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Abstract 

Human noroviruses (HuNoV) are a significant cause of viral gastroenteritis in man 

worldwide. Noroviruses are also associated with intestinal disease in multiple species, 

including dogs. Canine norovirus (CNV) was initially discovered in 2007 and the first aim of 

this thesis was to determine the prevalence of CNV in the UK dog population. qPCR 

screening of canine stool samples did not identify CNV RNA, but canine astroviruses 

(CaAstV) were serendipitously identified and subsequently characterized according to the 

second aim of this work. For serological screening, CNV virus-like particles (VLPs) to three 

CNV strains were produced. CNV circulation in the UK was confirmed by identification of 

CNV-specific antibodies in 60% of canine serum samples collected in 2012-2013.  

 

The third aim of this thesis was investigate to CNV interactions with host cells by identifying 

the cellular attachment factor for CNV. Synthetic carbohydrates and canine tissue samples 

were used to assess the binding specificity of CNV VLPs, and it was shown that antigens of 

the HBGA family were recognized. Phenotyping studies then demonstrated expression of 

HBGAs in dogs. As HuNoV also uses HBGAs to attach to cells, this raised concerns that 

dogs may be susceptible to HuNoV.  

 

Evaluating the zoonotic risk of enteric viruses in dogs was the final aim of this thesis. The 

susceptibility of dogs to HuNoV and hepatitis E virus (HEV) was determined by screening 

canine samples for the presence of HuNoV or HEV RNA and HuNoV or HEV-specific 

antibodies. Antibodies to both HuNoV and HEV were identified in dogs, and results 

confirmed HuNoV VLPs can bind to canine gastrointestinal samples. This data indicates that 

dogs are susceptible to HuNoV and HEV infections.  

 

In conclusion, this thesis has provided epidemiological and molecular characterization of 

CNV and CaAstV, in addition to highlighting the zoonotic potential for CNV, HuNoV and 

HEV in dogs.   
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1.1 Caliciviridae 

The Caliciviridae are a large and diverse family of single stranded, positive sense RNA 

viruses with an icosahedral capsid that can cause a variety of disease manifestations in a 

wide range of species. There are currently five genera of caliciviruses; Lagovirus, Vesivirus, 

Nebovirus, Sapovirus and Norovirus as presented in figure 1.1. Another four calicivirus 

genera have recently been proposed; Recovirus (Farkas et al., 2008), Valovirus (L’Homme 

et al., 2009), Nacovirus (Day et al., 2010) and Bavovirus (Wolf et al., 2011).   

 

Figure 1.1 Phylogenetic relationship of the five approved calicivirus genera. 
Genera are listed in bold, with italics specifying the species listed in each genera by the ninth report 
of the International Committee on Taxonomy of Viruses (King et al., 2011). This unrooted tree was 
adapted from (Simmonds et al., 2008), which compared the RNA dependant RNA polymerase of all 
caliciviruses for which a full genome sequence was available in GenBank, May 2007. The size of 
each genera branch is proportional to the number of sequences analysed and is not an indication of 
diversity. 
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Lagoviruses are typified by rabbit haemorrhagic disease virus (RHDV), which causes acute 

lethal systemic disease in rabbits (Oryctolagus cuniculus). The genus Vesivirus includes 

feline calicivirus, a pathogen of the upper respiratory tract in cats, and vesicular exanthema 

of swine virus, which results in development of vesicular lesions in infected pigs and has 

been associated with a related virus, San Miguel sea lion virus (Gelberg & Lewis, 1982). A 

single virus is classified within the Nebovirus genus; the bovine enteric virus Newbury-1 

(Bridger et al., 1984; Oliver et al., 2006). The final two genera, Sapovirus and Norovirus, 

cause gastroenteric disease in a wide range of mammalian species (Bank-Wolf et al., 2010).  

 
 
1.2 Identification and classification of noroviruses 

A small, round, structured virus was identified as the cause of a gastroenteritis outbreak in 

Norwalk, Ohio in 1968 (Kapikian et al., 1972). Stool samples from infected individuals 

were incubated with convalescent sera from experimentally infected volunteers, and electron 

microscopy revealed the presence of aggregated 27nm sized particles (figure 1.2).  
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Figure 1.2 Electron micrograph of norovirus particles (Kapikian et al., 1972) 
A filtered stool sample from a human with clinical signs of gastroenteritis was shown to contain 
virus particles with a picornavirus-like morphology. 
 

Pre-challenge sera did not induce aggregation of particles, whereas post-challenge sera did, 

indicating that antibodies specific for the particles were being generated. Particle 

morphology was similar to that of picornaviruses and parvoviruses, but the fine 

ultrastructure was undetermined. It was almost a decade later when Norwalk virus was 

classified as a member of the Caliciviridae family of viruses, based on protein structure and 

visualization of cup-shaped depressions (calyx is latin for cup) on the surface of virus 

particles (Greenberg et al., 1981). Phylogenetic analyses later resulted in Norwalk virus 

being designated the type virus of a new calicivirus genera, ‘Norwalk-like viruses’(Green et 

al., 2000), renamed Norovirus in 2002 (Mayo, 2002). 

 
 

The Norovirus genera is divided into at least six (Mesquita et al., 2010), possibly seven 

(Vinjé, 2015), different genogroups based on capsid sequences, with strains of norovirus 

assigned to the same genogroup if the uncorrected pairwise distance of the major capsid 

protein is less than 44.9% (Zheng et al., 2006). As shown by figure 1.3, human norovirus 

(HuNoV) strains fall into genogroups I, II and IV (GI, GII and GIV). The remaining 

genogroups are composed of noroviruses identified in other animal species; bovine 

noroviruses in GIII, murine noroviruses in GV and canine noroviruses in GIV/GVI and 

potentially GVII. Noroviruses are further subdivided into genotypes based on genetic 

similarities (>85% amino acid identity), with nine GI genotypes and at least 22 GII 

genotypes recognized at present (Vinjé, 2015).  
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Figure 1.3 Classification of noroviruses into seven genogroups (GI-GVII).  
This phylogenetic tree is based on the amino acid sequences of the capsid protein VP1, adapted from 
(Vinjé, 2015). The species names listed within each genogroup refer to the animal species from 
which noroviruses of the genogroup have been isolated. The size of each branch is proportional to 
the number of sequences analysed from each genogroup and is not an indication of diversity. 
 
 
 
 
 
 
1.3 Genetic organization of noroviruses 

Noroviruses are non-enveloped viruses with a positive sense single stranded RNA genome, 

approximately 7.7kb in length (Jiang et al., 1990). A virally encoded VPg protein is 

covalently linked to the 5’ end of the genome, which is polyadenylated at the 3’ end. The 

genome has 3 open reading frames (ORFs) as shown by figure 1.4.  
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Figure 1.4 Organization of the norovirus positive-sense, single-stranded RNA genome.  
The viral protein VPg is covalently attached to the 5’ end of the RNA, and a polyA tail is at the 3’ 
end. ORF1 is encoded by the genomic RNA, which consists of a polyprotein that is subsequently 
cleaved into six separate proteins by the NS6 protease. The structural proteins of ORF2 (VP1) and 
ORF3 (VP2) are encoded by the subgenomic RNA. ORF4 is an alternative reading frame only 
identified in MNV. 
 

 

The first ORF comprises the non-structural proteins and the structural proteins of the capsid 

are encoded by ORFs 2 and 3. The polyprotein translated from ORF1 is cleaved into 6 

proteins by the virus encoded protease (NS6) (Sosnovtsev et al., 2006). Together these 

proteins function to replicate the positive sense genomic RNA into a negative sense copy, 

from which positive sense subgenomic RNA can be synthesized. ORFs 2 and 3 are then 

translated to produce the major capsid protein (VP1) and minor capsid protein (VP2) 

respectively from the subgenomic RNA. 

 

 

A fourth ORF has been identified in murine norovirus (MNV), but not human norovirus 

(HuNoV), overlapping with ORF2 (Thackray et al., 2007). A comparable ORF has been 

predicted in some human sapoviruses although its function is unknown (Oka et al., 2015). 
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The product of MNV ORF4 is virulence factor 1 (VF1), which has been shown to co-

localise with the mitochondria and have a role in induction of innate immunity and apoptosis 

in infected cells (McFadden et al., 2011).  

 

Noroviruses have an icosahedral capsid composed of 180 copies (90 dimers) of VP1. VP2 is 

understood to play a role in stabilization of the capsid structure and by binding to the interior 

surface of the capsid it has been proposed to mediate capsid assembly and genome 

encapsidation (Lin et al., 2014; Vongpunsawad et al., 2013). The 59kDa VP1 protein was 

first identified by purification of the virus from stools (Greenberg et al., 1981). VP1 can be 

divided into 3 sub-domains, P1 and P2 (the protruding domains), and the S domain (shell 

domain) (figure 1.5) (Prasad et al., 1999). The P2 domain extends above the viral surface, 

and consequently is the most diverse region of the genome, playing an important role in 

cellular interactions and immune recognition.  

 

 

 

Figure 1.5 Structure of the Norwalk virus capsid (Glass & Parashar, 2009) 
The image on the left shows the icosahedral capsid structure of Norwalk virus by cryo-EM. This is 
formed of 180 molecules (90 dimers) of  the major capsid protein (VP1).  A ribbon representation of 
a VP1 dimer is shown on the right, which is colour-coded to identify the three different sub-domains; 
P1 and P2 (protruding) domains and the S (shell) domain. The region highlighted by the dashed box 
represents the histo-blood group antigen binding region (see section 1.4.2)  



 

 18 

 
1.4 Norovirus replication 

1.4.1 Model systems for studying noroviruses 

Characterisation of the norovirus life cycle has been significantly hampered by the inability 

to grow HuNoV in cell culture. Multiple attempts have been made to replicate the virus in 

vitro using purified stool sample isolates and a diverse range of cell lines and supplements 

(Duizer et al., 2004; Lay et al., 2010). Replication of HuNoV RNA has been demonstrated 

in human hepatoma Huh-7 cells following transfection of RNA, but even though viral 

particles are released into the medium, no subsequent cell entry is possible, suggesting the 

restriction may be at the level of receptor expression or entry pathways (Guix et al., 2007). 

However, a possible breakthrough has recently been made using a Human Burkitt 

lymphoma B cell line (BJAB cells) (Jones et al., 2014a). HuNoV was shown to replicate in 

B cells, with a 25-fold increase in viral genome copy number after five days. However this 

level of replication is limited compared to virus levels shed in human volunteer studies 

(Atmar et al., 2008), and this system is yet to be replicated successfully in other laboratories. 

 

In lieu of an efficient in vitro cell culture system for HuNoV, surrogate viruses have been 

widely utilized to probe the molecular details of this viral genus. Feline calicivirus (FCV), a 

member of the Vesivirus genus, has been a valuable model system with in vitro growth 

readily studied using a cell culture and reverse genetics system (Sosnovtsev & Green, 1995). 

Tulane virus, a Recovirus, has also been proposed as a model virus for HuNoV, capable of 

inducing gastroenteritis in non-human primates and with comparable genetic diversity and 

epidemiology to human noroviruses (Farkas et al., 2014). However, the most relevant and 

widely used viral model for HuNoV is MNV, identified in 2003 and providing the field with 

the first cultivatable norovirus that can be easily studied in an in vivo model (Wobus et al., 
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2004). MNV replicates efficiently in primary or immortalized murine dendritic and 

macrophage cells, and a range of reverse-genetics systems have been developed (Arias et al., 

2012; Chaudhry et al., 2007; Ward et al., 2007; Yunus et al., 2010).  

1.4.2 Binding and entry mechanisms 

Many caliciviruses use carbohydrates as attachment factors to bind to cells prior to 

internalization. MNV and FCV recognize forms of sialic acids (Stuart & Brown, 2007; 

Taube et al., 2009), bovine norovirus binds to alphaGal (Zakhour et al., 2009) and a number 

of caliciviruses bind to specific carbohydrates known as histo-blood group antigens 

(HBGAs). The Lagovirus RHDV was the first virus identified as using HBGAs as 

attachment factors, (Ruvoën-Clouet et al., 2000)  and this was soon followed by the 

demonstration that human Norwalk virus also uses these carbohydrates (Marionneau et al., 

2002). Subsequent studies showed that the majority, if not all genogroup I and genogroup II 

HuNoVs recognize HBGAs. Most recently the Tulane virus of the recently proposed 

Recovirus genera was also shown to bind these carbohydrate structures (Farkas et al., 2010). 

 

HBGAs are terminal structures of glycan chains expressed on the surface of red blood cells 

in man and great apes, as well as being located on epithelial cells of the gastrointestinal, 

genitourinary and respiratory tracts in a wide variety of species. In addition, HBGAs can be 

secreted by these cells into bodily fluids, including saliva (Marionneau et al., 2001). The 

biosynthesis of HBGAs requires the stepwise addition of monosaccharide units onto glycan 

chains, a process performed by specific glycosyltransferases (figure 1.6).  
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Figure 1.6 Biosynthesis of histo-blood group antigens (HBGAs) on epithelial cells.  
Activity of different glycosyltransferases (labeled in boxes) results in generation of multiple 
oligosaccharides from the type 1 precursor. The symbol presentation of glycans is based on the 
nomenclature used in Essentials of Glycobiology textbook (Varki et al., 2009). 
 

 

HBGAs are derived from different types of precursor disaccharide structures; the type 1 

precursor molecule is a galactose (Gal) joined to a N-acetylglucosamine (GlcNAc) via a 

β1,3 linkage. Type 2 is Galβ1,4GlcNAc. The type 3 precursor is a Galβ1,3GalNAc in α 

linkage to the subjacent structure (i.e. serine or threonine of the peptide chain) and the type 4 

is also a Galβ1,3GalNAc, but in β linkage to the subjacent structure. Conversion of these 

structures into the H antigen requires action of α1,2-fucosyltransferases. On red blood cells 

and vascular endothelium fucosyltransferase 1 (FUT1) is active, whereas in epithelial cells 

FUT2 is active (Marionneau et al., 2002).  
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Approximately 20% of Caucasians do not express a functional FUT2 gene, hence do not 

express HBGAs in their gastrointestinal tract and are termed ‘non-secretors’. It was 

hypothesized that these individuals would have a significantly reduced susceptibility to 

infection with HuNoV (Marionneau et al., 2002). Experimental challenge studies in humans 

later confirmed that susceptibility to HuNoV infection is related to expression of HBGAs in 

the gastrointestinal tract (Hutson et al., 2005; Lindesmith et al., 2003). However, it is worth 

noting that HBGA expression on cells in vitro is not sufficient to render the cells permissive 

to HuNoV infection, which suggests an extra factor or receptor is required (Duizer et al., 

2004). 

1.4.3 Viral protein translation 

Following entry of a norovirus particle into a cell, the viral RNA genome is released into the 

cytoplasm, and interacts with the host cell translation machinery. The genome of the 

Caliciviridae is covalently linked to the viral protein VPg, which acts as a cap substitute for 

translation initiation (Goodfellow et al., 2005). This novel mechanism of directing the 

cellular translation apparatus is only confirmed for one other viral family, Potyviridae 

(Léonard et al., 2000), although evidence suggests Astroviridae also require VPg for 

infectivity (Fuentes et al., 2012). Norovirus VPg interacts with the translation initiation 

factor complex via eIF4E (Goodfellow et al., 2005) and eIF3 (Daughenbaugh et al., 2003), 

which aid in recruiting the 43S ribosomal pre-initiation complex. 

 

The 5’ and 3’ ends of the norovirus genome contain highly conserved RNA structures that 

interact with host cell factors to drive viral replication and translation (Vashist et al., 2012). 

A number of cellular proteins have been identified which bind to secondary structures in 

norovirus RNA, including La, polypyrimidine tract-binding protein (PTB) and poly(A)-
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binding protein (PABP) (Gutiérrez-Escolano et al., 2003). The exact roles of these proteins 

in controlling norovirus translation has not been defined, but La and PTB are known to drive 

internal ribosome entry site (IRES)-mediated translation of picornaviruses (Toyoda et al., 

1994), thus they may play a role in circularizing and stabilizing norovirus RNA to promote 

translation. 

 

The subgenomic RNA of noroviruses (see figure 1.4) is required for translation of the viral 

structural proteins VP1 and VP2. It is hypothesized that this has evolved to enable 

production of much larger amounts of the major capsid protein than the non-structural 

proteins. The minor capsid protein (VP2) is translated by a termination-reinitiation 

mechanism, as the subgenomic RNA of norovirus is polycistronic (Napthine et al., 2009). 

ORF4 of MNV is also translated from the subgenomic RNA; it is predicted that this is 

initiated by leaky scanning as the ORF4 start codon is positioned 13 bases downstream of 

the first AUG triplet of ORF2 in a strong Kozak context (McFadden et al., 2011). 

1.4.4 Genome replication 

Translation of ORF1 yields a polyprotein that is co- and post-translationally cleaved by the 

viral protease NS6. Polyprotein cleavage generates viral non-structural proteins that play 

important roles in formation of the viral replication complex, although the molecular details 

of this process and the functions of several of the viral proteins involved (NS1-2, NS3 and 

NS4) have not yet been fully elucidated. Noroviruses, along with many other positive sense 

RNA viruses, replicate in association with host cell membranes in the cell cytoplasm 

(Wobus et al., 2004). Studies with MNV have demonstrated membranes of the secretory 

pathway are involved in formation of the replication complex in the perinuclear region of 
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the cell, and that all of the ORF1 proteins are associated with double-stranded RNA 

(dsRNA), the viral RNA intermediate, during the course of infection (Hyde et al., 2009). 

 

Replication of the norovirus genome proceeds via a negative-sense RNA intermediate, 

which is generated by the viral RNA dependent RNA polymerase RdRp (NS7). It has been 

proposed that the mechanism by which RdRp activity is driven to generate the negative-

sense RNA involves a de novo initiation strategy. The norovirus major capsid protein has 

been shown to enhance RdRp activity, which suggests that the early rounds of RNA 

synthesis utilize VP1 to drive RNA replication without requiring VPg (Subba-Reddy et al., 

2012). VPg-dependant RNA synthesis then follows after generation of dsRNA, from which 

positive sense genomic and subgenomic RNA is synthesized.  

 

1.5 Clinical features and management of HuNoV infection 

Following exposure to HuNoV, clinical signs develop after an incubation period of 10-51 

hours (Glass & Parashar, 2009). Acute vomiting, abdominal cramps, watery diarrhoea and 

pyrexia typically occur, with symptoms lasting an average of 28-60 hours in the majority of 

cases. Disease can be of longer duration with greater severity in the young and elderly 

(Rockx et al., 2002), and immunocompromised individuals (Kaufman et al., 2005). In 

addition, HuNoV has also been associated with inflammatory bowel disease (Kolho, 2012), 

seizures (Bartolini et al., 2011), and liver dysfunction (Nakajima et al., 2012). Mortality 

rates in high-income countries are typically low, with an estimated 570-800 deaths in the US 

annually, of which a major proportion of people are over 65 years old (Hall et al., 2013). 

However, an estimated 200,000 children die following norovirus infection in the developing 

world each year (Patel et al., 2008).  



 

 24 

1.5.1 HuNoV Diagnostics 

Diagnosis of HuNoV infection is typically PCR based; many broad-spectrum PCR 

methodologies have been designed to allow amplification of small quantities of HuNoV 

RNA (Atmar & Estes, 2001). Serological testing is also possible to identify previous 

exposure to HuNoV. The lack of a cell culture system means that production of large 

quantities of HuNoV antigen is not possible by traditional methods, but generation of 

HuNoV virus-like particles (VLPs) can rapidly provide ample non-infectious antigen 

material for use in immunoassays. Expression of VP1 in a synthetic system results in the 

formation of virus-like particles as VP1 proteins spontaneously fold into the icosahedral 

form. This is most commonly achieved in insect cells using a recombinant baculovirus 

expression system (Belliot et al., 2001; Jiang et al., 1992). VLP production in mammalian 

cells is possible using a Venezuelan equine encephalitis virus replicon system in BHK cells 

(Baric et al., 2002) or transfection of a VP1-expression vector into HEK-293T cells (Taube 

et al., 2005). A yeast-based expression system has also shown effective VLP production 

(Xia et al., 2007). 

1.5.2 Treatment of HuNoV disease 

Treatment of norovirus infections in humans is focused on maintaining hydration, either 

orally, or intravenously if severe. There are no licensed anti-viral drugs effective against 

human norovirus at present, although a number of in vitro studies have shown efficacy for 

anti-viral drugs against the Norwalk virus replicon. These include interferons, the guanosine 

analogue ribavirin, and the protease inhibitor rupintrivir (Chang & George, 2007; Rocha-

Pereira et al., 2014). Furthermore, recent animal studies have identified anti-viral drugs with 

efficacy against MNV in vivo. These include the viral polymerase inhibitor 2’-C-
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methylcytidine (Rocha-Pereira et al., 2013), small molecule deubiquitinase inhibitors (Perry 

et al., 2012) and favipirivir, a broad-spectrum nucleoside analogue (Arias et al., 2014). 

1.5.3 HuNoV vaccines 

There is currently no vaccine available to prevent HuNoV infection in humans, however two 

promising phase II vaccine trials have recently been published (Atmar et al., 2011; Bernstein 

et al., 2014). Generating suitable HuNoV vaccine candidates has been challenging due to the 

lack of a cell-culture system, unknown duration of immunity in man, and the significant 

heterogeneity of HuNoV strains (Debbink et al., 2014). The vaccines under development are 

VLP-based, and whereas the first vaccine trial used a single HuNoV strain (GI.1), it is 

acknowledged that a multi-valent approach will be ideal and thus the second trial utilized 

GI.1 and GII.4 VLPs. Both studies demonstrated efficacy at reducing the severity of 

gastroenteritis (p = 0.009 / p = 0.02 as measured by the modified Vesikari score), although 

reduction in viral infection rates was only marginally significant in the first study using GI.1 

as the challenge strain (p = 0.05), and not significant in the second study using GII.4 as the 

challenge strain (p = 0.179). 

 

1.6 Epidemiology of HuNoV 

HuNoV infections are most common in healthcare institutions such as hospitals and long 

term care facilities (Lopman et al., 2003), but outbreaks are often reported in association 

with schools, restaurants, cruise ships and other settings such as military bases (Ahmed et 

al., 2012). A seasonal distribution has been identified for HuNoV outbreaks, with an 

increase in reported cases each winter (figure 1.7) (Lopman et al., 2003). 
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Figure 1.7 Seasonality of HuNoV infections from 2009-2012.  
Data is from laboratory reports of HuNoV infections in England and Wales by Public Health 
England (PHE). This data comprises all faecal specimens that tested positive for HuNoV each month 
over the time periods listed (Public Health England, 2013). 
 
 

Transmission of HuNoV is via contact with infected faeces or vomit which occurs 

predominantly through direct person-to-person contact, but contaminated surfaces and 

aerosolized vomit can transmit the virus as well (Mathijs et al., 2012). Contaminated food 

and water are also known to play an important role in HuNoV spread, with 58% of food 

borne illnesses in the US attributed to HuNoV (Scallan et al., 2011). As few as 18 viral 

particles are required for infection (Teunis et al., 2008). 

 

Although the GI Norwalk virus was the first member of the norovirus genera to be 

described, GII strains are now responsible for 96% HuNoV cases worldwide, with the GII.4 

genotype being the most prevalent overall (Tran et al., 2013). Over the past decade GII.4 

strains have caused epidemics every 2-3 years, starting with emergence of the Farmington 

Hills strain in 2002 which was characterized following an unusual increase in HuNoV 

infections reported over the winter of 2002-2003 (Dingle et al., 2004). Subsequent epidemic 
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strains include Hunter 2004, Den Haag 2007, New Orleans 2009 and most recently the 

Sydney 2012 strain (Beek et al., 2013). Rapid nucleotide substitutions and homologous 

recombination are both factors contributing to the continued evolution of GII.4 strains (Eden 

et al., 2013). 

 

Serological surveys have shown a high frequency of HuNoV antibodies in human 

populations. Almost 100% seropositivity to GII.4 HuNoVs in India and UK has been 

reported (Menon et al., 2013a) and there is a clear age-related trend in seropositivity; 

children less than 5 years of age have been shown to have significantly lower HuNoV 

antibody levels in numerous studies (Gray et al., 1993; Menon et al., 2013a). 

 

1.7 Noroviruses of different species 

Viruses in the norovirus genera have been identified in a range of non-human mammalian 

species. These have generally been associated with intestinal infection, although clinical 

symptoms are typically mild.  

1.7.1 Bovine noroviruses 

Bovine noroviruses were the first non-human norovirus to be identified (Woode & Bridger, 

1978). Diarrhoea samples from calves were analysed by electron microscopy and shown to 

contain caliciviruses, with subsequent experiments with gnotobiotic calves confirming 

pathogenicity. This first bovine norovirus was designated Newbury-2 virus, (Newbury-1 

calicivirus is a Nebovirus) and a second bovine norovirus, ‘Jena virus’ was later identified in 

Germany (Gunther & Otto, 1987). Bovine noroviruses have since been detected across 

Europe, US and in Asia (Mauroy et al., 2009; Park et al., 2007; Thomas et al., 2014), with 

prevalence levels of approximately 10% of diarrhoeic calves. 
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Molecular characterization of bovine noroviruses resulted in formation of the third norovirus 

genogroup (GIII) (Oliver et al., 2003). Jena virus was classified as GIII.1, and Newbury-2 

virus as GIII.2. No human noroviruses are classified within GIII, and the only other species 

known to be susceptible to GIII noroviruses are sheep (Wolf et al., 2009).  

1.7.2 Porcine noroviruses 

A norovirus of pigs was identified in Japan following screening of swine caecal contents for 

caliciviruses (4/1117 pigs positive) (Sugieda et al., 1998). Porcine norovirus was classified 

as a GII norovirus alongside many human strains, but was shown to form a cluster separate 

from the HuNoV genotypes. Later studies have designated porcine noroviruses as GII.11, 

GII.18 and GII.19 genotypes, and these have not been associated with any clinical signs. 

However, a novel porcine norovirus was recently identified in piglets with diarrhoea, which 

caused disease in an experimental model and was shown by phylogenetic analysis to be 

distinct from previously identified genotypes (Shen et al., 2012).  

 

Viral RNA surveys in different regions have identified porcine norovirus at varying 

prevalence levels; 2% of farms in the Netherlands were positive (Poel et al., 2000), whereas 

9% porcine faecal samples from New Zealand (Wolf et al., 2009), 18.9% samples in the US 

(Scheuer et al., 2013), and almost 52% in Brazil were positive for viral RNA (Silva et al., 

2015).  

 

Porcine norovirus VLPs have been generated for serological surveys and studies on binding 

preferences (Farkas et al., 2005). Whereas 36% pigs sampled in Japan were seropositive, 

this figure rose to 71% in US pigs. Interestingly, porcine norovirus VLPs did not bind to a 
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range of HBGAs in human saliva samples, which is in direct contrast to human noroviruses 

within the same genogroup. 

1.7.3 Murine norovirus 

Murine norovirus (MNV) has already been discussed as a valuable model virus for studies 

of HuNoV. MNV was initially discovered incidentally in colony of RAG2/STAT1–/– mice, 

where it caused acute systemic disease characterized by encephalitis, meningitis, hepatitis 

and pneumonia (Karst et al., 2003). Immunocompetent mice infected with MNV were 

subsequently shown to be asymptomatic, with innate immune responses limiting 

pathogenicity. Multiple strains of MNV have now been characterized, with up to 13% 

genetic variability identified and variation in the ability to persist in the murine host reported 

(Thackray et al., 2007). Screening for this pathogen in immunocompetent mice colonies 

worldwide has identified this to be a highly prevalent and globally distributed pathogen, 

with over 20% research mice in the US seropositive for this virus (Hsu et al., 2006).  MNV 

has also been identified in non-laboratory mice, with 35% show mice in the UK testing 

positive by PCR (Smith et al., 2012). 

1.7.4 Feline norovirus 

A lion (Panthera leo) was the first member of the mammalian family Felidae from which a 

norovirus was identified (Martella et al., 2007). A 4-week old lion cub showing signs of 

severe haemorrhagic gastroenteritis was euthanased at a zoo in Italy, and in addition to 

testing positive for several pathogenic bacteria, a novel GIV norovirus was identified. A 

GIV norovirus with 97.9% capsid amino acid identity to the lion strain was identified five 

years later in domestic cats (Felis catus) in the US (Pinto et al., 2012). A total of 6/14 cats 

aged 8-12 weeks from a New York shelter were positive for this feline norovirus. A second 

report from the US has confirmed that this virus is circulating in cats in the shelter 
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population (Zhang et al., 2014), although at present there are no reports from other regions 

of the world. Both the lion and the domestic cat noroviruses have been classified as GIV.2 

noroviruses based on sequence comparison with human GIV.1 noroviruses. 

1.7.5 Canine norovirus 

The first canine norovirus (CNV) was reported in a 2 month-old dog with a four day history 

of gastroenteritis in Italy in 2007 (Martella et al., 2008). Sequence analysis of this novel 

norovirus showed it had the highest sequence identity to the GIV.2 lion norovirus (90.1% 

amino acid), hence it was designated a member of the GIV.2 genotype. Subsequent 

epidemiological studies have identified CNV in stools of dogs from Portugal (Mesquita & 

Nascimento, 2012b; Mesquita et al., 2010), Greece (Ntafis et al., 2010), the Far East (Soma 

et al., 2014; Tse et al., 2012) and the US (Azevedo et al., 2012). 

 

The pathology induced by CNV infection is very difficult to determine. CNV was detected 

in stool samples for 22 days in the first case reported, indicative of active infection in the 

gastrointestinal tract (Martella et al., 2008). However, this case was co-infected with canine 

parvovirus (CPV), a virus proven to cause gastroenteritis by experimental infections (see 

section 1.9.1). Co-infections with CPV or canine enteric coronavirus (CECoV) appear to be 

relatively common in dogs diagnosed with CNV (Martella et al., 2009; Ntafis et al., 2010) 

thus it is difficult to attribute clinical signs to CNV alone. Despite this, CNV has been 

identified in association with gastroenteritis in the absence of other detectable pathogens 

(Martella et al., 2009), but the majority of studies only screen for a limited number of other 

viruses and bacteria. Finally, it is important to consider the possibility of subclinical 

infections as CNV has been detected in the stools of healthy dogs (Mesquita et al., 2010). To 
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definitively confirm the role of CNV in gastroenteritis in dogs, experimental infections will 

be required. 

 

The prevalence of CNV in dogs with clinical signs of gastroenteritis across Europe has been 

estimated to be between 2.1% (Italy (Martella et al., 2009)) and 40% (Portugal (Mesquita et 

al., 2010)). A study in the US identified CNV at a prevalence of 11% in canine diarrhoea 

samples (Azevedo et al., 2012). A seasonal distribution for CNV has been reported by 

Mesquita et al, who found significantly more CNV positive cases in the winter than in the 

spring and autumn months; 36% (33/91) compared to 25% (21/84) and 7% (6/81) 

respectively (Mesquita & Nascimento, 2012a). This is similar seasonal variation to that 

shown for human norovirus as discussed above and presented in figure 1.7.  

 

Serological prevalence of CNV in Italy has been estimated using the genogroup IV.2 lion 

norovirus (strain Pistoia/387/06/ITA). A preliminary serological survey in Italy suggested 

less than 5% dogs were seropositive to GIV.2 viruses but the sample size was small (Di 

Martino et al., 2010). As with HuNoV, CNV has yet to be cultivated in cell culture thus 

obtaining sufficient quantities of virus for serological screening is not possible. However, 

production of lion norovirus and CNV VLPs has previously been achieved and proven to be 

an efficient way of generating antigen for serological studies (Di Martino et al., 2010; 

Pereira et al., 2012). 

 

The CNV strains identified and characterized to date have been genetically heterogeneous. 

CNV strains in Portugal had less than 65% amino acid identity to the CNV isolates in Italy, 

and hence the novel genogroup GVI was proposed, to also include the HuNoV strain 

Chiba/040502/2004/JP (Mesquita et al., 2010). This diversity in CNV strains is likely to 
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have arisen from the ability for CNV strains to recombine with other noroviruses. Evidence 

for recombination between CNV strains has been reported (Martella et al., 2009). 

 

1.8 Noroviruses as potential zoonotic agents 

1.8.1 Animal-specific noroviruses and man 

The identification of animal-specific noroviruses with genetic similarities to HuNoV has 

raised questions regarding their zoonotic potential. The animal noroviruses within the same 

genogroups as the human strains theoretically have the greatest potential ability to infect 

humans, for example the GII human and swine strains, and the GIV human and feline or 

canine strains. However the swine, feline and canine norovirus strains are distinct from the 

human strains with less than 86% amino acid identity in their capsid sequences, thus the 

human and animal noroviruses are grouped into different genotypes. Nevertheless, 

noroviruses have been shown to undergo genetic recombination (Phan et al., 2007) and there 

is concern that animal and human strains could recombine to generate novel strains. At 

present however, sequence data for several thousand norovirus strains obtained from 

infected humans have found no swine norovirus sequences (Palmer et al., 2005) and no 

RNA of GIV canine or feline noroviruses has been detected in human samples..  

 

Serological studies have been performed to determine whether antibodies for animal-

specific noroviruses can be identified in man; humans in India had a 10.7% seroprevalence 

to bovine norovirus (Menon et al., 2013b) and in the Netherlands a 20% seroprevalence to 

bovine noroviruses was detected. This proportion rose to 28% amongst Dutch veterinarians 

(Widdowson et al., 2005). Antibody production against bovine norovirus suggests that 

humans can become infected with the virus, but whether bovine norovirus actually causes 

disease in humans has not yet been proven. No serological studies have been reported for 



 

 33 

porcine norovirus antibodies in man. Given the close genetic relatedness between GII 

porcine and human norovirus strains, differentiating antibody responses to each virus is 

likely to be challenging.  

 

To determine the zoonotic potential of canine norovirus, a recent survey screened a total of 

493 people for anti-CNV antibodies (Mesquita et al., 2013). Of the 120 participants who did 

not have regular contact with dogs, 5.8% were seropositive to canine norovirus. For the 373 

study participants with regular contact with dogs (all were veterinarians), 22.3% people 

were seropositive. The authors concluded that CNV may infect humans and that 

veterinarians are at increased risk of exposure. However, the clinical significance of this is 

unknown and no active replication of CNV in man has been identified. The report by 

Mesquita et al has been followed by a second study, which focused on human 

seroprevalence to both human and carnivore GIV noroviruses in Italy (Martino et al., 2014). 

Human serum samples were collected form 533 hospital patients, and samples were then 

screened in ELISAs for reactivity to a human GIV.1 strain VLP, and a lion GIV.2 VLP. In 

total 28% samples were reactive to GIV VLPs, with 20% reactive to both GIV.1 and GIV.2, 

and 0.9% samples reactive to GIV.2 alone. Again this is suggestive of zoonotic transmission 

of disease, and indicates there is likely to be a relationship between the evolution of human 

and animal noroviruses. 

