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Abstract  

 

Spontaneous potential (SP) has been extensively used since the early days of oilfield exploration for identification 

of permeable zones and formation water salinity. However, recently SP has being finding a place in new proposed 

applications, e.g. monitor waterfront towards producing well during flooding operations and monitor seawater 

intrusion in fresh water aquifers in coastal areas.  For oilfield reservoirs, the possibility of monitoring the 

waterfront towards the production well during flooding operations will help to implement a control system which 

will prevent or regulate the water breakthrough. This document presents the results of the field experiments for the 

electrokinetic (EK) and electrochemical (EC) components of SP in chalk aquifer in the Bottom Barn Abstraction 

(BBA) in Berkshire UK. The electrokinetic results were obtained during pumping conditions yielding a coupling 

coefficient of -97 ± 40 mV Mpa-1 which is consistent, in the error range, with the value of -60 ± 13 mV Mpa-1 

obtained in laboratory tests. The electrochemical experiment consisted of the injection of brine with a 

concentration near a third of the salinity of the seawater. Four salt dumps were held in four consecutive days. A 

voltage response was measured for the first two salt dumps, later related to a redox potential response due to the 

metallic completion in the dump borehole in contact with the water top. Further dumps were done in plastic casing 

with no evidence of voltage response (i.e. EC response). The conductivity profiles may provide a link with the EC 

experiment results, suggesting that the concentration might have settled in the matrix or diffuse through the 

fracture network, thus the brine was rapidly dispersed and did not reach the monitoring wells. The result of the EK 

experiment confirms the possibility of monitoring the groundwater flow in field conditions to control and prevent 

water encroachment from injected water during waterflooding operations in oilfields. Instead, NaCl mass poured 

into the borehole should be increased to produce a measurable EC signal. This will replicate real conditions when 

seawater encroaches onto an abstraction well or is injected into a borehole in a producing oilfield as part of 

waterflooding operations. 
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Abstract 
Spontaneous potential (SP) has been extensively used since the early days of oilfield exploration for identification of 

permeable zones and formation water salinity. However, recently SP has being finding a place in new proposed applications, 

e.g. monitor waterfront towards producing well during flooding operations and monitor seawater intrusion in fresh water 

aquifers in coastal areas.  For oilfield reservoirs, the possibility of monitoring the waterfront towards the production well 

during flooding operations will help to implement a control system which will prevent or regulate the water breakthrough. This 

document presents the results of the field experiments for the electrokinetic (EK) and electrochemical (EC) components of SP 

in chalk aquifer in the Bottom Barn Abstraction (BBA) in Berkshire UK. The electrokinetic results were obtained during 

pumping conditions yielding a coupling coefficient of -97 ± 40 mV Mpa-1 which is consistent, in the error range, with the 

value of -60 ± 13 mV Mpa-1 obtained in laboratory tests. The electrochemical experiment consisted of the injection of brine 

with a concentration near a third of the salinity of the seawater. Four salt dumps were held in four consecutive days. A voltage 

response was measured for the first two salt dumps, later related to a redox potential response due to the metallic completion in 

the dump borehole in contact with the water top. Further dumps were done in plastic casing with no evidence of voltage 

response (i.e. EC response). The conductivity profiles may provide a link with the EC experiment results, suggesting that the 

concentration might have settled in the matrix or diffuse through the fracture network, thus the brine was rapidly dispersed and 

did not reach the monitoring wells. The result of the EK experiment confirms the possibility of monitoring the groundwater 

flow in field conditions to control and prevent water encroachment from injected water during waterflooding operations in 

oilfields. Instead, NaCl mass poured into the borehole should be increased to produce a measurable EC signal. This will 

replicate real conditions when seawater encroaches onto an abstraction well or is injected into a borehole in a producing 

oilfield as part of waterflooding operations. 

 

Introduction 
Spontaneous potential (SP) measurements have been used since the early days of electrical oilfield exploration prior to 

production to identify permeable zones, which potentially leads to the detection of oil bearing rocks (Deussen & Leonardon, 

1935). The Schlumberger brothers were the first who commercially offered this service in 1931, together with resistivity 

recordings (Johnson, 1962). Initially, they explained the SP occurrence by effect of the streaming potential (i.e. electrokinetic 

or EK potential) which has its origin in the pressure gradients in fluids (Mounce and Rust, 1944). It was later when they 

concluded that SP was a result of the combined effects of electrochemical (EC) and EK potentials, attributing to EC the major 

contribution to total SP. EC potential is caused by contrast in salinity between drilling and formation fluids (Wyllie, 1951). 

Later Tasaka et al. (1965) described the thermoelectric potential (TE) which is caused by difference in the temperature 

between the injected and the reservoir fluids (Revil, 1999).  

When a gradient of the chemical composition, pressure or temperature generates a separation of electrical charges, SP 

acts in order to maintain electroneutrality (Marshall and Madden, 1959; Corwin and Hoover, 1979; Revil, 1999). In a water-

wet reservoir rock, charge separation occurs when the water reacts with the mineral surface, leaving an excess of charges in 

the water adjacent to the mineral surface (Wyllie 1951). This charge layout is known as the electrical double layer (Hunter, 

1981). The charges on the mineral surface (typically negative), which form the Stern layer, are hydraulically immobile. Thus, 

the counter ions are in excess in the diffuse layer. These charges are mobile, and will move with the fluid. If the water is 

subjected to a pressure gradient that causes the fluid to flow along the mineral surface, some of the charges will move with the 

flow triggering a streaming current. In order to equilibrate this streaming current, a conduction current is then raised. To keep 

this conduction current a voltage is generated. This potential is called the streaming potential or electrokinetic (EK) potential. 

Jackson et al. (2012b) shows this process in Fig. 1a.  

In the case of EC the composition variations leads to concentration gradients which cause ionic species migration 

(Fig.1b). In some cases mobility of the ions is different, e.g. in NaCl the sodium ions move 30% slower than those of chloride 

at 25
o
C (Braun & Weingartner, 1985). The electroneutrality is achieved by EC potential which counteracts the charge 

separation (Revil, 1999). The EC potential can be originated if the solid surfaces are charged or not. If it is charged, an 

electrical double layer at the mineral/water interface explains that some of the ions in the brine are excluded from the pore 
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space, so an excess of positive charges migrates down the concentration gradient (Ortiz et al, 1973). This gives rise to an 

exclusion potential. In the other case, being the solid surface uncharged the EC potential will be only attributable to diffusion 

potential or liquid junction due to the difference in ionic mobility.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The TE potential is generated by temperature gradients derived from the variations in fluid temperature. The differing 

mobility of ions caused by this temperature gradient and exclusion of co-charge from the pore-space produces a separation in 

the charges. The electroneutrality then is maintained by the thermoelectric potential which counteracts this charges separation 

(Tasaka et al.1965; Revil, 1999). 

In recent years the use of SP for exploration purposes has being slowly displaced in the oilfield exploration and 

characterisation by new technologies like resistivity, the use of radioactive tools and borehole imaging. Despite this, SP has 

being finding a place in new applications, e.g. corrosion detection in producing oil wells (Kendall, 1961) and reservoir fluid 

monitoring derived from electrokinetic (EK) potential measurement (Darnet et al. 2004). Saunders et al. (2008) suggests the 

use of SP measurements to detect water encroachment towards intelligent wells with permanently installed electrodes. 

Numerical reservoir models proposed by Saunders et al. (2008) and Jackson et al. (2012b) suggests that the produced SP 

signals in a hydrocarbon reservoir during waterflooding operations can be up to hundreds of millivolts, allowing to image 

groundwater movement in instrumented wells from tens to hundreds meters before water breakthrough. This simulated SP is 

dominated by EC and EK potentials before water enters the borehole (Jackson et al. 2012b).  

During hydrocarbon production gradients in pressure, chemical composition and temperature will be present in the 

reservoir due to production techniques such as water (waterflooding) or steam (steamflooding) injection, triggering the 

occurrence of SP signals (Jackson et al, 2012b). These signals can be monitored installing electrodes in boreholes or in Earth’s 

surface (Hunt & Worthington, 2000) making it, in the latter case, a non-intrusive technique. Chen et al (2006) demonstrated 

that SP measurements can be acquired using permanently installed downhole electrodes in open-hole wells and cased–hole 

wells with insulated steel casing. Jackson et al. (2012a) successfully measured SP signals generated by a pumping experiment 

using an array of borehole and surface electrodes in the Seaford Chalk formation in Berkshire. Part of the work here reported 

is based on the success of this initial observation.  

This work refers exclusively to the measurements of EC and EK potentials for the water front monitoring towards 

boreholes for control purposes. The thermoelectric potential is discarded since according to reservoir model simulations done 

previously (Gulamali et al, 2011; Jackson et al. 2012b) TE potential can be very high in the temperature front associated to the 

waterflooding operation. However, the temperature front will lag behind the water front due to slow heat diffusion into 

reservoir rock. Thus a significant SP signal, enough to monitor the underground moving fluids, will be measured just after 

water reaches the production well.  The shallow chalk aquifer described in this work was used because it was accessible and is 

geophysically characterised (e.g. Mathias et al. 2007 and Butler et al. 2009). The use of an oilfield for experimental purposes 

is much more challenging logistically and in availability. Yet, the results obtained of these experiments suggests that SP 

measurements can be properly acquired in instrumented boreholes of different oilfield reservoirs, although cannot be taken as 

analogue to other reservoir types. This is because the surfaces charges are different for distinct minerals (Saunders et al. 2009). 

Another benefit of this experiment is related to studies on seawater intrusion in coastal aquifers. According to Abd-

Elhamid et al. (2008) seawater intrusion into coastal aquifers is considered one of the most serious impacts of sea level rise. 

This intrusion can lead fresh water aquifers to become saline, affecting the population which depends on the water abstracted 

from these aquifers. The measurement of EC produced by the salinity contrast between fresh water in aquifers and the 

seawater can help to monitor the saline water front and prevent the increase of salinity in abstraction boreholes. 

