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Abstract 
Oil and gas are becoming more and more difficult to extract as most major hydrocarbon fields are maturing and with steady 

production decline. Understanding reservoir behavior at the pore scale is vital in order to unlock the potential and get more of 

the hydrocarbon resources. Pore-scale simulation takes into account all the factors that affect the movement of fluids within the 

pore space. This study focuses on porosity and absolute permeability. 

The objective of this study is to find out the various effects of different sub volumes (100-1024 voxel
3
) and resolutions 

(2.7-27 m) on the petrophysical properties. Topologically representative networks were utilized to understand the effects of 

different sub-volumes and resolutions on basic petrophysical properties of four different rock types: Berea (medium 

permeability sandstone), Doddington (high permeability sandstone), Estaillades (medium permeability limestone), and Ketton 

(high permeability limestone).   

At 2.7 m, Berea shows convergence toward both porosity and permeability experimental values at sample volumes 

between 400 and 1024 voxel
3
 (1.11 and 2.85 mm

3
). In Doddington, porosity is close to the experimental values between 400-

1024 voxel
3
, whereas, permeability estimates were better at 100-200 voxel

3 
and at 1024 voxel

3
. It is impossible to get a 

representative elementary volume, REV, for porosity from µ-CT images due to the presence of micro-pores. Permeability of 

Estaillades and Ketton was close to the experimental value at 800 and at 600-1024 voxel
3
 respectively.  

In the resolution study, the input is a larger image of 1024 voxel
3
 (2.85 mm

3
) that is interpolated to coarser resolutions; 

simulation shows that the inclusion of more sample volume increased the ability to predict basic properties accurately. 

Sandstone porosity estimates were not affected by coarsening and their absolute permeability was predicted accurately at up to 

18 µm in Berea and between 8-27 µm in Doddington. The portion of micro-pores to macro-pores can be an indication of the 

accuracy of pore-scale simulation results in limestone.  Results can be improved by increasing sample size beyond 1024 voxel
3
 

then coarsening it to be a computationally feasible simulation.  

Introduction 
Pore scale simulation takes into account all the factors that affect the movement of fluids within the pore space. A study by 

(Blunt et. al., 2012) provides an overview of the techniques and methods of applying pore-scale imaging and modeling in 

difference advanced areas of study. Porosity and absolute permeability are the basic predicted properties. In addition, special 

core analysis data such as relative permeability and capillary pressure can be generated as well. One of the methods of pore-

scale studies is simulating the flow in an extracted topological network from µ-CT binary images.  

In conventional reservoir simulation models, having more cells allows capturing heterogeneity to get results that are more 

representative. However, at some point, simulation becomes impractical and resource intensive as the size of the model is 

increased. Similarly, µ-CT images of pore-scale structure have various resolutions and simulating large volumes of fine 

resolution pore-scale samples is a challenge. In this project, the bases of the study are 1024 voxel
3
 images of Berea (medium 

permeability sandstone), Doddington (high permeability sandstone), Estaillades (medium permeability limestone), and Ketton 

(high permeability limestone). The four rock samples were µ-CT scanned with a resolution of 2.7 m.  

The objective of this study is to find out the various effects of different sub volumes (100-1024 voxel
3
) and resolutions 

(2.7-27 m) on the petrophysical properties. Topologically representative networks were utilized to understand the effects of 

different sub-volumes and resolutions on basic petrophysical properties of the four different rock types. 

 At 2.7 m, Berea shows convergence toward both porosity and permeability experimental values at sample volumes 

between 400 and 1024 voxel
3
 (1.11 and 2.85 mm

3
). In Doddington, porosity is close to the experimental values between 400-

1024 voxel
3
, whereas, permeability estimates were better at 100-200 voxel

3 
and at 1024 voxel

3
. It is impossible to get a 

representative elementary volume, REV, for porosity from µ-CT images due to the presence of micro-pores in limestone 

samples. Permeability of Estaillades and Ketton was close to the experimental value at 800 and at 600-1024 voxel
3
 

respectively.  

In the resolution study, the input is a larger image of 1024 voxel
3
 (2.85 mm

3
) that is interpolated to coarser resolutions; 

simulation shows that the inclusion of more sample volume increased the ability to predict basic properties accurately. 

Sandstone porosity estimates were not affected by coarsening and their absolute permeability was predicted accurately at up to 

18 µm in Berea and between 8-27 µm in Doddington. The portion of micro-pores to macro-pores can be an indication of the 
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accuracy of pore-scale simulation results in limestone.  Results can be improved by increasing sample size beyond 1024 voxel
3
 

then coarsening it to be computationally feasible simulation.  

Background 
Representative elementary volume, REV, first introduced by (Bear, 1972), is a parameter of great importance not only in 

the petroleum industry but also in all other sciences that study heterogeneous materials. An important goal of determining REV 

is to find effective properties of heterogeneous medium. It must be large enough to be statically being representative of total 

volume but not extremely large as it will be purposeless. As a result, REV must include all micro heterogeneities of the 

material.  In the scope of pore-scale modeling, REV needs to include all features that appear repeatedly within a sample by 

capturing a wide distribution of pores and throats that represent the main sample (Kanit, 2003).  

REV is not an exact volume. It starts with a minimum volume at which the micro-scale properties become homogenous and 

representative of a large sample. It also ends with a maximum volume where any extra inclusion additional sample volume will 

introduce heterogeneities to the sample rendering it unrepresentative. (Bear, 1972), first introduced the REV concept based on 

porosity. An REV for porosity is commonly referred to as the REV of a particular rock type however; it will not be the same 

REV that represents other parameters especially for advance properties such as capillary pressure and relative permeability 

(Al-Raoush and Papadopoulos, 2010). REV is widely studied in soil science (Li, 2010), (O’Donnel, 2010). Also, it is used to 

assess mechanical properties of rocks (Wang, 2002). Due to the difficulty of REV determination, many researchers followed 

advanced statistical methodologies to study the REV for different purposes (Li, 2010), (Salmi, 2012). Authors who follow a 

statistical approach acknowledge the fact that even if they determine and REV, it will not be 100% applicable to the sample of 

interest. Statistical methods assume that the certain modeled properties follow a specific distribution, which enables the 

researcher to generate wide variety of samples to study. This study is different in the way it takes an actual µ-CT images that 

does not contain any user generated features. 

A recent study by (Mostaghimi, et. al., 2012) compared absolute permeability prediction methods to experimental data. In 

addition, the authors examined the REV of different rock types and its significance. The REV of absolute permeability, 

compared to porosity, is larger in order to account for tortuosity and connectivity of the pore space. Moreover, the authors 

concluded that the REV of carbonate samples appears to be larger than the image itself. 

Some available studies, (Peng, 2012), obtained a specific REV for Berea sandstone which is studied thoroughly in this 

paper. The author determined that 2.8 mm in height and diameter is sufficient at different resolutions for porosity and pore 

connectivity. Moreover, the study emphasizes the differences between high and low resolution with respect to pore structure 

details. High resolution images reveal more details of pore structure. Low resolution on the other hand, gets a wide view of the 

sample and captures large pores and large throats. (Vik, 2013) proved experimentally that for highly heterogeneous limestone, 

properties decrease in variability with increasing size. It indicates a transition from a variable property regime into an REV.  

Moreover, (Al-Ansi et. al., 2013) had a similar objective in examining resolution effects on Clashach and Doddington 

sandstone rocks. The study covered resolutions between 6 to 20 µm. It concluded that a resolution of 6 µm is not sufficient to 

capture network properties correctly as the average throat radius is close to the image resolution. Regardless of that deficiency, 

5-10 µm resolution is enough to accurately predict flow properties in homogenous high permeability rocks. In contrast, this 

study examines petrophysical properties of the same Doddington and other rocks that were scanned at afiner resolution, 2.7 

µm. A detailed literature review is available in Appendix I.  

Input data 
Subject rocks were scanned with µ-CT scanners. The main advantage of µ-CT is the ability to perform 3D imaging of rock 

samples non-destructively through multiple slices of 2D images. (Cnudde and Boone, 2013) provide an extensive overview of 

µ-CT technology, recent advances and its vast applications. µ-CT imaging produces images with shades of grey. Network 

extraction input should include only pores and grains, i.e. segment images, as the network cannot be generated directly from 

raw grey µ-CT images.  

In this study, I used images that had been already segmented and quality checked using Otsu’s algorithm (Otsu, 1979) that 

maximizes the separability of gray levels. The optimal threshold is selected based on global property of the images’ histograms 

which is a practical way to segment dry µ-CT images. Using the published images (Al-Ansi, 2012) ensured consistency and 

kept the project on track because the purpose of this project is to directly study the effect of sub-volume and resolution on 

single phase properties. In this report, the term “base image” always refers to the 1024 voxels
3
 segmented image with 

resolution of 2.7 μm. 

 

Sample  Rock type Resolution (μm) Size (voxel
3
) 

Berea Sandstone 2.7745 1024 

Doddington Sandstone 2.7745 1024 

Estaillades Limestone 2.6825 1024 

Ketton Limestone 2.654 1024 

Table 1 µ-CT image details of the analysed rock samples. Images of the rock samples are published in “.raw” format from which a 

pore network can be directly generated (Al-Ansi, 2012).  
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Rock samples 
Four different rock types have been studied. Two sandstone and two limestone rocks with varying permeability range. This 

section discusses each rock individually. Additional images can be found in Appendix II and Appendix III. In this section, each 

rock is described briefly using different sources. Then, a sample of the segmented images is shown with a graph representing 

the variation of porosity in each individual 2D image slice along the sample. No line smoothing was performed to observe the 

variation in porosity between adjacent image slices. 

 

Sample  Rock type Place of origin Helium Permeability [m
2
] n 

Berea Sandstone Berea, Ohio, US 0.22 (4.4 ± 0.2)  10
-13

 2 

Doddington Sandstone Doddington, UK 0.22 (1.1 ± 0.1)  10
-12

 1 

Estaillades Limestone Oppède, France 0.28 (1.6393 ± 0.0005)  10
-13

 2 

Ketton Limestone Ketton, UK 0.23 (2.884 ± 0.006)  10
-12

 1 

Table 2 Rock types and basic petrophysical properties of subject rocks. 'n' refers to the number of independent measurements of 

permeability, (Tanino and Blunt, 2012). 

Berea 

Berea sandstone is a standard testing material in the petroleum industry as it is widely studied in the literature. The 

sandstone is brittle and is made of 93.13% silica (Berea Sandstone, 2014). Berea is a medium- to fine-grained sandstone from 

the vicinity of Berea, Ohio, US. (Pepper, 1954). Porosity in the Berea is inter-granular as shown in a Focused Ion Beam “FIB” 

cut through the grain, which reveals no micro porosity.  

