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ABSTRACT: A key step in many approaches to crystal structure prediction (CSP) is the initial generation of large numbers
of candidate crystal structures via the exploration of the lattice energy surface. By using a relatively simple lattice energy approxi-
mation, this global search step aims to identify, in a computationally tractable manner, a limited number of likely candidate
structures for further refinement using more detailed models. This paper presents an effective and efficient approach to modeling
the effects of molecular flexibility during this initial global search. Local approximate models (LAMs), constructed via quantum
mechanical (QM) calculations, are used to model the conformational energy, molecular geometry, and atomic charge distributions
as functions of a subset of the conformational degrees of freedom (e.g., flexible torsion angles). The effectiveness of the new
algorithm is demonstrated via its application to the recently studied 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile
(ROY) molecule and to two molecules, β-D-glucose and 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-
yl)ethane-1,2-dione, a Bristol Myers Squibb molecule referenced as BMS-488043. All three molecules present significant challenges
due to their high degree of flexibility.

1. INTRODUCTION

The crystal structure adopted by a molecule influences many
solid state properties that significantly affect its utility, including
solubility, dissolution rate, bioavailability, hygroscopicity,
compactibility, tabletability, shock-sensitivity, and color.1 This
represents both a challenge and an opportunity: the emergence
of unanticipated crystal forms, such as polymorphs or solvates,
is a significant risk in the fine chemical and pharmaceutical
industries; on the other hand, the ability to devise new crystal
forms, such as cocrystals or salts, with improved properties
(e.g., bioavailability), is highly desirable.
Computational crystal structure prediction (CSP) aims to

predict the crystal structures that a given molecule or set of
molecules can form, starting from the corresponding molecular
diagram(s) only. CSP has made considerable advances in the
past decade,2−4 as evidenced, for example, by the Cambridge
Crystallographic Data Centre’s “blind tests”. In the two most
recent (fourth and fifth) blind tests5,6 correct predictions were
made for every molecular system, with the exception of a

hydrate that was predicted correctly, with the exception of
hydrogen atomic positions. These and other studies have
demonstrated that predictions for small molecules are now
becoming almost routine. Furthermore, improvements in
prediction capabilities have also been demonstrated for larger
molecules of pharmaceutical size,7−10 and for hydrates,11

cocrystals,12−15 and salts.16,17

Based on thermodynamic considerations, the crystal forms
that are most likely to appear in nature are those corresponding
to low-energy minima in the free-energy surface with respect to
all variables determining the structure of an infinite periodic
crystal lattice. These comprise the unit cell geometry and the
positions, orientations, and conformations of all chemical
entities (e.g., molecules or ions) within the unit cell. The stable
crystal form is the one corresponding to the global free-energy
minimum, whereas metastable forms typically correspond to
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local minima within a few kJ mol−1 of the global minimum.18

However, in view of the theoretical and computational diffi-
culties of determining free energies, most current CSP methods
employ lattice energy or enthalpy as surrogate measures for the
minimization.
1.1. Two-Stage CSP Methodologies. The complexity of

CSP mainly arises from the fact that the lattice energy surface
exhibits a very large number of local minima, the correct
identification of which tends to be very sensitive to the accuracy
of the lattice energy computations. Accordingly, practical CSP
methods involve two distinct steps: (1) a global search stage
which aims to identify the low-energy minima by performing an
extensive search of the decision space using moderately
accurate and relatively inexpensive lattice energy computations;
and (2) a structure refinement stage during which the struc-
tures of lower energy identified by the global search are further
refined using a more accurate, but also more computationally
expensive, lattice energy model.
The success of the above two-stage approach is predicated on

ensuring that no physically relevant structure is missed either
because it is not identified by the global search, or because it is
determined by the latter to have such a high lattice energy that
it is not selected for further refinement. Thus, the more
accurate the lattice energy model being used during stage 1, the
fewer the structures that need to be refined during stage 2. On
the other hand, using too expensive a lattice energy model
at stage 1 may render the whole algorithm impracticable given
that, typically, hundreds of thousands or millions of structures
need to be generated and evaluated. Accordingly, this paper
is specifically concerned with techniques for improving the
effectiveness and accuracy of the global search stage in identi-
fying all low-energy structures, while staying within acceptable
computational limits.
It is worth noting that the two-stage approach was applied

by all four groups who achieved successes in the most recent
(fifth) blind test of crystal structure prediction,6 using one
of three different codes for initial structure generation.
The program GRACE19 uses a force field that is custom-
parametrized for each molecule, taking into account a full
range of variation in bonds, angles and torsions, as well as
charges and repulsion/dispersion parameters to model inter-
molecular interactions; the starting points for local minimization
are generated via a parallel-tempering approach that seeks out
low-energy regions of the decision variable space. The program
UPACK20−23 allows for several types of potential energy
function and generates starting points across the whole decision
variable space, using either random numbers or a grid of
points. Finally, two of the four successful groups used the
program CrystalPredictor24,25 which is described in more detail
in section 1.2.
There are other approaches in addition to those above that

can be used for the generation of crystal structures. Some
workers have applied a genetic algorithm, combined with local
minimizations, to home in on low-energy structures.26 Other
researchers have dispensed with a potential energy function
altogether (cf. the use of close packing/volume minimization to
generate structures in MOLPAK27) or have supplemented
energy calculations with knowledge of common interactions or
packing motifs (cf. the program Promet28 or the work29 of
Thakur et al.). Metadynamics has also been used30 to explore
the potential energy surface of a molecule in the crystal phase
without a variable-space spanning generation of points. How-
ever, none of these alternate approaches has yet demonstrated

successful predictions for a wide range of molecules, especially
under blind test conditions.

