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Abstract 

Well test analysis is an established procedure in well performance evaluation and reservoir appraisal.  With new 

completion technologies and robust oil price, tight hydrocarbon formations are being increasingly evaluated for contingent 

development, as widely extensive tight formations or secondary reservoirs in existing fields, similar to the one in the present 

study. Such formations are usually tight carbonates and shales with poor effective porosity and the main flow path being the 

natural fractures. Well test analysis assists in evaluating the various properties of a double porosity reservoir. 

 

Tight formations with poor effective porosity bear large uncertainty on pay thickness and subsequent reservoir volumetric 

data. The use of multi-layer double porosity interpretation model assists in reduction of the uncertainty on the pay thickness, 

which is initially indicated by wireline interpretation. This happens due to the fact that the fissure network is the main path of 

flow, and porosity to permeability correlations cannot be accurate if developed only by means of core analysis and 

extrapolated to wireline data. 

 

The objectives are to assess reservoir properties through well test interpretation and assess methods to estimate connected 

fluid volume and present the optimal development option. Deconvolution of the subsequent flow periods has been used in 

order to access a further radius of investigation around the wellbore to observe radial flow stabilization. A method to estimate 

the connected drainage volume for each individual layer is proposed and compared to a method using deconvolved derivative 

time and pressure differential endpoint values (Whittle and Gringarten, 2008). 

 

Fissure compaction was found to reflect on pressure transient response as a decrease of wellbore storage and increase of 

skin. Acid treatments and propped fracturing are the best known techniques for well productivity increase and skin reduction 

in tight reservoirs. While acid treatments increase rates, they have to be repeated due to fissure compaction around the 

wellbore with pore pressure decrease and have to be repeated in time, while propped fractures maintain the main flow path 

open through a wider reservoir contact area. 

 

Introduction 

Tight oil formations bear a range of uncertainties regarding effective formation thickness, fracture porosity and 

permeability. When a high contrast between facture and matrix permeability is observed, the existence of a natural fracture 

network defines the main flow paths and reservoir pay zones, which is known as the double porosity model (Barenblatt et al., 

1960). Early studies introduced the parameters that describe flow in a double porosity reservoir, such as the interporosity flow 

coefficient (λ) and storativity ratio (ω) that take into account reservoir anisotropy (Warren and Root, 1963). 

 

With an increased amount of parameters acting as variables, the pressure transient data match with an interpretation model 

is often subject to multiple matching interpretations. Hence, an in depth study has to be performed in order to constrain the 

parameters range of validity and integrate data from other sources as inputs to support the interpretation model selection.  A 

main target is to develop a consistent well test interpretation model that would take into account the phenomena that would 

alter the flow period behaviour throughout the test i.e. fissure compaction. 

 

The fracture fluid flow can be approximated as a prismatic tube with smooth walls and calculated using the cubic flow law 

(Lomize 1951, Witherspoon et al. 1980), resulting that the permeability of a rock mass increases as a function of fracture 

density for homogenous fracture networks (Leckenby et al., 2005). 

 

Double porosity behaviour exhibits a transient interporosity flow period occurring at middle times, while a fissured 

reservoir behaves similarly to a homogenous one at late times (Kazemi, 1969). The combination of a buildup test and a well 

interference test yield an approximate value of average matrix permeability. A quantitative estimation of fissure volume and 

porous blocks of the reservoir can be performed using type curves (Bourdet and Gringarten, 1980), yielding two characteristic 

Imperial College 
London 



Evaluation of low permeability, naturally fractured carbonate reservoir with Pressure Transient Analysis  2 

parameters: ω and λ, the ratio of fissure storativity to total storativity and the interporosity flow coefficient, respectively. 

  

Fissured reservoirs and multi-layered reservoirs with high permeability contrast exhibit similar double porosity transient 

behaviour and may be distinguished only if their actual skin is zero (Gringarten, 1984). Wells in double porosity reservoirs 

yield lower skin values of around minus 3.5 due to a pseudo-steady state model of matrix block support and fracture face 

alternation (Stewart, 1988). In wells with double porosity behaviour, which are acidized, wellbore storage yields values up to 

two orders of magnitude higher than homogenous reservoirs, due to volume of connected fractures (Gringarten, 1984). The 

porous medium parameters (ω, λ) may vary with production time, due to the fracture geometry and volume variation, mainly 

due to pore pressure change. 

 

The permeability tensor theory has been developed to integrate double porosity analytical solving models with Discrete 

Fracture Network (DFN) reservoir modelling (Oda, 1985). More geologically realistic reservoir models can be created, taking 

into account permeability anisotropy on all directions. Permeability tensor is important on deciding the direction of wells to be 

drilled. Seismic surveys and existent well test data will contribute in optimising well completion planning. DFN adds a tensor 

parameter to permeability calculations and an estimation of anisotropy deriving parameters for the double porosity continuum 

models (Dershowitz et al., 2000). 

 

Pressure transient analysis using the logarithmic plot of pressure and Bourdet derivative has been empowered by the 

introduction of the deconvolution algorithm (Von Schroeter et al., 2001, Levitan 2007), which converts variable rate flow 

periods into a constant rate single drawdown flow period with duration equal to the sum of the test flow periods’ durations. 

The algorithm provides access to a further radius of investigation using data for the whole test duration, rather than individual 

flow periods and the resultant data points can be matched with similar interpretation models using derivative numerical and 

type curve matching methods. 

 

A recent pressure transient analysis interpretation method (Igbokoyi and Tiab, 2010), using elliptical flow has been 

developed in order to account for permeability anisotropy and provides a range of permeability and a direction of maximum 

horizontal permeability. Based on the elliptical flow interpretation model, a pressure transient test design has been developed, 

consisting of fracture injection test, shut-in, followed by fracture closure in the subsequent pressure falloff flow period (Martin 

et al., 2012). The interpretation of the fall-off periods yields the reservoir properties and an in-situ maximum and minimum 

horizontal formation stresses, providing valuable rock mechanics information about the reservoir. 

 

Only fractures near wellbore increase productivity, while maximum productivity is obtained by wellbores directly 

intersecting fractures (Gureghian, 1975). The influence of a fracture on well performance depends on its orientation, length 

and distance to the producer wellbore, in case it is not directly connected (Givens et. al, 1966). Maximising reservoir contact is 

the main path to increased well productivity in tight formations. As such, horizontal wellbores, hydraulic fracturing and 

combination thereof are the most effective methods to achieve increased productivity. The interaction and interference of 

hydraulic fractures with pre-existing natural fractures in non-homogenous reservoirs is a key aspect in stimulation efficiency. 

Hydraulically fractured wells have optimum performance when the wellbore or the induced fractures intersect the existing 

natural fractures and are less or not affected by fractures not connected to wellbore (Meehan, 1989). 

 

Another important aspect of hydraulic fracture propagation is the interaction of induced fractures with the existing fracture 

network. If a general direction of the natural fractures exists in the reservoir, the optimum stimulation results are achieved by a 

perpendicular intersection of the natural fractures by the induced ones. In highly anisotropic cases, the hydraulic fractures may 

be diverted into the existing  network, causing proppant loss, smaller effective reservoir penetration, making pumping more 

difficult due to flow path tortuosity (Taleghani, 2009). Therefore it is assumed that hydraulic fracturing stimulation is more 

efficient in fissured reservoirs with isotropic in-situ horizontal stresses. 

