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Disinhibition, the inability to inhibit inappropriate behavior, is seen in frontal-temporal degeneration, Alzheimer’s disease, and
stroke. Behavioral disinhibition leads to social and emotional impairments, including impulsive behavior and disregard for
social conventions. The authors investigated the effects of lesions on behavioral disinhibition measured by the Neuropsy-
chiatric Inventory in 177 veterans with traumatic brain injuries. The authors performed voxel-based lesion-symptommapping
using MEDx. Damage in the frontal and temporal lobes, gyrus rectus, and insula was associated with greater behavioral
disinhibition, providing further evidence of the frontal lobe’s involvement in behavioral inhibition and suggesting that these
regions are necessary to inhibit improper behavior.
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Disinhibition, the inability to inhibit inappropriate behavior,
involves impulsivity, poor risk assessments, and disregard for
social conventions.1 Disinhibition interferes with the ability to
inhibit automatic behaviors, urges, and emotions and impedes
goal-directed behavior, such as resisting temptation, delaying
gratification, and controlling impulses,2–4 and therefore can
lead to reduced social acceptance. It is not knownwhether the
same mechanisms are responsible for both social inhibition
and lower levels of inhibitory control. Dimitrov et al.5 stated
that social inhibition may be at the top of the control versus
automatic continuum, whereas inhibition of simple move-
mentmay be at the bottom. In this paper, we focused on social
inhibition rather than motor responses.

Evidence indicates that the right inferior frontal cortex is
important in behavioral inhibition, including cognitive pro-
cesses, social behavior, and inhibition of motor responses.
Damage to the right inferior frontal cortex lowers performance
in executive control tasks, most likely by disrupting inhibition.6

The left prefrontal cortex and anterior cingulate cortex are also
involved in inhibition. The left prefrontal cortex may help
prepare upcoming behavior, maintain an appropriate task set,
and correct behavior following an error.7,8 The anterior cin-
gulate cortex is involved in conflict detection and evaluative
processes indicating when control needs to be more strongly
engaged.8 A voxel-based morphometry study of patients with
Alzheimer’s disease found that greater behavioral disinhibition,
as measured using the Neuropsychiatric Inventory (NPI),9

a structured, caregiver-based interview,was strongly associated
with reduced gray matter volume in the right middle frontal
and precentral gyri and bilateral cingulate.10

We used the NPI to record observations of behavioral
disinhibition in a large sample of patients with penetrat-
ing traumatic brain injury (pTBI). As lesion studies pro-
vide complementary information to neuroimaging studies,
we performed a whole-brain voxel-based lesion-symptom
mapping analysis (examining voxel-by-voxel the relation-
ship between NPI disinhibition scores and lesion locations)
to investigate the brain regions responsible for behavioral
inhibition. We predicted that areas in the brain associated
with this measure would include frontal regions in the right
hemisphere, the anterior cingulate cortex, and precentral
gyri.

METHODS

Subjects
Participants were 177 male veterans who received TBIs
while serving in the Vietnam War between 1967 and 1970.11

They were drawn from phase III (2003–2006) of the W.F.
Caveness VietnamHead Injury Study registry11 conducted at
the National Naval Medical Center in Bethesda, MD, 33–39
years after injury. Most of the injuries resulted from low-
velocity penetrating fragments (missile fragments or gun-
shots). All veterans with TBI for whom we had NPI and CT
data were included. The veteran cohort offered a number of
methodological advantages including its large sample size,
demographic uniformity, and access to preinjury data to
compare with postinjury performance. All study procedures
were approved by the Institutional Review Board of the
National Naval Medical Center. All subjects gave written
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informed consent in accordance with the Code of Ethics of
the World Medical Association (Declaration of Helsinki).