 

It has been hypothesized that the species specificity of noroviruses may be directed by the 

cell surface carbohydrates to which the virus particles bind. As discussed in section 1.4.1, 

HuNoVs bind to HBGAs on surface of cells, a process predicted to play a key role in cell 

entry. The types of carbohydrates expressed by cells of different animals can vary 

significantly, thus determining the binding specificity of the animal noroviruses could 
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provide insights into zoonotic risk. Studies on the cellular attachment factor of GIII 

noroviruses have identified the Galα1,3 carbohydrate as the ligand for bovine norovirus 

(Zakhour et al., 2009). The enzyme that synthesizes the Galα1,3 motif is present in all 

mammalian species, with the notable exception of humans. This suggests that bovine 

norovirus cannot bind to human gut cells, and thus cannot cause infection, which is at odds 

with the serological studies described above. 

1.8.2 Animal infection with human noroviruses 

Multiple studies have shown that pigs are regularly exposed to HuNoV. Over half of the 

pigs in a US report were seropositive to both GI and GII HuNoVs (Farkas et al., 2005). This 

finding was supported by a study that demonstrated human strains can replicate and induce 

an immune response in gnotobiotic pigs (Cheetham et al., 2006). The hypothesis that pigs 

can be infected by HuNoV has been further supported by the detection of HuNoV RNA 

(GII.4) in pigs in Canada and Taiwan (Chao et al., 2012; Mattison et al., 2007) In addition, a 

Canadian pork retail product was positive for HuNoV, posing a speculative risk to human 

consumers. A GII.4 HuNoV has also been detected in stool samples from cattle (Mattison et 

al., 2007). 

 

On a daily basis most humans in the western world do not have close contact with cattle and 

pigs. However, the domestic dog (Canis lupus familiaris) is one of the most popular pets in 

the UK, with approximately 31% households owning a dog (Murray et al., 2010). Various 

studies have shown that between 14% and 35% pet dogs sleep on their owner’s beds 

(Chomel, 2011) thus this close relationship between dogs and their owners means that the 

risk of transmission from dog to human is often considered high. To date, several different 

enteric viruses have been suggested to spread between humans and dogs, including rotavirus 
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(Theamboonlers et al., 2013; Wu et al., 2012), hepatitis E virus (HEV) (Borgen et al., 2008; 

Lewis et al., 2008) and HuNoV. 

 

The first report of dogs in association with HuNoV infection occurred during an outbreak of 

norovirus gastroenteritis in an elderly care home (Humphrey et al., 1984). Just prior to 

development of clinical symptoms in humans, the owner’s dog was sick on multiple 

occasions around the home. Serological testing of the dog one month after the incident 

revealed a moderate titre to HuNoV antigen by immune electron microscopy. This titre to 

HuNoV was significantly higher than that of the twenty-one control dogs. Further evidence 

linking dogs with HuNoV infections in man has been provided by an epidemiological study 

that showed seropositivity to HuNoV in children increased seven fold if there was a dog in 

the household (Peasey et al., 2004). 

 

More concrete evidence that dogs may be involved in the epidemiology of HuNoV has been 

the detection of HuNoV in stool samples from pet dogs (Summa et al., 2012). Summa et al 

collected stool samples from dogs if their owners were experiencing acute gastroenteritis 

lasting 1-3 days. A proportion of these human gastroenteritis cases were predicted to be 

HuNoV. Canine stool samples were tested for the presence of GI, GII and GIV HuNoV, and 

four dogs were found to be positive for GII HuNoVs. The quantity of HuNoV detected from 

the stools in three dogs was low and could be attributed to HuNoV merely passing through 

the canine gastrointestinal tract and not replicating. Dogs could theoretically act as fomites if 

personal hygiene is not optimal. However, the fourth positive dog in this study had higher 

levels of HuNoV in their stools, and the strain identified was identical to that isolated from 

stools of the owner. This suggested that HuNoV may have replicated within the 

gastrointestinal tract of this single dog.  
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Summa et al also noted that 2 of the 4 HuNoV positive dogs showed clinical signs of 

gastroenteritis. However, it is not possible to infer any causality from these clinical signs, as 

vomiting and diarrhea can occur for a multitude of reasons in dogs. This will now be 

discussed in the following section. 

 

1.9 Enteric viruses of dogs 

Gastroenteritis is a very common condition in dogs, with 6% of canine veterinary 

consultations addressing gastroenteritis as a primary complaint (Jones et al., 2014b). 

Furthermore, an owner questionnaire reported diarrhoea in 14.9% dogs within the preceding 

two-week period (Hubbard et al., 2007). The causes of canine gastroenteritis can be divided 

into infectious and non-infectious. A change in diet or scavenging is understood to be a 

major cause of non-infectious diarrhea (Stavisky et al., 2011), with infectious causes sub-

divided into parasitic, bacterial and viral. A number of studies have sought to identify the 

proportion of diarrhea cases that can be attributed to viral infection, as summarized in table 

1.1. Results show that viruses have been identified in 32% (Vieler & Herbst, 1995) to 83% 

(Mesquita et al., 2010) of diarrhoea cases, with geographical variation evident. The accuracy 

of these figures is likely to be affected by case selection bias, as well as limitations of 

screening methodologies, but overall they reveal an important role for viruses in canine 

gastroenteritis. 

 

 

 

 

 



 

 37 

 

 
 
Table 1.1. Summary of epidemiological surveys identifying viruses in canine stool samples.  
The presence of viruses in diarrhoea (d+) and normal stools (d) is compared. The methodology in 
each survey used was either PCR or electron microscopy (EM). Studies only testing for a single virus 
are not included, and the absence of reporting (NR) for specific viruses is recorded. 
 
 

Two canine viruses are responsible for the majority of canine viral gastroenteritis worldwide 

as highlighted in table 1.1; canine parvovirus (CPV) and canine enteric coronavirus 

(CECoV). Both viruses have been experimentally proven to cause gastroenteritis in dogs 

(Keenan et al., 1976; Meunier et al., 1985). Two additional viruses have also been shown to 

induce gastroenteritis in an experimental setting; canine rotavirus and canine distemper virus 

(CDV) (Demonbreun, 1937; Kang et al., 2007). CDV is part of a systemic disease syndrome 

and is not believed to be circulating in UK dogs (Bohm et al., 2004), thus will not be 

discussed further. A number of other viruses have been associated with diarrhea in dogs 

which will next be discussed in turn. 

Author, year Case 
number 

Location Method Overall 
virus 

Canine 
parvovirus 

Canine enteric 
coronavirus 

(Baumann et 
al., 2014) 

104 d+ 
43 d- 

Brazil PCR 44% d+ 
7% d- 

36% d+ 
0% d- 

11% d+ 
7% d- 

(Tupler et al., 
2012) 

50 d+ 
50 d- 

Florida, 
USA 

PCR 
/EM 

NR 2% d+ 
2% d- 

2% d+ 
18% d- 

(Godsall et al., 
2010) 

355 d+ 
 

UK PCR 64% d+ 58% d+ 7.9% d+ 

(Mesquita et 
al., 2010) 

63 d+  
42 d- 

Portugal PCR 83% d+ 
57% d- 

57% d+ 
35% d- 

51% d+ 
5% d- 

(Decaro et al., 
2009) 

156 d+ 
 

Europe PCR 62% d+ 49% 39% d+ 

(Martella et 
al., 2009) 

183 d+ 
 

Italy PCR 47% d+ 39.3% 19.1% 

(Schulz et al., 
2008) 

936 d+ 
200 d- 

Germany EM 44% d+ 
18% d- 

17% d+ 
0.5% d- 

12% d+ 
18% d- 

(Vieler & 
Herbst, 1995) 

4044 d+ 
 

Germany EM 32% 17% d+ 12% d+ 

(Marshall et 
al., 1985) 

157 d- 
29d+ 

Australia EM NR 48% d+ 
32% d- 

1% d+ 
4% d- 
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1.9.1 Canine parvovirus  

Canine parvovirus (CPV) was first identified in 1978, when outbreaks of severe 

haemorrhagic gastroenteritis in young dogs were reported (Thomson & Gagnon, 1978). In 

less than a decade the virus had spread worldwide, and this virus has a mortality rate of 

approximately 20%. 

 

The Parvoviridae are a group of small single stranded DNA viruses, divided into two 

subfamilies; Desnovirinae infect invertebrates, and Parvovirinae infect vertebrates. There 

are eight recognised genera in the subfamily Parvovirinae, with CPV classified into the 

genus Protoparvovirus, The first strains of CPV to be identified were designated CPV-2 to 

differentiate them from CPV-1, which is a member of the Bocavirus genera in Parvovirinae, 

and now renamed as canine minute virus. The abbreviation CPV thus refers to the 

historically named CPV-2. 

 

The CPV genome is approximately 5kb in length, and contains two ORFs which code for a 

total of 4 genes; 2 non-structural (NS1 and NS2) and 2 structural (VP1 and VP2). The virus 

replicates in rapidly dividing cells, thus targeting cells of the immune system, intestinal 

epithelia, and in very young dogs, myocardial cells (Meunier et al., 1985). This results in the 

clinical signs of gastroenteritis, in addition to leukopenia and occasionally myocarditis in 

young puppies. 

1.9.2 Canine enteric coronavirus 

In 1971, CECoV was isolated from an outbreak of gastroenteritis amongst military dogs 

(Binn et al., 1974). Infections with CECoV typically cause mild gastroenteritis only, 

although young dogs can suffer from more severe disease (Greene, 2012). CECoV 
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prevalence is generally lower than that of CPV (see table 1.1) and CECoV can be found in 

stools of healthy dogs. 

 

CECoV is a member of Coronaviridae, of the genus Alphacoronavirus. Other members of 

this genus include transmissible gastroenteritis of swine and feline coronavirus. 

Coronaviruses are enveloped viruses with a single stranded positive sense RNA genome of 

approximately 30Kb, divided into 7 open reading frames (Pratelli, 2011). Similar to other 

coronaviruses, CECoV is able to undergo genetic mutations which has led to the emergence 

of more virulent strains, some with pantropic pathogenicity (Zicola et al., 2012). 

1.9.3 Canine rotavirus 

Rotaviruses are members of the Reoviridae, a family of viruses with double stranded RNA 

genomes. Rotaviruses can cause gastroenteritis in a wide range of species, and are a very 

common cause of gastroenteritis in man with an estimated 750,000 cases in 2009 in the UK 

(Tam et al., 2012). The first reports of rotaviruses in dogs appeared in the late 1970s 

(Eugster & Sidwa, 1979), and molecular characterization has shown these to be distinct from 

the major human strains. Rotavirus is a double stranded RNA virus, with 2 outer capsid 

proteins VP7 and VP4, which are used for classification into G and P genotypes 

respectively. There are currently 15 VP7 genotypes, and 27 VP4 genotypes. Whereas 

genotypes G1, G3, G4 and G9, with P[8] or P[4] predominate in human populations, canine 

strains have been grouped into types G3 and P[3] (Kang et al., 2007; Martella et al., 2001). 

Rotaviruses have been reported on numerous occasions in dogs with gastroenteritis 

(Marshall et al., 1985; Tupler et al., 2012), but similar to CECoV infections, clinical signs 

are typically mild.  
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1.9.4 Canine astrovirus 

Astroviruses are small positive sense RNA viruses of the viral family Astroviridae. Canine 

astrovirus (CaAstV) was first reported over 30 years ago, following analysis of diarrheic 

canine stools by electron microscopy (Williams, 1980). However, it wasn’t until 2009 that 

the first detailed description and molecular characterization of CaAstV infection in dogs was 

published (Toffan et al., 2009). Since this report, CaAstV has been identified in Italy and 

France, Asia (China and Korea), and South America (Castro et al., 2013; Choi et al., 2014; 

Grellet et al., 2012; Martella et al., 2011; Zhu et al., 2011). This demonstrates global 

distribution of this virus, with prevalence rates between 2% and 27% reported (Choi et al., 

2014; Grellet et al., 2012). However, there are no prior reports of CaAstV from the UK and 

there are no commercial tests available for this virus. 

 

The pathology caused by CaAstV infection in dogs is uncertain. A number of recent studies 

have identified CaAstV in the stool of healthy dogs, as well as in dogs with diarrhea. A 

positive association between CaAstV infection and disease has been shown in China and 

Italy; 12% of 183 diarrhoeic stool samples were CaAstV positive, and no CaAstV was 

identified in 138 healthy controls in a Chinese dog population (Zhu et al., 2011). The Italian 

study identified CaAstV in 24.5% of 110 diarrheic samples, and 9% of the 75 healthy 

controls dogs (Martella et al., 2011). In contrast, a study of French breeding kennels found 

CaAstV in 27% diarrhoeic puppies and in 19% puppies with normal faeces, demonstrating 

no significant association with gastroenteritis (Grellet et al., 2012).  

1.9.5 Canine vesivirus 

Canine vesivirus (CVV), also known as canine calicivirus, was first reported and 

characterised almost thirty years ago (Schaffer et al., 1985). Virus from a dog with diarrhoea 
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and neurological signs was propagated in cell culture and shown to have morphology typical 

of caliciviruses. This virus was later classified into the Vesivirus genera based on sequence 

analysis (Roerink et al., 1999). Experimental infection of dogs with virus replicated in tissue 

culture did not induce any clinical signs, and hence the disease association is uncertain. The 

initial study to characterize CVV also conducted preliminary serological assays. It was 

shown that CVV did not cross-react with feline calicivirus, but a high seroprevalence was 

detected in dogs within the same US state as the first case identified. In contrast, a low 

seroprevalence to CVV was reported in a limited number of UK samples (2/25). Later 

studies have investigated the epidemiology of CVV in Asia; 1.7% stool samples tested were 

positive for CVV RNA (2 puppies with diarrhea), 57% (139/244) dogs surveyed were 

seropositive in Japan (Mochizuki et al., 2002), and 36.5% (116/318) dogs were seropositive 

in Korea (Tohya & Mochizuki, 2003). 

1.9.6 Novel canine viruses associated with gastroenteritis 

Reports of the first canine picornavirus, canine kobuvirus, were published in 2011, 

following identification of the virus in canine stool samples using high throughput 

sequencing (Kapoor et al., 2011; Li et al., 2011). Picornaviruses are a large family of small 

icosahedral viruses with a positive sense RNA genome. Canine kobuvirus is genetically 

similar to the Aichi virus, a gastroenteritis-associated human picornavirus. A follow-up 

study of 400 dogs in the USA found 20 kobuvirus positive samples, although there was not a 

significant association between virus identification and the presence of gastroenteritis (Li et 

al., 2011). Canine kobuvirus has since been reported in Korean and Italian dogs (Di Martino 

et al., 2013; Oem et al., 2014), in addition to a single case identified in the UK; this case had 

severe diarrhea, and no virus was found in the 147 control cases. A serological survey was 

also reported in conjunction with the UK case; 37.4% (74/198) canine serum samples were 
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positive for antibodies specific for the closely related Aichi virus (Carmona-Vicente et al., 

2013). 

 

To date there are two reports of canine circovirus in association with gastroenteritis in dogs 

(Decaro et al., 2014; Li et al., 2013). Circoviridae have a very small single stranded circular 

DNA genome, and the only other circoviruses identified in mammals are the porcine 

circoviruses. Canine circovirus was first discovered in 2012 (Kapoor et al., 2012), and has 

subsequently been identified in diseased and healthy dogs, so the role in disease is unknown. 

This virus has not been reported in the UK. 

 

Canine sapovirus was identified by high-throughput sequencing of canine diarrhea samples 

in 2011 (Li et al., 2011). Sapoviruses are Caliciviridae, and are a relatively common cause 

of diarrhea in man (Tam et al., 2012). To date, canine sapovirus has only been identified in 

one subsequent report from Japan (Soma et al., 2014).  

 

The final virus to be discussed in association with diarrhoea in dogs is canine bocavirus.  

Bocaviruses are members of Parvoviridae (see section 1.9.1), and were found in a litter of 

dogs with severe gastroenteritis in 2014 (Bodewes et al., 2014). 
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1.10 Project Aims 

 

A. To determine if CNV is present in the UK dog population 

There are no prior reports of CNV circulating in the UK, hence this project aimed to 

investigate whether CNV is a newly emerging pathogen of dogs in this country. This was 

achieved by surveying pet dogs for current CNV infection, as well as for evidence of 

previous exposure by serology. 

B. To characterize any novel viruses identified in association with canine 

gastroenteritis 

In addition to screening canine stool samples for CNV, a number of other viruses associated 

with gastroenteritis were surveyed. Any viruses not previously reported in the UK were 

characterized further through sequencing and phylogenetic analysis. 

C. To identify the cellular attachment factor for CNV 

It was predicted that CNV would use carbohydrate structures to attach to cells prior to 

infection, in a similar manner to many other caliciviruses investigated to date.  A key goal 

was to identify and characterize the interaction of the virus capsid with host cells. 

Expression of the target carbohydrate was then assessed in a population of dogs. 

D. To determine the zoonotic potential of enteric viruses in dogs 

It has been proposed that dogs may be susceptible to enteric viruses of humans, which could 

pose a significant public health risk given the close relationship between dogs and man. To 

investigate this, the susceptibility of dogs to HuNoV and hepatitis E virus (HEV) was 

evaluated by a series of assays using canine clinical samples. The presence of HuNoV or 

HEV in canine stool samples and the presence of HuNoV or HEV specific antibodies in 

canine serum samples was assessed. In addition, immunohistochemistry was performed to 

evaluate the ability for HuNoV to bind to the canine gastrointestinal tract.  
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Chapter 2  

Materials and Methods 
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2.1 Samples and Reagents 

2.1.1 Canine stool samples 

Stool samples were collected from dogs admitted to six participating veterinary clinics in 

Cambridgeshire, Kent, Lincolnshire, Middlesex and Suffolk. With owner consent, dogs were 

recruited to the study if they passed stools whilst hospitalized. This provided samples from 

dogs with a range of clinical conditions, but the sampling protocol was not designed to 

reflect the frequency with which gastrointestinal (GI) and non-GI disease were present in the 

study population. Stools were collected by veterinary personnel, then stored at -20°C until 

and during transportation to the laboratory, whereafter they were stored at -80°C prior to 

nucleic acid extraction. Stool samples were also collected from healthy dogs owned by 

veterinary staff at each clinic, as well as from dogs at participating boarding kennels. A 

limited number of diarrhoeic samples from dogs at an animal rescue centre in 

Cambridgeshire were also collected. Basic case data was recorded for each dog from which 

a stool sample was collected, including age, breed, sex, reason for admission to the 

veterinary clinic if relevant, and any recent history of enteric disease.  

2.1.2 Canine serum samples 

Serum samples were obtained from four separate dog populations. Samples from 1999-2001 

were collected by the Royal Veterinary College (RVC) from a rehoming kennel as part of an 

existing study (Erles et al., 2003). The second and third group of samples were collected in 

2012-2013, obtained from either the diagnostic service of the RVC, or from the UK Pet 

Blood Bank. These sera were collected from pet dogs that were either veterinary patients 

from which blood was collected for biochemical analysis for various reasons, or they were 

healthy blood donor dogs. The fourth group of dogs from which sera was collected all had a 
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histological diagnosis of hepatitis and had been recruited to a previous study between 2006 

and 2010 (Bexfield et al., 2011). 

2.1.3 Canine gastrointestinal tissue samples 

Canine tissue samples were donated by a pharmacological research company from six 

healthy 18-month old female dogs, (labeled A-F) humanely euthanased as surplus to 

industry research requirements. Sections of the gastrointestinal tract (1 cm2) were dissected 

from the duodenum, jejunum, ileum, caecum and colon and placed into 90% ethanol fixative 

to best preserve the carbohydrate structures. Samples were then incubated at 4°C for 24 h 

prior to embedding in paraffin and sectioning by the Department of Pathology Histology 

Service, University of Cambridge. Additional 1 cm long sections from the duodenum, 

jejunum, ileum, caecum and colon were dissected, rinsed in PBS, opened and scraped into 

lysis buffer (GenElute™ Mammalian Total RNA Miniprep Kit (Sigma Aldrich)) containing 

β-mercaptoethanol and guanadinium. The tissue scrapings were homogenized and boiled for 

10 minutes prior to storage at -20°C. The mannose-binding lectin Concavalin A was used to 

confirm that comparable levels of carbohydrates were present in each scraping sample by 

ELISA (see section 2.6). 

2.1.4 Canine and human saliva samples 

Canine saliva samples were collected from twenty-three dogs at Wood Green Animal 

Shelter, Huntingdon UK (numbered 1-23), and a further three samples were collected from 

three of the dogs at a pharmacological research company in the UK (labeled D, E and F). 

The dogs at the animal shelter were typically mixed breeds, whereas the research dogs were 

beagles. Sample collection was achieved using a children’s swab (Salimetrics, Newmarket, 

UK), from which saliva and buccal cells (for DNA samples) were extracted. Collection of 

canine saliva samples was a non-regulated procedure, hence ethical approval was not 
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required. Human saliva samples were collected as part of a previous study (Airaud et al., 

2005), approved by the Nantes University Hospital Review Board (study no. BRD02/2-P), 

with informed written consent obtained from all saliva donors.  

2.1.5 Antibodies 

Anti-CNV polyclonal antibody was generated by serial inoculation of two rats with CNV 

VLPs (University of Nantes, animal experimentation core facility). This was approved by 

the national ethic review board from the French Ministry of ‘Enseignement Supérieur et de 

la Recherche’ (project license number 01322.01). The animal care and use protocol adhered 

to the European Directive number 2010/063 and to the national French regulation (Décret 

n°2013-118 du 1er février 2013 relatif à la protection des animaux utilisés à des fins 

scientifiques). Recognition of target VLPs using the antibody generated was confirmed 

using ELISA. 

 

Antibodies utilized to detect HuNoV VLPs included anti-GI.1 HuNoV (rabbit 130) and anti-

GII.4 HuNoV (rabbit 132), generously donated by Jacques Le Pendu (University of Nantes, 

France). For HEV VLP detection, anti-HEV ORF2 (pig), a gift from Sue Emerson (NIH, 

Bethesda, USA), and HEV serum from an HEV infected human patient (Hamid Jalal, Public 

Health England) were available. Antibodies used for phenotyping canine gastrointestinal 

samples were also donated by Jacques Le Pendu and included mouse monoclonal anti-A 

antibody 2A21, mouse monoclonal anti-B antibody B49, and mouse monoclonal antibodies 

7-Le, 2.24LE, 3E1 and 12-4 for Lewis antigen expression. 
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2.2 Nucleic acid extraction from clinical samples 

2.2.1 Stool samples 

Stools were diluted 10% w/v in phosphate-buffered saline, pH 7.2, and solids were removed 

by centrifugation at 8000 x g for 5 min. Viral nucleic acid was extracted from 140µl of each 

clarified stool suspension by the GenElute™ Mammalian Total RNA Miniprep Kit (Sigma 

Aldrich) according to the manufacturers’ instructions.  

 

An internal extraction control was added to each sample during nucleic acid extraction to 

verify removal of PCR inhibitors and enable precise quantification of viral nucleic acid. A 

fixed amount of Equine Arteritis Virus (EAV) RNA was added with the lysis buffer to each 

sample to obtain an EAV concentration of approximately 1x108 copies per ml of faecal 

suspension.  

2.2.2 Buccal swabs 

Canine DNA was extracted from the buccal epithelial cells collected by the Salimetric 

children’s swab. The swab was incubated with 500µl lysis buffer plus 5µl β-

mercaptoethanol, then 10µl proteinase K in 590µl RNAse free water was added and the 

sample vortexed. Samples were then incubated at 55°C for 10 min, then the swab plus liquid 

was placed in a filter column and centrifuged at 15,000 x g for 15 s. The supernatant was 

added to a binding column and the remainder of the extraction protocol followed as per the 

manufacturers instructions of a commercial kit (GenEluteTM, Sigma Aldrich).  

2.2.3 Liver samples 

Canine liver samples were homogenized in 500µl of lysis buffer and β-mercaptoethanol with 

1mm silica beads (BioSpec products) using a reciprocating homogeniser (FastPrep-24, MP 
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Biomedicals). RNA was extracted using the commercial kit as previously described, then 

5µl was treated with 5 units of DNase (Roche). 

 

2.3 In-vitro transcription of viral RNA 

In-vitro transcription of GI and GII HuNoV, and hepatitis E virus (HEV) RNA was required 

to generate positive controls for the RT-qPCR assays. The plasmids encoding the full-length 

genome of each virus, and the respective restriction enzymes required to linearize these are 

listed in table 2.1. 

Virus Plasmid Restriction digest 
enzyme 

GI.1 HuNoV pNV101  MluI 

GII.4 HuNoV pUC57: GII.4-FLC#3 NgoMI(V) 

HEV p6 Kernow MluI 

Table 2.1 Plasmids used for in-vitro transcription of viral RNA 
 

All restriction enzyme reactions were carried out at 37°C for 90 min and the DNA purified 

with the GFX PCR DNA and Gel Band Purification Kit (GE Healthcare). DNA (250-

1000ng) was then added to 0.1M HEPES (pH 7.5), 32mM MgAcetate, 40mM dithiothreitol 

(DTT), 2mM spermidine, 7.5mM ATP, CTP, GTP, and UTP (each), 2.5µg T7 polymerase, 

and 80 units of RNaseOUT (Life Technologies) in a 50µl volume. The in vitro transcription 

reactions were carried out at 37°C for 2 h. Afterwards, the reaction mixtures were incubated 

with 20 units of DNase I (Roche) at 37°C for 30 min. The RNA was then purified by ethanol 

precipitation and resuspended in RNA storage solution (Ambion). The RNA was quantified 

using spectrophotometry and stored at -20°C until further use.  
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2.4 Polymerase Chain Reactions 

2.4.1 One-step RT-qPCR screen 

A TaqMan based RT-qPCR assay was designed to detect the presence of viral nucleic acid 

in material extracted from canine stool samples. All six CNV sequences listed in Genbank in 

August 2012 (table 2.2) were used to design a CNV specific primer-probe (PrimerDesign 

Ltd, table 2.3).  

CNV strain GenBank Accession Number 

GIV.2/Bari/170/07-4/ITA EU224456.1 

GVI.1/Bari/91/2007/ITA FJ875027.1 

FD210/2007/Ita JF939046 

FD53/2007/Ita JF930689 

C33/Viseu/2007/PRT GQ443611.1 

Thessaloniki/30/2008/GRC GU354246.1 

Table 2.2 CNV strains used to design the CNV primer-probe 
 

Samples were also screened for HuNoV (GI and GII), and two other canine enteric viruses 

known to be circulating in the UK (CPV and CECoV). Primer-probes used are listed in table 

2.3, as well as the primer-probe sequence used to detect the internal extraction control, 

equine arteritis virus (EAV). 

 

A 1-step RT-qPCR protocol was used to improve ease and efficiency of sample handling. 

2µl of extracted RNA was added to 2x Precision OneStep RT-qPCR MasterMix 

(PrimerDesign Ltd), 6pmol/µl primers, and 3pmol/µl probe.  The thermal cycle protocol 

used with a ViiA7 qPCR machine (AB Applied Biosystems), was as follows: 55°C for 30 

min, inactivation of reverse transcriptase at 95°C for 5 min, and then 40 cycles consisting of 

denaturation at 95°C for 15 s, then annealing and elongation at 60°C for 1 min.  
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Virus Primer/Probe Ref 

Canine 
norovirus 
(CNV) 

F: GCTGGATGCGGTTCTCTGAC 
R: TCATTAGACGCCATCTTCATTCAC 
Probe: FAM-AGCGAGATTGCGATCTCCCTCCCACAT-BHQ 

This thesis / 
(Caddy et al., 
2013) 

Canine 
parvovirus 
(CPV) 

F:  AAACAGGAATTAACTATACTAATATATTTA  
R:  AAATTTGACCATTTGGATAAACT 
Probe:VIC-TGGTCCTTTAACTGCATTAAATAATGTACC-BHQ  

(Decaro et 
al., 2005) 

Canine enteric 
coronavirus 
(CECoV) 

F:  TTGATCGTTTTTATAACGGTTCTACAA  
R:  AATGGGCCATAATAGCCACATAAT  
Probe: Cy5-ACCTCAATTTAGCTGGTTCGTGTATGGCATT-BHQ 

(Decaro et 
al., 2005) 

Human GI 
norovirus 
(HuNoV GI) 

F: CGYTGGATGCGNTTYCATGA 
R: CTTAGACGCCATCATCATTYAC 
Probe: FAM-AGATYGCGATCYCCTGTCCA-TAMRA 

(Kageyama 
et al., 2003) 

Human GII 
norovirus 
(HuNoV GII) 

F: CARGARBCNATGTTYAGRTGGATGAG 
R: TCGACGCCATCTTCATTCACA 
Probe: FAM-TGGGAGGGCGATCGCAATCT-TAMRA 

(Kageyama 
et al., 2003) 

Hepatitis E 
virus 
(HEV) 

F: GGTGGTTTCTGGGGTGAC 
R: AGGGGTTGGTTGGATGAA 
Probe: FAM-TGATTCTCAGCCCTTCGC-TAMRA 

(Jothikumar 
et al., 2006) 

Equine arteritis 
virus (EAV, 
internal 
control) 

F: CATCTCTTGCTTTGCTCCTTAG 
R: AGCCGCACCTTCACATTG 
Probe:Cy5.5-CGCTGTCAGAACAACATTATTGCCCAC-BHQ2 

(Scheltinga 
et al., 2005) 

Table 2.3 Primers and probe sequences used in the one-step RT-qPCR screen of canine stool 
samples for enteric viruses. 
 

Standard curves were generated using positive control amplicons for all viruses in the RT-

qPCR screen. Amplicons were serially diluted 10-fold (106-10 copies/reaction) to determine 

the detection limit of each assay.  

2.4.2 Two – step qPCR screen 

cDNA was generated by reverse transcription using MMLV reverse transcriptase enzyme 

(Life Technologies) and random hexamers (Life Technologies) with the reaction performed 

at 42°C for 1 h, followed by an inactivation step at 70°C for 10 min. qPCR was performed 

using primers listed in table 2.4.  
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Primer target Name IGUC Sequence (5’-3’) Reference 

CaAstV RdRp  625F-1 

626R-1 

607 

608 

GTACTATACCRTCTGATTTAATT 

AGACCAARGTGTCATAGTTCAG 

(Martella et 

al., 2011) 

Calicivirus RdRp P289 

P290 

574 

575 

TGACAATGTAATCATCACCATA 

GATTACTCCAAGTGGGACTCCAC 

(Jiang et al., 

1999) 

CNV strain HK 

VP1 

- 432 

433 

RHYATTGACCCCTGGATW 

TMYTKGCDGGGAATGCGTT 

This thesis 

 

CVV VP1 - 501 

502 

AAGATGTACACTGGDTGGTCT 

GTGTCRTGCATRTCRTGCCAM 

This thesis 

Table 2.4 Primers used in the two-step qPCR screen of canine stool samples for enteric viruses.  
Previously published identities are listed in the ‘name’ column.  IGUC column refers to the number 
of the primer as listed in the Goodfellow lab database. 
 

qPCR reactions were prepared using the MESA Blue qPCR MasterMix Plus for SYBR 

Assay (Eurogentech). Briefly, 2µl cDNA was mixed with 2X MasterMix and 0.5µM 

primers, then incubated at 95°C for 10 min. The thermal cycle protocol used with a ViiA7 

qPCR machine (AB Applied Biosystems) was as follows: 40 cycles of 94°C, 15 s; 56°C,   

30 s; 72°C, 30 s, followed by generation of a melt curve. Positive controls were available for 

all four primer sets used; sample 8 for CaAstV, HuNoV DNA transcribed from the full 

length genome for calicivirus, and the CNV strain HK and CVV primers designed for this 

survey were designed to target conserved regions of VP1 to enable to use of pTriex1.1 

plasmids expressing the relevant VP1 to be used as positive controls. 

2.4.3 Conventional PCR 

The capsid of all positive CaAstV samples was amplified from cDNA synthesised using 

SuperScript II Reverse Transcriptase (Invitrogen) according to the manufacturer’s protocol 

with 0.5µM AV12 primer TTTTTTTTTTTTTTTTTTGC. The PCR reaction was performed 

using KOD hot start polymerase (EMD Millipore), with reverse primer s2m-rev 

CCCTCGATCCTACTCGG, and the forward primer 625F-1 from the original qPCR assay. 

The amplification programme consisted of an initial 5 min step at 95°C, followed by 35 
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cycles with 95°C for 20 s, 58°C for 30 s and 72°C for 90 s. A final elongation step at 72°C 

for 5 min was performed, followed by chilling to 4°C.  

 

To obtain sufficient DNA for sequencing, PCR products were subsequently cloned into 

pCR-Blunt™ using the Zero Blunt PCR Cloning Kit (Life Technologies) according to the 

manufacturers protocol. Sequencing of the 5’ and 3’ regions of the plasmid insert was 

performed using pCR-Blunt™ specific primers by the University of Cambridge 

Biochemistry DNA Sequencing Facility. Sequencing primers for the central region of insert 

were then designed based on the primary sequence data to give a 200nt overlap with each 

predecessor, and a second round of sequencing reactions was performed (sequencing primer 

details available in appendix). The complete capsid nucleotide sequence generated using this 

method was then confirmed by sequencing of PCR products generated from cDNA directly. 

The same PCR and cloning methodology was used to generate the full length sequence of 

two CaAstV isolates. 

2.4.4 Rapid Amplification of cDNA ends (RACE) 

Sequences at the extremity of the CaAstV viral genome were determined using 5’ and 3’ 

RACE, utilizing a kit (Life technologies) according to the manufacturers instructions, and 

gene specific primers designed for this purpose: 5’ RACE 

ATGCAGCGACAAACACAACA and 3’ RACE CACAGCCCATTGAAGATG. 

2.4.5 Canine α1,2-fucosyltransferase gene amplification 

Nucleotide sequence alignment of human α1,2-fucosyltransferase (FUT2) gene and the 

predicted canine Fut2 gene (GenBank accession number XM_005616863.1) enabled design 

of primers to target the canine Fut2 gene and allow amplification of the entire gene for 

sequencing. The predicted canine Fut2 gene has an 87.8% identity with human FUT2. The 
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primers IGUC0496 TCCATCCYCCGAGCTAAC and IGUC0497 

TCTGTTACTTGCCGCCCAAAGCAT were used to amplify a region of DNA 1020bp in 

length. Sequencing of PCR products was performed using primers IGUC0496, IGUC0497 

and an additional primer GGTACTCCTCCTCCATCCAGTCGT by the University of 

Cambridge Biochemistry DNA sequencing facility. 

 

2.5 Virus-like particle (VLP) production 

2.5.1 Generation of recombinant baculoviruses 

Three different CNV strains with maximum sequence difference were selected for VLP 

production. The sequences of the three CNV-VP1 genes were obtained from GenBank; 

GIV.2/Bari/170/07-4/ITA, C33/Viseu/2007/PRT, and GVI.1/HKU_Ca035F/2007/HKG, 

referred to as strains 170, C33 and HK respectively. Restriction enzymes sites were designed 

(5’ NotI for all strains, 3’ BbsI for CNV strains 170, C33 and 3’ BsaI for CNV HK) to 

enable later ligation into the baculovirus transfer vector pTriex1.1. Sequences were 

synthesized by BioBasic Inc. in the vector pUC57. CNV-VP1 sequences were digested from 

pUC57 and re-ligated into pTriex1.1 that had been digested with NcoI and NotI (NEB). The 

correct sequence for all three CNV-VP1 inserts was confirmed by sequencing. Recombinant 

baculoviruses were synthesised using the flashBAC baculovirus expression system as per 

the manufacturers instructions (Oxford Expression Technologies). Stock viruses were 

generated and titrated in Sf9-ET cells (Hopkins & Esposito, 2009) and stored in the dark at 

4°C.  