 

Methodology, Analysis and Discussion 
 
Reservoir properties and Test Design  

This study focuses in the use of well test analysis in the appraisal of a tight oil field, for which limited information and 

further studies are available. The reservoir studied is saturated with single phase light oil above bubble point, with low GOR. 

According to the petrophysical model, as seen in Fig. 2, there are two distinct producing layers, separated by a non-reservoir 

shale interval. The pay zones mostly consist of fissured limestone and wackestone carbonates. Due to the low pressure of this 

shallow reservoir, the fluid is produced with the use of a beam pump as represented in the completion drawing (Fig. 1).
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Table 1: Reservoir and Fluid Properties 

h1    (ft) 14 

h2    (ft) 9 

Well Deviation 40
o
 

φ1 (av. Pay 1) 0.135 

φ2 (av. Pay 2) 0.09 

ct  (psi
-1

) 3,8×10
-6

 

Bo (rb/stb) 1.03 

GOR (scf/stb) 108 

API (
o
) 36 

SG (g/cc) 0.856 

Sor (min) 0.19 

Swc (min) 0.17 

µo (cp) 3.8 

rw   (ft) 0.583 

pi   (psia)  1188.5 

pi datum (psia) 

742 m TVDss 
1061.5 

pb (psia) @ 100
o
 F 301.7 

T  (°F)  95 

 

     Fig. 1: Completion Drawing  and petrophysical model of the tested well              

Figure 3 illustrates the test design, which is typical for low permeability formations. An initial short flow is followed by a 

short shut in to validate initial reservoir pressure measurements and estimates depending on depth. A longer duration 

production to provide a better measurement of time averaged rates is followed by a last long duration buildup. 

 

 
 

Fig. 2: Well Test Design 

Identification of double porosity behaviour 

      Prior to typical type curve matching of middle time behaviour and pressure derivative analysis, there are several 

indications to suggest double porosity as the most appropriate interpretation model. A wellbore storage much higher than the 

one expected for the tested well geometry and depth for a homogenous reservoir, is a good indication of a secondary porosity 

volume connected to the wellbore and contributing to prolonged duration of the early times phenomenon. It is important to 

note that the well is not damaged, nor acidized. The majority of fluid production is driven by fluid expansion and contraction 

of the fracture volume in the fissure medium. The pressure change and Bourdet derivative indicate a unit slope trend, 

corresponding to wellbore storage and skin, as no fracture with high permeability contrast to the fissure network is directly 

Initial flow 
1

st
 BU Production Final Long BU 

OWC 

P
A

Y
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connected to the wellbore. 

Additionally, core tests indicating consistently significantly lower permeability values than the permeability figures 

resulting from pressure transient analysis. Permeability in tests is obtained through radial flow stabilization identification and 

subsequent mobility values for the producing pay zones. This observation is a good indication that small scale core plugs 

behave differently than the formation porous medium at the reservoir scale. Table 2 illustrates the difference in permeability 

derived from well test interpretation compared to the one interpreted through porosity to permeability correlation (Fig. 3) in 

conjunction with wireline interpretation averages. 

 

Table 2: Well test permeability versus core RCA test  

 

 Well Test kIARF 

[mD] 

Core kC 

[mD] 

kIARF/kC ratio 

Layer 1 19.3 0.84 23.0 

Layer 2 6 0.18 33.3 

 

Fig. 3: Porosity to permeability correlation from core laboratory tests 

A common indication used to identify double porosity behaviour is the transition between two distinct radial flow 

stabilizations at the same level and the “S” shape curvature of the pressure log-log plot. However that is rare, due to 

superposition with other transient phenomena, or it occurs during wellbore storage unit slope region. The first radial flow, 

often not identified as a straight line, may superpose with other early times phenomena. In the case that both radial flow 

regimes manifest in time without other superposed phenomena, the double porosity behaviour can be identified by two parallel 

lines with the same slope on the Horner plot, one during middle and the other during late times.  

 

However, identification through the transition between two radial flow stabilizations does not suffice to satisfy the 

interpretation model uniqueness criterion, as in many cases double porosity behaviour can be confused with a sealing fault 

boundary on a homogenous reservoir and vice versa. Hence, it is essential to be aware of the expected distances to flow 

barriers that can be identified within seismic resolution, to be used as confining parameters. 

 

Storativity Ratio and Interporosity flow determination 

The two main characteristics of double porosity behaving reservoirs are defined from literature as follows in Eq. (1) and (4) 

 

   
       

         
 ....................................................................................................................................................................... (1) 

 

As the total compressibility is assumed the same for fracture and matrix and the fracture porosity is equal to unity: 

 

   
  

     
 ............................................................................................................................................................................ (2) 

 

   
 

   
   .......................................................................................................................................................................... (3) 

 

     
   

  
  .......................................................................................................................................................................... (4) 

  
       

  
 ............................................................................................................................................................................ (5) 

 

For a layered fracture pattern, as the one identified in this study, Eq. (4) turns to: 

 

  
  

  
   

   

  
 ....................................................................................................................................................................... (6) 

 

Having some estimates for the distance between the fractures from core samples and some core plugs RCA measurements 

yielding matrix permeability (  ), Eq. (6) would yield an estimate of the fracture permeability. That would allow for a 

porosity to permeability correlation equation to be developed using total porosity (    ), based on the assumption of a 



Evaluation of low permeability, naturally fractured carbonate reservoir with Pressure Transient Analysis  5 

homogenous distribution of planar fractures spatially within the reservoir. The interporosity flow parameter ( ) represents the 

ability of the matrix to flow into the fissure network. 

 

Fluid mobility is calculated using the Bourdet derivative for the infinite acting radial flow after the interporosity flow 

transition Eq. (7). 

  

 
  

        

   
  ........................................................................................................................................................................ (7) 

Deconvolution of multiple flow periods 

In view of recent advance in well test analysis the application of the deconvolution algorithm to convert two main buildup 

flow periods into a single constant rate drawdown can be used in order to obtain access to further radius of investigation. This 

assisted in determining the infinite acting radial flow line yielding reservoir mobility on the Bourdet derivative, as presented in 

Fig. 4(b). 

 

(a)   (b)  

Fig. 4: ∆p and ∆’p Log-Log plot for longest buildup (a), deconvolved drawdown curve (b) and interpretation match models 

Deconvolution algorithm yields an average reservoir pressure which shall validate previously available RFT measurements 

and estimations from gauge readings prior to production. One of the main sources of uncertainty is the calculation of rates due 

to lack of direct measurement and time-averaged nature. Splitting longer production periods in variable rate flow periods 

allows for rate adjustment according to the corresponding pressure transient response through deconvolution algorithm. 

 

 
 

Fig. 5: Adapted rates by deconvolution for the main production flow period 

Test results 

A double layer model was selected based on the petrophysical interpretation (Fig. 2) of an impermeable layer separating 

the pay zones. A fault with high throw, which is considered to be a sealing boundary is identified from the seismic sections and 

top structure map. It is expected to exhibit a sealing boundary pressure transient behaviour at time, corresponding to a certain 

distance from the well. The fact that pay layers’ thickness are defined, constrains the options for selecting the pseudo-radial 

flow mobility stabilization that corresponds to the 0 slope straight line in the log-log Bourdet derivative plot (Fig 4b) after the 

boundary transient behaviour has fully developed. The stabilization line, would yield half of the reservoir mobility that would 

correspond to an equivalent infinite acting radial flow. 