   
Figure 1. [Left] No micro-pores are present in a grain cut by FIB milling. [Centre] The sandstone matrix is surrounded by crater-

like small pores. [Right] Micro-pores are also not present in a thin section milling (Bara, 2010). We expect to capture Berea’s flow 

properties accurately with no micro-pores because pore structure is fully captured by 2.7m resolution scanning.   

  
Figure 2. [Left] Segmented µ-CT image scan of Berea sandstone. The pores and grains shapes look very similar in the image. [Right] 

A z-axis profile plot of porosity of individual segmented image along the Berea sample.  

Berea sandstone heterogeneity is identified from the several wide variations of porosity values, a 10 p.u. range, along the 

sample. Compared to other samples, Berea’s z-axis plot is the most disturbed line. This is attributed to the small grain size that 

widens the slice-to-slice porosity variation window. 

Doddington 

Doddington is carboniferous sandstone. The studied sample has same porosity as the Berea; however, its permeability is 

2.5 times higher. For the purpose of this study, it is classified as high permeability sandstone.  
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Figure 3. [Left] Segmented µ-CT image scan of Doddington sandstone. The pores and grains are larger than Berea, thus fewer pores 

and grains are present in the image. Pore bodies are clear can be easily traces by eye between images. [Right] A z-axis profile plot of 

porosity of individual segmented image along the Doddington sample.  

Most of the images are within a range of 5 p.u. making Doddington much more homogeneous than Berea. In addition, the 

line is smoother indicating smaller slice-to-slice change in characteristics. Visual inspection of Figure 3 Figure 4 of Berea and 

Doddington sandstones show that the REV is approximately 1mm in sample length. It is approximately the same length that 

was found from the 3D images with 400 voxel
3
. 

Estaillades 

Estaillades limestone has porosity up to 30%. It contains approximately 95% calcite and is considered to be a mid-range 

permeability rock between 1.97x10
-13

 to 3.95x10
-13

 m
2
. The µ-CT and Scanning Electron Microscope “SME” show the high 

degree of heterogeneity in the pore space (Renard, 2006). Micro-porosity is present vastly in the Estaillades, producing a 

bimodal distribution of pore size, and cannot be detected with µ-CT scanning (Bejeljic, 2013). In addition, the presence of 

micro-scale grains ranging between 1 to 10 m creates structural heterogeneity represented as local variations in porosity 

NMR and MICP experiments confirm the double porosity characteristic of Estaillades (Gland, 2009). 

  

 
Figure 4. (a) A µ-CT scan of Estaillades showing only micro-grains. However, (b) displays the micro-porous structure on the left, the 

dense structure on the top and on the right a large pore is clearly shown (Gland, 2009). 
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Figure 5. [Left] segmented µ-CT image scan of Estaillades limestone. Many different shapes of pores are clear in the picture. 

Limestone deposition has great impact on the structure of the rock. [Right] A z-axis profile plot of porosity of individual segmented 

image along the Estaillades sample.  

Two-thirds of the porosity is micro-porous and cannot be identified in the image. That is why the line looks smooth, 

straight and 20 p.u. less than helium porosity value. Helium gas is used to measure porosity by applying Boyle’s law. It’s the 

smallest molecule in size, after hydrogen, allowing it to penetrate micro-pores rapidly. That is the main reason why µ-CT 

imaging underestimates helium porosity in limestone samples. Also, helium has high diffusivity allows determining porosity in 

low permeability rocks (Yu, 2013). Porosity from µ-CT images will match the helium porosity in the presence on micro-pores 

only when the scanning resolution is at the same scale as the micro-pores. 

Ketton  

The Ketton is almost pure limestone present in the Upper Lincolnshire limestone in Ketton, Rutland, UK. The grain stone 

are all oolitic in shape and up to 600m in size. Like Estaillades, it has micro-porosity that cannot be captured by µ-CT 

imaging (Andrew, 2014). The permeability of the Ketton sample is about 18 times higher than Estaillades. 

 
Figure 6. Hand-sketched Ketton surface showing the distribution of oolitic shape bodies (Azevedo, 2010). 
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Figure 7. [Left] segmented µ-CT image scan of Ketton limestone. The image shows smooth oolitic grain. The shape of the grains is 

same all over the rock and they vary smoothly in size and shape across the sample. [Right] A z-axis profile plot of porosity of 

individual segmented image along the Ketton sample.  

About one third of the porosity is micro-porous and cannot be identified in the image. The line is closer to experimental 

value than the Estaillades sample. Ketton has the smoothest porosity profile in a slice-to-slice basis. Ellipsoidal grains are large 

and change uniformly in size across the images.  

Research Method  
Studying the effects of different sub-volumes and resolutions of an image involves two separate parts. The first uses the 

base image of 1024 voxel
3 

and crops it in smaller sizes without altering the resolution. The latter takes the same 1024
 
voxel

3
 

and reduces its size by interpolating the pores and grains with the intent of producing an image that is as similar as a µ-CT scan 

of the same rock with coarser resolution and smaller voxel
3
 size.   

Sub-volume study 

The base images of 1024 voxel
3
 were cropped into 4 different sizes that are 800, 400, 200, and 100 voxel

3
. Cropping was 

always done by making the x-y center of the 1024
3 

cube the same as the x-y center of the smaller cubes. The z-axis cropping 

always started from the first image. This procedure produces more consistent results that actually show the sensitivity of the 

sub-volume instead of randomly cropping a smaller cube anywhere in the base image. Table 3 illustrates the cropping concept 

on a Doddington sample. Note that a complete set of 2D and 3D images is available in Appendix II and Appendix III. No 

changes to resolution were made at any point in the sub-volume study. 

 

    

1024
3 
Doddington base 3D 

image 

400
3 
Doddington sub-volume 

example 3D image 

Full 1024 pixels Doddington 

2D image 

Full 400 pixels Doddington 

2D sub-volume image 

All images at resolution of 2.7745 m 

Table 3. Illustration of the sub-volume concept of the study. 

Resolution study 

In the resolution study, the base is the same 1024
 
voxel

3
 image. The image is reduced in size without cropping by 

interpolating its pores and grains. There are several interpolation algorithms that are coded in image processing software 

packages ranging from very simple nearest neighbor and linear algorithms into complex high-order ones like cubic convolution 

and quintic B-spline. All readily available interpolation algorithms were tested. The preferred algorithm is the quintic B-Spline. 

0.05

0.15

0.25

0 0.5 1 1.5 2 2.5 3

2
D

 I
m

a
g

e 
P

o
ro

si
ty

 
Sample Location (mm) Ketton Image Porosity

Helium Porosity
0.49 mm 

0.3 mm 0.75 mm 
0.35 mm 0.15 mm 



6  M.Sc. Petroleum Engineering 2013-2014  

 The “spline” is a numeric function that is piecewise-defined by polynomial functions and provides smooth interpolation 

results that are similar to high degree polynomial interpolation but are better in stability (Judd, 1998). This interpolation 

method is well known in the fields of mathematics, physics, and engineering to solve nonlinear higher order evolution 

equations and was first identified to provide smooth piecewise polynomial approximation by (Schoenberg, 1946).  

Complexity of interpolation does not guarantee the best results. The quality of interpolation in is checked by comparing the 

pores and throats in the original image and the interpolated image across the entire cube. Quintic B-spline always produced 

interpolated images that are consistent with the original. Other interpolation methods produce artifacts and non-representative 

interpolated images that are not comparable to the base image.  

 The images are reduced by choosing a reduction factor between 0 and 1. The factors were chosen in a way that produces 

meaningful spacing between their respected resolutions. Specifically, more images were produced to examine effects of less 

than 10m resolution as shown in Table 4 because samples are more commonly scanned at that range.  

 

Image reduction 

factor 
1  0.800 0.601 0.500 0.400 0.350 0.300 0.200 0.150 0.120 0.101 

Cubic Voxels 1024 819 615 512 410 358 307 205 154 123 103 

Berea (µm) 2.7745 3.47 4.62 5.55 6.93 7.94 9.25 13.9 18.4 23.1 27.6 

Doddington (µm) 2.7745 3.47 4.62 5.55 6.93 7.94 9.25 13.9 18.4 23.1 27.6 

Estaillades (µm) 2.6824 3.35 4.47 5.36 6.70 7.67 8.95 13.4 17.8 22.3 26.7 

Ketton (µm) 2.654 3.32 4.42 5.31 6.63 7.59 8.85 13.3 17.6 22.1 26.4 

Table 4. Coarsened resolutions and image voxel3 sizes for each rock sample. 

As the original images are binary having only black and white pixels, interpolating them will produce shades of grey. Directly 

trying to extract pore network from the gray shades does not work because it will confuse the code about what a pore and what 

a grain is. As a result, a manually set threshold based on the histogram of each individual image allows for better 

representation of the pore structure.  

    

Figure 8. Illustrative images of interpolating Doddington sandstone sample and the effects of different grey scale thresholds. (A): 

Original Doddington image scanned at 2.7745 m resolution. (B): Quintic b-spline interpolated image with grey shades with an 

interpolated resolution of 7.93m. (C): Manually set grey scale appropriate threshold based on grey shades histogram. This was 

performed manually on all coarsened images. (D): Excessive inclusion of grey shades as pore space shown for illustrative purposes 

only and was avoided at all parts of the resolution study. 

Figure 9 and Figure 10 show how the pore and throat structure change at different coarsened resolutions. In Berea sandstone, 

coarser resolutions have significant effects on the pore structure because the pores and throats are small in size. Some pores are 

completely missed out at the resolution of 23.1 m. On the other hand, Ketton has larger pores. There is no visible change in 

the structure when the resolution is coarsened from 2.654 m to 4.42 m. Even at 22.1 m, the effect is insignificant.  

   

Figure 9. Resolution coarsening effects on Berea sandstone. [Left] original Berea image of resolution 2.7745 m. [Centre] Berea 

image with an interpolated resolution of 5.55m. [Right] Berea image with an interpolated resolution of 23.1m 

0.15 mm 

0.20 mm 

(a) (b) (c) (d) 
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Figure 10. Resolution coarsening effects on Ketton limestone. [Left] original Ketton image of resolution 2.654 m. [Centre] 

interpolated Ketton image with an interpolated resolution of 4.42 m. [Right] interpolated Ketton image with an interpolated 

resolution of 22.1 m. 

In the Ketton sample, the pores and throats are much larger. There is only a small chance that the structures are undetected 

or misrepresented when the resolution is coarsened from 2.654 to 4.42 m. For Ketton, even very coarse resolutions do not 

look very different from the original fine picture as indicated in Figure 10. A complete set of pictures for all samples and 

resolutions is available in Appendix III to show the effect of coarser resolution at all levels.  

