the study of the application of the VW method, the procedure to estimate the pure species 

parameters was investigated through different density schemes. Furthermore, results from the for benzene-

alkane mixtures viscosity predictions are discussed.        

Effect of Density on the Parameters of Pure Species 

The VW method defines the temperature and density at which pure species parameters are calculated. 

Figure 9 illustrates the effect of altering the density choice on a benzene + n-C6 mixture from Lal et al. (2000). 

This includes equal molar density of spheres, equal reduced density and equal segment density. Equal reduced 

density reproduced the data with a maximum error of 1.7%, within the claimed accuracy of the experimental 

data of 2%. With the other options, errors ranging from 3% to 70 % were realized. For mixtures with heavier n-

alkanes (shown in Appendix C) it was observed that although the deviations in the prediction increase outside 

the uncertainty claimed by the authors, equal reduced density minimizes the deviations, which justifies the 

conclusion that equal reduced density best represents density at which the pure species parameters are calculated 

for benzene-alkane mixtures. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

A further study was done on the effect of the mixing rule on the VW method prediction of benzene-

alkane mixture viscosity (shown in Appendix C). It was observed that it is sensitive to alterations in the mixing 

rule used for     . Moreover, chain length is a factor that may determine the mixing rule used. This indicates 

further testing in this area is required which was proposed by de Wijn et al. (2012) and Tariq (2013) who 

witnessed similar behaviors for mixtures with n-alkane and cyclic molecules respectively.    

It was observed that for mixtures with alkanes heavier than n-C6, the parameters are calculated within 

the 2-phase region. This is because the critical density of n-C6 is less than that of benzene, 2.80 mol·L
-1

 and 2.86 

mol·L
-1

 respectively. Correlations proposed by Lemmon et al. (2013) was shown to not behave monotonically 

within the 2-phase region. It was founded that Assael et al. (1992) which uses the hard sphere model, exhibiting 

a more realistic 2-phase region trend, therefore it was used for alkanes heavier than n-C6. Problems arise with 

mixtures of n-C16 due to the benzene correlation becoming negative at very high densities.   

 

Benzene-Alkane Mixtures 

Figure 10 illustrates the results for the mixture of benzene with n-C6. The VW method reproduce Lal et 

al. (2000) data with a MD of 1.7%, following a similar trend within the experimental uncertainty. Awwad et al. 

(1986) observes a MD of 4.1% which is less accurate, this due to n-C6 pure species viscosity extending outside 

the range of the correlation uncertainty proposed by Lemmon et al. (2013). This will inevitably affect the whole 

range of data from the author.    
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Figure 9 – Percentage deviations [𝟏𝟎𝟎  𝜼𝒆𝒙𝒑  𝜼𝑽𝑾 𝜼𝒆𝒙𝒑 ] of different pure species conditions on the VW method 

predictive capabilities for the mixture of benzene with n-C6 of Lal et al. (2000). (♦) Equal molar density, (■) Equal 

segment density, (✕) Equal mass density, (●) Equal reduced density, (▲) Equal reduced density and temperature 
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For mixtures of benzene + n-C8, n-C10 or n-C12 a pattern is observed with the VW method predicting 

viscosities at a similar trend to the experimental data, shown in Figure 11 to Figure 13. As the benzene content 

becomes richer, mixture viscosity is under-predicted. In benzene + n-C8 or n-C10, Awwad et al. (1986) observes 

a MD of 13.8% and 13.4% respectively. While, for benzene + n-C10, the VW method predicts Lal et al. (2000)  

data with deviations of 12.6%, Awwad et al. (1986) is reproduced with a 13.4% MD. In general, data from Lal 

et al. (2000) is more accurately reproduced by the VW method due to the greater accuracy of the pure species 

viscosity. For more results the reader is referred to Table 7.           

 

 

 

 

 

 

 

 

 

Figure 14 shows that for the mixture of benzene + n-C16, it was observed that the benzene correlation 

(Avgeri et al., 2014) became negative at these densities. Therefore, at low benzene mole fraction the VW 

method did not produce results. Notwithstanding, at rich benzene condition Awwad et al. (1986) and Lal et al. 