 

The lower value of wellbore storage and slight increase in skin at the second buildup indicate fracture compaction near the 

wellbore due to low downhole flowing pressure during production time. The effect is small within the duration of the test, but 

is expected to increase with longer production time. It may indicate that the fracture network permeability decreases with the 

in situ stress condition affected by the pore pressure drop (Qingfend et al., 2010). It is observed as a near wellbore skin 

increase and a decrease of wellbore storage in the second buildup that followed the longer production, as the fracture volume 

contributing to wellbore storage decreased, as seen in Fig. 6. 

Δt [hr] Δt [hr] 

Δ
P

 [
p
si

a]
 ΔP [psia] 

Q [stb/d] 
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Table 3: Wellbore storage and skin 

 WS [bbl/psi] S Δt [h] 

BU 1 0.084 -3.4 185 

BU 2 0.072 -3.24 723 

Deconvolved 

Drawdown 
0.085 -3.4 2008 

 

Fig. 6: Rate-Normalized comparison between buildups  Fig. 7: Productivity index versus production time (tp)

Reservoir properties and double porosity parameters have been interpreted from the deconvolved drawdown derivative 

analysis as seen on Fig 4b. Transient interporosity flow cannot be quantified by using type curves due to superposition with 

early time transient response and that of a no-flow boundary. A least square method shall be used to approximate the 

storativity ratio (ω) and the interporosity flow coefficient (λ), upon constraining the range of distance to the sealing fault 

(Table 5). The flow transition characteristic of the double porosity behaviour initiates within the wellbore storage and skin 

region, hence the 1
st
 radial flow stabilization cannot be observed in the derivative plot. A second stabilization following 

unrestricted interporosity flow transition that would correspond to infinite acting radial flow cannot be observed either. This 

occurs, because the end of transition coincides with the start of a sealing boundary effect. As the Bourdet derivative stabilizes 

at half the reservoir mobility level at late times when the sealing fault dominates, this stabilization can be used to calculate the 

reservoir mobility. The pressure transient behaviour is illustrated at the log-log plot in Fig. 4b. 

 

No cross-flow is assumed between the layers, as there is an apparent flow barrier with a thickness of around 15 ft, as seen 

on the wireline interpretation model (Fig. 2). Furthermore, there is no radial diffusion within the matrix, which is assumed to 

only flow into the fissures. The well productivity index is calculated as follows: 

 

    
 

      
  .......................................................................................................................................................................... (8) 

 

It is observed that productivity index quickly declines with production time (Fig. 7) to converge to a low value of 0.1 
   

     
. 

This indicates the need to produce the well at the low      in order to sustain the rate. Hence, production from such a well 

would be largely affected by near wellbore phenomena and stimulation would prove largely beneficial. 

 
Table 4: Test interpretation results from deconvolved derivative drawdown analysis 

Layer pi [psia] C [bbl/psi] S h [ft TVD] φ [%] kh [mD•ft] k [mD] λ ω L [ft] 

1 - - -3.4 14 13.5 270.2 19.3 310
-6

 0.15 470 

2 - - -3.4 9 9 53.8 6 310
-6

 0.15 479 

Total 1188.51 0.085 - 23 12 324 14.1 - 0.15 - 

 
Table 5: Analysis consistency between the longest BU and deconvolved DD derivative analysis. Well location map. 

Verification of Analysis Consistency Top structure map 

Parameter Log-Log Deconvolved DD Difference 

 

pav [psia] 1188.5 1188.5 0 % 

kh [mD
.
ft] 323 324 0.68 % 

C [Bbl / psi] 0.0719 0.085 15.4 % 

S -3.24 -3.4 0.16 ± 

ω 0.15 0.15 0 % 

λ 3.06E-06 3.06E-06 0 % 

L [ft] - 470 - - 

Δt [hr] 

Δ
P

 [
p
si

a]
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The interpreted porous medium of the reservoir is presented in Fig. 8 and found to be corresponding to the core inspection 

observations. Planar, parallel fractures on a single general direction are observed. 

 

(a)   (b)   

Fig. 8: Double porosity model  Fig. 9: Core sample

The relatively high values of storativity ratio indicate a layered type fracture network with kf >> km. Similar storativity ratio 

(ω) values are obtained by tests on another well in the same formation. The fracture planes are parallel and on a single 

direction as seen in Fig. 9. Inspection of the core samples qualitatively validates the assumption, with open fractures existing 

on a single direction, being parallel to each other (Fig. 9, 10). The partially open and open fractures show one North to South 

main trend after calibrating the core according to the well deviation azimuth (Fig. 10). Their orientation relative to the wellbore 

has a major impact on stimulation design and effectiveness, as propped fractures intersecting natural fissures can be diverted. 

Multiple layers further contribute in the high values of storativity ratio (Gringarten, 1984). 

(a)     (b)        

 
Fig. 10: Calibrated fracture orientation based on fracture mapping study (N = 0o) for open (a) and partially open (b) fractures 

The test reached pseudo-radial flow after encountering a no flow boundary (sealing fault). Hence for the resultant partially 

radial drainage, the horizontal drainage area section is presented in Fig. 11. 

Fig. 11: Drainage area section     Fig. 12: Rate per reservoir layer 

The centre of the circle corresponds to the well location and the marked segment (Fig. 11) corresponds to an area that is not 

accessible due to the sealing fault. The area of the drainage area excluding the segment is calculated as follows:  

 

      
 

 
             .................................................................................................................................................... (9) 

 

kf , Vf           Fracture 

km , φ            Matrix 
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Where: 

   =   , the test radius of investigation (3747 ft for layer 1, 2445 ft for layer 2) 

  =   the angle illustrated in Fig. 11 (in radians) 

 

The different values of radius of investigation are based on a theoretical model, taking into consideration the permeability of 

each layer in calculating the radius of investigation 

 

The angle θ (Fig 11) can be obtained using the following equation: 

 

          
 

 
    .................................................................................................................................................................. (10) 

 

         (rad) 

         (rad) 

 

Where: 

   =    distance to the fault. 

 

For:             and             
 

We obtain: 

 

                 

               
 

The corresponding gross rock volume is given by: 

 

       .......................................................................................................................................................................... (11) 

 

                    

                    
 

The pore volume for each layer is given by: 

 

          ...................................................................................................................................................................... (12) 

 

                  

                 
 

Assuming the average oil saturation for the pay zones from wireline log petrophysical interpretation of So ~ 0.6 we obtain the 

respective STOIIP values. 

 

       
     

  
 ................................................................................................................................................................... (13) 

 

                         

                         

 

The total fluid volume connected to the wellbore, as identified through the pressure transient test is 10.2 MMstb. Despite 

the considerable amount of oil connected to the wellbore, the recovery factor is expected low, due to lack of reservoir pressure 

support and low permeability of the porous medium. 

 

Another method is available in the literature (Whittle and Gringarten, 2008) is presented in Eq. 14. 