Procedure
Neuropsychological functions, including intelligence, emo-
tional intelligence, empathy, and depression, were assessed in
a battery of tests administered over 5–7 days. The NPI was
part of this testing, which was designed to determine the de-
gree of reported psychopathology in patients with brain dis-
orders.9 It assesses behavioral disturbances/neuropsychiatric
symptoms in 10 areas: delusions, hallucinations, agitation,
depression, anxiety, euphoria, apathy, disinhibition, irritabil-
ity, and aberrant motor behavior. The questions pertain to
changes in the patient’s behavior since the onset of the illness
or injury. The examiner read the questions to a caregiver fa-
miliar with the patient’s behavior. Caregivers were generally
spouses, partners, or adult children; they rated the partic-
ipant’s symptom frequency and severity. Frequency scores
range from 1 to 4 (where 1 = occasionally, less than once per
week; 2 = often, about once per week; 3 = frequently, several
times per week but less than every day; 4 = very frequently,
once or more per day or continuously). Severity scores range
from 1 to 3 (where 1 = mild, 2 = moderate, 3 = marked). Each
symptom’s score is the product of the frequency times the
severity for that particular behavior, with a maximum score of
12. We used the scores of the disinhibition item, which asks
“Does the patient seem to act impulsively without thinking?
Does he do or say things that are not usually done or said in
public? Does he do things that are embarrassing to you or
others?” Caregivers were asked to provide the information
because patients may distort or not be fully aware of their
behavior, may not behave abnormally in the presence of the
clinician, and may not be able to grasp scaling concepts nec-
essary for determining severity and frequency.9,12

In addition, we used pre- and postinjury general intel-
ligence scores from the Armed Forces Qualification Test
(AFQT-7A, U.S. Department of Defense, 1960). Scores on this
test correlate highly with the WAIS.13,14 We measured emo-
tional intelligence with the Strategic Emotional Intelligence
items on the Mayer-Salovey-Caruso Emotional Intelligence
Test.15 We measured emotional empathy with the Balanced
Emotional Empathy Scale.16 Finally, we measured lifetime
prevalence of depression using the Structured Clinical In-
terview for DSM-IV Axis I Disorders (SCID-I/NP).17

CT and Lesion Identification
Because many of the pTBI veterans had intracranial metal
fragments, CT scans rather than MRIs were performed.
Axial CT scans were acquired without contrast on a GE
LightSpeed Plus CT scanner at the Bethesda Naval Hospital.
Images were reconstructed with an in-plane voxel size of
0.430.4 mm, an overlapping slice thickness of 2.5 mm, and
a 1-mm slice interval. Lesion volume was calculated by
summing the traced areas andmultiplying by slice thickness.

Lesion locationwas determined bymanual tracing on each
slice using the “Analysis of Brain Lesion” (ABLe) software18

implemented in MEDx v3.44. Similar to the methodology
used in many other lesion analysis studies,19–26 the lesion
tracing was performed manually on each slice in native space
by a neuropsychiatrist with clinical experience in reading
CT scans (VR) and reviewed by the principle investigator
who was blind to the results of the clinical evaluation and
neuropsychological testing (JG), enabling a reliable consensus
regarding lesion boundaries. These boundaries were de-
termined by judging the demarcation made between the
hypointensity of the lesions and the normal brain. Scans
were registered to a template in Montreal Neurological In-
stitute space, using the AIR algorithm with a 12-parameter
affine fit.27 Voxels inside the traced lesion were excluded
from the registration. Registration accuracywas verified using
MEDx ABLe.

Statistical Analysis
Behavioral Analysis. We computed means and standard devi-
ations for demographic information and neurobehavioral scores
using IBM SPSS 20 (www.spss.com). We also performed two-
tailed Spearman’s correlations on NPI disinhibition scores with
pre- and postinjury IQ, Mayer-Salovey-Caruso Emotional In-
telligence Test, Balanced Emotional Empathy Scale, and de-
pression. An a level of 0.05 was used.

