
 

IMPERIAL COLLEGE LONDON 

  

  

  

Department of Earth Science and Engineering 

 

Centre for Petroleum Studies  

  

  

 

 

  

CANDIDATE SELECTION AND ASSESSMENT OF THE BENEFITS 

OF VELOCITY STRINGS ON THE DUNBAR FIELD 

  

 

By 

  

 

Damola Fadipe  

  

 

 

 

A report submitted in partial fulfilment of the requirements for 

the MSc and/or the DIC. 

 

 

September 2012 



ii  [Benefits of Velocity Strings on the Dunbar Field] 

 DECLARATION OF OWN WORK  

 

 

 

 

 

 

 

 

I declare that this thesis  
 

 

 
 

 

“Candidate Selection and Assessment of the Benefits of Velocity Strings on the Dunbar Field”  
 

 
 

 

 
is entirely my own work and that where any material could be construed as the work of others, it is fully cited 

and referenced, and/or with appropriate acknowledgement given.  

 
 

 
 

 

 
 

 

 
 

 

Signature:..................................................................................................... 
 

  
 

Name of student: Damola Fadipe   

 
 

 

Name of supervisor: Professor Olivier Gosselin 
 

 
 

Name of company supervisor: Nicolas Flichy & Ombana Rasoanaivo (TOTAL E&P UK) 

 

 



[Benefits of Velocity Strings on the Dunbar Field]   iii 

Acknowledgements 

 

I would like to thank my supervisors, Professor Olivier Gosselin, Nicolas Flichy and Ombana Rasoanaivo for their help in 

defining and shaping the project. I would especially like to thank Ombana for his help, advice and patience throughout the 

duration of the project. I would also like to thank the Well Performance team for assisting me.   

 

I would like to thank TOTAL E&P UK for giving me the opportunity to do my project with them, and for all of the financial 

support throughout the past year. 

 

I would finally like to thank my family for all of their help and support throughout. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv  [Benefits of Velocity Strings on the Dunbar Field] 

Table of contents 
DECLARATION OF OWN WORK .............................................................................................................................................................. ii 

Acknowledgements ........................................................................................................................................................................................... iii 

Candidate Selection and Assessment of the Benefits of Velocity Strings on the Dunbar Field .................................................. 1 

Abstract ................................................................................................................................................................................................................ 1 

Introduction ......................................................................................................................................................................................................... 1 

Liquid Loading and its  Remediation ............................................................................................................................................................... 2 

Candidate Well Selection .................................................................................................................................................................................. 3 

Dynamic Synthesis. ....................................................................................................................................................................................... 3 

Well Test Data. ............................................................................................................................................................................................... 4 

Daily Production Data. .................................................................................................................................................................................. 4 

Candidate Well Selection Results. .............................................................................................................................................................. 4 

Generating Vertical Lift Performance Curves ............................................................................................................................................... 4 

Model Calib ration for the Current Complet ion......................................................................................................................................... 5 

Multiphase Flow Correlat ions. ................................................................................................................................................................ 5 

IPR Generation. ......................................................................................................................................................................................... 5 

Model Accuracy Validation..................................................................................................................................................................... 5 

Complet ion Options....................................................................................................................................................................................... 5 

Critical Velocity Analysis........................................................................................................................................................................ 5 

VLP Generation. ........................................................................................................................................................................................ 5 

Evaluating the Impact on Reserves ................................................................................................................................................................. 6 

Results and Analysis .......................................................................................................................................................................................... 6 

D29Z................................................................................................................................................................................................................. 6 

Oil Model.................................................................................................................................................................................................... 7 

Retrograde Condensate Model. ............................................................................................................................................................... 8 

Model Comparison.................................................................................................................................................................................... 8 

Velocity String and Tail Pipe Optimisation. ......................................................................................................................................... 8 

Impact on Reserves. ................................................................................................................................................................................ 10 

Reserves Gain Uncertainty. ................................................................................................................................................................... 11 

D15. ................................................................................................................................................................................................................ 12 

Oil Model.................................................................................................................................................................................................. 12 

Velocity String and Tail Pipe Optimisation. ....................................................................................................................................... 12 

Discussion.......................................................................................................................................................................................................... 14 

Conclusions ....................................................................................................................................................................................................... 15 

Further Work ..................................................................................................................................................................................................... 15 

Nomenclature  .................................................................................................................................................................................................... 15 

SI Metric Conversion Factors......................................................................................................................................................................... 16 

References.......................................................................................................................................................................................................... 16 

Appendices ........................................................................................................................................................................................................ 17 

Appendix A – Critical Literature Review ................................................................................................................................................ 17 

Appendix B – Maps of the Dunbar field  .................................................................................................................................................. 43 

Appendix C – Data from the well screening process ............................................................................................................................. 44 



[Benefits of Velocity Strings on the Dunbar Field]   v 

Appendix D – Prosper data for well D29Z .............................................................................................................................................. 45 

Appendix E – Prosper data for well D15 ................................................................................................................................................. 50 

 

List of figures 

Figure 1 – Diagram showing an example current completion, velocity string and tail pipe installation  ............................................ 2 
Figure 2 – Workflow describ ing the well screening process ...................................................................................................................... 3 
Figure 3 – A p lot showing the reduction in erruptivity rate when a velocity string is installed  ........................................................... 6 
Figure 4 – Historical variation of W HFP and WHFT for well D29Z  ....................................................................................................... 7 
Figure 5 - IPR plot for well D29Z using the oil model (left) and retrograde condensate model (right), from Prosper.................... 7 
Figure 6 - Critical velocity and no-slip velocity comparison for the current completion, 2⅜” velocity string and tail pipe (left) 

and for the three velocity strings considered (right) ..................................................................................................................................... 9 
Figure 7 – VLPs for the proposed velocity strings with the late life IPR case ........................................................................................ 9 
Figure 8 – Variation of gas rates with time for each completion  ............................................................................................................. 10 
Figure 9 – Variation of reservoir pressure with cumulative gas production for the middle Statfjord (left) and lower Statfjord 

(right) .................................................................................................................................................................................................................. 11 
Figure 10 - Variat ion of reservoir pressure with cumulative gas production using historic production data................................... 11 
Figure 11 – Historical variation of WHFP and WHFT for well D15 (left), IPR plot from Prosper (right) ...................................... 12 
Figure 12 - Critical velocity and no-slip velocity co mparison for the current completion and 2⅜” tail pipe  .................................. 13 
Figure 13 – VLPs for the tail p ipes and 2⅞” velocity string with the current IPR case....................................................................... 13 
Figure 14 – Variation of pressure losses with oil rate for D15 and D29Z .............................................................................................. 14 
 

List of tables 
Table 1 – Summary of results from daily production data analysis........................................................................................................... 4 
Table 2 – Summary of data for the operating cases analysed for well D29Z  .......................................................................................... 8 
Table 3 – Summary of the cumulat ive production gain from the simulations for the velocity strings.............................................. 10 
Table 4 – Summary of data for the operating cases analysed for well D15 ........................................................................................... 13 
Table 5 – Differences between D29Z and D15 that impact the success of a velocity string  .............................................................. 15 
 

List of figures - Appendices 
Figure B- 1 - Map showing the location of the Dunbar field (source: TOTAL E&P UK Draughting Office)  ................................ 43 
Figure B- 2 – Different compartments within the Dunbar field (source: TOTAL E&P UK)  ............................................................. 43 

Figure D- 1 - D29Z completion schemat ic, from Prosper ......................................................................................................................... 45 
Figure D- 2 – Variat ion of PI with time fo r D29Z...................................................................................................................................... 46 
Figure D- 3 – PI sensitivity for the D29Z oil model, from Prosper ......................................................................................................... 47 
Figure D- 4 – VLPs for the tail p ipes with the late life IPR case for D29Z  ........................................................................................... 48 

Figure E- 1 – D15 completion schematic, from Prosper ........................................................................................................................... 50 
Figure E- 2 - Variation of PI with time for D15.......................................................................................................................................... 51 
Figure E- 3 - PI sensitivity for D15, from Prosper ..................................................................................................................................... 52 
 

List of tables - Appendices 
Table C- 1 - Scoring details for each well used in the well screening process ...................................................................................... 44 
Table C- 2 – GOR and water cut trends from well test data ..................................................................................................................... 44 

Table D- 1 - Summary of the well test data used to match the correlations for D29Z  ......................................................................... 45 
Table D- 2 – Errors in  gauge pressures calculated by the various correlations for the D29Z o il model ........................................... 46 
Table D- 3 – Well test data used to match the IPR and validate the two models for D29Z  ................................................................ 47 
Table D- 4 – Errors in  gauge pressures calculated by the various correlations for the retrograde condensate model for D29Z .. 48 
Table D- 5 – Production rates with the various D29Z completions for different cases ....................................................................... 49 
Table D- 6 – Percentage rate reductions for the various D29Z completions for d ifferent cases ........................................................ 49 
Table D- 7 – Cumulat ive production gain for the various D29Z completions with a THP limit of 40 bars  .................................... 49 

Table E- 1 - Summary of the well test data used to match the correlations for D15 ............................................................................ 50 
Table E- 2 - Errors in gauge pressures calculated by the various correlations for the D15 o il model ............................................... 51 
Table E- 3 - Well test data used to match the IPR and validate the D15 o il model  .............................................................................. 52 
Table E- 4 - Production rates for the various D15 completions for different cases .............................................................................. 52

file://main.glb.corp.local/EP-GB$/Home/ABZ/3/L0388623/Desktop/Project/Second%20Draft.docx%23_Toc333495918
file://main.glb.corp.local/EP-GB$/Home/ABZ/3/L0388623/Desktop/Project/Second%20Draft.docx%23_Toc333495919
file://main.glb.corp.local/EP-GB$/Home/ABZ/3/L0388623/Desktop/Project/Second%20Draft.docx%23_Toc333495924
file://main.glb.corp.local/EP-GB$/Home/ABZ/3/L0388623/Desktop/Project/Second%20Draft.docx%23_Toc333495924
file://main.glb.corp.local/EP-GB$/Home/ABZ/3/L0388623/Desktop/Project/Second%20Draft.docx%23_Toc333495930
file://main.glb.corp.local/EP-GB$/Home/ABZ/3/L0388623/Desktop/Project/Final%20Report.docx%23_Toc333674410




 
 

 

 
Candidate Selection and Assessment of the Benefits of Velocity Strings on 
the Dunbar Field 
Damola Fadipe 

Imperial College supervisor – Professor Olivier Gosselin 

Company supervisor – Nicolas Flichy & Ombana Rasoanaivo (TOTAL E&P UK) 

 

 

Abstract 
The Dunbar field is located in the North Sea. The reservoir contains critical fluid and is currently being produced via water 

injection and natural depletion. For the parts of the field that are produced via natural depletion, velocity strings or tail  pipes 

can be installed in wells to extend their producing lifetime and stabilise production. Velocity strings are normally used in gas 

wells. The Dunbar case is different as it is mainly an oil field, but contains high gas -oil ratio (GOR) wells. Gas production 

increases as the reservoir pressure declines, thus making velocity strings suited to wells under natural depletion, where they 

help to increase the gas velocity above the critical velocity, enabling the well to continuously unload liquids.  The design must 

be optimised and the timing must be correct, otherwise a velocity string can act as a choke and prevent t he well from 

producing at its potential rate. A well screening process was developed in order to identify suitable candidates for well 

intervention. Vertical Lift Performance (VLP) curves were generated for successful candidates and the completion design 

(type, i.e. velocity string or tail pipe, internal diameter, setting depth and length) was optimised. The impact on reserves was 

then evaluated in order to determine the gain from installing a velocity string or tail pipe.  

The objective of this study is to discuss the methodology used in screening the wells that are in the part of the 

reservoir under natural depletion for candidacy for the installation of a velocity string or tail pipe, and to evaluate the impact 

on reserves for successful wells. The study shows that the installation of a velocity string can lower the abandonment pressure, 

and therefore extend the producing lifetime and increase reserves for a well. It also shows that several factors influence th e 

suitability of a well for the installation of a velocity string or tail pipe, and so individual well by well screening is required. The 

aim of suggested further work is to evaluate whether it is actually feasible to develop a standardised well selection process  that 

can be applied directly to neighbouring fields with similar fluid characteristics , where problems relating to liquid loading will 

remain in focus as North Sea fields continue to mature.  

 

Introduction 
The Dunbar field was discovered in 1973 and is located 420 km north east of Aberdeen in the Northern North Sea. The 

reservoir contains over 1 billion barrels of oil equivalent (boe) and has been produced since 1994. The reservoir is complex 

and compartmentalised, with a critical fluid that behaves like a light oil in some parts of the reservoir, and like a gas 

condensate in other parts. It is located 3650 mTVDss, and initial pressures of 575 bars and fluid temperatures of 120°C have 

been encountered. The main layer of the reservoir (Brent) contains over 80% of the hydrocarbons in place, and half of the 

hydrocarbons in place are in rocks with a permeability less than 10mD. The current production strategy consists of pressure 

maintenance via water injection in some parts of the field, and natural reservoir pressure depletion in others. 