1.2. CrystalPredictor Algorithm. This paper aims to
present a significantly improved version of the CrystalPredictor
algorithm24,25 for the global search stage of CSP methodol-
ogies (cf. section 1.1). This section presents a brief outline
of the original algorithm to the extent that it is necessary
to understand the current paper. This is followed by an analysis
of some aspects that are the focus of the proposed improve-
ments.
CrystalPredictor performs an extensive exploration of the

lattice energy surface by using low-discrepancy Sobol
sequences.31 These are sequences of points chosen determin-
istically to ensure the best coverage of the space of decision
variables that is achievable using any given number of points.
In particular, they result in more uniform coverage than
pseudorandom number generation, and they are better than
a uniform grid in that each generated point corresponds to
a unique value for each and every decision variable.
Furthermore, a Sobol sequence can be restarted from any
point, taking into account all previously generated structures;
this makes it possible, if necessary, to extend the scope of
an already performed global search without having to repeat
any calculations. The structures generated are used as initial
points for lattice energy minimization using a sequential
quadratic programming algorithm. The minimized structures of
lowest energy are selected for the refinement stage of the CSP
algorithm.
In common with several other CSP algorithms, Crystal-

Predictor expresses lattice energy, Elatt, as the sum of
intramolecular and intermolecular (repulsion/dispersion and
electrostatic) energy terms. The repulsion/dispersion inter-
action contribution is described as an exponential-r−6 term,
typically parametrized by atom type using standard values
obtained by fitting to experimental data, for example, the “FIT”
potential32−34 or the “Williams 01” potential.35 This shorter-
range potential is calculated for each atom pair out to a user-
defined cutoff (e.g., 15 Å). Electrostatic interactions are rep-
resented by distributed point charges situated on the atoms
and, optionally, other “satellite” locations.36

The computation of intramolecular lattice energy contribu-
tions in the original CrystalPredictor is closely related to the
latter’s model of molecular flexibility.24,25 In particular, a flexible
molecule is considered to comprise two or more rigid
fragments connected via flexible torsion angles (FTAs). Thus,
the intramolecular energy is a function of the values of the
FTAs and can be computed via an isolated-molecule QM
calculation which minimizes the conformational energy for
chosen values of the FTAs. In practice, these QM calculations
are performed a priori to determine the values of the
intramolecular energy and its partial derivatives with respect
to the FTAs on a regular grid in the space of the FTAs. This
allows the construction of restricted multidimensional cubic
Hermite interpolants that are used for the efficient computation
of intramolecular energy contributions during the global search.
The rigid fragments are assumed to retain their in vacuo
conformation throughout the search.
The CrystalPredictor algorithm outlined above has been

implemented for, and deployed on, machines comprising
multiple processors within a distributed computing architec-
ture. Once the grid of intramolecular energy has been derived,
the code allows the minimization of a single structure in a few
seconds, making it feasible to minimize hundreds of thousands
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of structures within reasonable CPU times. In recent years, it
has been applied successfully by several research groups to a
relatively wide variety of systems including single-compound
crystals,9,37−45 cocrystals,47−49 including chiral cocrystals,49−51

hydrates and solvates.11,52 It has also provided the basis of
several successful predictions in the third,53 fourth,5 and fifth6

blind tests, including the only two successful predictions for
“molecule XX”,7 one of the largest and most flexible molecules
considered in a blind test to date.
1.3. Need for an Improved Global Search Algorithm.

The application of CrystalPredictor to a wide range of systems
has helped identify several areas that would need to be
addressed in order to extend the algorithm’s applicability to
even more challenging systems.
One important concern is the size of the interpolation grid

needed to provide a sufficiently accurate representation of the
intramolecular energy contributions. In particular, the use of a
regular grid spanning the FTA ranges of interest may pose a
severe computational barrier given the cost of the QM
calculation at each grid point and the fact that the number of
grid points increases exponentially with the number of FTAs.
Moreover, the number of points in each dimension of the grid
depends on the accuracy of the interpolating function being
employed, namely, an n-dimensional Hermite interpolant
where n is the number of FTAs. In principle, such an
interpolant provides a cubic approximation of the function
being interpolated on the grid and can be constructed using the
values of the function and its partial derivatives up to order n at
the grid points. However, in the case of CrystalPredictor, in
order to avoid the need for any partial derivatives of the
configurational energy above first order, the n-dimensional
Hermite interpolant is “restricted” (i.e., some of its coefficients
are set to zero).25 As a result, a cubic quality of approximation
is actually obtained only for the case n = 1; as n increases, the
proportion of interpolating coefficients that are set to zero
increases, and consequently, the quality of approximation
deteriorates. The practical implication of this is that an
increasingly finer grid needs to be used to achieve the required
accuracy of configurational energy representation as more
FTAs are taken into account.
A second difficulty arises from treating the molecular

fragments connected via the FTAs as completely rigid during
the global search, which is sometimes physically unrealistic. In
practice, the primary deformation of the FTAs caused by
intermolecular interactions within the crystalline environment
may result in non-negligible changes in the other molecular
conformational parameters (e.g., torsion angles that are not
treated as “flexible” and potentially some of the bond angles).
These secondary deformations will, in turn, affect interatomic
distances and therefore intermolecular energies.
Moreover, the effects of molecular deformation on the

atomic charges used for computing electrostatic contributions
to the lattice energy may also need to be considered. In
principle, these charges may be described as functions of the
FTAs using interpolants similar to those used for the
intramolecular energy. However, in practice, this approach is
limited by the difficulty in extracting the values of the partial
derivatives of the atomic charges with respect to the FTAs from
QM calculations. Therefore, most of the applications of
CrystalPredictor listed above have made use of conformation-
invariant atomic charges.
Finally, the task of dividing the molecule(s) of interest into

rigid fragments introduces a degree of subjective judgment that

is undesirable in a general CSP methodology. Although the
choice of such fragments is often obvious (especially given the
limited number of FTAs that can be handled, as previously
mentioned), this is not always the case. For example, in a recent
study45 on 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecar-
bonitrile (ROY, so-called because of its Red, Orange, and
Yellow polymorphs), the existence of an intramolecular
hydrogen bond was a key factor that had to be taken into
account both in the definition of an appropriate set of rigid
fragments and in the choice of FTAs.