(2000) was reproduced with MD 20.6% and 21.2%. 

A general trend shown is the over 

prediction of mixture viscosity at low benzene mole 

fraction and the under prediction of mixture 

viscosity at rich benzene conditions. This can be 

explained through the understanding that parameter 

of pure species are calculated deeper into the 2-

phase region where the benzene content becomes 

richer. Due to the lack of experimental data, the 

uncertainty within this region is greater. This brings 

additional uncertainty in the estimation of pure 

spices parameters, therefore maximizing the 

deviation of the mixture viscosity. 

 These results indicate that for mixtures 

with aromatic molecules, VW model produces 

similar trends to experimental data, however further 

work on the VW model is required to increase the 

accuracy when the parameters of the pure species 

are computed in the 2-phase region.  
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Figure 11 – Comparison between experimental viscosity 
data and calculated viscosity using VW method for 
mixtures of benzene with n-C8. Experimental data: (■) 
Awwad et al. (1986). VW: (––) 
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Figure 12 – Comparison between experimental viscosity 
data and calculated viscosity using VW method for 
mixtures of benzene with n-C10. Experimental data: (♦) 
Lal et al. (2000), (■) Awwad et al. (1986). VW: (––) 
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Figure 10 – Comparison between experimental viscosity 
data and calculated viscosity using VW method for 
mixtures of benzene with n-C6. Experimental data: (♦) 
Lal et al. (2000), (■) Awwad et al. (1986). VW: (––) 

 

Figure 13 – Comparison between experimental viscosity 
data and calculated viscosity using VW method for 
mixtures of benzene with n-C12. Experimental data: (■) 
Awwad et al. (1986). VW: (––) 
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Figure 14 – Comparison between experimental viscosity 
data and calculated viscosity using VW method for 
mixtures of benzene with n-C16. Experimental data: (♦) 
Lal et al. (2000), (■) Awwad et al. (1986). VW: (––) 
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Conclusion and Recommendation 

A correlation of the dynamic viscosity of p-xylene was developed, through a critical assessment of the 

available experimental data. The correlation range of validity extends from (288 to 673) K up to 1100 bar. The 

correlation is expressed in terms of temperature and density, and the densities were obtained from the equation 

of state of Zhou et al. (2012).The correlation development focused around the interpolation of the 2-phase 

region. This was to ensure it is well-behaved when predicting this transition, where no experimental data is 

available. The correlation was tested against 11 primary authors with prediction uncertainty of 2.7%.       

The application of the VW method for binary mixtures of benzene + n-C6, n-C8, n-C10, n-C12 or n-C16 was 

studied. The estimation of the pure species parameter along with the effect of the mixing rule for χij, and n-

alkane reference correlation were explored. The VW method predicted mixture viscosities within 4% of the 

experimental data for mixtures with n-C6. However, for the heavier n-alkanes deviations exceed 20%. This is 

believed to be due to the parameter of pure species being calculated deeper into the 2-phase region, where 

uncertainty is high as no experimental data is present. Overall the following conclusions can be made: 

 

1. For binary mixtures of aromatic-alkane, pure species parameters should be estimated at equal reduced 

density  

2. For n-alkane critical densities greater than aromatics, the VW model requires correlations for alkanes 

which have well-defined 2-phase region.    

3. For the proposed viscosity correlation, behaviour at the 2-phase region makes it sufficient for 

developing a reference corresponding-states correlation for aromatic hydrocarbons or as part of the VW 

model to predict the viscosity of mixtures, containing p-xylene. 

 

This paper furthers our understanding of the viscosity behaviour of mixtures with aromatic compounds. 