For the parts of the reservoir under natural depletion, an economic option for stabilising and extending production 

lifetime when the reservoir pressure has dropped is to install a velocity string or a tail pipe. They are tubing with a smaller 

diameter, whose function is to provide a reduced flow area, increasing the gas velocity above the critical velocity  (Turner et 

al., 1969), and allowing the continuous  removal of wellbore liquids (condensed water, condensate) from the well. Tail pipes 

are usually shorter in length and are set deeper in the well completion than velocity strings. Other methods of gas well liquid 

loading remediation exist, such as plunger lift, gas lift, surfactant injection and electrical submersible pumps  (ESPs), and their 

use has been well documented (Lea et al., 2008). Other, more radical methods such as microwave heating (Kamal et al., 2011) 

are being developed, but velocity strings have proven to be a low cost tool. 

Although the use of velocity strings and tail pipes is somewhat routine onshore, their application offshore is more 

complex. North Sea regulations state that offshore wells need to be fitted with a Sub Surface Safety Valve (SSSV) that is 

operational at all times. Coupled with harsh offshore environments this provides technical challenges in terms of the 

installation of smaller tubing while keeping a SSSV fully operational.  

Previous studies (Hutlas and Granberry, 1972; Adams and Marsili, 1992; Lea and Nickens, 2004; Arachman et al., 

2004; Oudeman, 2007; de Jonge and Tousis, 2007; Goedemoed et al., 2010) have looked at the installation of velocity strings 

Imperial College 
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in order to remediate liquid loading in gas wells . The Dunbar case is different as some of the wells in concern produce as much 

gas as they do oil, so the focus is on wells being produced via natural depletion . In addition, more operationally defined 

criteria must be used in order to determine well candidacy for remediation as opposed to liquid production and gas velocities 

below the critical velocity only.  

 
Liquid Loading and its Remediation 
Liquid loading occurs when gas wells  are unable to lift liquids from the wellbore to the surface. Liquid loading  and its 

associated phenomena are not obvious, as wells suffering from liquid loading may still produce for a long time. Symptoms of 

liquid loading may include sharp drops in a production rate decline curve, liquid slugs produced to surface, increasing pressure 

differential between the tubing and casing with time (without packers present) and sharp changes in gradient on a flowing 

pressure survey (Lea and Nickens, 2004). 

The issues regarding liquid loading in gas wells have been well documented in the literature with case studies. One of 

the more well known criteria for determining the gas velocity above which a gas well will continuously unload liquids was 

developed by Turner et al. in 1969. They deduced that the prevailing mechanism for liquid removal in a gas well could be 

modelled using liquid drops entrained in a vertically flowing high velocity gas core, and concluded that the minimum velocity  

required to unload a gas well is that which will move the largest liquid droplet that can exist in the gas stream. This critical 

velocity can be calculated using equation 1, and the critical gas rate can be calculated using equation 2: 

        
    (       )

   

  
   

   ............................................................................... .....(1) 

 

        
     

  
   ....................................................................................... (2) 

 

Coleman et al. (1991) later found that the 20% correction added to equation 1 to make the numerical factor 1.912 was 

unnecessary, and so 1.59 is more commonly used. 

Liquid loading is detrimental to well performance because it causes a drop in production rates, liquid slugging at the 

surface and can eventually lead to a well dying if left untreated. The technologies available to remediate liquid loading have 

also been well documented, and include strategies such as wellhead compression, plunger lift, surfactant injection, gas lift,  

ESPs and progressive cavity pumps (Lea et al., 2008). The installation of a velocity string can be advantageous  compared to 

the other available forms of gas well deliquification because it is low cost, can be performed without killing the well and 

requires no further maintenance after installation (Oudeman, 2007). Installation without the requirement to kill a well protects 

low pressure reservoirs from damage which can occur due to the use of kill fluids, or by entrained solids (Poppenhagen et al., 

2010). However, further installations of smaller and smaller tubing will be required for effective liquid unloading if the 

reservoir pressure continues to drop (Schinagl and Denny, 2007). The associated drop in production rates  when velocity strings 

or tail pipes are installed (caused by increased frictional pressure losses in the well) are also potential drawbacks. Tail pipes 

use shorter lengths of pipe and are only installed in the lower part of the completion where the fluid velocity is below the 

critical velocity, and so the frictional losses and drop in production rates are lower.  

Velocity strings and tail pipes tend to come in standardised sizes. 2”, 2⅜” and 2⅞” diameter installations were 

analysed. The requirement for a fully operational SSSV means that velocity strings must be set below the SSSV. This can be 

achieved using new packers. Tail pipes however, can be hung off existing no -go nipples present in the current completion. No-

go nipples are placed deep in the production tubing and provide a reduced diameter, preventing tools of a certain size falling 

within the tubing. Figure 1 shows the difference between a current completion, velocity string and tail pipe installation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Diagram showing an example current completion, velocity string and tail pipe installation  
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The application of velocity strings is far more common for gas wells than oils wells (or high GOR wells compared to 

low GOR wells). This is because ESPs have proved to be a very effective method for adding pressure to oil wells with low 

erruptivity. Their application to gassy wells is less popular due to their inability to handle large volumes of gas . Even though 

new pumps capable of handling high GOR flows are being developed (Schinagl and Denny, 2007), there is a need for lots of 

power and rig space, which is unavailable on the Dunbar platform. 

With respect to the North Sea, regulations state that SSSVs must be fully operational at all times, providing a 

technical challenge in the use of technologies such as velocity strings or plunger lift , though new systems allowing the use of 

plungers below the SSSV have been developed (Hearn, 2010). Chemical injection using surfactant via capillary tubes can also 

be used, but surfactants need rigorous testing before they can be approved. Velocity strings therefore provide a simple, quick 

and relatively low cost solution to problems regarding liquid loading. 

 
Candidate Well Selection 
The well selection and velocity string design process plays an incredibly important part in remediating liquid loading. If 

installed too early, velocity strings can act as a choke for a well, reducing its production rate, as frictional pressure losses will 

dominate the pressure drop in the well. Installation too late may mean a reduction in a well’s cumulative production because 

the well may die before the installation, causing a loss in production . With these factors in consideration, developing adequate 

selection criteria is necessary for project success. 

A well screening process was developed in order to identify candidates for velocity string or tail pipe installation. 

These forms of well intervention are suited to wells in reservoirs under natural depletion, as they help to raise the gas velocity 

above the critical velocity, enabling the well to continuously unload liquids. Wells in reservoirs supported by water injection 

will eventually suffer from water breakthrough, and the contrast in density between injection water and reservoir gas will 

compound any liquid loading symptoms further. For this reason the study focused on the 11 still producing wells in the part o f 

the Dunbar field under natural depletion. 

The well screening process encompassed three different sources of data; information from the Dynamic Synthesis for 

each well (source: TOTAL E&P UK), well test data, and production and wellhead parameter data. It can be summarised in the 

workflow shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dynamic Synthesis. 

 The first step of the process was to score the wells by the following criteria using information from the Dynamic 

Synthesis, a comprehensive summary of all data available for each well that had already been compiled by TOTAL: 

 Production mechanism - It was important to consider the production mechanism, as some wells in the Central part of 

Figure 2 – Workflow describing the well screening process  

Dynamic Synthesis 

 Score the 11 wells based on criteria such as production mechanism, GOR, water cut, well 

understanding, presence of scale. 

 Eliminate wells with operational issues, such as the need for initial well intervention 

before a velocity string can even be installed. 

 

Well Test Data 

 4 wells remain after the analysis of data from the Dynamic Synthesis. 

 Use well test data to analyse trends in GOR and water cut for these wells. 

Daily Production Data 

 Analyse trends in well parameters such as oil, gas and water production, GOR, water cut, 

wellhead flowing pressure and temperature for these wells.  

 Analyse cumulative production data to find the best historical producers. 

 

Select Suitable Candidates 
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the field may possibly be pressure supported by injectors in the Frontal Central part of the reservoir, and so seawater 

breakthrough may be a future possibility. Wells under natural depletion scored a point.  

 Reported scaling – Wells with an anticipated scaling issue or already displaying signs of scaling may require frequent 

milling operations, preventing the installation of a velocity string. Wells with no scale  reported scored a point. 

 Well understanding – Wells were given a point for this criterion if their understanding was good or better. 

 GOR and water cut – This data was obtained from the latest well test data. A point was given for wells with a GOR 

above 500 Sm
3
/Sm

3
, and another for a water cut below 5%. A high GOR is desired as high gas rate wells are better at 

unloading wellbore liquids than low GOR wells due to high gas velocities. Ideally no water production is preferred as 

water can lead to liquid loading problems in the well. 

 Operational issues – Those considered included the possible re-use of the well slot for a new well in the new drilling 

campaign, as well as the requirement for a higher priority well intervention before a velocity string could be 

considered, such as re-perforation. 

 

Based on this scoring system, 4 out of the 11 wells were deemed suitable for further analysis (D15, D18, D24Z and D29Z). 

 

Well Test Data. 

Historical well test data for the 4 remaining wells was then used to analyse trends in GOR and water cut in order to 

confirm that the latest well test data accurately represented previous trends. All wells were found to have sporadic records of 

water production and low water cut, except D18, which showed a rising trend in water cut . Wells D29Z and D18 showed 

rising trends in already high GOR. 

 

Daily Production Data. 

The final step in the well screening process involved analysing trends in oil, gas and water production, GOR, water 

cut, wellhead flowing pressure (WHFP) and temperature (WHFT) data. Cumulative gas production data was converted into 

boe by applying a conversion factor of 8.34 kboe/MSm
3
, and added to cumulative oil production data in order to determine 

figures for cumulative production for each well. The wells were ranked based on cumulative hydrocarbon production and 

cumulative water production as a means of identifying the wells with the best productivity, because strong historic producers  

will make good candidates for well intervention. The results from this process are shown in Table 1. 

 

Table 1 – Summary of results from daily production data analysis 

Well 

name 

Notes from daily production data analysis Rank 

D29Z Primarily a gas producer, high GOR, low  w ater cut, possible 
liquid loading (erruptivity problem) 

1 

D15 Low  GOR, low  w ater cut, f luctuating WHFP and production, 
signs of liquid loading  

2 

D18 High GOR but high w ater cut, declining trend in production 3 

D24Z Low  GOR, low  w ater cut, cyclic w ell so production is erratic  4 

 

Candidate Well Selection Results. 

Based on the well screening process, well D29Z was identified as the most suitable candidate for further velocity 

string installation analysis due to its high GOR, low water cut, strong historic production and lack of operational issues. D15 

was also highlighted as a possibility for further analysis due to its strong historic production and evidence of liquid loading, 

requiring immediate remediation. Well D18 was not considered further due to rising water production, and well D24Z was not 

considered further due to its low GOR and cyclic production. Well D35Z would have been a good candidate but the reservoir 

where this well is located hasn’t sufficiently depleted, and so a velocity string could possibly act as a choke and prevent the 

well from producing at its potential rates. 

 

Generating Vertical Lift Performance Curves  
In order to determine which type of completion configuration (velocity string or tail pipe) is optimal, Nodal Analysis must be 

used. The expected current production rate is given by the intersection of the current reservoir Inflow Performance 

Relationship (IPR) curve with the Vertical Lift Performance (VLP) curve that corresponds to a particular velocity string or tail 

pipe diameter. The IPR describes the relationship between bottomhole flowing pressure (BHFP) and production rate  at a given 

reservoir pressure. The VLP describes the tubing performance at given operating conditions. The expected future production 

rate is given by the intersection of the future IPR (when the reservoir pressure has dropped further) with a given VLP curve.  

Models for each well with the current completions  were calibrated and matched to historic well test data using Prosper, a well 

performance modelling, design and optimisation tool (version 11.5, Petroleum Experts , March 2011). This ensured that each 
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model could accurately predict future well performance using previous well performance data.  

 

Model Calibration for the Current Completion. 
Multiphase Flow Correlations. 

Model calibration required the use of a multiphase flow correlation which could describe the pressure drop in the 

well. Various multiphase flow correlations have been developed. Those developed by the likes of Duns and Ros (1963), 

Fancher and Brown (1963) and Beggs and Brill (1973), are empirical and so their range of applicability is somewhat limited. 

Other correlations, such as the proprietary correlations developed by Petroleum Experts (see references 18.) have also been 

developed and are more mechanistic in nature, thus representing physical phenomena more closely. Their aim is to calculate 

the pressure drop at every point in a well in order to accurately mimic the wells performance. The total pressure drop in a well 

consists of the components shown in equation 3: 

 

[
  

  
]
     

  
 

  
        

     
 

    
  

    

  

   

  
   ................................................................(3) 

 

The first term represents hydrostatic pressure losses, and is the biggest factor in vertical and inclined flow (during the 

occurrence of liquid loading, the presence of liquid causes an increase in the BHFP, causing wells to load up and possibly die). 