1.4. Structure of This Paper. The work reported in this
paper aims to extend the applicability of CrystalPredictor by
addressing the above issues. Section 2 describes how this can be
achieved via an alternative description of molecular flexibility
and the use of Local Approximate Models (LAMs) for
intramolecular energy and atomic charges.
Section 3 of the paper presents CSP studies for the three

molecules shown in Figure 1. The first example revisits a

recently reported CSP study45 on ROY and demonstrates the
ability of the new algorithm to perform the global search at
comparable computational cost and with improved accuracy in
the ranking of the generated candidate structures. In particular,
the rankings of the seven polymorphs with known crystal
structures at the end of the global search stage are much
improved. The second example is β-D-glucose, a relatively small
molecule that nonetheless has a very high degree of flexibility
arising from the closely coupled torsions of its five hydroxylic
hydrogen atoms. CSP has previously been carried out on this
molecule20,54,55 by van Eijck et al., but the method was
conducted only by effectively ignoring the hydrogen atom
positions and then reintroducing them at a later stage in a
manner that is restrictive and that may result in a failure to
identify low-energy structures for molecules whose crystal-
phase behavior is not already understood. In the present
study, all five torsions are treated as variables without restric-
tion, and the experimental crystal structure is successfully
generated. The final example is the pharmaceutical molecule
BMS-488043 (molecular weight 422 g mol−1), which also
has five flexible torsions that must be varied during the global
search. Although the ranges of torsion angle variations that
need to be considered are narrower than in the case of glucose,
the size of the molecule makes this another benchmark study
for CSP.
Finally, Section 4 summarizes the key points of the paper and

draws some general conclusions.

2. CRYSTALPREDICTOR II ALGORITHM
The new CrystalPredictor algorithm seeks to address the issues
identified in section 1.3 by adopting a different model of
molecular flexibility and also a more efficient approach for the
accurate computation of intramolecular energy as a function of

Figure 1. Molecules for which crystal energy landscapes are generated
in this study: (a) 5-methyl-2-[(2-nitrophenyl)amino]-3-thiophenecar-
bonitrile (ROY), (b) β-D-glucose, (c) BMS-488043.
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the molecular conformation during the global search. It also
makes use of conformation-dependent atomic charges.
In the rest of this paper, we shall refer to the original and

new algorithms as “CrystalPredictor I” and “CrystalPredictor II”
respectively. We will consider crystal structures that, in
principle, contain any number of chemical entities in the
asymmetric unit and belong to any space group. Although, in
the interest of brevity, we shall refer to “molecules”, the
proposed techniques also handle ionic species in a straightfor-
ward manner.
2.1. Description of Molecular Flexibility. CrystalPredic-

tor I essentially categorized the conformational degrees of
freedom (CDFs) of the molecule(s) under consideration as
either “flexible” or “rigid”, the latter being fixed at their values in
the in vacuo conformation. Furthermore, it was only possible to
treat torsional angles as flexible. In contrast, CrystalPredictor II
allows all CDFs, including torsional angles, bond angles, and
bond lengths, to vary during the global search. CDFs are further
distinguished into independent and dependent CDFs. The
former, denoted as θ, are affected directly by intermolecular
interactions in the crystalline environment; they are usually
CDFs that have a relatively small effect on the magnitude of
conformational energy and can therefore undergo substantial
changes from their in vacuo values. On the other hand, the
dependent CDFs, denoted as θ ̅, have a strong influence on
the conformational energy and are therefore not expected
to undergo large deviations within the crystal; however, they
do assume values that minimize the conformational energy for
given values of θ and are, therefore, a well-defined function of θ.
The partitioning between θ and θ ̅ provides a useful mecha-

nism for taking account of the trade-offs between physical
realism and computational cost. The latter is generally an
increasing function of the size of set θ as this affects both the
size of the decision space being searched (and therefore the
number of candidate structures that need to be generated
to ensure sufficient coverage of this space) and the cost of
the local minimization of each candidate structure. At the two
extremes, an empty set θ corresponds to a rigid mole-
cule search, while an empty set θ̅ represents a fully atomistic
computation.
In general, the decision variables that determine a crystal

structure comprise the unit cell lattice lengths and angles,
collectively denoted by X, the positions of the centers of mass
and the orientation of the molecules within the unit cell,
collectively denoted by β, and the independent CDFs, θ, of
these molecules. If the search is carried out within a given space
group (cf. section 2.3), the decision variables other than θ may
be constrained by space group symmetry, for example, for
structures in the monoclinic space group P21/c, only one lattice
angle is an independent decision variable, the other two being
fixed at 90°.
In any case, given the values of θ, we can compute the

remaining (i.e., dependent) CDFs θ ̅ (see section 2.2 below), at
which point we have the complete molecular conformation(s).
The latter, together with the values of the decision variables β,
allow us to compute the positions of all atoms in the unit cell.
These, together with the lattice parameters X, now fully
determine all interatomic distances in the crystal, which allows
us to compute the intermolecular contributions to the lattice
energy, provided we have values of the atomic charges that are
appropriate for the current molecular conformation(s). Finally,
we can also compute the intramolecular energy contribution as

a function of θ, thereby determining the lattice energy cor-
responding to the given values of the decision variables.