Lesion Analysis.Wecreated a lesion densitymap to show the
number of veterans with pTBI who had damage at each
voxel by overlaying their individual normalized lesion maps.
Next, we used the NPI disinhibition scores and normal-
ized lesion images to perform voxel-based lesion-symptom
mapping using the toolbox in MEDx. At each voxel, behav-
ioral scores were compared for those patients who had a le-
sion at that voxel versus those who did not, producing a
t-statistic for each voxel. We used a one-tailed t test with a
false discovery rate correction (q of 0.05) for multiple com-
parisons28 and a minimum cluster size of 10 voxels, and
we limited the analysis to voxels damaged in at least four
veterans.29 Gray matter location was obtained from the
Automated Anatomical Labeling atlas.30 To investigate the
potential effect of brain volume loss, we performed in-
dependent sample t tests on percentages of loss between the
resulting lesion groups.

RESULTS

Behavioral Results
Nineteen percent of the patients with pTBIs were rated by
their caregiver as exhibiting behavioral disinhibition. Table 1
displays the means of the demographic information and
neurobehavioral scores.

A significant negative correlation was found between dis-
inhibition and postinjury Armed Forces Qualification Test
scores (rs=20.23, p=0.003), meaning that disinhibition was
associated with lower postinjury intelligence scores. To rule
out the possibility that this association reflected a preinjury
tendency toward disinhibition, we performed a Spearman’s
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correlation between disinhibition and preinjury Armed
Forces Qualification Test and found no significant correla-
tion (rs=20.08, p=0.28). A marginal correlation was identi-
fied between disinhibition and depression (rs=0.15, p=0.056),
but no significant correlation was found between disinhibi-
tion andMayer-Salovey-Caruso Emotional Intelligence Test
scores (rs=20.12, p=0.14) or between disinhibition and Bal-
anced Emotional Empathy Scale scores (rs=0.06, p=0.42).

Voxel-Based Lesion-Symptom Mapping Results
The lesion density map is shown in Figure 1. The maximum
overlap occurred in the prefrontal areas in 28 veterans.

The voxel-based lesion-symptommapping analysis revealed
an association between disinhibition and lesioned voxels in the
following regions: mainly right orbitofrontal cortex, bilateral
insula, right temporal lobe, left frontal, precentral and post-
central regions, and bilateral gyrus rectus (Figure 2; Table 2).
High t scores (warm colors) indicate that lesions in these areas
had a highly significant effect on disinhibition.

To investigate whether the voxel-based lesion-symptom
mapping results could be partially caused by differences in
brain volume loss, we performed independent t tests com-
paring percentages of loss between the two resulting lesion
groups. Veterans with damage in lesion areas significant for

disinhibition (N=95) had a significantly greater percentage
of volume loss than those with damage only in other areas
[N=82; 4.364.2% versus 1.561.3%; t(116) = 6.09, p,0.001].
To investigate the potential impact of this, we performed
a Spearman’s correlation between percentage of brain vol-
ume loss and disinhibition in all veterans with pTBIs and
found a marginally significant correlation (rs=0.14, p=0.06).

DISCUSSION

We used a whole brain approach to investigate specific brain
regions responsible for behavioral disinhibition in a large
sample of patients with pTBIs. Nineteen percent of our pa-
tients with pTBIs were rated by their caregiver as exhibiting
behavioral disinhibition. This rate is similar to that for pa-
tients with Alzheimer’s disease,10,31 lower than the rate for
a younger group of patients with severe diffuse axonal or focal
TBI,32 and higher than the rate for patients with Parkinson’s
disease33 or corticobasal degeneration.34

Our voxel-based lesion-symptom mapping analysis re-
vealed an association between greater behavioral disinhi-
bition and the following regions: mainly right orbitofrontal
regions, bilateral insula, right temporal lobe, left frontal,
precentral and postcentral regions, and bilateral gyrus rectus.
Other patient studies showed similar findings. For example,
patients with ventral frontal lesions had greater disinhibition
than patients with nonventral frontal lesions.35 In patients
with frontotemporal dementia, a positive correlation between
NPI disinhibition and glucose hypometabolism in the bilateral
ventromedial orbitofrontal cortex/gyrus rectus, was found.36