The second term represents the frictional pressure loss, and becomes a more significant contributor to the overall pressure drop 

in a well when flow rates are high (e.g. in a gas well). The third term represents the pressure drop due to acceleration, and is 

generally negligible. 

Prosper was used to compare pressures calculated at gauge depth using various tubing correlations  with the gauge 

pressures measured during several bottomhole pressure (BHP) survey operations  in order to identify the correlations that most 

accurately predict the pressure drop in a well. This step was important, as it is essential to accurately predict pressures in order 

to accurately predict rates. The correlations used were the modified Duns and Ros, Fancher Brown, Petroleum Experts 2, 4 and 

5 (PE2, PE4, PE5), OLGAS 2P and 3P (proprietary correlations), and Tacite (a TOTAL in house correlation generally used for 

oil wells with a high water cut). 

 

IPR Generation. 

 There are several models available for use in order to generate the IPR curves. The simplest is the P.I. Entry model, 

which uses the reservoir pressure and a pre-defined value for the Productivity Index (PI) to calculate rates above the bubble 

point pressure, and the Vogel IPR to calculate rates below the bubble point pressure. This model can only be used if it is 

assumed that the PI for a given well s tays constant over its life.  To validate this, the PI for each well test was evaluated using 

the BHFP calculated from the tubing head pressure (THP) with the chosen multiphase correlation, the recorded rates and the 

corresponding reservoir pressure (interpolated from available measured reservoir pressure data). The PIs for each well test 

were then plotted against time. If it was observed that the PI remained relatively constant over time (excluding the initial early 

life drop in PI), then it was acceptable to use the P.I. Entry model. The IPR curve could then be generated by selecting an 

appropriate value for the PI (which was chosen by performing a sensitivity analysis) and matching the curve to well test data . 

 
Model Accuracy Validation. 

 Once the IPR and VLP curves for the current completion had been generated, a final check for accuracy was to 

compare the production rates calculated using the THPs from the well test data with the measured rates from the well test data. 

If the difference was small enough, it confirmed that the model was adequate for use when evaluating the predicted 

performance of each well. 

 

Completion Options. 

Critical Velocity Analysis. 

The best completion type (velocity string or tail pipe) was chosen by analysing the variation of critical velocity and 

no-slip fluid velocity with measured depth for the current completion of each well. If there was only a problem in lifting the 

no-slip velocity above the critical velocity in the lower part of the completion, a tail pipe would be the best option as it would 

be considerably shorter in length (and hence cost) and easier to install than a velocity string. If there were problems raising the 

no-slip velocity above the critical velocity higher up in the completion then a velocity string would be the best option.    

 
VLP Generation. 

 The VLP curves for all considered options were generated and then plotted for three cases; a case representing the 

current reservoir and production performance (case 1), a case representing mid life reservoir and well performance (case 2), 

and a case representing late life reservoir and well performance (case 3). This was done for the following reasons: 

 To evaluate whether or not there was currently an evident liquid loading problem in the well.  

 To determine the best time to install a velocity string or tail pipe if there was not currently a liquid loading problem 

with the current completion. 
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 To confirm whether velocity strings or tail pipes  could still produce when the reservoir pressure had dropped to the 

late life case. 

 

Vertical Flow Performance (VFP) Tables, which describe the tubing performance for a range of THPs, GORs and water 

cuts, were then generated for use in the reservoir simulation model in Eclipse (E300, 2009.2, Schlumberger). 

A preliminary choice of the most optimal completion option was determined by selecting the option that was able to: 

 Keep the no-slip velocity above the critical velocity at all points in the well. 

 Provide an acceptable reduction in production rates. 

 Provide a significant reduction in the well erruptivity limit (below which flow becomes unstable, represented by the 

minimum of the VLP curve, and so a reduction would signify a delay in loss of erruptivity). 

 Produce at the required depleted reservoir pressures. 

 

Figure 3 shows an example installation where a velocity string is able to provide a reduction in the erruptivity limit, and 

produce at lower reservoir pressures.  

 

 
Figure 3 – A plot showing the reduction in erruptivity rate when a velocity string is installed  

Evaluating the Impact on Reserves 
The impact on reserves of installing a velocity string or tail pipe was evaluated by running reservoir model simulations in 

Eclipse. The reservoir model had already been history matched with respect to pressure and saturation (GOR and water cut) , 

and the study mainly focused on production rate prediction. The process involved the following: 

 To ensure continuity in flow rates  from the historical to forecast period, modify the PI multiplier of the well in the 

reservoir model to match THPs from historical production data (and thus rates) for the last year with THPs from the 

simulation generated using the VFP table for the current completion.  

 Generate production forecasts for the current completion and for the proposed velocity string or tail pipe options . 

 Compare cumulative oil and gas production to evaluate the impact that the new installations have on reserves. 

 

After the simulation had been run for the current completion, it was possible to determine when the well would be 

expected to die. The installation of a new velocity string or tail pipe was then scheduled for around that time. The current 

reservoir model is run with the wells controlled by a THP limit corresponding to the suction pressure of the export pumps on 

the Dunbar platform. The THP limit is lowered to 35 bars for all wells in the field during Q3 2012 and the simulation is run up 

to December 2031. Simulations for a THP limit of 40 bars were also run in order to determine the impact of degraded pump 

performance on the reserves associated with a velocity string or tail pipe installation.  

 

Results and Analysis 
D29Z.  

D29Z is a high GOR well that has been a strong historical producer since first production in 2002. It was favoured in 

40

60

80

100

120

140

0 50 100 150 200 250 300 350 400 450 500

B
H

FP
 (b

ar
a)

Oil Rate (stb/day)

Reduction in erruptivity limit

Current IPR Current Completion 2 3/8" Velocity string Future IPR

Reduction in erruptivity limit

Drop in production rate



[Benefits of Velocity Strings on the Dunbar Field]   7 

the well screening process for these reasons, along with its low water cut. As can be seen from Figure 4, up to 2008, wellhead 

flowing temperature slowly declined, but post 2008 it began to fluctuate while the wellhead flowing pressure  was stable, 

indicating possible liquid loading or an erruptivity problem. 

 

  
Figure 4 – Historical variation of WHFP and WHFT for well D29Z 

All wells in the Dunbar field are modelled in Prosper as oil wells. The case for D29Z is different. Despite producing the same 

reservoir fluid, the area drained by this well is already depleted (below the saturation pressure) and so it produces more gas 

than oil. It would therefore be more accurate to model it as a gas well using a retrograde condensate model. However, for 

consistency with the other wells in the field it should be modelled as an oil well. D29Z was also initially a low GOR well. Two 

models were therefore created for the current completion, which contains mainly 4½” production tubing ; an oil model and a 

retrograde condensate model, in order to determine whether this mainly gas producing well could be modelled as an oil well.   

 
Oil Model. 

The accuracy of the various multiphase tubing correlations was compared using downhole measurements and 

historical well test data consisting of tubing head pressure and temperature, water cut, liquid rate, gauge depth and pressure, 

reservoir pressure and GOR. Test data were excluded from the comparison if the average absolute error (in calculated gauge 

pressure vs. measured gauge pressure) across the correlations was greater than 10% (as well test data is sometimes 

questionable). The proprietary OLGAS 3P correlation was found to be the most accurate, having an error of 2.5%. 

The IPR was generated using the P.I. entry model, and was matched to liquid rates and BHFPs from well tests from 

the last two years (see left plot in Figure 5). The IPR was matched to three sets of well test data out of a possible six (also due 

to questionable data quality). Analysis of the variation of well PI with time showed that the PI remained relatively constant, 

and a sensitivity performed in Prosper resulted in the best match with well test data using a PI of 1.8 Sm
3
/day/bar. 

 

   
Figure 5 - IPR plot for well D29Z using the oil model (left) and retrograde condensate model (right), from Prospe r 
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The quality of the oil model was then validated by computing the producing liquid and gas rates for the various THPs 

of the well tests. For the three sets of well test data out of a possible six that were matched with the IPR, the average error in 

the calculated gas rates was 2.2% (gas rates were checked as the well produces more gas than oil, and so there is more 

confidence in the gas rates measured during well tests than oil or liquid rates). This was small enough to validate the acc uracy 

of the model. 

 
Retrograde Condensate Model. 

The same process was performed for the retrograde condensate model. When comparing the multiphase tubing 

correlations, the same well test data was used, but liquid rates were replaced with gas rates. Again the OLGAS 3P correlation 

was found to be most accurate, having an error of 3%. 

The IPR was generated with a Multirate Forcheimer with pseudo pressure model, which takes account of non-Darcy 

pressure losses (see right plot in Figure 5), and matched to gas rates and BHFPs from the same three sets of well test data as 

the oil model. The IPR has the form shown in equation 4, where A and B are constants: 

 

                      
    .............................................................................(4) 

 

The quality of the model was then validated with a similar check, where calculated producing gas rates were 

compared to measured gas rates. The average absolute error in the calculated gas rates for the well tes ts used to match the IPR 

was 3.6%, again small enough to validate the model. 

 
Model Comparison. 

 The purpose of creating the two models for the well was to identify whether or not this mainly gas produ cing well 

could be modelled as an oil well for consistency with other wells in the field. Given that the overall aim is to evaluate how the 

no-slip velocity varies with depth in the well in relation to the critical velocity, a comparison was made between t he no-slip 

velocities, critical velocities and pressures calculated by both models. Prosper calculates the critical velocities automatic ally 

for the retrograde condensate model using equation 5. No calculation is done for the oil model, and so equation 5 is used to 

calculate the critical velocities for the oil model in order to ensure a fair comparison: 

 

       
    (      )

   

  
   

   ....................................................................................(5) 

 

It was observed that the oil model underestimates the critical velocity by 6%, while overestimating the no -slip 

velocity by 6%. The error in pressures calculated at various depths in the well averaged 0.16%. These errors were deemed 

small enough to assume that the oil model accurately describes this mainly gas producing well.  
 

Velocity String and Tail Pipe Optimisation. 

The velocity strings evaluated were set from the base of the SSSV (measured depth 295m) to the top of the pre-

perforated liner (measured depth 6493m), while the tail-pipes would be hung-off the no-go nipple (measured depth 5786m) 

and run down to the top of the pre-perforated liner. They were evaluated for the operating cases shown in Table 2. 

 

Table 2 – Summary of data for the operating cases analysed for well D29Z  

Case Time Reservoir Pressure (bara) THP (bara) GOR (Sm 3/Sm 3) 

1 Current (last w ell test) 115 42.5 5237 

2 Mid life 90 35 3579 

3 Late life 80 35 3579 

 

The variation of no-slip velocity with well measured depth was analysed. Figure 6 (left chart) shows this variation, 

with the current completion, a 2⅜” velocity string and 2⅜” tail pipe as an example for case 1. It can be seen that for the current 

completion there appears to be no apparent issue of liquid loading in the well (no -slip velocity above critical velocity at all 

points in the well), but there is a problem area within the well where a sudden drop in no-slip velocity is observed. This is just 

above the pre-perforated liner, and is due to the change of diameter from the 4½” pre-perforated liner to 7” liner, before 

reaching the 4½” production tubing . This may cause production problems in the future as the reservoir pressure continues  to 

decline, and so the installation of a velocity string or tail pipe at some point in the future would be recommended. 

The chart shows that the tail pipe gives a strong improvement in no-slip velocity above the pre-perforated liner, 

compared to the modest improvement provided by the velocity string. However, the tail pipes (and current completion) are 

unable to produce in the late life case when the reservoir pressure has dropped to 80 bars, as their VLPs do not intersect the 
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IPR for that case. Figure 7 shows that the velocity strings can produce when the reservoir pressure drops to 80 bars. Therefore 

a velocity string is the only viable option.  Figure 6 (right chart) also shows the variation in no-slip and critical velocity with 

measured depth for the three velocity strings considered during the operating conditions in case 3. It shows that the 2⅞” 

velocity string is the only one that is able to keep the no-slip velocity above the critical velocity at all points in the well. The 

2⅞” velocity string also gives the lowest reduction in production rates for all cases considered. The oil and gas rate are both 

reduced by 38% compared to the production levels for the current completion in case 1.  

 

  
 

 

 

 

   
Figure 7 – VLPs for the proposed velocity strings with the late life IPR case  
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Figure 7 also shows that the onset of liquid loading for the current completion (as given by the critical rate) is lower 

than its erruptivity limit, confirming that the well does not have a liquid loading problem. The onset of liquid loading is close 

to the erruptivity limit for the 2⅞” velocity string, but greater than the erruptivity limit for the 2” and 2⅜” velocity strings, 

signifying that the well may encounter future liquid loading problems with these installations. This is another reason to favour 

the 2⅞” velocity string. 