 

                 
  

    
 

     

      
   ....................................................................................................................................... (14) 

 

Where       and        correspond to the coordinates of the last point of the constant rate drawdown pressure derivative. 

 

Using the aforementioned calculation for estimating the STOIIP from deconvolved drawdown derivative, a value of 8.55 

MMstb is obtained, presenting a 16% difference from the previously calculated value. Bearing in mind the fact that various 
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parameters as well as Δ’Pmax are subject to uncertainty at the appraisal phase, the results of both methods are deemed fairly 

close. 

 

Hydraulic fracturing a naturally fissured reservoir 

In the case of hydraulic fracturing stimulation, the pumped fluid will be diverted into the natural fracture network, 

reopening existing cemented fractures or being lost in the network. To obtain best stimulation results by propped fracturing, 

the induced fractures should intersect perpendicularly to pre-existing fissures. Otherwise, flow path diversion induced 

tortuosity makes the pumping job difficult (Taleghani, 2009), fluid is lost and the drainage area accessed by the induced 

fracture smaller, as illustrated in Fig. 11. Fractures propagate along the maximum horizontal stress direction. Thus, knowledge 

of the regional subsurface stresses is essential for designing stimulation by fracturing. From the collected induced fractures on 

the core samples it can be deduced that the actual horizontal maximum stress in the well site could correspond to a NW-SE 

tectonic compression that affects the reservoir area, being the most likely path of potential propped fractures propagation. 

 

(a)                              (b)  

Fig. 13: Uniform fracture and high tortuosity fractures propagation on the vertical (a) and horizontal plane (b) 

At early times, linear flow replaces wellbore storage, while the reservoir inflow area would be increased by a few orders of 

magnitude. Turbulence induced rate dependent skin (Dq) may be a concern only in gas reservoirs due to the non-conformal 

contact of the fracture to the wellbore. 

 

An equation for propped fracture conductivity is presented: 

 

            ....................................................................................................................................................................... (15) 

 

The fracture conductivity may vary during production time due to clay depositions, changes in reservoir pressure and 

formation stresses. A dimensionless variable for fracture conductivity is used to indicate how conductive a fracture is, 

compared to the ability of the formation to deliver fluid to the fracture. 

 

     
  

   
 

       

   
   ........................................................................................................................................................... (16) 

A unified fracture design has been developed, based on the dimensionless proppant number (Economides et al., 2001) for 

radial and square drainage, respectively: 

 

    
      

     
   ...................................................................................................................................................................... (17) 

    
      

  
    ..................................................................................................................................................................... (18) 

Various optimal dimensionless fracture conductivity (   )opt values have been empirically determined (Economides et al. 

2001), resulting after an iterative process values for xf, kp, xe, and wav that respect Eq. 16.  

 
       

      
        

 

  
  .............................................................................................................................................................. (19) 
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Conclusions  
In view of the advance in drilling and completion technology (horizontal wells, coiled tubing, open-hole fracture designs) 

tight fissured formations with poor conventional productivity can be brought to light and provide economical rates. Appraisal 

is more complex, while characterization is crucial for planning the development options and subsequent completion designs.  

Pressure transient analysis is a key element, providing plenty of information on reservoir quantitative and qualitative 

properties. Decisions based on improved information are expected to result in improved field development and value. 

1. It was verified that heterogeneous reservoirs with double porosity behaviour imply that the permeability measured in a 

test and the permeability measured in a core correspond to different porous media, as the reservoir medium cannot be 

scaled down to a plug and maintain the same flow properties. 

2. Economic flow rates from the tight carbonates are dependent on the development of an open natural fracture system. 

Predicting the spatial extent of such a system with data from a single existing wellbore will be unreliable and require long 

duration pressure history, for the subsequent flow periods to develop due to relatively low fluid mobility. 

3. It is expected that the permeability of the fracture network will decrease due to fissure compaction with reservoir pressure 

decrease. However, within the test duration it is observed in the form of a near wellbore effect, with increase of the skin 

and decrease of the wellbore storage for the last buildup. After significant production time, it is expected that the mobility 

corresponding to radial flow stabilization will decrease, as a result of decreased reservoir permeability. 

4. The use of downhole shut-in tools reduces the wellbore storage duration of DSTs in fissured reservoirs providing more 

information and less duration for the well tests, however this is not applicable in this case, as the fissure volume is mainly 

contributing to the wellbore storage phenomenon. 

5. Well test interpretation of double porosity reservoir in appraisal yields quantitative and qualitative information on double 

porosity reservoirs. However, the values obtained for the various variables are averages, and several heterogeneities in 

the fissure network that could affect long term production are not captured. 

6. The high value of storativity ratio (ω) yielded from this test can be interpreted by the multiple layers and the single 

direction of the planar parallel natural fractures. 

7. While acid treatment can prove effective as short term stimulation, only propped fracturing can provide a longer 

production at economic rates, as the propped fracture would be less subject to compaction. The change into linear flow at 

early times, the increased contact area to the reservoir result in increased drainage area for a given production time. 

8. Fracture injection tests are proposed to be performed on formations similar to the one studied in order to obtain 

permeability tensor and in-situ rock mechanics information from the fracture closure pressure fall-off analysis. 

 
Recommendations for Further Study 

Deconvolution of several flow periods on mature fissured fields with permanent gauges in the wells and complete rate 

history can show how the fracture network compaction with pressure decrease affects the effective reservoir permeability. 

Similarly, tests on wells with propped fractures and similar design can give a comparison on how near wellbore effects are 

affected by production at low well flowing pressure      . 

Reservoir sector and full field simulation models with double porosity behaviour modelled similarly to the well test 

interpretation results that yield predictions similar to the interpretation results would improve confidence on qualitative 

interpretation and can prove to be the basis for a realistic discrete fracture network reservoir model. 

Fracture injection tests pressure falloff analysis, in conjunction with the use of elliptical flow model may bring a 

breakthrough in fissured reservoirs appraisal. The orientation of maximum permeability and its spatial variation, as well as 

some in situ rock stress information can be obtained, as essential information on deciding upon induced fracturing stimulation. 

Given an appropriate duration, a fracture injection test could provide water mobility information, essential for water injection 

planning. The development of new type curves corresponding to several post-injection falloff flow periods would be a 

direction of further study.  
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Nomenclature 
a Side length of square drainage area (a

2
) 

A Area (of drainage) 

Bo Oil formation volume factor 

BU Pressure Buildup 

ct  Total compressibility (psi
-1

) 

cp Centipoise 

C Wellbore Storage, also WS (bbl/psi) 

∆ Change in a given parameter 

Δ’Pmax Last value of deconvolved pressure derivative 

DD Pressure Drawdown (production) 

DST Drill Stem Test 

Eq. Equation 

θ Angle (rad)  

°F Degrees Fahrenheit 

Fig. Figure 

ft Feet 

GOR Gas to Oil ratio (scf/stb) 
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GRV Gross Rock Volume 

h Reservoir thickness (ft) 

k Permeability (mD) 

kp Proppant permeability 

λ Interporosity flow coefficient 

L Distance to flow boundary 

M Mobility 

mD 10
-3

 Darcy 

µ Fluid viscosity 

p Pressure (psi) 

φ Porosity 

φm Matrix porosity 

    Change in pressure (psi) 