Therefore, several recommendations are put forward in order to enhance future work in this area. Accurate 

viscosity measurements of p-xylene are required at the supercritical region which ranged only up to 38 bar 

provided by one author, thus supercritical viscosity measurements at greater pressure ranges are required. Large 

pressure range experimental viscosity data within the vapour region and measurements along the vapour side of 

the saturation line are vital, as few authors provided data around these regions. These are essential in extending 

the experimental range of the correlation along with fortifying the current range. Subject to experimental data 

availability, this study could be extended to mixtures of n-alkanes and p-xylene to test the proposed correlation 

accuracy, in addition to widening the scope to more aromatic compounds. The critical density of p-xylene is 

lower than that of benzene; therefore better predictions from the VW method may be observed, as pure species 

parameters are calculated less deep in the 2-phase region.  Lastly, further work on VW method for aromatic-

alkane mixtures understanding effect of critical density on its predictive accuracy to further improve the model. 

Nomenclature 

   = Second Viscosity Virial Coefficient  L/mol 

MD = Maximum Absolute Deviation  % 

NA = Avogadro's Number 1/mol 

n-C6  = n-Hexane - 

n-C8 = n-Octane - 

n-C10 = n-Decane - 

n-C12 = n-Dodecane - 

n-C16 = n-Hexadecane - 

P = Pressure  bar 

Pc = Critical Pressure  bar 

T = Temperature  K 

Tc = Critical Temperature  K 

Tr = Reduced Temperature - 

Vexcl = Excluded Volume - 

  / ̃  = Measure of excluded volume of species i in the presence of species i  m
3
/mol 

   / ̃   = Measure of excluded volume of species i in the presence of species j  m
3
/mol 

Δη = Residual Viscosity µPa·s 

ε/k = Energy-Scaling Parameter K 

η = Dynamic Viscosity µPa·s 

η* = Switch-over Viscosity  µPa·s 

η0 = Zero-density Viscosity Limit µPa·s 

η1 = Initial-Density Coefficient µPa·s·L/mol 

ηcal = Calculated Viscosity µPa·s 
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ηexp = Experimental Viscosity µPa·s 

     / ̃      = Mixture Interaction Viscosity in the Limit of Zero Density - 

ηVW = Calculated Viscosity from the VW method µPa·s 

ρ* = Switch-over Density  mol/L 

 / ̃ = Molar Density mol/L 

ρc = Critical Density  mol/L 

ρr = Reduced Density - 

σ = Size-Scaling Parameter nm 

     / ̃      = 
Radial Distribution Function at contact of species i in the presence of species j 

in the limit of zero density 

- 

  / ̃  = Radial Distribution Function at contact of species i in the presence of species i  - 

   / ̃   = Radial Distribution Function at contact of species i in the presence of species j  - 
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Appendix 

Appendix A – Critical Literature Review 

 

 Table A1 – Milestones in Prediction of Viscosity of Dense Mixtures 

 

References Year Title  Authors Contribution 

Swedish Academic 
Proceedings (Svensk. 
Akad. Handl.), Vol. 
63, No. 4 

1922 

Kinetic Theory of Thermal 
Conduction Viscosity and Self- 
Diffusion in Certain Dense Gases 
and Liquids 

Enskog, D. 
Proposed an approximation of 
the kinetic theory for rigid sphere 
dense gases. 

Phys. A Stat. Mech. 
its Appl., Vol. 95, No. 
3, p.602–608 

1979 
On the Viscosity and Thermal 
Conductivity of Dense Gases 

Sandler, S.I., 
Fiszdon, J.K. 

Introduction of the switch-over 
point concept to obtain values of 
the radial distribution function for 
pure species over a range of 
densities 

Int. J. Thermophys., 
Vol. 44, No. 10, 
p2181–2189 

1989 
Prediction of the Viscosity of Fluid 
Mixtures Over Wide Ranges of 
Temperature and Pressure 

Vesovic, V., 
Wakeham, W.A. 

Extended the Thorne-Enskog 
equations for the prediction of the 
viscosity of high-density fluid 
mixture (VW spheres) 

Fluid Phase Equilib., 
Vol. 79, p313–326 

1992 
Vapor Phase Viscosity of Toluene 
and p-Xylene 

Vogel,E., 
Hendl,S. 