The VFP Tables for the three proposed velocity strings were generated using THPs from 20 to 300 bars, GORs from 

150 to 10,000 Sm
3
/Sm

3
 and water cuts from 0 to 99%. 

 
Impact on Reserves. 

 Reservoir model simulation was used to determine the impact on reserves. The production rates simulated using the 

VFP Table for the current completion were matched with the production history for the period July 2011 to July 2012. A well 

PI multiplier of 0.3 was applied in order to gain a suitable match. With the current completion the well is forecast to die in 

April 2015. A velocity string can be installed in Q1 2015 when a drilling rig will be available for the installation, which will be 

present as part of the new drilling program. 

Table 3 summarises the gain in cumulative production for each velocity string option from the simulations. Both the 

2” and 2⅜” velocity strings are able to produce to the end of the forecast period, while the well is forecast to die in Janua ry 

2027 with the 2⅞” velocity string installed. 

 

Table 3 – Summary of the cumulative production gain from the simulations for the velocity strings 

Completion End of life date Cumulative Production Gain (boe %)  

Current April 2015 0% 

2” Velocity string December 2031 22% 

2⅜” Velocity string December 2031 26% 

2⅞” Velocity string January 2027 22% 

 

 It can be seen that the 2⅜” velocity s tring adds the most to cumulative production, but the 2⅞” velocity string is 

considered as the best option for the following reasons: 

 It has the highest production rates , ensuring faster hydrocarbon recovery (see Figure 8). 

 It is able to keep the no-slip velocity above the critical velocity at all points in the well at lower reservoir pressures. 

 It is the only velocity string option that prevents possible liquid loading in the future .  

 

  
Figure 8 – Variation of gas rates w ith time for each completion 
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well is forecast to die earlier. 

Well D29Z drains two independent layers; the middle and lower Statfjord. The lower layer is a confined volume, 

whilst the middle layer is connected to the Brent reservoir. The left chart in Figure 9 shows how cumulative gas production 

varies further with reservoir pressure when the 2⅞” velocity string is installed for the middle Statfjord, and the chart on the 

right shows it for the lower Statfjord. 

 

  

Figure 9 – Variation of reservoir pressure with cumulative gas production for the middle Statfjord (left) and lower Statfjord (right) 

The plot for the middle Statfjord is not straight because this part of the reservoir is connected to the Brent reservoir, 

and so there is some communication. This also means that production from this part of the reservoir is higher. The plot on the 

left shows an anticipated drop in abandonment pressure of 17 bars, whilst the plot on the right shows a more optimistic 

anticipated drop in abandonment pressure of 31 bars. By installing a velocity string, the abandonment pressure is reduced and 

production is increased, concurring with the case in Figure 7 where the velocity string is capable of producing to lower 

reservoir pressures than the current completion. 

 
Reserves Gain Uncertainty. 

 A similar plot of variation of reservoir pressure with cumulative gas production can be constructed using historical 

production data, and is shown in Figure 10. It shows that the production decline rate for the well has dropped over time, and so 

gas production is increasing for a given drop in reservoir pressure. 

 

  
Figure 10 - Variation of reservoir pressure w ith cumulative gas production using historic production data  
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A 26% gain in cumulative gas production is expected with the 2⅞” velocity string installed. Using the conservative 

early decline rate and the conservative anticipated drop in abandonment pressure of 17 bars gives an expected gain in gas 

production of 11%. Given that this is roughly 40% of the current expected gain in gas production, it can be concluded that the 

gain in cumulative production in this case would be 40% of the 22% increase in cumulative production currently expected, i.e. 

a 9% gain. This can be thought of as a lower bound expected gain in cumulative production. 

 

D15.  

D15 is a low GOR oil well, but has a low water cut and has been a strong historical producer since first production in 

1997. Well tests have indicated signs of liquid loading. An oil model was created for the current completion, which also 

contains mainly 4½” production tubing . Figure 11 (left) shows that the well has also experienced fluctuations in WHFT with 

moderately stable WHFP. 

 

  
Figure 11 – Historical variation of WHFP and WHFT for well D15 (left), IPR plot from Prosper (right) 

Oil Model. 

The accuracy of the various multiphase tubing correlations were compared using historical data from well tests and 

from data acquired when production logging tools were run . The Fancher Brown correlation was found to have the lowest 

average error (3.0%), but was not used because it is empirical and so has a limited range of applicability. It also does not 

account for slip between the gas and liquid phases. Tacite was the next most accurate (3.4% average error), but was  not used 

because it was designed for oil wells with a high water cut, which is  not the case here, and also hasn’t been updated recently. 

OLGAS 2P and 3P were the next most accurate (3.8% average error). OLGAS 3P was used in order to retain consistency with 

the analysis for well D29Z.  

The IPR was generated using the P.I. entry model and was matched to the data from the last well test (see right chart 

in Figure 11). Analysis of the variation of well PI with time didn’t provide a trend as smooth as that for D29Z, but was still 

sufficient for the use of the PI entry model. A sensitivity performed in Prosper resulted in the best match with well test data 

using a PI of 5.5 Sm
3
/day/bar. The quality of the oil model was validated by calculating the producing liquid and gas rates for 

the THP from the last well test. The error in the calculated oil rate was 5.5%, and was 5.4% for the calculated gas rate. This 

was small enough to validate the accuracy of the model. 

 
Velocity String and Tail Pipe Optimisation. 

The velocity strings evaluated were set from the base of the SSSV (measured depth 674m) to the liner hanger bore 

(measured depth 3555m). The tail-pipes would be hung-off the no-go nipple (measured depth 3529m) and run down to the 

liner hanger bore. This is because there was an increase in diameter from the 4½” production tubing to the 6” liner hange r bore 

in the current completion. Figure 12 shows that the no-slip velocity with the current completion drops  below the critical 

velocity at this point in the completion, indicating a possible liquid loading problem, which can be solved with the installation 

of a velocity string or tail pipe. Figure 12 also shows as an example that the installation of a 2⅜” tail pipe provides an 

improvement in the no-slip velocity in this part of the well. The velocity strings and tail pipes  were evaluated for the operating 

cases shown in Table 4. 
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Table 4 – Summary of data for the operating 
cases analysed for well D15  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It was observed that the current completion could produce in all cases , although it can be seen from Figure 13 that the 

well produces in the unstable part of the VLP curve (intersection with the current IPR curve to the left of the erruptivity limit), 

indicating a liquid loading problem. No velocity string or tail pipe options were capable of producing at a lower reservoir 

pressure than the current completion. The velocity strings were unable to produce in case 1, though they could for case 2 

(because of the simulated increase in GOR), and only the 2⅞” option could produce in case 3. The tail pipes were able to 

produce in all cases, and so would be the only viable option. On the basis that there would be no gain in abandonment pressure 

and therefore no gain in reserves, the only advantage of installing a tail pipe could be to reduce the erruptivity limit  in order to 

stabilise production.  

 

 
Figure 13 – VLPs for the tail pipes and 2⅞” velocity string w ith the current IPR case 
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Figure 13 shows that there is no change in erruptivity limit for any tail pipe option, and so there are no attainable 

advantages of installing a tail pipe is this particular well. While the 2⅞” velocity string does offer a reduction in the erruptivity 

limit, it can only produce in cases 2 and 3, and does not provide a reduction in abandonment pressure. For these reasons it is 

not a practical option. However, a scenario could exist where a higher reservo ir pressure and lower PI combination would give 

the “Theoretical IPR” shown in Figure 13, resulting in the 2⅞” velocity string producing in the stable  region while the current 

completion would produce in the unstable region. This highlights the impact that the IPR shape (reservoir pressure and PI 

combination) has on the success of a possible velocity string installation. 

 

Discussion 
A well selection process has been defined and used to select candidate wells for potential velocity string or tail pipe 

installation in order to extend producing lifetime and remediate any potential liquid loading concerns. Wells D29Z and D15 

were identified as successful candidates for further analysis. It has been shown that the installation of a 2⅞” velocity string can 

reduce the erruptivity limit and lower the abandonment pressure (and therefore increase reserves) for well D29Z. This was  not 

the case for well D15. This can be explained by further investigating the sources of pressure loss in the well.  

Hydrostatic pressure losses dominate the shape of the VLP curve for flow rates below the erruptivity limit, and 

frictional pressure losses dominate the shape for flow rates above the erruptivity limit. The velocity strings do not work for 

D15 because of substantial hydrostatic pressure losses in the well. Figure 14 shows how hydrostatic and frictional pressure 

losses vary with oil rate for the current completion and 2⅞” velocity string option for wells D15 and D29Z. Both plots were 

generated for their respective case 1 scenarios. 

 

  
Figure 14 – Variation of pressure losses with oil rate for D15 and D29Z 

The plots show that hydrostatic pressure losses dominate for D15 at all rates, whilst it is only the main contributor to 

the overall pressure loss in well D29Z at low rates. The case for D29Z also shows lower hydrostatic losses with the velocity 

string installed at low rates compared to the current completion, resulting in the VLP curve having a lower minimum pressure,  

enabling the well to produce at lower reservoir pressures. This is not the case for D15, and it can be seen in Figure 14 that the 

velocity string has almost the same hydrostatic pressure losses as the current completion at low rates. This is explained by the 

fact that the GOR for this well is lower, and so the higher liquid content in the flowing fluid results in a higher liquid holdup, 

mixture density, and consequently higher hydrostatic pressure losses, independent of the size of the completion. The 

hydrostatic pressure loss term in equation 3 is controlled by mixture density and well deviation. D15 has both a higher mixtu re 

density and lower maximum well deviation (22° vs. 76°) when compared to D29Z. Reservoir fluid characteristics also 

contribute to this effect. Although both wells produce the same reservoir fluid, D15 and D29Z are located in different 

compartments within the Dunbar field. D29Z is in a more depleted part of the reservoir and as a result produces a lighter oil. 

The denser fluid produced by D15 contributes to the higher hydrostatic pressure losses in the well.  Table 5 summarises the 

differences between wells D29Z and D15 that result in velocity strings  benefiting D29Z, but having no benefit for D15. Other 

means of improving well productivity for D15 can be explored, such as re-perforation, or the use of an ESP given the low 

GOR nature of the well.  

It has been shown that various factors impact whether a velocity string or tail pipe installation can provide any benefit 

for a well. Given the wide scope of factors in play, well by well screening is required to determine whether any installation 

may eventually be successful or not. 
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Table 5 – Differences between D29Z and D15 that impact the success of a velocity string  

Well 
Maximum 

Well 

Deviation 

Oil 
Density 

(kg/m 3) 

Gas 
Specific 

Gravity 

Reservoir 
Pressure (bara) 

Current GOR 
(Sm 3/Sm 3) 

Completion 
Average 
Liquid 

Holdup 

Average 
Mixture 
Density 

(kg/m 3) 

D29Z 76° 725 0.73 115 5237 
Current 0.52 91 

2⅞” velocity string 0.36 80 

D15 22° 811 0.96 148 513 
Current 0.80 347 

2⅞” velocity string 0.71 335 

 

Conclusions 
Having defined an initial well selection criterion with the use of three sources of data, two wells (D29Z and D15) have been 

identified as candidates for the installation of a velocity string or tail pipe due to their high GOR (D29Z only), strong historic 

production, low water cut and possible signs of liquid loading . By analysing the performance of various velocity string or tail 

pipe options with regard to ability to increase no-slip velocity above the critical velocity, reduction in erruptivity limit and 

ability to produce at a lower reservoir pressure than the current completion, a successful option was identified for well D29Z.  

The well was found to have no apparent liquid loading problem. The 2⅞” velocity string option, installed just before the well 

stops producing with the current completion, is predicted to lower the abandonment pressure and increase cumulative 

production by 9-22%. An installation in this well thus provides a means of extending producing lifetime and increasing 

cumulative production.  

A viable option was not found for well D15 because it did not have a favourable GOR or fluid characteristics when 

compared to well D29Z. Although tail pipe options could produce for every case analysed, they offer no reduction in the 

erruptivity limit. The heavier fluid means that hydrostatic pressure losses dominate the well, even with the installation of a 

velocity string, which is meant to reduce the erruptivity limit. A velocity string or tail pipe installation in this well would 

therefore provide no benefit, and so other means of well intervention, such as re-perforation or ESP installation, may be 

considered for this well in order to improve productivity. 

Given the wide range of factors that eventually determine a well’s suitability for a velocity string or tail pipe 

installation (such as GOR, fluid characteristics, IPR shape, well inclination), individual well by well screening is necessary. 

The ultimate aim of evaluating whether it is actually feasible to develop a standardised well selection process for application to 

neighbouring fields with similar characteristics could be the subject of further work. 

 

Further Work 
Additional analysis  may potentially consist of the following: 

 Analysis of second tier wells with high GOR, low water cut and strong historical production, where scale hasn’t been 

confirmed, but can be by performing a slick line operation, such as D19. 

 Further investigation into the implications of fluid characteristics on the viability of velocity string or tail pipe 

installations in relevant wells.  