2.2. Local Approximate Models for QM Calculations.
In principle, the functional dependence of the dependent CDFs
θ ̅ on the independent CDFs θ can be computed by performing
an isolated-molecule constrained-geometry QM optimization.
More specifically, the intramolecular energy contribution Uintra

to the lattice energy is given by

θ θ θ= ̅ −
θ

U E E( ) min ( , )intra intra vac
(1)

where Eintra (θ̅,θ) is the molecular energy for given values θ ̅,θ of
the CDFs, and Evac is a constant representing the energy of the
in vacuo conformation of the molecule, usually the globally
minimal value of Eintra. The solution of the above optimization
problem also provides the values of θ ̅ and the electrostatic field
from which atomic charges may be computed.
CrystalPredictor achieves the efficiency required in the

context of global search while retaining the accuracy afforded
by the above computations by making use of QM results com-
puted prior to the global search. However, instead of the
multidimensional cubic Hermite interpolants used by Crystal-
Predictor I, CrystalPredictor II makes use of Local Approxi-
mate Models (LAMs).56 These are quadratic approximations of
Uintra(θ) of the form:

θ θ θ θ θ

θ θ θ θ θ

= + −

+ − −

U U b

C

( ) ( ) ( ) ( )
1
2

( ) ( )( )

intra intra
ref ref

T
ref

ref
T

ref ref (2)

and linear approximations of θ̅ of the form:

θ θ θ θ θ θ̅ = ̅ + −A( ) ( )( )ref ref ref (3)

where θref is a set of reference values of θ, b(θref) is a vector, and
C(θref) and A(θref) are matrices computed from the second
partial derivatives of Eintra(θ ̅,θ) with respect to θ̅ and θ.
Equations 2 and 3 are derived by combining a second-order

Taylor expansion of Eintra (θ̅, θ) at the solution of the
minimization problem 1 at a point θ = θref with the first-order
optimality conditions with respect to θ̅. The complete
derivations as well as the expressions for b(θref), C(θref), and
A(θref) are given elsewhere.56

In the limit of the dependent CDF set θ̅ being empty (i.e., a
completely atomistic description of the molecule), the above
reduces to the second-order Taylor series expansions used by
van Eijck and co-workers.23 However, the approach proposed
here is generally applicable to any partitioning of the CDFs,
including those in which only a relatively small subset θ is
treated as independent, a crucial consideration in the context of
efficient global search.
Expressions 2 and 3 match the results of the energy

minimization 1 exactly at the reference values θref and provide
reasonably accurate approximations to Uintrab(θ) and θ ̅ (θ)
within a vicinity of θref, typically defined as a hyper-rectangle of
the form:

θ θ θ− Δθ ≤ ≤ + Δθref ref (4)

where Δθ is a given vector defining the range of validity of the
LAM.
The intramolecular energy LAMs given by eq 2 retain their

quadratic accuracy irrespective of the number of independent
CDFs θ being considered. The restricted Hermite interpolants
employed by CrystalPredictor I exhibit higher (cubic) accuracy
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for the case of a single independent variable, but their accuracy
deteriorates as the grid dimensionality increases. Thus, LAMs
have a distinct advantage for systems with higher degrees of
configurational flexibility, such as those of interest to this paper.
A sufficient number of LAMs is constructed to cover the

entire conformational space of practical interest, usually defined
as the set of values of θ for which Uintra(θ) (as computed by eq
1) is below a given threshold. In our work, the latter is typically
taken to be +20−30 kJ mol−1 relative to the global minimum in
vacuo energy as it is generally unlikely for the reduction in
intermolecular energy caused by the deformation of the
molecules in the tightly packed crystalline environment to be
able to compensate for intramolecular energy increases above
this range.57 In some cases, larger variations of the intra-
molecular energy have been reported58 within the crystalline
environment and the algorithm is implemented in such a way
that the user may choose to explore a wider range of flexibility.
The approximate size and shape of this space can be established
by a conformational scan (i.e., varying each independent CDF θ
around its value in the in vacuo conformation of the molecule
while performing an isolated-molecule energy minimization
with respect to all other CDFs at each θ-point considered).
One may also be guided by information on the values of
torsions in analogous molecules, such as those stored in the
Cambridge Structural Database (CSD).59 Ultimately, this
exercise determines one or more domains of the form [θ1

min,
θ1
max] × [θ2

min, θ2
max] × [θ3

min, θ3
max] ×··· that need to be

considered during the global search. The approximate value of
the LAM validity range Δθ may also be established by
constructing LAMs at some of the points considered during the
scan and comparing their predictions of intramolecular energy
at neighboring points against the corresponding values
computed by the QM calculations.
Once the relevant θ space(s) and the range of LAM validity

are obtained in the manner described above, a sufficient
number of LAMs can be constructed to cover the entire region
of interest within the required accuracy. In the interest of
simplicity, in the current implementation of CrystalPredictor II,
we place the LAM reference points θref on a regular grid,
although this is not strictly required. The results of the QM
calculations at each point θref are also used for computing a
corresponding set of atomic charges. Our current implementa-
tion employs a zeroth-order approximate model for atomic
charges (i.e., the latter are considered to be constant within the
range of validity of each LAM) but differ from one LAM to
another. All QM computations are done using Gaussian09,60,60