Topologically representative network extraction results 
The first step after image processing is the extraction of topologically representative networks. The networks represent the 

void space by a lattice of pores that are connected by throats. These networks provide a representation of the 3D structure to be 

input into the two phase simulation codes. A modified maximal ball algorithm that is described in (Dong and Blunt, 2009) is 

robust with all of its critical output parameters such as coordination number and pore and throat size distributions are 

benchmarked and proven consistent with experimental data. It uses an algorithm that treats the large spheres as a pore while 

the small spheres that connect large spheres are pore throats.  

Effects of sub-volume changes on networks 

Sandstone topological networks are distinguished clearly from the limestone networks. The histograms of the pore and 

throat radii are almost identical in the case of Berea and Doddington sandstones. They vary at the radii above 30 m where 

Doddington has more pores and pore-throats in that range due to its higher permeability. The volume of samples in the study is 

less than 3 mm
3
. It is a small scale to observe sandstone sorting and pore size anomalies. At such a small scale, the sandstones 

appear to be homogeneous and the reduction of sub-volume does not significantly skew the radii histograms. Most lines appear 

identical to each other except the line of the smallest studied sub-volume of 100
 
voxel

3
.  

The same logic applies when comparing Ketton to Estaillades. The pores and throats of Ketton are very large compared to 

Estaillades. Also, they are all oolitic in variety of sizes. What is shown in the histograms and later in simulation of Ketton and 

Estaillades is based totally on the detectable macro-pores and throats at a scanning resolution of 2.7 m. At the smallest size of 

100
 
voxel

3
, Ketton and Estaillades have poor representation in their networks. Many images in Estaillades will be purely grain 

without any pores whereas in Ketton the smallest images are mostly pore-space.  

 

Figure 11. Pore and pore-throat radii size change with decreasing sub-volume in Berea sandstone that is scanned at 2.7 m. The bin 

used in this and most following histograms is (3, 5, 10, 15, 20, 25, 30, 35, 40, and 45) m. The dashed line here and all following 

histograms represents the 1024 voxel3 base case. 
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Figure 12. Pore and pore-throat radii size change with decreasing sub-volume in Doddington sandstone that is scanned at 2.7 m. 

 
Figure 13. Pore and pore-throat radii size change with decreasing sub-volume in Estaillades limestone that is scanned at 2.7 m. 

 
Figure 14. Pore and pore-throat radii size change with decreasing sub-volume in Ketton limestone that is scanned at 2.7 m 

Effect of coarsened resolution on network properties 

The basis of this section is the coarsening of the original 1024 voxels
3
 image into smaller sizes. This section here compares 

the networks of 4 out of the 10 different resolutions that were tested in the project namely 3.4, 7, 14, and 27 m. Regardless of 

different rock types and characteristics, the effect of coarsening the resolution on the size of pores and throats is identical. At 

the first coarse resolution of 3.4 m the majority of pores and throats are less than 5 m in radius. The histograms lines skew 

to the larger sizes as the resolution coarsens creating pores and throats that are very large in size and at the same time missing 

pores and throats that are below the resolution limits. In all samples, the 27m is shown as the extreme example where the 

histogram lines are nearly flat indicating a mix of all sizes as opposed to the finer resolution of 3.4 m which shows more 

realistic distribution. These effects have direct impact on the petrophysical results, but one must bear in mind that the 

coarsened images source is a 1024
3
 voxel image which is an excellent representation of the samples. Simulation results in the 

next section will show that pore connectivity is well captured in the interpolated images with a fine 1024
3
 voxel base.  

Due to their large grains and pores, Doddington and Ketton pore radius histogram bins were extended to 100 m. In 

Ketton, about 8% of pore radii fall between 70-90 m. These networks histograms represent only the captured porosity at 

2.7m and they will be different if the micro-porosity is accounted for. When large pore space voxel sizes are adjacent to each 

other without a detection of a grain between them, the scanner sees them as either all pore space or all grain depending on the 

several factors such as segmentation process, and grey scale thresholds. Berea and Estaillades show a modest shift toward 

larger pore and pore-throat sizes as the resolution coarsens because they have generally smaller pores.  
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Figure 15. Pore and pore-throat radii size change with coarsening resolution in Berea sandstone. 

  
Figure 16. Pore and pore-throat radii size change with coarsening resolution in Doddington sandstone 

 
Figure 17. Pore and pore-throat radii size change with coarsening resolution in Estaillades sandstone 

 
Figure 18. Pore and pore-throat radii size change with coarsening resolution in Ketton sandstone 

Simulation results 
A published two phase code, (Valvatne and Blunt, 2004) is used to predict the permeability, formation factor, capillary 

pressure and relative permeability. The input code which contains variety of parameters and constrains is included in Appendix 

IV. The scope of this project is to study the effects of sub-volume and resolution changes on porosity and permeability only. 

Porosity and absolute permeability are the most successfully predicted values in pore-scale modeling. Porosity can be directly 
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measured from the segmented images, which matches the extracted network. On the other hand, permeability is measured by 

Darcy’s law,  

𝐾𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 =  
𝜇𝑝𝑞𝑡𝑠𝑏𝐿

𝐴 (Φinlet−Φoutlet )
 

Equation 1. Absolute permeability equation where 𝑲𝒂𝒃𝒔𝒐𝒍𝒖𝒕𝒆 is absolute permeability, 𝝁𝒑 is single phase viscosity, 𝒒𝒕𝒔𝒃 is total single-

phase flow rate, L is the length across measured sample, A is the cross-sectional area of the model, 𝑷 is the pressure, 𝝆𝒑 is phase 

density, g is the gravitational constant and h is the height above datum. The term (𝚽𝐢𝐧𝐥𝐞𝐭 − 𝚽𝐨𝐮𝐭𝐥𝐞𝐭) refers to the potential drop 

across length L and area A. The potential 𝚽 is equal to 𝑷 − 𝝆𝒑𝒈𝒉. (Valvatne and Blunt, 2004). 

The network extraction allows us to characterize the tested samples and understand the pore structure. Several parameters 

such as the number of pores, number of throats, average connection number, connections to inlet and outlet, physical isolated 

elements and net porosity. In addition, absolute permeability is calculated from the two-phase simulation code along with 

formation factor, relative permeability and capillary pressure in drainage and imbibition cycles. All these parameters are 

plotted in appendices V, VI, and VII for reference. The details of the capillary pressure and relative permeability predictions 

are explained thoroughly in (Valvatne and Blunt, 2004). 

Figure 19, Figure 20, Figure 21, and Figure 22 compare the pore-scale porosity from the network and absolute permeability 

values to experimental results. Note that the two-phase simulation code did not run in some large sub-volumes making some 

figures look incomplete. This will be addressed in the following section. Simulation results are shown as rhombus points. 

There is only one experimental value of porosity. Both porosity and absolute permeability are plotted as straight lines.  

Sub-volume study results 

 
Figure 19. Porosity and absolute permeability comparison of sub-volume images of Berea sandstone.  

  
 
Figure 20. Porosity and absolute permeability comparison of sub-volume images of Doddington sandstone 

 Accurate porosity predictions in sandstones can be easily achieved at images with greater than 400
 
voxels

3
 or 1.11 mm

3 

considering scanning resolution of 2.7745m. At images with less than 400
 
voxel

3
, simulation values stray away from the 

experimental value. The majority of image features disappear when cropping the image to less than 400
 
voxels

3
. In the 

sandstone case, as image size exceeds 400
 
voxel

3
 image porosity value porosity becomes asymptotic to the experimental value. 

The REV includes also up to 1024 voxel
3
, largest tested volume.  

Permeability estimation on the other hand is different. Pore networks match permeability better in medium range 

permeability sandstone like the Berea. Estimation of permeability is accurate in both cases of high and medium permeability 

sandstone but it is more precise in medium range permeability such as Berea than in high permeability range such as 

Doddington. At fine resolution, large-pore rocks such as Doddington cause computational problems that will be described in 

the next section. 
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Figure 21. Porosity and absolute permeability comparison of sub-volume images of Estaillades limestone 

 
Figure 22. Porosity and absolute permeability comparison of sub-volume images of Ketton limestone 

The right sub-volume in carbonate rocks is difficult to determine. In rock like Estaillades pore size distribution and pore 

shapes are diverse and vary greatly across the sample. Moreover, the missing micro-porosity in both Estaillades and Ketton 

magnifies the challenge because we simply assume it does not exist when running the simulation code. Porosity estimation of 

Ketton is much better than Estaillades because the significance of micro-pores is lower; this leads to better estimation of 

porosity as well as permeability.  

In limestone, the criterion that governs the accuracy of predictions is the portion of micro to macro-pores. In Ketton, pore 

connectivity is dominated by macro-pores which lead to modest permeability predictions in the large samples. In contrast, 

micro-porosity is dominant in Estaillades which result in underestimated permeability.  

Resolution study results 

The main difference between sub-volume and resolution study is the fact that in sub-volume the rock sample is cropped which 

means that features of rock were removed. In resolution study, the considerably large 2.85 mm
3 

sample
 
[1024

3
 voxels at 2.7 

m] is coarsened by upscaling it without removing parts of. Only by lumping detectable pores and throats at each resolution 

point. This is the main reason why data points in the resolution study Figure 23, Figure 24, Figure 25, and Figure 26 do not 

vary as much as the sub-volume data points within a sample. The study agrees with some claims by (Keehm, 2004). The author 

explained that the overestimation of permeability at coarser resolutions is because of the improper representation of complex 

pore geometry as structural complexity is lost. His generalized explanation is not true for all rock types or consistent across all 

resolutions. Coarse resolutions have different effects that are rock-type and resolution dependent.  
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Figure 23. Porosity and absolute permeability comparison of resolution images of Berea sandstone. 

  
Figure 24. Porosity and absolute permeability comparison of resolution images of Doddington sandstone. 

   
 

 

 

Figure 25. Porosity and absolute permeability of resolution images of Estaillades limestone  

  
Figure 26. Porosity and absolute permeability comparison of resolution images of Ketton limestone. 
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In all resolution study cases, the upscaled large 1024
3
 voxels image produced accurate predictions of porosity in sandstones 

and absolute permeability in both sandstones and Ketton limestone. All data points are close to or even matching the 

experimental value. One exception to this case is Estaillades for reasons explained earlier regarding the portion of undetected 

micro-pores. Maximum detectable porosity value of Ketton does not include the micro-pores; however, the permeability values 

are predicted very precisely and accurately. In sandstone, predicted porosity is almost identical to experimental value. Absolute 

permeability is always slightly higher than experimental values but within reasonable accuracy.  

Conclusions and recommendations 
Cores are the only parts of the reservoir we can measure in the lab and a good representation of the reservoir scale is 

required to trust the experimental results. Similarly, a µ-CT image stack out of a part of a core needs to be representative of its 

core and its reservoir as well. As a result, understanding the effects of different sub-volumes of µ-CT images and scan 

resolutions will play a major rule in simulation results.  