 The study was based on Nodal analysis using Prosper, which does not take account of transient effects. Liquid 

loading behaviour is mainly transient, and so the overall understanding of the phenomena could be improved if a 

program like OLGA (SPT Group), which takes account of transient effects, is used. 

 The analysis has focused on tubular flow thus far, but can be extended to annular flow (i.e. flow between the current 

tubing string and a velocity string or tail pipe) or tubular-annular flow in order to see the impact on production rates 

and abandonment pressure, if any. 

 An economic analysis  in order to investigate the real cost and potential return of a velocity string or tail pipe 

installation for successful wells.  

 

Nomenclature 

 

A = tubing cross-sectional area, ft
2 

d = tubing internal diameter, ft 

f = friction factor, dimensionless 

g = acceleration due to gravity, 32.2 ft/sec
2
 

gc = gravitational conversion factor, 32.2 ft/sec
2
 

l = tubing length, ft 

m(pr) = pseudo reservoir pressure, psia
2
/cp 

m(pwf) = pseudo bottomhole flowing pressure, psia
2
/cp 
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p = pressure, psia 

qg = gas flow rate, scf/day 

qgc = critical gas rate, MMscf/day 

T = fluid temperature, °R 

vm = mixture velocity, ft/s  

vt = critical velocity, ft/s  

z = gas compressibility factor, dimensionless 

ρg = gas density, lbm/ft
3
 

ρl = liquid density, lbm/ft
3
 

ρm = mixture density, lbm/ft
3
 

σ = liquid/gas surface tension, dynes/cm 

θ = tubing angle of inclination from horizontal, ° 

 

SI Metric Conversion Factors 
 

 bbl х 1.589 873 E-01  = m
3
 

 in.  х  2.54
*
 E+00 = cm 

 

* Conversion factor is exact.
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Appendices 

 

Appendix A – Critical Literature Review 

 
MILESTONES IN THE UNDERSTANDING OF GAS WELL LIQUID LOADING AND THE USE OF VELOCITY STRINGS AS A SOLUTION 

TABLE OF CONTENT  
 

 

 

SPE Paper No. Year T itle Authors Contribution 

32, JPT  1961 “Estimating Flow Rates Required To Keep Gas Wells 
Unloaded” 

J. O. Duggan Provided field men with an easy and quick 
way to determine what flow rate was 
roughly required to keep a gas well 
unloaded using a chart. 

2198, JPT  1969 “Analysis and Prediction of Minimum Flow Rate for 

the Continuous Removal of Liquids from Gas Wells” 

R. G. Turner,     

M. G. Hubbard, 
A. E. Dukler 

Derived an equation describing the 

minimum gas velocity required to keep a 
gas well continuously unloaded. Produced 
a nomograph which can be used to 
determine the gas flow rate required to 

unload gas wells of various tubing 
diameters. 

3473, JPT  1972 “A Practical Approach to Removing Gas Well 
Liquids” 

E. J. Hutlas,      
W. R. Granberry 

Reviewed the methods used in the past and 
at the time to remove liquid from gas 
wells, and discussed a practical method of 

gas well candidate selection for liquid 
removal. 

10170 1981 “Minimum Gas Flow Rate for Continuous Liquid 
Removal in Gas Wells” 

M. I. Ilobi,         
C. U. Ikoku 

Developed an alternative model for 
predicting the minimum gas flow rate 
required to remove liquid from a gas well. 

SPE Production 

Engineering 

1989 “Expanding the Range for Predicting Critical Flow 

Rates of Gas Wells Producing From Normally 
Pressured Waterdrive Reservoirs” 

E. R. Upchurch Used empirical correlations (Gray 

correlation) to develop a method for 
estimating critical flow rates for gas wells 
producing with water/gas ratios of more 
than 150 bbl/MMcf. 

20280, JPT  1991 “A New Look at Predicting Gas-Well Load-Up” S. B. Coleman,  
H. B Clay,          

D. G. McCurdy,     
H. L. Norris III 

Verified that Turner et al.’s equation 
without the 20% correction can be used to 

estimate the critical flow rate required to 
keep a gas well unloaded, focusing on 
wells with wellhead flowing pressures 

below 500 psi. 
24860 1992 “Predicting Gas Well Load-Up Using Nodal System 

Analysis” 

A. K. Moltz Identifies the improved accuracy of 

predicting liquid loading in low pressure 
gas wells using nodal analysis that uses 
compositional wellbore fluid modelling, 

which provides the reservoir pressure in 
addition to the gas flow rate at which 
loading will occur. 

78568 2002 “Prediction of Critical Gas Flow Rate for Gas Wells 
Unloading” 

E. A. Osman The model developed provides predictions 
of critical gas flow rate with higher 

accuracy than previous models when 
compared to test data. 

104605 2007 “On the Flow Performance of Velocity Strings To 
Unload Wet Gas Wells” 

P. Oudeman Developed a suitable model for predicting 
the pressure drop in the velocity string-
tubing annulus for gas/liquid flow. 

107467 2007 “Securing the Future in Mature Gas Fields” W. Schinagl,     
M. Denny 

Discusses the adaptation of onshore gas 
well deliquification technologies for 

application in offshore environments such 
as the North Sea. 

115933 2008 “Critical Review of Existing Solutions to Predict and 
Model Liquid Loading in Gas Wells” 

F. A. Solomon,  
G. Falcone,           
C. Teodoriu 

Highlights the importance of the inclusion 
of transient flow assumptions in models 
used for calculating critical gas flow rate. 
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SPE 32, JPT (December 1961) 

Estimating Flow Rates Required To Keep Gas Wells Unloaded 

Author: Duggan, J. O. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Provided field men with an easy and quick way to determine what flow rate was roughly required to keep a gas 

well unloaded using a chart. 

Recognised the impact of gas well liquid loading on GPM tests. 

Objective of the paper: 

To estimate the flow rate required to keep gas wells unloaded and publish curves permitting field men to determine 

whether a well is flowing at a sufficient rate. 

Methodology used: 

Used back-pressure data from selected wells to find the minimum wellhead gas velocity required, and used a 

velocity formula to convert wellhead velocity to wellhead flow rate for various tubing sizes, assuming a 0.6 gravity 

gas. 

Conclusion reached: 

1) A minimum gas wellhead velocity of roughly 5 ft/s is required to keep gas wells unloaded. 

2) The empirical approach is not faultless but works well when it applies. 

3) Producing wells in the unloaded condition will give more representative test results. 

 

Comments: 

Empirical approach using field data for selected wells, no theoretical basis. 
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SPE Journal (March 1963) 

Prediction of Pressure Gradients for Multiphase Flow in Tubing 

Authors: Fancher, G. H., Brown, K. E. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Developed a multiphase flow correlation that can be used to determine the pressure gradient in a well.  

Objective of the paper: 

To develop a multiphase flow correlation that can be used to determine the pressure gradient in a well, using data 

from an experimental well. 

Methodology used: 

1) Used an 8,000 ft experimental field well to conduct flowing pressure gradient tests for various flow rates 

and gas/liquid ratios. 

 

Conclusion reached: 

1) The proposed correlation is valid for the range of flow rates and gas/liquid ratios used in the tests with an 

accuracy of ±10%. 

2) The gas/liquid ratio is a significant parameter in multiphase flow. 

 

Comments: 
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6
th

 World Petroleum Congress (June 1963) 

Vertical Flow of Gas and Liquid Mixtures in Wells 

Authors: Duns, H., Ros, N. C. J. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Developed a multiphase flow correlation that can be used to determine the pressure gradient in a vertical well. 

Objective of the paper: 

To develop a multiphase flow correlation based on experimental data that could be used to determine the pressure 

gradient in a well more accurately than other models that existed at the time. 

Methodology used: 

1) Used experimental data to develop an empirical correlation that can be used to model the vertical flow of a 

gas and liquid mixture. 

 

Conclusion reached: 

1) The results from the correlation are promising, but it must be noted that there are several factors that may 

cause the pressure gradient in a well to differ from that seen in experimental data. 

 

Comments: 
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SPE 2198, JPT (November 1969) 

Analysis and Prediction of Minimum Flow Rate for the Continuous Removal of Liquids from Gas Wells 

Authors: Turner, R. G., Hubbard, M. G., Dukler, A. E. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Derived an equation describing the minimum gas velocity required to keep a gas well continuously unloaded. 

Produced a nomograph which can be used to determine the gas flow rate required to unload gas wells of various 

tubing diameters. 

Objective of the paper: 

To determine the principal mechanism governing gas well liquid loading and to predict the minimum flow rate 

required for continuous gas well liquid unloading. 

Methodology used: 

Analysed two models and compared to experimental data to determine the prevailing mechanism for liquid 

removal from a gas well:  

1) Liquid film on the wall of a tubular conduit where liquid moves up by interfacial shear. 

2) Liquid drops entrained in a vertically flowing high velocity gas core. 

 

Conclusion reached: 

1) Minimum velocity required to unload a gas well is that which will move the largest liquid droplet that can 

exist in the gas stream. 

2) The equation derived must be adjusted upwards by 20% to ensure removal of all drops. 

3) The gas/liquid ratio doesn’t impact the minimum lift velocity in the observed ranges of liquid production 

(water or condensate) up to 130 bbl/MMcf (properties of denser fluid to be used if both present). 

4) Wellhead conditions are a controlling factor in most cases. 

 

Comments: 

Treats gas core and liquid film separately, though notes there is probably a continuous exchange of liquid between 

them. 

Some key data was incomplete: 

1) Interfacial tension for the well fluids used was not measured but estimated based on molecular weight. 

2) Bottom-hole temperatures were not reported, but estimated using area geothermal gradient charts. 

3) Density of gas and liquid phases were not available for most data, and were estimated. 

4) Whether the wells were loaded or not at the time of data collection. 
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SPE 3473, JPT (August 1972) 

A Practical Approach to Removing Gas Well Liquids 

Authors: Hutlas, E. J., Granberry, W. R. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Reviewed the methods used in the past and at the time to remove liquid from gas wells, and discussed a practical 

method of gas well candidate selection for liquid removal. 

Objective of the paper: 

To provide a practical approach to evaluating liquid removal from gas wells. 

Methodology used: 

Compared advantages and disadvantages of previous and current methods for removing liquid from gas wells, 

namely Pumping Units, Liquid Diverters and Gas Lift, and Tubing Strings. 

Conclusion reached: 

1) Production of large volumes of liquid alone is not enough to distinguish a gas well as a candidate for liquid 

removal. 

2) The economics of liquid removal should be evaluated before installation. 

3) The best devices at the time for removing liquids from gas wells were pumping units for shallow fields 

with low pressure and a combination of a liquid-diverter and gas-lift installation for deeper, high pressure 

fields. 

4) Smaller tubing strings can be used in wells where severe formation damage from killing operations may 

occur. 

 

Comments: 

Provides a method to analyse the economics of installing a system to remove liquids from a gas well.  
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SPE 4007, JPT (May 1973) 

A Study of Two-Phase Flow in Inclined Pipes 

Authors: Beggs, H. D., Brill, J. P. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Developed a multiphase flow correlation to determine the pressure gradient in inclined wells for different flow 

conditions. 

Objective of the paper: 

To investigate the effect of pipe inclination on liquid holdup and pressure loss in pipes with gas/liquid flow. 

Methodology used: 

1) Used experimental data for various flow rates from 90 ft transparent pipes to develop a multiphase flow 

correlation that predicts the pressure gradient in inclined pipes. 

2) Measured liquid holdup using pneumatically actuated, quick-closing ball valves. 

3) Measured the pressure drop using pressure taps. 

 

Conclusion reached: 

1) Pipe inclination has an impact on liquid holdup and pressure loss for most flow conditions in pipes with 

two-phase flow. 

2) Liquid holdup reaches a maximum at a pipe inclination of approximately +50° and minimum at a pipe 

inclination of approximately -50°. 

3) Friction losses in two-phase flow are affected by liquid holdup. 

4) A correlation was developed that can predict the liquid holdup and pressure gradients in two-phase flow at 

any angle of inclination.  

 

Comments: 

Used air and water as the two phases. 
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SPE 10170 (October 1981) 

Minimum Gas Flow Rate for Continuous Liquid Removal in Gas Wells 

Authors: Ilobi, M. I., Ikoku, C. U. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Developed an alternative model for predicting the minimum gas flow rate required to remove liquid from a gas 

well. 

Objective of the paper: 

To create a model for predicting the minimum gas flow rate required for continuous removal of liquid in gas wells 

for more general application. 

Methodology used: 

Developed a model for analysing the removal of liquid from a gas well using modified correlations for predicting 

entrainment, film thickness and pressure drops developed by Hughmark (1973), as well the Duns and Ros pressure 

drop correlation. 

Conclusion reached: 

1) The most important factors affecting liquid entrainment are tubing size, pressure, gas specific gravity and 

liquid hold-up. 

2) High specific gravity gas is a better carrier of liquid droplets. 