Only experimental data with  
extensive data on zero-density 
and initial density dependence 
viscosity  

Int. J. Thermophys., 
Vol. 13, No. 5, p895–
905 

1992 

Correlation and Prediction of 
Dense Fluid Transport 
Coefficients. V. Aromatic 
Hydrocarbons 

Assael, M. J., 
Dymond, J. H.,  
Patterson, P. M. 

Provides theoretical guidance in 
developing the empirical form of 
the residual viscosity using the 
hard-sphere model. Incorporation 
of the shape factor accounting for 
non-sphericity of hydrocarbons 
with carbon number greater than 
1 

2
nd

 Edition, New York, 
Cambridge University 
Press 

2005 
Transport Properties of Fluids: 
Their Correlation Prediction and 
Estimation 

Millat, J., 
Dymond, J.H., 
Nieto de Castro, 
C.A. 

Correlation techniques with 
theoretical background of various 
transport properties such as 
viscosity 

J. Chem. Phys., Vol. 
128, No. 20, p204901 

2008 
A Kinetic Theory Description of 
the Viscosity of Dense Fluids 
Consisting of Chain Molecules. 

de Wijn, A.S., 
Vesovic, V., 
Jackson, G., 
Trusler, J.P.M. 

Extended the modified Enskog 
theory to represent long 
molecules as chains of rigid 
spheres 

J. Chem. Phys., Vol. 
136, No. 7, p074514 

2012 
Viscosity of Liquid Mixtures: The 
Vesovic-Wakeham Method for 
Chain Molecules. 

de Wijn, A.S., 
Riesco, N., 
Jackson, G., 
Trusler, J.P.M., 
Vesovic, V. 

Extended  the scheme given by 
de Wijn et al. (2008) to model 
viscosity of liquid mixtures 
consisting of VW-chains 
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Swedish Academic Proceedings (Svensk. Akad. Handl.) 63 (4) (1922) 

“Kinetic Theory of Thermal Conduction Viscosity and Self-Diffusion in Certain Dense Gases 

and Liquids” 

 

Authors: Enskog, D. 

 

Contribution to the Prediction of Viscosity of Dense Mixtures: 

Proposed an approximation of the kinetic theory for rigid sphere dense gases. 

 

Objective: 

To extend the kinetic theory to dense gases 

 

Methodology Used: 

The Boltzmann equation for a dilute gas of rigid spheres was generalized to dense gases. The 

difference in position of the colliding hard spheres and the increase in the frequency of 

collisions were accounted for by χ. This factor, χ, defines the radial distribution function at 

contact of fluid in thermal equilibrium. 

 

Conclusion: 

The Boltzmann equation for a dilute gas of rigid spheres can be used to predict viscosity of 

the dense gas rigid sphere. 

 

Comments: 
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Phys. A Stat. Mech. its Appl. 95 (3) (1979) 602–608  

“On the Viscosity and Thermal Conductivity of Dense Gases” 

 

Authors: Sandler, S.I. and Fiszdon, J.K. 

 

Contribution to the Prediction of Viscosity of Dense Mixtures: 

Introduction of the switchover point concept to obtain values of the radial distribution 

function for pure species over a range of densities 

 

Objective: 

Utilising measured transport property data, information on χ is extracted to elude observation 

of unphysical behaviour   

 

Methodology Used: 

Experimental data is used to acquire the effective size parameter for molecules in place of 

thermodynamic data. With this scheme, a switch-over point is defined where the solution of 

the inverted Enskog’s equation for density dependence of viscosity is switched from negative 

to positive root.        

 

Conclusion: 

Applying the switch-over point, physically reliable behaviour of the radial distribution 

function could be attained. 

 

Comments: 
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Int. J. Thermophys. 10 (1) (1989) 125–132  

“Prediction of the Viscosity of Fluid Mixtures Over Wide Ranges of Temperature and 

Pressure” 

 

Authors: Vesovic, V. and Wakeham, W.A. 