 At the network level, sandstone pore and pore throat radii histograms are homogenous at large and small sub-volumes. In 

limestone, reducing the sub-volume has significant effects due to increased heterogeneity at below 200 voxel
3 

as in Estaillades, 

or large grain size as in Ketton. Coarsening the scan resolution systematically increases the pore and pore-throat radii by 

lumping pores and throats together through interpolation process. Surprisingly, the larger pores and throats did not have 

significant effects on the basic petrophysical properties because the connectivity characteristics were restored. The major effect 

was on relative permeability and capillary pressure curves (appendix V, and VI).  

At 2.7 m, Berea sample, medium permeability sandstone, shows convergence toward both porosity and permeability 

experimental values at sample volumes between 400 and 1024 voxel
3
 (1.11 and 2.80 mm

3
). In Doddington, high permeability 

sandstone, porosity estimates are better at volumes between 400-1024 voxel
3
. However, permeability values were closer to the 

experimental values in very small samples between 100-200 voxel
3
 (0.3-0.6 mm

3
) and in the largest sample of 1024 voxel

3
. 

Limestone behaves differently because of the presence of micro-pores. It affects all simulation results. In Estaillades and 

Ketton, micro pores represent 2/3 and 1/3 of total porosity respectively. It is impossible to get an REV for porosity from µ-CT 

images and the fact that a sub-volume segmented image porosity is close to helium porosity is merely a coincidence of 

including more macro-pore space in the sample.  At finest resolution of 2.7 µm, the permeability of Estaillades and Ketton was 

close to the experimental value at 800 voxels (2.15 mm
3
) and above 600 voxel

3
 (1.6 mm

3
) respectively.  

In the resolution study, where the input is a larger image of 1024 voxel
3
 at 2.7 µm (2.80 mm

3
) that is interpolated to coarser 

resolutions, simulation shows that the inclusion of more sample volume increased the ability to model basic properties 

accurately. In Berea sandstone, porosity is estimated accurately at up to 23 µm whereas Doddington porosity estimate is 

accurate at 27 µm. Permeability on the other hand was estimated accurately at up to 18 µm in Berea and between 8-27 µm in 

Doddington. At resolutions finer than 8 µm in Doddington permeability was overestimated. Resolution coarsening had minor 

effect on permeability prediction because the overall connectivity is well captured. In carbonates such as Ketton where micro-

porosity is only about 1/3 of the total porosity, an excellent match between simulation and experimental permeability value 

was achieved at all coarsened resolutions because the flow is dominated by macro-pores. Estaillades sample results, where 2/3 

of pore space is in the micro-pores, on the contrary, poorly underestimated permeability.  

There is still potential for future research to study larger samples, beyond 1024 voxel
3
. Also, studying and comparing wide 

variety of rock samples will enable us to get a clear picture on sub-volume and resolution effects on network simulation. 

Another is comparing the sub-volume and resolution effects on different prediction methods like direct simulation on µ-CT 

images. In addition, the effects on multi-phase flow properties need to be studied as they are important and have impact 

understanding reservoir behavior. This study covered porosity and absolute permeability. Other parameters are compared 

against each other in appendices V, VI, and VII. 
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Nomenclature  

K 
Absolute permeability 

[m
2
] 

µ-CT 
High-resolution x-ray tomography, micro–

computed tomography 

 Approximately Kr Oil or water relative permeability 

Pc 
Capillary pressure 

[Pa]  
p.u. Porosity units 

Helium Core helium porosity.  REV Representative elementary volume 
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Appendix-I: Literature Review 

# Paper 

Y
ea

r 

Title Authors Contribution 

1 

International Journal of 

Rock Mechanics & 

Mining Sciences 39 

(2002) 887–904 

2
0

0
2
 

Estimation of REV size and three-dimensional hydraulic 

conductivity tensor for a fractured rock mass through a single 

well packer test and discrete fracture fluid flow modelling 

Wang, Kulatilake, 

Um, and Narvaiz 

A new methodology to determine REV and 3D hydraulic 

conductivity tensor for a fractured rock mass. 

2 

International Journal of 

Solids and Structures 40 

(2003) 3647–3679 

2
0

0
3
 

Determination of the size of the RVE for random composites: 

statistical and numerical approach 

Kanit, Forest, 

Galliet, 

Mounoury, Jeulin 

propose and illustrate a more quantitative definition of the RVE, 

which is based on statistical arguments. 

3 
Wat. Resources 

Research 10.1029/2004 

2
0

0
4
 

Predictive pore-scale modelling of two-phase flow in mixed 

wet media 

Per H. Valvatne, 

Martin J. Blunt 

Demonstrate that easily acquired data can be used to predict hard 

to measure flow properties. 

4 

SEG Int'l Exposition 

and 74th Annual 

Meeting 

2
0

0
4
 

Permeability and Relative Permeability from Digital Rocks: 

Issues on Grid Resolution and Representative Elementary 

Volume 

Youngseuk 

Keehm and Tapan 

Mukerji 

Found an REV for absolute and relative permeability with Lattice-

Boltzmann fluid simulations. 

5 
Physical Review E 80, 

036307 

2
0

0
9
 

Pore-network extraction from micro-computerized-

tomography image 

Hu Dong and 

Martin Blunt 

Build on the work already done by Silin and Patzek, (Physica A 

371,336 2006) with good correlation to most rock types. 

6 
Powder Technology 

200 (2010) 69–77 

2
0

1
0
 

Representative elementary volume analysis of porous media 

using X-ray computed tomography 

Al-Raoush, 

Papadopoulos 

The author suggest that the REV of porosity cannot be considered 

as REV for other parameters [detailed study]. 

7 

Computers and 

Geotechnics 37 (2010) 

466–475 

2
0

1
0
 

Geometric parameters and REV of a crack network in soil Li and Zhang 
A well-structured paper on finding REV on cracked soil with high 

focus on statistical methods. 

8 
Geoderma 161 (2011) 

138–146 

2
0

1
0
 

Determination of representative elementary areas for soil 

redoximorphic features identified by digital image processing 

O’Donnel, Goyne, 

Miles, Baffaut, et 

al 

The author’s methodology identified an REA of two distinctive 

features and his findings will standardize and optimize the way of 

soil testing required by the government. 

9 SCA 2011-26 

2
0

1
1
 

Combining High-Fidelity Helical Micro-Tomography with 

region-of-interest scanning for improved core characterisation 

Varslot,  Kingston, 

Latham, et al.  

The method greatly enhances the ability to characterize difficult-

to-work-with cores or highly uncertain analysis. 

10 

Mathematical 

Geosciences. 45(1), 

103-125 

2
0

1
2
 

Computations of Absolute Permeability on µ-CT Images 
Mostaghimi, 

Blunt, Bijeljic. 

Compares different methods to calculate absolute permeability. 

Also, studies the existence and magnitude of REV for different 

rock types.  

11 

Journal of Hydrology; 

472-473 (2012) 254-

261 

2
0

1
2
 

Using X-ray computed tomography in pore structure 

characterization for a Berea sandstone: Resolution effect 

 Peng,  Hu,  Dultz,  

Zhang 

Obtained REV of 2.8 mm for large-pore porosity/large-pore 

connectivity form MCT study. 

http://link.springer.com/journal/11004
http://link.springer.com/journal/11004
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12 

Advances in water 

resources 51 (2013) 

197-216 

2
0

1
2
 

Pore-scale imaging and modelling 

Blunt, Bijeljic, 

Dong, Gharbi, 

Iglauer, et. al. 

Provides a thorough overview of pore-scale imaging and 

modelling including limitations are areas of future research. 

13 
C. R. Mecanique 340 

(2012) 230–246 

2
0

1
2
 

Various estimates of Representative Volume Element sizes 

based on a statistical analysis of the apparent behavior of 

random linear composites 

Salmi, Auslender, 

Bornert, Fogli 

Excellent approach to the problem.  Statistical approach to the no 

RVE. Otherwise, very similar to other papers. 

14 
Earth Science Reviews 

123 (2013) 

2
0

1
3
 

High-resolution x-ray computed tomography in geoscience: A 

review of current technology and application 

V. Cnudde, M N 

Boone 

Limited contribution but it is a great overview of high resolution 

x-ray technology. 

15 IPTC 16600 

2
0

1
3
 

Influence of Micro-Computed Tomography Image Resolution 

on the Predictions of Petrophysical Properties 

Al-Ansi, Gharbi, 

Raeini, Yang, 

Iglauer, and Blunt 

Various effects of high and low resolution have been successfully 

identified and correlated. 

16 

Journal of Petroleum 

Science and 

Engineering 112 (2013) 

36–47 

2
0

1
3
 

Evaluation of representative elementary volume for a vuggy 

carbonate rock-part: Porosity, permeability, and dispersivity 

Vik n, Bastesen,  

Skaug 

Experimental study that investigates the variation of porosity-

permeability ratio with sample size to determine REV. 
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Source International Journal of Rock Mechanics & Mining Sciences 39 (2002) 887–904 

Year 2002 

Title Estimation of REV size and three-dimensional hydraulic conductivity tensor for a 

fractured rock mass through a single well packer test and discrete fracture fluid flow 

modelling 

Authors Wang, Kulatilake, Um, and Narvaiz 

Contribution A new methodology to determine REV and 3D hydraulic conductivity tensor for a fractured 

rock mass.  

Objective determine the representative elementary volume (REV) size and three-dimensional (3-D) hydraulic 

conductivity tensor for a fractured rock mass 

Methodology 3-D stochastic fracture network model is built and compared to rock mass. Then the data is 

compared to borehole to generate a stochastic-deterministic fracture network system in a cubic 

block. Then packer tests are simulated numerically applying a developed discrete fracture fluid 

flow model.  

By studying directional hydraulic conductivity behaviour of different cubic block sizes, an 

REV for hydraulic behaviour was estimated 

Conclusion A cubic block of size 18 meters with packer test interval of length 6.5m located at the centre of 

the block is found to be representative. Packer tests were numerically simulated using the 

block size of 18 meters and average flow rate per unit hydraulic gradient.  

When a relationship was developed between flow rate per unit gradients of fractures that 

intersect the borehole and with those which do not, and by studying directional hydraulic 

conductivity behaviour of different cubic sizes, REV of hydraulic behaviour of the rock mass 

was determined to be a block size of 15m. 