2.5.2 VLP production and purification 

VP1 protein expression was performed in Hi5 insect cells (Invitrogen). Briefly, 1x107 Hi5 

insect cells were seeded into 10 x T150 flasks then infected with recombinant baculovirus at 



 

 55 

a multiplicity of infection of 5 PFU/cell. Infections were allowed to proceed for 6 days prior 

to protein harvest and VLP purification. VLP purification was performed following a 

previously published protocol (Belliot et al., 2001).  VLP was released from infected Hi5 

cells by freeze-thaw, followed by clarification to remove cellular debris (6000 x g, 30 min) 

then baculovirus removal (14,000 x g for 30 min). VLPs were partially purified through a 

30% w/v sucrose cushion in TNC buffer (50mM Tris HCl pH7.4, 150mM NaCl, 10mM 

CaCl2) containing the protease inhibitor leupeptin for 150,000 x g for 2 h. The pelleted VLP 

was resuspended in TNC and further purified by isopynic centrifugation in caesium chloride 

(150,000 x g, 18 h). The resultant VLP bands were collected by puncture and the solution 

containing VLPs was dialysed against PBS prior to quantification by BCA protein assay 

(Thermo Scientific) and storage at -80°C. 

 

2.6 ELISA procedure 

2.6.1 Detection of serum antibodies 

Ninety-six-well polystyrene microtiter plates (Nunc maxisorb, Fisher Scientific) were coated 

overnight at 4°C with 25ng VLP in 0.05 M carbonate/bicarbonate buffer (pH 9.6). If 

different VLP samples were pooled together, 25ng of each VLP was coated, giving a 

maximum of 100ng VLP per well. Plates were washed three times with 0.05% Tween 20 in 

phosphate buffered saline (PBS-T) before blocking in 5% skimmed milk-PBS-T for 1 h at 

37°C and then three PBS-T washes. Plates were then incubated for 3 h at 37°C with 1:50 

dilution of each serum sample in duplicate in 5% skimmed milk-PBS-T. Pooled human sera 

(Sigma Aldrich), diluted 1:400, and 100ng pooled GII HuNoV VLPs were used as a positive 

control for the norovirus ELISAs, and HEV-positive pig sera diluted 1:1000 and 25ng HEV 

VLPs were used for the HEV ELISAs. After three washes with PBS-T, 50µl of horseradish 

peroxidase (HRP)-conjugated anti-canine, porcine or human IgG antibody (Sigma Aldrich) 
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diluted 1:5000 in 5% milk PBS–T, was added to each well and incubated at 37°C for 1 h. 

The plates were washed four times with PBS-T and bound antibody detected with 50µl 

tetramethylbenzidine (TMB, Sigma Aldrich) followed by incubation at room temperature for 

10 min. The reaction was stopped with 1N H2SO4 and the optical density (OD) was read at 

450nm (Spectromax M2 plate reader, Molecular Devices).  

 

To eliminate the possibility that non-specific components of the VLP preparation were 

identified by the canine sera, an antigenically distinct vesivirus 2117 VLP was included in 

the assay. The OD450 of a selection of serum samples incubated on either 

carbonate/bicarbonate buffer coated wells or vesivirus 2117 coated wells was highly 

comparable. This confirmed that no non-specific reactivity relating to the VLP preparation 

was occurring. The background signal for each sample was hence determined by measuring 

the OD450 of serum samples incubated with carbonate/bicarbonate buffer alone. 

Background signal was then subtracted from the OD450 of VLP coated wells to generate the 

corrected OD450 value. A threshold value was established as the mean of the OD450 of all 

buffer coated cells plus 3 standard deviations. A serum sample was considered positive 

when the corrected OD450 was higher than the threshold. Any serum samples showing a 

positive response to pooled CNV VLPs were subjected to further testing with individual 

CNV VLPs. Plates were coated with 25ng of individual VLPs in carbonate/bicarbonate 

buffer and the protocol then repeated as above. 

2.6.2 Competition ELISAs 

Evaluation of serological cross reactivity between different norovirus strains was achieved 

using VLP competition assays. Plates were coated with 25ng/well of VLP overnight at 4°C. 

Positive test sera was incubated with a range of concentrations of either HuNoV VLPs, or 
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CNV VLPs (0.5, 1, 2 and 4µg/ml) for 1 h at 37°C. Vesivirus 2117 VLP was incubated with 

the test sera as a negative control. After the incubation period, 50µl of each serum-VLP 

combination was added to the previously VLP coated plates. The remainder of the ELISA 

protocol was followed as detailed above. 

2.6.3 Synthetic oligosaccharide assays 

Synthetic oligosaccharides as polyacrylamide (PAA) and human serum albumin (HSA) 

conjugates were coated at 10µg per well onto Nunc Maxisorp immunoplates in 100mM 

carbonate buffer pH 9.6 by overnight incubation at 37°C in a humidified atmosphere. A full 

list of the synthetic oligosaccharides used, their conjugate molecule and their graphical 

structures is presented alongside the relevant data in section 5, table 5.1. For assays using 

saliva and duodenal samples, these were coated onto immunoplates at a 1:1000 dilution 

using the same reagents and conditions. Blocking of VLP binding with synthetic 

oligosaccharides was achieved by pre-incubating 10µg/ml VLPs with 400µg/ml 

oligosaccharides for 1 h at 37°C. VLPs were then added to wells coated with duodenal 

samples and the ELISA procedure followed as before. 

2.6.4 Saliva phenotyping assays 

The saliva phenotyping assay used the ELISA protocol as detailed above, but with the 

following variations. Following the coating of saliva samples onto immunoplates overnight, 

A antigen was detected using a mouse monoclonal anti-A antibody, 2A21, and B antigen 

was detected using a specific mouse monoclonal B49, a B-specific broadly reacting antibody 

as previously described (Nyström et al., 2011). Lewis antigen expression was investigated 

using mouse monoclonal antibodies 7-Le, 2.24LE, 3E1 and 12-4. H antigen expression was 

determined using HRP conjugated Ulex europaeus-I (Sigma-Aldrich, St. Louis, MO). 
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Secondary HRP conjugated anti-mouse (Uptima/Interchim, Montlucon Fr) was used for A, 

B and Lewis antigen detection.  

 

1,2α-L-fucosidase (Bifidobacterium bifidum) treatment of duodenal samples was performed 

by incubation at 37°C with 10µg fucosidase in 100 mmol/L, pH 6.5, sodium phosphate 

buffer for 1 h. Blocking the wells with 5% milk in PBS-T followed. The enzyme shows 

exquisite specificity for α1,2-linked fucose residues (Katayama et al., 2004; Nagae et al., 

2007) 

 

2.7 SDS-PAGE and western blot analysis 

VLPs were heated to approximately 100°C for 5 min in the presence of SDS loading buffer 

and electrophoresed on 12.5% SDS-polyacrylamide gels. For Coomassie blue staining, the 

gels were incubated with Coomassie Blue for 1 h at room temperature prior to de-staining.  

 

For western blotting, proteins were transferred from SDS-polyacrylamide gels to 

polyvinylidene difluoride membranes. The membranes were blocked for 1 h at room 

temperature with 5% milk in PBS–T and then incubated overnight at 4°C with serum 

samples diluted 1:1000. The excess antibody was washed three times in PBS–T and 

incubated for 1 h with anti-canine, human or porcine IgG secondary antibody conjugated to 

horseradish peroxidase (Sigma Aldrich). After washing away excess secondary antibody, the 

bands were detected using enhanced chemiluminescence reagent (GE Healthcare). 

 

2.8 Tissue samples and immunohistochemical analysis  

Tissue sections from the gastrointestinal tract of six dogs were de-paraffinated through baths 

of LMR-SOL (1-Bromopropane, 2-Methylpropane-2-ol and Acetonitrile) followed by re-
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hydration with successive baths of 100, 90, 70 and 50% ethanol. Endogenous peroxidase 

activity was blocked with 0.3% hydrogen peroxide in PBS. Non-specific binding was 

blocked with 3% BSA in PBS. HRP conjugated Ulex europaeus-I (Sigma-Aldrich, St. Louis, 

MO) at 0.8µg/mL, anti A monoclonal antibody 2A21 and anti B monoclonal antibody B49 

were used for binding to H antigen, A antigen and B antigen respectively. Lectins and 

antibodies were incubated with the tissue sections in 1% BSA in PBS at 4°C (lectin) or 37°C 

(antibodies) overnight. After three washes in PBS, a biotinylated anti-mouse antibody 

(Vector laboratories, Burlingame, CA) diluted in 1% BSA in PBS was added to the assays 

with primary mouse antibodies. Sections were washed three times in PBS prior to addition 

of HRP-conjugated avidin D (Vector laboratories, Burlingame, CA) also diluted in 1% BSA 

in PBS. Substrate was added to the slides (AEC kit, Vector laboratories, Burlingame, CA) 

followed by Mayer’s haematoxylin solution (Merck, Whitehouse Station, NJ) for contrast 

staining. 

 

To assess the ability for VLPs to bind to tissue sections, the above protocol was adapted as 

follows. After sections were blocked with 3% BSA in PBS, 1µg/ml VLPs were incubated 

with the sections overnight at room temperature. Anti-CNV primary antibody was then 

incubated with the tissue sections for 1 h at 37°C. After three washes in PBS, sections were 

incubated with secondary anti-rat biotinylated antibody (Vector labs) for 1 h and the 

remainder of the protocol completed as previously described. Fucosidase treatment was 

performed on some sections after the initial blocking step in 3% BSA by incubation at 37°C 

with 10µg fucosidase in 100 mmol/L, pH 6.5, sodium phosphate buffer for a total of 18 h 

with a renewal after 6 h.  
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2.9 Flow Cytometry Analysis  

The binding of norovirus VLPs to cells in vitro was assessed using HT-29 (human colorectal 

adenocarcinoma), a cell line with well characterized H antigen and A antigen expression. A 

total of 2.5 x 105 viable cells were incubated with 10µg/mL VLPs in PBS-0.1% BSA for 1 h 

at 4°C. After 3 washes with the same buffer, a 30 min incubation was performed with anti-

VLP antibody. After washings, a third incubation was performed with biotinylated anti-rat 

secondary antibody under the same conditions. The final incubation step used streptavidin 

phycoerythrin (BD Pharmingen). After final washings in the PBS alone, fluorescence 

analysis was performed on a FACSCalibur (Becton-Dickinson, Rungis, France) by using the 

CELLQuest program. Blocking of VLP binding with synthetic oligosaccharides was 

achieved by pre-incubating 10µg/ml VLPs with 400µg/ml oligosaccharides for 1 h at 37°C. 

Fucosidase treatment of cells was achieved by incubation at 37°C with 10µg fucosidase in 

100mmol/L, pH 6.5, sodium phosphate buffer for 1 h. 

 

2.10 Tissue culture protocols 

2.10.1 Primary cell establishment 

Fresh 3 x 2cm sections of canine duodenum were placed into ice cold Opti-MEM media 

(Gibco®), then cut open and washed five times in ice cold fortified medium (Opti-MEM 

supplemented with murine epidermal growth factor (20ng/ml), insulin from bovine pancreas 

(10µg/ml), hydrocortisone 21 hemisuccinate sodium salt (150nM)). Tissue sections were 

then disrupted with trypsin-EDTA for 5 min at room temperature, before the mucus and villi 

on the luminal surface were removed by scraping. A second scraping was next performed to 

collect the tissue layer required for the study, which was transferred to fortified medium in a 

50ml tube. Samples were centrifuged at 235 x g for 2 min, then the pellet washed with 

fortified media. The pellet was next digested with a 1:1 solution of collagenase type I and 
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dispase (Sigma) for 30 mins at 37°C. The remaining pellet was centrifuged on a 2% sorbitol 

gradient in fortified media supplemented to 2.5% fetal calf serum (FCS) twice at 235 x g. 

The pellet was resuspended in fortified media supplemented with 10% FCS to a density of 

approximately 5 x 105 cells/ml. Finally, cells were seeded into a 24-well culture plate and 

incubated at 37°C with 5% CO2 and a humidified atmosphere, changing the medium after 

24hrs and reducing FCS to 2.5%. This protocol was adapted from (Golaz et al., 2007) 

2.10.2 Virus isolation 

Virus isolation was attempted in MDCK and A72 cells using the first two CaAstV positive 

samples identified. Samples were diluted 1:10 in PBS solution then clarified by 

centrifugation and filtered (0.22 mm disposable filter). Samples were inoculated into 

confluent cell monolayers with and without trypsin (10µg/ml). The inoculum was adsorbed 

for 1 h at 37°C, then removed and Dulbecco’s Minimum Essential Medium was added. Cell 

cultures were observed daily for cytopathic effect (CPE). Three serial passages were 

performed for each sample and negative controls. A sample of cells were collected at each 

passage and nucleic acid extraction performed as described above. qPCR was performed to 

confirm or refute the presence of CaAstV nucleic acid in cell lysates.
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in the UK 
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3.1 Chapter introduction 

Canine norovirus (CNV) has recently been identified across Europe, the Far East and the US 

(Azevedo et al., 2012; Martella et al., 2008; Mesquita & Nascimento, 2012b; Soma et al., 

2014; Tse et al., 2012). The ability of this virus to cause disease in dogs is uncertain, but 

there is concern that CNV may be an under-recognised cause of canine gastroenteritis. 

Improved understanding of the prevalence levels and clinical relevance of CNV is important 

from a veterinary perspective. This would enable evaluation of the potential need to develop 

commercial CNV diagnostic tests, as well as CNV vaccines and therapeutics for dogs. In 

addition, CNV is genetically very similar to HuNoV, a significant human health and 

economic burden. Studying the epidemiology and viral-host interactions of CNV would 

therefore provide a more accurate assessment of zoonotic potential of this virus, as well as 

providing further knowledge of this whole viral genera. 

 

The presence or prevalence of CNV in the UK dog population had not been investigated 

prior to this project, but based on previous reports of CNV in Europe it was hypothesized 

that CNV would be circulating in the UK. Determining the prevalence levels of CNV was 

set as the first aim of this thesis. An epidemiological survey was designed and conducted 

using two different approaches. The initial part of the study aimed to evaluate the presence 

of viral RNA in the dog population. This involved collection of stool samples from dogs 

with and without gastroenteritis, then extracting RNA and performing RT-qPCR to detect 

viral RNA. The second part of the survey focused on identifying CNV-specific antibodies in 

dogs, indicative of previous exposure. The generation of CNV VLPs enabled serum 

screening by ELISAs. Canine serum samples from 1999 onwards were available, thus this 

strategy also provided an understanding of how CNV prevalence may have changed over 

time. 
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3.2 Samples collected 

Stool samples and clinical data were collected from 67 dogs with severe gastroenteritis 

admitted to veterinary clinics or an animal shelter distributed across the UK between August 

2012 and June 2014. Control samples were collected from 181 dogs without signs of 

gastroenteric disease, from either veterinary inpatients with non-gastrointestinal illness, or 

dogs at boarding kennels or belonging to veterinary staff. A total of 56 breeds of dog were 

represented, and the mean age of dogs with gastroenteritis was 4.3 years (standard deviation 

4.1 years), whereas the mean age of control animals was 6.1 years (standard deviation 3.9 

years).  

 

A total of 396 canine serum samples were available for this project. Of these, 223 had been 

collected from a population of dogs at a large rehoming kennel in 1999-2001. An additional 

173 serum samples were obtained specifically for this study, with sample collection taking 

place in 2012/2013. Of these samples, 102 were collected from patients at the Royal 

Veterinary College (RVC), London, and 71 were obtained from healthy blood donor dogs 

through Pet Blood Bank UK. All serum samples were stored at -20°C until use. 
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3.3 Canine enteric virus nucleic acid survey 

RT-qPCR was selected as the screening method for detection of viral nucleic acid in stool 

samples as its high sensitivity allows for the detection of lower viral RNA levels than 

conventional PCR. An RT-qPCR assay was designed to screen for three canine enteric 

viruses (CNV, canine parvovirus (CPV) and canine enteric coronavirus (CECoV)) plus the 

internal extraction control (equine arteritis virus, EAV). CPV and CECoV have previously 

been reported to be circulating at moderate levels in the UK dog population (Godsall et al., 

2010), hence were included as sampling controls. After initial optimization of the RT-qPCR 

protocol, it was determined that screening was possible in two duplex reactions; CNV and 

EAV, then CPV and CECoV. Validation of the assay was achieved by generating standard 

curves using amplicons of the target nucleotide sequences (synthesised by Primer Design 

Ltd) as shown in figure  3.1.  

 

Figure 3.1 Standard curves determining sensitivity of RT-qPCR virus screening assay.  
Amplicons of the target sequence for the primer-probe set of the four viruses were serially diluted 
10-fold from a known starting concentration of 106 copies/µl, and entered into the duplexed RT-
qPCR assay. A linear increase in CT value was identified for each dilution of each virus, and mean R2 
was 0.987. The sensitivity of each primer-probe set was determined to be 100 copies/reaction. 
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As few as 100 copies of the CNV, CECoV and CPV amplicons were reliably detected in a 

reaction volume of 20µl. Any samples that generated a CT value lower than the threshold 

value of 100 copies of a positive control were deemed negative.  

 

Nucleic acid extraction and RT-qPCR were successfully performed on 248 stool samples as 

determined by constant CT values from the internal extraction control RNA. A positive 

control (105 copies) for each virus included in the screening assay was added to every plate 

and sample results were only accepted if each positive control was within 1.5 CT of expected 

values. The overall results of the RT-qPCR screen are presented in table 3.1. CPV or 

CECoV were detected at high titre (>106 copies/ml stool) in 17.0% (12/67) of dogs admitted 

with primary gastroenteritis. In patients without gastroenteritis or in the healthy control 

dogs, no viral nucleic acid for CPV or CECoV was detected above the positive threshold 

level of 100 genome copies/reaction. No samples were positive for CNV viral RNA in any 

of the canine cohorts. This indicated that the overall prevalence of CNV in the 248 dogs 

sampled was <1.7% (Wilson binomial approximation, confidence interval 95%).  

 

Sample group (size) Canine 
norovirus 

Canine 
parvovirus 

Canine enteric 
coronavirus 

Patients with gastroenteritis (67)  0 10 (14.9%) 2 (3.0%) 

Patients without gastroenteritis (64)  0 0 0 

Healthy controls (117)  0 0 0 

Table 3.1 Results of RT-qPCR screen for canine enteric viruses 
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3.4 Production and purification of VLPs from VP1 of three CNV strains 

Recombinant baculoviruses expressing the VP1 proteins from three distinct CNV isolates 

were generated and used in an insect cell expression system to produce CNV VLPs. A 

timecourse of VP1 expression was performed and found that day six was the optimum day 

to harvest the VLPs from the Hi5 cells (figure 3.2). VLP production for all CNV strains was 

visualized by this method. 

 
Figure 3.2 Timecourse of CNV strain 170 VLP production by Hi5 insect cells.  
An aliquot of cells and media were harvested daily for six days following infection of Hi5 insect 
cells in shaker culture with recombinant baculovirus at MOI 5 PFU/cell. Protein was extracted in 
RIPA buffer then separated by SDS-PAGE and stained with Coomassie Blue. A dominant protein 
band is apparent from day 2, corresponding to the VP1 protein.  
 

Following purification by isopycnic centrifugation on a caesium chloride gradient, VLPs 

were readily visualized and sedimented with a density of 1.32g/ml. Purified VLPs were 

quantified by bicinchoninic acid (BCA) assay (Thermo Scientific Pierce), and examined by 

SDS-PAGE and staining with Coomassie blue (figure 3.3). This showed a single major 

protein with apparent molecular weight of 63kDa for CNV strains 170 and C33, and single 

major protein with apparent approximate molecular weight of 57kDa for strain HK. This 

difference in molecular weight was expected based on VP1 sequence length. VLPs of an 

unrelated calicivirus, vesivirus 2117, were included as a control. The apparent discrepancy 
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between molecular weights of CNV strain 170 VLP in figure 3.2 and 3.3 is believed to be 

due to the different protein markers used (Pre-stained protein marker, NEB and Precision-

plus protein standard, Bio-Rad). 

 

 
 
Figure 3.3  SDS-PAGE analysis of purified calicivirus VLPs.  
VLPs from three CNV strains and an unrelated calicivirus, vesivirus 2117, were analysed by SDS-
PAGE. The molecular weights of VP1 of CNV isolates C33 and 170 are larger than that of the third 
isolate HK. This is attributed to the length of C33 and 170 VP1 sequences being 52 and 50 amino 
acids longer than HK VP1 respectively.  
 

The final means by which VLP generation was confirmed was by electron microscopy 

(EM). This was achieved in collaboration with Mike Hollinshead (Division of Virology, 

University of Cambridge). Samples were mounted on copper grid, fixed with gluteraldehyde 

then negatively stained with 0.5% uranyl acetate. EM was performed using an FEI 

TechnaiTM transmission scanning electron microscope. Figure 3.4 shows correctly 

assembled particles were visualized, which were all approximately 30nm in diameter in 

agreement with previous observations of both norovirus VLPs and infectious particles (Jiang 

et al., 1992; Kapikian et al., 1972). 
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Figure 3.4 Electron micrograph of CsCl-purified CNV VLPs after negative staining.  
Complete VLPs of all three CNV strains were identified, as indicated by white arrows.  
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3.5 Serological survey 

A total of 396 canine sera were tested by ELISA for antibodies against CNV; 223 from a 

1999-2001 cohort, and 173 from a 2012-2013 cohort. For the initial screen, CNV VLPs to 

three strains (177, C33 and HK) were combined in a 1:1:1 ratio and a 1:50 dilution of canine 

sera examined for their reactivity to CNV. Overall, 189 samples were found to be 

seropositive to CNV, using a positive threshold value of the standard deviation of the 

OD450 of all blank wells multiplied by three, added to the mean OD450 of the blank wells. 

In the 1999-2001 cohort, 85 dogs (38.1%) were seropositive and in the 2013/2013 cohort, 

104 dogs (60.1%) were seropositive. The increase in seroprevalence between the two 

cohorts was statistically significant (Z-test, p<0.001).  

 

To determine the serological titres of seropositive dogs, seropositive dogs were randomly 

selected from both the 1999-2001 cohort and the 2012-2013 cohort, giving a total of 10 

seropositive samples. Sera was serially diluted two-fold from a starting dilution of 1:50, and 

added to pooled CNV VLPs (25ng each strain per well) coated onto 96-well plates. A range 

of titres were identified (figure 3.5), varying from 1:1600 (one dog) to 1:100. The most 

prevalent titre in this preliminary screen was 1:400. 
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Figure 3.5 Serological titres to CNV.  
Ten dogs seropositive to CNV from both the 1999-2001 and the 2012-2013 cohorts were randomly 
selected to determine anti-CNV antibody titre. Corrected OD450 values are plotted, calculated by 
subtracting the OD450 value of buffer-only coated wells. The positive threshold was calculated from 
the mean plus three times the standard deviation of the OD450 reading of buffer-only. 
 

 

All 189 serum samples identified as positive by the initial ELISA screen against pooled 

CNV VLPs, were then tested against individual CNV VLPs. The results show significant 

variation between the seroprevalence of different strains (figure 3.6). CNV strain HK 

predominated in both cohorts of dogs, whereas strain C33 showed the lowest seroprevalence 

in both groups. These data also indicated that a proportion of dogs have seroconverted to 

more than one of the CNV strains used in this study. In the 1999-2001 cohort 30.6% dogs 

were seropositive to two or three strains, a percentage that increased to 40.4% in the 2012-

2013 cohort.  
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Figure 3.6 Seropositive samples by ELISA to three different strains of CNV.   
Canine serum samples that were seropositive to pooled CNV VLPs were screened against individual 
CNV VLP strains; 170, C33 and HK. (A) Venn diagrams represent seroprevalence of each CNV 
strain in the 1999-2001 and the 2012-2013 cohorts. The number of dogs seropositive to one strain 
alone or combinations of strains are represented as percentages. (B) Heatmap representation of the 
relative OD450 value to each CNV strain of each seropositive. Every column represents a single dog. 
Positive threshold value was established from the mean OD450 of coating buffer alone plus three 
standard deviations. Relative increase in OD450 values above the positive threshold were calculated 
to enable fair comparison between experiments. A relative increase of <1 indicates a seronegative 
sample, represented by a white box. The degree of relative increase for samples is represented by 
increasing darkness of the corresponding box.  
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3.6 Evaluation of CNV antibody cross reactivity  

To determine the strain specificity of the anti-CNV reactivity identified in positive samples 

and to determine if CNV exists as a series of distinct serotypes, a series of blocking assays 

were performed on two selected samples. Firstly it was shown that pre-incubating a serum 

sample positive to pooled CNV VLPs with HuNoV VLPs from genogroup I and II 

(methodology depicted in figure 3.7A), did not diminish antibody binding to CNV (figure 

3.7B). This demonstrates that apparent reactivity to CNV is not a consequence of cross-

reactivity to antibodies to HuNoV strains. To investigate the antigenic relationship between 

different CNV strains, blocking assays were next performed using individual CNV strains. 

When a CNV seropositive sample was pre-incubated with CNV strain 170 VLP, subsequent 

detection in ELISA of strain 170 VLP coated on a plate was reduced. Pre-incubation with 

VLPs of a different CNV strain did not diminish signal. A similar result was shown when 

serum was pre-incubated with CNV strain HK VLPs; detection of HK VLPs by ELISA was 

reduced (figure 3.7C and 3.7D). No serum that contained anti-CNV strain C33 antibodies 

was available in sufficient quantities to undertake the blocking assay, though the results 

from pre-incubation with C33 VLPs were sufficient to indicate that cross reactivity to strain 

170 or HK was not occurring. This data overall demonstrates that anti-CNV antibodies 

against the three strains used in this study are strain specific, suggesting that CNV exists as 

distinct serotypes.  
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Figure 3.7 Evaluation of cross-reactivity between antibodies against human and canine 
noroviruses, and between different CNV strains.  
The methodology used is presented in panel A; canine serum was pre-incubated with serial dilutions 
of either pooled human norovirus VLPs from genogroups I and II (GI/GII) or pooled CNV VLPs. 
The ability of the serum to subsequently detect pooled CNV coated onto ELISA plates was analysed 
(B). To determine cross reactivity between the three CNV strains, the blocking assay was repeated 
with canine serum being pre-incubated with serial dilutions of each of the three CNV strains VLPs 
separately. ELISAs were used to analyse the ability to detect CNV strain 170 (C) and strain HK (D). 
No C33 seropositive sample of adequate titre was available for the blocking assay. 
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Western blotting analysis of CNV VLPs using a representative positive canine serum sample 

was used as an additional method to confirm the specificity of anti-CNV antibodies (figure 

3.8). By ELISA, the selected serum was positive to CNV strains 170 and HK, and this was 

proven to be the same by western blotting. 

 

 

 
 
Figure 3.8 Western blotting of purified VLPs using seropositive canine serum.  
Five different VLPs were separated by SDS-PAGE (2µg each). Gel A was stained with Coomassie 
blue to identify purified VLP protein at the expected molecular weight. Gel B was used for western 
blotting with a canine serum sample which was seropositive to CNV strain 170 and HK by ELISA. 
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3.7 Serological prevalence by age 

The age at the time of blood sampling was known for 93 out of the 173 dogs in the 2012-

2013 cohort. The mean age of dogs seropositive to CNV was 8.1 years (SD 3.6), whereas 

the mean age of seronegative dogs was 5.8 years (SD 3.8). The difference between the age 

distribution of the two groups was statistically significant (p = 0.0076, Mann-Whitney test). 

Division of the dogs into age-groups and calculation of the proportion of each group 

seropositive to CNV showed that seroprevalence increases from 14% if less than 2 years of 

age, to almost 80% in the 6-8 year age group (figure 3.9).  

 

 

Figure 3.9 Relationship of CNV antibody status to age.  
(A) Box plot of age distribution of dogs relative to seroconversion to CNV. The box represents the 
interquartile range, with the band inside the box representing the median age. The whiskers are the 
minimum and maximum of all data. (B) Histogram representing the percentage of dogs that have 
seroconverted to CNV in each age group. Numbers inside bars indicate the quantity of samples 
associated with each data point.  
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3.8 Canine vesivirus seroprevalence 

An unexpected finding during the seroprevalence study was that a small proportion of dogs 

were seropositive for vesivirus 2117 VLPs.  These VLPs were generated by Ed Emmott 

(Goodfellow lab, University of Cambridge) using an identical protocol to the CNV VLP 

production and were initially selected for use as a negative control in the ELISAs performed 

with canine serum samples. However, 8% dogs tested were seropositive for vesivirus 2117, 

making this an inappropriate negative control. There was no relationship identified between 

seropostivity to vesivirus 2117 and seropositivity to CNV as shown by figure 3.10.  

 

Figure 3.10 Scatterplots of seropositivity to vesivirus 2117 and CNV.  
Relative OD450 increase above the positive threshold for each plate was plotted to enable 
comparison between different ELISA plates. Dogs seropositive to vesivirus 2117 were identified if 
the relative increase in OD450 was greater than 1. The data points for these dogs are highlighted in 
grey. The relative OD450 increase to CNV VLPs for every dog is plotted in the second scatter 
column, with dogs seropositive to vesivirus 2117 again highlighted in grey.  
 

The species of origin of vesivirus 2117 is unknown, with the virus first being identified in 

Chinese hamster ovary (CHO) cells. However based on sequence analysis, the closest 

related virus is canine vesivirus (CVV) (Oehmig et al., 2003). It is hypothesized that dogs 
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seropositive to vesivirus 2117 have previously been exposed to CVV, and cross-reactivity 

between the two vesiviruses accounts for the positive results. Only a handful of reports have 

identified CVV in canine populations, and the disease association is uncertain. There is a 

single reference to CVV in dogs in the UK, which remarkably identifies a seroprevalence of 

8% (2/25 dogs) (Schaffer et al., 1985). Comparison of seroprevalence to vesivirus 2117 

amongst the canine cohort from 1999-2001 and the cohort from 2012-2013 shows an 

increase between the two time periods; 4.9% from the earlier group, and 14.7% in the later 

group. This mirrors the increase in seroprevalence in CNV between the two cohorts, and 

suggests CVV may be circulating at higher levels in recent years.  

 

To follow on from these unexpected serology results, it was hypothesized that CVV RNA 

may be detectable in a proportion of the canine stool samples collected. To investigate this, 

degenerate primers were designed (table 2.4) that would be able to detect the capsid region 

of both vesivirus 2117 (GenBank AY343325.2), and the three canine vesivirus sequences 

available (GenBank NC004542.1, AF053720.1, JN204722.1). A SYBR-based two-step 

qPCR screen was performed with nucleic acid extracted from the 248 stool samples, but no 

CVV positive cases were identified.  
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3.9 Chapter summary 

In this chapter the first evidence that CNV is present in the UK dog population is presented. 

Whilst previous reports have confirmed the existence of CNV throughout Europe and the 

US, CNV-specific antibodies in dogs in the UK have been identified by this work, 

confirming that CNV is circulating. 

 

Seroprevalence to CNV in the canine serum samples collected from 2012-2013 was 60.1%. 

The number of positive samples amongst 102 veterinary in-patients at the RVC (60.8%) was 

highly comparable to the 71 samples from healthy blood donor dogs (59.2%). For 

comparison to other enteric viruses known to be circulating in the UK, table 3.2 summarises 

previous seroprevalence studies in UK dog populations. 

Table 3.2 Previous seroprevalence studies for canine enteric viruses in the UK 
 

The seroprevalence to CNV shown by this study is not dissimilar from the percentage of 

dogs seropositive to CECoV. However, CECoV is included in a proportion of canine 

vaccines, which would increase seropositivity in the absence of natural infection. Similarly, 

the 70% seropositivity to CPV is likely enhanced by the widespread use of CPV vaccines in 

the UK. A fair comparison between CNV and canine kobuvirus seroprevalence is possible 

based on the absence of vaccines and the similar time periods of sample collection; this 

project does suggest that CNV is a more prevalent virus in the UK. 

Virus Study Seroprevalence Population 
Canine enteric 
coronavirus 

(Tennant et al., 1991) 54% Veterinary Hospital 
(Tennant et al., 1993) 76% Rescue Centre 

Canine 
parvovirus 

(Tennant et al., 1991) 70% Veterinary Hospital 

Canine 
rotavirus 

(Tennant et al., 1991) 86% Veterinary Hospital 

Canine 
kobuvirus 

(Carmona-Vicente et al., 2013) 37% Veterinary Hospital 
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Following on from this study of CNV seroprevalence, a second report has recently been 

published on CNV seroprevalence across Europe (Mesquita et al., 2014a). This 

comprehensive study included 510 serum samples collected from dogs visiting veterinary 

clinics in 2009-2010. It was found that 36% of all samples were seropositive, with a range of 

0-70% when samples were grouped according to the fourteen different countries in which 

they were collected (0% in Iceland and Hungary, 70% in Finland). The lower overall level 

of seropositivity in comparison with data from this UK study could be attributed to the use 

of only a single type of CNV VLP in the ELISAs (strain C33). Results from the UK survey 

indicate the existence of multiple CNV serotypes, and as only a single serotype is screened 

for in the European study, the overall CNV seroprevalence in these countries is likely to be 

an underestimate.  

 

CNV seroprevalence was unexpectedly high in the UK given that CNV RNA was not 

detectable in 248 canine stool samples analysed in this study. The high seroprevalence 

suggests that many dogs are exposed to the virus, with the inability to detect actively 

secreted viral RNA attributable to two possible factors: firstly, it is likely that, as with the 

majority of HuNoV infections in man, CNV infection is an acute infection with virus only 

shed during a short period of time. Acute gastroenteritis caused by HuNoV in man results in 

peak viral shedding at 2-4 days after infection. By 3 weeks after infection only 25% cases 

are still positive for HuNoV RNA (Rockx et al., 2002). This is in agreement with 

epidemiological data from the first case identified (22 days viral shedding), and from a study 

involving a kennel outbreak of CNV in seven dogs (less than 7 days shedding) (Mesquita & 

Nascimento, 2012b). A second explanation for the low prevalence of CNV RNA detection 

could be due to the genetic heterogeneity of CNV. Significant sequence variation has been 

shown between the CNV strains characterized so far, and there is evidence of recombination 
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between CNV strains and noroviruses of different genogroups (Martella et al., 2009). 