 

Contribution to the Prediction of Viscosity of Dense Mixtures: 

Extended the Thorne-Enskog equations and the concept of switch-over point for the 

prediction of mixture viscosity (VW-spheres) 

 

Objective: 

The development of a reliable method for the prediction of dense gas mixture viscosity. 

 

Methodology Used: 

Transport data was used to estimate pure species parameters. The switch-over point scheme 

was used to obtain physically reliable pseudo radial distribution function. Mixing rules based 

on both Lebowitz's solution of the Percus-Yevick equation (LPY equation) and on the 

Carnahan-Starling equation was proposed for the calculation of χij.   

 

Conclusion: 

The use of switch-over point to obtain the pseudo radial distribution function allows this 

method to apply to very high densities. The scheme was tested on mixtures of natural gas, 

with viscosity predictions within the claimed uncertainty of the experimental data.   

 

Comments: 

This scheme was tested further on high density mixtures in a subsequent paper; Chem. Eng. 

Sci. 44 (10) (1989) 2181–2189  
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Fluid Phase Equilib. 79 (1992) 313–326  

“Vapour Phase Viscosity of Toluene and p-Xylene” 

 

Authors: Vogel,E. and Hendl,S. 

 

Contribution to the Prediction of Viscosity of Dense Mixtures: 

Only experimental data with extensive data on zero-density and initial density dependence 

viscosity 

 

Objective: 

Reported new measurements of the vapour phase viscosity of toluene and p-xylene 

 

Methodology Used: 

Measurements have been performed in an all-quartz oscillating-disk viscometer with small 

gaps. The temperature range between (305 to 630) K (toluene) and between (340 to 635) K 

(p-xylene) and for densities from (0.002 to 0.045) mol/L (toluene) and from (0.003 to 0.038) 

mol/L (p-xylene). The data was evaluated with a density series for the viscosity in which only 

a linear density contribution has been included.  

 

Conclusion: 

The values of the second viscosity virial coefficient obtained for toluene and p-xylene have 

been compared with results of the Rainwater-Friend theory on the basis of the Lennard-Jones 

12-6 potential with good agreement. 

 

Comments: 
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Int. J. Thermophys. 13 (5) (1992) 895–905 

“Correlation and Prediction of Dense Fluid Transport Coefficients. V. Aromatic 

Hydrocarbons” 

 

Authors: Assael, M. J., Dymond, J. H. and Patterson, P. M. 

 

Contribution to the Prediction of Viscosity of Dense Mixtures: 

Provides theoretical guidance in developing the empirical form of the residual viscosity using 

the hard-sphere model. Proposed reference viscosity correlations for n-alkanes with well-

defined 2-phase regions. The incorporation of the shape factor accounting for non-sphericity 

of hydrocarbons with carbon number greater than 1. 

 

Objective: 

To show that the proposed scheme based upon rigid-sphere theory can be combined with the 

universal equation relating viscosity to reduced volume in order to accurately predict the 

viscosity of aromatic hydrocarbons over wide ranges of temperature and pressure and at 

densities greater than the critical density. 

 

Methodology Used: 

Previously derived relationships combined with laboratory measurements of viscosity of 

benzene, toluene, and the three forms of xylene and literature values for those and other 

aromatics.  Used the lab data to parameterize the relationship for reduced volume of 

aromatics based upon carbon number and temperature. 

 

Conclusion: 

Agreement is excellent with only 3% of data points deviating from lab measurements by 

more than 5%. 

 

Comments: 

Further testing of the scheme was presented in a subsequent paper; Int. J. Thermophys. 30 (6) 

(2009) 1733–1747 
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2
nd

 ed., New York, Cambridge University Press (2005) 

“Transport Properties of Fluids: Their Correlation Prediction and Estimation” 

 

Authors: Millat, J., Dymond, J.H. and Nieto de Castro, C.A. 