The aim of this work is to produce EK and EC potentials by means of pumping and brine injection field experiments 

in a chalk aquifer in Berkshire UK. Also to estimate the EK coupling coefficient of the pumping experiment. The coupling 

coefficient is a relationship of changes in voltage and fluid pressure when total current density is zero (e.g. Sill, 1983) 

0




j

EK
P

V
C  

 The objectives of these experiments are to compare the resulting field coupling coefficient of EK potential with the 

a) 
b) 

Fig. 1 Schematic of the separation of charges at the mineral/water interface and the origin of (a) EK and (b) EC 

potential. (Jackson et al, 2012b) 
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laboratory results (Jackson et al., 2012b) and verify the possibility of occurrence of EC potential caused by a change in 

salinity.  Similarly, these experiments will investigate if the SP signal monitoring can be used to characterise aquifer properties 

and groundwater flow in the chalk aquifer, as well as a proof of concept for long term reservoir monitoring during 

waterflooding or steam injection.  

The experiment site: Bottom Barn Abstraction Berkshire, UK 
The place for the experiments is situated in the Berkshire Chalk aquifer in Berkshire UK (Fig. 2 and Butler et al, 2009), where 

six 100 m deep vertical boreholes (PL10A to PL10F) were drilled around an abstraction well managed by the UK 

Environmental Agency as part of the UK Natural Environment Research Council thematic programme on lowland catchment 

research (LOCAR; Wheater and Peach, 2004; Fig. 3). Two of them (PL10B and PL10E; see table 1) are for observation 

purposes. PL10A was completed with metallic surface casing until c. 90 m Above Ordnance Datum (AOD); this is 0.5 m 

lower than the measured water table (Table 1). PL10B and PL10E were completed with plastic casing to surface. The other 

three wells (PL10C, PL10D and PL10F) were not used during this field experiments since they were equipped with 

piezometers by the Environmental Agency. The site is located on the side of a dry valley on the Chalk outcrop (fig.2).                                                                                                                                                                                        
                                                                                                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Berkshire Chalk lithostratigraphy was revised in 1999 by the British Geological Survey (Butler et al, 2009), 

comprising a new classification adding the Chalk Rock which is a 3m bed of phosphatized and glauconized chalk-pebble 

intraclasts near the base of the Lewes Nodular Chalk (former Upper Chalk). This bed can be identified by a peak in the gamma 

Borehole Easting Northing Elevation 

(m AOD) 

Water Table 

 (m AOD) 

PL10A 451304.8 175029.6 107.79 90.45 

PL10B 451320.4 175063.1 110.51 90.2 

PL10E 451343.7 175044.1 107.47 90.09 

BBA 451330.0 175010.0 105.75 * 

* It was not possible to measure the depth to the water table 

from surface in the BBA since access to a measure point was 

not granted. 

Table 1. Location coordinates and elevation of 

boreholes at the field site (Butler et al, 2009) 

 

Fig. 2 The Bottom Barn Abstraction location. (Jackson 

et al. (2012a).  

 

Fig. 3 Simplified map showing locations of boreholes in the BBA. Plot (a) and (b) show the groundwater 

level contours at different times taken before previous field experiments. The measurements are referenced 

to mAOD (meters Above Ordnance Datum). Dashed lines symbolises a rural road. The black circles 

represent borehole locations and the filled square refers to the abstraction borehole. (Jackson et al 2012a) 

 

b) a) 
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Fig. 5 PL10A, PL10B and PL10E general information. All geophysical data 

was previously acquired (Mathias et al, 2007; Butler et al, 2009; Jackson et al, 

2012a). (a) Lithology column. (b) Natural gamma ray log. (d) Crossflow at 

ambient conditions. (e) Crossflow at pumped conditions. (f) Natural gamma 

ray. Note the spike correlation of the Chalk Rock at the same depth for both 

wells. (g) Location of borehole electrodes (BE) in PL10B for EC experiment. 

(h) Crossflow interpreted at pumped conditions. Ambient data for PL10B is 

not available. (i) Borehole electrodes location in PL10E for EC experiment.  

ray (GR) counts (Schurch and Buckley, 2002; Fig. 4), on the top of this bed is all Seaford Chalk. The logs available in Fig. 4 

were acquired from borehole PL10A attending several efforts to characterise the chalk formation in this borehole together with 

PL10B; the information was taken from flow and geophysical logging (GR, televiewer, etc.), dilution test and packer test 

(Williams et al, 2006; Mathias et al, 2007; Butler et al, 2009). The EK and EC experiments reported heres were conducted 

inside the Seaford Chalk boundaries.  

 

 

 

 

 

 

 

 

 

 

 

 

 
                               a) Caliper (cm)     b) GR log (GAPI)      c) Fracture dip angle (degrees)    d) Hydraulic conductivity (m/day)     

 

 

 

 

The Chalk aquifer in BBA is a dual-porosity aquifer with a microporous matrix intersected by fractures (Price 1987; 

Price et al. 1993). The main path for the flow is provided by the fractured matrix (Fig. 4 c & d), since the absolute matrix 

permeability to water lies in the order of 2 mD (Price 1987; MacDonald et al, 2001; Table 2).  

Previous pumping experiments at constant rate inducing drawdown in the abstraction well and pressure build-up 

when pumping was stopped, delivered estimations of effective transmissivities using the Jacob’s method on the late time data 

(Meier et al. 1998), stating that despite the scale of the test compared with the size of the aquifer, the formation is likely to be 

homogeneous and isotropic, with negligible wellbore storage. The monitored flow obeys Darcy’s law and the effects of elastic 

storage and delayed yield can be ignored (Butler et al, 2009). From the effective transmissivities for this field (Butler et al. 

2009) an estimation of effective permeability can be done according to Oosterbaan et al. (1994). The effective permeability 

estimated, assuming an aquifer thickness of 90 m ranges from 33 to 58 Darcys. Another approximation taking an average of 

the hydraulic conductivity data from Butler et al. 2009 (Fig. 4) estimates a value of 26 Darcys (see appendix E).  

From the flow meter and dilution tests, it was found that a substantial upflow from the bottom of the PL10A well was 

present. Several inflow and outflow depths were also identified for PL10A and PL10B (Figure 5; Mathias et al. 2007, Butler et 

al. 2009). This will prove to be important in our experiments, since these inflow and outflow profiles are associated to high 

permeability fractures, thus suggesting a possible communication path between boreholes.  

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

Table 2 Properties of Seaford Chalk sample used in 

laboratory experiments (Jackson et al, 2012a). 

Property Value 

Absolute permeability to water (K) 

mD. 

2.28 

Porosity (ϕ), % 35 

Electrical conductivity when saturated 

with groundwater (σ). S m-1 

0.026 

Formation factor (FF) (dimensionless) 6.12 

Fig. 4 Borehole PL10A geophysical properties. a) Caliper logging showing borehole variations with depth. b) GR log. Note the 

Chalk Rock bed c. 24 m AOD. c) Tadpole plot derived from televiewer, providing fracture dip and strike. d) Hydraulic 

conductivity profile derived from constant head double-packer permeater test (Butler et al. 2009).  
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Field measurement of electrokinetic potential 

Methodology 

 

The experiment was divided in two parts, the pumping and the ambient conditions. The pumping stage was held from 

February 28
th

, 2011 to March 8
th

, 2011. Ambient conditions were measured from March 8
th

, 2011 c. 12:00 hrs. to March 15
th

, 

2011. The measurement strategy involved a surface electrode array comprising monitoring electrodes. Each electrode is a non-

polarizing Ag/AgCl electrode and measures 205 mm length × 30 mm diameter. Every electrode consists of an Ag wire 

skeleton with a porous silver matrix formed around. This silver matrix is coated with AgCl. This arrangement is embedded in a 

0.05 M KCl gel for borehole electrodes (BE) and 0.5 M KCl for surface electrodes (SE). In both electrode types, a low-

permeability porous disc provides the path to electrically connect the gel to the outer environment (www.silvion.co.uk).  

The surface electrode array was formed by fourteen non-polarizing SE located in a crossed pattern, with a separation 

of four meters between them. SE electrodes were placed from the abstraction borehole to PL10B and from PL10E in direction 

to PL10A (Fig. 6).  Two more borehole electrodes (BE1 and BE2) were installed inside borehole PL10B. One more SE was 

installed far away (c. 90 m) from the experiment site to serve as a reference electrode. This will prevent the electrode from 

being affected by the changes in voltage caused by the electrokinetic potential in response to the pressure gradient generated 

by the pump at the abstraction borehole. This will allow comparing the reference electrode with the measurements from the 

surface and borehole electrodes in the experiment site and identifying any possible response related to the experiment 

performed.  To isolate the electrodes from temperature change and external electrical noise, every electrode was installed in a 

pit in the soil at c. 0.2 m deep. (See details in fig. 7); this arrangement improves the electrical connectivity between the soil and 

the electrode and provides electrical stability against any ambient interference (Kostic et al, 1999; Fig. 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the abstraction borehole, water was pumped with an average of 54 × 10
3
 bbl/d of water for eight consecutive days 

and the voltage monitored. Then, pump was switched off and monitoring continued for ambient conditions for the following 

seven days, until March 15
th

 c. 10:00 hrs. In figure 8 the pressure drawdown-buildup and the pumping rate are correlated. A 

pre-pumping stage prior the experiment caused initial pressure to be smaller than the final pressure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Location of the surface electrode array in the BBA 

experiment site for EK potential experiment. Blue circles 

denote the borehole locations. The crossed-circles symbolise 

the surface electrode location. 

Fig. 7 Borehole/surface electrodes installation 

procedure. 

Fig. 8 Pressure response in PL10B to changes in 

rates in BA through the extended pumping period. 
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A temperature probe was installed to record the temperature changes during the complete test. The probe was 

installed next to the datalogger. The datalogger location can be seen in Fig. 6. All electrodes and the temperature probe were 

connected to DL2 datalogger (internal impedance 100 MΩ, resolution 64 µV, accuracy 0.07%) from Delta T devices. 

Electrokinetic Experiment Results and Discussion 

The data collected from the surface electrodes did not show any conclusive response (i.e. measurements above 200µV or 

background noise) to ambient or pumping conditions (fig. 9a & 9b). Borehole installed electrodes provided a clearer response 

to pressure changes (fig. 10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The analysis for borehole electrodes showed a clear response to pressure change for BE1 and BE2, both installed in 

borehole PL10B. Despite BE1 is showing the same tendency after 75 hrs. early data shows a difference between BE1 and BE2 

reflecting a stabilisation phase for BE1(Fig. 10 in green). However, the study was devoted to analyse the data coming from 

BE2 borehole electrode since it showed a consistent response since the beginning of the experiment (e.g. no stabilisation time).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The data acquired from the electrodes is clearly influenced by the temperature cycles (e.g. BE2; Fig. 11a). The 

electrodes were particularly sensitive to this effect due to the shallow depth at which they were placed. In figure 11b, the 

temperature effect on the voltage response is clear and can be seen that, at least in a limited range of time, is affecting the data 

collected. However, in other section of the same dataset a proper correlation between the voltage and the temperature cannot 

be established. This is attributed to the separated location of the temperature probe (next to the datalogger) regarding the 

borehole electrodes, thus the voltage variations caused by the temperature changes in the electrode could not  be correlated 

with the temperature variations of the temperature probe.  