Design of the primer-probe used in this study was based on a highly conserved region of the 

CNV genome (RdRp), but small sequence differences will affect the ability of the viral 

sequence to be amplified. Although strains circulating in the UK are antigenically similar to 

previously identified strains, minor sequence differences could reduce the chance of 

detection in a PCR screen. To address this, a primer set designed to be broadly reactive to a 

wide range of noroviruses and sapoviruses (p289/290, table 2.4 (Jiang et al., 1999)) was 

used to reanalyze the samples. In addition, it must be noted that the primer-probe used in the 

RT-qPCR survey for CNV RNA was designed prior to the publication of the HK genome 

sequence, hence the RT-qPCR survey would not detect strain HK. In light of the results of 

the serosurvey, this issue was addressed retrospectively to the first viral RNA survey. A new 

primer set was designed to detect the most conserved region of the HK VP1 protein (table 

2.4). A SYBR-based qPCR assay was used to screen all 248 stool samples for the presence 

of any norovirus strain using primer pair p289/290 and also specifically for CNV strain HK 

using the newly designed primer pair. No positive samples were identified using either set of 

primers (data not shown). 

 

Seroprevalence to the CNV strains surveyed in this study has been shown to have 

significantly increased over the past decade in the populations studied. In the 1999-2001 

cohort of dogs 38.1% were seropositive, whereas in the 2012-2013 cohort this proportion 

has almost doubled. Not only does this data provide the first proof that CNV has been 

present in dogs for at least 8 years prior to its initial discovery (Martella et al., 2008), it also 

implies that the number of dogs exposed to these strains of CNV has significantly increased 

during this period. This conclusion does come with certain caveats however, as the study 

populations of dogs used are not directly comparable. The 1999-2001 samples were 
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collected from dogs that had been at a rehoming kennels for 3 weeks whereas the 2012-2013 

dogs were all privately owned pets. Seroprevalence and overall viral prevalence to many 

viruses is known to be higher in facilities where dogs are kept in close contact (Stavisky et 

al., 2012; Tennant et al., 1993). This does suggest that the apparent increase in 

seroprevalence to the CNV strains studied is real, as typically owned pets will be exposed 

less frequently to viruses than dogs in kennels. It would be valuable to assess the current 

CNV seroprevalence in kenneled dogs, which is predicted to be greater than 60%.  

 

VLPs of three different CNV strains were pooled together to establish the overall 

seroprevalence to the virus. CNV strains included were identified in 2007 from Italy (170), 

Portugal (C33) and Hong Kong (HK). Following the initial serosurvey with the pooled 

VLPs, positive samples were entered into ELISAs with VLPs from each of the individual 

strains separately. This data would indicate reactivity to all three strains in the UK dog 

population. Blocking assays demonstrated no significant cross-reactivity between the three 

CNV strains in the samples tested, proving that antibodies generated in response to infection 

were likely to be strain specific. This was not unexpected based on the low amino acid 

identity (58.4% - 60.6%) between the capsid region of the three strains. The human immune 

response against human norovirus is of short duration (up to 14 weeks) and is homotypic, 

i.e. the immunity acquired for a genogroup or a particular genotype does not provide 

effective protection against another genogroup or genotype (Wyatt et al., 1974). This study 

therefore reveals that at least three antigenically distinct CNV strains have been circulating 

in the UK dog population. This is similar to the co-existence of human norovirus strains in 

the human population, with both genogroup I and genogroup II strains circulating (Phan et 

al., 2007; Tran et al., 2013; Wang et al., 2012).  
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Despite co-existence of multiple human norovirus strains, genogroup II (GII) noroviruses 

are the most prevalent genogroup worldwide with 96% of human outbreaks attributed to 

these strains (Tran et al., 2013). This data also identified variation between the prevalence of 

the different strains, with the highest seroprevalence in both cohorts demonstrated for CNV 

strain HK. This strain has been classified as a GVI norovirus, along with the Portuguese 

strain C33. However, strain HK has the highest sequence identity (51.6%) to an 

intergenotype GII recombinant human norovirus strain and it is suggested that strain HK 

may be classified into a novel genogroup (Tse et al., 2012). Aside from this phylogenetic 

information, it is not possible to determine if the higher seroprevalence to strain HK in this 

study is due to a viral fitness advantage, and further molecular characterization is required. 

 

The age of seroconversion to CNV shows that exposure to the virus typically occurs in the 

first few years of life. Seroprevalence increases significantly in older dogs. This is 

comparable to the seroconversion rates to human norovirus in man; seroprevalence in 

children less than 2 years old is 20-30%, but this rapidly increases to 70-80% in older 

children (Kobayashi et al., 2009; Koho et al., 2011). It is speculated that CNV isolation 

from stool samples using qPCR will be more likely in a younger cohort of dogs. 

 

To conclude, this chapter has not only demonstrated that CNV is present within the UK dog 

population, but has also shown that multiple strains of CNV have elicited antibody 

production in dogs. Evidence of exposure to CNV prior to its first discovery in 2007 has also 

been presented, and the rise in seroprevalence over time suggests this virus is becoming 

increasingly common in the UK. 
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Chapter 4 

Serendipitous discovery of canine 

astroviruses 
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4.1 Chapter introduction 

Astroviruses are small non-enveloped, positive sense RNA viruses that have been reported 

to infect a wide range of mammalian and avian species, including dogs. Astroviruses were 

first identified in 1975 in the stools of children with diarrhea (Appleton & Higgins, 1975; 

Madeley & Cosgrove, 1975), and are now estimated to cause 2% - 8% cases of 

gastroenteritis in children worldwide (King et al., 2011).  

 

Canine astrovirus (CaAstV) is associated with gastroenteritis in dogs, and although it has 

been detected in a range of countries worldwide,  (Castro et al., 2013; Choi et al., 2014; 

Grellet et al., 2012; Martella et al., 2011; Zhu et al., 2011) it has not previously been 

reported in dogs in the UK. As 248 canine stools samples were collected for screening 

against human and canine noroviruses, it was deemed valuable to extend testing of these 

samples for additional enteric viruses, including CaAstV. The first CaAstV positive sample 

was identified unexpectedly, which drove the design and completion of a more focused 

screen for CaAstV in the canine stool samples collected. This enabled estimation of the 

prevalence of CaAstV in the UK dog population. 

Figure 4.1 Electron microscopy image of canine astrovirus.  
Canine astrovirus particles were observed in the faeces of a dog with gastroenteritis (Toffan et al., 
2009). Astrovirus particles have a characteristic star-shaped appearance (astron is Greek for star). 
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Previous studies have only conducted limited genetic analysis of CaAstV isolates, with the 

full genome of CaAstV not reported. The genome of astroviruses is typically 6.4-7.3kb and 

divided into three open reading frames, ORF1a, ORF1b and ORF2 with a 5’untranslated 

region (UTR) and a 3’ poly-A tail (King et al., 2011). ORF1 is divided into two coding 

regions by a ribosomal frameshift sequence, and codes for the non-structural proteins 

involved in viral genome replication; ORF1a codes for a polyprotein predicted to include a 

serine protease and VPg (Fuentes et al., 2012) and ORF1b encodes the RNA dependent 

RNA polymerase (RdRp). ORF2 encodes the capsid precursor protein which is cleaved both 

intracellularly and extracellularly to generate the mature infectious virion (Bass & Qiu, 

2000). It was expected that CaAstV would have the same genome organisation, and to 

confirm this detailed molecular characterization was performed with full genome 

sequencing of the CaAstV isolates identified. 

4.2 Fortuitous identification of the first canine astrovirus isolate in the UK 

A total of 248 canine stool samples were screened using a two-step qPCR protocol for the 

presence of a number of different enteric viruses, as described in chapter 3. Canine vesivirus 

(CVV) screening was included as vesivirus-specific antibodies were identified in 8% dogs 

(chapter 3.8). Primers designed to detect CVV (table 2.4) were shown to amplify a 300bp 

fragment from RNA extracted from a single stool sample (sample 8/248). This fragment was 

then purified and the sequence determined using conventional sequencing by the DNA 

sequencing facility at the Department of Biochemistry, University of Cambridge. The 

similarity with other sequences was then examined using the nucleotide alignment 

programme BLAST®. The closest alignment of PCR product was with 3’ end of ORF1 of a 

Californian sea lion astrovirus. This therefore identified the cDNA amplified in the sample 

as a member of Astroviridae. The reverse CVV primer had been designed with degeneracy 
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at four nucleotide positions in order to detect the four CVV sequences deposited in 

GenBank, as well as the related virus, vesivirus 2217. It is believed that this degeneracy 

permitted mis-priming with an astrovirus. As no ORF1 CaAstV sequences were published at 

this point in time, it was not possible to determine if the sequence amplified from the stool 

sample had a canine origin.  

4.3 Identification of multiple canine astrovirus isolates 

It was hypothesized that the astrovirus identified in the single stool sample was a CaAstV, 

thus to confirm this, published primers designed to specifically target the CaAstV RdRp 

(table 2.4, (Martella et al., 2011)) were used to screen sample 8 for CaAstV. This resulted in 

generation of an amplicon of the correct size as determined by gel electrophoresis, and 

sequencing confirmed this to be a CaAstV. These primers were then used to develop a two-

step qPCR protocol, with a positive control generated by cloning the 300bp fragment of 

CaAstV RdRp amplified from sample 8 into pCR-Blunt™. This qPCR protocol was then 

used to screen all remaining samples for CaAstV. Of the 248 stool samples, CaAstV was 

detected in a total of four samples, including the initial sample. All four positive dogs were 

showing signs of gastroenteritis, whereas CaAstV was not detected in any dogs without 

gastroenteric signs. The difference between the prevalence of CaAstV in dogs with 

gastroenteritis (6.0%) and prevalence in dogs without gastroenteritis was statistically 

significant (p = <0.001). Two of the four CaAstV positive dogs were co-infected with CPV, 

but no co-infections with CECoV and CaAstV were identified. The age range of CaAstV 

positive dogs was from 7 weeks to 7 years, with a mean age 2.1 years (SD 3.3 years). Table 

4.1 summarises the clinical information and viral screening results of the four CaAstV 

positive dogs. 
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Case Age Breed Collection date Collection 
location 

Additional 
viruses identified 

1 7 weeks Crossbreed August 2012 Gillingham, 
Kent 

CPV 

2 7 years Border Collie August 2012 Lincoln, 
Lincolnshire 

None 

3 1 year Staffordshire 
Bull Terrier 

February 2014 Huntingdon, 
Cambridgeshire 

None 

4 10 weeks Crossbreed May 2014 Braintree, Essex CPV 

Table 4.1 Clinical and co-infection data for CaAstV positive cases  
 

4.4 CaAstV shedding is acute 

CaAstV was confirmed in case 4 whilst the dog was still hospitalized at Queen’s Veterinary 

School Hospital (QVSH). This dog had presented collapsed, with severe dehydration and 

weakness at QVSH, following a six day history of diarrhea and vomiting. The dog received 

intensive supportive care, including intravenous fluid therapy, a fresh frozen plasma 

transfusion and intravenous glucose and antibiotics. After a week of therapy, a full recovery 

was made and the puppy was discharged. 

 

Figure 4.2 10 week old crossbreed dog with CaAstV (case 4).  
This image was taken whilst the puppy was hospitalized at Queen’s veterinary School Hospital, 
University of Cambridge (courtesy of James Warland, used with owners permission). 
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In order to determine the duration of CaAstV shedding, serial stool samples were collected 

from the puppy at 2-5 day intervals post diagnosis with CaAstV. Veterinary staff and the 

owners facilitated with sample collection, with the final sample being collected 24 days after 

the onset of clinical signs. Samples were stored at 4°C until transportation on ice to the 

Division of Virology, University of Cambridge. qPCR for CaAstV and CPV nucleic acid 

was performed on all serial samples, and the results are presented in figure 4.3. CaAstV was 

only identified in the first sample (6 days post start of clinical samples), with all samples 

collected 9 days or later from the start of clinical signs being below the threshold of 

detection and thus deemed negative. In contrast, CPV was detected in every sample 

collected, up to 24 days post presentation, although there was a 1000 fold decrease in viral 

titre over the sampling period. Overall this indicates that CaAstV was only shed briefly in 

this case, with cessation of viral shedding correlating with improvement in clinical signs. 

 

 

Figure 4.3 Viral shedding in serial canine stool samples as detected by qPCR.  
Stool samples were collected up to 24 days post onset of clinical signs and tested for the presence 
and quantity of CaAstV and CPV nucleic acid using SYBR-based and TaqMan-based qPCR 
respectively.  
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4.4 Comparison of CaAstV capsid sequences 

The complete coding sequence of the four CaAstV strains identified was elucidated using 

conventional PCR and cloned amplicons. This required optimization of the PCR protocol for 

the fourth positive sample, of which sample quantity was low. A touchdown hemi-nested 

PCR using primer pairs IGUC 965F and 626R, then 887F and 626R (listed in appendix A.4) 

was performed (adapted from Debing et al., 2014), with the amplification programme 

consisting of an initial 5 min step at 95°C, followed by 18 cycles with 95°C for 30 s, 62°C 

for 45 s and 70°C for 60 s, with a reduction of 0.5°C per cycle for the annealing temperature, 

then 14 cycles with 95°C for 30 s, 53°C for 45 s and 70°C for 60 s. A final elongation step at 

70°C for 10 min was performed, followed by chilling to 4°C. 

 

The ORF2 nucleotide and amino acid sequences of these strains were aligned using 

ClustalW2. The overall nucleotide identity between strains was 77.1-81.1%, whereas the 

amino acid identity was 79.3-86.3%. The four sequences are listed in the appendix and have 

been deposited in the GenBank database and assigned accession numbers KP404149 – 

KP404152 (cases 1-4 respectively).  

 

A number of studies have reported the N-terminal and C-terminal regions of astrovirus 

capsids to be relatively conserved, whereas the central region is hypervariable. The human 

astrovirus (HAstV) capsid protein has previously been divided into three regions; the N 

terminus (amino acids 1-415), a variable central region (416-707), which includes a 

hypervariable section from 649-707, and a conserved C terminus (708-786) (Willcocks et 

al., 1995). An analogous approach for the CaAstV capsid was taken by Zhu et al, who 

divided the capsid into three regions for analysis: amino acids 1-446, 447-730, and 731-end 

(Zhu et al., 2011). The four capsid sequences derived from this study have been analysed 
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according to the latter scheme, and sequence identity compared (figure 4.4). Sequence 

analysis of the three regions clearly shows the majority of sequence variation is concentrated 

in region II.  

 

 
Figure 4.4 Alignment and variability analysis of capsid amino acid sequences of the four 
CaAstV isolates identified in the UK.   
(A) CaAstV capsid amino acid sequences were aligned using ClustalW2, then a variability scan was 
constructed using the Simpson diversity index and Protein Variability Server software (Garcia-
Boronat et al., 2008). (B) Amino acid percentage identity between CaAstV strains in three different 
regions of the capsid protein 
 

A 24nt deletion was identified in samples 2, 3 and 4 in the 5’ end of region II, which has 

previously been reported in Chinese CaAstV strains (Zhu et al., 2011). It is not possible to 

predict the location of this deletion on the capsid structure as it is beyond the region of the 

astrovirus capsid spike for which the crystal structure has been solved (Dong et al., 2011b). 

However, sequence alignment with the HAstV type 8 capsid (GenBank AAF85964.1) shows 

this deletion to be located downstream of the caspase cleavage site required for virion 
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maturation, which truncates the full length capsid protein (VP90) into the mature VP70 form 

(Banos-Lara & Méndez, 2010). Therefore it is predicted that the 24nt deletion will not alter 

the mature virion. 

 

Evolutionary analysis of the four CaAstV sequences from the study, alongside the seven 

previously reported full-length CaAstV capsid sequences are presented in figure 4.5. This 

analysis indicated that the UK strains do not cluster, contrary to previous studies which have 

analysed CaAstV strains from a single city (Zhu et al., 2011). Each UK strain is distinct 

from each other, and whereas one strain clusters most closely with the Chinese strains, the 

remainder group with strains identified in Italy over a number of years. 

 

 

 
Figure 4.5 Phylogenetic tree based on the full-length amino acid sequence of the capsid protein 
of CaAstVs.  
This includes the four UK strains identified in this study (underlined) and the seven strains 
previously sequenced and listed in GenBank. The tree was determined using the neighbour-joining 
method. The percentage of replicate trees in which the associated taxa clustered together in the 
bootstrap test (100 replicates) are shown next to the branches. Evolutionary analyses were conducted 
in MEGA6. 
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4.5 Full-length CaAstV genome sequenced 

The complete CaAstV genome was determined from two samples using conventional PCR 

and cloned amplicons, coupled with 3’ and 5’ RACE. The first CaAstV genome was isolated 

from a 7 week old crossbreed dog (strain Gillingham/2012/UK, GenBank accession number 

KP404149) and the second isolated from a 7 year old Border Collie (strain 

Lincoln/2012/UK, KP404150). The total length of CaAstV Gillingham/2012/UK is 6600nt 

and CaAst/Lincoln/2012/UK is 6572nt, as determined by the use of 5’ and 3’ RACE. Each 

genome encodes three open reading frames (ORFs); ORF1a, ORF1b, and ORF2 flanked by 

a 5’ untranslated region (UTR), and a 3’ UTR and a poly-A tail (figure 4.6A). In HAstVs, 

the 5’ UTR is 85nt in length, whereas data from both CaAstV strains would indicate that the 

CaAstV 5’UTR is 45nt. The 83nt 3’UTR of HastV is identical to 3’UTR in CaAstV 

Lincoln/2012/UK, whereas the 3’UTR of CaAstV Gillingham/2012/UK is 2nt shorter. The 

nucleotide composition of both CaAstV strains is 29% A, 22% G, 26% T and 23% C. The 

G/C composition is 45%. 

 

The ORF1a of non-canine astroviruses encodes a serine protease (Willcocks et al., 1994). 

Sequence alignment of CaAstV with astroviruses of other species shows a high degree of 

conservation in the predicted serine protease region (figure 4.6B). This is especially 

pronounced in the regions around the proposed catalytic triad of the serine protease (Speroni 

et al., 2009).  
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Figure 4.6 Genome organisation of CaAstV  
The genome is divided into three ORFs, with ORF1 divided by a frameshift site (A). ORF1a is 
predicted to encode a serine protease (B) and a VPg protein (C). This is supported by alignment of 
the two CaAstV sequences with HAstV (human), FeAstV (feline) and CSAstV (Californian sea lion) 
sequences. The suspected catalytic triad of the serine protease (B) is highlighted by the boxed 
residues, with the dotted box H residue (histidine) representing the substrate binding region. The 
boxed residues in (C) represent the C and N termini cleavage sites of VPg. The conserved 
KGK(N/T)K and TEXEY motifs of VPg proteins are highlighted in bold, with the TEKEY variation 
identified in CaAstV underlined. The tyrosine residues identified by a dashed box represent the site 
of covalent linkage of VPg to the RNA genome. 
 

 

ORF1a also encodes the viral genome-linked protein, VPg (Fuentes et al., 2012) (figure 

4.6C). CaAstV VPg is predicted to start at aa 656, at a conserved QK cleavage site and is 90 

aa in length. In other astroviruses, it has been proposed that the C-terminal VPg cleavage 

site is coded by Q(P/A/S/L) (Al-Mutairy et al., 2005), and the presence of a QS dipeptide at 

the same site in CaAstV is consistent with this prediction. The amino acid motif 

CaAstV KP404149 458 DIVTAGHVVGSHRVVEAWYEGSCYQA!
CaAstV KP404150 458 DIVTAGHVVGSHRVVEAWYEGSCYQA!
HAstV1 AY720892 455 DIVTAAHVVGNNTFVNVCYEGLMYEA!
FeAstV KR374704 452 DIITAGHVVTNHKIVNVSYKGLNYEA!
CSAstV JN420359 454 DIVTAAHVIGNNTFVNVCYEGLVYEA!

! !       ! ! !  !
RVRYKPEKDIAFLALPGDMKPKARYKIAQQPDYSTVVVLAYSSNG!
RVRYKPEKDIAFLALPGDMKPKARYKIAQQPDYSTVVVLAYSSNG!
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KGK(N/T)K is conserved at the N-terminal end of VPg sequences from both astroviruses 

and caliciviruses, and this is also identifiable in the CaAstV genome. Another conserved 

VPg motif is TEXEY, with mutagenesis studies indicating that the Y (tyrosine) residue is 

important for linkage of VPg to viral RNA (Fuentes et al., 2012). Analysis of the CaAstV 

ORF1a sequence also identifies the conserved TEXEY motif at 684-688, thus this tyrosine is 

predicted to covalently link to the RNA genome. However, the CaAstV sequence diverges 

slightly from the other mamastroviruses studied, in that X of the motif corresponds to K, 

whereas this is E/Q in all other mamastrovirses. 

 

A -1 ribosomal frameshift site between ORF1a and ORF1b, present in HAstVs (Marczinke 

et al., 1994), is also conserved in CaAstV. This translational frameshift is directed by the 

slippery heptamer sequence AAAAAAC at position 2666 in the CaAstV genome. A stem 

loop structure is predicted downstream of the slippery sequence, as shown in figure 4.7. The 

slippery sequence and downstream stem loop are highly conserved amongst 

mamastroviruses. The 3’end of ORF1a overlaps with ORF1b by 49 nucleotides. This is 

shorter than the 71nt overlap reported for HAstV.  
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Figure 4.7 Analysis of ORF1a/1b -1 frameshift site.  
(A) Predicted structure of the –1 frameshift site, directed by a slippery heptamer sequence and a 
downstream stem loop structure. (B) Sequence alignment of CaAstV and a range of human 
astrovirus (HAstV) isolates shows this region to be highly conserved. The slippery heptamer 
sequence is highlighted in bold, and the stem loop structure is boxed, with nucleotides in bold 
representing differences 
 

 

ORF1b is predicted to code for an RNA dependent RNA polymerase (RdRp). The CaAstV 

sequence contains a YGDD motif at aa 1252, common to RdRps of a variety of RNA 

viruses, supporting this conclusion. ORF1b of CaAstV aligns with the RdRp of HAstV with 

58-60% aa identity (HAstV-1, 4, 5 and 8). There is a similar identity to feline astrovirus 

(56%) and porcine astrovirus (55%). CaAstV aligns most closely with the Californian sea 

lion astroviruses (67-71%), though only incomplete Californian sea lion astrovirus 

sequences were available. 
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As for all other astroviruses studied to date, an overlapping reading frame exists at the 

ORF1b-ORF2 junction of CaAstV. The CaAstV ORF1b-ORF2 overlap sequence is 8nt, as 

reported for other mamastroviruses, hence ORF2 is in the same frame as ORF1a. As 

previously reported, the capsid sequence was found to have an in-frame start codon 180 nt 

upstream of the start codon homologous to other mamastrovirus genomes (Toffan et al., 

2009).  

 

The 6 aa C terminus of the VP1 (SRGHAE) is highly conserved in mamastrovirses. This 

motif is within a highly conserved nucleotide stretch, s2m, overlapping the termination 

codon of ORF2, and has been identified in both CaAstV strains sequenced. 

 

The overall nucleotide identity between the two CaAstV strains sequenced was 88.5%. 

Sequence comparison of the individual ORFs is presented in table 4.2. This clearly shows 

that ORF1b (RdRp) is most closely conserved, making this an ideal target for qPCR screens. 

Conversely, the capsid sequence is most diverse.  

 Nucleotide Amino Acid 

ORF1a 93.8% 98.4% 

ORF1b 97.6% 99.8% 

ORF2 77.5% 80.8% 

Table 4.2 Comparison of nucleotide and amino acid identity of the two full-length CaAstV 
sequences 
 

A phylogenetic tree was constructed by multiple alignment of the full-length genome of the 

two CaAstV strains isolated in this study, and a number of astrovirus reference strains 

isolated from different mammalian species. This was achieved using MEGA6 software 

(figure 4.8). 
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Figure 4.8 Phylogenetic tree based complete genome nucleotide sequences of astroviruses from 
a range of mammalian species.  
GenBank accession numbers are listed, with the strain details included for the CaAstV isolates 
sequenced in this study (isolates underlined). The tree was determined using the neighbour-joining 
method. The percentage of replicate trees in which the associated taxa clustered together in the 
bootstrap test (100 replicates) are shown next to the branches. Evolutionary analyses were conducted 
in MEGA6. 
 
 

4.6 Chapter Summary 

CaAstV has previously been detected sporadically in dogs across the world, but the 

association with disease, prevalence levels and genetic diversity is largely unknown. This 

chapter presents the first identification and molecular characterization of CaAstV cases in 

dogs in the UK. Sequencing of the viral capsid for all four strains revealed extensive genetic 
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diversity, and sequencing of the full genome of two strains has provided the first full-length 

sequences for CaAstV. 

 

The prevalence of CaAstV in gastroenteritis cases in this study was shown to be 6.0%. This 

prevalence was unexpectedly high given that CaAstV has not previously been reported in 

the UK. It may be predicted that this is an underestimation of prevalence based on the 

population of dogs surveyed. The majority of previous CaAstV epidemiological studies have 

focused on dogs less than 6 months old, whereas this study included dogs of any age. 

Serological studies have shown that exposure to CaAstV typically occurs in young animals, 

with dogs older than 3 months significantly more likely to be seropositive that younger dogs 

(Martella et al., 2011). This suggests that studies focusing only on young dogs will identify 

more positive CaAstV cases. However, the decision to survey dogs of any age in this study 

enabled detection of a CaAstV case in a 7-year old dog. This is oldest case of CaAstV 

reported to date and highlights the need to have an index of suspicion for infectious causes 

of gastroenteritis in dogs of any age. Indeed although HAstV is more common in paediatric 

populations, infections in the elderly are reported (Fernández et al., 2011). 

 

The pathology caused by CaAstV in dogs is uncertain; CaAstV has previously been detected 

in the stools of both healthy and diseased dogs (Grellet et al., 2012; Martella et al., 2011). 

However, this study shows a relationship between the presence of CaAstV RNA in stool 

samples, and the presence of clinical signs of gastroenteritis (p < 0.001). This finding is in 

agreement with two previous studies from Italy and China (Martella et al., 2011; Zhu et al., 

2011), but is at odds with a French study which found no significant difference in CaAstV 

identification between diarrhoeic (27%) or healthy puppies (19%) (Grellet et al., 2012). 

Determination of the specific pathology induced by CaAstV infection in dogs is often 
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confounded in a clinical setting by co-infections with other gastroenteric pathogens (e.g. 

CPV in cases 1 and 4 in this study). Experimental studies will be required to confirm or 

refute the association of CaAstV with gastroenteritis, but this study does suggest CaAstV 

that may cause disease. 

 

Sequencing of the capsid region of each CaAstV strain identified in this study revealed 

significant sequence variation. This mirrors the variation previously identified within HAstV 

isolates (De Benedictis et al., 2011). At present, astroviruses are named according to the 

species in which they are isolated, and subsequent classification is based upon serotypes; 

these are defined if there is a 20-fold or greater two-way cross neutralization titre (King et 

al., 2011). Sequence analysis has verified this classification, with HAstV 1-8 having 86-

100% nucleotide identity within a serotype, based on capsid sequences (Noel et al., 1995). 

The nucleotide variation within the capsid region of the four CaAstV strains was shown to 

be 77.1-81.1%, which strongly suggests these strains are also different serotypes. 

Confirmation of this requires serological analysis, but unfortunately repeated attempts to 

grow the CaAstV isolates identified in this study in cell culture failed (data not shown). 

 

Identification of four possible CaAstV serotypes circulating in the UK alone raises questions 

regarding the possible origins of these strains. Phylogenetic analysis of the UK capsid 

strains alongside the limited number of CaAstV sequences previously listed in GenBank was 

unexpected. There was no clustering of the UK strains, unlike the grouping of all Chinese 

strains. Instead UK strains each grouped with a different CaAstV isolate from either China 

or Italy. With such limited sequences available it is not possible to determine whether 

CaAstV strains have spread globally, or independent evolution has occurred. Clearly a high 

rate of evolution does occur within all astroviruses however, with their RNA genome 
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facilitating introduction of point mutations and recombination events (Wolfaardt et al., 

2011). 

 

Given the strain diversity identified, it has been suggested that some CaAstV strains may be 

more pathogenic than others (Martella et al., 2012). This has previously been reported for 

astroviruses of mink which show variation in their ability to invade the central nervous 

system in a strain related manner (Blomström et al., 2010). Assessment of this risk will 

require wider epidemiological and clinical studies. Another concern raised by the existence 

of multiple circulating CaAstV strains, is regarding future disease control. Management of 

viral causes of gastroenteritis in dogs is best achieved by widespread vaccination, 

exemplified by the widely used canine parvovirus vaccine. However the presence of 

multiple strains will make CaAstV vaccine design challenging. 

 

Full genome sequencing of two CaAstV isolates revealed them to be closely related and 

possess a typical astrovirus organization. The first full length sequence of an astrovirus was 

for HAstV in 1994 (Willcocks et al., 1994), and relatively few full length sequences have 

since been determined. Sequence analysis of the CaAstV strains identifies the presence of a 

serine protease and VPg within ORF1a as for other astroviruses, which is separated from the 

conserved RdRp of ORF1b by a -1 frameshift. 

 

In summary, this chapter has not only identified CaAstV circulating in the UK dog 

population, but also found significant genetic diversity within the CaAstV strains. 

Furthermore, full genome sequencing of two CaAstV isolates has enabled detailed 

molecular characterisation of this astrovirus species, and provides the astrovirus field with 

further examples of genome variation. 
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5.1 Chapter introduction 

Understanding of CNV interactions with host cells is negligible, with previous studies on 

CNV, including chapter 3 of this thesis, restricted to epidemiological and genetic analyses. 

As this virus has been shown to be emerging in the UK and worldwide, there is now greater 

necessity to study the detail of the virus-host relationship at the cellular level. Traditionally 

this would require considerable quantities of purified virus, but no studies have described 

successful culture of CNV in vitro, and infectious clinical samples often lack sufficient 

material. However, the production of CNV VLPs for the epidemiological aspect of this 

thesis provided a valuable opportunity to examine virus-cell interactions in the absence of 

purified infectious CNV particles. Therefore, the third aim of this thesis was to use CNV 

VLPs to develop a greater understanding of how CNV interacts with canine cells. This 

would allow comparison with other genogroups and genotypes of noroviruses, and it was 

hoped this would provide knowledge of both norovirus evolution and the risk of 

transmission of CNV between species. 

 

The first step in viral invasion of a host cell is the attachment of viral capsid proteins to 

specific host cell receptors. Many caliciviruses studied to date use carbohydrate structures to 

attach to cells prior to invasion (Marionneau et al., 2002; Ruvoën-Clouet et al., 2000; Taube 

et al., 2009; Zakhour et al., 2009) and it was consequently predicted that CNV would also 

recognize a carbohydrate attachment factor on canine cells. Therefore the goal was set to 

identify and characterize the interaction of the capsid of CNV with cell surface 

carbohydrates. Confirmation that this carbohydrate receptor was important in vivo was 

achieved by studying expression of the target carbohydrate in dogs and performing 

immunohistochemical and ELISA-based assays to study binding in vitro. This also enabled 

evaluation of the proportion of the canine population that may be susceptible to CNV. 
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5.2 CNV VLPs bind to synthetic neoglycoconjugates related to HBGAs 

To commence investigations, a panel of immobilized neoglycoconjugates (table 5.1) were 

used to assess the ability of CNV to attach in vitro. In the absence of purified CNV particles, 

CNV VLPs were used to represent the capsid protein; the binding properties of purified 

norovirus virions and norovirus VLPs have been shown to be highly comparable 

(Harrington et al., 2004). VLPs of the three different strains of CNV generated as described 

in chapter 3, were incubated with neoglycoconjugates immobilized on a 96-well 

immunoplate in an ELISA-based assay at 37°C. VLPs of CNV strain C33 were first tested 

against an extensive panel of neoglycoconjugates attached to either polyacrylamide (PAA) 

or human serum albumin (HSA) (Figure 5.1A). Four different carbohydrate structures were 

identified to which VLPs could bind. These were H type 1, A heptasaccharide, Lewis b and 

lacto-N-fucopentose.  Each of these neoglycoconjugates incorporates the H type 1 motif 

Fucα1-2Galβ1-3GlcNAcβ1-R1 (structures shown in figure 5.1A and table 5.1), suggesting 

that these three carbohydrate moieties in the specific H type 1 configuration are important 

for CNV binding. This is in agreement with the finding that although A heptasaccharide 

could bind to CNV VLPs, the closely related A di and A tri neoglycoconjugates could not. A 

di and A tri neoglycoconjugates incorporate a GalNAc moiety which differentiates A 

antigen from H antigen, but they lack GlcNAc which is one of the three moieties that 

constitute the H antigen. 

 

 

 

 

Table 5.1. Neoglycoconjugates used to determine the carbohydrate binding specificity of CNV 
VLPs 
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Name Conjugate Structure Graphic representation 
of structure 

αN-acetylgalactose PAA GalNAcα1  
LacNAc PAA Galβ1-4GlcNAcβ1  
Forsmann disaccharide PAA GalNAcα1-3GalNAcβ1  
H type 1 HSA Fucα1-2Galβ1-3GlcNAcβ1 

 
H type 2 Both Fucα1-2Galβ1-4GlcNAcβ1 

 
H type 3 PAA Fucα1-2Galβ1-3GalNAcα1 

 
A heptasaccharide HSA GalNAcα1-3(Fucα1-2)Galβ1-

3(Fucα1-4)GlcNAcβ1-3Galβ1-
4Glc β1  

A trisaccharide Both GalNAcα1-3(Fucα1-2)Galβ1 

 
A disaccharide PAA GalNAcα1-3Galβ1  
A type 2b PAA GalNAcα1-3(Fucα1-2)Galβ1-

4GlcNacβ1 
 

Lea (Lewis a) PAA Galβ1-3(Fucα1-4)GlcNAcβ1 

 
Leb (Lewis b) Both Fucα1-2Galβ1-3(Fucα1-

4)GlcNAcβ1 
 

Lex (Lewis x) PAA Galβ1-4(Fucα1-3)GlcNAcβ1 

 
Ley (Lewis y) Both Fucα1-2Galβ1-4(Fucα1-

3)GlcNAcβ1 
 

3-sulfo Lex PAA HSO3-3Galβ1-4(Fucα1-
3)GlcNAcβ1 

 
Sial Lex (sialyl-Lewis x) Both NeuAcα2-3Galβ1-4 (Fucα1-

3)GlcNAcβ1 
 

Sial Lea (sialyl-Lewis a) Both NeuAcα2-3Galβ1-3 (Fucα1-
3)GlcNAcβ1 

 
Sialyl LNF V (lacto N-
fucopentose V) 

HSA Fucα1-2Galβ1-3(Neu5Acα2-
6)GlcNAcβ1-3Galβ1-4Glc β1 

 
Sialyl LNnT  (lacto-N-
neotetraose) 

HSA NeuAcα2-3Galβ1-
4GlcNAcβ1-3Galβ1-4Glcβ1 

 
6-sulfo Sialyl Lex PAA NeuAcα2-3Galβ1-3(Fucα1-

4)(HSO3-6)GlcNAcβ1 
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All four neoglycoconjugates shown to bind VLPs were attached to HSA, although there 

were six additional HSA-conjugated oligosaccharides that did not bind to the VLPs. The 

conjugate molecule is suspected to have some effect on accessibility of the oligosaccharide, 

as Lewis b conjugated to PAA was not able to bind to the VLPs. This is evidently a 

limitation of the synthetic neoglycoconjugate binding assay, and subsequent experiments 

using clinical samples were deemed essential to investigate these binding preferences 

further. 