    Bourdet pressure derivative (psi)   

pi  Average Initial reservoir pressure (psi) 

     Pressure (well flowing) 

pb  Bubble point pressure (psia)  

    Productivity Index (stb/psi•d) 

PV Pore volume 

   Flow rate (stb/day) 

RCA Routine Core Analysis 

rb Barrel volume at reservoir conditions 

re Drainage radius 

ri Radius of investigation (ft) 

rw Well radius (ft) 

S Skin 

SG Specific Gravity of fluid (g/cc) 

    Water saturation  

    Connate water saturation 

   Oil saturation 

    Residual oil saturation 

stb Stock tank barrels 

STOIIP Stock tank oil initially in place 

T  Temperature (°F) 

ω Storativity ratio 

t Time 

tp Production time 

xf Fracture half length 

Vf Fracture volume 

wav Average fracture width 

w Fracture width 
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Appendix A: Literature Review 

 
Table A-1: Important Milestones 

 
Paper 

number 
Year Title Authors Contribution to Science 

1 

J. Applied 

Mathematics 

24 (5) 1286-

1303 

1960 

Basic concepts in the 

theory of seepage of 

homogenous liquids in 

fissured rocks 

Barenblatt G.I., 

Zheltov I.P., 

Kochina I.N 

Basic dual porosity theory. 

Matrix blocks feed fractures to 

flow into the wells 

2 SPE-426-PA 1963 
The behaviour of Naturally 

fractured Reservoirs 

Warren J.E., Root 

P.J. 

Interporosity flow coefficient, 

storativity ratio, “sugar cube” 

model with reservoir 

anisotropy taken into account. 

3 
SPE-1356-

PA 
1966 

Effect of isolated vertical 

fractures existing in the 

reservoir on fluid 

displacement response 

Givens J.W., 

Crawford P.B. 

Key parameters controlling 

well performance on  isolated 

naturally fractured models: 

Orientation, connected 

fractures length and distance 

to the producing well using 

potentiometric model 

4 SPE-2156-A 1969 

Pressure transient Analysis 

of Naturally Fractured 

Reservoir with uniform 

fracture distribution 

Kazemi H. 

First transient interporosity 

flow model. 

Obtained the total flow 

capacity and storativity ratio. 

5 
SPE-1718-

PA 
1975 

A study of the Finite-

Element Method of the 

Influence of Fractures in 

Confined Aquifers 

Gureghian A.B. 

Finite element model of 

isolated fractures in aquifers. 

Only fractures near wellbore 

increase productivity 

6 SPE-9293 1980 

Determination of Fissure 

Volume and Block Size in 

Fractured Reservoirs by 

Type-Curve Analysis 

Bourdet D., 

Gringarten A.C. 

First type curve for well test 

on double porosity reservoirs 

with wellbore storage and 

skin. 

Quantitative estimation of 

fissure volume and porous 

blocks of the reservoir 

7 

JPT Apr. 

1984 

549-564 

1984 

Interpretation of Tests in 

Fissured and Multilayered 

Reservoirs with Double-

Porosity Behavior: Theory 

and practice 

Gringarten A.C. 

Summary of mathematical 

models for dual porosity 

systems and insight of the 

inverse well test problem: 

identification of behaviour 

8 

Geotechnique 

35, 483 

(1985) 

1985 

Permeability Tensor for 

Discontinuous Rock 

Masses 

Oda M. 

Permeability tensor theory for 

directional fracture system 

permeability modelling. 

Important  on deciding the 

direction of wells to be drilled 

9 
SPE-18173-

MS 
1988 

Well test interpretation for 

Naturally fractured 

reservoirs 

Stewart G., 

Asharsobbi F. 

Concluded on negative 

pseudoskin of wellbores 

connected to fracture network 

using a new developed 

dimensionless derivative type 

curve 

10 

PhD thesis, 

Stanford 

University 

1989 

Hydraulically fractured 

wells in heterogeneous 

reservoirs: Interaction, 

Interference and 

optimisation 

Meehan D.N. 

 

 

Hydraulically fractured well 

and parallel natural fracture 

have minor productivity effect 
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11 SPE-62498 2000 

Integration of Discrete 

Fracture Network methods 

with Conventional 

Simulator approaches 

Dershowitz B., 

LaPointe P., Eiben 

T. 

Integration of dual porosity 

model and Discrete Fracture 

Network modelling, making 

the reservoir modelling more 

geologically realistic 

12 

Elsevier 

publishing 

ISBN 978-0-

88415-317-7 

2001 

Geologic Analysis of 

Naturally Fractured 

Reservoirs 

Nelson R.A.  

Categorisation of naturally 

fractured reservoirs and their 

geological and flow properties 

13 

Journal of 

Volcanology 

and 

Geothermal 

research 148 

(200) 

116-129 

2005 

Estimating flow 

heterogeneity in natural 

fracture systems 

Leckenby R.J, 

Sanderson D.J., 

Lonergan L. 

Review of fracture flow 

properties, study on fault type 

effects on natural fractures 

orientation, network and flow 

patterns. Case study from 

western England basin 

14 SPE-138404 2010 

New Method of Well Test 

Analysis in Naturally 

Fractured Reservoirs 

Based on Elliptical Flow 

Igbokoyi A.O., 

Tiab D. 

Use of Elliptical flow 

interpretation model for 

quantifying the permeability 

anisotropy in naturally 

fractured reservoirs. 

Direction of fluid flow 

prediction 

15 SPE-152019 2012 

A Method to perform 

Multiple Diagnostic 

Fracture Injection Tests 

Simultaneously in a single 

Wellbore 

Martin A.R., 

Cramer D.D., 

Nunez O., Roberts 

N.R. 

Injection fracturing shut in 

tests for deriving reservoir 

properties and minimum 

horizontal stress direction (for 

natural fracture investigation) 
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1. 

 

Journal Applied Mathematics 

24 (5) 1286-1303 

 

1960 

 

Basic concepts in the theory of seepage of homogenous liquids in fissured rocks 

Authors: Barenblatt G.I., Zheltov I.P., Kochina I.N 

 

Contribution to the understanding of flow in naturally fractured reservoirs: 

Basic dual porosity theory. Matrix blocks feed fractures to flow into the wells 

 

Objective of the paper: 

Bring an insight in the fractured and multi-layered reservoirs 

 

Methodology used: 

Developed own analytical model for double porosity 

 

Main Conclusions: 

Matrix blocks feed fractures to flow into the wells 

 

Comments: 

First dual porosity theoretical model. It is neglecting flow from matrix directly to the wellbores 

 

 

2. 

 

SPE-426-PA 

 

1963 

 

The behaviour of Naturally fractured Reservoirs 
 

Authors: Warren J.E., Root P.J. 

 

Contribution to the understanding of flow in naturally fractured reservoirs: 

Establishing concepts such as the interporosity flow coefficient and storativity ratio 

 

Objective of the paper: 

Bring an insight in the fractured and multi-layered reservoirs 

 

Methodology used: 

“Sugar cube” model presented by this paper with reservoir anisotropy taken into account. 

 

Main Conclusions: 

A new analytical model for flow in fractured reservoirs 

 

Comments: 

The first model to take into account reservoir anisotropy 
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3. 