with atomic charges being fitted using the CHELPG
algorithm.61

We note that the construction of LAMs takes place as a
preprocessing step prior to performing the global search. In
contrast, the CrystalOptimizer algorithm56 for structure
refinement constructs LAMs “on-the-fly” as and when required,
an efficient strategy which in most cases leads to relatively few
LAMs actually being generated. However, by design, the global
search in CrystalPredictor thoroughly explores the entire space
of decision variables, which makes it necessary to compute the
intramolecular energy over the entire space of conformational
flexibility; therefore, it is better to generate the LAMs a priori in
a systematic fashion.
Finally, an important benefit of using LAMs in the global

search stage is that the LAM database generated can be reused
in the refinement stage, provided that the same level of theory
and basis set are used. It is not necessary to use the same set of

independent CDFs in both stages to permit reuse of the
database.4,56

2.3. Structure Generation Procedure and Local Lattice
Energy Minimization. As mentioned in section 1.2,
CrystalPredictor II employs a search procedure that systemati-
cally explores the space of decision variables within user-
specified bounds. The search is carried out within a set of
crystallographic space groups selected by the user, taking
account of the symmetry constraints of each space group in
order to improve efficiency. The algorithm can in principle
account for all 230 space groups. In the current implementa-
tion, 63 space groups are handled; they are listed in Appendix A
and correspond to those that appear with the highest frequency
in the CSD. The user typically specifies the number of
candidate structures to be generated and the way these should
be allocated among the selected space groups (e.g., in equal
numbers, or in proportion to the space group’s relative
frequency in the CSD).
Any structure generated is subjected to a set of preliminary

checks to determine whether it is physically realistic. This leads
to the elimination of structures in which two or more molecules
overlap in space, or where the lattice unit cell is unrealistic in
terms of shape and density (as specified by user), or where
intermolecular and/or intramolecular energies are excessively
large.
Structures that pass the above tests are used as starting points

of local minimizations of the lattice energy with respect to the
decision variables subject to constraints on unit cell shape and
volume. The efficient and accurate computation of the various
contributions to the lattice energy and their partial derivatives
with respect to the decision variables has been described
elsewhere.24,25 The minimization is carried out using a
sequential quadratic programming algorithm, implemented as
either E04UFF62 or NLPQLP63,64 with default optimality/
termination tolerances of 10−6.
Local minimizations starting from different candidate

structures are independent of each other and can be run in
parallel, a fact that is already exploited by the CrystalPredictor
software architecture (cf. section 1.2). The achievable speedup
factor is a near-linear function of the number of processors, and
therefore, there is no need to make use of the parallelised
computation capabilities of solvers such as NLPQLP.
The overall structure of the CrystalPredictor II code is

summarized in Figure 2. As indicated, the structures obtained
are subjected to a final clustering step in which duplicate
structures that may have been generated from different starting
points are removed, based on a comparison of energy, density,
and root-mean-square deviation of the atomic distances in the
15-molecule coordination sphere.

3. CASE STUDIES
We now consider the application of CrystalPredictor II to three
molecules (cf. Figure 1) with significant degrees of flexibility.
The independent CDFs for each molecule are marked in Figure 3,
with the corresponding ranges searched being reported in
Table 1. For ROY and BMS-488043, the ranges shown are
consistent with those used in previous studies.45,65

In order to demonstrate the contribution of CrystalPredictor
to the overall CSP methodology, we also report results for the
subsequent structure refinement stage performed using the
CrystalOptimizer56 code for two of the three molecules
considered, namely, β-D-glucose and BMS-488043. Structure
refinement calculations have already been reported elsewhere45
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for ROY, albeit for a different set of starting structures, and are
not repeated here.
3.1. ROY. The recent study45 on ROY using CrystalPre-

dictor I modeled the flexibility of torsions θ1 and θ2, indicated
by the solid arrows in Figure 3a, using an elaborate system of
rigid fragments aiming to maintain geometrical relationships
between nonconnected parts of the molecule. In particular,
the hydrogen atom in the secondary amine group had to
be included within a single rigid fragment together with the
(2-nitrophenyl)amino group (cf. left part of Figure 1a). This
was necessary in order to take account of the intramolecular
hydrogen bond between the amine hydrogen and one of the
oxygen atoms of the nitro group. Albeit effective for this specific
example, the need for such system-dependent judgment is not a
desirable attribute of what aims to be a widely applicable CSP
procedure. As we shall demonstrate in this section, the use
of a more natural representation of molecular conformation in
CrystalPredictor II allows us to address this issue.
The original study made use of a uniform interpolation

grid of 90 points over the independent torsion angle space of

[100°, 260°] × [0°, 170°]. Each grid point required a QM
calculation performed using Gaussian0960,60 at the B3LYP level
of theory with a 6-31G(d,p) basis set. In the present study, the
same set of flexible torsions was investigated to make it easier
to compare the performance of the two CrystalPredictor
algorithms. Fifty six LAMs were generated at intervals of 20°
(i.e., Δθ = 10°), using the same level of theory and basis set to
maintain consistency.
Both studies made use of the FIT exp-6 repulsion/dispersion

potential,33,34,66 expanded to include sulfur,67 and generated
400 000 crystal structures. The numbers of unique structures
identified within 15 kJ mol−1 of the global minimum were
1584 for CrystalPredictor I and 3375 for CrystalPredictor II.
The 1097 structures identified by the present study within
10 kJ mol−1 of the global minimum are shown in Figure 4.
In both cases, the generated structures include all seven

polymorphs of ROY for which crystal structures have been
characterized experimentally. However, there were significant
differences in the ranking of these experimental structures,
as illustrated in Table 2, which lists the seven structures in
order of decreasing experimentally determined stability.68−70

Overall, the rankings of the computed structures providing
a good match of the experimental polymorphs determined
by CrystalPredictor II are much improved. In particular, the

Figure 2. Flowchart of crystal structure generation in CrystalPre-
dictor II.