Fig. 10 Borehole electrodes response to pressure gradient. 

Note voltage response of BE2 (blue) to pressure gradient in 

comparison to BE1 (green) which shows a stabilisation phase.  

Fig. 9 Surface electrode response to (a) pressure drawdown, i.e. pump is 

turned on and (b) Pressure buildup, i.e. pump is turned off 

a) b) 
a) 
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To minimise the effect of temperature on voltage, several correlations were tried. However, as voltage and 

temperature were measured at different location no simple correlation was obtained. Due to this we use moving averages with 

25 data points to minimise high frequency noise (Fig. 12a). Then we used the butt and filter utilities in MATLAB® to apply a 

Butterworth filter (see Appendix C) to smooth out the temperature effect (fig. 12b). Despite the temperature was not entirely 

de-trended, in the resulting data the dominant voltage response is due to the change in pressure (Fig. 12b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, the slow decay in the voltage measurement during the pressure build up (i.e. when pump was set off) still 

interferes with the coefficient determination, which denotes a contrast with laboratory experiments (Jackson et al, 2012a). 

Laminar flow assumes that the flow near a production well is dominated by viscous forces, neglecting gravity and capillary 

pressures (e.g. Dake, 1978; Shook et al, 1992), thus a sudden change in pressure will also cause a change in the flow in (or 

close to) the same time frame. However, in the case of the field experiment the inertial forces induced by the large flow rates 

(c. 54 × 10
3
 bbl/d) through approximately eight days cannot be neglected, thus the slow decay could be due to water movement 

in the matrix driven by this inertial forces even with no apparent pressure gradients. The effect in the delay on voltage 

response and the slow decay of the pressure gradient in the aquifer was observed as well in further streaming potential 

experiments; e.g. Chen et al (2006) shows a similar slow voltage response to pressure changes in a vertical injection well.   

The coupling coefficient was obtained from the plot of voltage and pressure selecting two representative sections of 

stabilised pressure and voltage from the entire data set. These sections were chosen from the most stable zones (i.e. not 

affected by the slow voltage response) as can be seen in figure 13. Figure 14 shows the plot of pressure versus voltage and the 

coupling coefficient value of -97 ± 40 mV MPa
-1

 estimated by linear regression. The error bars in the plot displayed in figure 

14 represents the variation in the voltage measured in the borehole. With this variation a higher (blue) and lower (red) case of 

the EK coupling coefficient can be estimated and provide an error range (fig.14). 

 

 

 

a) 

Fig. 11 Temperature effect on BE2 electrode response. a) Plot showing the entire range of data. b) A clear effect of temperature in 

the voltage measurement in a section of the dataset. However, this effect was not consistent on the entire range of data. 

b) 
a) 

Fig. 12 BE2 borehole electrode response to pressure gradient. (a) Moving averaged voltage (blue) 

and raw voltage data (green). (b) Plot showing the resultant filtered signal (blue). 

a) b) 
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 This streaming coupling coefficient measured in the field (-96 ± 40mV MPa
-1

) is same, within experimental error, to 

the laboratory results of -60 ± 13mV MPa
-1

 (Jackson et al, 2012a). Thus we can say that the field experiment confirms the 

results obtained in the laboratory.  

 

Field measurement of electrochemical potential 

Methodology 

The aim of this experiment was to simulate the salinity gradient caused by a waterfront of different salinity injected into a 

fresh water aquifer in waterflooding operations in order to yield and measure an EC potential. To generate this potential, 

injection of NaCl brine in borehole PL10A was proposed. The wellbores involved in this experiment were PL10A, PL10B and 

PL10E. According to the measurements of water tables previously done (Jackson et al, 2012a) and recent measurements; fig. 

3; fig. 1), water table was higher in PL10A, thus suggesting a hydraulic gradient driving the flow from PL10A to PL10B and 

PL10E. Due to this, PL10A was chosen as the brine injection well. PL10B and PL10E were assigned as monitoring wells.  

To improve the possibility of capturing EC signals according to the flow patterns (fig. 5), a different installation of 

surface electrodes (SE) was proposed compared to the electrokinetic experiment described in this document. To achieve this, 

an array consisting of three soil electrodes was placed in a linear pattern from the monitoring wells (PL10B & PL10E) towards 

the injection well (PL10A). To install the surface electrodes, a c. 0.5 m deep hole was dug for every surface electrode to isolate 

the electrodes from temperature drift effect and any external electrical disturbance. The surface arrangement is shown on fig. 

15. A plastic bucket was used in the installation to improve the stability of the electrode measurements (Perrier et al, 2005). 

The buckets were filled with water-saturated bentonite to improve the electrical conductivity (Kostic et al, 1999). Details on 

installation can be seen in figure 16. An extra soil electrode was installed together with a temperature probe to serve as 

reference electrode. It was located c. 80 m from the surface acquisition system (fig. 15) at the same location as the reference 

electrode in the electrokinetic experiment. The temperature probe was used to register any temperature change that could be 

later related to any voltage drift in the electrodes caused by temperature.  

Two downhole electrode arrays were comprised of two borehole electrodes (BE) with three meters separation 

distance. This design was conceived to capture the main cross flow according to the geophysical log for each well (i.e. 

crossflow in Fig. 5), assuming the same conditions of PL10A for PL10E.   Figure 5 denotes the location of the borehole 

electrodes in PL10B (BE1 & BE2) and PL10E (BE3 & BE5). One more array involving a borehole electrode and conductivity 

probe was set up and used as a travelling tool for vertical borehole profiling. This tool provided conductivity, pressure, 

temperature, and voltage and was used to do variable depth borehole profiling (i.e. run in and out of borehole while measuring 

the mentioned physical properties). This tool is termed “Travelling electrode”. The surface and borehole electrodes were 

identical to the used for the electrokinetic field experiment previously explained.  

Another conductivity probe was assigned to borehole PL10A for depth measurements and conductivity profiling. The 

conductivity profile can help to identify the flow patterns inside the borehole (Butler et al. 2009). In this experiment, one of 

the conductivity probes was used to trace the salt dump behavior in the borehole due to the high contrast in salinity with the 

fresh water in the aquifer. The conductivity probes (Aqua-troll 200) were acquired from In-Situ Inc. 

 

 

 

Fig. 13 BE2 voltage sections used for coupling coefficient 

determination. Sudden pressure build up and slow voltage response.  

Fig. 14 EK coupling coefficient and error 

determination. 



9 

Field Measurements of spontaneous potential (SP) for smart well monitoring and control. A field test in the UK chalk aquifer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Fig. 15 Map location for boreholes and surface electrodes.                                   Fig. 16 Surface electrode installation 

method. The dashed lines denote a rural road.           

 

Except for the conductivity probe assigned to manual conductivity profiling of the injection well, which was directly 

connected to a portable computer, all the electrodes were connected to a surface data acquisition system CR3000 from 

Campbell Scientific. 

The background measurement (i.e. voltage measurements in ambient conditions) was initiated the 13/07/13 and was 

stopped in 16/07/13 c. 11:00 hrs. to proceed with the salt dump. A salt dump was performed on four consecutive days (I-IV; 

table 3). Permission from the Environmental Agency was required and granted to run this experiment. The concentrations 

varied in each dump according to table 3. The maximum concentration in the borehole was limited to one third of the seawater 

concentration (i.e. c. 0.17 M). Borehole PL10E was used as a monitoring well for the entire experiment. PL10A was initially 

used for salt dump, however due to the occurrence of redox potential associated to the metallic casing in the same borehole, 

the last two salt dumps were conducted in PL10B.  

The dump number I (see table 3 for details) was held on September 16
th

, 2013 at 15:13 hrs. in PL10A. The 

concentration of the brine injected was 210 gr/L (210,000 ppm) which lead to a borehole concentration of 9.93 gr/L or 0.17M, 

(see Appendix B for salinity calculations). Vertical profiling was conducted with the travelling electrode tool in PL10E and 

PL10B, and PL10A was profiled for conductivity after the dump. Conductivity profiles were also carried out in the three 

boreholes for reference purposes prior to the dump. The outcomes are discussed in the results section. 
                                                       

 

 

 

 

 
                                                                                                                       

 

 

The salt dump number II (table 3), was performed on September 17
th

, 2013 at 14:40 hrs in PL10A.  Borehole arrays 

for PL10B and PL10E were modified for depth in order to expand the range of crossflow monitoring. PL10B electrodes (BE1 

& BE2) depths were c. 89 m AOD and c. 78 m AOD respectively and PL10E electrodes (BE3 & BE5) were c.87 m AOD and 

c. 76 m AOD. The same profiling routines as per the first dump were conducted in each borehole.  

 The salt dump number III was done on September 18
th

, 2013 at 17:41hrs in PL10B. The permanent installed 

electrodes in PL10B were changed to PL10A and the conductivity profiling was held in PL10B.  

Dump number IV was performed in September 19
th

, 2013 at 12:42 hrs. Salt dump was performed in PL10B, 

subsequent conductivity profiling was performed in this well. PL10A remained as per salt dump III.  

Electrochemical experiments results and discussion:  

The data collected from the surface electrodes in salt dumps I and II was associated with redox potential since the necessary 

Dump 

number 

Date Borehole Salt mass Mol (gr/L)   

 

I 16/07/13 15:13 hrs PL10A 31.5 Kg dissolved in 150 L tap water 9.93 

II 17/07/13 14:40 hrs PL10A 18.5 Kg NaCl solid state 6.1 

III 18/07/13 17:41 hrs PL10B 19.5 Kg commercial NaCl solid state. 6.5 

IV 19/07/13 12:42 hrs PL10B 25 Kg NaCl solid state 8.3 

Table 3 Schedule of salt dumps and boreholes. Molarity included. 