 

Contribution to the Prediction of Viscosity of Dense Mixtures: 

Correlation techniques with theoretical background of various transport properties such as 

viscosity 

 

Objective: 

Describes the methods and application for evaluating the transport properties, such as 

viscosity, thermal conductivity and diffusion, of pure gases and fluid mixtures.  

 

Methodology Used: 

Case studies of transport property analysis for real fluids are made, with a discussion of 

various international data banks and prediction packages. 

 

Conclusion: 

Pure species viscosity can be predicted using kinetic theory and various data banks    

 

Comments: 
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J. Chem. Phys. 128 (20) (2008) 204901  

“A Kinetic Theory Description of the Viscosity of Dense Fluids Consisting of Chain 

Molecules” 

 

Authors: de Wijn, A.S., Vesovic, V., Jackson, G. and Trusler, J.P.M. 

 

Contribution to the Prediction of Viscosity of Dense Mixtures: 

Extended the modified Enskog’s theory to represent long molecules as chains of rigid spheres 

 

Objective: 

Propose a theoretical model for the viscosity of chained molecules 

  

Methodology Used: 

Molecules are approximated by chains of equal-sized, tangentially jointed, rigid spheres 

(segments). Based on Enskog’s theory, the viscosity equation was modified to include 

excluded volume, density, zero-density limit viscosity and the radial distribution function for 

segments. Excluded volume was defined in terms of two molecular parameters, the diameter 

of the spherical segment and the number of segments in a chain. Segment size is analogous to 

a methane molecule at that temperature.  

 

Conclusion: 

This extended scheme improves the predictive capabilities of the model. The chain length 

becomes independent of temperature by incorporating the effect of temperature on segment 

size.  

 

Comments: 
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J. Chem. Phys. 136 (7) (2012) 074514  

“Viscosity of Liquid Mixtures: The Vesovic-Wakeham Method for Chain Molecules.” 

 

Authors: de Wijn, A.S., Riesco, N., Jackson, G., Trusler, J.P.M. and Vesovic, V. 

 

Contribution to the Prediction of Viscosity of Dense Mixtures: 

Extended the scheme given by de Wijn et al. (2008) to model viscosity of liquid mixtures 

consisting of VW-chains 

 

Objective: 

Propose a theoretical model for the viscosity of a chain-fluid mixture. Like presented in de 

Wijn et al. (2008) evaluation of different effective parameters is required for a chain-like 

fluid mixture. To then, illustrate the predictive capabilities of the VW chain model.       

  

Methodology Used: 

Utilised SAFT-type analysis and extended the mixing rules for mixture interaction 

parameters presented in the original VW method for segment fluid. 

 

Conclusion: 

Pure species properties should be estimated as the same reduced density as the mixture. To 

accurately reproduce the experimental viscosity, different effective sizes of molecules should 

be used for the excluded volume (σα) and collision dynamics (σχ).   

 

Comments: 
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Appendix B – Miscellaneous Results for the Empirical Correlation for p-Xylene 

 

 

Table B1 – Data Used In Developing the Viscosity Correlation of p-Xylene 

Authors 
Year 
Publ. 

Technique 
Employed 

Purity 
(%) 

No. of Data 
Temperature 

Range  
(K) 

Pressure 
Range  
(bar) 

       

Primary Data 

       

Mamedov and Panchenkov  1955 C 99 7 293 – 353 1 

Mamedov et al.  1968 C 99.78 129 323 – 548 1 – 400  

Nissema and Koskenniska  1972 C - 4 293 – 323 1 

Mamedov et al.  1975 C 99.4 124 323 – 548 1 – 400  

Kashiwagi and Makita  1982 TC 99 60 298 – 348 1 – 1094 

Abdullaev and Akhundov  1983 C - 27 473 – 673 1 – 38 

Dymond and Robertson  1985 C 99 6 298 – 393 PSat 

Serrano et al.  1990 C 99.98 4 288 – 303 1 

Vogel and Hendl  1992 C 99.9 66 383 – 633 0.08 – 2 

Et-Tahir et al.  1995 FB 99 12 313 – 353 200 – 1000 

Exarchos et al.  1995 C 99.5 5 293 – 313 1 

       