 

SPE-1356-PA 

 

1966 

 

Effect of isolated vertical fractures existing in the reservoir on fluid displacement response 

 

Authors: Givens J.W., Crawford P.B. 

 

Contribution to the understanding of flow in naturally fractured reservoirs: 

Establishing parameters controlling well performance on isolated natural fractured models. 

 

Objective of the paper: 

Study parameters influencing well performance in naturally fractured reservoirs and particularly the effect of vertical fractures 

existing in the reservoir matrix which are not necessarily connected to the wellbores. 

 

Methodology used: 

Potentiometric model 

 

Main Conclusions: 

Orientation, connected fractures length and distance to the producing well are the parameters driving well performance in 

fissured reservoirs. 

 

Comments: 

Assumptions: steady state conditions, mobility ratio equal to unity and neglecting capillary and gravitational phenomena 

effects. 

 

 

4. 

 

SPE-2156-A 

 

1969 

 

Pressure transient Analysis of Naturally Fractured Reservoir with uniform fracture distribution 

 

Authors: Kazemi H. 

 

Contribution to the understanding of flow in naturally fractured reservoirs: 

Establishing the first transient interporosity flow model 

 

Objective of the paper: 

Study interporosity flow and fractured reservoir properties in situ. Attempt to develop a mathematical model and review all 

existing analytical models to date. 

 

Methodology used: 

Developed the transient interporosity flow model 

 

Main Conclusions: 

Verification of conclusions by Warren and Root theory 

From a buildup test, the total flow capacity and storativity ratio are obtainable. 

Combination of a buildup test and a well interference test will yield an approximate value of average matrix permeability 

 

Comments: 

A fractured reservoir is observed to behave similarly to a homogenous one at late times. 
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5. 

 

SPE-1718-PA 

 

1975 

 

A study of the Finite-Element Method of the Influence of Fractures in Confined Aquifers 

 

Authors: Gureghian A.B. 

 

Contribution to the understanding of flow in naturally fractured reservoirs: 

To bring an understanding that the position of the wells relative to the fracture network largely affect the resultant productivity 

 

Objective of the paper: 

Study the effect of fracture orientation and distance from wells effect on productivity 

 

Methodology used: 

Finate element model of isolated fractures in aquifers. 

 

Main Conclusions: 

Only fractures near wellbore increase productivity 

 

Comments: 

Maximum productivity is obtained by wells intersecting the fracture(s). 

 

 

6. 

 

SPE-9293 

 

1980 

 

Determination of Fissure Volume and Block Size in Fractured Reservoirs by Type-Curve Analysis 

 

Authors: Bourdet D., Gringarten A.C. 

 

Contribution to the understanding of flow in naturally fractured reservoirs: 

A new type curve for well test on double porosity reservoirs with wellbore storage and skin. 

 

Objective of the paper: 

Quantitative estimation of fissure volume and porous blocks of the reservoir 

 

Methodology used: 

Developed new type-curve 

 

Main Conclusions: 

Well test data for double porosity systems can be analytically studied, yielding two characteristic parameters: ω and λ, the ratio 

of fissure storativity to total storativity (f+m) and the interporosity flow coefficient, respectively. 

The radius of double porosity effect is limited and depends on λ, (interporosity flow coefficient) and at later times 

homogenous behaviour can be observed, confirming Kazemi H. observations on SPE-2156-A. 

 

Comments: 

Contributed into understanding the log-log derivative analysis of well test data using the double porosity model for fractured 

reservoirs. 
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7. 

 

JPT Apr. 1984 

549-564 

 

1984 

 

Interpretation of Tests in Fissured and Multilayered Reservoirs with Double-Porosity Behavior: Theory and practice 

 

Authors: Gringarten A.C. 

 

Contribution to the understanding of flow in naturally fractured reservoirs: 

Not much, summarizing knowledge to date, mainly from SPE-9293 (Bourdet et. al). Providing further insight on the inverse 

problem of identifying a double porosity behaviour from a pressure transient data set. 

 

Objective of the paper: 

Summary of mathematical models for dual porosity systems and insight of the inverse well test problem: identification of 

behaviour. 

 

Methodology used: 

Bourdet D., Gringarten A.C. type curves from SPE-9293 

 

Main Conclusions: 

1. Fissured reservoirs and multi-layered reservoirs with high permeability contrast exhibit similar double porosity 

behaviour 

2. Double porosity is better diagnosed by log-log analysis of the pressure derivative (over time). 

3. Wells in double porosity reservoirs yield lower skin values, due to a pseudoskin of around minus 3.5. 

4. Fissured reservoirs can be distinguished from multilayer reservoirs only if actual skin is 0 (non-damaged nor 

acidized). 

5. Downhole shut in equipment is ineffective, as wellbore storage of fissured reservoir is 1-2 orders of magnitude higher 

than the case of multi-layered or homogenous reservoirs due to volume of connected fractures. 

6. ω, λ may change with time, due to fluid and connected fracture geometry and volume variation 

 

Comments: 

Matching of double porosity pressure derivative data has to be done with buildup type curves in most cases as they exhibit 

different sensitivities to double porosity parameters than drawdown cases. 

Negative skin and high wellbore storage indicates fissured reservoir, even if homogenous behaviour is observed on pressure 

and derivative plots. Usually longer duration is required for the double porosity behaviour to be exhibited. 
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8. 

 

Geotechnique 35, 483 (1985) 

 

1985 

 

Permeability Tensor for Discontinuous Rock Masses 

 

Authors: Oda M. 

 

Contribution to the understanding of flow in naturally fractured reservoirs: 

Development of the permeability tensor theory for fractured reservoirs. 

 

Objective of the paper: 

To study and develop a method to evaluate the naturally fractured formation permeability on various directions. 

 

Methodology used: 

Permeability tensor theory 

 

Main Conclusions: 

More geologically realistic reservoir models taking into account permeability anisotropy on various directions. 

 

Comments: 

Basis for integration of the Discrete Fracture Network modelling and Double Porosity analytical solving models. Bringing 

more accurate reservoir predictions. 

 

 

9. 

 

SPE-18173-MS 

 

1988 

 

Well test interpretation for Naturally fractured reservoirs 

 

Authors: Stewart G., Asharsobbi F. 

 

Contribution to the understanding of flow in naturally fractured reservoirs: 

Validation of the pseudo-steady state model of matrix block support and interporosity skin due to fracture face alternation. 

New type curve for pressure derivative analysis. 

 

Objective of the paper: 

To study negative pseudo skin behaviour in pressure transient tests of double porosity fissured reservoirs. 

 

Methodology used: 

A new developed dimensionless derivative type curve. 

 

Main Conclusions: 

Negative pseudoskin of wellbores connected to fracture network 

 

Comments: 

Confirmation of validity from empirical negative pseudo-skin assumption of Gringarten A.C. on {JPT Apr. 1984 549-564}. 
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10. 

 

PhD thesis, Stanford University 

 

1989 

 

Hydraulically fractured wells in heterogeneous reservoirs: Interaction, Interference and optimisation 

 

Authors: Meehan D.N. 

 

Contribution to the understanding of flow in naturally fractured reservoirs: 

Hydraulically fractured wells and parallel natural fractures have minor productivity effect 

 

Objective of the paper: 

To study the interaction and interference of hydraulic fractures with pre-existing natural fractures in non homogenous 

reservoirs. 