Figure 3. Independent CDFs (torsional angles) considered by
CrystalPredictor II during global search (block arrows). For β-D-
glucose and BMS-488043, broken thin arrows indicate additional
torsions treated as independent CDFs during the subsequent structure
refinement stage. As reported elsewhere, structure refinement for ROY
considered 22 independent CDFs, including 10 bond angles and 12
torsion angles.
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worst-ranked experimental polymorph is at place 930 (R) with
CrystalPredictor I but at place 120 (ON) using CrystalPre-
dictor II. As can be seen in Table 2, the relative rankings
obtained with CrystalPredictor II for the experimentally
determined polymorphs are in much better agreement with
those of CrystalOptimizer than the relative rankings derived
from CrystalPredictor I. This indicates that the LAM-based
lattice energies are more accurate than those computed with the
restricted Hermite interpolants. Moreover, the similarity of the
generated structures to the corresponding experimental

structures, measured through the root-mean-square difference
in atomic positions between a cluster of 15 molecules from each
structure (RMSD15) is similar to CrystalPredictor I results or
much superior. This improvement is achieved with the same
number of grid points in CrystalPredictor II as in CrystalPre-
dictor I. This indicates that a significant improvement in the
accuracy of the energy function has been achieved by introducing
LAMs and incorporating a description of the effect of
conformational flexibility on dependent CDFs and charges.
Irrespective of which version of CrystalPredictor is used for

the global search, the low-ranking structures identified by the
latter need to be refined further using CrystalOptimizer,56

which employs a more accurate description of electrostatic
interactions in terms of distributed multipole expansions and
also takes account of a much wider range of independent CDFs;
a total of 22 independent CDFs, including 10 bond angles and
12 torsion angles, were considered in the previous study of this
molecule. It is worth noting that, in view of the rankings reported
in Table 2, using CrystalPredictor II for the global search would
lead to much fewer structures having to be refined in order to
ensure identification of all experimentally known polymorphs.
Given the high computational cost of the refinement stage, this
has a significant impact on the reliability and the overall cost of
CSP. The improved reliability of the crystal structure landscape is
a major benefit of the revision of CrystalPredictor. A further
benefit arises from the fact that the LAMs constructed as part of
a CrystalPredictor run can be reused at the refinement stage,
making the overall process more efficient.

3.2. β-D-Glucose. Because of their relatively low effect on
conformational energy, all five of the hydroxylic hydrogens in
β-D-glucose could potentially take on any orientation within the
crystalline environment. Therefore, the corresponding torsion
angles have to be treated as independent CDFs with search

Table 1. Domains of Independent CDFs (See Figure 3) Used for Global Search and Numbers of LAMs Used To Cover Thema

molecule θ1 / ° θ2 / ° θ3 / ° θ4 / ° θ5 / ° LAM validity range, Δθ total LAMs generated

ROY [110, 250] [0, 170] - - - ±10° 56
β-D-glucose [0, 360] [0, 360] [0, 360] [0, 360] [0, 360] ±30° 7776
BMS-488043 ±10° 180
region 1 [0, 40] [-140, −100] [160, 200] [150, 210] [0, 180] 27
region 2 [0, 40] [-140, −100] [160, 200] [-70, 70] [0, 180] 63
region 3 [0, 40] [-140, −100] [-20, 20] [150, 210] [0, 180] 27
region 4 [0, 40] [-140, −100] [-20, 20] [-80, 80] [0, 180] 63

aAs discussed in Section 3.3, BMS-488043 required four searches in four separate conformational regions. An explanation of the choices of
independent CDFs and their ranges can be found in ref 45 for ROY and in the Supplementary Information for BMS-488043.

Figure 4. Crystal structures (1097) generated for ROY within 10 kJ
mol−1 of the global minimum by CrystalPredictor II. Each lattice
energy/density point represents a unique structure. Structures
corresponding to all seven experimental polymorphs have been
identified and are marked in red.

Table 2. Lattice Energies, Rankings, and Deviations (RMSD15) from the Experimental Structures for the Polymorphs of ROY in
the Lists of Crystal Structures Generated by CrystalPredictor I in a Previous Study,45 Using CrystalPredictor II in This Studya

CrystalPredictor I CrystalPredictor II CrystalOptimizer

polymorph rank Elatt (kJ mol−1) RMSD15 (Å) rank Elatt (kJ mol−1) RMSD15 (Å) rank Elatt (kJ mol−1)