 

Temperature has previously been shown to affect the ability of norovirus VLP binding to H 

type carbohydrates; red blood cells only express H type 2 carbohydrates (Fucα1-2Galβ1-

4GlcNAcβ1-R1), and HuNoV is able to induce haemagglutination at 4°C but not 37°C 

(Hutson et al., 2003). To investigate the possible effect of temperature on CNV binding, 

synthetic oligosaccharides were next incubated with VLPs at 4°C. H type 1, H type 2 and H 

type 3 were coated onto immunoplates and C33 CNV VLP was added for a 1 h incubation at 

4°C. The results presented in figure 5.1B show that H type 2 and H type 3 oligosaccharides 

were able to weakly bind CNV VLPs at 4°C but showed no binding ability to CNV VLPs at 

37°C.  

 

Given the apparent specificity of CNV strain C33 VLP binding to neoglycoconjugates, it 

was predicted that the two other CNV strains available for this study would also behave in a 

similar manner. To investigate this, strains 170 and HK were incubated with the four 

neoglycoconjugates shown to bind strain C33, plus a negative control (A tri). The results as 

shown in figure 5.1C confirmed that at 37°C all 3 strains of CNV were able to recognize H 

type 1, A heptasaccharide, Lewis b and lacto-N-fucopentose, but could not bind to A tri. 
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Figure 5.1 Binding of CNV VLPs binding to synthetic neoglycoconjugates.  
CNV strain C33 VLPs were incubated with a panel of 26 neoglycoconjugates at 37°C (A) and a 
panel of 5 neoglycoconjugates at 4°C immobilized on immunoplates (B) to determine binding 
ability. Bound VLPs were detected using an anti-CNV antibody.  Synthetic oligosaccharides were 
either conjugated to human serum albumin (HSA), or polyacrylamide (PAA, unlabeled). An asterisk 
indicates that the oligosaccharide was available for testing attached to both types of conjugate, and 
the mean OD450 for both is presented. VLP binding to Lewis b was significantly different for each 
conjugate, hence each is shown independently. Schematic structures of the neoglycoconjugates 
recognized by CNV VLPs are presented above the associated bars on the chart. Neoglycoconjugates 
shown to bind CNV strain C33 were also incubated with two additional CNV strain VLPs (170 and 
HK) at 37°C (C). All error bars on bar charts are demonstrative of the standard error. 
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5.3 Major capsid protein (VP1) sequence analysis of different noroviruses 

Genogroup I and genogroup II HuNoV can bind to HBGAs (Huang et al., 2003; Marionneau 

et al., 2002), and following the identification that CNV VLPs were able to bind to synthetic 

HBGA carbohydrates in vitro, comparison of the major capsid protein amino acid sequences 

was performed. The major capsid protein of a representative GI.1 Norwalk strain (Genbank 

AAA59229.1) and a GII.4 strain (Norovirus Hu/II.4/2201480/HK/2010, Genbank 

ADR78268.1) were aligned with the three CNV strains using ClustalW2. Figure 5.2 

illustrates only the region of capsid sequence alignments that incorporate the amino acid 

residues shown to interact with HBGAs in previous crystallography studies for GI.1 and 

GII.4 noroviruses (Bu et al., 2008; Cao et al., 2007; Choi et al., 2008). Only very limited 

similarities were identified between the GI.1 or GII.4 norovirus HBGA-binding amino acids 

and the capsid sequences of the three CNV strains. This suggests that different mechanisms 

of carbohydrate binding exist between CNV and the GI and GII HuNoVs. 

 

Figure 5.2 Alignment of GI.1, GII.4 and CNV major capsid protein sequences.  
Major capsid protein sequences of a representative GI.1 (GenBank AAA59229.1) and GII.4 
(GenBank ADR78268.1) HuNoV and the three CNV strains used in this study were aligned using 
ClustalW2. The 8 (GI.1) and 7 (GII.4) residues implicated in HBGA binding from crystallographic 
studies are highlighted by grey boxes in the figure. Amino acids residues in the three different CNV 
strain major capsid proteins that are identical to the key HBGA binding residues of GI.1 or GII.4 are 
highlighted by white boxes. 
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5.4 Dogs express A, H and Lewis antigens in their gastrointestinal tract 

To determine if dogs express the carbohydrates identified as potential CNV attachment 

factors by the neoglycoconjugate assay, saliva samples from 26 dogs (1-23, D - F) and 

intestinal scrapings from 6 dogs (A-F) were phenotyped using ELISA-based assays. H 

antigen carbohydrate was present in the saliva and intestinal tissue of all dogs tested (figure 

5.3A). This data was verified by sequencing the complete Fut2 gene of 14 of these dogs 

(identified by * in figure 5.3A). The canine Fut2 gene showed high conservation of the 

nucleotide sequence between samples, with no evidence of polymorphisms that would result 

in an inactive transcript. A single non-coding nucleotide polymorphism (C777G) was 

identified in one dog.  

 

Expression of H antigen along the length of gastrointestinal tract was examined in samples 

collected from the duodenum, jejunum, ileum, caecum and colon, using Ulex europaeus 

agglutinin (an H antigen binding lectin). Concavalin A was used to confirm that the amount 

of carbohydrate present in each duodenal scraping was comparable (data not shown). Figure 

5.3B shows H antigen expression in the intestines varies between dogs, but it is apparent that 

this inversely correlates with A antigen expression (see figure 5.3C). Within the 

gastrointestinal tract of each dog, H antigen expression is relatively constant from the 

duodenum to the colon. This in contrast to the H antigen expression patterns reported in 

humans and in cattle, whereby expression of the H antigen diminishes in the distal parts of 

the gastrointestinal tract (Yuan et al., 1985; Zakhour et al., 2009). 

 

A antigen was shown to be present in 12/26 (46.2%) dogs, whereas no dogs were B antigen 

positive. A antigen expression in saliva correlated with A antigen expression in 

gastrointestinal secretions, demonstrated by phenotyping of saliva samples (D, E and F) 
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obtained from three dogs from which gastrointestinal tissues were also available. Of the 

dogs from which tissues were obtained, two were identified as being A antigen positive (C 

and E), and A antigen expression throughout the length of the gastrointestinal tract in these 

two animals was relatively constant (figure 5.3C). The A antigen positive dogs had 

comparatively reduced expression of H antigen as detected by Ulex binding, apparent in 

figure 5.3B. This is understood to be due to the ability of the A antigen to mask the H 

antigen, therefore preventing detection by Ulex (Nyström et al., 2011). 

 

Lewis a, Lewis b and Lewis x were not detectable in canine saliva or canine gastrointestinal 

scrapings (data not shown). A lack of expression of Lewis a and Lewis x antigen was 

expected based on previous data which had already confirmed H antigen expression and 

therefore secretor status in every dog studied (figure 5.3A). Lewis y was detectable in 12/26 

(46.2%) dogs, although Lewis y antigen expression was not linked to A antigen expression; 

dogs could express both, either or neither antigen (figure 5.3A). Lewis a and b are derived 

from α1,3-fucosyltransferase activity on the type 1 precursor and H type 1 respectively, 

whereas Lewis x and y are derived from α1,3-fucosyltransferase activity on the type 2 

precursor and H type 2. Amongst the Lewis y positive dogs, Lewis y expression varied 

significantly, unlike the all-or-nothing expression of A antigen.  
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Figure 5.3 Phenotyping canine saliva and gastrointestinal samples using ELISA-based assays.  
Twenty-six canine saliva samples were anaysed to determine the expression of H antigen, A antigen 
and Lewis y antigen (A). Saliva samples 1-23 were collected from kenneled dogs, whereas samples 
D, E and F were collected from research dogs from which tissues were also collected. The Fut2 gene 
was sequenced for 14 dogs, identified by an asterisk, in addition to dog B from which saliva was not 
available. Phenotyping for H antigen (B) and A antigen (C) was also performed for tissue scrapings 
from the duodenum, jejunum, ileum, caecum and colon of the six dogs A-F. 
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5.5 CNV VLPs bind to intestinal tissues of A antigen positive and negative 

dogs 

Following identification of putative attachment factors for CNV and the confirmation that 

expression of most of these factors is present in the canine intestinal tract, the ability of 

CNV VLPs to bind to canine samples was examined. Immunohistochemistry (IHC) was 

used to confirm CNV VLPs could bind to canine intestinal sections, and also to investigate 

the pattern of VLP binding and compare this to carbohydrate expression. Based on the data 

obtained using the panel of synthetic neoglycoconjugates, it was hypothesized that CNV 

binding would follow H antigen and A antigen expression in the tissues. Tissue sections 

from the length of the canine intestinal tract were incubated with CNV VLPs and their 

binding detected using primary and secondary antibodies. VLPs from the three 

representative strains of CNV (C33, 170 and HK) were incubated with tissue sections 

separately and it was shown that all strains were able to bind to the intestinal tissue sections 

used in this study (Figure 5.4 and data not shown). Figure 5.4 shows only data obtained 

using the CNV strain C33 VLPs binding to tissue sections, as this is representative of the 

two additional strains.  
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Figure 5.4 Immunohistochemical analysis of CNV VLPs binding to canine intestinal tissues.  
VLPs were incubated with tissue sections overnight and binding was detected using anti-CNV 
antibody and biotinylated secondary antibody. HBGA expression was determined using anti-A 
antigen antibody and Ulex lectin. Binding of either VLPs or antibodies/lectin is indicated by the 
presence of red signal. Panel A presents the binding of CNV strain C33 to jejunal tissue from an A 
antigen negative dog, and panel B presents C33 binding to an A positive dog. Panel C shows binding 
of C33 to tissue from the pyloric duodenal region of intestine from an A positive dog. 
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To determine the presence or absence of H antigen and A antigen in the tissue sections used 

for the VLP binding, sections were incubated with Ulex and anti-A antigen antibody 

respectively and immunohistochemistry performed. Both A positive and A negative dogs 

were compared, as shown in figure 5.4 panels A and B. H antigen expression was not 

detectable in the A positive dogs in agreement with the ELISA phenotyping data. Figure 5.4 

demonstrates that CNV VLPs can bind to both A antigen positive and A antigen negative 

dogs, and that expression of both of these carbohydrates follows a comparable pattern to 

CNV VLP binding. In particular, VLP binding closely follows the pattern of A expression 

when examining deeper tissues of the pyloric duodenal region (figure 5.4 panel C). VLP 

binding was concentrated at the mucosal surface of intestinal villi, with no binding observed 

in deeper tissues. Whilst this does not prove a direct association between CNV VLP and 

HBGA binding, it does add support to the initial data. 

 

5.6 CNV VLP binding ability shows variation related to carbohydrate 

expression pattern 

The phenotyping results demonstrated that different dogs exhibit variation in carbohydrate 

expression, comparable to most species studied. To investigate whether this affected the 

ability for CNV VLPs to bind to tissues, further assays were required to extend the findings 

provided by the initial immunohistochemical studies. 

 

CNV VLPs were incubated with 26 canine saliva samples in an ELISA-based assay, and 

shown to bind to all of these samples (figure 5.5A). CNV strain C33 was selected as a 

representative strain for these experiments as binding was more consistent. The OD450 

value for the binding of VLPs to each saliva sample was variable, with a range from 0.076 to 
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0.784. This variation was compared to the HBGA phenotype identified in each dog to see if 

any correlation between binding and expression of A antigen or Lewis antigen could be 

established. Although no statistically significant patterns were identified, a general trend was 

seen with regards to samples that most weakly and most strongly bound the CNV VLPs. Of 

the 3 saliva samples that bound the VLPs most weakly (OD <0.2), none were A antigen 

positive. In contrast, of the 4 saliva samples that bound to VLPs with OD450 >0.7, all 

samples were A antigen positive. A significant relationship between Lewis antigen 

expression and VLP binding was not identified (data not shown). 

 

As the carbohydrate repertoire of canine saliva samples has, as far as we are aware, not been 

characterized, it is likely that carbohydrates are present that were not detected during the 

phenotyping studies (Figure 5.3), that contribute to the variation in CNV VLP binding. In 

contrast to the paucity of data on carbohydrate expression in canine saliva, carbohydrate 

expression in human saliva is much better characterized. Therefore it was anticipated that 

use of a comprehensively phenotyped human saliva panel would provide more conclusive 

results regarding CNV VLP binding ability. To this end, 26 human saliva samples 

representing the six main groups of HBGA expression patterns known (O Lewis negative, O 

Lewis positive, A Lewis negative, A Lewis positive, B expression and non-secretor) were 

used in ELISA-based assays to quantitatively study CNV VLP binding. All three CNV 

strains available were first incubated with a single sample from each of the six HBGA 

groups, and identical binding patterns were identified for each strain (figure 5.5B). CNV 

strain C33 was then selected as a representative strain for the complete 26-sample panel 

(figure 5.5C).  
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Figures 5.5B and 5.5C showed that human saliva samples from non-secretor individuals 

were not recognized by CNV VLPs. Non-secretors do not have a functional FUT2 gene, 

hence cannot express HBGAs on the surface of epithelial cells. This confirms that 

expression of HBGAs is essential for CNV binding. The single B antigen positive saliva 

sample available in this panel also did not bind CNV VLP. B antigen expression was 

confirmed using the anti-B antibody B49. The structure of the B antigen (Galα1-3[Fucα1-

3]Galβ1-GlcNAcβ1-R1) must therefore preclude binding, showing that the terminal 

galactose cannot be accommodated by the CNV VLP.  

 

Saliva samples containing the O antigen (H antigen) and A antigen, with or without the 

presence of Lewis antigen could all bind CNV VLPs to varying degrees. Excluding non-

secretor and B antigen positive samples, the difference between the OD450 values for each 

saliva phenotype was statistically significant (p=0.013, one-way analysis of variance). 

Figure 5.5C demonstrates that human saliva samples have an increased ability to bind CNV 

VLPs if they contain A antigen and/or Lewis antigen instead of only O (H) antigen alone.  
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Figure 5.5 CNV VLP binding to canine and human saliva samples.  
Twenty six canine saliva samples with characterized phenotypes (A antigen and Lewis) were coated 
onto ELISA plates and the ability for CNV VLPs (strain C33) to bind was assessed (A). Samples are 
ordered according to CNV VLP binding ability (low to high). Black bars correspond to dogs 
expressing the A antigen and white bars are A antigen negative dogs (Lewis antigen expression is 
not shown). Six human saliva samples, each with a different ABO and Lewis phenotype, were used 
to assess binding of CNV VLPs from the three CNV strains available (B). CNV strain C33 was next 
selected as the representative strain to analyse binding to a wider panel of twenty six human saliva 
samples (C). 
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To extend these findings further, binding of VLPs to Chinese hamster ovary (CHO) cell 

lines transfected with glycosyltransferases was studied using flow cytometry (figure 5.6). 

Using the HuNoV and CNV VLPs generated specifically for this project, this work was 

performed by A. Breiman at the University of Nantes. CHO cells do not express α1,2-

fucosyltransferase activity, hence are devoid of ABH antigens (Marionneau et al., 2002). 

Transfection of fucosyltransferase and A or B enzymes enabled the precise control of ABH 

antigen expression. Assessment of HuNoV GI.1 VLPs and three strains of CNV VLPs 

binding to transfected and untransfected cells was achieved using FACS. This demonstrated 

that the GI.1 HuNoV and CNV VLPs were able to bind CHO cells expressing H and A 

antigens, with a preference for A, but binding to cells expressing B antigen, or no HBGAs at 

all was substantially less. It is interesting to note that HBGA expression of the transfected 

CHO cells was primarily type 2 structures (personal communication, Jacques Le Pendu). 

Binding of CNV strain C33 VLPs to type 2 structures at 37°C is contrary to the results 

obtained with the synthetic oligosaccharide assay (figure 5.1A), although does agree with 

the data from ELISAs with 4°C incubation steps (figure 5.1B). This indicates that the CNV 

C33 H antigen specificity is not absolutely dependent on the β1,3 linkage of the Gal-

GlcNAc moiety (H type 1), and can accommodate a β1,4 linkage (H type 2).  
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Figure 5.6 Binding of CNV and GI.1 VLPs to CHO cells transfected with glycosyltransferases. 
CHO cells were transfected with rat α1,2-fucosyltransferase B (FTB) cDNA to induce H antigen 
expression (CHO-FTB (H)) and were co-transfected with FTB and A enzyme to express A antigen 
(CHO-A) or transfected with FTB and B enzyme to express B antigen (CHO-B). CHO cells 
transfected with the empty PDR2 vector were used as control cells not expressing HBGAs. Binding 
of the three CNV strain VLPs (C33, 170 and HK) and GI.1 VLP to the different cell lines was 
assessed using flow cytometry. The black line represents signal in the absence of VLPs, but in the 
presence of the primary and secondary antibodies. The grey line represents VLP binding. The 
number above each histogram is the mean fluorescent intensity (MFI, geometric mean). 
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5.7 Synthetic neoglycoconjugates incubated with VLPs can block binding to 

canine samples 

To further characterise the canine carbohydrates involved in recognition of CNV VLPs, a 

series of blocking studies were performed. The initial ELISA-based synthetic 

neoglycoconjugate assays had identified H antigen, A antigen and Lewis b antigen as likely 

binding partners of the CNV VLPs. To investigate the role of these carbohydrates further, 

CNV strain C33 VLPs were pre-incubated with each synthetic neoglycoconjugate prior to 

addition of the VLPs to either duodenal scrapings coated onto immunoplates (figure 5.7A), 

cells in tissue culture (figure 5.7B) or tissue sections (data not shown). Pre-incubation of 

VLPs with H type 1, A hepta (A Lewis b) and Lewis b neoglycoconjugates significantly 

reduced VLP binding to canine duodenal scrapings (figure 5.7A) and to HBGA-expressing 

HT-29 cells in tissue culture (figure 5.7B). In contrast, when VLPs were pre-incubated with 

H type 2, H type 3 and A tri (truncated form of A antigen lacking GlcNAc) at 37°C, no 

reduction in binding to canine samples was observed. Human norovirus G1.I VLPs were 

included in the FACS studies to provide a comparison set of data for a well characterized 

norovirus-carbohydrate binding pattern. Overall these blockade studies provided further 

evidence of the importance of H type 1, A antigen and Lewis antigen in CNV binding. 
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Figure 5.7 Blocking CNV binding to canine samples using synthetic neoglycoconjugates. 
Neoglycoconjugates were incubated with CNV VLPs for 1 h at 37°C prior to VLPs being added to 
either duodenal scrapings in an ELISA-based assay (A), or human HT29 cells in suspension for flow 
cytometry (B). Synthetic oligosaccharides were either conjugated to human serum albumin (HSA), 
or polyacrylamide (PAA), as labeled in brackets beneath each oligosaccharide in part A. The same 
conjugates were used in the flow cytometrey experiments, where the binding of both CNV strain 
C33 VLPs and HuNoV GI.1 VLPs were studied. The dashed black line represents signal in the 
absence of VLPs, but in the presence of the primary and secondary antibodies. The black line 
represents VLP binding when VLPs were pre-incubated with PBS only. The grey line represents the 
binding of VLPs to cells after they have been pre-incubated with different synthetic 
oligosaccharides. The number in grey above each histogram is the mean fluorescent intensity (MFI, 
geometric mean) of all cells when VLPs were pre-incubated with neoglycoconjugate. The boxed 
number by the H type 1 histograms is the MFI of all cells when VLPs were pre-incubated with PBS 
only. This number applies to all conditions and hence was not repeated in each histogram. 
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5.8 Enzymatic removal of specific intestinal carbohydrates reduces CNV 

binding 

Carbohydrate moiety-specific enzymes were used to cleave off HBGAs shown to play a role 

in CNV attachment to the cell surface. 1,2α-fucosidase was incubated with duodenal 

scrapings, tissue sections and cells in tissue culture to remove the fucosidase of the H 

antigen (figure 5.8). Fucosidase treatment was shown to completely abolish CNV VLP 

binding in A antigen-negative dogs. In dogs expressing A antigen however, fucosidase 

treatment had no effect on CNV binding to duodenal, and only a moderate effect in binding 

to tissue sections. Similarly, in A antigen expressing cells used for flow cytometry, no 

significant change in CNV VLP binding was observed after fucosidase treatment (data not 

shown). From this is can be concluded that in A negative dogs, the H antigen is essential for 

CNV binding. Fucosidase treatment of A positive dogs does not result in a change in 

binding pattern because it is understood that the A antigen masks the H antigen blocking 

fucosidase action (Nyström et al., 2011), thus A antigen will therefore still be present and 

sufficient to mediate CNV VLP binding.  
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Figure 5.8 Enzymatic treatment of canine samples reduces CNV VLP binding.  
Canine duodenal scrapings and canine intestinal tissues sections from an A antigen positive and an A 
antigen negative dog were treated with 1,2-α-fucosidase or a control for 1 h (scrapings) or 18 h 
(tissue sections) at 37°C. The ability for CNV VLPs (strain C33) to bind to the scrapings or tissue 
sections was assessed by an ELISA-based assay (A) and IHC (B) respectively. Confirmation that the 
1,2-α-fucosidase removed H antigens was achieved by incubating tissue sections with Ulex. 
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5.9 Chapter summary 

This chapter demonstrates that the CNV capsid can attach to the H antigen of the HBGA 

carbohydrates expressed on the surface of epithelial cells. The interaction between the CNV 

capsid and the H antigen can accommodate the A antigen (addition of N-

acetylgalactosamine) and the Lewis antigen (addition of a α1-3/1-4 fucose) but not the B 

antigen (addition of galactose). These conclusions have been drawn from initial assays using 

synthetic neoglycoconjugates, and CNV VLP binding to intestinal sections, saliva, duodenal 

scrapings and cells in vitro. Blocking assays and enzymatic removal of identified 

carbohydrates were then used to confirm these findings. Whilst the merits of the individual 

assays may be limited, for example it is predicted that the conjugate molecules of the 

neoglycoconjugates can affect VLP binding and may not be an accurate reflection of the 

situation in vivo, the multiple lines of evidence for HBGA binding to CNV support this 

overall conclusion. 

 

The discovery that CNV binds to HBGAs was unexpected with regards to the amino acid 

sequence of the CNV strains. When compared to the GI.1 Norwalk virus capsid amino acid 

sequence, there was almost no similarity in the amino acids shown to interact with HBGAs 

(Asp327, His329, Gln342, Asp344, Trp375, Ser377, Pro378 and Ser380) (Bu et al., 2008; 

Choi et al., 2008). When CNV major capsid protein sequences were compared to a GII.4 

norovirus, a comparable lack of amino acid identity was observed in the key HBGA binding 

residues (Ser343, Thr344, Arg345, Asp374, Ser441, Gly442 and Tyr443 (Cao et al., 2007)). 

The difference between the amino acid and HBGA interaction profiles for the GI and GII 

noroviruses indicate convergent evolution of the two genogroups has occurred (Tan & Jiang, 

2011). CNVs have been classified into GIV and GVI genogroups, genetically distant from 

the GI and GII HuNoV strains studied to date. This is the first data to suggest that norovirus 
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recognition of HBGAs may have evolved in at least three different lineages. An alternative 

explanation for this finding would be the existence of a distant ancestor to all norovirus 

strains, that evolved the ability to recognize the HBGA carbohydrates which are conserved 

amongst many species.  

 

Identification of H, A and Lewis antigens as the key ligands for CNV correlates well with 

the canine carbohydrate expression phenotypes identified in this study. All dogs tested were 

positive for the H antigen, and no inactivating mutations were identified in the canine Fut2 

genes sequenced. This is in contrast to FUT2 polymorphism in humans, whereby 

approximately 1 in 5 Caucasians have inactivating FUT2 polymorphisms resulting in the 

‘non-secretor’ phenotype. The polymorphism G428A is responsible for this phenotype in 

over 95% non-secretors of European and African decent, and the A385T polymorphism is 

predominant in Asian non-secretors (Kelly et al., 1995; Kudo et al., 1996). In comparison, 

the single polymorphism identified in canine Fut2 was a non-coding mutation, predicted to 

be a random change as opposed to a fixed polymorphism. Overall, the phenotyping and 

genotyping data obtained indicated that non-secretor individuals were absent from this 

canine population. This could be a reflection of the lack of evolutionary pressure to induce 

resistance alleles. 

 

No dogs were positive for the B antigen, in agreement with two previous reports examining 

carbohydrate expression in canine intestines (Miller-Podraza H, Stenhagen G, Larsson T, 

Andersson C, 1997; Smith et al., 1973). A total of 12/26 dogs were positive for the A 

antigen, a proportion comparable to a 1982 study which analysed fucolipid expression in the 

intestines of 37 dogs and identified 17 as A antigen positive (46%) (McKibbin et al., 1982).  

This same study identified Lewis b antigen in 12/37 dogs (32.4%), and Lewis a in the 
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intestines of 8/37 dogs (21.6%). These antigens are derived from activity of α1,3-

fucosyltransferase on the type 1 precursor and H type 1 antigen respectively. Unexpectedly, 

the results regarding Lewis antigen expression did not correlate with this previous data. 

Lewis a and b expression could not be demonstrated in the canine saliva or intestinal 

samples used in this study. This discrepancy might be due to the fact that the 1982 study 

involved analysis of glycolipids, whilst in this immunohistochemical approach, glycolipids 

were largely removed during the tissue processing steps. The 1982 study did not consider 

expression of Lewis x and y however, which are generated from activity of α1,3-

fucosyltransferase on the type 2 precursor and H type 2 antigen. In this sample population, 

Lewis y was identified in 12/26 dogs (46.2%), which is comparable to the level of Lewis b 

expression reported in the primary study. Though the precursor antigen is still questionable, 

these results confirm that Lewis antigen expression is present and polymorphic in the canine 

population. More extensive phenotyping studies are required to solidify the results for all 

types of HBGA expression, but in terms of the ability of CNV to recognise HBGAs 

expressed in different dogs, all dogs in this study would be potentially susceptible to 

infection. This conclusion is supported by data in chapter 3, which identified unexpectedly 

high seroprevalence to CNV in the UK dog population, indicating that the majority of dogs 

studied would be susceptible to infection. 

 

The confirmation that A antigen and Lewis antigen can be expressed in dogs, and that 

expression is polymorphic, raises questions regarding the possible biological role of these 

HBGAs in the canine population. It has previously been suggested that variation in cell 

surface carbohydrate expression could be an evolutionary strategy to avoid pathogens 

affecting an entire population equally (Marionneau et al., 2001; Ségurel et al., 2013). The 

identification of CNV as a pathogen that can bind to A antigen and Lewis antigen starts to 
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add support to this theory for the dog population. It is hypothesized that dogs expressing 

these antigens will have an altered susceptibility to CNV infection when compared to dogs 

negative for these antigens. Though natural CNV in dogs is not believed to have high 

mortality rates (Martella et al., 2009; Ntafis et al., 2010), it is theorized that a survival 

advantage may be conferred by specific phenotypes. However, confirmation or refutation of 

this theory requires a much greater understanding of the pathology induced by CNV, as well 

as a much wider appreciation of carbohydrate polymorphism in dogs. 

 

A number of pathogens in addition to caliciviruses are known to interact with HBGAs. 

These include E.coli, whose heat labile enterotoxin binds preferentially to A and B type 2 

antigens, and Pseudomonas aeruginosa, a cause of external ear canal infections, which 

specifically interacts with GalNAc moieties of the terminal part of the A antigen (Steuer et 

al., 1995). Rotaviruses have also been shown to interact with HBGAs; human rotavirus 

strains P[4], P[6], P[8] bind to H type 1, P[4]and P[8] interact with Lewis b, and P[9], P[14], 

P[25] bind the A antigen (Huang et al., 2012; Liu et al., 2012). Crystallographic studies 

have shown the A antigen interacts directly with the VP8* terminal portion of the VP4 spike 

protein (Hu et al., 2012). Rotaviruses can infect dogs, and although these are typically P[3] 

strains, zoonotic transmission to humans has been reported (Luchs et al., 2012; Wu et al., 

2012). In addition, a P[9] rotavirus strain has been identified in a child with a possible 

canine origin (Theamboonlers et al., 2013). It may be hypothesized that the transmission of 

a P[9] strain was facilitated by expression of HBGAs in the canine gastrointestinal tract, 

with this viral attachment moiety playing a key role in zoonotic spread. Though not yet 

studied, it may also be supposed that P[3] strains interact with HBGAs in a similar manner, 

and these may be a key factor in enabling transmission of rotavirus infection from dogs to 

humans. 
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The range of HBGAs identified as being attachment factors for CNV was found to be most 

similar to those of GI.1 Norwalk virus. Norwalk virus was shown to attach to H type 1 by 

Marionneau et al (Marionneau et al., 2002), and subsequent studies identified Lewis b and 

the A antigen as additional attachment factors (Harrington et al., 2002; Huang et al., 2003; 

Hutson et al., 2003). In addition, Norwalk has been shown to bind to H type 2 and H type 3 

structures (Hutson et al., 2003; Marionneau et al., 2002), although binding is of weaker 

affinity in comparison with H type 1 (Huang et al., 2005). This binding pattern is 

remarkably similar to that identified for CNV, and although there appear to be minor 

variations between the CNV strains and the degree with which HBGAs are recognised, the 

overall specificity is very similar. The results from the synthetic oligosaccharide 

experiments at 4°C and the flow cytometry data from the glycosyltransferase-transfected 

CHO cells studies have demonstrated that CNV can recognise H type 2 and H type 3 

structures, albeit with reduced binding ability in comparison with H type 1. Whereas CNV 

and Norwalk virus HBGA recgonition patterns are highly comparable, HBGA binding 

patterns of other HuNoVs are quite distinct from that of Norwalk virus and thus CNV. For 

example GII.5 strains recognise the A and B antigen but not H antigen, GII.9 strains can 

recognise the Lewis a antigen, and GII.4 strains recognise A/B/H and Lewis antigens 

(Huang et al., 2003, 2005). 

 

The likely ability for CNV to infect all dogs is in contrast to the proportion of the human 

population that are susceptible to GI.1 Norwalk virus. As with CNV, Norwalk virus cannot 

bind to human tissues or saliva that do not express HBGAs on epithelial cells (‘non-

secretors’) and binding to B positive saliva or red blood cells is significantly less than A or 

O positive samples (Hutson et al., 2003; Lindesmith et al., 2003). Consequently, non-

secretors are not susceptible to Norwalk virus and B positive humans have a reduced risk of 
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infection (Hutson et al., 2002; Lindesmith et al., 2003). Between 10% and 40% of the 

human population are B positive, although this varies geographically (Agarwal et al., 2013) 

and 20% Caucasians are non-secretors (Marionneau et al., 2002). It has previously been 

suggested that noroviruses were initially introduced to humans from non-human hosts using 

HBGAs as a common niche (Tan & Jiang, 2011). The similarities identified between HBGA 

recognition of GI.1 Norwalk virus, and CNV are marked. We have established that CNV 

appears well adapted to a secretor positive, B antigen negative population. Animal species 

other than dogs also exhibit a similar spectrum of carbohydrate expression; both cattle and 

pigs do not express B antigen (Rydberg et al., 2001; Zakhour et al., 2009), and no non-

secretor pigs were conclusively identified in a recent study (Cheetham et al., 2007). It is 

interesting to speculate that GI.1 may have arisen from a norovirus adapted to a B negative-

animal species such as dogs, hence explaining why it lacks this HBGA specificity. GI.1 

infections are now fairly uncommon in the human population, with GII.4 human norovirus 

strains dominant globally. This is believed to be due in part to the ability of GII.4 to bind to 

a wider range of HBGAs than any other human strain (Shirato et al., 2008). GII.4 

noroviruses are thus able to recognise a greater proportion of the human population, out-

competing the norovirus strains with a narrower host range such as Norwalk (Ruvoën-clouet 

et al., 2013).  

 

The canine saliva binding studies demonstrated that CNV VLPs do not bind to all canine 

samples with equal abilities. This is despite all dogs expressing H antigen, a primary 

determinant of CNV binding, at similar levels. Therefore this data suggests that additional 

factors contribute the ability of CNV to bind to canine tissues. This in turn suggests that 

variability in susceptibility to infection will exist in the population. It is suspected that this 

might be comparable to the binding and susceptibility patterns identified for RHDV in 
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rabbits. Like CNV, RHDV is able to bind to HBGAs, and in vitro has been shown to be able 

to recognise tissue samples from any rabbit regardless of phenotype. In clinical studies 

however, some rabbit phenotypes are significantly more likely to become infected that 

others. It has been demonstrated that this is viral dose-dependant. Certain rabbit phenotypes 

are susceptible to very low titres of RHDV, whereas other rabbit phenotypes will only 

become infected if exposed to very high (and thus clinically rare) viral loads (Nyström et al., 

2011). It is predicted that a similar situation might occur during CNV infection outbreaks.  

 

In summary, this chapter has identified HBGAs as the carbohydrate attachment factor for 

CNV strains in both GIV and GVI. It is hypothesized that HBGAs will be attachment factors 

for other non-canine strains in these genogroups, and identification of a third and fourth 

genogroup of noroviruses to recognize HBGAs raises key questions regarding the 

evolutionary ancestors of these viruses.  
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Chapter 6  

Evidence for human norovirus 
infection of dogs 
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6.1 Chapter introduction 

The studies on carbohydrate expression in the canine gastrointestinal tract (chapter 5) 

suggest that dogs express the correct carbohydrate attachment factor (HBGAs) to enable 

both GI and GII HuNoV to bind and possibly enter canine cells. This indicates that there is a 

theoretical risk that dogs may be susceptible to infection by HuNoV. Three previous studies 

lend support to this theory; two of these have identified HuNoV specific antibodies in dogs 

(Humphrey et al., 1984; Mesquita et al., 2014a), and the third identified HuNoV RNA in 

canine stools (Summa et al., 2012). With approximately 10 million dogs in the UK, divided 

amongst 31% of the households (Murray et al., 2010), the suggestion that HuNoV may be 

transmissible between these species is of considerable public health concern.  

 

The aim of this chapter was to investigate the ability for HuNoV to infect dogs, and the 

frequency with which this might be occurring in the UK. This has been achieved by firstly 

exploring the relationship between canine HBGA expression and HuNoV binding to canine 

tissues, and secondly by determining the occurrence of current and past HuNoV infections 

in dogs by a survey of canine stool samples for HuNoV RNA, and a survey of canine serum 

for HuNoV-specific antibodies.  
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6.2 HuNoV VLPs bind to canine gastrointestinal samples in ELISA-based 

assays 

A panel of six HuNoV VLPs were generously donated to this study by Alexis de 

Rougemont, (University Hospital of Dijon), and an additional VLP (GI.1 Norwalk virus) 

was generated specifically for this project, using a recombinant baculovirus synthesized by 

Ed Emmott using a plasmid containing the full length genome of Norwalk virus (pNV101). 

The sequences of HuNoV VP1 proteins used are recorded in GenBank, with their associated 

accession numbers listed in table 6.1.  