Comment Although the paper deals with finding the REV of hydraulic conductivity tensors which is not 

directly related to my area of research, the methodology and structure is very helpful.  
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Source International Journal of Solids and Structures 40 (2003) 3647–3679 

Year 2003 

Title Determination of the size of the RVE for random composites: statistical 

and numerical approach 

Authors Kanit, Forest, Galliet, Mounoury, Jeulin 

Contribution propose and illustrate a more quantitative definition of the RVE, which is based on statistical 

arguments Objective 

Methodology The RVE must ensure a given accuracy of the estimated property obtained by spatial 

averaging of the stress, the strain, or the energy fields in a given domain. Alternatively, the use 

of smaller volumes must be compensated by averaging over several realizations of the 

microstructure to get the same accuracy, provided no bias is introduced in the estimation by 

some edge effects generated by the boundary conditions 

Conclusion The author suggests that linear effective properties can be found by using mean values of 

apparent properties of small volumes because simulations on large volumes are prohibitive.  

Comment This paper discusses mechanical properties such as elasticity and heat transfer. It does not 

discuss oil field properties. However, its method sheds the light and suggests different 

approach.  

 

 

Source Water Resources Research doi: 10.1029/2003WR002627, 2004 

Year 2004 

Title Predictive pore-scale modelling of two-phase flow in mixed wet media 

Authors Per H. Valvatne, Martin J. Blunt 

Contribution Easily acquired data can be used to predict hard to measure flow properties 

Objective Predict flow properties for a variety of porous media using pore-scale modelling with 

geologically realistic networks 

Methodology 1. Network representation of sandstone. 

2. Adjust pore size distribution to match capillary pressure. 

3. Predict single and multiphase relative permeability 

Conclusion Reliable prediction of relative permeability with wettability changes and different pore 

structures.  

Comment  This paper discusses in details how fluid is moved in the pore space with respect to contact 

angles, wettability, capillary pressure, and transport properties.  

 Steady state relative permeability as benchmark 

 Wettability effects on experimental data 
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Source SEG Int'l Exposition and 74th Annual Meeting  

Year 2004 

Title Permeability and Relative Permeability from Digital Rocks: Issues on Grid Resolution 

and Representative Elementary Volume 

Authors Youngseuk Keehm and Tapan Mukerji  

Contribution Found an REV for absolution and relative permeability with Lattice-Boltzmann fluid 

simulations 

Objective Find an REV values for both absolution and relative permeability 

Methodology Examine the results of different Lattice-Boltzmann fluid simulations of two rocks that are 

random-dense sphere packing and digital Fontainebleau sandstone. Perform single and two-

phase flow simulations on these digital rocks with different grid spacing  

Conclusion For absolute permeability: REV is d<=a/10 

For relative permeability: REV is L>=20a 

- a is the length scale 

- d is the grid spacing 

Comment Consider the length scale of pore geometry such as (mean grain size, mean pore size, hydraulic 

radius, etc.) to have more meaningful REV 

 

Source Physical Review E 80, 036307 

Year 2009 

Title Pore-network extraction from micro-computerized-tomography image 

Authors Hu Dong and Martin Blunt 

Contribution Build on the work already done by Silin and Patzek, (Physica A 371,336 2006) with good 

correlation to most rock types.  

Objective Extract simplified networks of pores and throats with parameterized geometry and 

interconnectivity from images of pore space.   

Methodology The parameters of the pore networks, such as coordination number, and pore and throat size 

distribution are computed and compared to other methods, experimental data and direct 

computation of permeability and formation factor.   

Conclusion Good agreement is reached in most cases allowing networks derived from a wide variety of 

rock types to be used for predictive modelling.  

Comment This paper examines different methodologies to extract pore networks and identifies their 

strengths and weaknesses.  

Two step searching algorithm to define a void ball then clustering process to define pores and 

throats.  
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Source Powder Technology 200 (2010) 69–77 

Year 2010 

Title Representative elementary volume analysis of porous media using X-ray 

computed tomography 

Authors Al-Raoush, Papadopoulos 

Contribution The author suggest that the REV of porosity cannot be considered as REV for other 

parameters [detailed study] 

Objective Investigate whether the use of a REV for porosity can be used as an REV for other parameters 

Methodology Utilize 3D algorithms to determine the REV of particle size distribution, local void ratio, and 

coordination number.  

Conclusion Local void ratio REV is much smaller than the REV of particle size distribution and 

coordination number. Also, they stressed that REV of porosity should not be considered as an 

REV of other properties.  

Comment Excellent graphical representations of findings 

 

Source Computers and Geotechnics 37 (2010) 466–475 

Year 2010 

Title Geometric parameters and REV of a crack network in soil 

Authors Li and Zhang 

Contribution A well-structured paper on finding REV on cracked soil with high focus on statistical 

methods.  

Objective investigate the crack patterns and probability distributions of the geometric parameters of 

cracks and to determine the representative elementary volume (REV) of the crack network 

Methodology First, characterize geometric properties of desiccation crack using digital imaging method. 

Then study the pattern of the crack in two dimensions and obtain statistical data and 

probability distribution of crack properties. Finally, an REV is determined to satisfy the 

equivalent continuum assumption.  

Conclusion The REV size was found [statistically] to be approximately five times mean crack length.  

Comment The authors do not consider 3D properties of the cracks because they say it is difficult to 

quantify in-situ. He assigns different probability distributions to each property of the crack 

network.   
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Source Geoderma 161 (2011) 138–146 

Year 2010 

Title Determination of representative elementary areas for soil redoximorphic features 

identified by digital image processing 

Authors O’Donnel, Goyne, Miles, Baffaut, Anderson, Sugguth 

Contribution The author’s methodology identified an REA of two distinctive features and his findings will 

standardize and optimize the way of soil testing required by the government.  

Objective Define and determine a representative elementary area for features that are present in the 

claypan soils of north eastern Missouri, USA.  

Methodology Use high quality digital cameras and image classification techniques. Three metrics were 

chosen to quantify heterogeneity, including percent occurrence, mean Euclidean distance and 

interspersion index. 16 different image sizes were tested to identify REA.  

Conclusion The study identified an area of 17.7 cm
2
 as representative of the low chroma and 25.4 cm

2
 of 

the high chroma features.  

 

Source Mathematical Geosciences; 45(1) pp 103-125 

Year 2012 

Title Computations of Absolute Permeability on µ-CT Images 

Authors Mostaghimi, P., Blunt, M. J., and Bijeljic, B.  

Contribution Compares different methods to calculate absolute permeability. Also, studies the existence and 

magnitude of REV for different rock types. 

Objective Obtain an accurate absolute permeability calculation from different methods for consolidated 

and unconsolidated porous rocks.  

Methodology The authors solve for Stokes flow directly on binarized 3D images by imposing no-flow 

conditions exactly at the solid boundaries and then using algebraic multi-grid to solve the 

produced linear equations. Also, the results are compared with other methods such as lattice 

Boltzmann and the Kozeny-Carman equation. Experimental values were the benchmark of all 

methods. 

Conclusion 1. In more heterogeneous rocks, the Kozeny—Carman equation overestimates 

permeability by a factor of 10. 

2. Porosity’s REV is a lot smaller than the REV of other properties such as absolute 

permeability. Larger REV is required to account for tortuosity and connectedness of 

the flow path. 

3. REV of carbonate samples appears to be larger than the image itself. 

4. Permeability of sandpacks varies by less than 10% in different directions, 25% for 

sandstones, and 50% in carbonates. This indicates that pore connectivity is not 

identical in all directions.  
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Source C. R. Mecanique 340 (2012) 230–246 

Year 2012 

Title Various estimates of Representative Volume Element sizes based on a statistical analysis 

of the apparent behavior of random linear composites 

Authors Salmi, Auslender, Bornert, Fogli 

Contribution Excellent approach to the problem.  Statistical approach to the no RVE. Otherwise, very 

similar to other papers  

Objective Propose various estimates of the size of the Representative Volume Element (RVE) of random 

linear elastic matrix-inclusion composites 

Methodology Derives estimated RVE from the computation of the apparent behaviour of finite size volume 

elements.  

Conclusion The paper suggests three proposals for size of RVE:# 

1. Determine a computational RVE size by a rigorous probabilistic interpretation.  

2. Determine the size of RVE based on fluctuations of apparent properties through a 

coefficient of variation of apparent behaviours. 

3. By substituting a heterogeneous material by a homogeneous equivalent in structure 

calculations.  

When there is no RVE examine when the pdfs converge toward Gaussian distribution as the 

variance of RVE is larger than the variance of pdf.  

Comment This paper contains very high level of math and statistical methods. 

 

 

Source Earth Science Reviews 123 (2013)  

Year 2013 

Title High-resolution x-ray computed tomography in geoscience: A review of current 

technology and application 

Authors V. Cnudde, M N Boone 

Contribution Limited to the research but it gives an excellent overview of technology and applications 

Objective  Review of the principle, advantages and limitations of x-ray CT itself are presented as well as 

its applications in geoscience.  

Comment Excellent background reading to better understand x-ray images and work with them.  
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Source IPTC 16600 

Year 2013 

Title Influence of Micro-Computed Tomography Image Resolution on the Predictions of 

Petrophysical Properties 

Authors Nayef Al-Ansi, Oussama Gharbi, Ali Qaseminejad Raeini, Jainhui Yang, Stefan Iglauer, and 

Martin Blunt 

Contribution Various effects of high and low resolution have been successfully identified 

Objective Study the effect of resolution on predicted static, dynamic and network properties 

Methodology Using experimental data as benchmark to assess the results of each voxel size.  

Conclusion 1. Current extraction techniques do not appear to produce a unique network 

2. Higher resolution reveals more pores and throats 

3. The average throat radius is close to the image resolution (6 µm is not sufficient, even 

though permeability is showing good match on this low resolution) 

4. Low permeability sands require larger images and higher resolution 

5. 5-10 µm is sufficient for high permeability sands.  

Comment The paper suggests that resolution effect on multiphase flow properties need also a similar 

study.  

 

 

Source Journal of Petroleum Science and Engineering 112 (2013) 36–47 

Year 2013 

Title Evaluation of representative elementary volume for a vuggy carbonate rock-part: 

Porosity, permeability, and dispersivity 

Authors Vik n, Bastesen,  Skauge 

Contribution Experimental study that investigates the variation of porosity-permeability ratio with sample 

size.  

Objective Examine the heterogeneities and their effects on porosity, permeability and dispersivity 

Methodology In this study the authors take rocks from outcrops and cut them into various sizes to determine 

REV.  

Conclusion Properties show decreased variability with increasing sample size. Also, the mean values for 

small sample sizes are in good agreement with large rocks. It is suggested that arithmetic 

average would be the best in upscaling the permeability.  Porosity values show the lowest 

variation.  