Y 20 −126.7 0.19 57 −119.2 0.208 17 −119.7
YT04 5 −129.4 0.24 103 −118.2 0.184 88 −117.3
YN 6 −129.1 0.36 16 −120.3 0.241 9 −120.3
R 930 −116.3 [7/15] 2 −122.0 0.387 7 −120.6
OP 373 −119.8 [6/15] 13 −120.7 0.271 30 −119.1
ORP 263 −120.7 0.58 75 −118.9 0.210 66 −117.7
ON 31 −126.0 0.73 120 −118.0 0.369 73 −117.6

aLattice energies and rankings from generated by CrystalOptimizer in a previous study45 are also shown. Polymorphs are listed in decreasing order of
experimentally determined thermodynamic stability.68−70 Where 15 molecules could not be overlaid between the generated structure and the
corresponding experimental structure, the number of molecules that could be overlaid is listed in square brackets instead of an RMSD15.
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ranges set at [0, 360°]. In contrast, conformational scans
indicate that the torsion angle shown by the broken thin arrow
in Figure 3b is much less flexible, with relatively small
deviations from its in vacuo value of 60° leading to significant
increases in conformational energy. It is therefore treated as a
dependent CDF for the purposes of the global search. There
exists a second low-energy minimum at 285° (see S4.1 in the
Supporting Information) that would need to be sampled for a
comprehensive search, but in this work we treat only the global
minimum region in order to illustrate the method.
Handling the flexibility of the five independent CDFs using

CrystalPredictor I would have been problematic due to the
need for relatively small intervals between grid points arising
from the relatively large number of CDFs (e.g., with 30°
intervals, nearly 250 000 QM calculations would be required).
In CrystalPredictor II, LAMs were generated at intervals of 60°
at the HF-SCF level of theory with a 6-31G (d,p) basis set in
Gaussian09. The result was a large but computationally
manageable set of 7776 = (360/60)5 LAMs.
The global search generated 500 000 points, yielding only 14

unique structures within 20 kJ mol−1 of the global minimum
(see Figure 5a). This is due to the presence of an isolated global
minimum, at a comparatively low energy value. Given this
unusual landscape, structures within 40 kJ mol−1 of the global
minimum were considered in order to include over 1000
structures in the refinement step. The FIT exp-6 repulsion/
dispersion potential was used.33,34 A structure closely matching
the experimentally known crystal structure (CSD refcode:

GLUCSE02) was found ranked 489th at 36.4 kJ mol−1 above
the global minimum with RMSD15 = 0.206 Å. Subsequent
refinement and reranking was carried out using CrystalOpti-
mizer. The torsion angle shown by the broken thin arrow in
Figure 3b was now also treated as an independent CDF. The
intramolecular energy was calculated at the HF-SCF level of
theory using a 6-31G (d,p) basis set, while the intermolecular
energy was calculated using electrostatic multipoles derived
using GDMA271 from wave functions calculated at the PBE0
level of theory using a 6-31G (d,p) basis set and the FIT exp-6
repulsion/dispersion potential. After this refinement, the
experimentally known structure was ranked 137th.
The adjacent alcohol groups in β-D-glucose lead to strong

intramolecular OH···O interactions, although the molecular
geometry does not permit the formation of full intramolecular
hydrogen bonds. On the other hand, intermolecular hydrogen
bonding does take place and this, in turn, may result in
significant electrostatic induction effects between neighboring
molecules. The consequent changes in electron density are not
captured by isolated-molecule QM calculations and this may
have important consequences on the relative ranking of putative
crystal structures.72 To compensate for this polarizability effect,
the lattice energies of the final crystal structures were recalculated
using electrostatic multipoles and intramolecular energies
calculated in a polarizable continuum model (PCM)73 with
dielectric constant of ε = 3, which has been shown74 to
approximate the polarizing effect of a crystalline environment.
The computational cost of the entire CSP exercise is shown in

the corresponding columns of Table 3. The structure refinement
cost includes the final reranking calculations mentioned above.
The final, refined set of crystal structures is shown in Figure 5b

and contains a match to the experimental crystal structure with
RMSD15 = 0.159 Å in sixth place, 4.1 kJ mol−1 above the global
minimum. The details of the predicted structure and a comparison
with experimental measurements are shown in Table 4 below.

3.3. BMS-488043. There are two experimentally known
polymorphs of BMS-488043.65 Form I is recorded in the CSD
as SUTTOR.75

Five torsion angles (Figure 3c) were determined to be
sufficiently important in terms of their effect on the value of the
intramolecular energy to warrant variation during the global
search. The conformational energy scan on angles θ3 and θ4 found
that each one of them exhibits two disjoint low-energy ranges of
potential interest to CSP. In such cases, CrystalPredictor can be
used to generate structures across the full set of values of both
angles, simply allowing structures in the intermediate, high-energy
ranges to be discarded because of violations of the preliminary
screening rules described in section 2.3. However, in this case, we
chose to perform four separate searches, each corresponding to a
different combination of the low energy ranges of θ3 and θ4, as
shown in the last four rows of Table 1.
Overall, the relatively small range of rotation in these five

torsions allows us to model the flexibility in all four
conformational regions using a total of only 180 LAMs.
These were calculated at the HF-SCF level of theory with a 6-
31G (d,p) basis set in Gaussian09. The global search generated
500 000 points in each conformational region, giving a total of
two million initial crystal structures. The FIT exp-6 repulsion/
dispersion potential was used.
Overall, 871 unique structures were identified within 20 kJ

mol−1 of the global minimum and are shown in Figure 6a. A
structure corresponding to form I was found ranked sixth, and a
structure corresponding to form II was found ranked 767th.