10 

Field Measurements of spontaneous potential (SP) for smart well monitoring and control. A field test in the UK chalk aquifer 

conditions, as the salinity gradient and the ore body (metallic casing in PL10A) were present (Sinnott, 2005; Jouniaux et al, 

2009). This was later confirmed by salt dumps III and IV, where no voltage signal was measured due to the plastic casing in 

PL10B. In redox potential electrons are generated by oxidising and reducing reactions occurring at the bottom and the top of 

the casing, then transported through the metallic casing which acts as a conductive medium (Jouniaux et al, 2009). The 

borehole PL10A is completed to the surface, thus electrons generated are conducted to the surface and propagated through the 

soil. Figures 17 and 18 show the response of surface electrodes in the two consecutive days for redox potential response; 

however borehole electrodes didn’t show any convincing response. According to the attenuation of the voltage in function of 

the distance from the source (PL10A) detected by the surface electrodes, the voltage amplitude was attenuated before it 

reached borehole electrodes in PL10B and PL10E. The figures 19a and 19b show the voltage amplitude attenuation with the 

distance from the source (PL10A) to the surface electrodes. The average rate of signal decrease was estimated in 0.06 mV/m. 

Over a distance of 18 m (distance from SE1 to borehole PL10B and SE6 to PL10E see fig. 15) the total attenuation is near 1 

mV. The maximum amplitude at SE1 was of 0.96 mV thus no voltage could be measured by the borehole electrodes.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The difference in the redox voltage amplitude is directly related to the change in NaCl mass injected in the borehole, 

figure 20 shows the relationship between the mass poured in borehole PL10A and the voltage amplitude response measured by 

the surface electrodes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17 SE response for first salt dump on July 16th 2013 at 

15:13 hrs.  
Fig. 18 SE response to second salt dump on July 17th 2013 at 14:40 hrs.  

Fig. 20 Plot of voltage amplitude response to sodium-chloride mass poured in the wellbore.  

Fig. 19 Amplitude attenuation plots in PL10B. Plot (a) corresponds to 16/07/13 salt 

dump and plot (b) corresponding to 17/07/13 salt dump.  

b) a) 
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The conductivity profiles in PL10A for both days showed a similar pattern. An evidence of crossflow in the 

conductivity logs from PL10A borehole can be related to the fracture set identified by Butler et al (2009; fig. 4). In these 

profiles (fig. 21a and 21b) it can be clearly observed that the major part of the salt concentration was diluted in the top ten 

meters after approximately two hours. The scales of concentration in the plots differ due to the different masses of salt dropped 

in the wells (see table 3); data is presented in specific conductivity which can be converted into molarity (see appendix D). The 

resultant profiles suggest the possibility that the fracture density at the top of the well (c. 80-90 m AOD) can be related with 

the fracture density reported by Butler et al (2009; fig. 4). The decrease in salt concentration when is in contact with fresh 

water in the aquifer, the fracture density at the top of the water table, the upflow in the borehole (Butler et al. 2009) and the 

crossflow in the formation (fig. 5) prevents the brine slug from moving downwards and being almost totally diffused in the 

first ten meters (fig. 21a and 21b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The data acquired from the travelling array, which was used to profile PL10E and PL10B during salt dump I and II 

(see table 3), is shown in figure 22 (a-d). In the plots, it can be seen that conductivity measurements in PL10B does not show 

any change in the first 8-9 meters with respect to the conductivity profiles held before the salt dump (fig. 22b and 22d). From 

this is inferred that there is no interconnection with the fracture network. In contrast, a lower voltage response is perceived in 

PL10E in the first 2-4 meters, assuming that a possible connection through the fracture network could exist between PL10A 

and PL10E (fig. 22a and 22c). Also a difference in conductivity measurements can be seen between PL10B and PL10E. 

Despite the small value, as can be seen in the voltage plots, it can be an indicative of the fluid flow through the active fracture 

network for PL10E. It is important to note the voltage difference at the top 2-4 meters between PL10B and PL10E. This 

difference in measurements could be due to charges being move by water flowing through the fracture network in PL10E.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21 Conductivity profiles for PL10A at (a) 16–07--13 and (b) 17-07-13. Depth is referenced to water 

table (i.e. 0 m is water table top). This well was used as injection well for two consecutive days.   

Fig. 22 Voltage and conductivity profiles acquired with travelling array for 16-07-13 (a&b) and 17-07-13 (c&d). Note 

the separation between PL10B and PL10E. This is attributed to the effects of the flow in the active fracture network. 

Note: These shapes are typical for the totality of the measurements taken while profiling.  

a) b) c) d) 

Time 

a) b) 

Time 
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The salt dumps III and IV (see table 3) held in PL10B did not show a convincing voltage response (i.e. above 

background noise or 200µV) from surface or borehole electrodes (fig. 23a & 23b). Nevertheless, the conductivity profiles now 

performed in PL10B revealed the salt slug travelling to the bottom. The attenuation in conductivity signal in function of time, 

more noticeable in figure 24b, is possibly due to dilution. The pattern was repeated in dumps III and IV. This assumes that the 

inflow patterns obtained during pumping conditions (Fig. 5) are not present under ambient conditions, including the hypothesis 

that there is no upflow in PL10B due to the relatively fast displacement of the salt slug towards the bottom of the borehole (fig. 

24a & 24b). Due to this, no evidence of crossflow in the borehole can be seen, thus inferring there is no interconnection 

between PL10A and PL10B through the fracture network in ambient conditions. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The conductivity profiles from the travelling array could not be acquired in PL10E due to a blockage in the borehole 

caused by the permanent electrodes, which impede the use of the travelling array. As well the traveling array could not be used 

in PL10A due to distances restriction; the travelling electrode was not designed to cross the road and profile the borehole. For 

these reasons, there was no travelling electrode or conductivity data obtained for PL10A and PL10E during the latter two 

dumps.  

Discussion: 

 

In this work we present the results from field experiments held in the Chalk aquifer in Bottom Barn Abstraction in Berkshire 

UK. We demonstrate that it is possible to measure a streaming potential response to a pressure gradient in field conditions 

during a long-term pump and recovery test (i.e. drawdown and build up) in instrumented boreholes. These results suggest that 

the electrokinetic component of spontaneous potential can be successfully monitored and characterised in a borehole when a 

pressure gradient is induced, e.g. while injecting a fluid into the formation. Moreover, the value of the coupling coefficient of 

the streaming potential from the field experiment is similar to the coefficient obtained in the laboratory. The temperature effect 

over the borehole voltage measurements was present and could not be completely de-trended since the temperature probe was 

installed in a different position from the borehole electrode used for this analysis. Instead, moving averages was used to reduce 

the noise followed by a filtering stage to smooth the temperature effect. Surface electrodes did not measure any significant 

signal above background noise (c. 200 µV). This could be because surface electrodes were far from the signal generation. The 

slow response of voltage to pressure buildup is attributed to the inertial forces exerted over the fluid due to the large water 

pumping rates, where the fluid continues moving after the pump was turned off. This hypothesis is supported by the high 

Fig. 24 Conductivity profile in PL10B, showing the slug moving to the bottom just after the dump (Table 3). 

Plot (a) shows the specific conductivity for PL10B in 18/07/13 and (b) in 19/07/13. Note c. 60% of the initial 

slug is vanished few minutes later.  

a) b) 

Fig. 23 Voltage response to salt dump in PL10B for (a) Surface electrodes (SE) and (b) Borehole electrodes 

(BE). Any possible response is in the background noise range, nearly 200 to 300 µV.  

a) b) 
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transmissivity values obtained in the characterisation of the field, deriving in high effective permeability which allows 

transmitting changes in pressures to the aquifer. This high transmissivity in the fracture network transmitted the momentum 

through the aquifer, i.e. water continued moving by inertia, generating a slow decay in the EK potential.   

Despite the high initial concentrations measured in the salt dump boreholes, no conclusive EC voltage response was 

observed during the salt injection experiments. The peak of voltage measured by the surface electrodes in dumps I and II was 

related to a redox potential. This redox potential was generated thanks to the high salinity concentration at the top of the 

borehole in contact with the metallic casing in PL10A which, being transmitted to surface through the casing. The amplitude 

decline of the redox potential through the surface was estimated in 0.06mV m
-1

. The redox potential decreased with the 

increasing distance from the dump borehole (i.e. PL10A). This value suggests that signal disappeared before reaching the 

monitoring wells, thus explaining why none of the borehole electrodes in PL10B or PL10E could measure any redox potential. 

The two last dumps (III and IV; table 3) in PL10B, which is completed with plastic casing, confirmed that the response 

measured in the dumps I and II was attributed to a redox potential. There was no conclusive electrochemical response during 

the final two salt dumps.  

The conductivity profiles for PL10A suggest a higher hydraulic conductivity 10 meters below the water table, probably due 

to a higher fracture density. The conductivity profile in PL10E is different than profile in PL10B in the first three meters below 

the water table. The possible explanations for this includes an EK effect due to a crossflow near this depth, EC effect due to 

the apparent better connectivity through the fracture network and different groundwater composition. However, the pressure 

gradient that could be generated by the crossflow is very small, thus EK effect seems not feasible. The EC origin hypothesis 

seems unlikely since the separation of the curve can be seen in profiles made before the salt dump. The difference in 

groundwater composition can be only speculative, since no water composition measurements were done. Due to this we 

hypothesise that PL10A and PL10E could be connected through the fracture network. PL10B does not show any evidence of  

connectivity with the fracture network in the upper section of the borehole in ambient conditions; as well there is no evidence 

of an upflow, as in PL10A, thus explaining the contrasting conductivity patterns between PL10A and PL10B and the fast 

sinking of the brine slug in borehole PL10B (fig. 24a & 24b). The fast decrease of salt concentration in the aquifer, the time 

that it takes to the slug to travel until the neighboring boreholes and the non-apparent interconnection of wellbore PL10B 

within the fracture network are the possible reasons why the experiment did not provide the expected results.  

The results obtained from streaming potential experiments suggest that EK potential can be successfully measured and 

characterised for water, steam or any displacement fluid injection in a hydrocarbon reservoir, allowing monitoring and 

characterising underground fluid flow to improve hydrocarbon production.  

In the case of the EC potential an increase of NaCl mass poured into the borehole is advised. The numerical reservoir 

simulation proposed by Jackson et al. (2012b) suggests that a concentration as high as 1M would be needed to produce a 

measurable EC potential. As well, a denser pattern of measurement should be considered (e.g. a 360 degree electrode coverage 

around borehole) in order to identify the flow pattern around the borehole and increase the possibility of measuring a 

significant EC potential. 