Similarly, in individuals with mild cognitive impairment or
dementia, a positive association between NPI disinhibition
and bilateral orbitofrontal cortex atrophy was revealed.37 In
a voxel-based morphometry study of patients with fronto-
temporal dementia, NPI disinhibition was associated with
atrophy in regions similar to those we found, including the
bilateral orbitofrontal cortex, bilateral inferior frontal cortex,
bilateral insula, and right middle temporal regions.38 Another
study of patients with behavioral variant frontotemporal de-
mentia and Alzheimer’s disease found that NPI disinhibition

TABLE 1. Means 6 Standard Deviations for Demographic
Information and Neurobehavioral Measuresa

Characteristic pTBI (N=177)

Age (years) 58.4463.13
Education (years) 14.8462.55
Preinjury AFQT percentile 61.45625.48
Postinjury (phase III) AFQT percentile 53.27624.71
MSCEIT strategic emotional intelligence 88.80612.00
BEES total Z scores 0.7261.08
SCID-I/NP lifetime prevalence of major
depression

1.4160.79

NPI disinhibition frequency x severity 0.5461.39

a AFQT, Armed Forces Qualification Test; BEES, Balanced Emotional Empathy
Scale; MSCEIT, Mayer-Salovey-Caruso Emotional Intelligence Test; NPI, Neu-
ropsychiatric Inventory; pTBI, penetrating traumatic brain injury; SCID-I/NP,
Structured Clinical Interview for DSM-IV Axis I Disorders (nonpatient version).

FIGURE 1. Lesion Density Mapa

a Axial slices. Color indicates the number of lesions overlapping at each voxel, where warmer colors indicate more veterans had lesions at those
locations. The greatest overlap was found in the prefrontal regions, with 28 veterans having lesions in these areas (shown in red). Slice numbers are
displayed below each slice. The left is on the viewer’s right.

jnp in Advance neuro.psychiatryonline.org 3

KNUTSON ET AL.

http://neuro.psychiatryonline.org


was associated with atrophy in the bilateral orbitofrontal cortex
and left temporal pole.39 The same study found that atrophy
in the bilateral orbitofrontal cortex, subgenual areas, medial
prefrontal cortex, and temporal pole covaried with errors in
inhibiting prepotent verbal responses.

Our results are consistent with the involvement of the
right orbitofrontal cortex and inferior frontal cortex in dis-
inhibition, as demonstrated by the above studies, and sup-
port this area’s importance in self-control3 and response
stopping.40 They add to evidence that the ventral frontal
cortex is crucial not only in motor response inhibition but
also in the control of social behavior. Dillon and Pizzagalli41

suggested that the right ventrolateral prefrontal cortex may
support a general inhibitory process. In addition to the right
orbitofrontal cortex/inferior frontal cortex, we found frontal
regions in the left hemisphere, including inferior, middle,
and superior frontal areas, that when damaged were asso-
ciated with increased disinhibition. This is consistent with
the left inferior, middle, and superior frontal cortex activa-
tion found in the incongruent versus neutral condition in

a Flanker task,42 although those authors also found similar
regions on the right. Aron et al.6 suggested a functional di-
vision in inhibition where the left prefrontal cortex’s role is
maintaining goals/sets, the anterior cingulate cortex’s is to
detect conflict when the current condition does not match
those goals, and the right inferior frontal cortex’s is to sup-
press irrelevant responses.