HuNoV genotype GenBank Accession number 
GI.1 NC001959.2 
GI.2 KP064095 
GI.3 KP064096 
GII.3 KP064097 
GII.4 AF472623 
GII.6 KP064098 

GII.12 KP064099 
Table 6.1 GenBank Accession numbers of HuNoV strains used to generate VLPs 

 

Characterisation of these VLPs is illustrated in figure 6.1, with a Coomassie blue stained 

SDS-PAGE gel demonstrating their purity and confirming quantification (A), as well as an 

EM image confirming correct particle assembly (B). 
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Figure 6.1 Characterisation of HuNoV VLPs.  
A) SDS-PAGE analysis of all seven purified HuNoV VLPs with Coomassie Blue staining. The 
64kDa band is present in all samples, and the presence of a second band of 58kDa in certain samples 
is expected based on previous reports (Belliot et al., 2001). B) Electron micrograph of an example 
HuNoV VLP (GII.4) with negative staining. 
 
 

Saliva samples from 26 dogs (1-23, D-F), and duodenal scrapings from 6 dogs (A-F) were 

analysed in ELISA-based assays for their ability to bind to HuNoV VLPs (figure 6.2). As all 

canine samples had been phenotyped for HBGA expression (chapter 5), it was therefore 

known that H antigen expression was present in every canine sample, and A antigen and 

Lewis antigen expression was polymorphic. Human saliva samples representing the major 

HBGA phenotypes present in man were used as controls. These human samples included 

saliva from a non-secretor individual (no HBGA expression), and saliva from humans 

expressing either A antigen, B antigen or H antigen alone (O phenotype). Saliva samples 

with variation in Lewis antigen expression (+/-) were also included. 
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Figure 6.2 HuNoV binding to canine samples in ELISA-based assays.  
Saliva from twenty six dogs (A) and duodenal scrapings from six dogs (B) were analysed to assess 
their ability to bind to HuNoV VLPs. GI.1 and GII.4 HuNoV VLPs were used to assess binding to 
both saliva and duodenal samples, and an additional five genotypes of HuNoV VLPs were used in 
the duodenal sample binding assays. Human saliva samples representing a range of HBGA 
phenotypes were used as positive and negative controls; secretor negative (se) or O/A/B antigen 
positive, with Lewis expression represented by +/- . All experiments were performed in duplicate, 
with error bars representing the standard error for each sample. 
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In the saliva binding assay (figure 6.2A), the non-secretor human sample was unable to bind 

to HuNoV VLPs as expected based on previous reports (Marionneau et al., 2002). In 

contrast, all canine saliva samples and all secretor human samples were able to bind to 

HuNoV GI.1 and GII.4 VLPs. There were comparable OD450 values between the canine 

and human saliva samples, indicative of similar levels of binding. 

 

VLPs of seven different HuNoV genotypes were used to assess their ability to bind duodenal 

scrapings from six dogs (A-F) (figure 6.2B). Human saliva samples from an A antigen, 

Lewis positive individual (A+) and an A antigen negative, Lewis antigen negative (O-) 

individual were used as positive controls; both samples were shown in figure 6.2A to bind to 

GI.1 and GII.4 HuNoV VLPs. Figure 6.2B demonstrates that canine duodenal scrapings 

could bind to every HuNoV genotype tested. Individual variation between the samples was 

identified, for example canine samples D, E and F showed decreased binding to GI.2 and 

GII.4 HuNoV VLPs. Other dogs however, most notably dogs B and C, were able to bind to 

all HuNoV VLPs tested. This was not apparently related to HBGA phenotype; all dogs were 

H antigen positive, and dogs C and E were A antigen positive whereas dogs A, B, D and F 

were A antigen negative (as described in chapter 5.4). In addition, dogs were phenotyped for 

Lewis antigen, with dogs A and B being Lewis positive and the remainder Lewis negative 

(data not shown). Variation in OD450 scales between genotypes was due to the variation in 

the reactivity of the primary antibody used; for detection of the GI VLPs the primary 

antibody used had been raised against GI.1, whereas for the GII VLPs the primary antibody 

was raised against GII.4. 

 



 

 137 

6.3 HuNoV VLPs bind to canine gastrointestinal tissue sections 

To determine whether HuNoV VLPs are able to bind to canine gastrointestinal tissues, fixed 

sections of duodenum from two dogs (B and C) were incubated with HuNoV VLPs for 1 h, 

then IHC used to detect binding of HuNoV VLPs to the tissue surface. As polymorphism for 

the A antigen is present in dogs (approximately 50% are A antigen positive (chapter 5.4)), 

and due to the known interaction between A antigen and HuNoV (Huang et al., 2003), 

HBGA phenotyping was also required. Confirmation of the presence or absence of H 

antigen and A antigen in the tissue sections used for the VLP binding was achieved by 

incubating the tissue sections with Ulex binding lectin or an anti-A antigen antibody, and 

IHC was performed. This demonstrated that dog C was A antigen positive, and dog B was A 

antigen negative, hence enabling comparison of HuNoV VLP binding to canine samples 

representing the two major HBGA phenotypes. H antigen expression was not detectable in 

the A positive dog, which is understood to be due to the ability of the A antigen to mask the 

H antigen, therefore preventing detection by Ulex binding (Nyström et al., 2011).  

 

Figure 6.3 demonstrates that GI.1 and GII.4 HuNoV VLPs can bind to both A antigen 

positive and A antigen negative dogs. In addition it was shown that HuNoV VLP binding 

has a similar pattern of expression to H and A antigen expression. Given the known 

interaction between HBGAs and HuNoVs, these similar binding patterns were expected 

(Marionneau et al., 2002). 



 

 138 

 

Figure 6.3 Binding of HuNoV VLPs to canine gastrointestinal tissue sections.  
HuNoV VLPs (GI.1 and GII.4) were incubated with tissue sections prior to staining for IHC 
analysis. Two different canine phenotypes were compared; a dog expressing A antigen (A positive), 
and a dog negative for A antigen expression. A positive signal, either VLP binding or HBGA 
expression, is represented by red-brown staining.  
 

!"#"$

%$&'()*'$

+$&'()*'$

,-'./-0$

%$&'()*'$1-23(4*$5-)$ %$&'()*'$'*)&(4*$5-)$

!66#7$

89:;$



 

 139 

6.4 HuNoV RNA was not detected in canine stool samples 

The bank of 248 canine stool samples collected as described in chapter 3.2 were analysed 

for the presence of GI or GII HuNoV RNA by an RT-qPCR screen using the primer-probes 

listed in table 2.3 (Kageyama et al., 2003). No samples were identified as being positive for 

HuNoV, indicating that the overall prevalence of HuNoV in this population at the time of 

sample collection was <1.5% (Wilson binomial approximation, confidence interval 95%).  

 
 
6.5 HuNoV-specific antibodies are present in dogs 

Seven genotypes of HuNoV VLPs were used in ELISAs to screen for anti-HuNoV 

antibodies in a total of 325 dogs. Serum samples were available from two groups of dogs; 

223 samples collected in 1999-2001 (cohort A) and 102 samples collected in 2012/2013 

(cohort B). Three GI HuNoV VLPs (GI.1, GI.2 and GI.3) were pooled together for 

preliminary assays, as were four GII VLPs (GII.3, GII.4, GII.6, GII.12). Each pool of VLPs 

included HuNoV strains isolated prior to 1999 (GI.1 and GII.4). 

 

The primary anti-HuNoV antibody screen identified anti-HuNoV antibodies at detectable 

levels in serum from 43 dogs; 24 from cohort A (10.7%), and 19 from cohort B (18.6%). Of 

these 43 dogs, 32.5% were seropositive for both GI and GII HuNoV, whereas the remainder 

were seropositive for either GI or GII HuNoV. This is summarised in figure 6.4. 

Seropositivity to CNV and vesivirus 2117 in the same canine serum samples has previously 

been described (chapter 3), and this data has been added to the heatmap in figure 6.4B for 

comparison.  
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The age of dog at time of samples was known for 93/102 dogs in cohort B. No relationship 

between seropositivity to HuNoV and age was identified (data not shown).  

 

A 

Year of sera 
collection 

Canine 
samples 
screened 

HuNoV positive sera 

GI only       GII only        GI and GII 

 

Total 

1999-2001 223 5 (2.2%) 11 (4.9%) 8 (3.6%) 24 (10.7%) 

2012-2013 102 3 (2.9%) 9 (8.8%) 7 (6.9%) 19 (18.6%) 

All 325 8 (2.5%) 20 (6.2%) 15 (4.6%) 43 (13.2%) 

 

B 

	   

Figure 6.4 Seroprevalence of canine and human noroviruses in two canine cohorts.  
Serum samples were screened in ELISAs against pooled HuNoV or CNV VLPs. The HuNoV GI 
pool consisted of genotypes GI.1, GI.2 and GI.3. The HuNoV GII pool consisted of GII.3, GII.4, 
GII.6 and GII.12. CNV pool consisted of strains 170, C33 and HK. The results of the ELISAs are 
presented in table format (A) and in heatmaps (B). The heatmaps include all dogs which were 
seropositive to either GI and or GII HuNoV, with each column representing a single dog. The 
serology results for CNV and vesivirus 2117 (vesi) for these dogs is included. Positive threshold 
value was established from the mean OD450 of coating buffer alone plus three standard deviations. 
Relative increase in OD450 values above the positive threshold were calculated to enable fair 
comparison between experiments. A relative increase of <1 indicates a seronegative sample, 
represented by a white box. The degree of relative increase for samples is represented by increasing 
darkness of the corresponding box. 
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To estimate the magnitude of the canine anti-HuNoV antibody response, anti-HuNoV titres 

were determined for 21/23 samples seropositive to GI HuNoV, and 33/35 samples 

seropositive to GII HuNoV. As presented in figure 6.4, the antibody titres to GI in the 21 

dogs seropositive in the primary ELISA screen are relatively low, but the OD450 values 

obtained in the titre ELISA showed strong consistency in comparison with the original 

ELISA screen. For the majority of the anti-GII HuNoV positive serum samples, a similarly 

low antibody titre (mode 1:100) was determined, but in contrast to GI, three samples (9% of 

GII seropositive samples tested) had antibody titres 1:800 or higher. 

 

Anti-HuNoV 
antibody titre 

GI positive samples GII positive samples 

1:50 8 (38.1%) 5 (15.2%) 
1:100 8 (38.1%) 12 (36.4%) 
1:200 5 (23.8%) 7 (21.2%) 
1:400 0 6 (18.2% 
1:800 0 2 (6.1%) 
1:1600 0 1 (3%) 

Table 6.2 Anti-HuNoV antibody titres in canine serum 
 

To extend the findings of the preliminary ELISAs, all canine serum samples positive for 

HuNoV were entered into a second round of ELISAs with individual genotypes of HuNoV. 

This was to investigate whether it was possible to identify the HuNoV genotype that may be 

eliciting the anti-HuNoV immune response. It is acknowledged that immunological cross 

reactivity does exist between norovirus genotypes (Hansman et al., 2006), thus conclusive 

identification of the primary genotype inducing antibody production was not the aim of 

these experiments. However, the genotype to which the highest OD450 value was induced in 

ELISAs was tentatively suggested to be the major HuNoV genotype involved. For example, 

a serum sample for which the OD450 was highest against GII.4 HuNoV VLPs, was 

designated GII.4-specific for the purposes of this study. Figure 6.5 presents genotype 
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distribution of HuNoV GII positive samples, comparing cohort A (1999-2001) with cohort B 

(2012/2013). The results showed that GII.4 specific antibodies are most common in both 

cohorts, although whereas 42.1% samples showed the highest OD450 for GII.4 in cohort A, 

this figure increases to 87.5% in cohort B. 

 

 

 
Figure 6.5 Genotype specificity of GII HuNoV seropositive canine samples.  
Serum samples positive to pooled GII HuNoV were screened against GII.3, GII.4, GII.6 and GII.12 
HuNoV VLPs individually. The genotype to which the highest OD450 reading was obtained was 
designated the primary genotype to which the antibody response was elicited. The proportion of GII 
HuNoV positive samples from 1999-2001 (cohort A) and 2012-2013 (cohort B) reactive to each GII 
genotype tested were compared. 
 
 
 
 
6.6 HuNoV antibodies do no cross react with CNV 

To confirm that the anti-HuNoV antibodies identified in dogs were not merely the result of 

cross reactivity to canine specific noroviruses, a series of blocking assays were performed 

(figure 6.6). In this thesis it has previously been shown that seroprevalence to CNV was high 

in the same population of dogs analysed for HuNoV reactivity (chapter 3 and figure 6.4), so 

firstly it was necessary to establish that the CNV-specific antibodies were not cross reactive 
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with HuNoV. This was achieved by pre-incubating varying concentrations of HuNoV and 

CNV VLPs with a representative anti-CNV antibody positive canine serum (serum S), then 

analysing the ability of serum S to detect CNV VLPs (figure 6.6A, methodology previously 

pictorialized in 3.7A). Pre-incubation with CNV VLPs was clearly able to block recognition 

of CNV VLPs by canine serum, whereas pre-incubation with GI or GII VLPs had no effect 

on CNV VLP recognition. This confirmed that the epitopes recognized by the anti-CNV 

antibodies were distinct from epitopes present on HuNoV VLPs. 

 

Next, the specificity of the anti-GII antibodies identified in canine sera was examined using 

a similar VLP competition assay with GII VLPs coated onto a microtitre plate instead of 

CNV VLPs (figure 6.6B). The concentration of HuNoV or CNV VLPs required to block 

50% binding to GII VLPs was calculated by fitting a sigmoidal curve to the OD450 values 

for the serial dilution of VLPs. Seven different canine serum samples (i-vii) identified as 

being positive for anti-GII antibodies were analysed, and serum S (negative for GII binding) 

was added as a negative control. For samples i-vii, the type of VLP inducing the lowest 

EC50 for blocking GII VLP recognition by canine serum was GII HuNoV VLPs. CNV 

VLPs did induce a decrease in GII recognition below the upper threshold of detection in 4/7 

cases, but a greater concentration of CNV VLPs than GII VLPs were required. This suggests 

a degree of cross reactivity is likely between GII HuNoV and CNV, but that differentiation 

is possible.  
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Figure 6.6 Evaluation of cross-reactivity between antibodies against human and canine 
noroviruses in canine sera.  
VLP competition assays assessing the ability for canine sera to detect CNV (A) or GII.4 HuNoV (B) 
in the presence of alternative norovirus VLPs were conducted. A representative CNV positive canine 
serum sample (A) and seven different GII.4 HuNoV positive canine serum samples (B) were pre-
incubated with serial dilutions of either pooled GI or GII HuNoV VLPs or pooled CNV VLPs. The 
concentration of VLP required to block 50% binding (EC50) was calculated by fitting sigmoidal 
curves to the serial dilution data, to allow comparison between serum samples (B). The dashed line 
represents the upper limit of detection. An antibody competition assay was performed using 
antibodies specifically raised against CNV (rat) and GII,4 HuNoV (rabbit). The experimental design 
is presented in panel (C); anti-CNV and anti-GII.4 antibodies were pre-incubated with GII.4 VLPs 
on a microtitre plate, then after three plate washes GII.4 positive canine serum was added and the 
OD450 of this interaction determined (D). 
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The final blocking assay conducted to investigate the specificity of antibodies detected in 

canine serum, used antibodies generated in animals immunized solely with either CNV or 

GII HuNoV VLPs. These animals, rat and rabbit respectively, would not have been exposed 

to natural infection, hence antibodies in their serum were deemed specific for their VLP 

immunogen. As pictorialized in figure 6.6C, anti-CNV or anti-GII HuNoV sera (rat and 

rabbit respectively) was serially diluted and incubated directly with GII VLPs coated onto 

microtitre plates, then after plate washing, GII positive canine serum (serum vi) incubation 

followed.  The results showed that rat CNV specific antisera was unable to block recognition 

of GII HuNoV by canine sera, whereas rabbit GII specific antisera induced blocking of GII 

VLP recognition by canine sera (figure 6.6D). 

 

Western blotting was used as alternative method to demonstrate the presence of anti-HuNoV 

antibodies in canine sera. Five serum samples identified as being positive for anti-HuNoV 

antibodies by ELISA were selected for use in western blots (figure 6.7). A single serum 

sample (sample S2) shown to be negative for both human and canine noroviruses was 

selected as a negative control. Western blotting confirmed that canine sera from five 

representative samples could detect GII.4 VLPs, and that this expression was independent of 

recognition of genogroup IV or VI CNV. 
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Figure 6.7 Western blotting of purified VLPs using seropositive serum.  
Norovirus VLPs from 4 genogroups; GI and GII (HuNoV) and GIV and GVI (CNV) were separated 
by SDS-PAGE. The polyacrylamide gel was then used for western blotting with five different canine 
serum samples positive to GII.4 by ELISA, and a single canine serum sample negative to all 
norovirus VLPs tested. 
 
 
 
6.7 HuNoV cannot be grown in canine primary duodenal cells 

Given the cumulative evidence that HuNoV can infect dogs, it was hypothesized that 

HuNoV may be able to infect canine cells in tissue culture. If so, this would be of significant 

scientific importance as no cell line has yet been shown to enable HuNoV replication with 

efficient and robust results in all labs (Duizer et al., 2004; Jones et al., 2014a; Lay et al., 

2010). Duodenal cells were isolated (as described in methods 2.10.1) from fresh canine 

duodenal samples from two beagles and seeded into tissue culture flasks. After overnight 

incubation at 37°C, a proportion of cells had adhered to flasks and there was evidence of cell 

division. Cells were inoculated with purified HuNoV isolated from human stool samples 

(purification performed by Jia Lu) at a multiplicity of infection (MOI) of 500 genome copies 
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per cell. After 1 h, cells were washed with media to remove the inoculum. RNA was 

extracted from cells and extracellular medium harvested at 0 h and 96 h post infection and 

RT-qPCR using a GII HuNoV specific primer-probe (table 2.3) was performed. At 96 h, 

although HuNoV was detected at low levels in the cellular and extracellular fractions, this 

was over 100 fold (7CT values) lower than the starting inoculum, indicating that replication 

had not occurred. 

 

 
 
6.8 Chapter Summary 

The work in this chapter sought to investigate the likelihood that dogs can be infected with 

HuNoV. The results of this serological survey and VLP binding studies strongly suggest that 

dogs are theoretically able to be infected with HuNoV. However, the frequency with which 

this occurs is deemed low based on the epidemiological results from this report. 

Furthermore, the clinical implications for both dogs and people in contact with dogs still 

remain to be confirmed. 

 

In human cells, it has been shown that HuNoVs bind to cell surface carbohydrates of the 

HBGA family prior to internalization. HBGAs are expressed on epithelial cells of many 

species, and in chapter 5 it was confirmed this includes dogs. This finding led to the 

hypothesis that HuNoV would be able to bind to the gastrointestinal tract of dogs, and the 

ELISA and IHC data presented in this section were able to confirm this. This demonstrates 

that the initial step required for HuNoV entry into canine cells is present. However, it should 

be noted that RHDV, a related but distinct member of Caliciviridae, can bind to HBGAs (H 

type 2, A antigen and B antigen) (L’Homme et al., 2009) and infect wild and domestic 

rabbits of the Oryctolagus cuniculus species, yet there is no evidence RHDV can infect 
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humans (Carman et al., 1998; Greenslade et al., 2001). HBGA binding may be an initial step 

in calicivirus-host interaction, but a subsequent host-restrictive step(s) must be necessary for 

RHDV infection, and potentially HuNoV infection in dogs. 

 

The viral RNA survey conducted as part of this project did not reveal any canine stool 

samples containing HuNoV RNA. This implies that the incidence of HuNoV shedding by 

this population of dogs is negligible, despite samples being collected from both healthy dogs 

(117 animals), dogs with non-gastroenteric disease (64 animals), and dogs with severe 

gastroenteritis (67 animals). Inclusion of samples from the latter two groups was essential as 

it has been suggested that HuNoV may be more likely to infect dogs with underlying disease 

or immunodeficiency (Summa et al., 2012). In addition, canine-specific noroviruses are 

associated with gastroenteritis in dogs (Mesquita & Nascimento, 2012b; Mesquita et al., 

2010; Ntafis et al., 2010) and it was hypothesized that HuNoV infection of dogs may cause 

signs of gastroenteric disease. Of the 67 dogs with gastroenteritis in this survey, CPV (10 

dogs) and CECoV (2 dogs) were detected in 17.9%. This proves that whilst viral 

gastroenteritis is relatively common in dogs, noroviruses are not a major cause of viral 

disease in the population of dogs sampled. The likelihood of HuNoV infection in a dog 

resulting in clinical signs of gastroenteritis is clearly much lower than that of CPV and 

CECoV, and as such, there is no immediate cause for concern by owners and veterinarians. 

 

The absence of HuNoV positive stool samples from dogs in this study is in contrast to the 

results of a study from Finland which identified HuNoV RNA in 4/92 canine stool samples 

(Summa et al., 2012). However their sampling strategy was significantly different from the 

approach used in this study; canine stool samples were only collected if the owner had 

shown symptoms of gastroenteritis within the past week, whereas stool samples in this study 
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were collected with no reference to recent owner illness. HuNoV in man is typically an 

acute infection, with peak viral shedding occurring 2–4 days after infection. By 3 weeks 

after infection only 25% cases are still positive for viral RNA (Rockx et al., 2002). In 

addition, although HuNoV is responsible for millions of infections worldwide each year, the 

virus is only identified in approximately 18% of human diarrhoeic samples submitted 

(Ahmed et al., 2014). Detection of HuNoV RNA in faeces can be limited by factors such as 

low virus concentrations, improper storage of samples, inefficient viral RNA extraction, and 

the presence of fecal reverse transcriptase inhibitors (Patel et al., 2008). Overall this 

indicates that positive identification of HuNoV shedding in dogs will only be possible within 

a very narrow timeframe, and that a proportion of cases will be false negatives.  

 

Serological analysis of 325 canine serum samples in this study strongly suggests that dogs 

mount immune responses against HuNoV. It has been demonstrated that almost 20% of dogs 

sampled in 2012/2013 had antibodies that could recognise HuNoV VLPs. This suggests that 

1 in 5 dogs have been exposed to HuNoV in the UK. This proportion was lower than the 

proportion of dogs (43%) reported to be seropositive to HuNoV by a recent survey across 

Europe (Mesquita et al., 2014a), and may be a reflection of population differences. An 

important conclusion from both studies is that the HuNoV seroprevalence rate identified in 

dogs is substantially lower than HuNoV seropositivity amongst human populations. In the 

UK nearly 100% people are seropositive for GII.4 (Menon et al., 2013a). This indicates that 

either dogs are exposed much more rarely to HuNoV, or they are much less susceptible to 

infection than humans. Given that in one questionnaire-base study, 96% dogs sleep in their 

owners houses and that when owners are at home almost 60% dogs were allowed anywhere 

in the house (Westgarth et al., 2008), it seems unlikely that dogs would not be exposed to 
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HuNoV in a household with infected humans. Therefore, it is proposed that dogs are 

susceptible to HuNoV but at a much lower level than man. 

 

It could be argued that the anti-HuNoV antibodies identified in canine sera may have been 

generated in response to infection with related non-human noroviruses, and are merely 

cross-reactive with HuNoV. For example, anti-CNV antibodies were detected in 45.2% of 

serum samples used in this thesis. To investigate this further, a series of blocking assays 

were performed using canine serum samples and serum samples from rats inoculated with 

CNV VLPs. These were able to show that the anti-GII HuNoV antibodies were specific for 

GII HuNoV VLPs and not three different strains of CNV. It is acknowledged that there are 

other non-human and non-canine noroviruses to which dogs may have been exposed, for 

example swine and bovine noroviruses, to which cross-reactivity was not assessed. 

However, due to UK farming practices, the frequency with which dogs in the study 

population would come into contact with either pigs or cattle was deemed to be significantly 

lower than the frequency of contact with humans. In addition, although the feeding of raw 

pork/beef to dogs does infrequently occur, animal noroviruses are extremely unlikely to be 

found in commercial pet food due to UK manufacturing processes and regulations (DEFRA 

& APHA, 2014). 

 

Comparison of canine serum samples from two time periods (1999-2001 and 2012-2013) 

allowed analysis of the change in the presence of anti-HuNoV antibodies over time. 

Although the two study populations are not directly comparable as the earlier group was 

from a rehoming kennels and the later from a veterinary referral hospital, it was shown that 

the proportion of dogs seropositive for HuNoV increased over time. The prevalence of 

HuNoV in man in UK has increased over a similar time period from 6% of acute 
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gastroenteritis cases in 1999 to approximately 16% in 2009 (Tam et al., 2012). It is possible 

to speculate that the rise in HuNoV seroprevalence in dogs from 1999 onwards is a 

reflection of the increased levels of infection in the human population. 

 

The initial serosurvey demonstrated that dogs were more likely to be seropositive to GII 

HuNoV strains than GI strains. This was in line with the findings from a recent European 

study (Mesquita et al., 2014a). To explore this further, any HuNoV positive samples were 

entered into a second round of ELISAs with VLPs from seven individual genotypes. This 

showed that the highest seroprevalance was to GII.4 strains. This is remarkable as this is the 

most common genotype infecting man worldwide. This also correlates with the report which 

identified HuNoV in the stools of four dogs (Summa et al., 2012). GII.4 HuNoV was 

detected by qPCR in the stools of 3 dogs, and GII.12 in the stools of 1 dog.   

 

In summary, whereas HuNoV infection of dogs has been shown to be theoretically possible, 

the risk of this causing significant clinical disease in dogs is believed to be very low. As for 

the potential for HuNoV infection transmitting between dogs and their owners, this has yet 

to be established, though it is recommended that sensible hygiene precautions are taken 

around pets, especially when gastroenteritis in either humans or dogs is present in a 

household. 
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Chapter 7  

Hepatitis E Virus in dogs 
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7.1 Chapter introduction 

Following the results of chapter 6 which indicate HuNoV can infect dogs, these findings 

were extended by investigating the possibility that other enteric viruses of man can also be 

transmitted to dogs. Enteric viruses closely related to HuNoV were considered as likely 

zoonotic candidates, and based on existing literature, reagents available and virus 

characteristics, hepatitis E virus (HEV) was selected for further study. The virion properties 

of HEV are very comparable to HuNoV; HEV is a small icosahedral, single stranded, 

positive sense RNA virus with a genome of approximately 7.2kb (figure 7.1). HEV was 

initially classified as a calicivirus (Bradley & Balayan, 1988), but is now classified as the 

sole member of the viral family Hepeviridae, genus Hepevirus (King et al., 2011).  

 

Figure 7.1 Comparison of the genome organization of HEV and noroviruses.  
The HEV genome is capped at the 5’ end of the RNA, whereas noroviruses have VPg covalently 
linked at the 5’end. Both genomes have polyA tails at the 3’ end. ORF1 of both HEV and 
noroviruses is encoded by the genomic RNA, which consists of a polyprotein that is subsequently 
cleaved into separate proteins by a viral protease. The structural proteins of both viruses are encoded 
by the subgenomic RNA; ORF2 for HEV and ORF2 and ORF3 for noroviruses. The function of the 
overlapping reading frame ORF3 in HEV is uncertain. 
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Similarly to HuNoV, HEV is also spread by the faeco-oral route, but following entry via the 

gastrointestinal tract, HEV infects hepatocytes to cause acute hepatitis. HEV is a major 

cause of acute epidemic viral hepatitis in developing countries (Arankalle et al., 1999) and 

has recently emerged as the most common cause of acute hepatitis in the UK (Harvala et al., 

2014). There are four HEV genotypes; genotypes 1 and 2 are endemic in humans in 

developing countries, whilst genotypes 3 and 4 are zoonotic agents mainly associated with 

sporadic outbreaks of HEV worldwide (figure 7.2) (Meng, 2010).  

 

Figure 7.2 Geographical distribution of HEV disease in man.  
Countries where HEV is endemic in man are highlighted in grey, and countries reporting sporadic 
cases are identified by asterisks (*) (adapted from (Khuroo, 2011). 
 

Disease severity following HEV infection is extremely variable in man, ranging from 

asymptomatic to fatal infections. In the UK there are an estimated 60,000-100,000 human 

HEV infections each year (Hewitt et al., 2014; Ijaz et al., 2009), and although the majority 

are subclinical, this is a developing concern for blood transfusion services; 79/225000 blood 

donors in southeast England were viraemic with HEV in 2012-13, and 43% recipients 

followed up had evidence of infection (Hewitt et al., 2014). Severe manifestations of HEV 

infection include acute liver failure and chronic infection, and despite mortality rates 
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typically <1%, up to 25% pregnant women die following HEV infection in endemic regions 

(Aggarwal & Krawczynski, 2000).  

 

The first animal strain of HEV was identified in pigs in the US (Meng et al., 1997). Porcine 

HEV strains are antigenically and genetically related to human strains of HEV and 

experimental evidence has shown that cross species infection can occur between humans 

and pigs (Meng et al., 1998). Furthermore, contact with pigs or ingestion of pork products 

has been implicated in disease transmission in man (Chaussade et al., 2013; Colson et al., 

2010; Meng et al., 2002; Said et al., 2014).  

 

Multiple studies have sought to determine whether other animal species could be additional 

zoonotic sources of HEV infection. Anti-HEV antibodies have been identified in a number 

of different farmed animals, including cattle, goats and chickens (Arankalle et al., 2001; 

Sanford et al., 2013), but their role in transmission of disease to man is unclear.  

7.2 Hepatitis E virus in dogs 

Pet dogs have been implicated in HEV disease transmission in a number of previous reports. 

Anti-HEV antibodies have been identified in dogs in developing countries where HEV is 

endemic in humans, including China, India and Brazil (Arankalle et al., 2001; Geng et al., 

2010; Liang et al., 2014; Liu et al., 2009; Vitral et al., 2005; Zhang et al., 2008). Two 

studies have previously investigated the seroprevalence of HEV in dogs from regions with 

sporadic HEV cases in humans; no positive samples were identified in Japan, and only 2/212 

positive dogs were identified in the US (Dong et al., 2011a; Mochizuki et al., 2006). Despite 

this very low seroprevalence, an epidemiological link between HEV infection and dogs has 

still been implied in industralised nations. Periodic contact with dogs was reported in 74% 
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(14/19) of cases of indigenously acquired infection in a Dutch study (Borgen et al., 2008), 

and owning pets was reported by 60% (17/28) of patients with indigenous HEV infection 

from the UK (Lewis et al., 2008). 

 

More robust evidence that HEV can infect dogs, requires identification of HEV RNA within 

canine samples. Previous studies in Asia have examined canine stool and serum samples for 

HEV RNA, but no positive cases have been identified (Dong et al., 2011a; Geng et al., 

2010; Liu et al., 2009; Mochizuki et al., 2006). Similarily, no HEV RNA was detected in a 

Dutch study examining canine liver samples collected prior to 2005. Given the rise in human 

HEV cases with a suspected zoonotic origin in the past decade (Arends et al., 2014), it is 

possible that previous attempts to identify HEV RNA in canine samples have produced 

negative results due to very low prevalence levels.  

 

This chapter aimed to investigate the potential for dogs to be infected with HEV using stool 

and serum samples previously banked and screened for HuNoV, in addition to a set of 

clinical samples from dogs with histologically confirmed hepatitis, collected as part of 

previous studies (Bexfield et al., 2011, 2014) and generously donated to this study by Nick 

Bexfield (University of Nottingham). The clinical samples from canine hepatitis cases were 

particularly valuable for HEV screening because it was hypothesized that if HEV can infect 

dogs, it would cause hepatitis. This was based on reports that indicate HEV induces hepatitis 

in a range of species other than man, including pigs and rabbits (Halbur et al., 2001; Ma et 

al., 2010).  
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7.3 Prevalence of HEV antibodies in canine sera 

A total of 247 canine serum samples were collected and screened by ELISA for anti-HEV 

antibodies. HEV VLPs were kindly donated to this study by Rintaro Hiraide (Goodfellow 

Lab, University of Cambridge). VLPs were synthesised following generation of recombinant 

baculoviruses with DNA encoding amino acids 112-608 of the HEV genotype 3 ORF2 gene. 

These recombinant baculoviruses were propagated in Sf9 cells, and VLP expression was 

achieved in Hi5 insect cells. VLPs were then purified using the same methodology as for the 

CNV and HuNoV VLPs.  

 

Of the 247 canine serum samples, 92 were from healthy dogs, 34 were from patients with a 

range of clinical diseases at a veterinary hospital, and 121 were from dogs with confirmed 

hepatitis. Two dogs were identified as seropositive, both from the group of healthy animals 

(2/92, 2.2%). The antibody titre of the two positive samples (designated samples A and B) 

was determined to be 1:400 by serial dilution of sera as shown in figure 7.3. No seropositive 

cases were identified amongst the dogs with clinical disease, hepatitis or otherwise. 
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Figure 7.3 Anti-HEV antibody titres in positive canine serum samples.  
Positive canine serum samples were prepared in dilutions of 1:100,1:200, 1:400, 1:800; 1:1600 and 
1:3200 and entered into an ELISA. The corrected OD450 was obtained by subtracting the 
background signal from the VLP coated well OD450 value. The positive threshold was determined 
by calculating the mean OD450 of buffer coated wells with the highest serum dilution, plus 3 
standard deviations.  
 
 

Western blotting was used an additional means of confirming samples deemed positive by 

ELISA. HEV VLPs as well as GI.1 HuNoV and vesivirus 2117 VLPs included as controls, 

were separated on a SDS-polyacrylamide gel, then samples were either transferred to 

polyvinylidene difluoride membranes for western blotting, or stained with Coomassie Blue. 

Figure 7.4 confirms that antibodies present in samples A and B could detect HEV VLPs as 

predicted. These two samples were also seropositive for vesivirus 2117 although this is not 

believed to be due to cross-reactivity as demonstrated by inclusion of sample C (positive for 

vesivirus 2117 only). Canine sample D represents a dog seronegative by ELISA to all VLPs 

analysed, with the same result demonstrated in the western blot, adding additional support to 

the conclusion that samples A and B are specific for HEV. Sera from an HEV-seropositive 

pig and a seropositive human were included as positive controls. Human reactivity to GI.1 

HuNoV was not unexpected given that approximately 70% human population in the UK are 

seropositive to this virus (Gray et al., 1993). 
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Figure 7.4 Western blot analysis of serum sample reactivity with HEV, vesivirus 2117 and 
HuNoV G1.1 VLPs.  
Three types of VLP were separated by SDS-PAGE. One gel was stained with Coomassie Blue to 
identify VLP protein at the expected molecular weight. Additional gels were used for western 
blotting with canine serum samples positive by ELISA for HEV (samples A and B). A pig serum 
sample and a human serum sample known to be positive for anti-HEV antibody were used as a 
positive control for the HEV VLPs. Canine sample C, previously confirmed positive for anti-
vesivirus antibody by ELISA, was used as a positive control for the vesivirus VLPs. Canine sample 
D was used as a negative control for all VLPs.  
 
 

Both samples positive for HEV were collected in August 2013 at separate canine blood 

collection events in the UK.  The average age of these two dogs was 7.5 years (SD 3.55). 