 

 

Conclusions: 

This work presents the field experiment results from the experiments held in the Chalk aquifer in Bottom Barn Abstraction 

in Berkshire UK. The conclusions of the field experiments for EK and EC potentials are as following: 

 

For EK potential: 

1. A clear EK response was observed by borehole electrodes. The field coupling coefficient obtained is comparable to the 

coefficient obtained in laboratory test.  

2. Surface array does not show evidence of EK potential. The distance between electrodes location and the depth of EK 

potential generation caused the dissipation of voltage signal before it reaches the electrodes. 

3. Inertial effects originated by the large drawdown rates, causes the voltage to respond slower to pressure changes. The 

high effective permeability suggests that the water momentum (caused by inertia) was transmitted through the aquifer.  

4. It is demonstrated that EK potential can be measured and characterised during long term pump and recovery test.  

 

For EC potential: 

1. No EC potential could be measured due to the small mass of salt injected; larger NaCl concentration in borehole (as 

high as 1M) is required to generate a significant voltage response. 

2. Redox potential was generated and recorded only by the surface array in the first two dumps. This was attributed to the 

attenuation factor estimated in (0.06mV m
-1

). 

3. Conductivity profiles display a difference in patterns at 2 and 8 m for PL10E respect PL10B. The possible 

explanations for these are: a) A crossflow at 2 m deep in PL10E causes water to shear the mineral, thus transporting 

charges. The same could be occurring at 8 m deep for both boreholes. b) Different groundwater composition causes 

the occurrence of EC potential. However, due the lack of chemical tests this can be only hypothesised.  
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4. The fast decrease of conductivity in the injection borehole and the inexistent change in the conductivity in the 

monitoring wells during the experiment suggests that salt is dissipated before an EC signal could be measured.  

5. Conductivity profile in PL10A suggests the existence of a high hydraulic conductivity region at the top of the well. 

6. The fast displacement of the saline brine slug towards the bottom of borehole PL10B was observed in the conductivity 

profiles. This assumes that there is no upflow in PL10B and no apparent crossflow through the matrix.  

 

The results of the EK experiment demonstrate that a proper EK coupling coefficient can be obtained and although is not 

totally analogous to other formations, it can be  used to characterise EK signals; this signals can be applied to control systems 

in order to monitor and prevent water production during water (waterflooding) or steam injection (steamflooding). Reproduce 

these results in a producing oilfield and monitor waterflooding would be a next step to follow.        

The results for the EC experiment suggests that a larger amount of salt shall be poured into the wellbore; as well a plastic 

casing wellbore has to be taken into consideration in order to prevent any possible masking of EC potential by redox potential. 

Future work will consider a larger concentration of salt (1M) in a different field site which allows the salt slug to reach 

crossflow areas and be transported to generate a salinity contrast, instead of being dispersed in a shallow fracture network or 

never reach a crossflow. 

Nomenclature:    

   CEK = Electrokinetic coupling coefficient, VMPa
-1

 

   K = Absolute permeability, miliDarcys (mD) 

  V Voltage (electrical potential) change 

  P Pressure change 

   σ = Electrical conductivity with formation saturated with groundwater, Sm
-1 

   FF = Formation factor, dimensionless 

   Φ = Porosity (%) 
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APPENDIX A - Literature review 

 

Org. 

/Publication 

Year Title Authors Contribution/Milestone 

SPE/API 35-047 1935 Electrical Exploration of 

Drill Holes 

Alexander 

Deuseen; 

Eugene G. 

Leonardson, 

Schlumberger  

First paper in recognising the 

Electrochemical potential as an important 

component of the self-potential (SP) curve. 

Streaming potential just makes small 

contributions, sometimes negligible.   

SPE/AIME 

944049 

1943 Natural Potential in Well 

Logging 

W.D. Mounce 

and W.M. Rust, 

JR 

First characterisation of seat conditions for 

electrochemical potential occurrence. 

(Shale)Such characterisations were similar 

to conditions existed in field.  

SPE 949017 1949 A Quantitative Analysis of 

the Electrochemical 

Component of the S.P. 

Curve. 

M.R.J. Wyllie First providing quantitative, reproducible 

laboratory and field results of the 

electrochemical component of the SP.  

Transactions 

AIME Vol. 1 No. 

1. Pages: 17-26 

1951 An investigation of the 

eletrokinetic component of 

the self-potential curve.  

M.R.J. Wyllie First establishing a relationship for 

streaming potential from laboratory tests 

using laboratory prepared and field aqueous 

muds. In Field experiments demonstrate that 

the algebraic sum of electrochemical and 

streaming potentials yields the SP potential.  

SPWLA 1973-

vXIVn2a3 

1973 Relationship Of the 

Electrochemical Potential 

of Porous Media with 

Hydrocarbon Saturation 

Isaias Ortiz Jr.,  

W.D. Von 

Gonten 

J.S. Osoba 

First characterisation of electrochemical 

response with variations in hydrocarbon 

saturation and measurement of potential on 

samples from formations with different 

content of shale.  

Hydrogeology 

Journal Vol. 17 

No. 8. Pages 

1849-1858 

1999 Analysis of flow processes 

in fractured chalk under 

pumped and ambient 

conditions (UK) 

A.P. Butler 

S.A. Mathias  

A.J. Gallagher 

D.W. Peach 

A.T. Williams 

Characterisation of geophysical properties of 

the formation in Bottom Barn Abstraction, 

Berkshire UK in pumping conditions (for 

one of the six wells drilled)  and in ambient 

conditions (for two wells).  

SPE 120460 2009 Measurement of Streaming 

Potential for Downhole 

Monitoring in Intelligent 

Wells. 

M.Z. Jaafar 

J. Vinogradov 

M.D. Jackson 

J.H. Saunders 

C.C. Pain 

Provide laboratory measurements of 

streaming potential coupling coefficients 

performing an experiment which consist in a 

sst core subject to a pressure gradient, 

making a brine to pass through this core and 

measure the voltage produced. Explanation 

of the methodology to reach the model.  

Also demonstrates that at salinities far above 

the sea salinity, streaming potential signals 

can be effectively measured.  

GEOPHYSICS  

Vol. 76 No. 4 

2011 Self-Potential Anomalies 

Induced by Water Injection 

into Hydrocarbon 

Reservoirs 

M.Y. Gulamali 

E. Leinov 

M.D. Jackson 

Numerical simulation of hydrocarbon 

reservoir to compare EK, EC and TE 

components of SP signal, characterising the 

response at different timeline before water 

breakthrough and with different brine 

saturation.  

SPE 135146 2012b Spontaneous Potential in 

Hydrocarbon Reservoirs 

During Waterflooding: 

Application to a Water-

Front Monitoring.  

M.D. Jackson, 

M.Y. Gulamali, 

E. Leinov, J.H. 

Saunders, J. 

Vinogradov 

First having usable results from numerical 

modelling to characterise electrokinetic, 

electrochemical and thermoelectric potential 

to monitor water front.  

Quarterly Journal 

of Engineering  

Geology and 

Hydrogeology 

Nov. 2012 Vol. 

45 (p. 457-471) 

2012a Measurements of 

spontaneous potential in 

chalk with application to 

aquifer characterisation in 

the southern UK. 

M.D. Jackson, 

A.P. Butler & J. 

Vinogradov 

First measurements of EK potential coupling 

coefficients in chalk samples saturated with 

natural groundwater. Preliminary Field 

measurements of spontaneous potential at 

ambient and pumped condition in Chalk 

aquifer.  
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SPE/API 35-047 

 

Electric Exploration of Drill Holes (1935) 

 

Authors: Alexander Deussen, Eugene G. Leonardson, Schlumberger.  

 

Contribution to SP Signal understanding: 

This paper is the first one explaining how the spontaneous potential is achieved together with its applications to reservoir 

characterisation.  It also mentions the Electrochemical Potential effect on the Spontaneous Potential (SP) response, and it 

contribution as an important component of this signal.  

 

Objective of the paper: 

To explain the principles of electrical logging (resistivity and SP at the time) in drilled holes and it applications in oil reservoir 

characterisation.  

 

Methodology: 

Theoretical explanation of the principles on electrical signals in rocks, resistivity measurements in a drill hole, Spontaneous 

Potential and how these signals behave in formations in order to properly interpret them in a log. This theory is backed up with 

real logs, methodology and examples from the field. This paper recognises the importance of the electrochemical potential in 

the SP section.  

 

Conclusion reached: 

The contribution of electrical logging constitutes a new way of characterising reservoirs in drilled holes. With this, we can 

know certainly the production horizon and save money making coring not entirely necessary. Also mentions that the only 

trustable and economical way to obtain full information from a well is through electrical logging, making it even better than 

drill cutting and coring analysis.  

 

Comments:  

This paper contains the basis to understand the importance of electrical logging. Nevertheless, what is more interesting to this 

project is the mentioning of the Spontaneous Potential study and the electrochemical potential reference as a consequence of 

electrolytes that are in contact (electro-osmosis).  
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SPE/AIME 944049 

 

Natural Potential in Well Logging (1943) 

 

Authors: W.D. Mounce, W.M. Rust Jr.  

 

Contributions to SP signal understanding: 

Mounce & Roust were the first to make a characterisation of electrochemical potential occurrence in certain conditions, using 

shale as main porous media. These conditions were designed to recreate the field environment. 

 

Objective of the paper: 

To examine the physics and explain with fundaments and experiments with shale cores, the universally accepted electrical 

logging practices.  

 

Methodology: 

Performing experimental results using shale cores with fresh-water, shale and salt-water. Firstly the characterisation was 

performed to explain the electrofiltration potential (streaming potential). With the results, the necessity of performing further 

experiments characterising the response with shale cores, propitiating the understanding of the electrochemical potential.  

 

Conclusion reached: 

The results of the experiments reached to the understanding of the Electrofiltration and Electrochemical (EC). It is stated that 

the EC is the main contributor to the SP signal and a relationship is established.  

E = k log CdC. = k(log C1 – log C2 ) where E is the potential, K is a constant depending the nature of electrolyte and C1 and 

C2 the concentration of each electrolyte. 

 Nevertheless, the paper comprises that this theory is not entirely true since the electrode is in contact with the drilling 

mud and being this almost entirely homogeneous, the only way a difference in potential can occur is with a current flowing in 

the mud. Then, it is clear that the SP signal generated is due to the contrast in the salinity of the mud and the formation fluid.  