The bilateral gyrus rectus involvement that we found is
consistent with a study showing that patients with gyrus
rectus lesions performed poorly on the Trail Making B test,
which is considered an inhibition task.43

In addition to frontal areas, we found lesioned areas in the
bilateral insula associatedwith disinhibition. Insula activation
has been found during a Flanker task42 and a response in-
hibition task.7 The insular cortex has been implicated in task-
set maintenance and top-down control.44 We also found that
damage to the right temporal lobe, including the pole, was
associated with disinhibition. Consistent with this, patients
with temporal variant frontotemporal dementia with atrophy
in either temporal lobe exhibited disinhibition.45 In addition,

disinhibition, as measured
by the Frontal Systems Be-
havior Scale, was associated
with gray matter loss in the
right medial and superior tem-
poral lobe in patients with
frontotemporal dementia.46

The temporal lobe is also in-
volved in inhibiting prepotent
verbal responses.39

Motor inhibition tasks of-
ten activate parietal areas, but
we did not find an association
between parietal damage and
disinhibition. We had fewer
patients with damage to pa-
rietal regions and therefore
had less power to detect an
association there; however,

FIGURE 2. Voxel-Based Lesion-Symptom Map for Disinhibitiona

a Axial slices. Color indicates brain regions with a significant association between lesion location and Neuropsychiatric Inventory disinhibition [one-
tailed t test, q(false discovery rate) = 0.05, minimum cluster size = 10 voxels], with yellow indicating the highest association. The voxel-based lesion-
symptom mapping analysis was limited to those voxels where at least four veterans had damage. Slice numbers are displayed below each slice. The
left is on the viewer’s right.

TABLE 2. Voxel-Based Lesion-Symptom Mapping Resultsa

Location x y z Volume (Voxels) Hemisphere Z

Inferior, middle, and superior
orbitofrontal; middle and superior
temporal and temporal pole; gyrus
rectus; insula

42 16 –18 3278 R 6.90

Insula; inferior, middle, and superior
frontal; inferior triangular frontal;
supplementary motor area; Rolandic
operculum; precentral

–20 12 28 4663 L 6.26

Middle and inferior temporal lobe,
including temporal pole

58 2 –20 182 R 3.94

Gyrus rectus; caudate; superior
orbitofrontal

–12 22 –10 22 L 4.79

Inferior frontal operculum; precentral –58 12 26 15 L 4.00
Postcentral; precentral –34 –28 50 22 L 3.62
Precentral –32 –14 56 12 L 3.62
Middle frontal –36 14 54 11 L 2.71

a AAL labels of damaged brain regions associated with greater NPI disinhibition. x, y, z = Talairach coordinates. L: left;
R: right.
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inferior parietal lobe activation during response inhibition has
been shown to be stronger in women,47 whereas our sample
included only men. In addition, no impairment was found in
Stop-Signal task performance during disruptive transcranial
magnetic stimulation over the right parietal region,48 sug-
gesting that it may not be crucial for inhibition. Alternatively,
long-range connectivity between the frontal and parietal
regions may have been disrupted in our patients with TBI,
degrading the ability of parietal regions to inhibit behavior.

The strengths of our study include our whole brain
analysis that was not restricted to a priori regions of interest,
our large sample size, our patients with focal, rather than
diffuse, lesions, and our homogeneous study population;
however, this homogeneity (using only oldermen)makes the
generalizability of the results to other populations uncertain.
In addition, CT scans have less detail than MRIs, and the
AIR registration process used in ABLe is a 12-parameter
linear fit, which can lead to imperfect registration. In addi-
tion, pTBI can create positional shifts in brain tissue, as well
as more chronic changes due to contraction in glial scars or
the osmotic enlargement of fluid-filled spaces.

In conclusion, to our knowledge, this is the largest study of
the neural correlates of behavioral disinhibition associated
with focal brain lesions. Disinhibition is a debilitating problem
leading to impulsive and socially inappropriate behavior. The
identification of relationships between behavioral disinhibi-
tion and lesion location can help clinicians predict behavioral
risk and develop coping strategies for patients and caregivers.
On the positive side, the majority of veterans with pTBIs did
not exhibit disinhibited behaviors. It is important to note that
we have taken a snapshot in time and do not know whether
they were disinhibited for a while after their injury but have
since recovered.
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