3) Entrainment is dependent on actual gas velocity as well as superficial gas velocity. 

4) The model is insensitive to liquid concentrations above 175 bbls/MMscf. 

5) It cannot categorically be stated how close the model is to actual data, due to insufficient data. 

 

Comments: 

Developed the model based on a combination of previous work. 

Used assumptions for gas specific gravity, bottom hole temperature, and temperature gradients and used 

assumptions made by Turner for liquid gravities in order to compare model to field data. 
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SPE 10254 (September 1982) 

Small-Diameter Concentric Tubing Extends Economic Life of High Water/Sour Gas Edwards Producers 

Author: Weeks, S. G. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Not too much, just details a field case where the installation of small-diameter concentric tubing has extended the 

economic life of a field. 

Objective of the paper: 

To detail the installation of small-diameter concentric tubing to remediate liquid loading problems in a tight gas 

field. 

Methodology used: 

1) Compared available technology and concluded that the use of small-diameter tubing was the only viable 

option on a cost basis due to well depth and the sour environment. 

2) Analysed various tubing intake curves against current reservoir performance to determine the most suitable 

tubing diameter. 

 

Conclusion reached: 

1) Seven small-diameter tubing installations were performed and continuous production was maintained. 

2) The annual production decline rate in the field dropped from 60% to 25% following the installation of 

small-diameter concentric tubing. This and the reduction in operational attention required resulted in an 

increase in net operating profit. 

 

Comments: 

Discusses problems with corrosion, which were dealt with in this case by installing small-diameter concentric 

tubing. 

The Edwards field was a tight gas field. 
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SPE Production Engineering (August 1989) 

Expanding the Range for Predicting Critical Flow Rates of Gas Wells Producing From Normally Pressured 

Waterdrive Reservoirs 

Author: Upchurch, E. R.  

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Used empirical correlations (Gray correlation) to develop a method for estimating critical flow rates for gas wells 

producing with water/gas ratios of more than 150 bbl/MMcf. 

Objective of the paper: 

To develop a method for estimating the critical flow rate for gas wells producing with high water/gas ratios. 

Methodology used: 

Used Gray empirical multiphase flow correlation to take account of slippage between phases and flow regime 

effects (not previously done due to lower liquid/gas ratios), and compared to field tests to verify accuracy. 

Conclusion reached: 

1) Empirical techniques can be used to estimate the critical flow rates for many gas wells producing with high 

water/gas ratios from normally pressured waterdrive reservoirs. 

2) The critical flow rates predicted compare well with previous theoretical models used at low water/gas 

ratios, and with field tests at high water/gas ratios. 

 

Comments: 

Uses Gray correlation. 
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SPE 20280, JPT (March 1991) 

A New Look at Predicting Gas-Well Load-Up 

Authors: Coleman, S. B., Clay, H. B., McCurdy, D. G., Norris III, H. L. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Verified that Turner et al.’s equation without the 20% correction can be used to estimate the critical flow rate 

required to keep a gas well unloaded, focusing on wells with wellhead flowing pressures below 500 psi.  

Objective of the paper: 

To compare results from field tests with previous theory on the critical flow rate required to keep gas wells 

unloaded. 

Methodology used: 

Applied Turner et al.’s theory to field tests and production charts, focusing on wells with wellhead flowing 

pressures below 500 psi (Turner et al.’s data was above 500 psi). 

Conclusion reached: 

1) The critical flow rate required to keep gas wells unloaded can be predicted adequately using Turner et al.’s 

liquid droplet model without the 20% upward correction. 

2) Wells that exhibit slugging behaviour may not adhere to the liquid droplet model due to a different 

transport mechanism. 

3) Verified Turner et al.’s theory that wellhead conditions control the onset of liquid loading.  

4) For the examined liquid/gas ratio range of 1-22.5 bbl/MMscf, the amount of liquid present had no impact 

on the critical gas flow rate (as per Turner et al.). 

5) In most cases the primary source of load fluid is condensed water. 

 

Comments: 

Noted that gas gravity, interfacial tension and temperature have little impact on the accuracy of calculations for 

critical gas velocity. 
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SPE 24792 (October 1992) 

Design and Installation of a 20,500-ft Coiled Tubing Velocity String in the Gomez Field, Pecos County, Texas 

Authors: Adams, L. S., Marsili, D. L. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

A field case illustrating the use of coiled tubing for velocity strings. 

Objective of the paper: 

To review candidate selection, installation design, implementation and production results of a 20,500 ft coiled 

tubing velocity string in a Gomez Field gas well. First use of master control preventer for a coiled tubing 

installation. 

Methodology used: 

1) Analysed the given well due to its marginal economic production rate and potential loss of reserves.  

2) Used P/Z and production data to determine the source of liquid loading. 

3) Used the Turner et al. equation and a Chevron in-house steady state multiphase flow simulator to 

determine the critical gas flow rate. 

4) Screened methods to alleviate liquid loading on an economic and operational basis. 

5) Designed the installation using a Chevron in-house nodal analysis simulator. 

 

Conclusion reached: 

1) Project success shows reliability and economic effectiveness of coiled tubing technology (two successful 

coiled tubing velocity strings were installed in the Gomez Field). 

2) Simulation results were accurate in predicting the most effective setting depth for liquid unloading and 

stabilised after workover production rates. 

 

Comments: 

Highlights economic attraction of using a velocity string to remediate liquid loading. 
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SPE 24860 (October 1992) 

Predicting Gas Well Load-Up Using Nodal System Analysis 

Author: Moltz, A. K. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Identifies the improved accuracy of predicting liquid loading in low pressure gas wells using nodal analysis that 

uses compositional wellbore fluid modelling, which provides the reservoir pressure in addition to the gas flow rate 

at which loading will occur. 

Objective of the paper: 

To identify the requirement for compositional wellbore fluid modelling in the application of nodal analysis to low-

pressure gas wells in order to accurately match performance and predict the onset of liquid loading. 

Methodology used: 

1) Used extensive computer wellbore modelling to deduce that previous applications of nodal analysis have 

not taken the water contained in the produced gas or its phase change into account, hence the requirement 

for compositional modelling. 

2) Used compositional modelling to more accurately model outflow performance and predict the onset of 

liquid loading. 

 

Conclusion reached: 

1) Nodal analysis can be used to accurately predict the reservoir pressure and flow rate at which liquid 

loading will occur. 

2) Condensed water production can increase the pressure required to keep a well unloaded, especially for 

wells with a water/gas ratio greater than 3 bbl/MMscf. 

3) The increased water production that occurs with declining reservoir pressure and its phase behaviour must 

be accounted for in nodal analysis to reliably predict performance. 

4) Load-up prediction and reserve estimation should be based on the onset of slug flow in the wellbore, as the 

use of wellhead conditions tends to overstate flow performance and reserve recovery. 

 

Comments: 

Notes that previous applications of nodal analysis have used black-oil wellbore modelling to evaluate the tubing 

pressure drop, where water is assumed to be in a liquid phase. 

Nodal analysis can provide the rate as well as the pressure at which liquid loading will occur, thus providing an 

alternate pressure figure to the abandonment pressure, for which reserves can be estimated. 
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SPE 46030 (April 1998) 

Coiled Tubing Velocity Strings – Expanding the Cases 

Authors: Martinez, A., Martinez, J. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Stresses the importance of a velocity and liquid holdup criteria in unloading a gas well and preventing further 

loading. 

Objective of the paper: 

To provide a guide to predicting the results that drive coiled tubing size selection. 

Methodology used: 

1) Used software to model liquid loading. 

2) Chose preferred tubing size based on achievement of a velocity and liquid hold-up criteria. 

 

Conclusion reached: 

1) The coiled tubing size best for initiating unloading is not necessarily the best for achieving maximum 

steady state production rates. 

2) For a given coiled tubing size the ease of unloading and preventing further liquid loading can be predicted 

using the velocity-liquid holdup profile compared to the criteria of a 7-12 ft/s velocity in the lower third of 

the tubing and a liquid holdup of 0.2 or less in the lower portion of the tubing. 

 

Comments: 

Uses ProdEng, WelGrad and WelDel software. 
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SPE 78568 (October 2002) 

Prediction of Critical Gas Flow Rate for Gas Wells Unloading 

Author: Osman, E. A. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

The model developed provides predictions of critical gas flow rate with higher accuracy than previous models 

when compared to test data. 

Objective of the paper:  

To present an Artificial Neural Network model for predicting the minimum gas flow rate for continuous liquid 

unloading. 

Methodology used: 

1) Used 50% of the data sets published by Turner et al. and Coleman et al. to train the model, 25% to cross-

validate the relationships established during the training process, and 25% to test the model for accuracy.  

2) Developed the model using back propagation networks. 

 

Conclusion reached: 

The model provides more accurate predictions of critical gas flow rate (Correlation coefficient of 0.9911, absolute 

average percentage error 4.61%) when compared to previous models. 

Comments: 
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SPE 72092, JPT (April 2004) 

Solving Gas-Well Liquid-Loading Problems 

Authors: Lea, J. F., Nickens, H. V. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Further discussion of the various methods of alleviating gas well liquid loading. 

Objective of the paper:  

To describe the issues with liquid accumulation in gas wells in terms of recognition and solutions to the problem.  

Methodology used: 

Discussion of the various technologies available for liquid removal from gas wells. 

Conclusion reached: 

1) Liquid loading can be recognised from well symptoms, critical velocity and/or nodal analysis. 

2) Merits of the various methods used at the time to solve gas well loading. 

 

Comments: 

Doesn’t seem to be much new information presented, more a review of technologies available at the time. 
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SPE 88523 (October 2004) 

Liquid Unloading in a Big Bore Completion: A Comparison Among Gas Lift, Intermittent Production, and 

Installation of Velocity String 

Authors: Arachman, F., Singh, K., Forrest, J. K., Purba, M. O.  

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Compared three technologies for a semi-permanent solution to gas well liquid loading for wells with a big bore 

completion. 

Objective of the paper:  

To compare the various technologies available at the time (gas lift, intermittent production and velocity string) to 

solve problems of liquid loading for a low-pressure gas condensate well with a big bore completion, technically 

and economically. 

Methodology used: 

1) Uses published data for the Arun Field, Indonesia. 

2) Assumed the installation of the three technologies individually and modelled the impact on gas recovery 

using nodal analysis. 

 

Conclusion reached: 

1) Installation of a coiled-tubing velocity string will increase the gas velocity and help mitigate liquid loading.  

2) Critical and maximum erosional velocity as well as operational issues such as logistics, transportation and 

installation, drive the optimum diameter and length of the velocity string. 

 

Comments: 

Does not include a detailed economic analysis.  

The velocity string is the option where design is most crucial, and was modelled with the installation of 2,000 feet 

of tubing in the deepest part of well (i.e. not from the surface) due to excessive pressure losses. 
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SPE 104605 (March 2007) 

On the Flow Performance of Velocity Strings To Unload Wet Gas Wells 

Author: Oudeman, P.  

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Developed a suitable model for predicting the pressure drop in the velocity string-tubing annulus for gas/liquid 

flow. 

Objective of the paper:  

To assess the validity of methods that predict the pressure drop in annuli for gas/liquid flow. 

Methodology used: 

1) Modelled the pressure drop in the annular space between the tubing and velocity string using methods 

developed for tubing strings, but with an effective diameter or hydraulic diameter to correct for the 

difference between tubular and annular flow. 

2) Analysed the dependency of Gray correlations on flow geometry, modifying to take annular geometry into 

account in order to interpret results from the field test. 

3) Compared the best approach (hydraulic diameter) with field data to assess the validity of the method. 

 

Conclusion reached: 

1) Velocity strings are a cost effective way of extending gas well life and increasing ultimate recovery.  

2) The use of Nodal analysis to select an adequate tubing size requires accurate methods for predicting the 

pressure drop in the tubing as well as the velocity string-tubing annulus. 

3) A comparison between field data and various models found that the hydraulic diameter approach was the 

most accurate. 

 

Comments: 

At high rates hydraulic roughness is a crucial factor, but is rarely known to a high degree of accuracy.  

 

 

 

 

 

 

 

 

 



[Benefits of Velocity Strings on the Dunbar Field]   35 

SPE 107048 (March 2007) 

Liquid Unloading of Depleted Gas Wells in the North Sea and Continental Europe, Using Coiled Tubing, Jointed 

Pipe Velocity/Insert Strings, and Microstrings 

Authors: de Jonge, R. M., Tousis, U. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Discusses technologies available for remediating gas well liquid loading, with a detailed discussion of the design 

and use of velocity strings in the North Sea and Continental Europe. 

Objective of the paper:  

To summarise and contrast the use of the technologies mentioned in the title and the offshore operational 

challenges encountered during their application. 

Methodology used: 

1) Discusses various factors affecting the design, optimisation (using multiphase flow modelling) and 

installation of the various technologies, as well as their application offshore. 