 

Comment: 

This paper is the first that establishes a characterisation of the EC component of the SP signal in an experiment comprising a 

shale core and brines of different salinities. Also, these experiments are the first ones estimating that the EC potential is the 

main contributor to the SP signal.  
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SPE 949017 

A Quantitative Analysis of the Electrochemical Component of the SP Curve. (1949) 

 

Authors: M.R.J. Wyllie. 

 

Contributions to SP signal understanding: 

This paper is the first providing quantitative, reproducible results from laboratory and field experiments for EC potential 

characterisation of the SP signal.  

 

Objective of the paper:  
To propose a relationship from laboratory and field experiments, in order to quantitatively analyse the electrochemical 

component of the SP curve.  

 

Methodology: 

This paper provides a theoretical analysis of the experiments carried out by Mounce and Rust (1943), proposing correlations 

for the boundary potentials from the expression of Henderson (1907) for dilute solutions. Later this is taken to laboratory 

experiments using two different samples of shale previously air dried, and setting them up with Hg/Hg2Cl2 electrodes. For 

these experiments a brine of NaCl with different concentrations was used. Several methods were used for satisfactorily bring 

sodium chloride in contact with the shale surfaces, but there was one particularly effective. This consists of cementing a 

flanged 24/40 male glass taper to the shale by means of a mixture comprising 100 grs of green optical pitch and 1 cc. of oil. 

Glass tubes in L-shape glass are then fitted to the standard tapers to hold the NaCl solutions.  For the field experiments, 

generally logs were obtained using three different mud resistivities which were altered by the salt content.  The logs reflect the 

effect of the shale in the SP signal (which main contributor is the EC). The results obtained were normalised to a temperature 

of 64.4 F for a fair comparison.  

 

Conclusion reached: 

The analysis of the effects of shale in the EC component of the SP can be seen in both, laboratory and field experiments. 

Nevertheless, the results were only for two shale samples, thus the possibility of finding different results was latent at the time 

the paper was written. Also, the concentrations used represent molarities outside the range for which most electrochemical 

characterisations have been made. This means that the results will only be approximations when generally applying to log 

data. Despite this apparent inaccuracy, these errors won’t totally discard the results. 

 

Comment: 

This paper contributes with the first characterisation from laboratory and field experiments for Electrochemical potential in a 

shale environment. It is important to mention that the results, despite not totally accurate, were successfully applied to 

determine that shale can have electrochemical properties. The experiment methodology and the results were the central part of 

this paper and the most contributors to my understanding of SP.  
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SPE 951001. Transactions AIME Vol. 1 No. 1. Pages: 17-26 

 

An investigation of the electrokinetic component of the self-potential curve. (1951) 

 

Authors: M.R.J. Wyllie. 

 

Contributions to SP signal understanding: 

First establishing a relationship for streaming potential from laboratory tests using laboratory prepared and field aqueous 

muds. In Field experiments demonstrated that the algebraic sum of electrochemical and streaming potentials constitutes the SP 

potential. 

 

Objective of the paper: 

The objective of this paper is to validate previous quantitative analysis of SP in previous paper by Wyllie (1949) with 

experiments held in a streaming potential cell with multiple fluid samples as well as field tests with the same mud samples 

used in laboratory.  

 

Methodology: 

A streaming potential cell was used together with several mud samples in order to typify the results obtained. The SP cell has 

an arrangement of calomel electrodes. Muds, which have similar resistivity to the presented by the connate water, are put 

inside and subject to pressure through a filter paper and to high temperature tests. Plots of total filtrate versus pressure were 

obtained. The temperature of the calomel electrodes has to remain the same in order to prevent a drift in the measurement of 

the potential generated. The field experiment consisted in characterization of core samples. Then increases of pressure were 

held in the borehole, which transmitted the pressure change to the mud. The characterizations provide a probe of the influence 

in temperature on streaming potential as well as the influence of pressure in the same streaming potential.  

 

Conclusion reached: 

The different muds tested yielded a typical response of SP potential with the increase of pressure at any temperature. However, 

the effect of the temperature on the SP results was also observed despite they were small.  

 

Comments: 

This paper is the first which provides an expression to describe the SP potential validated by laboratory and field tests. The 

contribution of this paper to my project is related to the responses observed in SP to the pressure gradient in muds with 

different characteristics but with resistivity close to the formation water. This was a key finding since the experiment was held 

in a chalk aquifer with fresh formation water. It is important to note that temperature alterations, although small, were already 

acknowledged.  
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SPWLA 1973-vXIVn2a3 

 

Relationship of the Electrochemical Potential of Porous Media with Hydrocarbon Saturation. (1973) 

 

Authors: Isaias Ortiz Jr, W.D. Von Gonten, J.S. Osoba 

 

Contributions to SP signal understanding: 

This paper provides the first characterisation of electrochemical (EC) response with different hydrocarbon saturation and 

measurement of the potential on samples from formations with different shale content.  

 

Objective of the paper:  

The objective of this paper is to evaluate the changes in the electrochemical potential with varying hydrocarbon saturation in a 

porous media, and relate this change to cation exchange capacity.  

 

Methodology: 

Seventeen samples were to be used as porous media and varied from clean sands to shaly sands being obtained from 10 

different formations. The samples were 1.5 inches in diameter and 1.75 inches length. Then cores were dried and then 

saturated with brine. Plugs were inserted in Hassler holder separating two tanks with different brine salinity. Silver-Silver 

chloride electrodes connected to a voltimeter were placed in each solution and the actual potential was measured. Later, the 

electrodes were interchanged. An average was taken as the average potential across the core. Samples were then desaturated to 

a establish water saturation and paraffin was injected. Different paraffin saturation was established for each sample. After this, 

actual potential measurements were taken. Water and hydrocarbon saturations were determined with USBM extraction 

apparatus containing toluene.  

 

Conclusion reached: 

The increasing hydrocarbon saturation supresses SP and as the water saturation in the core is decreased, actual potential in the 

sample is near that of the perfect membrane.  

The hypothesis of Hill and Millburn and Smits were proven in laboratory conditions as the effective concentration of exchange 

ions in oil bearing sands is increased. The modified Smits equation satisfactorily represents the laboratory results. 

 

Comment: 

This paper is explaining the proper steps for a laboratory experiment to characterise the electrochemical potential with variable 

hydrocarbon saturation in samples going from virtually clear sands to shaly sands. This provides the important information on 

how the increasing hydrocarbon saturation supresses the SP potential and how decreasing water saturation leads the actual 

potential to be close to a prefect membrane. 
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Hydrogeology Journal Vol. 17 No. 8 (P. 1849-1858) 

 

Analysis of flow processes in fractured chalk under pumped and ambient conditions (UK) 1999 

 

Author: A.P. Butler, S.A. Mathias, A.J. Gallagher, D.W. Peach, A.T. Williams 

 

Contributions to SP signal understanding: 

This paper contributes with the characterisation of the geophysical properties of the Bottom Barn Abstraction in Berkshire, UK 

in pumped and ambient conditions. It provides important information (e.g. gamma ray log, conductivity, density fracture and it 

dip angle, hydraulic conductivity, etc.). Also states the location of the site and rough location of the boreholes used in this 

dissertation.  

 

Objective of the paper: 

To characterise geophysical properties of the location under pumping and ambient conditions, in order to improve the 

parameters previously obtained and use them in groundwater models of water-resources sites.  

 

Methodology: 

The methodology included several tests to characterise the flow patterns in the formation. The study begins with a 

lithostratigraphy review and shows a summary of the geophysical properties (gamma ray log, diameter of the boreholes or 

caliper, fracture orientation and hydraulic conductivity. Following describes the results obtained by an optical televiewer 

(borehole imaging) to provide the input data to calculate the fracture dip angle. A packer test is held and water is pumped out 

until steady-state drawdown to derive hydraulic conductivity. After all this is acquired, a pumping test is done to estimate 

effective transmissivity using Jacob’s method assuming aquifer is homogeneous and isotropic. In order to characterise the 

upflow in the borehole, a flow logging log with an impeller and a heat-pulse flowmeter is done. Finally a dilution test is 

performed to acquire flow horizons. For this a conductivity probe is used. 

 

Conclusion reached: 

The tests explained in this paper provided new data regarding the flow patterns in the aquifer (BBA). In ambient conditions the 

system behaviour was difficult to establish. However, during pumping conditions the flow could be easily characterised. A 

significant crossflow was concluded in certain regions. The transmissivity estimated showed a difference in values attributed 

to the non-linear head losses caused by turbulence and inertial effects. The changes in well flow profiles when flow is induced 

by pumping stage are due to changes in head distribution of the large scale flowpaths.  

 

Comments: 

The information contained in this paper was essential to understand the results of the experiment described in this work. 

Thanks to the profiles and the data contained in this document, a series of conclusions could be reached. The crossflow 

patterns, the transmissivity of the formation and all the geophysical data provides a clear insight of the formation properties 

and flow behaviour in the aquifer.  
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SPE 120460 

 

Measurement of Streaming Potential for Downhole Monitoring in Intelligent Wells. (2009) 

 

Author: M.Z. Jaafar, J. Vinogradov, M.D. Jackson, J.H. Saunders, C.C. Pain.  

 

Contributions to SP signal understanding: 

This paper contributes with the first experimental measurements of the streaming potential coupling coefficient in NaCl 

saturated sandstones (above sea water saturation) They also provide new experimental data to be applied to numerical models 

in order to predict the signal of SP that would be generated in a production well.  Also they confirm that the value of the 

electrokinetic coupling coefficient is lower with the increase in salinity, down to zero at seawater salinity. 

Objective of the paper: 

To present the first measured values of streaming potential and new experimental data and methodology for SP measurement.  

 

Methodology: 

The methodology consisted in pumping brine across a sandstone core, using synthetic oil as a hydraulic fluid. This pumping 

stage is done at constant rate to provide accuracy. The oil used allows capturing air bubbles in the brine and prevents the 

corrosion of the pump. Pressure differences across the core sample are measured using pressure transducers, and voltage is 

measured through the sample using four Ag/AgCl non-polarizing electrodes. Two of the electrodes are positioned out of the 

flow path to eliminate potential variations and electrode effects. The other two are located at each face of the core sample 

inside the pressure vessel. All the experiment set was provided with a Faraday cage properly grounded. This Faraday cage 

provides protection against spurious external noise. Two rock samples were used from the same outcrop. One of the samples 

was sectioned parallel to bedding and the other one perpendicularly. Varying brine salinity is pumped through the core sample 

at a constant flow rate, until a stable pressure and voltage difference is recorded through the core. Conductivity was also 

measured to characterise EC potential generation. A numerical model was used to simulate the streaming potential during 

waterflooding and evaluate the impact of brine salinity and reservoir permeability heterogeneity.  