Comment Includes a literature survey of previous REV articles. Also, this study is fully experimental 

with no simulation of pore-network. 
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Appendix-II: Additional Images and 3D Reconstructions, Sub-Volume Study 
This appendix visualizes the subject rock samples in the 2D and 3D space by showing multiple segmented images in 2D and 

the constructed 3D image for the sub-volume study. The sub-volume images shown below are the same as describe in the main 

body of the report.  

Berea [1024 voxel
3 
@ 2.7745 µm] 

   
Image# 1 Image# 256 Image# 512 

   

Image# 768 Image# 1024 3D image stack 

 
  

0.60 mm 
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Berea [800 voxel
3 
@ 2.7745 µm] 

   
Image# 1 Image# 200 Image# 400 

  

 

 
Image# 600 Image# 800 3D image stack 

 
  

0.50 mm 
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Berea [400 voxel
3 
@ 2.7745 µm] 

   
Image# 1 Image# 100 Image# 200 

   
Image# 300 Image# 400 3D image stack 

 

 
  

0.25 mm 
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Berea [200 voxel
3 
@ 2.7745 µm] 

   
Image# 1 Image# 50 Image# 100 

   

Image# 150 Image# 200 3D image stack 

 
  

0.12 mm 
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Berea [100 voxel
3 
@ 2.7745 µm] 

   
Image# 1 Image# 25 Image# 50 

   

Image# 75 Image# 100 3D image stack 

 
  

0.05 mm 
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Doddington [1024 voxel
3 
@ 2.7745 µm]  

   
Image# 1 Image# 256 Image# 512 

   
Image# 768 Image# 1024 3D image stack 

 
  

0.60 mm 
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Doddington [800 voxel
3 
@ 2.7745 µm] 

   
Image# 1 Image# 200 Image# 400 

   
Image# 600 Image# 800 3D image stack 

 
  

0.50 mm 
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Doddington [400 voxel
3 
@ 2.7745 µm] 

   
Image# 1 Image# 100 Image# 200 

   

Image# 300 Image# 400 3D image stack 

 
  

0.25 mm 
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Doddington [200 voxel
3 
@ 2.7745 µm] 

   
Image# 1 Image# 50 Image# 100 

  
 

Image# 150 Image# 200 3D image stack 

 
  

0.12 mm 
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Doddington [100 voxel
3 
@ 2.7745 µm] 

   
Image# 1 Image# 25 Image# 50 

  
 

Image# 75 Image# 100 3D image stack 

 
  

0.05 mm 
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Estaillades [1024 voxel
3 
@ 2.6824 µm] 

   
Image# 1 Image# 256 Image# 512 

   
Image# 768 Image# 1024 3D image stack 

 
  

0.60 mm 
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Estaillades [800 voxel
3 
@ 2.6824 µm] 

   
Image# 1 Image# 200 Image# 400 

   
Image# 600 Image# 800 3D image stack 

 
  

0.50 mm 
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Estaillades [400 voxel
3 
@ 2.6824 µm] 

   
Image# 1 Image# 100 Image# 200 

   
Image# 300 Image# 400 3D image stack 

 
  

0.25 mm 
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Estaillades [200 voxel
3 
@ 2.6824 µm] 

   
Image# 1 Image# 50 Image# 100 

   
Image# 150 Image# 200 3D image stack 

Estaillades [100 voxel
3 
@ 2.6824 µm]* 

   
Image# 1 Image# 25 Image# 50 

   
Image# 75 Image# 100 3D image stack 

* These images are mostly blank representing zero porosity. Few black voxels represent pore space that is captured at 100 

voxel
3 
in the center of the 1024 voxel

3
 base image to be consistent in the study. If the same sub-volume was cropped out of 

different part of the base image, it may have more pore space.  

0.12 mm 

0.05 mm 
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Ketton [1024 voxel
3 
@ 2.654 µm] 

   
Image# 1 Image# 256 Image# 512 

  

 

Image# 768 Image# 1024 3D image stack 

 
  

0.60 mm 
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Ketton [800 voxel
3 
@ 2.654 µm] 

   
Image# 1 Image# 200 Image# 400 

  
 

Image# 600 Image# 800 3D image stack 

 
  

0.50 mm 
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Ketton [400 voxel
3 
@ 2.654 µm] 

   
Image# 1 Image# 100 Image# 200 

   

Image# 300 Image# 400 3D image stack 

 
  

0.25 mm 
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Ketton [200 voxel
3 
@ 2.654 µm] 

   
Image# 1 Image# 50 Image# 100 

   

Image# 150 Image# 200 3D image stack 

 
  

0.12 mm 
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Ketton [100 voxel
3 
@ 2.654 µm]* 

g

 
  

Image# 1 Image# 25 Image# 50 

  

 

Image# 75 Image# 100 3D image stack 

*The black voxels represent pore space while white voxels represent grain.  

  

0.05 mm 
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Appendix-III: Additional Images and 3D Reconstructions, Resolution Study 
This appendix visualizes the subject rock samples in the 2D and 3D space by showing multiple segmented images in 2D and 

the constructed 3D image for the resolution study. The resolution images shown below are the same as describe in the main 

body of the report. The base image of all sources is the 1024 voxel
3 
@ 2.7µm. Reduced images contain the same features but 

at an upscaled resolution. Only five out of ten resolutions are displayed in this appendix to emphasize the change in image 

features instead of the redundancy of large number of images. A recommended way to understand the effect of images is to 

look at the same image, for example the first one, and notice how it changes at each coarser resolution.  

Berea [819 voxel
3 
@ 3.469 µm]; Reduction factor=0.7998 

   
Image# 1 Image# 205 Image# 410 

  
 

Image# 614 Image# 819 3D image stack 

 
  

0.60 mm 
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Berea [615 voxel
3 
@ 4.620 µm]; Reduction factor=0.6006 

   
Image# 1 Image# 154 Image# 308 

  
 

Image# 461 Image# 615 3D image stack 

 
  

0.60 mm 
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Berea [410 voxel
3 
@ 6.929 µm]; Reduction factor=0.4004 

   
Image# 1 Image# 103 Image# 205 

   
Image# 308 Image# 410 3D image stack 

 
  

0.60 mm 
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Berea [205 voxel
3 
@ 13.859 µm]; Reduction factor=0.2002 

   
Image# 1 Image# 51 Image# 103 

  
 

Image# 154 Image# 205 3D image stack 

 
  

0.60 mm 
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Berea [103 voxel
3 
@ 27.583 µm]; Reduction factor=0.1006 

   
Image# 1 Image# 26 Image# 52 

   
Image# 77 Image# 103 3D image stack 

  

0.60 mm 
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Doddington [819 voxel
3 
@ 3.469 µm]; Reduction factor=0.7998 

   
Image# 1 Image# 205 Image# 410 

   
Image# 614 Image# 819 3D image stack 

  

0.60 mm 
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Doddington [615 voxel
3 
@ 4.620 µm]; Reduction factor=0.6006 

   
Image# 1 Image# 154 Image# 308 

   
Image# 461 Image# 615 3D image stack 

 
  

0.60 mm 
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Doddington [410 voxel
3 
@ 6.929 µm]; Reduction factor=0.4004 

   
Image# 1 Image# 103 Image# 205 

   
Image# 308 Image# 410 3D image stack 

 
  

0.60 mm 
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Doddington [205 voxel
3 
@ 13.859 µm]; Reduction factor=0.2002 

   
Image# 1 Image# 51 Image# 103 

   

Image# 154 Image# 205 3D image stack 
  

0.60 mm 
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Doddington [103 voxel
3 
@ 27.583 µm]; Reduction factor=0.1006 

   
Image# 1 Image# 26 Image# 52 

  
 

Image# 77 Image# 103 3D image stack 

  

0.60 mm 
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Estaillades [819 voxel3 @ 3.354 µm]; Reduction factor=0.7998 

   
Image# 1 Image# 205 Image# 410 

   
Image# 614 Image# 819 3D image stack 

 
  

0.60 mm 
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Estaillades [615 voxel
3 
@ 4.466 µm]; Reduction factor=0.6006 

   
Image# 1 Image# 154 Image# 308 

   
Image# 461 Image# 615 3D image stack 

 
  

0.60 mm 
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Estaillades [410 voxel
3 
@ 6.699 µm]; Reduction factor=0.4004 

   
Image# 1 Image# 103 Image# 205 

   
Image# 308 Image# 410 3D image stack 

 
  

0.60 mm 
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Estaillades [205 voxel
3 
@ 13.399 µm]; Reduction factor=0.2002 

   
Image# 1 Image# 51 Image# 103 

  
 

Image# 154 Image# 205 3D image stack 

 
  

0.60 mm 
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Estaillades [103 voxel
3 
@ 26.668 µm]; Reduction factor=0.1006 

   
Image# 1 Image# 26 Image# 52 

   
Image# 77 Image# 103 3D image stack 

  

0.60 mm 
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Ketton [819 voxel
3 
@ 3.318 µm]; Reduction factor=0.7998 

   
Image# 1 Image# 205 Image# 410 

   
Image# 614 Image# 819 3D image stack 

 
  

0.60 mm 
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Ketton [615 voxel
3 
@ 4.419 µm]; Reduction factor=0.6006 

   
Image# 1 Image# 154 Image# 308 

   
Image# 461 Image# 615 3D image stack 

 

Ketton [410 voxel
3 
@ 6.629 µm]; Reduction factor=0.4004 

   
Image# 1 Image# 103 Image# 205 

   
Image# 308 Image# 410 3D image stack 

 
  

0.70 mm 

0.70 mm 
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Ketton [205 voxel
3 
@ 13.257 µm]; Reduction factor=0.2002 

   
Image# 1 Image# 51 Image# 103 

   

Image# 154 Image# 205 3D image stack 

 
  

0.60 mm 
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Ketton [103 voxel
3 
@ 26.385 µm]; Reduction factor=0.1006 

   
Image# 1 Image# 26 Image# 52 

  
 

Image# 77 Image# 103 3D image stack 
  

0.60 mm 
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Appendix-IV: Two-phase simulator input code 
Since the objective of this research is to examine the changes in basic petrophysical properties, an example code of the ([Per 

Valvatne, 2004) would serve the purpose because the basic properties output depends on the network itself rather than physical 

measurement like contact angels and interfacial tensions. The code below is the mixed wet sandstone example from the 

mentioned reference with minor edits.  