 

Methodology used: 

A new developed dimensionless derivative type curve. 

 

Main Conclusions: 

Hydraulically fractured wells and parallel natural fractures have minor productivity effect 

 

Comments: 

Hydraulically fractured wells have optimum performance when the wellbore or the induced fractures intersect the existing 

natural fractures and are less or not affected by fractures not connected to wellbore or fractures if the reservoir matrix 

permeability is not high (common for carbonate matrix blocks). 

 

 

11. 

 

SPE-62498-PA 

 

2000 

 

Integration of Discrete Fracture Network methods with Conventional Simulator approaches 

 

Authors: Dershowitz B., LaPointe P., Eiben T. 

 

Contribution to the understanding of flow in naturally fractured reservoirs: 

Development of techniques to integrate connectivity and scale dependent heterogeneity of Discrete Fracture Network 

modelling with Dual Porosity analytical and numerical simulation models. 

 

Objective of the paper: 

Integration of dual porosity model and Discrete Fracture Network modelling 

 

Methodology used: 

Discrete Fracture Network modelling, directional fracture system permeability model by Oda “Permeability Tensor for 

Discontinuous Rock Masses” (1984) Geotechnique 35, 483. 

 

Main Conclusions: 

The DFN models make reservoir modelling more geologically realistic, deriving parameters for the DP continuum models 

used in for DP reservoir simulation. DFN adds a tensor parameter to permeability calculations and an estimation of anisotropy, 

both by numerical simulation and increasingly complex analytical solutions. 

 

Comments: 

Permeability tensor is important on deciding the direction of wells to be drilled. Seismic surveys and existent well test data 

will contribute in optimising well completion planning. 
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12. 

 

Elsevier publishing  

ISBN 978-0-88415-317-7 

 

2001 

 

Geologic Analysis of Naturally Fractured Reservoirs 

 

Authors: Nelson R.A. 

 

Contribution to the understanding of flow in naturally fractured reservoirs: 

Categorisation of naturally fractured reservoirs and their geological and flow properties 

 

Objective of the paper: 

To classify the fractured reservoir types according to their flow properties and establish general reservoir performance 

guidelines 

 

Methodology used: 

Already existing geological interpretation techniques and flow models for dual porosity models 

 

Main Conclusions: 

There are four different types of fractured reservoirs with different effect of fractures and their orientation on reservoir 

performance and development options. 

 

Comments: 

Categorization of fractured reservoirs based on their flow properties. 

 

 

13. 

 

Journal of Volcanology and Geothermal research 148 (200) 

116-129 

 

2005 

 

Estimating flow heterogeneity in natural fracture systems 

 

Authors: Leckenby R.J, Sanderson D.J., Lonergan L. 

 

Imperial College London Department of Earth Science 

 

Contribution to the understanding of flow in naturally fractured reservoirs: 

Review of fracture flow properties, study on fault type effects on natural fractures orientation, network and flow patterns. Case 

study from western England basin, relevant to this project’s studied reservoir. 

 

Objective of the paper: 

Estimation of flow heterogeneity in naturally fissured reservoirs from a geological perspective. 

 

Methodology used: 

Already existing geosciences techniques. The fracture fluid flow is approximated as a prismatic tube with smooth walls and 

calculated using the cubic flow law (Lomize 1951, Witherspoon et al. 1980). 

 

Main Conclusions: 

There are four different types of fractured reservoirs with different effect of fractures and their orientation on reservoir 

performance and development options. 

 

Comments: 

Assumption that the permeability of a rock mass increases as a function of fracture density for homogenous fracture networks. 

Neglecting the fracture boundaries roughness effects on fluid flow. 
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14. 

 

SPE-138404 

 

2010 

 

New Method of Well Test Analysis in Naturally Fractured Reservoirs Based on Elliptical Flow 

 

Authors: Igbokoyi A.O., Tiab D. 

 

Contribution to the understanding of flow in naturally fractured reservoirs: 

Direction of fluid flow prediction in naturally fissured reservoirs 

 

Objective of the paper: 

Application of elliptical flow model to predict the direction of the fluid flow in a fracture reservoir relative to the well 

locations and the fracture network properties and anisotropy. 

 

Methodology used: 

Use of Elliptical flow interpretation model for quantifying the permeability anisotropy in naturally fractured reservoirs. The 

TDS method for estimating elliptical radial coordinate (Tiab et al.) 

 

Main Conclusions: 

The elliptical flow model is the most appropriate for analyzing pressure transient data in fractured reservoirs. 

The interpretation method provides a range of permeability and a direction of maximum permeability. 

 

Comments: 

The elliptical flow model is applicable to both high and low permeability anisotropy, while radial flow model is accurate only 

when permeability ratio is near or equal to unity. 

 

 

15. 

 

SPE-152019 

 

2012 

 

New Method of Well Test Analysis in Naturally Fractured Reservoirs Based on Elliptical Flow 

 

Authors: Martin A.R., Cramer D.D., Nunez O., Roberts N.R. 

 

Contribution to the understanding of flow in naturally fractured reservoirs: 

A practical and mature methodology in order to perform injection fracturing shut in pressure transient tests in multiple 

formations within the same wellbore. 

 

Objective of the paper: 

Application of elliptical flow model to predict the direction of the fluid flow in a fracture reservoir relative to the well 

locations and the fracture network properties and anisotropy. 

 

Methodology used: 

Fracture injection shut in tests, with bottomhole pressure gauges simultaneously for various formations in the same well. 

 

Main Conclusions: 

Fracture injection shut in pressure transient tests yield reservoir properties and minimum horizontal stress direction, which 

assists to appraise the fracture network qualitative properties. 

 

Comments: 

It can be used for investigating and predicting the natural fractures orientation and distribution in the reservoir case study. 

It has a different pressure derivative interpretation technique, compared to classical build-up and drawdown tests. 
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Appendix B: Interpretation model history match  
 

Objective:  This section illustrates the match of the interpretation model with pressure data history based on the 

deconvolved derivative analysis and the rate correction by the algorithm. 

 

 
 
Fig. B- 1: History match of deconvolved derivative interpretation model 

The drawdown flow periods’ pressure data do not match with the model due to non reservoir effects and the fact that the 

well is let to load for the well flowing pressure to decrease, before the artificial lift initiates. As the well is not able to flow 

freely to the surface, the well flowing pressure (pwf) is left to decrease prior to initiation of the beam pump. 

 

 
Fig. B- 2: Semi-Log plot of deconvolved drawdown pressure over superposition time 
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Appendix C: Propped Fracture Design Optimisation 
 

Objective:  This section illustrates the process of optimising a propped fracturing stimulation. 

 

Unified Fracture Design: The method was developed by Economides et al. (2001), as a guideline for the design of propped 

fracture stimulation.  The dimensionless fracture conductivity (CfD) is defined in Eq. 15 as the ratio of the ability of the 

fracture to deliver fluid to the wellbore to the ability of the matrix to deliver fluid to the fracture. In order to achieve the 

maximum production increase, the optimum balance between the propped fracture and formation “deliverability” has to be 

found. 