The age of seronegative dogs was known for 97/124 samples, with the average age being 6.7 

years (SD 2.19). The two seropositive animals were both of greyhound type breeds. A 

variety of dog breeds were included in this study, although larger dogs were over 

represented in the healthy cohort due to the population studied (blood donation requires dogs 

to be heavier than 25kg). 
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7.4 Prevalence of HEV RNA in canine samples 

One step RT-qPCR was performed using primers designed to detect all four genotypes of 

HEV, targeting a conserved region of HEV ORF3 (table 2.4 (Jothikumar et al., 2006)). RT-

qPCR reactions were prepared using 2µl of extracted RNA added to 2x Precision OneStep 

RT-qPCR MasterMix (PrimerDesign Ltd), with primers and probe at concentrations of 

250nM and 100nM, respectively. The thermal cycle protocol used was as follows: RT 

reaction 50C for 30 min, 95C for 15 min, then 42 cycles of 95°C, 10 s; 55°C, 25 s; 72°C, 25 

s.  

 

Optimization of the previously published RT-qPCR protocol for HEV RNA detection 

(Jothikumar et al., 2006) was first performed using in vitro transcribed HEV RNA from an 

infectious clone. This demonstrated that 100 genome copies of HEV per reaction were 

reliably detected (figure 7.5A).  

 

Following on from this, a total of 2.5 x 107 genome copies of HEV RNA were spiked into a 

single canine liver sample, serum sample and a stool sample, to determine the effect that 

additional material in clinical samples had on assay sensitivity. RNA extraction was 

conducted according to the protocol described, then 2μl of the extracted RNA was entered 

into the RT-qPCR reaction, corresponding to 106 copies of HEV RNA per reaction. HEV 

RNA added directly to lysis buffer in the absence of any canine samples was included as a 

control. It was demonstrated that HEV RNA could be detected in spiked canine liver and 

stool samples at levels comparable to the lysis buffer-only control. However, detection of 

HEV RNA from the spiked serum sample was significantly impaired, with almost a 1000 

fold decrease in the number of copies detected by RT-qPCR (figure 7.5B). Therefore serum 

samples would have to contain at least 105 genome copies/μl to be detectable by this assay, 
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which was deemed highly unlikely based an average HEV RNA concentration of 105 – 108 

genomes copies/ml in infected human serum (Takahashi et al., 2010). Therefore, screening 

for HEV RNA was conducted for RNA extracted from liver and stool samples only. 

 

Figure 7.5 Optimization of RT-qPCR protocol for HEV RNA 
(A) In-vitro transcribed HEV RNA was serially diluted 10-fold from a known starting concentration 
of 106 copies/µl, and entered into the RT-qPCR assay. A linear increase in CT value was identified 
for each dilution. The sensitivity of the primer-probe set was determined to be 100 copies/reaction. 
(B) In-vitro transcribed RNA (106 copies/reaction) was spiked into canine clinical samples, then 
RNA extraction performed using a commercial kit. RNA samples were then entered into the RT-
qPCR assay and the resulting CT values compared on a scatterplot. 
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A total of 248 canine stool samples were screened for the presence of HEV RNA using the 

RT-qPCR protocol with primers designed to amplify a highly conserved 71bp fragment of 

ORF3. Products of any samples showing uncertain results were analysed by gel 

electrophoresis. A positive control was included on each plate to ensure RT-qPCR had been 

performed correctly. No HEV positive cases were identified. 

 

Eighty-four canine liver samples were analysed for the presence of HEV RNA using the 

same RT-qPCR protocol. In all other species studied, HEV induces varying degrees of 

hepatitis (Billam et al., 2005; Halbur et al., 2001; Ma et al., 2010), hence to optimise the 

chances of identifying HEV RNA, liver samples from dogs with histologically diagnosed 

hepatitis were screened in this study. No HEV RNA was detected in any canine liver 

samples. 

 

7.5    Chapter summary 

In this chapter it has been shown that of 247 dogs tested from the UK, 0.8% were positive 

for antibodies specific for HEV. This strongly suggests that HEV had replicated within the 

two positive animals, inducing an immune response. This is the first study investigating the 

seroprevalence of anti-HEV antibodies in dogs in Europe, and the low canine HEV 

seroprevalence reflects the low human seroprevalence in this region. Seroprevalence of HEV 

in humans in the UK is 13% (Ijaz et al., 2009), whereas up to 25% people are seropositive in 

China (Zhuang et al., 2014) where canine HEV seroprevalence can be up to 29% (Liang et 

al., 2014). This also correlates with the negative HEV canine serological study from Japan 

(Mochizuki et al., 2006), where human seroprevalence is only 3.4% (Takeda et al., 2010).  
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An alternative explanation for the two seropositive cases could be the existence of a unique 

canine-specific HEV strain. By the use of serology alone it is not possible to determine the 

relatedness of HEV strains, as all HEV genotypes exist as a single serotype (Emerson & 

Purcell, 2003). This is exemplified by the recently identified rabbit-specific strains of HEV; 

these are genetically distinct from human strains, but they share the same serotype as the 

human genotypes 1-4 (Wang et al., 2013). To ascertain whether human or a putative canine 

HEV strain is inducing an HEV-specific immune response in dogs, identification and 

characterisation of HEV RNA from canine samples is required. 

 

Multiple studies have previously attempted to identify HEV RNA in canine samples. The 

majority of these have analysed canine serum (Geng et al., 2010; Liu et al., 2009; Zhang et 

al., 2008), with no positive cases reported. Experimental infection of dogs with swine HEV 

has been shown to induce an antibody response, but despite this no HEV RNA was 

detectable in serum post inoculation (Liu et al., 2009). This suggests viraemia is not readily 

identified in infected dogs, and this coupled with our optimization experiments that failed to 

reliably detect HEV RNA spiked into serum samples, indicated that analysis of serum 

samples is not the optimum method for RNA detection in dogs. 

 

In order to increase the chances of identifying HEV RNA in canine samples, alternative 

clinical samples were deemed necessary. Detection of HEV RNA in the liver is possible for 

up to 1 month post inoculation in experimentally infected pigs, which is twice the duration 

of viral detection in serum samples (Halbur et al., 2001; Williams et al., 2001). It was 

therefore hypothesised that analysis of canine liver samples would be the most likely 

strategy to detect virus. Hepatitis is frequently reported in dog populations (Poldervaart et 

al., 2009) and yet the aetiology of most cases of canine hepatitis remains unknown despite 
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numerous studies to identify a viral cause (Bexfield et al., 2014; Boomkens et al., 2005). 

HEV was included in a PCR screen for a viral cause of canine liver disease in a study of 

dogs with hepatitis over a decade ago, but no HEV positive cases were identified 

(Boomkens et al., 2005). The incidence of HEV in man in the UK has increased 

dramatically over the intervening ten years, and it is predicted that HEV might be more 

frequent in canine hepatitis samples collected more recently. However, despite this 

reasoning HEV RNA was not detectable in the canine liver samples screened from the UK. 

This is in contrast to recent surveys of livers from pigs and wild boar in Europe, where 

almost 15% samples were HEV positive (Baechlein et al., 2013; Schielke et al., 2009).  

 

It is important to note that the primer-probe set used for our RT-qPCR screen targeted a 

highly conserved region of HEV ORF3. Although originally designed to detect HEV 

genotypes 1-4 (Jothikumar et al., 2006), sequence analysis showed that this primer-probe set 

should also detect the more distantly related HEV strains identified in rabbits and camels. A 

rabbit HEV strain (GenBank Accession number KJ013414) and a camel HEV strain 

(KJ496143) had 94-100% sequence identity to the RT-qPCR primer-probe sequence. It was 

therefore theorised that any novel canine HEV strains should be detectable using this assay. 

 

A common method of detecting HEV RNA in pigs is from stool samples (Banks et al., 

2004; McCreary et al., 2008), and hence to extend our study we also tested 248 canine stool 

samples for HEV RNA using qPCR. Again, no positive canine samples were identified 

which differs from the detection levels in pigs; HEV RNA has been reported in stools of 5-

35% pigs across the UK (Banks et al., 2004; McCreary et al., 2008).  Clearly viral shedding 

by dogs is substantially lower than in pigs. 
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Altogether, samples from over 500 dogs have been screened by qPCR or ELISA in this 

study. However, in spite of being a sizeable cohort in comparison to many canine studies, 

this number of cases is still significantly fewer than several of the large-scale human studies 

where over 10,000 human samples were analysed (Gallian et al., 2014; Hewitt et al., 2014; 

Sauleda et al., 2014). Surveys this large have been required to detect HEV in healthy 

humans, where prevelance is as low as 1 in 3000 individuals (Hewitt et al., 2014). Studies of 

this magnitude would be extremely challenging to achieve in canine populations, which 

means determining accurate prevalence levels of rare viruses is seldom possible. 

 

The zoonotic potential of HEV in dogs was recently assessed by an alternative method in a 

serosurvey of veterinarians. It was hypothesised that if dogs were a common source of HEV, 

then humans with high exposure to dogs would be more likely to be seropositive. However 

it was found that HEV seroprevalence did not increase with occupational exposure to dogs 

(Mesquita et al., 2014b). This is at odds with a serosurvey of swine veterinarians, which 

found significantly higher levels of seropositivity to HEV in comparison with people not in 

regular contact with swine (Meng et al., 2002). These human prevalence studies indicate 

that even if it is definitively proven that dogs can become infected with human strains of 

HEV, they play a much lesser role in disease transmission than pigs. 

 

To summarise, this chapter has provided evidence that dogs in the UK can become infected 

with HEV, although strains involved are unknown. The low seroprevalence coupled with the 

absence of detection of HEV RNA suggests HEV infection is very rare in dogs. 

Nonetheless, these preliminary findings warrant further investigations to determine if 

contact with HEV infected dogs could be a transmission route for HEV to man. 
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Chapter 8  

Discussion 
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8.1 Overview 

This thesis has provided the first detailed analysis of noroviruses, both human and canine, in 

dogs. This thesis also includes examination of two additional enteric RNA viruses in dogs, 

specifically astroviruses and HEV.  

 

Studies commenced with the most comprehensive epidemiological survey of CNV to date, 

in which it was demonstrated that multiple strains of CNV are circulating the UK dog 

population. Canine astroviruses were also identified for the first time in the UK, and genetic 

characterization of four isolates was conducted.  

 

Studies of CNV were extended with the first analysis of CNV interactions with host cells. 

This led to the identification that HBGAs are the carbohydrate attachment factor for CNV 

strains in both genogroup IV and genogroup VI. HBGA recognition has thus been shown to 

be a feature of virus-host interactions in five out of the six norovirus genogroups, and 

sequence analysis suggests co-evolution of at least three mechanisms of HBGA binding in 

the norovirus genera. 

 

Concern about the zoonotic potential of enteric viruses in dogs has been raised by the results 

in this thesis. HBGA expression in the canine gastrointestinal tract has been characterized 

and shown to be very similar to human HBGA expression, thus it is postulated that 

noroviruses may be able to cross the species barrier. The close relationship between dogs 

and humans means disease transmission via direct contact is very possible. HEV is an 

additional enteric virus hypothesised to infect dogs, and serological analyses in this thesis 

demonstrated the presence of HEV-specific antibodies in dogs. Further evaluation of the 
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potential risk of both HuNoV and HEV infection in dogs is recommended to satisfactorily 

address this public health concern. 

8.2 Pathogenesis of CNV and CaAstV in dogs 

This thesis initially hoped to determine the clinical impact of CNV or CaAstV infection in 

dogs following identification of positive cases. Due to the limited study size, and the 

absence of positive results for CNV, this has not proven definitively possible for either 

virus. The evidence that CNV causes gastroenteritis is currently based on the premise that 

CNV is genetically similar to HuNoVs experimentally proven to cause gastroenteritis in 

man, and CNV has been identified in dogs with gastroenteritis in the absence of other 

known pathogens (Martella et al., 2009). However, the high seroprevalence to CNV in 

conjunction with a lack of identified cases in the RNA screen, suggests that viral shedding is 

only brief and veterinary attention is rarely required. 

 

CaAstV was identified in 6% dogs with severe gastroenteritis, in comparison with 0% in the 

control group. This strongly suggests that CaAstV can cause significant disease in dogs, 

which fits with the knowledge that HAstVs can cause gastroenteritis in children. However, 

in 2/4 CaAstV positive dogs, co-infections with viruses known to induce gastroenteritis were 

identified (CPV). Overall, the evidence for CNV or CaAstV causing severe disease in dogs 

is insufficient to be conclusive at present.  

 

The optimal way to answer the question of the pathogenic effect of CNV and CaAstV is 

with experimental canine studies. This is important for deciding appropriate management 

strategies for suspect cases. This would help to answer the following concerns: 
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1. Would commercial tests for CNV and CaAstV be valuable for adequate 

management of cases, e.g. isolation? 

2. Would vaccination against CNV or CaAstV be important for animal health? 

3. Would the use of anti-virals be beneficial in CNV or CaAstV infected dogs? 

Experimental infection studies would require inoculation of specific-pathogen-free dogs 

with purified virus, then monitoring for signs of clinical disease. Viral shedding could be 

analysed by RT-qPCR analysis of stool samples, and sites of viral replication in the body 

could be assessed from tissue samples collected post-mortem. Tissue sections could be 

screened for CNV particles by immunofluorescence utilizing the anti-CNV antibodies that 

have been generated for this work. RT-qPCR on RNA samples extracted from tissue 

samples would be an additional method of confirming any immunofluorescence results. 

 

Ongoing surveillance for CNV in the UK and worldwide would not only drive greater 

understanding of the clinical relevance of this virus, but it would also facilitate identification 

of novel strains of CNV. The evolutionary rate of noroviruses is high, and new variants of 

HuNoVs commonly emerge through antigenic drift and shift. It is reasonable to predict that 

CNV variants will emerge at a similar rate. Of CNV strains characterized to date, strain 

diversity is very high and hence strains can be divided into two or possibly three genogroups 

(Vinjé, 2014). Evolution of new strains generates two main concerns. Firstly, there is 

potential that novel strains may have a greater pathogenic effect in the host. Secondly, novel 

strains may be more likely to jump between hosts. It is possible that point mutations in key 

genes, or recombination events could increase the likelihood of inter-species transmission, 

and recombination events have already been reported for CNV (Martella et al., 2009). 
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8.3 Role of HBGAs in CNV infection 

Following identification that CNV interacts with a subset of HBGAs (H, A and Lewis 

antigen), it is hypothesized that dogs expressing these HBGAs will have an enhanced 

susceptibility to CNV infection when compared to dogs negative for these antigens. 

Although all dogs in this study expressed H antigen, only 50% expressed the A or Lewis 

antigens. Though natural CNV infection in dogs is not believed to have high mortality rates 

(Martella et al., 2009; Ntafis et al., 2010), it is theorized that a survival advantage may be 

conferred by specific phenotypes. This work has shown that approximately 40% dogs in the 

UK group have not seroconverted to CNV, and it is hypothesised that this may in part be 

due to an A antigen and Lewis antigen negative phenotype. Confirmation or refutation of 

this theory requires a much greater understanding of the pathology induced by CNV, as well 

as a much wider appreciation of carbohydrate polymorphism in dogs. Testing of this 

hypothesis could be achieved by phenotyping of dogs identified with natural CNV infection. 

This has not proven possible in this study due to the lack of CNV positive cases identified. 

 

So far in this thesis only HBGA-CNV interactions with HBGAs expressed by the host have 

been considered. However, it has long been known that certain species of bacteria can 

express HBGA like-substances on their surface (Springer et al., 1961). Recently it has been 

demonstrated that HuNoV VLPs can bind to cells of Enterobacter cloacae, a commensal 

bacteria isolated from human faeces (Miura et al., 2013). Furthermore, HuNoV infection of 

B cells was enhanced by the addition of this bacteria to filtered stool samples (Jones et al., 

2014a). This suggests commensal bacteria in the gastrointestinal tract could play a role in 

norovirus infections. This theory is supported by follow up experiments using antibiotics to 

deplete commensal bacteria in mice, which resulted in a significant reduction in MNV titres 

(Jones et al., 2014a). Broad spectrum antibiotic therapy has also been shown to prevent 
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development of persistent MNV infections in mice (Baldridge et al., 2015). The exact 

mechanism by which commensal bacteria enhance norovirus infections is yet to be 

elucidated, however bacteria have been shown to enhance stability of the viral capsid in 

poliovirus infections (Robinson et al., 2014), and it is possible that similar effects are 

induced by HBGA-norovirus interactions. A role for bacteria-induced alteration of the 

innate immune response has also been indicated in MNV studies; bacteria are believed to 

limit IFNλ-dependant innate immunity, enabling establishment of persistent infection 

(Baldridge et al., 2015). In summary, it is suspected that carbohydrate expression of both the 

host and commensal bacteria is important in norovirus infections. This is supported by 

observations that susceptibility to HuNoV is reduced in the absence of HBGA expressing 

bacteria in vitro (Jones et al., 2014a), and also the absence of secreted HBGAs in vivo 

(human non-secretor phenotype) (Hutson et al., 2005; Lindesmith et al., 2003). 

 

Relating this to CNV, it is possible to speculate that canine commensal bacteria could be 

enhancing viral infection in dogs. CNV could be binding to HBGAs expressed on the 

surface of gastrointestinal bacteria, which may have either direct (e.g. altering virion 

stability or localisation) or indirect (altering immune response) effects on viral infection. It 

is therefore theorized that depletion of the canine microbiota could diminish CNV titres. 

This brings into question the use of antibiotics for CNV therapy; could treating CNV 

positive dogs with antibiotics help resolve infection? Previous studies focusing on 

commensal-viral interactions have only reported decreased viral titres if animals are pre-

treated with antibiotics. No studies have analysed the effect of antibiotic therapy after 

infection. This is because adequate decreases (i.e. 104 fold) in the gastrointestinal microbiota 

using antibiotics takes several days, by which time acute enteric viruses have already 

reached their target cells and replicated to high titres (personal communication, Julie 
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Pfeiffer, University of Texas, and Christiane Wobus, University of Michigan). Thus it is 

unlikely that antibiotic therapy would be beneficial for managing CNV infections after 

clinical signs are apparent as virus replication would already have occurred before 

commensal depletion is achieved. However, there is the possibility that antibiotic treatment 

of dogs prior to CNV infection could limit infection. Whereas this would not be relevant for 

individual cases, this could be extremely beneficial for managing outbreaks of CNV where 

many dogs are housed together, e.g. rescue centres or boarding kennels. Investigation of this 

theory will require experimental studies as described above, but given that several different 

enteric viruses are now known to be enhanced by microbiota (Jones et al., 2014a; Kuss et 

al., 2011), it is possible that antibiotic therapy may be of benefit to control of a number of 

different canine enteric viruses. However, it is imperative to consider the negative impact 

that indiscriminate use of antibiotics can have on small animal populations. This includes 

development of antibiotic resistance, a risk of adverse reactions and increased susceptibility 

to certain pathogens (BSAVA, 2014; Willing et al., 2011). A decision to use of antibiotics to 

reduce viral infections would therefore have to be based on rigorous clinical trials and an 

extensive cost-benefit analysis. 

8.4 CNV as a potential zoonotic pathogen 

Given the close genetic relatedness of CNV to the GIV HuNoV strains, it has been proposed 

that CNV could be a zoonotic agent (Martella et al., 2008; Mesquita et al., 2010). The 

finding that CNV recognizes HBGAs common to both dogs and humans provides support 

for this theory. This work has shown that CNV VLPs bind to human saliva samples and 

human cells in tissue culture (HT-29 colorectal adenocarcinoma cells), confirming that CNV 

can attach to carbohydrates present on human cells and in secretions. This demonstrates that 

the initial step required for CNV entry into human cells is present. However, it should be 
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noted that RHDV can bind to HBGAs (H type 2, A antigen and B antigen)  (Ruvoën-Clouet 

et al., 2000)  and yet there is no evidence RDHV can infect humans. HBGA binding may be 

an initial step in calicivirus-host interaction, but a subsequent host-restrictive step(s) must be 

necessary for RHDV infection, and potentially CNV infection. 

 

Two epidemiological studies have investigated the possibility that CNV can infect humans 

(Martino et al., 2014; Mesquita et al., 2013). Both have provided serological evidence of 

GIV.2 infection in man, although it is possible that there are GIV.2 HuNoVs circulating in 

the human population that have yet to be identified. However, compelling evidence is 

provided by the reported higher GIV.2 seroprevalence in individuals (veterinarians) who 

have regular contact with dogs in comparison with people who are not often exposed. More 

conclusive evidence of CNV infection in man would be identification of viral RNA in 

human stool samples. As far as it is possible to tell, no such studies have been performed. It 

would be interesting to screen dog owners with clinical symptoms of gastroenteritis for the 

presence of CNV RNA in clinical samples. 

8.5 Carbohydrate binding specificity of GIV human noroviruses 

The discovery that group IV CNV strains use HBGAs as attachment factors makes it likely 

that GIV HuNoV strains also recognize this class of carbohydrates. A limited number of 

HuNoV strains have been classified into genogroup IV (Fankhauser et al., 2002; Zintz et al., 

2005), alongside several of the CNV strains. The prototype CNV strain was shown to have 

69% amino acid identity to human strains (Martella et al., 2008), hence CNV has been 

designated a GIV.2 norovirus, and the humans strains are GIV.1. The carbohydrate binding 

specificity of the human GIV strains has not been studied, and to confirm a role for HBGAs, 

GIV HuNoV VLPs will be required. The first GIV HuNoV VLPs to be generated were 
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recently reported in an Italian study of seroprevalence to GIV HuNoV in humans (Martino 

et al., 2014). Screening these VLPs against a panel of synthetic oligosaccharides would be a 

simple way to confirm this hypothesis. 

8.6 Evolution of the norovirus genera 

The results in this thesis identifying two additional norovirus genogroups able to bind to 

HBGAs, suggests that norovirus recognition of HBGAs may have evolved in at least three 

different lineages. This is based on sequence comparison with GI and GII HuNoVs, for 

which the crystal structures of GI and GII HuNoV complexed to HBGAs have been solved 

(Bu et al., 2008; Cao et al., 2007; Choi et al., 2008). An alternative explanation for co-

evolution of HBGA binding abilities would be the existence of a distant ancestor to all 

norovirus strains, which evolved the ability to recognize the HBGA carbohydrates 

conserved amongst many species. To begin establishing which proposal is correct, 

crystallographic studies of the CNV major capsid protein will be essential to enable 

identification of amino acids involved in HBGA recognition.  

 

A recent study has reported solving the x-ray crystal structure of a feline norovirus (FNV) P 

domain (Singh et al., 2015). FNV is a GIV.2 norovirus, with 90% amino acid identity to 

GIV.2 CNV. Similar to CNV, the HBGA-binding residues identified on GI and GII 

noroviruses are not conserved in FNV. It did not prove possible to crystalize FNV in 

complex with HBGAs, and analysis of the FNV VP1 structure at the equivalent GI.1 HBGA 

binding pocket showed a blocking P2 subdomain loop. At the equivalent GII.10 HBGA 

binding pocket, an extended P1 subdomain interface loop blocked the predicted HBGA 

binding site. This indicates that there is likely to be an alternative HBGA binding site for the 

GIV noroviruses, although this has yet to be elucidated. 
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8.7 HuNoV infection of dogs 

This thesis strongly suggests dogs can become infected with HuNoV. However, definitive 

proof that HuNoV can infect dogs requires experimental studies. This could be achieved by 

inoculating dogs with HuNoV purified from human stool samples, and then analyzing 

canine faecal samples for viral shedding by qPCR. Experimental studies would also be 

valuable for a investigating a number of other unanswered questions regarding both HuNoV 

infection dogs and also general pathogenesis of HuNoV infections.  

 

1. Do dogs seroconvert following experimental exposure to HuNoV? This would 

validate the serology data presented in chapter 6. This could be answered by 

collecting serum samples pre and 2-4 weeks post infection.  

 

2. What is the duration of HuNoV shedding in dogs? Humans typically shed HuNoV 

for four weeks (Atmar et al., 2008), and it would be valuable to compare shedding 

duration in dogs. This would be important for epidemiological understanding and 

possible quarantine of dogs during HuNoV outbreaks. 

 

3. Do dogs show clinical signs following HuNoV infection? There is only very limited 

data addressing this question; one dog with suspected HuNoV infection had a severe 

vomiting episode (Humphrey et al., 1984), whereas two other dogs showed very 

minor clinical signs (nausea and inappetance) (Summa et al., 2012). Daily clinical 

exams and assessment of appetite/demeanor following experimental infection of 

dogs could start to address this question. 
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4. Do dogs become viraemic following HuNoV inoculation? It has been reported that 

15% humans become viraemic during HuNoV infection (Takanashi et al., 2009), but 

this has not been consistently reported by other groups. 

 

5. What is the tissue or cellular tropism of HuNoV infection in dogs? qPCR of RNA 

extracted from different organs post-mortem could identify the main sites of 

replication in the body. Analysis of tissue sections from these regions could then be 

valuable for two reasons. Firstly, histological analysis could determine the presence 

any specific pathology; intestinal pathology in man caused by HuNoV infections is 

typically mild despite the severity of clinical signs (Karst et al., 2014). Secondly, 

immunofluorescence could be used to identify the sites of viral replication. Cellular 

tropism for HuNoV is still uncertain, and as it may be hypothesized that HuNoV will 

replicate within the same cell types for humans and dogs, this could lead to a 

breakthrough in understanding HuNoV pathogenesis. 

 

Confirming HuNoV replication can occur in the canine gastrointestinal tract alone will not 

be sufficient to determine a significant role for dogs in the epidemiology of HuNoV 

infection. The majority of HuNoV outbreaks do not occur in places where dogs are 

commonly found, e.g. outbreaks on cruise-ships or in hospitals, but a role for dogs 

perpetuating outbreaks in communities is possible. To investigate transmission of HuNoV 

between humans and dogs, a focused sampling approach will be required. Targeting dog 

owners with confirmed HuNoV infection, and testing both canine and human stools for 

HuNoV could provide insights into spread of infection. Full genome sequencing of any 

isolates identified would provide confirmation of any epidemiological relationship. 
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8.8 HEV infection of dogs 

The preliminary HEV epidemiological surveys in this thesis have demonstrated that dogs 

mount an immune response to HEV. However it is not possible to determine whether this is 

to a human strain or a novel canine strain as all HEV strains studied to date belong to a 

single serotype (Wang et al., 2013). The existence of a canine-only HEV strain would only 

be proven by the identification of HEV RNA representing a new genotype from a dog, and 

although clinical samples from almost 250 dogs were screened by RT-qPCR, no positive 

cases were found.  

 

The host cell receptor for HEV is unknown, thus it is not possible to determine whether dogs 

express the correct receptor to enable HEV to invade canine cells. Similar to the canine 

HuNoV experiments, immunohistochemical studies with HEV VLPs and canine tissues 

could be a way to investigate the ability of HEV to bind to canine cells. This alone would be 

insufficient to confirm dogs are susceptible to the virus however. As discussed above for 

HuNoV, experimentally infecting dogs with HEV strains isolated from man would be 

required to provide definitive evidence that HEV can replicate in dogs. 
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8.9 Closing remarks 

Although this thesis provides the first detailed study of how CNV interacts with host cells, 

there are still many questions yet to be answered about this virus. Continued research into 

the pathogenesis and viral-host relationship of CNV would be valuable for expanding our 

understanding of the whole norovirus genera. The possibility that CNV can be transmitted to 

humans makes this line of study even more important.  

 

From a veterinary viewpoint, this thesis has highlighted the issue that our awareness of 

emerging viral causes of gastroenteritis in dogs is minimal. This is best exemplified by 

identification in this study of a novel virus in 6% canine gastroenteritis cases (CaAstV) in 

the UK. Canine viral gastroenteritis is understudied due to the lack of resources for 

veterinary research, but the emotional and economic impact of canine disease is ever 

increasing as owner expectations and veterinary medicine progresses. Given the potential 

zoonotic transmission of gastroenteric viruses between dogs and humans as shown by this 

thesis and other reports, it is now apparent that infectious disease research should not 

overlook viruses identified in dogs. 
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A.1 Full genome sequence of CaAstV Gillingham/2012/UK KP404149.  

Primers used for amplification and sequencing are highlighted. Primers previously 
published are underlined, whereas all other primers were designed specifically for this 
analysis, and are numbered according to the Goodfellow Lab IGUC system. The start 
codon (ATG) of ORF1 and ORF2, and the stop codon (TAG) of ORF1a, ORF1b and 
ORF2 are highlighted in bold. 
     
CCAAGAGTTGGTTTGGGTGATTGATTCGCCCATAAGATCTCTAGTATGTGTTCAGTGCCAC
CTTACTTCCGCAACCAAGCGGACCAAGATTTCTCCTTCGGGAGCACTATGGCGCGGAGGAT
GATGACCATTAATATGATCAACACCCTCCCACCATTTGAAGAGCACACACCACTTCACTAT
GACTGGGTTGTTAAACACCTTATATTTCCAGGACCAAATACCACTGAGCGTTGTGTAGTCA
TAACCGGTGGTCTTGAGAACGGTAACTATGTTACTGTTGTTCATGATGGTGAAACCTGGAT
AGAAATAAACCCGGCATACAAATTTGAAGGACTGCTCAGAGTGCTCCGCATGACAGCCCGC
AACAACTCCTTGCGCGAGCGTCTGCGTCTTAGTCAGGAGGAAAAATCTAAACTAATTCTTG
ACCATCAACTCTTGAGGCATGACTATGAACGCATCAAATCTCAAACTAGCACCAGCACTAA
GACTAAAATCCCTATGTTTGTTGTGTTTGTCGCTGCATTGATCATTTTCCTGAACTTTGTA
CCAACCACAGAGGCAGCACAGGCTTACACAAGCAAGTATACTCAAACTGGCACTGAGGGAT
TTAGTCTCTTGGACAAATGTGCACAAAATGTGGCCAGGCTTAACAACGAGATAAGTCTAAG
ACTGAAACTGGCCCTAGGTAATGTGACCTGGTCTGACCGCTATGGTGCAATTAAAGAGATC
TTCTATGCCAACCTCTTGCCGAGATCGCACTGGATTGTGCGTCTCTTTTCTTTCCTTTCAT
ATTTCCATATTTGGACCATCTTTTCAACATGCATCGCTGTGGCAACACTAACTCGGTCTAC
AAACCCTATTGTTGACATAGTATTTCTGTTCTTTGCCCACATATCAAAATGGCAGTTGGGT
ATTGTTCCAGCTCTTCCATATTTCACCACTACTATTGTCTGGATTGCCATAACTTGTATGG
GGGCCTATGTTCTGGACCCATATCTTGCCATCACACTCACATGGCTCCAGCTTCCCTTTTG
TGTTGTATGCCTTTCTTTCCTAAGTGATGATAAGTTCATAGAGCACGTGAGAGGGTCATTC
ATTCTCACTGTGACAGCAACATCTATTCATACTTGCCTTGTTCTAACTGGCAGCACCACCT
ACTGCTTTATACTCCTGATGTTTTTTAGAAGCCTTCGGCTTCTGATGTCCTCTGTCGGTAA
CAAGATAGAGTTTAAGGACTTCCAGGGTAAGGTCGTTGGGTCGATTTCTTCAGGAACACGT
AACCGTGTCTGGAATTTCATCCAGCGAATGAAGCAGGTTAGAACTGGTTCCAATCCATTTG
CTATCATAAAACCTGAAGCACTTGTCAAAATCGTAACCGATGAAGGATGTGGAACTGGTTT
CTTTTGTGGTAATGACATAGTCACAGCAGGCCACGTGGTTGGTAGTCATCGCGTTGTTGAA
GCCTGGTATGAGGGCTCGTGCTACCAAGCAAGAGTTCGCTACAAGCCAGAAAAAGACATCG
CCTTCCTGGCTTTACCAGGTGACATGAAACCTAAAGCGCGCTATAAGATAGCGCAACAACC
TGACTACTCCACTGTGGTTGTGCTAGCATACAGCTCTAATGGACTTGTTGTCTCACAAGCA
CAAGGCCAATGTCACGGGGAGACCATCTCCTATACCGTCCCAACACAGGATGGTATGTCAG
GGGCACCAGTCACTGACTTACATGGTCGTGTGCTTGGTGTACATCAAACTAACACTGGCTT
TACTGGTGGTGTTGAACCGTAGTTATTAAAACATCAGATGTAACACCTCCAACACGCCCAA
CTGAGGATGACTTACGTAAACAAAGACCTACGTAAGCAACTTGAGGAAGTTAACAAACCCC
AACCTCAAGAGACATTGGAACAGTCAAACTCAGGTGCTGAGGTGGTTTCTCTCGTGAGAGA
AGCCGTGAGGCGCGAAATGGATATACTACGGCAAGAGATTAACCAGCAGCTAATGTTACAA
AAGAAGAAAGGTAAAAACAAGAGTGGTGGTCGTGGTAACATCAGAAAACATGTTGGTAAGG
TTAAGGGCAGGAAATACCTAACTGAGAAAGAATACAAAGAATTGTTGGAGAAAGGTCTTGA
CAGAGAAGAGCTCCTTGACTTAATTGATGACATCATAGACAAGAGGATAGGTTTTCCTGAA
TGGAGTGACCCAGAGCTAAGTGATGATGATGATTCAAACTGGGACACATATGGTGATGAAT
TTGACCATCGTGATGTGGGTTTACAATCAAAACCCAAACAGAAAATCAAGGAAGCAACCCA
ATGTGTCATACAGGTTCAGGAAGTTGTCCCAATTGATGAGGTTACAATTTCAAAAGCAACT
GAGTCTAAAGACTTTACTCAGCATTGGGGTAAGGAACCTGTGTTTGAATCATACGACTTTG
ATTGGACTGCTGAGGATGCAAAAAACATACTACCTGAAAATTCTCGTTTAACTAAATGTGA
CTACATAGTCCTTGGTAGCCACATCCTCAAGCTTAGGCACATAATAACAACAGCACTTGAA
ACCAACAACTTCAGTGAATTGCCTAAGGCAGTCTATGCACTTGATCATTTTGCCTGGGATC
ATGGCCTAGAGGGCTTCTTACAACGGATTAAATCCAAGAAGCCAAAAAACGTGAAAGGGGC
TCCCAAGGGAGCCCCGAAAAATGGCAACTAGACTATTGGCAAAAACTCCTTGAGGAACCAC
GGTCAAGACGATGTGTACCGGAAAACTACCCATTATTAGGCCATCTAAAATTAGATAGACC
AATTTATGATGATAAAATACCCAAAGATGATCTGCTCAAATCCCTACCAGTTCCTGATTGG
CATGAATTTGAAAAATTTGGACCAACTGTGTGGGGACCACAAGCTTTTACCAAATCTTTTG
AGAAATTTGATTATGCACCACCTTCAAATTTCTTTGAGCAGTATCCAGAATTTTGTAAATT 
 
 
 

 
853 F 
 
 
 
 
683 F 
 
 
682 R 
5’RACE 
 
 
878 F 
 
 
941 R 
 
 
 
 
 
952 R 
896 F 
 
 
 
 
 
 
 
 
 
914 R 
 
939 F 
 
 
 
 
 
 
 
 
 