 

TITLE 

Ketton100SV 

# 

 

SAT_TARGET 

%finalSat      maxPc      maxDeltaSw     maxDeltaPc     calcKr    calcI  

  0.0     1.0E21            0.02          500000.0         T       F 

  1.00    -1.0E21        0.002         500000.0         T       F      

# 

 

INIT_CON_ANG 

0.0  0.0   -0.2   -3.0   

# 

 

%FRAC_CON_ANG 

%0.75 T 100 160 -1 -1 rand 

%# 

 

 

EQUIL_CON_ANG 

3  0.0  37.0   -1.0   -1.0   rand 

# 

 

RES_FORMAT 

excel 

# 

 

RELPERM_DEF 

residual  F 

# 

 

SAT_COMPRESS  

% kr_thres maxDeltaSw OilFlood WatFlood  

 0.1 0.001 T T  

# 

 

TRAPPING 

%   Inject fluid from     allow drainage    water mult fact in 

%      entry  exit       of dangling ends    filled circ elem 

         T     F                T               0.0E-30 

# 

 

SOLVER_TUNE 

%     min         Memory Scaling    Solver       Verbose     Conductance 

%  tolerance         Factor         output       Solver       Cut-Off 

    1.0E-30            8              0            F            0.0 

# 

 

PRS_BDRS 

% calc kr using   record press    num press 

%  avg press        profiles      profiles 

      F                F             20 

# 
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PORE_FILL_ALG 

blunt2 

# 

 

PORE_FILL_WGT 

0.0 74095 74095 74095 74095 74095 

# 

 

FLUID 

% interfacial     water         oil         water           oil        water     oil 

%  tension      viscosity    viscosity    resistivity    resistivity  density  

density 

%   (mN/m)        (cp)         (cp)        (Ohm.m)        (Ohm.m)     (kg/m3)  

(kg/m3) 

     52.3      1.085        0.92      0.0699           1000.0      1029.8     729.0 

# 

 

CALC_BOX 

0  1 

# 

 

NETWORK 

F  Ketton100SV 

# 

 

SAT_COVERGENCE 

%  minNumFillings   initStepSize   cutBack   maxIncr   stable disp 

       10               0.1          0.8       2.0          F 

#  
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Appendix-V: Relative Permeability and Capillary Pressure data, Sub-Volume Study 
Values of relative permeability and capillary pressure data are plotted in this appendix as important additional data. However, 

it is not compared to experimental results.  

Berea [1024 voxel
3 
@ 2.7745 µm] 

Drainage cycle. Data points: 652 

  
Imbibition cycle. Data points: 287 

  

Berea [800 voxel
3 
@ 2.7745 µm] 

Drainage cycle. Data points: 532 

  
Imbibition cycle. Data points: 277 
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Berea [400 voxel
3 
@ 2.7745 µm] 

Drainage cycle. Data points: 225 

  
Imbibition cycle. Data points: 177 

  
 

Berea [200 voxel
3 
@ 2.7745 µm] 

Drainage cycle. Data points: 79 

  
Imbibition cycle. Data points: 63 
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Doddington [600 voxel
3 
@ 2.7745 µm] 

Drainage cycle. Data points: 222 

  
Imbibition cycle. Data points: 173 

  
 

Doddington [400 voxel
3 
@ 2.7745 µm] 

Drainage cycle. Data points: 119 

  
Imbibition cycle. Data points: 96 
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Doddington [200 voxel
3 
@ 2.7745 µm] 

Drainage cycle. Data points: 25 

  
Imbibition cycle. Data points: 0  

No data 

 

Doddington [100 voxel
3 
@ 2.7745 µm] 

Drainage cycle. Data points: 0  

No data 

Imbibition cycle. Data points: 0  

No data 
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Estaillades [1024 voxel
3 
@ 2.6824 µm] 

Drainage cycle. Data points: 387 

  
Imbibition cycle. Data points: 62 

  

Estaillades [800 voxel
3 
@ 2.6824 µm] 

Drainage cycle. Data points: 380 

  
Imbibition cycle. Data points:111  
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Estaillades [400 voxel
3 
@ 2.6824 µm] 

Drainage cycle. Data points: 290 

  
Imbibition cycle. Data points: 114 

  
 
 

Estaillades [200 voxel
3 
@ 2.6824 µm] 

Drainage cycle. Data points: 10  

No meaningful data 

Imbibition cycle. Data points: 2  

No meaningful data 

Estaillades [100 voxel
3 
@ 2.6824 µm] 

Drainage cycle. Data points:  

No data 

Imbibition cycle. Data points:  

No data 
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Ketton [600 voxel
3 
@ 2.6824 µm] 

Drainage cycle. Data points: 69  

  
Imbibition cycle. Data points: 0 

No data 

Ketton [400 voxel
3 
@ 2.654 µm] 

Drainage cycle. Data points: 41  

  
Imbibition cycle. Data points: 31 

  
 

Ketton [200 voxel
3 
@ 2.654 µm] 

Drainage cycle. Data points: 0 

No data 

Imbibition cycle. Data points: 0 

No data 

 

Ketton [100 voxel
3 
@ 2.654 µm] 

Drainage cycle. Data points: 0  

No data 

Imbibition cycle. Data points: 0 

No data 
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Appendix-VI: Relative Permeability and Capillary Pressure data, Resolution Study 
Values of relative permeability and capillary pressure data are plotted in this appendix as important additional data. However, 

it is not compared to experimental results.  

 

Berea [819 voxel
3 
@ 3.469 µm]; Reduction factor=0.7998 

Drainage cycle. Data points: 654 

  
Imbibition cycle. Data points: 274 

  
 

Berea [615 voxel
3 
@ 4.620 µm]; Reduction factor=0.6006 

Drainage cycle. Data points: 694 

  
Imbibition cycle. Data points: 275 
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Berea [410 voxel
3 
@ 6.929 µm]; Reduction factor=0.4004 

Drainage cycle. Data points: 692 

  
Imbibition cycle. Data points: 262 

  
 

Berea [205 voxel
3 
@ 13.859 µm]; Reduction factor=0.2002 

Drainage cycle. Data points: 652 

  
Imbibition cycle. Data points: 334 
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Berea [103 voxel
3 
@ 27.583 µm]; Reduction factor=0.1006 

Drainage cycle. Data points: 154 

  
Imbibition cycle. Data points: 64 
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Doddington [615 voxel
3 
@ 4.620 µm]; Reduction factor=0.6006 

Drainage cycle. Data points: 451 

  
Imbibition cycle. Data points: 247 

  
 

Doddington [410 voxel
3 
@ 6.929 µm]; Reduction factor=0.4004 

Drainage cycle. Data points: 455 

  
Imbibition cycle. Data points: 235 
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Doddington [205 voxel
3 
@ 13.859 µm]; Reduction factor=0.2002 

Drainage cycle. Data points: 438 

  
Imbibition cycle. Data points: 229 

  
 

Doddington [103 voxel
3 
@ 27.583 µm]; Reduction factor=0.1006 

Drainage cycle. Data points:  

  
Imbibition cycle. Data points:  
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Estaillades [819 voxel
3 
@ 3.354 µm]; Reduction factor=0.7998 

Drainage cycle. Data points: 391 

  
Imbibition cycle. Data points: 68 

  
 

Estaillades [615 voxel
3 
@ 4.466 µm]; Reduction factor=0.6006 

Drainage cycle. Data points: 328 

  
Imbibition cycle. Data points: 49 
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Estaillades [410 voxel
3 
@ 6.699 µm]; Reduction factor=0.4004 

Drainage cycle. Data points: 321 

  
Imbibition cycle. Data points: 71 

  
 

Estaillades [205 voxel
3 
@ 13.399 µm]; Reduction factor=0.2002 

Drainage cycle. Data points: 263 

  
Imbibition cycle. Data points: 39 
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Estaillades [103 voxel
3 
@ 26.668 µm]; Reduction factor=0.1006 

Drainage cycle. Data points: 85 

  
Imbibition cycle. Data points: 25 
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Ketton [512 voxel
3 
@ 4.419 µm]; Reduction factor=0.6006 

Drainage cycle. Data points: 184 

  
Imbibition cycle. Data points: 138 

  
 

Ketton [410 voxel
3 
@ 6.629 µm]; Reduction factor=0.4004 

Drainage cycle. Data points:  

  
Imbibition cycle. Data points:  
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Ketton [205 voxel
3 
@ 13.257 µm]; Reduction factor=0.2002 

Drainage cycle. Data points:  

  
Imbibition cycle. Data points:  

  
 

Ketton [103 voxel
3 
@ 26.385 µm]; Reduction factor=0.1006 

Drainage cycle. Data points: 128 

  
Imbibition cycle. Data points: 93 
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Appendix-VII: Extracted Network Properties 
In this appendix, the network properties are tabulated for the subvolume and resolution study cases. It is included to show the effect of changing subvolume and resolution on 

properties that are not discussed in details in the main text.  

Berea Subvolume 

Cube size (Voxel
3
) 100 199 400 800 1024 

Resolution (µm) 2.7745 2.7745 2.7745 2.7745 2.7745 

Number of pores 47 451 3224 27712 54979 

Number of throats 87 747 5368 47833 96267 

Average connection number 3.45 3.20 3.25 3.42 3.48 

Number of connections to inlet 4 30 115 448 750 

Number of connections to outlet 8 21 128 501 630 

Number of physically isolated elements 3 71 532 4981 9522 

Number of singlets removed 0 0 0 0 0 

Number of triangular shaped elements 136 1193 8563 75268 150784 

Number of square shaped elements 0 7 31 279 464 

Number of circular shaped elements 0 0 0 0 0 

Median throat length to radius ratio 18.05 19.36 19.68 20.12 20.20 

Net porosity TwoPhase 0.24 0.18 0.21 0.21 0.20 

Clay bound porosity 0 0 0 0 0 

Absolute permeability (mD) 2844 439 1076 1195 1281.27 

Absolute permeability (m
2
) 2.81E-12 4.33E-13 1.06E-12 1.18E-12 1.26E-12 

Formation factor 7.3 25.6 12.6 11.7 11.4389 
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Berea Resolution 

Interpolation factor 1 0.800 0.601 0.500 0.400 0.350 0.300 0.200 0.150 0.120 0.101 

Cube size(Voxel
3
) 1024 819 615 512 410 358 307 205 154 123 103 

Resolution (µm) 2.7745 3.47 4.62 5.5 7 8 9.3 14 18.4 23.1 27.6 

Number of pores 54979 40400 26799 20270 15212 12601 10177 5813 3714 2529 667 

Number of throats 96267 75913 55012 42689 34261 29301 24401 15060 10527 7693 972 

Average connection number 3.48 3.73 4.07 4.17 4.45 4.60 4.73 5.10 5.58 5.98 2.78 

Number of connections to inlet 750 650 546 457 398 359 321 239 165 124 43 

Number of connections to outlet 630 550 471 410 357 337 307 221 177 133 45 

Number of physically isolated elements 9522 4817 1800 1034 420 269 101 15 6 2 82 

Number of singlets removed 0 0 0 0 0 0 0 0 0 0 0 

Number of triangular shaped elements 150784 115990 81575 62762 49331 41775 34483 20815 14195 10187 1633 