 

Conclusion reached: 

The streaming potential measured in a sandstone core sample saturated with different values of NaCl provides a value despite 

the value of salinity. This suggests that the monitoring of underground flow can be achieved. Numerical model provides and 

insight of the magnitude of the streaming potential that would be measured by downhole electrodes. This potential can be 

measured from tens to hundreds of meters before it reaches the wellbore region. 

 

Comments: 

This paper was useful to understand the use of non-polarizing electrodes to acquire voltage measurements. Also, it has a very 

good explanation of how the data gathered in the laboratory test can be used as an input for reservoir numerical model 

purposes and to simulate the potential that will be generated with the inflow of water in a hydrocarbon reservoir. Also the 

model results demonstrate that the incoming fluid will generate a sufficient streaming potential to be measured from up to 

hundreds of meters away. 
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Geophysics Vol. 76 No. 4 

 

Self-Potential Anomalies Induced by Water Injection into Hydrocarbon Reservoirs. (2011) 

 

Authors: M.Y. Gulamali, E. Leinov, M.D. Jackson 

 

Contributions to SP understanding: 

This paper provides an excellent comparison between EK, EC and TE components of SP signal in a numerical simulation of 

hydrocarbon reservoir assessing the contribution of each potential to the overall SP signal. Also it characterises the response at 

different timeline before water breakthrough and with different brine saturation, thus providing more information for 

waterflooding monitoring characterization.  

 

Objective of the paper: 

To characterize (e.g. obtain coupling coefficients) the self-potential components of electrochemical, electrokinetic and 

thermoelectric potentials in a numeric model of a reservoir. This will help to understand how the potentials vary with the 

injection of fluids with different characteristics of salinity, temperature and pressure. 

 

Methodology: 

The Eclipse 100 black oil simulator was used to solve equations multiphase flow equations in 3D porous media. This simulator 

uses a finite-difference, finite-volume scheme to solve implicitly for the saturations, pressures, temperatures and salinities of 

each fluid phase, given the material properties of the medium and fluids. The model is based on Saunders et al.(2008) related 

to the flow of a wetting phase and an immiscible no wetting phase (Water and oil respectively) through a hydrocarbon 

reservoir. The reservoir consisted of an 1150 x 500 x 100 m sandstone reservoir constrained on three of its four  sides by 50 m 

wide shales. The fourth side is bounded by 800 m of sandstone with same reservoir properties and fluid saturation. Transport 

of heat and salt is exclusively by advection. Advection dominates over diffusive processes. The 3D model is based on 

Saunders and discretized on a regular hexahedral mesh that is refined around the production well to allow determination of 

flow variables accurately. Initial conditions: Swc=1, So = 1. A colder, less saline fluid is injected at left-hand face of the 

reservoir at 10000 bbl/d. No capillary and gravity effects were taken into consideration, only viscous forces. Additional terms 

have to be added to describe EC and TE which were neglected.       

Conclusion reached: 

Under certain conditions of concentration injection (0.5M) an EK potential is at maximum at the saturation front. EC and TE is 

also generated but TE is small at the production well until after breakthrough. EC is relatively large and salinity front follows 

the saturation front. In this simulation, EC was contributing with 60% of the overall SP potential measured at the well. 

However, EK contributes more to measured SP at 200 days before water breakthrough. The results suggest that EK and EC 

effects need to be taken into consideration. TE can be discarded. For high saline or fresh formation brine, the overall SP signal 

may be used to detect an advancing waterfront in the production well.  

 

 

 

 

 

 

 

  



X 

Field Measurements of spontaneous potential (SP) for smart well monitoring and control. A field test in the UK chalk aquifer 

SPE 135146. SPE Journal 17 (1): 53-69  

 

 Spontaneous Potential in Hydrocarbon Reservoirs During Waterflooding: Application to a Water-Front Monitoring 

(2012b) 

 

Authors: M.D. Jackson, M.Y. Gulamali, E. Leinov, J.H. Saunders, J. Vinogradov. 

 

Contribution to SP understanding: 

They generated proper result from numerical modeling to characterise electrokinetic, electrochemical and thermoelectric 

potential.  This will allow monitoring of the water front during flooding operations.  

 

Objective of the paper: 

To quantify the magnitude of the EC, EK and TE components of the SP during waterflooding operations. Also, to determine 

whether and under what reservoir and production conditions, the resulting SP will be enough to be detected. As well, to 

investigate is the measurements of SP in the boreholes can be used to monitor the advance of the waterfronts.  

 

Methodology 

This paper describes the use of a 3D numerical reservoir model where the horizontal sandstone reservoir layer has a vertical 

production borehole. The shale zones contained in the reservoir are water saturated, thus are conductive. The potential in the 

boundaries are used as a reference and represent the electrodes that would be placed at the surface. Porosity varies with the 

layers; permeability is zero so flow is not existent; flow is dominated by pressure gradients. The viscosities where chosen to 

create a shock-front-dominated displacement of oil by water. The coupling coefficients were also defined according previous 

experimental data. The governing equations are solved using Eclipse 100 black oil model. The following assumptions where 

made: 

- Only water phase in the reservoir gives raise to SP (HC = non polar) 

- Transport of heat and chemical species is dominated by advection. 

- Interactions between fluxes other than those resulting from charges separations are negligible.  

- Water is the wetting phase, oil is the non-wetting phase.  

- Exposed reservoir layer is homogeneous.  

- No gas is present 

- Flow is only dominated by viscous forces, neglecting gravity and capillary forces. 

 

The initial simulating case assumes a production of 10,000 bbl/d with brine flowing into the reservoir at the same rate. This 

brine has a salinity of 0.5M; reservoir permeability is uniform (150 mD) and initial formation temperature and formation-brine 

salinity are 80
o
C and 1M respectively. These parameters simulate the injection of brine into a formation with saline-formation 

brine.  

 

Conclusions achieved 

The numerical modelling results suggest that the magnitude of the SP generated can be as large as hundreds of mV. Thus the 

encroaching water can be detected before it arrives to the production well. Before water breakthrough, SP at the well is 

dominated by EK and EC components generated from the gradients in fluid salinity and pressure. 

 

Comments: 

The results of this paper encourage a field experiment in order to better understand the components of the SP potentials so they 

can be applied to real reservoirs. This field experiment will validate the observations made here.  
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Quarterly Journal of Engineering Geology and Hydrogeology Vol. 45 (9): Pages 457-471.  

 

Measurements of Spontaneous Potential in Chalk with Application to Aquifer Characterization in the Southern UK. 

(2012) 

 

Authors: M.D. Jackson,  A.P. Butler & J. Vinogradov. 

 

Contribution to SP understanding: 

This paper reports the first measurements of EK potential coupling coefficients in chalk samples saturated with natural 

groundwater as well as the preliminary field measurements of spontaneous potential at ambient and pumped condition in 

Chalk aquifer. 

 

Objective of the paper 

To know if SP monitoring can be used to characterise aquifer properties and groundwater flow in the UK chalk aquifer and 

provide a valuable additional dataset to complement borehole methods. The aim of the laboratory test is to measure the 

streaming potential coupling coefficient in chalk samples saturated with natural groundwater. All this will define if SP 

measurements can be used to detect and monitor groundwater flow in the UK chalk aquifer together with borehole data. 

 

Methodology: 

The laboratory experiment comprised a chalk sample from an outcrop of the Seaford Chalk. This sample was tightly confined 

in an acrylic pressure vessel. Hydrogen was used as confining fluid. The vessel is enclosed by a Faraday cage-like wrap made 

of foil. A syringe induces a fluid pressure difference across the plug. Again, as per Gulamali et al. (2011) synthetic oil is used 

as a hydraulic fluid to drive the water from the inlet to the outlet reservoir.  Electrodes are placed out of the flow path in a 

brine reservoir that is in electrical contact with the water flow.  

 In the case of the field experiment, surface and borehole electrodes were used to measure the SP in ambient and 

pumping conditions in the Barn Abstraction in Berkshire, UK. The borehole electrodes were comprised in a borehole tool. The 

pump used to generate the pressure gradient was installed in another well connected to the aquifer. An extra reference 

electrode installed far away from the experiment zone was used to compare with the data collected by the surface and borehole 

arrays. The borehole tool was lowered to catch the crossflow during previous pumping experiments according to Butler et al. 

(2009).   The pump is started and the datalogger will register all the measurements during this stage. Pump was suddenly 

stopped and pressure build up is expected. Then the response to the pressure change will be recorded by the datalogger. 

 

Conclusion reached: 

The possibility that the voltage variations observed are from electrokinetic origin is feasible. This comes from the observations 

of the water levels varying during pumping and ambient conditions, suggesting that temporal and spatial gradients in water 

pressure are present at ambient conditions. A 3D model that describes the local variations in water pressure and electrical 

resistivity is proposed. The laboratory measurements reported demonstrate that is possible to observe a negative value of the 

streaming potential coupling coefficient in a chalk sample saturated with groundwater. The field results are consistent with 

laboratory results observing small  positive changes in the SP in response to the pressure drawdown and small negative 

changes in SP during pressure build up. However, since the SP signals induced by the changes in head were close to the 

background noise.  

 

Comments: 

 This paper is the precursor of the experiments here described. The information contained in this paper was critical to establish 

the similarity between the coupling coefficient from laboratory experiments and the coupling coefficient from the field 

pumping experiment held in the following months after the publication of this paper. I consider this document one of the most 

important source of information regarding the experiments held in Bottom Barn Abstraction, Berkshire UK.    
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APPENDIX B 

 

  Mass Calculation of NaCl to achieve desired molarity in the borehole.  

The calculation of the NaCl mass was done according to the desired molarity. The molarity for this experiment has to be 

representative of the molarity of the seawater in the English Channel, which is near 0.5 M or 35 gr/L. However, in order to 

comply with the Environmental Agency permit stipulation in the experiment site, a third of the seawater was specified. To 

calculate the mass to be thrown in the boreholes for the execution of the electrochemical experiment, we need to refer to 

caliper measurement (fig. B) to get an approximate of the volume of the borehole.  The volume calculation was based on the 

average diameter of borehole PL10A, which is the original well designated for the brine injection.  According to Butler et al. 