2) Compares the various technologies technically and produces a decision tree which can be used to 

determine when each technology should be applied, based on previous experience. 

 

Conclusion reached: 

1) Installations of velocity strings or micro strings with surfactant injection are techniques that can be used to 

resolve gas well liquid loading. 

2) Based on previous experience a decision tree was made to assist in selecting a suitable installation type. 

 

Comments: 

Discusses installation of strings from the surface using a surface hanger, or below the sub surface safety valve 

(SSSV) using a packer hanger. 
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SPE 107467 (June 2007) 

Securing the Future in Mature Gas Fields 

Authors: Schinagl, W., Denny, M. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Discusses the adaptation of onshore gas well deliquification technologies for application in offshore environments 

such as the North Sea. 

Objective of the paper:  

1) To highlight the problems with liquid loading and discuss the technologies being used to mitigate it in 

North Sea gas fields.  

2) To present the results of the first batch surfactant trials in Southern North Sea fields and the use of 

combination methods that combine artificial lift technologies. 

 

Methodology used: 

1) Discusses previous theory by Turner et al on critical gas flow rate. 

2) Discusses gas well deliquification technologies available at the time and their application to North Sea gas 

wells. 

 

Conclusion reached: 

1) Liquid loading is a significant factor that restricts gas production in mature gas wells (in some cases losses 

due to liquid loading can account for 30% of total production). 

2) Deployment of correct deliquification technologies is essential in order to secure the future of these gas 

wells. 

3) Technologies that are used onshore need to be adapted for offshore environments such as the North Sea. 

 

Comments: 

Notes that the main limiting factor in the selection of a gas well deliquification technology is the well configuration 

(casing, tubing, inclination, depth etc). 
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SPE 115933 (September 2008) 

Critical Review of Existing Solutions to Predict and Model Liquid Loading in Gas Wells 

Authors: Solomon, F. A., Falcone, G., Teodoriu, C. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Highlights the importance of the inclusion of transient flow assumptions in models used for calculating critical gas 

flow rate.  

Objective of the paper:  

To discuss the multiphase flow phenomena associated with liquid loading and review extensively current 

modelling solutions to predict and diagnose the impact of liquid loading, as well as screen remedial options for 

liquid loading and attempt to model dynamic interactions between the reservoir and wellbore. 

Methodology used: 

Review of previous methods used to calculate the critical gas flow rate, their assumptions and their accuracy. 

Conclusion reached: 

1) Industry understanding of liquid loading phenomena in gas wells remains poor, especially the dynamic 

interaction between the reservoir and wellbore. 

2) The criteria for estimating the minimum gas flow rate are based on steady-state assumptions and so do not 

take account of transient flow. 

3) Despite the wide range of two-phase modelling techniques available, difficulty still remains in capturing 

transitions from annular to churn flow, churn flow to slug flow, and slug flow to bubble flow, which may 

kill a well. 

4) Even with the use of transient wellbore modelling, predictive models used to link well dynamics with the 

intermittent response of a reservoir are unreliable, implying the boundary conditions are being incorrectly 

defined. 

5) The oil and gas industry needs reliable predictive models to help select the best options for liquid loading 

remediation, and more research is needed. 

 

Comments: 

Notes that models used tend to be based on steady-state analysis and so do not take account of transient phenomena 

typical of liquid loading. 
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SPE 130870 (January 2010) 

Oman, 2 7/8” Velocity Strings in Deep and Tight Gas Wells 

Authors: Goedemoed, P., Al Muselhi, F., Al Manji, A. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

At the time these velocity string installations were the longest and heaviest hung off single packers in a live well. 

Helped develop technology for future applications. 

Objective of the paper:  

To describe the modelling and challenges faced during the installation of velocity strings in a deep and tight gas 

field in Oman. 

Methodology used: 

1) Trialled velocity strings in five wells to analyse the adequacy of the technology used. 

2) Used dynamic pressure surveys to understand the liquid loading mechanism present. 

3) Reservoirs modelled in Prosper (PLT logging and well test data used to create a 12 layer reservoir model).  

 

Conclusion reached: 

1) The velocity strings installed were successful in deferring the onset of liquid loading and providing stable 

gas and condensate production. 

2) The onset of liquid loading can be predicted to a 10% accuracy using Turner et al.’s equation. 

 

Comments: 

Used a specially designed retrievable packer that was able to sustain the large velocity string weight. 
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SPE 130632 (March 2010) 

Deliquification of South Texas Gas Wells Using Corrosion Resistant Coiled Tubing: A Six Year Case History 

Authors: Poppenhagen, K. L., Harms, L. K., Wilkinson, R., Glover, D. E. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

The paper reiterates that coiled tubing can be used as a solution to liquid loading in gas wells, and shows that 

corrosion resistant coiled tubing can be effectively used in wells experiencing problems related to CO2 corrosion. 

Objective of the paper: 

To show that corrosion resistant coiled tubing can effectively be used as a solution to gas well liquid loading in 

wells affected by CO2 corrosion. 

Methodology used: 

1) Discusses the advantages of using velocity strings as a means of resolving liquid loading in gas wells.  

2) Runs through the process of selecting the correct metallurgy for the corrosion resistant coiled tubing. 

3) Discusses the results of installations in several wells and cost implications. 

 

Conclusion reached: 

1) Corrosion resistant coiled tubing is an effective way of resolving liquid loading in gas wells experiencing 

problems related to CO2 corrosion. 

2) Nodal analysis can be used to select candidate wells. 

3) Corrosion resistant coiled tubing can be lower cost to maintain and operate than other forms of artificial 

lift. 

 

Comments: 
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SPE 138672 (November 2010) 

Gas Well Deliquification 

Author: Hearn, W. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Further discussion of the technologies available for gas well deliquification and a logical selection process that can 

be used for their application. Also mentions technologies available for use offshore when a sub-surface safety 

valve (SSSV) is required. 

Objective of the paper: 

To discuss the four most commonly used artificial lift technologies for gas well deliquification and to introduce a 

selection process for their use. 

Methodology used: 

1) Discusses the use of reciprocating rod lift, foamer injection, plunger lift and gas lift as means of gas well 

deliquification. 

2) Selection process involves the assignment of high and low scores to readily available surface gathered data 

(liquid rate, flowing tubing pressure, water cut and gas/liquid ratio) to determine the most appropriate 

technology for gas well deliquification. 

 

Conclusion reached: 

1) New systems have been developed to remediate liquid loading in gas wells where a SSSV is present.  

2) The selection process can be used to determine the most appropriate technology to use, only requiring 

readily available surface gathered data. 

 

Comments: 

Discusses technologies that have been available for a long time, but have been adapted for use offshore in wells 

with a SSSV. 

 

 

 

 

 

 

 

 

 



[Benefits of Velocity Strings on the Dunbar Field]   41 

SPE 141215 (March 2011) 

Gas Well Deliquification Using Microwave Heating 

Authors: Kamal, M., Ghodke, N., Patwardhan, S. D., Al-Dogail, F. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Discusses the use of dielectric heating using microwaves as a new form of gas well deliquification.  

Objective of the paper: 

To discuss the use of this new technology as a form of gas well deliquification and the results obtained from 

experiments. Also mentions the advantages of current methods. 

Methodology used: 

1) Discusses the advantages and disadvantages of current forms of gas well deliquification. 

2) Experiments were performed using microwave heating to evaporate water in various saline and 

petrol/water/sand mixtures in order to simulate wellbore fluids. Various heating times were evaluated. 

Conclusion reached: 

1) Different mixture combinations react differently to microwave heating. 

2) Different microwave frequencies can be selected for different tubing materials. 

3) Microwave heating can be used effectively to vaporise moderately saline water. A longer duration of 

heating is required for high salinity water. 

4) Sand production assists the well deliquification process. 

 

Comments: 

Based on lab experiments, no application to the field yet.  
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Gas Well Deliquification, second edition, Elsevier Inc., Burlington, MA (2008) 

Authors: Lea, J., Nickens, H. V., Wells, M. 

Contribution to understanding of gas well liquid loading and use of velocity strings as a solution: 

Provides a more complete analysis of the symptoms associated with gas well liquid loading. 

Objective of the book: 

To provide a discussion of the causes and phenomena associated with gas well liquid loading, as well as the 

various technologies available to remediate it. 

Methodology used: 

1) Discusses the problems associated with gas well liquid loading, and detection of its symptoms. 

2) Discusses the critical velocity criteria developed by Turner et al. (1969) and the use of nodal analysis to 

analyse well performance. 

3) Details the use of tubing sizing, wellhead compression, plunger lift, foaming, hydraulic pumps, beam 

pumps, gas lift, electrical submersible pumps, progressive cavity pumps and other methods to combat gas 

well liquid loading. 

 

Conclusion reached: 

1) There are several methods available which are effective in remediating problems caused by gas well liquid 

loading. 

 

Comments: 

Provides a more complete analysis and explanation of gas well liquid loading, its associated phenomena and the 

means to remediate it, as opposed to providing new views. 
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Appendix B – Maps of the Dunbar field 

 
Figure B- 1 - Map showing the location of the Dunbar field (source: TOTAL E&P UK Draughting Office) 

 
Figure B- 2 – Different compartments w ithin the Dunbar field (source: TOTAL E&P UK) 
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Appendix C – Data from the well screening process  

 

This appendix contains data used as part of the well screening process. Table C-1 gives a detailed breakdown of the scoring 

system used to analyse the 11 wells in the parts of the Dunbar field under natural depletion as part of the analysis using 

information from the Dynamic Synthesis. It shows that wells D29Z, D15, D18 and D24Z were deemed suitable for further 

analysis in the well screening process. Table C-2 gives an overview of the trends observed in GOR and water cut for the 4 

wells analysed using well test data in the well screening process. 

 

Table C- 1 - Scoring details for each well used in the well screening process 

 
 

 

 

Table C- 2 – GOR and water cut trends from well test data  

Well name GOR (Sm 3/Sm 3) and water cut profile  

D15 Stable GOR (last w as 362), sporadic w ater recorded, low  w ater cut 

D18 Rising GOR (last w as 1194), sporadic w ater recorded, rising w ater cut 

D24Z Stable but low  GOR (last w as 183), previous sporadic water recorded, recent near zero 

w ater cut 

D29Z Upw ard trend in GOR (last w as 5303), sporadic water recorded, generally low  water cut 

 

 

 

 

 

 

 

GOR 

(Sm3/Sm3)

Water cut 

(%) 

D20Z
West Flank 

South
Natural depletion Poor

Milled for scale in 

May 2010, 

possibility of 

return

448 1.4 None 3/6 No

D29Z

West Flank 

South, 

Statfjord

Natural depletion
Unknown - no dynamic 

synthesis available
Not reported 5303 11.7 None 4/6 Yes

D32
West Flank 

South
Natural depletion Average Not reported 885 22.9

High water cut due to water 

breakthrough from aquifer, 

rising with time

3/6 No

D13 Central

Possible water 

support from Frontal 

Central

Good Probable 588 16.4

Well slot being re-used for a 

new well, high water cut so 

possible scaling issue

2/6 No

D15 Central

Possible water 

support from Frontal 

Central

Good Not reported 362 0.0 None 4/6 Yes

D19 Central

Possible water 

support from Frontal 

Central

Average

Possible, can be 

confirmed with a 

slickline operation

999 4.9 None 3/6 No

D35Z Central Natural depletion Average Not reported 3268 20.8
Still producing in high 

pressure mode
3/6 No

D18 Frontal South Natural depletion Average Not reported 1194 22.3 None 4/6 Yes

D21 Frontal South Natural depletion Average Not reported 286 4.7
Well slot being re-used for a 

new well
3/6 No

D24Z
Frontal 

(south)
Natural depletion Average Not reported 183 0.0 None 4/6 Yes

D34 Frontal South Natural depletion Average Not reported 402 0.0
Need to re-perforate to 

improve productivity
3/6 No

Further 

Analysis?
Scale

Latest Well test Data

Operational issues?
Well 

Name
Location

Production 

Mechanism
Well Understanding Score
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Appendix D – Prosper data for well D29Z 

 

This appendix contains a summary of the various data used to calibrate the Prosper model for well D29Z. This includes the 

data used to match the multiphase flow correlations and to generate the IPR for the oil and gas models. It also contains a ch art 

(Figure D-4) showing the inability of the tail pipes to produce at low reservoir pressures, as well as the reduction in production 

rates observed with the installation of the velocity string and tail pipe options compared to the current production rates with the 

current completion. 