Number of square shaped elements 464 325 238 199 143 129 97 60 48 37 8 

Number of circular shaped elements 0 0 0 0 1 0 0 0 0 0 0 

Median throat length to radius ratio 20.20 20.39 20.72 20.90 21.30 21.51 21.37 20.40 18.93 17.63 18.22 

Net porosity TwoPhase 0.20 0.201 0.201 0.200 0.201 0.199 0.200 0.198 0.198 0.199 0.083 

Clay bound porosity 0 0 0 0 0 0 0 0 0 0 0 

Absolute permeability (mD) 1281.27 1108 891 850 768 737 773 961 1320 1877 95 

Absolute permeability (m
2
) 1.26E-12 1.09E-12 8.79E-13 8.39E-13 7.58E-13 7.27E-13 7.63E-13 9.48E-13 1.30E-12 1.85E-12 9.37E-14 

Formation factor 11.4389 12.76 14.58 15.55 16.90 17.80 18.24 19.57 19.28 18.56 243.76 
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Doddington Subvolume 

Cube size (Voxel
3
) 100 199 400 600 800 1024 

Resolution (µm) 2.7745 2.7745 2.7745 2.7745 2.7745 2.7745 

Number of pores 17 134 1515 4061 10865 38390 

Number of throats 30 221 3097 7581 19650 69271 

Average connection number 2.88 3.09 3.99 3.67 - 3.60 

Number of connections to inlet 4 16 101 113 - 164 

Number of connections to outlet 7 12 44 148 - 335 

Number of physically isolated elements 0 17 200 568 - 1318 

Number of singlets removed 0 0 0 0 - 0 

Number of triangular shaped elements 49 357 4596 11605 - 85623 

Number of square shaped elements 0 0 18 39 - 22040 

Number of circular shaped elements 0 0 0 0 - 0 

Median throat length to radius ratio 12.11 18.33 19.87 21.61 - 18.7891 

Net porosity TwoPhase 0.186 0.276 0.241 0.229 - 0.216 

Clay bound porosity 0 0 0 0 - 0 

Absolute permeability (mD) 1789 3514 5903 6626 - 1811 

Absolute permeability (m
2
) 1.77E-12 3.47E-12 5.83E-12 6.54E-12 - 1.79E-12 

Formation factor 16.90 7.91 6.26 6.40 - 13.3945 
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Doddington Resolution 

Interpolation factor 1 0.800 0.601 0.5 0.400 0.345 0.3 0.200 0.150 0.120 0.101 

Cube size (Voxel
3
) 1024 818 615 512 410 358 307 205 154 123 103 

Resolution (µm) 2.7745 3.74 4.62 5.5 7 8 9.3 14 18.4 23.1 27.6 

Number of pores 38390 9991 11101 8281 6447 5371 4550 2854 2133 1651 1243 

Number of throats 69271 23041 23289 17917 14756 12642 11068 7525 5824 4758 3764 

Average connection number 3.60 - 4.14 4.27 4.50 4.63 4.78 5.17 5.34 5.64 5.91 

Number of connections to inlet 164 - 297 251 237 202 202 149 123 99 91 

Number of connections to outlet 335 - 289 253 243 215 203 157 128 105 87 

Number of physically isolated 

elements 1318 

- 
773 406 194 106 53 7 4 2 0 

Number of singlets removed 0 - 0 0 0 0 0 0 0 0 0 

Number of triangular shaped elements 85623 - 34290 26119 21137 17953 15568 10353 7933 6387 4998 

Number of square shaped elements 22040 - 102 81 68 62 52 28 26 24 11 

Number of circular shaped elements 0 - 0 0 0 0 0 0 0 0 0 

Median throat length to radius ratio 18.7891 - 21.23 21.21 21.35 22.30 22.05 22.55 21.25 19.81 18.47 

Net porosity TwoPhase 0.216 - 0.215 0.212 0.215 0.215 0.215 0.216 0.214 0.213 0.212 

Clay bound porosity 0 - 0 0 0 0 0 0 0 0 0 

Absolute permeability (mD) 1811 - 4262 3715 3440 2873 2798 2643 2583 3291 3407 

Absolute permeability (m
2
) 1.79E-12 - 4.21E-12 3.67E-12 3.39E-12 2.84E-12 2.76E-12 2.61E-12 2.55E-12 3.25E-12 3.36E-12 

Formation factor 13.3945 - 8.70 9.32 9.99 10.66 11.17 12.74 14.76 14.61 16.28 
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Estaillades Subvolume 

Cube size (Voxel
3
) 100 199 400 800 1024 

Resolution (µm) 2.6824 2.6824 2.6824 2.6824 2.6824 

Number of pores 4 431 5995 39439 75014 

Number of throats 3 428 8504 52256 95916 

Average connection number 1.00 1.87 2.80 2.63 2.54 

Number of connections to inlet 0 10 36 292 505 

Number of connections to outlet 2 42 181 515 691 

Number of physically isolated elements 7 778 2685 28961 53391 

Number of singlets removed 0 0 0 0 0 

Number of triangular shaped elements 9 856 14457 91439 170512 

Number of square shaped elements 0 5 44 258 420 

Number of circular shaped elements 0 0 0 0 0 

Median throat length to radius ratio 10.56 15.32 18.99 18.04 17.99 

Net porosity TwoPhase 0.000 0.030 0.096 0.070 0.072 

Clay bound porosity 0 0 0 0 0 

Absolute permeability (mD) 0 0 0 8 3 

Absolute permeability (m
2
) 0.E+00 0.E+00 1.81E-16 8.17E-15 3.19E-15 

Formation factor   1330 672 977.50 
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Estaillades Resolution 

Interpolation factor 1 0.8 0.601 0.5 0.400 0.350 0.3 0.200 0.150 0.120 0.101 

Cube size (Voxel
3
) 1024 819 615 512 410 358 307 205 154 123 103 

Resolution (µm) 2.6824 3.47 4.62 5.5 7 8 9.3 14 18.4 23.1 27.6 

Number of pores 75014 45451 24112 16209 10882 8426 6111 2528 1234 691 423 

Number of throats 95916 62991 36256 24473 17620 13988 10517 4599 2320 1249 737 

Average connection number 2.54 2.75 2.98 2.99 3.20 3.28 3.39 3.56 3.66 3.50 3.35 

Number of connections to inlet 505 382 302 232 182 166 135 77 50 28 22 

Number of connections to outlet 691 540 383 311 264 204 185 116 73 52 33 

Number of physically isolated 

elements 53391 
29590 17008 8961 6693 3831 2686 1133 619 237 132 

Number of singlets removed 0 0 0 0 0 0 0 0 0 0 0 

Number of triangular shaped elements 170512 108161 60223 40585 28431 22365 16585 7104 3551 1934 1160 

Number of square shaped elements 420 283 147 99 73 51 45 25 5 8 2 

Number of circular shaped elements 0 0 0 0 0 0 0 0 0 0 0 

Median throat length to radius ratio 17.99 18.68 19.14 19.02 18.47 18.34 18.03 17.21 16.53 16.20 15.97 

Net porosity TwoPhase 0.072 0.071 0.070 0.069 0.069 0.070 0.069 0.067 0.065 0.063 0.061 

Clay bound porosity 0 0 0 0 0 0 0 0 0 0 0 

Absolute permeability (mD) 3 1 1 3 2 2 1 2 5 1 14 

Absolute permeability (m
2
) 3.19E-15 1.03E-15 5.65E-16 2.88E-15 1.73E-15 1.64E-15 8.97E-16 1.85E-15 5.05E-15 4.94E-16 1.34E-14 

Formation factor 977.50 1474 1973 1434 1505 1992 2675 2172 1606 3681 1198 
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Ketton Subvolume 

Cube size (Voxel
3
) 199 400 600 800 1024 

Resolution (µm) 2.654 2.654 2.654 2.654 2.654 

Number of pores 51 564 1616 1937 19827 

Number of throats 73 889 2298 3456 36352 

Average connection number 2.63 3.08 2.78 - 3.66 

Number of connections to inlet 6 16 37 - 72 

Number of connections to outlet 6 25 62 - 100 

Number of physically isolated elements 7 144 492 - 1417 

Number of singlets removed 0 0 0 - 0 

Number of triangular shaped elements 125 1451 3905 - 46436 

Number of square shaped elements 1 4 11 - 9745 

Number of circular shaped elements 0 0 0 - 0 

Median throat length to radius ratio 22.32 25.45 31.62 - 22.8361 

Net porosity TwoPhase 0.249 0.130 0.152 - 0.151 

Clay bound porosity 0 0 0 - 0 

Absolute permeability (mD) 187 95 11350 - 19419 

Absolute permeability (m2) 1.84E-13 9.37E-14 1.12E-11 - 1.92E-11 

Formation factor 38.8 82.9 11.2 - 8.54 
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Ketton Resolution 

Interpolation factor 1 0.800 0.601 0.5 0.400 0.350 0.3 0.200 0.150 0.120 0.101 

Cube size (Voxel
3
) 1024 818 614 512 410 358 307 205 154 123 103 

Resolution (µm) 2.654 3.32 4.42 5.5 7 8 9.3 14 18.4 23.1 27.6 

Number of pores 19827 2853 1312 2416 1887 1431 1143 741 535 434 379 

Number of throats 36352 5899 3204 4563 4190 3051 2524 1750 1290 1063 943 

Average connection number 3.66 - - 3.70 4.34 4.17 4.30 4.57 4.65 4.71 4.78 

Number of connections to inlet 72 - - 64 65 47 50 46 42 39 35 

Number of connections to outlet 100 - - 123 116 94 78 65 52 45 41 

Number of physically isolated elements 1417 - - 513 128 154 91 22 15 5 2 

Number of singlets removed 0 - - 0 0 0 0 0 0 0 0 

Number of triangular shaped elements 46436 - - 6966 6070 4471 3663 2487 1822 1497 1322 

Number of square shaped elements 9745 - - 15 9 13 6 6 5 2 2 

Number of circular shaped elements 0 - - 0 0 0 0 0 0 0 0 

Median throat length to radius ratio 22.8361 - - 22.65 26.67 21.23 20.93 20.26 22.41 21.76 21.47 

Net porosity TwoPhase 0.151 - - 0.148 0.115 0.149 0.149 0.149 0.149 0.149 0.149 

Clay bound porosity 0 - - 0 0 0 0 0 0 0 0 

Absolute permeability (mD) 19419 - - 6653 926 4797 4965 3445 3305 1807 2315 

Absolute permeability (m2) 1.92E-11 - - 6.57E-12 9.13E-13 4.73E-12 4.90E-12 3.40E-12 3.26E-12 1.78E-12 2.28E-12 

Formation factor 8.54 - - 13.04 28.9 16.0 16.0 18.8 20.6 28.2 28.2 
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