Figure 5. (a) Crystal structures (1160) generated for β-D-glucose by
CrystalPredictor II within 40 kJ mol−1 and (b) the most stable
structures after refinement by CrystalOptimizer and inclusion of PCM.
Each lattice energy/density point represents a structure. The structure
corresponding to the experimental polymorph is marked in red.
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The two generated structures match the experimental
structures with RMSD15 = 0.230 and 0.539 Å, respectively.
Subsequent refinement and reranking of all 871 structures

was carried out using CrystalOptimizer. The torsion angles
indicated by the broken thin arrows in Figure 3c were also treated
as independent CDFs at this stage. The intramolecular energy was

calculated at the PBE0 level of theory using a 6-31G (d,p) basis
set, while the intermolecular energy was calculated using electro-
static multipoles derived using GDMA271 from wave functions
calculated at the PBE0 level of theory using a 6-31G (d,p) basis
set, and the FIT exp-6 repulsion/dispersion potential.33,34 In the
final set of crystal structures (see Figure 6b), the structure cor-
responding to form I (with an RMSD15 of 0.249 Å) is ranked fifth,
while that corresponding to form II (with an RMSD15 of 0.278 Å)
is ranked 51st. A comparison of predicted and experimental
structures for the two forms is shown in Table 5.
By the standards of contemporary crystal structure

prediction, BMS-488043 is a relatively large molecule.
Successful generation and refinement of structures for a
molecule of this size within a fairly standardized workflow
and at relatively modest computational cost (see relevant
columns in Table 3) represents a notable step forward for
crystal structure prediction as a field.

4. CONCLUDING REMARKS
The CrystalPredictor II algorithm and code described in this
paper allow a significant degree of molecular flexibility to be
taken into account during the global search stage of CSP
methodologies. Like its predecessor, the CrystalPredictor I
algorithm,24,25 it is generally applicable to systems with one or
more chemical entities in the asymmetric unit, forming crystal
structures belonging to any space group. It derives its
effectiveness in identifying low-energy structures from a
systematic and extensive search of the lattice energy surface
implemented on distributed computing architectures.
By allowing the user to categorize CDFs into “independent”

and “dependent” ones, the new algorithm introduces a natural
description of molecular flexibility that can easily be tailored to
achieve the best trade-off between physical realism and
computational tractability without the need for artificial
constructs such as “rigid fragments” which has sometimes
proven problematic in the past. Moreover, the use of LAMs
provides an efficient and accurate description of the variation of
intramolecular energy, dependent CDFs and atomic charges
during the global search.
As illustrated by the ROY example (cf. section 3.1), the

improved accuracy of CrystalPredictor II may lead to an
improved ranking of the candidate structures over that achieved
by its predecessor. In practical terms, this can significantly
reduce the number of structures that need to undergo further
refinement in order to ensure identification of all polymorphs

Table 3. Approximate CPU Hours (Intel Xeon Westmere Processor, Running at 2.67 GHz) Required for Different Stages of the
CSP Process for Each of the Molecules Studieda

time (CPU hours) ROY CrystalPredictor I ROY CrystalPredictor II β-D-glucose BMS-488043

QM calculations 2000 2170 6900 4000
global search 800 1220 400 6800
structure refinement (CrystalOptimizer) 43 000b − 2450 64 000
total for CSP 2800 (excluding structure refinement) 3390 (excluding structure refinement) 9750 74 800

aStructure refinement for ROY was carried out elsewhere45 and was not repeated here. bIncludes single-point MP2 calculations for final structures.

Table 4. Predicted Crystal Structure for β-D-Glucose Corresponding to Experimentally Known Structure (CSD Refcode:
GLUCSE02)

energetic information structural information

Elatt (kJ mol−1) rank rms1 (Å) rms15 (Å) ρ(g cm−3) a (Å) b (Å) c (Å) α (ο) β (ο) γ (ο)

−150.81 6 0.07 0.154 exptl 1.58 9.01 12.72 6.60 90 90 90
pred. 1.54 9.33 12.59 6.61 90 90 90

Figure 6. (a) Crystal structures (871) generated for BMS-488043 by
CrystalPredictor II within 20 kJ mol−1 of the global minimum and (b)
the most stable structures after refinement by CrystalOptimizer. Each
lattice energy/density point represents a structure. Those correspond-
ing to experimental polymorphs are marked with solid points. See
Table 1 for the definition of the conformational regions.
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of practical interest. Conversely, it can increase the probability
of these polymorphs being identified following the refinement
of a given number of structures.
The developments reported in this paper render CrystalPre-

dictor II more consistent with its companion CrystalOptimizer56

algorithm for structure refinement, as both algorithms now
employ the independent/dependent CDF categorization and the
LAMs based on it. The higher accuracy required at the structure
refinement stage in the computation of lattice energy is achieved
by CrystalOptimizer in three different ways, namely by

a. using distributed multipole expansions instead of atomic
charges for the description of the intermolecular
electrostatic interactions;

b. treating more CDFs (e.g., more torsion angles and some
bond angles) as independent;

c. potentially employing a more accurate level of theory/
basis set for the QM calculations.

The theoretical consistency between the two algorithms has
an important practical implication: if the same level of theory/
basis set is used for both CrystalPredictor II and CrystalOpti-
mizer, then any LAMs generated for the former may be stored
and reused by the latter, thereby reducing the number of QM
calculations that need to be performed during the structure
refinement. This is a mathematical property of LAMs that
holds56,65 even if some of the CDFs treated as dependent by
CrystalPredictor II are treated as independent ones by
CrystalOptimizer.
The introduction of LAMs in the global search stage of

Crystal Structure Prediction is an important step forward in the
application of CSP techniques to larger and/or highly flexible
molecules because it allows the generation of an improved
crystal energy landscape within reasonable computational cost.
This increases the reliability of the entire process since a more
realistic set of low-energy structures is identified at the end of
the global search. It can also reduce significantly the overall
computational cost of CSP studies as fewer putative structures
need to be refined and LAM databases from the global search
can be reused in the refinement step.

■ APPENDIX A: SPACE GROUPS CURRENTLY
HANDLED BY CRYSTALPREDICTOR II
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