Secondary Data 

       

Schmack et al.  1973 C - 3 293 - 323 1 

Chevalier et al.  1990 C 99.95 1 298 1 

Wanchoo and Narayan 1992 C - 4 293 - 318 1 

Petrino et al.  1995 C 99.5 1 298 1 

Wankhede et al.  2008 C 99 3 288 - 308 1 

Dominguez-Perez et al.  2009 C 99 1 298 1 

Habibullah et al.  2010 C 99 3 303 - 323 1 

Ikeuchi et al.  2010 C 99.8 6 288 - 313 1 

              

C – Capillary; FB – Falling Body; RB – Rolling Body; TC – Torsional Crystal 
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Appendix C – Miscellaneous Results for VW Method for Mixtures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The effect of using different mixing rules proposed by de Wijn et al. (2012) was studied. The results 

are presented in Figure C1 and Figure C2. It was reported by de Wijn et al. (2012) and  Tariq (2013) that while 

there are variances in prediction for different mixing rules, the overall trend was to shift the deviations, but not 

affect the trend in mole fraction. 

The same observation was seen in this study with benzene + n-C6 or n-C12. The mixing rules 4-5 were 

consistently higher than 1-3. For lighter mixtures, n-C6, mixing rules 4-5 exhibit lower deviations while for 

heavier mixtures, n-C12, mixing rules 1-3 exhibit lower deviations. It can be therefore concluded that chain 

length can affect the predictions of the VW method, with aromatic molecules, using different mixing rules. This 

was also observed by de Wijn et al. (2012) and  Tariq (2013) for mixtures with n-alkane and cyclic molecules, 

respectively. Both authors recommended further investigation in this area to develop theoretical connection 

between the mixture species and mixing rule used.             
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Figure C1 – Percentage deviation [𝟏𝟎𝟎  𝜼𝒆𝒙𝒑  𝜼𝑽𝑾 𝜼𝒆𝒙𝒑 ] between experimental viscosity of Lal et 

al. (2000) and calculated viscosity using VW method for different mixing rules for χij for a mixture 

of benzene with n-C6. (♦) Ansatz#1, (■) Ansatz#2, (▲) Ansatz#3, (✕) Ansatz#4, (–) Ansatz#5  
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Figure C2 – Percentage deviation [𝟏𝟎𝟎  𝜼𝒆𝒙𝒑  𝜼𝑽𝑾 𝜼𝒆𝒙𝒑 ] between experimental viscosity of Awwad 

et al. (1986) and calculated viscosity using VW method for different mixing rules for χij for a mixture 

of benzene with n-C12. (♦) Ansatz#1, (■) Ansatz#2, (▲) Ansatz#3, (✕) Ansatz#4, (–) Ansatz#5 
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Figure C3 shows the effect of altering the density choice on a benzene + n-C12 mixture from Awwad et 

al. (1986). Equal reduced density reproduced the data with a maximum error of 13.2%, whereas, with the other 

options errors ranging from 20% to 400 % were realized. For mixtures with heavier n-alkanes it can be 

concluded that equal reduced density should be used. The reason deviation is outside the experimental accuracy 

is possibly due to the uncertainty within the calculations of the pure species within the 2-phase region. To avoid 

this in future, it is recommended to ensure that reference correlations used for the VW method, have well-

defined 2-phase regions.        
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Figure C3 – Percentage deviations [𝟏𝟎𝟎  𝜼𝒆𝒙𝒑  𝜼𝑽𝑾 𝜼𝒆𝒙𝒑 ] of different pure species conditions on the VW 

method predictive capabilities for the mixture of benzene with n-C12 of Awwad et al. (1986). (♦) Equal molar 

density, (■) Equal segment density, (✕) Equal mass density, (●) Equal reduced density, (▲) Equal reduced 

density and temperature 