(2009) the average value of diameter is 0.206 m, and having into consideration the water table of 90.45 m AOD measured 

recently with a dipper, then we can calculate the volume as explained below. With the molar mass of NaCl (58.44 gr/mol), and 

the volume then we can calculate the necessary mass.  

 

 

  

 

             With the volume in the borehole then we can calculate the mass of NaCl 

required: 

 

  

  

             The first salt dump was produced with salt dissolved in water. The amounts 

were carefully approximated to prevent water saturation. The solubility of NaCl in water 

at 25
o
C is of 360 gr/L. In the experiment we dissolved 31.5 Kg of NaCl in 150 L of tap 

water. This gives an approximate solubility of 210 gr/L. The molarity reached in the 

borehole overall then is: 

 Mol. 0.17or  gr/L. 9.95 :molarity Estimated
 gr. 31500or  Kg 31.5  dissolved NaCl ofamount  Total

L. 3164150 3014 liter in  (approx.)in water  water ofamount  Total



 

          This complies with the desired initial concentration. It is important to note that the salt concentration of the tap water was not taken 

into consideration.  

          The following salt dumps were done in solid state directly to the borehole. The molarity was approximated as per the process 

previously described. Table B-1 shows the approximated concentrations of all the salt dumps: 

 

 

 

Table B-1: Salt dump locations, dates, mass and estimated concentrations 

 

 

 

 

 

 

 

 

 

 

 

 

Salt Dump Borehole NaCl mass, Kg. Mol concentration 

(gr/L) 

1.- 16/07/13 PL10A 31.5 Kg. (dissolved) 9.95 

2.- 17/07/13 PL10A 18.5 Kg. (Solid state) 6.1 

3.- 18/07/13 PL10B 19.5 Kg. (Solid state) 6.5 

4.- 19/07/13 PL10B 25 Kg. (Solid state 8.3 

Fig. B-1 Caliper borehole 

measurement of diameter in cm.  

h 

cm 
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APPENDIX C 

 

Signal treatment of Electrokinetic raw measurements.  

The data acquired was in spreadsheets with different acquisition time steps going from one second, 5 seconds, one minute until 

5 minutes. Thanks to the amount of data acquired (approximately 15 days) and that the rates were obtained in time steps of 5 

minutes, it was decided to use this period of time. All the spreadsheets were passed under a careful scrutiny and the data points 

corresponding to five minutes period were selected, this included pressure and voltage from borehole PL10B (BE1 and BE2). 

This led us to have the first raw measurements accurately organised and ready for processing (Fig. C-1).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        The raw measurements from the PL10B borehole electrode (BE2) were manipulated for a proper curve fitting with 

pressure. The required manipulation did not affect the overall result. The electrokinetic raw measurements were as given in 

Fig. C-1. This data was treated using several methods that will be discussed in this appendix. The signal was affected by noise 

and temperature, as can be seen in the same figure. This noise and temperature effect in the electrode measurements made 

complicated the analysis of the data to determine the pressure and voltage correlation. The temperature effect has to be 

removed in order to determine the true values of voltage. Noise can be easily removed using a filtering utility in any signal 

processing software.  

        The first attempt to remove the temperature effect was carried using an optimisation algorithm in MATLAB® software. 

This optimisation algorithm is basically a mathematical expression where the voltage is in function of temperature, adding a 

factor (m) that will be determined by the software calculating it for the lowest variance in the results according to the original 

signal (fig. C-2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Fig. C-2 Plot of raw voltage from PL10B BE2 electrode 

(blue) and the optimised voltage result (black). Temperature 

is displayed for reference purposes (red). 

Fig. C-1 Raw voltage from PL10B BE1 and BE2 electrode. Note 

the  cyclic temperature effect over the electrode. This cyclic 

effect is related to the variation of temperature in a day cycle. 
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  The MATLAB ® program used for the optimisation stage can be seen as following: 
 

function [minivar,m] =minvar(m)% Will calculate m as a function of the variance. 
res=load('lab2.mat');% Will load the vectors with the temperature and voltage data. 
index=326;% Pointer to closest temperature from reference value. 
[minivar]= var(res.VW2-(res.VW2-res.VW2(index)).*(res.T./res.T(index)).*m); 

% Function to calculate m 
  

Where: 

1.  lab2.mat contains the variables for voltage and temperature arranged as a vector .  

2. minvar is the name of the program itself, minvar(m) is stating that minvar is in fuction of factor m.  

3. m factor is the factor which will be calculated to give the minimum variance.  

4. res.VW2 is the vector array of voltage contained in lab2.mat. 

5. index  is the pointer to the closest temperature value from the reference temperature value. 

6. res.T is the vector array of temperature contained in lab2.mat 

 

       The MATLAB® utility optimtool was used to perform a loop, which consisted in several iterations until find the 

minimum variance and deliver the value of the m factor that provides that variance. For this iteration the solver fminsearch was 

used (fig. C-3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        The results of using the optimisation method were not successful, since no proper compensation for temperature effect 

was achieved. This can be seen in Fig. C-2. The results were not satisfactory since there is a miscorrelation of temperature 

measured and the cyclic temperature pattern in the voltage signal, derived from the different location of the temperature probe 

regarding the electrode position.  

        The following step attempted was to use fast fourier transform in MATLAB®. The process consisted in passing the 

measurements to a voltage gain value (dB) and then passed it to frequency domain using fft (fast fourier transform) utility in 

MATLAB®, the result of the applied method can be seen in Fig. C-4. The main frequencies cannot be properly detected. The 

frequencies expected were close to zero, and here two main frequencies can be identified. One of them is near to zero, the 

other one is yielding a very high value which could be attributed to the noise. Despite this, is not sufficiently clear to discern 

between frequencies needed to continue the process. Due to this, we opt for an extra procedure, which consists in applying 

moving averages with 25 data points (Fig. C-5) followed by a butterworth lowband pass filter (i.e. will cutoff the high 

frequencies). The utilities used in MATLAB® were butter which is used to generate the vector values for the filtering stage 

Fig. C-3 MATLAB® optimtool utility 
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Fig. C-6 Moving averaged voltage (green) and moving 

averaged filtered voltage from BE2 electrode.. 
Fig. C-7 Error bar plot for coupling coefficient 

determination, realised with three different cases 

through a simple linear regression. 

and filter which uses these values to filter the required data (MATLAB, 2012). The syntaxis is as follows: 

 

[b,a] = butter(n,Wn) where: 

 

n = is the order of the lowpass band filter.  

Wn = Normalised cutoff frequency 

b,a = Filter coefficients. 

 

        The order (n) chosen for this filter was of a second order (i.e. n=2) assumed as the best approximation to the relationship 

between temperature cycle and streaming potential coefficient cycle. For the normalised frequency, the estimated frequency of 

the streaming potential was divided by an approximated frequency of the temperature cycle; this returned a value near to 

0.006.  

Freq. of streaming potential = 1/(86400 sec d
-1

 × 15) = 7.7 × 10
-7

 sec d
-1 

Freq. of temperature cycle = 1/(86400 sec d
-1

) = 1.2 × 10
-5

 sec d
-1

 

Wn = 7.7 × 10
-7

 sec d
-1

/1.2 × 10
-5

 sec d
-1

 = 0.06 

 

.     The resultant voltage can be seen in Fig. C-6 plotted together with the moving averaged voltage. With this data it was 

possible, through a simple linear regression to obtain the results of the base, the best and the worst case, then having the error 

bar plot done (fig. C-7).  

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-40

-20

0

20

40

60

80

100

120

Frequency, Hz

P
o

w
e
r

FAST FOURIER TRANSFORM

 

 

Fig. C-4 Fast Fourier Transform result.  Fig. C-5 Raw (red) and moving averaged (blue) voltage from 

PL10B BE2 electrode. 
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APPENDIX D 

 

The molarity determination from conductivity measurements.  

 

       In order to approximate the value of mass being dissolved in the top of the boreholes (PL10A and PL10B) as part of the 

monitoring stage, conductivity was converted to molarity. The first step is to convert conductivity measured by the Aqua Troll 

200 monitoring equipment to total dissolved solids (TDS). To reach this stage, the conductivity was multiplied by 0.64 

(www.lenntech.com, 1993). Once with the data in TDS we proceed to calculate molarity in gr./L multiplying TDS by 

0.000998859 (Handreck et al. 2005; Department of the Army, 1989). The method is proven since the plots from conductivity 

and molarity keep the same profiles and per Fig. D-1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. D-1 Typical conductivity and molarity profiles. The shapes are alike. 
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APPENDIX E 

 

Estimation of effective permeability in chalk aquifer in BBA, Berkshire UK. 

 

With the values of transmissivities and hydraulic conductivity, two approximations can be done. First one is with the following 

expression (Ritzema et al. 1994): 

 

 

Darcys. 33.2 ish m/day whic 27.51452488.5/90.K
:reported Value

 day)./m (4388 luelargest va with the together reported ivity, transmissof

 valuesfirst two  theof averagean  is work in this declared  valueThe :te  ly.respective Darcys 58.4  to39 - 27.2 of  valuesyields This

Darcy.per 
m/day 0.831 ofy equivalencan  reports (1996) Soni and Duggal  values, with thisOnce  m/day. 48.5 m/day to 32.37-m/day  22.6 is
ty conductivi hydraulic  the(2009) al.et Butler   toaccording /day)m 4388  to2928-(2049 ivities transmiss theof range In the

 m. 90.45 ofaquifer   theof  thickness theassumed We

 (m).aquifer   theof Thickness  
(m/day).y conductivt hydraulic Horizontal  

day)./(mvity Transmissi 

 :Where

  

2

2

2









No

i

i

i
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d
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dKT

 

 

Another method applied to estimate the effective permeability in the aquifer was done using the hydraulic conductivity values 

from Butler et al. (2009) data set. An average of this values was obtained, then converted to permeability: 

 

Darcys. 25.9 :typermeabili effective of Estimation
m/day 21.5 :tyconductivi hydraulic of  valueAverage

  

 

This result is close to the values calculated from the Jacob’s method.  
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APPENDIX F 

 

Cable lengths designation and locations proposed.   

Fig. F-1 Aerial view of the site and proposed 

sensor location.  