 

  
Figure D- 1 - D29Z completion schematic, from Prosper 

 

 

Table D- 1 - Summary of the well test data used to match the correlations for D29Z 

 
 

 

 

 

Test Date

Tubing Head 

Pressure 

(bara)

Tubing Head 

Temperature

(Deg C)

Water 

cut (%)

Liquid rate 

(stb/d)

Gauge 

Depth (m)

Gauge 

Pressure 

(bara)

Reservoir 

Pressure 

(bara)

GOR 

(sm3/sm3)

15-Aug-11 42 66 13.6 419 5712 81 114.7 5,237

07-Oct-10 52 62 0.9 332 5712 85 115.1 4,100

24-Sep-09 50 60 0.0 496 5712 86 115.6 3,152

13-Oct-08 55 64 4.7 285 5712 88 116.0 5,527

04-Dec-07 48 71 0.0 287 5712 87 113.7 6,048

03-Oct-06 51 78 0.0 452 5712 102 130.6 6,707

26-Feb-06 62 79 0.0 905 5712 113 143.3 3,355

26-Feb-02 253 83 0.7 6488 5712 420 481.0 739



46  [Benefits of Velocity Strings on the Dunbar Field] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure D- 2 – Variation of PI w ith time for D29Z 
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Duns & Ros 

Modified
Fancher Brown PE2 PE4 PE5 OLGAS 2P OLGAS 3P Tacite

Test Date

Gauge 

Pressure  

(bara)

Error Error Error Error Error Error Error Error

Average 

Absolute 

Error

Test 

Included?

15/08/2011 81 27% -10% 9% -12% -3% -4% -3% -3% 9% Yes

07/10/2010 85 -11% -11% 14% -11% -11% -11% -9% -1% 10% No

24/09/2009 86 -11% -11% -11% -11% -11% -11% -11% -11% 11% No

13/10/2008 88 -9% -9% 15% -9% -7% -6% -4% 7% 8% Yes

04/12/2007 87 -14% -14% -14% -14% -14% -14% -14% -14% 14% No

03/10/2006 102 1% -4% 0% -7% -4% -4% -4% -3% 3% Yes

26/02/2006 113 6% -1% 6% -6% 7% 2% 2% 4% 4% Yes

26/02/2002 420 4% 1% 4% -1% 2% 2% 2% 1% 2% Yes

7.7% 4.1% 5.6% 5.7% 3.8% 2.9% 2.5% 3.0%Average error (ex. bad tests)

Table D- 2 – Errors in gauge pressures calculated by the various correlations for the D29Z oil model 

Reasonably constant PI 

variation with time 

after initial drop 
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Figure D- 3 – PI sensitivity for the D29Z oil model, from Prosper  

 

 
 
 
 

 
 

Table D- 3 – Well test data used to match the IPR and validate the two models for D29Z 

 
 

 

 

 

 

 

 

 

 

 

 

 

Test Date
Gas Rate 

(kSm3/day)

BHFP 

(bara)

Reservoir 

Pressure 

(bara)

PI 

(Sm3/day/bar)

Water 

cut (%)

Water Gas 

Ratio 

(Sm3/Sm3)

GOR 

(Sm3/Sm3)

THP 

(bar)

IPR 

matched 

with 

data?

Calculated 

Gas Rate 

(kSm3/day)

Gas 

rate 

error

Calculated 

Gas Rate 

(kSm3/day)

Gas 

rate 

error

07/10/2010 214 82.5 115.1 1.60 0.9 2.270E-06 4100 51.8 Yes 228 6.2% 216 1.0%

18/12/2010 233 82.3 115.0 1.54 1.1 2.399E-06 4615 50.9 Yes 233 0.1% 220 -5.3%

23/01/2011 214 85.8 115.0 1.48 1.2 2.474E-06 4963 54.2 Yes 214 0.3% 205 -4.4%

24/01/2011 266 80.4 115.0 1.55 1.6 3.314E-06 4960 46.0 No 257 -3.3% 239 -9.9%

15/08/2011 301 85.1 114.7 1.94 13.6 3.018E-05 5237 42.2 No 274 -9.1% 253 -16.0%

15/08/2011 298 85.1 114.7 1.96 13.4 3.010E-05 5144 42.5 No 273 -8.6% 252 -15.5%

Oil Model

Retrograde 

Condensate 

Model

PI = 1.0 

PI = 1.8 

PI = 3.0 

PI = 5.0 

PI of 1.8 gives the 

best IPR match with 

well test data 

Average absolute 

error = 2.2% Average absolute 

error = 3.6% 
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Table D- 4 – Errors in gauge pressures calculated by the various correlations for the retrograde 

condensate model for D29Z 

 
 

 

 

 

 

 

 
Figure D- 4 – VLPs for the tail pipes with the late life IPR case  for D29Z 

PE2 OLGAS 2P OLGAS 3P

Test Date

Gauge 

Pressure  

(bara)

Error Error Error

Average 

Absolute 

Error

Test 

Included?

15/08/2011 81 10% -5% -3% 6% Yes

07/10/2010 85 -11% -11% -11% 11% No

24/09/2009 86 -11% -11% -11% 11% No

13/10/2008 88 -9% -5% -4% 6% Yes

04/12/2007 87 -14% -14% -14% 14% No

03/10/2006 102 -1% -4% -4% 3% Yes

26/02/2006 113 -2% 3% 3% 2% Yes

26/02/2002 420 -10% 2% 2% 4% Yes

6.4% 3.6% 3.0%Average error (ex. bad tests)
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Table D- 5 – Production rates with the various D29Z completions for different cases 

 
 

Table D- 6 – Percentage rate reductions for the various D29Z completions for different cases 

 

 

Table D- 7 – Cumulative production gain for the various D29Z completions with a THP limit of 40 bars 

 

 

 

 

Completion Current  
2" Velocity 

string

2 3/8" Velocity 

string

2 7/8" Velocity 

string

2" Tail 

pipe

2 3/8" 

Tail pipe

2 7/8" 

Tail pipe

Oil Rate (stb/d) 338 97 144 211 226 274 310

Gas rate (kSm3/d) 281 81 120 175 188 228 258

BHFP (bara) 80.2 105.8 101.3 94.5 92.8 87.5 83.3

Oil Rate (stb/d) 266 88 130 186 174 222 254

Gas rate (kSm3/d) 151 50 74 106 99 126 144

BHFP (bara) 62.9 82.1 78.0 72.1 73.5 68.2 64.4

Oil Rate (stb/d) 0 64 96 137 0 0 0

Gas rate (kSm3/d) 0 36 55 78 0 0 0

BHFP (bara) 0.0 74.2 71.1 66.9 0.0 0.0 0.0

Current Reservoir 

Pressure = 115 bara

Mid Life - Reservoir 

Pressure = 90 bara

Late Life - Reservoir 

Pressure = 80 bara

Completion Current  
2" Velocity 

string

2 3/8" Velocity 

string

2 7/8" Velocity 

string

2" Tail 

pipe

2 3/8" 

Tail pipe

2 7/8" 

Tail pipe

Oil Rate reduction 

vs current
0% -71% -57% -38% -33% -19% -8%

Gas Rate reduction 

vs current
0% -71% -57% -38% -33% -19% -8%

Oil Rate reduction 

vs current
-21% -74% -62% -45% -49% -34% -25%

Gas Rate reduction 

vs current
-46% -82% -74% -62% -65% -55% -49%

Oil Rate reduction 

vs current
-100% -81% -72% -59% -100% -100% -100%

Gas Rate reduction 

vs current
-100% -87% -81% -72% -100% -100% -100%

Late Life - Reservoir 

Pressure = 80 bara

Current Reservoir 

Pressure = 115 bara

Mid Life - Reservoir 

Pressure = 90 bara

Completion
End of Life 

Date

Cumulative 

Production 

Gain (boe %)

Current Nov-13 0%

2" Velocity string Dec-31 24%

2 3/8" Velocity string Dec-31 29%

2 7/8" Velocity string Apr-27 25%
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Appendix E – Prosper data for well D15 

 

This appendix contains a summary of the various data used to calibrate the Prosper model for well D15. This includes the data  

used to match the multiphase flow correlations and to generate the IPR for the oil model. Table E-4 shows the inability of the 

velocity strings to produce with the current IPR case. It also shows that the 2⅞” velocity string is the only velocity string  

option that can produce in the late life IPR case. 

 

 
Figure E- 1 – D15 completion schematic, from Prosper 

 

Table E- 1 - Summary of the well test data used to match the correlations for D15 

 

Test Date Test type
THP 

(bara)

THT 

(Deg C)

Water 

cut (%)

Liquid 

rate 

(stb/d)

Gauge 

Depth (m)

Gauge 

Pressure 

(bara)

Reservoir 

Pressure 

(bara)

GOR 

(sm3/sm3)

24-Apr-97 Well test 176 102 0.1 8,189 3529 353 384.6 465

20-Oct-97 Well test 169 81 0.1 2,858 3529 305 349.1 516

19-Sep-98 Well test 176 68 0.5 1,573 3529 311 338.0 536

09-Dec-00 PLT 95 84 0.0 3,108 3476 197 251.6 1,036

09-Dec-00 PLT 115 83 0.0 2,253 3476 212 251.6 1,123

11-Dec-00 PLT 125 70 0.0 1,254 3476 222 251.6 1,364

11-Dec-00 PLT 132 61 0.0 533 3476 234 251.6 1,315

23-Apr-04 Well test 86 28 0.0 602 3800 160 170.3 917

23-Apr-04 Well test 79 34 0.0 861 3800 151 170.3 916
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Table E- 2 - Errors in gauge pressures calculated by the various correlations for the D15 oil model 

 
 

 

 

 

  
Figure E- 2 - Variation of PI w ith time for D15 

 

Duns & Ros 

Modified
Fancher Brown PE2 PE4 PE5 OLGAS 2P OLGAS 3P Tacite

Test Date

Gauge 

Pressure  

(bara)

Error Error Error Error Error Error Error Error

Average 

Absolute 

Error

Test 

Good?

23/04/2004-2 151 18% 6% 11% 12% 23% 16% 16% 14% 14% No

23/04/2004-1 160 26% 11% 13% 25% 33% 20% 20% 20% 21% No

11/12/2000-2 234 6% 0% 1% 5% 9% 2% 2% 3% 4% Yes

11/12/2000-1 222 -2% -2% 1% -2% 3% 0% 0% -1% 1% Yes

09/12/2000-2 212 2% 2% 5% 1% 6% 4% 4% 2% 3% Yes

09/12/2000-1 197 3% 2% 8% -4% 9% 4% 4% 3% 5% Yes

19/09/1998 311 6% 5% 6% 5% 5% 5% 5% 5% 5% Yes

24/10/1997 305 5% 5% 6% 5% 6% 5% 5% 5% 5% Yes

24/04/1997 353 5% 5% 6% 6% 6% 6% 6% 6% 6% Yes

4.1% 3.0% 4.6% 4.0% 6.4% 3.8% 3.8% 3.4%Average error (ex. bad tests)

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

11/03/97 06/12/99 01/09/02 28/05/05 22/02/08 18/11/10

P
I (

Sm
3

/d
ay

/b
ar

)

Date

PI variation with time for well D15

Satisfactory constant 

PI variation with time 

after initial drop 
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Figure E- 3 - PI sensitivity for D15, from Prosper  

 

 

 

 

Table E- 3 - Well test data used to match the IPR and validate the D15 oil model 

 
 

 

Table E- 4 - Production rates for the various D15 completions for different cases 

 
 

 

Test Date

Liquid 

Rate 

(bbl/d)

Gas Rate 

(kSm3/day)

BHFP 

(bara)

Reservoir 

Pressure 

(bara)

PI 

(Sm3/day/bar)

Water 

cut 

(%)

GOR 

(Sm3/Sm3)

THP 

(bar)

IPR 

matched 

with 

data?

Calculated 

Liquid Rate 

(bbl/d)

Oil rate 

error

Calculated 

Gas Rate 

(kSm3/day)

Gas 

rate 

error

24/03/2012 783 64 123.3 148 5.04 0.0 513 38.4 Yes 740 -5.5% 60 -5.4%

Completion Current  

2" 

Velocity 

string

2 3/8" 

Velocity 

string

2 7/8" 

Velocity 

string

2" Tail 

pipe

2 3/8" 

Tail pipe

2 7/8" 

Tail pipe

Oil Rate (stb/d) 812 0 0 0 791 808 808

Gas rate (kSm3/d) 66 0 0 0 65 66 66

BHFP (bara) 122.5 0.0 0.0 0.0 123.2 122.6 122.6

Oil Rate (stb/d) 941 268 427 631 912 929 936

Gas rate (kSm3/d) 191 55 87 128 185 189 190

BHFP (bara) 83.0 106.0 101.0 94.2 84.1 83.5 83.2

Oil Rate (stb/d) 489 0 0 326 471 484 490

Gas rate (kSm3/d) 99 0 0 66 96 98 100

BHFP (bara) 79.8 0.0 0.0 85.1 80.4 79.9 79.7

Current Reservoir 

Pressure = 148 bara

Mid Life - Reservoir 

Pressure = 114 bara

Late Life - Reservoir 

Pressure = 95 bara

PI = 2.0 

PI = 4.0 

PI = 5.5 

PI = 8.0 

PI of 5.5 gives the 

best IPR match with 

well test data 