 

The proppant number (Np) range is a dimensionless fracture design, reservoir shape  and permeability dependent factor 

(Eq. 16,17). Based on its value, the following recommendations have been developed: 

 

                                                             Np < 0.1 ....................................................................................................... (C- 1) 

 

              

               

                               0.1 < Np < 10  .............................................................................................. (C- 2) 

 

                                                             Np > 10 ....................................................................................................... (C- 3) 

 

Therefore, by definition the optimum length and width solve the following equation: 

 
    

      
        

 

  
 ............................................................................................................................................................... (C- 4) 

 

The maximum attainable productivity index  can be calculated as follows: 

 

       
 

              
                                   Np,e ≤ 0.1 ...................................................................................................... (C- 5) 

 

or 

 

       
 

 
  

                         
 

                     
 

            Np,e  >  0.1 ................................................................................................... (C- 6) 

 

Where Np,e (Dietz, 1965) represents the proppant number adjusted for Dietz shape factor (CA) 

 

        
  

     
  ................................................................................................................................................................. (C- 7) 

 

The optimal fracture conductivity (       ), proppant number, fracture width (   ) and half-length (  ) are approximated 

iteratively. 
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Appendix D: Test interpretation from another well  
 

Objective:  This section presents interpretation results on another DST performed on the same formation.  Radial flow 

stabilisation was not reached within any flow period, therefore an interpretation apart from near wellbore effects subject to 

uncertainty and does not provide solid appraisal base. 

 
Fig. D- 3: Well test design for second well 

Deconvolution was deemed unsuccessful due to a lot of non-reservoir effects on the secondary buildup flow periods. The 

production flow periods were unsuitable for inclusion to the algorithm due to cyclical operation of the beam pump as a result 

of low daily production rates. Moreover, connection to lower reservoirs is suspected to be caused due to well integrity issues, 

due to the large difference in reservoir pressure compared to the main test of this study. 

 

Interpretation was made using a double porosity model for a single producing layer with assumed thickness of 20 ft. Time 

dependent skin was used to match the pressure history (Fig. D-3). The only parameters that may be identified with some 

confidence are wellbore storage and skin. Analysis indicated that the Bourdet derivative values match with the same storativity 

ratio value from the other well. This can be used only as an indication, as the end of Interporosity flow transition and infinite 

acting radial flow are not reached within the test duration. 

 
Table D- 1: Test results from the longest buildup Analysis 

pi [psia] WS [bbl/psi] S h [ft TVD] φ [%] kh [mD•ft] k [mD] λ ω PI [stb/psid] 

1400 0.056 -1.75 20 15 36 1.8 910
-6

 0.15 1.510
-2

 

 
Fig. D- 4: Log-Log Pressure and Derviative match 
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Fig. D- 5: Test History Match 

Brine was used to kill the well prior to this drill stem test. A time dependent skin interpretation with higher values for the 

initial flow periods was used, to account for the initial two phase oil and brine flow period, which aided in obtaining an 

acceptable pressure history match (Fig. D-3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

200

400

600

800

1000

1200

1400

1600

P
re

s
s
u

re
 [
p

s
ia

]

-100 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

Time [hr]

0

20

40

60

L
iq

u
id

 r
a

te
 [
S

T
B

/D
]

History plot (Pressure [psia], Liquid rate [STB/D] vs Time [hr])



Evaluation of low permeability, naturally fractured carbonate reservoir with Pressure Transient Analysis  26 

Appendix E: Well Deviation Survey for Tested Well 
 

Objective:  This section illustrates the well trajectory and deviation from the vertical direction. 

 

Fig. E- 1: Well Deviation from vertical direction and deviation angle vs depth. 
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Appendix F: Test Sensitivities to double porosity parameters 
 

Objective: This section presents the sensitivity of the drawdown derivative to double porosity parameters 

 

Fig. F- 1: Sensitivity to Storativity ratio (ω) and Interporosity flow parameter (λ) 

The storativity ratio is defined from Eq. 1: 

 

   
       

         
 

       

               
 ...................................................................................................................................... (F- 8) 

 

 

As the total compressibility is assumed the same for fracture and matrix and the fracture porosity is equal to unity: 

 

   
  

     
 ........................................................................................................................................................................ (F- 2) 

 

From Eq. F-2 we obtain Eq. 2, correlating the fracture volume with the matrix porosity. 

 

Values of the storativity ratio with order of magnitude 10
-2

 indicate a reservoir fissured in multiple directions, while values 

in the range of [10
-1

, 210
-1

] indicate layered parallel fractures as seen in Fig. F-2 (Gringarten, 2010). 

 
Fig. F- 2: Fissured reservoir types (Gringarten, 2010) 

The case studied corresponds to a layered double porosity system for n = 1, for which the corresponding Eq. 5 is obtained. 

 

 

 

 

 

 

 

 

ω increase 

λ increase 
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Appendix G: Petrophysical Interpretation 
  

Objective: This section provides an overview of the petrophysical interpretation process based on the available wireline 

logs. 

 

 
Fig. G- 1:  Petrophysical interpretation of well 1D-03 which was tested 

The petrophysical evaluation was performed on multiple wells, including the one corresponding to the case study (Fig. G-

1) with a deterministic approach. Initially there was performed a quality check of the input logs. 

 

Through a comparison between the calliper measured borehole diameter and the bit size, a “bad-hole” discriminator is set 

up. The effect on filtering measured bulk density and neutron porosity dispersion is beneficial, as illustrated in Fig. G-2. 
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(a) (b)  

 
Fig. G- 2:  Neutron porosity vs bulk density cross plot prior (a) and after filtering bad-hole sections (b) 

The clay volume is determined using an average of the gamma ray and neutron density methods through a linear equation, 

while the clay point is determined using the cross-plot of neutron and bulk densities on the set of wells and based on 

mineralogical analyses (Table G-1). For the bad-hole regions, he sonic log is preferred to calculate porosity using Wyllie 

formula (Wyllie et al., 1956). 

 
Table G-2: Mineralogical Analysis 

 
The formation water salinity (80,000 ppm) was determined using water analysis and used to calibrate the resistivity Rw 

selected for fluid saturation interpretation (Fig. G-3). 
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Fig. G- 3:  Interpreted porosity to wireline LLD resistivity 
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Appendix H: Fracture Injection test falloff interpretation 
 

 
Fig. H- 1: Fracture Injection Test example (Martin et al. 2012) 

An interpretation example of a fracture injection test pressure and semi-log derivative over time logarithmic plot is 

presented in Fig H-1.The derivative plot shows characteristic slopes that indicate the pressure response is strongly influenced 

by various flow regimes. Positive trending slopes on the semi-log derivative occur during fracture closure period. The positive 

unit slope is characteristic of wellbore or fracture storage, indicating that a closing secondary fracture set is supplying fluid to 

the primary fracture. Fracture height recession and closing transverse fractures are two potential fracture storage mechanisms 

(Baree et al. 2007). The positive ½ slope trend is indicative of linear flow and suggests the presence of an open fracture. A 

departure from the positive ½ slope suggests that the fracture has closed. Negative trending slopes occur during the after 

closure and verify that closure has occurred. The negative ½ slope and unit slope trends are characteristic of pseudo-linear and 

pseudo-radial flow, respectively (Martin et al. 2012). 