940 F 
893 R 
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TGCTGATTGGGCATTCTATAAACAATACGGGTTTCTTGAGGATTCTCGTGTGATACATGTT
TCAGCCACTGAAAAGAATCAAGATTCCACGCCTGCCTACCCCAAGATGCTCGACTATGACA
CCGAAGCCGACTTCTTGGAAGCAAATGGTTGGTCACCTTATGTTTCTGAGATCTCGAGGAT
TATGTCCGGAGCAAAACCTAAGGTCCTCTGGTACTTGTTCCTCAAGAAAGAAGTTATTAAA
GTTGACAAAATTGCTGACTCAGACATAAGACAAATTCTATGCAGTGACCCTATTTATGTTA
GGATAGGTGCGGTACTTGAGGGACATCAAAATCAGCTTATGAAGAACAACACTGAAAAAAC
CCATGGACAATGTGGTTGGACACCAATGGAAGGTGGCTTCACTTCTCGTATGAAACGCCTT
ATCTCCAAAGGCAATGCACATTTCATCGAGTTTGATTGGACCAGATTTGATGGTACTATAC
CGTCTGATTTAATTCGACATATCAAGAAACTCCGCTGGAGTTTGGTTAATGCCGAACAGAG
GAGGAAATACCAAAAGCTTCATGATTGGTATGTTGAAAACCTGGTCAATCGTACTGTGCTA
CTTCCATCTGGTGAGGTCACAGAGCAACATCGTGGTAATCCATCTGGCCAATTCTCCACTA
CCATGGATAACAATATGATCAACACATGGCTTCAGGCTTTTGAATTTGCCTACTTCCATGG
ACCCAACAAACAGCTTTGGCTGAACTATGACACCTTGGTCTATGGTGATGATAGGCTGTCA
ACAACACCACTAATTCCTGATAACTATGTTGAGAGAGTTGTACTAATGTACAAAGATGTCT
TTGGAATGTGGGTTAAGCCTGAAAAAGTCAAGATTTCAAACACTATTGTTGGTCTCAGTTT
TTGTGGCTTTACTGTAGATGAGAACCTTGAACCCATACCTACACAACCTGACAAATTGATG
GCCTCACTGCTTAAACCAGCATCCAAACTTCCGGATCTTGAATCACTCCATGGGAAACTCC
TGTGCTATCAGCTCCTCTCGGCCTTCCTACCTGAGGAACACCCTTTTAAGGTGTACGTCGA
GAGTTGTCTGGCTGCCACTAGCAGGCAGCTTCGTGATTCTGGCTTACCTACCAGATTCACA
GAAGAGCAAATGCATCGCATATGGAGGGGAGGACCAAAAAATTGCGATGGCTAGCAAGCCA
GGCAAAGATGTCACCGTTGAGGTTAAAACCTCCGGAACAAAATCAACATCCTCTAGGAGCA
AATCCCGGGGGCGGAACCGGAATGTCAAGATCACAGTCAATTCACAACCCAAAACAAATCG
GAGGAGACGAAACAGACCTAACAATCGTGGTCGCAAGAGAGTTGAGGCTGTCGTTAAACGA
CAGCTCGATAAAGCTGGAGTCACAGGACCAAGGCCAGCGATTACCCAAACTGCTACATCTA
CTCTGGGAACTATTGGCCCGAATACTTCGGGTGCAGTAGAGCTGGAACTTGCAACATTCAT
GAATCCATGCTTAGTCAAAGAATCAACAGCTTCCAACTCTTTTGGACCCATTCAAGCATCA
GCTGCACAGTACAATCTATGGAGAGTCACAAAAGCCCAAGTTCGCCTGACACCAATGGTTG
GCCCATCTGCAATCTCAGGTACTGCCTATAGGGTTTCCCTAAACACCGCGGGAACCCCTTC
TTCCACAGGCTGGTCAGGCTTAGGGGCTAGAAAGCACAAAGATGTCAAAGTTGGCTCCATG
TCTGTTTTTACCATCACTGCTAGAGACATGGCTGGGCCACGTGAAGGTTGGTTTGTCACTA
ACACCAATGAGTCAGGTGGTGAGTCTGTTGGACCAACAATTGAATTACATTCACTTGGTGA
GACCCAGTCAACCTACCAAAACCAGAGGTACACTGGGCCTGTTTTCCTTGTCGAATTGCAT
TGTACATGGCAATTTTCAAACTACAGTGCAAATCCAGCTCTAGCCCAGCTAGAGAAAGGAG
AGGACAAGGATGCACAAATCAAATTTGAAGGTACAGCAGGACAACCACTCACCATGACAGT
GGCACCTCATTCAGCTTTTGCCAGAGCCATCGAAACGCGCTCCGCGGTCCCTTACTCAGGG
GCTGGTAGAGCTGCGGGAGATTCAACTTCAGACACAATCTGGCAAATTGCATCTACAGCCG
TTGATGCAGCATCTGTAGTTGTGCCACCTCCCTTCAACTGGCTCATCAAAGGTGGTTGGTG
GTTTGTCAAGAAAATCGCAGGAAGATCCCGTACAGGCGAGATCCAACTGCAAGTGTTTGCC
AGCTACGAGGACGCTCAGAACAATCGTCCAGCCATCTGCACAGGACCAGTAGCTAGCGACA
ACCCATCACGCCTTCACAATGTCAAATTTGTGCAAATGAATTCTCCCTCAACTGGAATGCC
ACCTGAATCAGCTATTGGTGCCTTTTCTCTGCCAATGGTACCAAACCCACCTGCCACAATT
GAAGACAGATTCATGCTTGTTACTGGTGTCACACAGCCTTTCCAAGTCAACCCACCTTGCC
CAACTTACACCTACAAAGATAACACCAGAATCGTGGTAAAAGTTGGCAACCATTATGATGA
AGTAAACTTCATCTACAAGGCTACTCATCCACATGTTTGGCTTGCTGGTTCTCAAACCAGC
TGGACGACATCAAGTAAGCCAGACTTTATGGATTTCATGGAAGTTGGCATCCGTGACACTG
GTGGTAATTACAACAAGCGTGGGGGACTGTGGGGCTACTCACAGCATAAACTTGTGAGTTC
AGGTATCACCAATGTTGTGACTTTCTATGTAGGTCAACTTTCCAACCAAATACGCATAACC
AGCGTAAAACAACAAAGGTACCAACTCACTGGTACTGGGAGTTCCACAACGCTCTCACCCA
CAGGCCAAGAAACAACATTGAATGTCCAAGAGATCAATCCAGGCCCCTGGATCGTTTTTGT
GGCTATACACCAAGTGAGTGGGTCTCCAACAGGTTTCGTGATGGCAGAGAATGCAACTAGG
CCTTCCATCATTTGCCCAGCAGCTGTGCAGAATATGCTTGTTTTCAACAGTAATACAGTTG
CCACCAACATGACTGTGGAGTACCTCCGCACACAACCTGTTTTCACCCAAGAAGAACAACA
ACAAACCTTCGCTCTCCCTACCATCGAGGAAGAGCATTTGCCACAGCCCATTGAAGATGGT
TTTCTTCCAGATTCTGAAGATGAAGATTTTTCTGATGATGATTCTCTTCTTGATGATGATG
TTTTTTTCCCTGCTTCTGATCAGCAGGTTTTTTCCAGTCGCCAGGTCCTCTTCAGAGCAAT
GGTCAATGAGGGTTGGCCAGAGGACCAGGCTGAGCGCCTTGCCAAACGCGCTCTCCCTACA
CTAAGTGAGAAAGAACTTAGGGATGAATTTTTAGTCGGACTCGCTGACGGCTTTTCGCCAC
GTCAAGCAGCCGCAAATGCTCGTGAAAAGTGTTCCCGAGGCCACGCCGAGTAGGATCGAGG
GTACAGGTTCACTTTCACTCTTTTCTTTTACAGGTTCACTTTCACTCTTTTCTTTTCTGTC
TTTAACAATCACTTATTTTTAAGTTAGATTAGTTTAGGCAAAAAAAAAAAAAAAAA 
 
 

 
 
 
 
 
 
 
607 F 
(625F1) 
 
854 R 
 
608 R 
(626R1) 
625 F 
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800	  R	  
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932	  R	  
	  
894	  F	  
3’RACE	  
	  
	  
	  
626	  R



 

 208 

A.2 Full genome sequence of CaAstV Lincoln/2012/UK KP404150.  

Primers used for amplification and sequencing are highlighted. Primers previously 
published are underlined, whereas all other primers were designed specifically for this 
analysis, and are numbered according to the Goodfellow Lab IGUC system. The start 
codon (ATG) of ORF1 and ORF2, and the stop codon (TAG) of ORF1a, ORF1b and 
ORF2 are highlighted in bold. 
     
 
CCAAGAGTTGGTTTGGGTGATTAAATCGCCCATAAGATCTCTAGTATGTGTTCAGTGCCAC
CTTACTTCCGCAACCAAGCGGATCAAGATTTCTCTTTCGGGAGCACTATGGCGCGGAGGAT
GATGACTATTAATATGGTCAACACCCTCCCACCATTTGAAGAGCATACACCACTTCACTAT
GACTGGGTTGTTAAACATCTCATATTTCCAGGCCCAAACACCACTGAGCGTTGTGTAGTCA
TAACCGGTGGTCTTGAAAACGGTAACTATGTTACTGTTGTTCATGATGGCGATACCTGGAT
TGAAATAAACCCGGCATACAAATTTGAAGGACTGCTCAGAGTGCTTCGCATGACGGCTCGC
AACAACTCCTTGCGCGAGCGTCTGCGTCTCAGCCAGGAGGAAAAATCGCAATTGATACTTG
ACCATCAACTTTTGAGGCATGACTATGAACGCATCAAAACTCAGACTAGCACCAGCACCAA
GACCAGAATCCCTATGTTTGTCGTGTTTGTCGCTGCATTGGTCATCTTCCTGAATTTTGTA
CCAACCACGGAAGCAGCACAGGCTTACACAAGTAAATTTACTCAAACTGGAACTGAGGGAT
TCAGTCTTCTGGATAAATGCGCCCAAAATGTAGCCAGGCTTAACAACGAGATTAGTCTAAG
ACTAAAACTGGCTTTGGGTAATGTTACTTGGTCTGATCGCTATGATGCAATTAAAGAGATC
TTTTATGCCAACCTCTTGCCGAGATCGCACTGGATAGTGCGTCTCTTTTCCTTTCTTTCAA
ATTTCCACATTTGGACCATCTTTTCAACATGCATCGCTGTGGCAACATTGACTCGATCTAC
CAATCCTATTGTTGACATAGTGTTTCTCTTCTTTGCCCACATATCAAAATGGCAGTTGGGT
ATTGTACCAGCTCTTCCCTACTTTACCACTACTATCGTCTGGATTGCCATAACTTGCATGG
GGGCCTATGTGCTGGACCCATATCTCGCCATCACACTAACATGGCTCCAGCTCCCCTTTTG
TGTGGTTTGCCTTTCTTTCTTAAGTGATGATAAGTTCATAGAGCATGTTAGAGGTTCATTT
ATTCTCACTGTGACAGCAACATCCATTCATACCTGCCTTGTTCTAACTGGCAGTACCACCT
ACTGCTTCATACTCCTGATGTTCTTTAGGAGTCTTCGACTCCTGATGTCCTCTGTCGGTAA
CAAGATAGAGTTTAAAGATTTCCAAGGTAAGGTTGTTGGATCAATTTCTTCAGGGACACGT
AATCGTGTCTGGAATTTCATCCAGCGAATGAAGCAAGTTAGAACTGGTTCCAATCCATTTG
CTATCATAAAACCTGAAGCACTTGTCAAAATCGTAACCGATGAAGGATGTGGAACCGGCTT
CTTTTGTGGTAATGACATTGTCACAGCAGGCCACGTGGTCGGTAGTCATCGCGTTGTTGAA
GCCTGGTATGAGGGCTCGTGCTACCAAGCAAGAGTTCGCTACAAGCCAGAAAAAGACATCG
CCTTCCTGGCTCTACCAGGTGACATGAAACCTAAAGCGCGCTATAAGATAGCGCAACAGCC
TGACTACTCCACTGTGGTTGTGTTAGCATACAGCTCTAATGGACTTGTTGTCTCACAAGCG
CAAGGCCAATGTCACGGAGAAACCATCTCCTATACCGTCCCAACGCAGGATGGTATGTCAG
GGGCACCTGTCACTGACTTACATGGTCGTGTGCTTGGAGTGCACCAAACCAACACTGGCTT
TACAGGTGGTGCCGTAGTTATTAAAACAACTGATGTAACACCTCCAACACGCCCAACTGAG
GATGATTTGCGCAAACAAATTGAGGATCTACGTAAGCAACTTGAGGAAATCAACAAACCTC
AACCTCAAGAAACGTTGGAGCAGTCAAACTCAGGAGCTGAAGTAGTCTCTCTCGTGAGAGA
GGCTGTAAGGCGTGAGATGGACATACTACGGCAAGAGATAAACCAGCAGCTAATGTTTCAA
AAGAAGAAGGGAAAAAACAAGAGTGGTGGTCGCGGTAACATCAGAAAACATGTTGGTAGGG
TTAAGGGCAGGAAATACCTAACTGAGAAAGAATACAAAGAACTGTTGGAGAAGGGTCTTGA
TAGAGAAGAGCTTCTTGACTTGATTGATGACATCATAGACAAGAGGATAGGATTTCCTGAA
TGGAGTGACCCAGAGCTAAGTGATGATGATGATTCAAACTGGGACACATATGGTGATGAGT
TTGACCATCGTGATGTGGGTTTACAATCAAAACCCAAACAGAAAATCAAGGAAGCAACCCA
ATGTGTCATTCAGGTTCAGGAAGTTGTCCCAATTGATGAGGTTACAATTTCAAAAGCAACT
GAGTCTAAAGACTTTACTCAGCATTGGGGTAAGGAACCTGTGTTTGAATCATATGATTTTG
ACTGGACTGCCGAGGATGCACAAAACATACTACCTGAAAATTCTCGTTTAACTAAATGTGA
CTACATAGTCCTTGGTAGCCACATCCTCAAGCTTAGGCACATAATAACAACAGCACTTGAA
ACTAACAACTTCAGTGAGTTGCCTAAGGCAGTCTATGCACTTGATCATTTTGCCTGGGACC
ATGGTCTAGAGGGCTTCCTACAACGGATTAAATCCAAGAAGCCAAAAAACGTGAAAGGGGC
TCCCAAGGGAGCCCCGAAAAATGGCAACTAGACTACTGGCAAAAACTCCTTGAGGAACCAC
GGTCAAGACGATGTGTACCGGAAAGCTACCCATTATTAGGCCATCTAAAATTAGACAGACC
AATTTATGATGATAAAATACCCAAAGATGATCTGCTCAAATCCCTACCAGTTCCTGATTGG
CACGAATTTGAGAAATTTGGACCAACTGTGTGGGGACCACAAGCTTTCACCAAGTCTTTTG
AGAAATTTGATTATGCACCACCTTCAAATTTCTTTGAGCAGTATCCAGAATTTTGTAAATT
TGCTGATTGGGCATTTTATAAACAATATGGGTTTCTTGAAGATTCTCGTGTGATACATGTC 

 
 
 
853 F 
 
 
 
 
 
 
 
682 R 
5’RACE 
 
 
 
 
941 R 
 
 
 
 
 
 
 
896 F 
 
 
 
 
 
 
 
 
 
 
 
939 F 
 
 
 
 
 
 
 
 
 
940 F 
893 R 
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TCAGCCACTGAAAAGAATCAAGATTCCACGCCTGCCTATCCCAAGATGCTCGACTATGACA
CCGAAGCCGACTTCTTGGAAGCGAACGGTTGGTCACCTTATGTTTCTGAGATTTCAAGGAT
TATGTCCGGAGCAAAACCTAAGGTTCTCTGGTACTTATTCCTCAAAAAAGAAGTCATTAAA
GTTGACAAAATTGCTGACTCAGACATAAGACAAATCCTATGCAGTGACCCTATTTATGTTA
GGATAGGTGCGGTACTTGAAGGACATCAGAACCAGCTCATGAAGAACAATACTGAAAAAAC
CCATGGACAATGTGGTTGGACACCAATGGAAGGTGGCTTCACTTCTCGCATGAAACGCCTT
ATCTCCAAAGGCAATGCTCATTTCATCGAGTTTGATTGGACCAGATTTGATGGTACTATAC
CGTCTGATTTAATTCGACATATCAAGAAACTCCGCTGGAGTTTGGTTAATGCCGAACAGAG
GAGGAAATACCAAAAACTTCATGATTGGTATGTTGAAAACCTGGTCAATCGTACTGTGCTA
CTTCCATCTGGTGAGGTCACAGAGCAACATCGTGGTAATCCATCTGGCCAATTCTCCACCA
CCATGGATAACAATATGATCAACACGTGGCTTCAGGCTTTTGAATTTGCCTACTTCCATGG
ACCTAACAAACAGCTTTGGCTGAACTATGACACCTTGGTCTATGGTGATGATAGGCTATCA
ACAACACCACTAATTCCTGACAACTATGTTGAGAGAGTTGTACTAATGTACAAAGATGTCT
TTGGAATGTGGGTTAAGCCTGAAAAAGTCAAGATTTCAAACACCATTGTTGGTCTCAGTTT
TTGTGGCTTTACAGTAGATGAGAATCTTGAACCCATACCTACACAACCTGACAAATTGATG
GCCTCACTGCTTAAACCAGCATCCAAACTTCCGGATCTTGAATCACTCCATGGGAAACTCC
TGTGCTATCAGCTCCTCTCGGCCTTCCTACCTGAGGAACACCCTTTTAAGGTGTACGTCGA
GAGTTGTCTGGCTGCCACTAGCAGGCAGCTTCGTGATTCTGGCTTACCTACCAGATTCACA
GAAGAGCAAATGCATCGCATATGGAGGGGAGGACCAAAAAATTGCGATGGCTAGCAAGCCA
GGCAAAGATGTTACCGTTGAGGTTAAATCCTCCGGGACAAAATCAACATCCTCCAGGAGCA
AATCCCGGGGCCGAAACCGGAATGTCAAAATCACTGTCAACTCACAACCAAGGGCAAACCG
AAGGAGACGAAACAGACCTAACAATCGTGGTCGCAAGAGAGTTGAGGCTGTCGTTAAACGA
CAGCTCGATAAAGCTGGAGTCACAGGACCAAGGCCAGCGATTACCCAAACTGCTACATCTA
CTCTGGGGACTATTGGCCCGAATACTTCGGGCGCAGTAGAGCTGGAACTTGCAACCTTCAT
GAACCCATGCTTGGTCAAAGAATCAACAGCTTCCAACTCTTTTGGACCCATCCAAGCCTCT
GCAGCCCAATATAATCTCTGGAGAGTAACTAAAGCAGATGTACGGCTTACACCTATGGTAG
GCCCGTCTGCAATCTCTGGTACCGCTTACCGAGTATCCCTCAATACAGCGGGGACCCCTTC
ATCAACAGGATGGTCTGGCCTAGGCGCCAGAAAACACAAAGATGTTAGGGTGGGTGCTATG
TCAACTTTCAGAGTTACTGCGCGAGATATGGCGGGCCCACGCGAGGGTTGGTTTGTCACCA
ACACAAATGAATCAGGAGGTGAATCAGTAGGACCTACAATAGAGCTACATTCACTTGGTCA
AACACAATCCACCTACCAGAATGCTCCCTATTCTGGCCCTGTATTTCTTGTTGAGCTTCAC
TGCACATGGCAGTTTGCCAACTATAGTGCCAACCCAGCACTTGCATCCCTTGAGAAAGGAG
AGGATAAGGATGCTGAGATCAAATTTGAAGGTGAAGCAGGACAACCACTAACAATGACTAT
TTCACCACATTCCAACCTGGCTAGGGCTCTTGAAACAAAATCAGCAATGCCCTATGCCTCA
GGCGCGCGAGCTGCTGGTGAGTCAACATCTGACACCATATGGCAGATCGCTTCAACTGCAG
TAGATGCAGCATCAGTCATTGTTCCTCCGCCTTTCAATTGGCTCGTTAAAGGCGGCTGGTG
GTTTGTCAAGAAACTTGCAGGGCGCACTCGAACTGGTGAGCTTCAAGTCCAAGTCTTTGCA
AGCTATGAAGATGCACAGAACAACAGGCCTGCAATCTGCACAGGAGCTGCGCAAGGCAACA
ATGTACCAAGACTTCATAACGTGAAGTTTGTTCAGATGAATGCACCATCGACTGGTATGCC
ACCTGAGTCTGCAGTAGGTGCTTTCAGTGTGCCCTTACCAGATGCGCCAGCTGTTATTGGG
GATAACTTTAAATTAGTAACTGGTGTGTTCCAACAATACCAGCAGAACCCACCGTGCCCAA
CCTATTTGTACCACTCCTACAACAAAGTGGTTGTTAAAATAGGTGAGCACTATGATGAAAT
CAACTTTGTGTTCAGGGCAACAACACCCCACATCTGGCTCTCAGGTACTCAACCCAATTTT
CAGGTCTCCAGCAAACCCGGTGCGCTGGATTTCATGGAAGTTGGACAGAAGAGTAACAATC
AATACCTAACCCGGGGAGAAATTTGGGGCTATTCACAACATAAGATCTCTAGCACCAATGG
CCAAAGTGTGTTAACATTCTATGTTGGTCAGCTTAGCCGCCAGATACGCTACTCCAACTAC
AAACAGGTTAGGTATGCCTTCTCTGGTAATGGGTCAACAACTTCACTCAATCCAATTGCCA
CTGAGTATGATCTGCAGTTCCTTGAACTCAACCCAGGCCCCTGGTTCATTTTTGTCTCCAT
GCACTTTGTCAACAGTTCAATCCAAGGCTTTGTTGCTACTGAAAATCCATCAAGACCAACA
ATTGTGTGTCCTTCTGCTGCACAAAACCTGCTTGTGTGTACAGGAAACAATGTCGCCAGCA
CAATGGTGATTGATTTTCTCAGGACACCACCAACTTTCACACAACAGGCAGAACAAGCCTT
GTTTGATTTGCCACAGCCCATTGAAGATGGTTTTCTTCCAGATTCTGAAGATGAAGATTTT
TCTGATGATGATTCTCTTCTTGATGATGATGATTTTTTCCCTGCTTCTGATCAGCAGGTTT
TTTCCAGTCGCCAGGTCCTCTTCAGAGCAATGGTCAATGAGGGTTGGCCAGAGGATCAGGC
TGAGCGCCTTGCCAAACGCGCTCTCCCTACACTAAGTGAGAAAGAACTTAGGGATGAATTT
TTAGTCGGACTCGCTGACGGCTTCTCGCCACGTCAAGCAGCCGCAAATGCTCGTGAAAAGT
GTTCCCGAGGCCACGCCGAGTAGGATCGAGGGTACAGGTTCACTTTCACTCTTTTCTTTTC
TGTCTTTAACAATCACTTATTTAGTTAAGTTAGATTAGTTTAGGCAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAA 
 
 
 
 

 

 
 
 
 
607 F 
 
 
 
 
608 R 
625 F 
 
 
 
 
 
887 F 
 

 

 
 
 
 
895 F 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060 R 
 
 
 
 
 
 
 
894 F 
3’ RACE 
 

888 R 
626 R 
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A.3 Complete capsid sequence of CaAstV Huntingdon/ 2014/UK KP404151  

Primers used for amplification and sequencing are highlighted. All primers except 
626R were designed specifically for this analysis, and are numbered according to 
the Goodfellow Lab IGUC system. The start codon (ATG) of ORF2, and the stop 
codon (TAG) of ORF2 are highlighted in bold. 
 
ATGGGAAACTCCTGTGCTATCAGCTCCTCTCGGCTTTCCTACCTGAGGAACACCCCTTTAA
GGTGTATGTCGAGAGTTGTCTGGCTGCCACTAGCAGGCAGCTTCGTGATTCTGGTTTACCA
ACCAGATTCACAGAAGAGCAAATGCATCGCATATGGAGGGGAGGACCAAAAAATTGCGATG
GCTAGCAAGCCAGGCAAAGATGTTACCGTTGAGGTTAAATCCTCCGGAACAAAATCAACAT
CCTCCAGGAGTAAATCCCGGGGCCGAAACCGGAATGTCAAAATCACTGTCAACTCACAACC
AAGGGCAAACAGAAGGAGACGAAACAGACCTAACAATCGTGGTCGCAAAAGAGTTGAGGCT
GTCGTTAAACGACAACTCGATAAGGCTGGAGTCACAGGACCAAGACCAGCGATCACCCAGA
CTGCTACATCTACTCTTGGGACTATTGGCCCGAATACTTCGGGTGCAGTAGAGCTGGAACT
TGCAACTTTCATGAACCCATGCTTGGTCAAAGAATCAACAGCTTCCAACTCTTTTGGGCCC
ATCCAAGCATCTGCAGCCCAATACAACCTCTGGAGGGTAACTAAAGCAGAAGTCCGACTCA
CACCTATGGTAGGTCCCTCTGCCATCTCTGGTACTGCTTATCGAGTCTCACTCAATACAGC
AGGAACACCATCCTCAACAGGATGGTCTGGACTAGGTGCCAGAAAACACAAAGACGTGAGA
GTGGGCTCCATGTCCACTTTCAGGGTCACAGCCAGAGATATGGCCGGACCACGTGAGGGCT
GGTTTGTTACTAACACTAATGAGTCAGGAGGTGAGTCAGTAGGTCCCACCATCGAACTGCA
CTCGCTTGGTGAAACTAAGTCCACCTATCAAAATAGTTCATACACAGGGCCTGTCTTCCTC
GTTGAGCTACATTGTACTTGGCAATTTACCAACTACAGCGCCAATCCAGCTTTAGCTCAAC
TTGAGAAAGGAGAGGACAGGGATGCCCAAATCAAATTTGAAGGGGATGCTGGACAACCCCT
CAAGATGGTCATCCAACCACATACGGCTTTTGCGCGGGCGCTTGAAGCAAGATCTACAGTC
CCATATTCTAATGGGTCCCGTGCTGCCGGTGAGTCCACCTCTGACACAATTTGGCAAATAG
CGTCGACTGCAGTTGACGCAACCTCTGTTGTTGTGCCACCACCTTTTAACTGGCTCATAAA
AGGTGGGTGGTGGTTCATCAAGAAACTTGCTGGCAGGGCCCGTACAGGCGAGATTGAGGTC
CAAGTCTATGCAAGTTATGAGGATGCACAAAACAATAGGCCAGCAATATGTACTGGCCCGG
TGTCTGGTGAAAACACACCGCGACAACACACTGTCAAGTTTGTGCAAATGAACTCTCCATC
CACAGGTATGCCACCCGAGTCCTCTCTCGGAGCGTACTCATTGAACATGCCAGAAACACCA
ACAATTACTAATGAATTTATGCTTGTCACTGGGTTTAACCAGCCTTACCAAGAAAACCCGC
CCTGTCCTACGTACATCTACAAGGACGATGTTAAAGTAGTTGTCAAGTGTGATACCAACTA
TGATGAAGTTAATTTCTTCTTCAAGGCAGCGCATCCACATGCGTGGCTTGTTGGTTCCGCA
GGAAACTGGACGGGTTCTACCAAGCCCGACTTCTTAACATTCATGGAAGTTGGCATAAGAA
ACAACGCAGGCAACTACAACAAGGCTGGAAACCTTTGGGGCTACTCTCAGCATAAGATCCA
GAGTGGAGACACAACCAACATCTTGACTTTCTATGTTGGGCAATTGACAAGCACCATCAGA
ATACAAAACCCTAAGAAACAGAGGTACCAATACAGAGGTTCAGGCTCTACAACTCTCCTTG
AGCCAACAGGACCTGAAACTACACCTAGGACTTTTGAACTTAACCCAGGCCCGTGGATTGT
CTTCGTTGCCATACATTCTATCAGTGGCAACCCACAAGGTTTTGTTATGAGGACTAACCCA
TCAAGGCCAACTATCACTTGCCCAGCTGCAGCACAAAACATAGCAGTCTGTGTCAACACAA
ACACTGACAGCATCATGTCGGTGTTGTATCAAAGGGTGCAACCAACATCAATTGTGAATGA
AGATGTAGTAAATTATGATCTGCCACATCCCATTGAAGATGGTTTCCTTCCAGATTCTGAA
GATGAAGACTTTTCTGATGATGACTCTCTTCTTGATGATGATGATTTTTTCCCTGCTTCTG
ACCAGCAGGTTTTTTCCAGTCGCCAGGTCCTCTTTAGAGCAATGGTCAATGAGGGTTGGCC
AGAGGACCAGGCTGAGCGCCTTGCCAAACGCGCTCTCCCTACACTAAGTGAGAAAGAACTT
AGGGATGAATTTTTAGTCGGACTTGCTGACGGCTTTTCGCCACGTCAAGCAGCCGCAAATG
CTCGTGAAAAGTGTTCCCGAGGCCACGCCGAGTAG 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
965 F 
 
887 F 
 
 
 
 
 
 
 
 
959 F 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
960 R 
 
626 R 
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A.4 Complete capsid sequence of CaAstV Braintree/2014/UK KP404152 

Primers used for amplification and sequencing are highlighted. All primers except 
626R were designed specifically for this analysis, and are numbered according to 
the Goodfellow Lab IGUC system. The start codon (ATG) of ORF2, and the stop 
codon (TAG) of ORF2 are highlighted in bold. 
 
ATGGGAAACTCCTGTGCTATCAGCTCCTCTCGGCTTTCCTACCTGAGGAACACCCTTTCAA
GGTGTATGTCGAGAGTTGTCTGGCTGCCACTAGCAGGCAGCTTCGTGATTCTGGTTTACCT
ACCAGGTTCACAGAAGAGCAAATGCATCGCATATGGAGGGGAGGACCAAAAAATTGCGATG
GCTAGCAAGCCGGGCAAAGATGTCACCGTTGAGGTTAAATCCTCCGGCACAAAATCAACAT
CCTCCAGGAGCAAATCCCGGGGGCGAAACCGGAATGTCAAAATCACTGTCAACTCGCAACC
AAGGACAAACAGGAGGAGACGAAACAGACCTAACAATCGTGGTCGCAAGAGAGTTGAGGCT
GTCGTTAAACGGCAGCTCGATAAGGCTGGAGTCACAGGACCAAAACCAGCGATCACCCAGA
CTGCTACATCTACTCTGGGAACTATTGGCCCGAATACTTCGGGTGCAGTAGAGCTGGAACT
TGCAACCTTCATGAATCCATGTCTTGTCAAAGAGTCAACAGCTTCCAACTCTTTTGGGCCC
ATTCAAGCCTCTGCGGCCCAGTACAATCTCTGGAGGGTGACCAAAGCAGAAGTTCGACTCA
CACCTATGGTGGGACCATCTGCCATCTCTGGTACTGCTTATCGTGTTTCGCTTAACACAGC
AGGAACACCATCTTCAACAGGATGGTCTGGACTAGGTGCCAGGAAACACAAAGACGTGAGA
GTGGGCTCTATGTCTACTTTCAGAGTCACAGCCAGGGATATGGCTGGCCCACGTGAGGGCT
GGTTCGTCACCAACACTAACGAGTCAGGAGGCGAATCTGTGGGTCCCACCATTGAGTTGCA
CTCGCTAGGTGAAACCAAATCCACCTATCAAAACAATTCTTATACAGGACCTGTTTTTCTT
GTTGAGCTACATTGTACTTGGCAGTTTACCAACTATAGTGCTAATCCAGCTTTAGCTCAGC
TCGAGAAAGGAGAAGACAGGGATGCACAGATCAAATTTGAAGGCACCGCTGGGCAGCCATT
AACAATGACTATTGCACCACATTCAGCATTTGCTCGTGCTCTGGAGACAAAATCAACAATG
CCCTTATTCCAAATTCTTAGGGCAGCTGGAGAGTCCACTTCAGACACTATCTGGCAAATAG
CTTCAACCGCAGTAGATGCTGCCTCAGTTGTGGTGCCACCACCCTTCAATTGGCTCATTAA
GGGTGGCTGGTGGTTTGTAAAGAAAATCGCTGGTCGCACAAGGGCTGGAGAACTCCAGGTC
CAAGTCTATGCCAGCTATGAGGATGCTCAAAACAACAGGCCAGCTATCTGCACCGGCTCAG
CAGAAGGTAGTAATGTTCCTAGACTCCACAATGTCAAATTTGTTCAAATGAATGCGCCTTC
GACTGGGATGCCACCTGAGTCTGCATTAGGTGCTTTCAGTCTGCCACTCCCAGACACGCCA
GCTACTATTGGGGATAGCTTTAGGCTTGTAACAGGGGTTTACCAACAATTCCAACAAAACC
CTCCTTGCCCTACATATGTCTANCATAGTACCAACAAAATGGTTATCAAAATTGGCACTCA
CTATGATGAGTTGAATTTTGTATATAGGGCAACTACACCTCATATCTGGCTTGCTGGAGGA
CCTCAAACCTGGCAGGTTGCTGATAAACCACCTGAGTTGGAGTTTATGGAGATTGGTATTA
AATCAGGTTCCACCTACCTTAAACGTGGTATTGTGTGGGGCTACTCACAACATAAGATAGT
CAGTGGAAGCGAACTAAGCGTTCTTACCTTCTATGTGGGTAAATTGGACAACCAAATACGC
TACACCAACTACAAGAAAGTTCGCTATCTCTTTACAGGAACAGGCCCTAGCCTCAACCTAA
CACCAGATGCAACAACCACTGAATTACAGGTGCTCGAGCTCAACCCTGGGCCATGGTTTGT
GTTTGCTTCTTTGCATCTTGTCAATTCTTCTCAGCAACAAAATTTTATTGCAACTGAGAAT
ACAGACAGACCTACAATAGTCTGCCCTGCTGCAGCTCACCAATTGTTTGTTTGCACCAACA
ACAATGTTGCCAGCACAATTGTCATTGATTTCTTGAGAACACCACCAAAAATTGCACAACA
AGCGGAGCAGGTCCTGTTTGATTTGCCACAGCCCATTGAAGATGGTTTTCTTCCAGATTCT
GAAGATGAAGATTTTTCTGATGATGATTCTCTTCTTGATGATGATGATTTTTTCCCTGCTT
CTGATCAGCAGGTTTTTTCCAGTCGCCAGGTCCTTTTCAGAGCAATGGTCAATGAGGGTTG
GCCAGAGGACCAGGCTGAGCGCCTTGCCAAACGCGCTCTCCCTACACTAAGTGAGAAAGAA
CTTAGGGATGAATTTTTAGTCGGACTTGCTGACGGCTTCTCACCACGTCAAGCAGCCGCAA
ATGCTCGTGAAAAGTGTTCCCGAGGCCACGCCGAGTAG 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
965 F 
 
887 F 
 
 
 
 
1060 F 
 
 
 
 
 
 
 
 
 
 
 
1408 F 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
626 R 


