
Statistical Methods for Monte-Carlo
based Multiple Hypothesis Testing

A thesis presented for the degree of

Doctor of Philosophy of Imperial College London

and the

Diploma of Imperial College

by

Georg Hahn

Department of Mathematics

Imperial College London

London SW7 2AZ

APRIL 2015

2

I certify that this thesis, and the research to which it refers, are the product of my

own work, and that any ideas or quotations from the work of other people, published

or otherwise, are fully acknowledged in accordance with the standard referencing

practices of the discipline.

Signed:

3

Copyright

The copyright of this thesis rests with the author and is made available under a Cre-

ative Commons Attribution Non-Commercial No Derivatives licence. Researchers are

free to copy, distribute or transmit the thesis on the condition that they attribute it,

that they do not use it for commercial purposes and that they do not alter, transform

or build upon it. For any reuse or redistribution, researchers must make clear to

others the licence terms of this work.

4

Abstract

Statistical hypothesis testing is a key technique to perform statistical inference. The

main focus of this work is to investigate multiple testing under the assumption that

the analytical p-values underlying the tests for all hypotheses are unknown. Instead,

we assume that they can be approximated by drawing Monte Carlo samples under

the null.

The first part of this thesis focuses on the computation of test results with a

guarantee on their correctness, that is decisions on multiple hypotheses which are

identical to the ones obtained with the unknown p-values. We present MMCTest, an

algorithm to implement a multiple testing procedure which yields correct decisions on

all hypotheses (up to a pre-specified error probability) based solely on Monte Carlo

simulation. MMCTest offers novel ways to evaluate multiple hypotheses as it allows to

obtain the (previously unknown) correct decision on hypotheses (for instance, genes)

in real data studies (again up to an error probability pre-specified by the user).

The ideas behind MMCTest are generalised in a framework for Monte Carlo based

multiple testing, demonstrating that existing methods giving no guarantees on their

test results can be modified to yield certain theoretical guarantees on the correctness

of their outputs.

5

The second part deals with multiple testing from a practical perspective. We as-

sume that in practice, it might also be desired to sacrifice the additional computational

effort needed to obtain guaranteed decisions and to invest it instead in the computa-

tion of a more accurate ad-hoc test result. This is attempted by QuickMMCTest, an

algorithm which adaptively allocates more samples to hypotheses whose decisions are

more prone to random fluctuations, thereby achieving an improved accuracy.

This work also derives the optimal allocation of a finite number of samples to

finitely many hypotheses under a normal approximation, where the optimal allocation

is understood as the one minimising the expected number of erroneously classified

hypotheses (with respect to the classification based on the analytical p-values). An

empirical comparison of the optimal allocation of samples to the one computed by

QuickMMCTest indicates that the behaviour of QuickMMCTest might not be too far

away from being optimal.

6

Acknowledgements

First and foremost, I would like to express my sincere thanks to my supervisor

Dr Axel Gandy for all his expertise, support, help and advice.

I would also like to thank my friends for making the past years in London and

at Imperial College London so worthwile and enjoyable, for all the countless hours of

(Salsa) dancing socials and classes, language practice sessions, musicals and shows in

London, excursions and everything else which does not fit into this short enumeration.

Finally, I would like to express my thanks to the Engineering and Physical Sci-

ences Research Council (EPSRC) as well as to the Roth and DAAD (Deutscher

Akademischer Austauschdienst, German Academic Exchange Service) scholarships

for providing financial support.

7

To all the voices in my head. We made it.

C. Minas

8

Table of contents

Abstract 4

Acknowledgements 6

1 Introduction 15

1.1 Preamble . 15

1.2 Motivation and aim of the thesis . 18

1.3 Brief literature review . 21

1.4 Overview of all chapters . 23

1.5 List of publications . 26

2 A Safe Algorithm for Implementing Multiple Monte Carlo Tests 27

2.1 Introduction . 27

2.2 Description of the algorithm . 30

2.2.1 Basic algorithm . 30

2.2.2 Conditions and main results 35

2.3 Some properties of multiple testing procedures 36

2.3.1 Properties of the Benjamini-Hochberg procedure 37

2.3.2 Properties of the Bonferroni correction 39

2.4 Simulation studies . 41

2.4.1 The set-up . 42

2.4.2 Application to Real Data . 43

2.4.3 Comparison to the naive method 44

2.4.4 Comparison to MCFDR . 46

2.4.5 Progression of classifications of MMCTest 48

2.4.6 Dependence of the effort on the number of hypotheses 49

2.4.7 Dependence of the effort on the number of unclassified hypotheses 50

2.5 An application of multiple testing to gene expression data 52

2.6 Expected runtime of MMCTest . 55

TABLE OF CONTENTS

2.6.1 A classification of a random p-value takes infinite expected run-
time . 56

2.6.2 Extension to infinite expected runtime for multiple testing . . 57
2.6.3 A finite expected runtime can be achieved for testing with the

Bonferroni (1936) procedure 59
2.7 Discussion . 63

3 A Framework for Monte Carlo based Multiple Testing 65
3.1 Introduction . 65
3.2 The framework . 68

3.2.1 The generic algorithm . 68
3.2.2 Convergence results . 71

3.3 Improving existing algorithms . 77
3.4 Admissibility of step-up and step-down procedures 81

3.4.1 A simplified admissibility condition 81
3.4.2 Examples of admissible step-up and step-down procedures . . 82

3.5 Using the framework in practice . 84
3.6 Discussion . 87

4 QuickMMCTest – Higher accuracy for multiple testing corrections 89
4.1 Introduction . 89
4.2 Two sampling algorithms based on Thompson Sampling 92

4.2.1 The QuickMMCTest algorithm 93
4.2.2 An alternative approach using discrete p-value estimates . . . 96

4.3 Simulation study . 98
4.3.1 Comparison to a naive method using various multiple testing

procedures . 99
4.3.2 Comparison to a variety of common methods 102
4.3.3 Dependence on the number of updates 107
4.3.4 Dependence on the number of repetitions to estimate rejection

probabilities . 108
4.3.5 Reporting testing results in two different ways 108

4.4 Discussion . 110

5 Optimal allocation of samples 112
5.1 Introduction . 112
5.2 Deriving the optimal allocation for a normal approximation 113

5.2.1 Formulation of the problem 114
5.2.2 Deriving the optimal allocation for a normal approximation . 115
5.2.3 Solving for the optimal allocation 117

9

TABLE OF CONTENTS

5.3 Empirical comparison of QuickMMCTest to the optimal allocation of
samples . 118
5.3.1 The QuickMMCTest algorithm 118
5.3.2 Empirical comparison to the optimal allocation 118
5.3.3 Asympotic behaviour of the allocation of samples 120

5.4 A greedy solution to the integer version of the optimal allocation problem122
5.4.1 A greedy algorithm . 122
5.4.2 Comparison of the greedy integer solution to the optimal real-

valued solution . 126
5.5 Discussion . 127

6 Conclusion 129

7 Future work 131

A Appendix of Chapter 2 146
A.1 Clopper and Pearson (1934) confidence intervals 146
A.2 The SAM statistic . 149
A.3 The permutation test p-value . 150
A.4 The dataset . 151
A.5 Comparison of MMCTest to the naive method and to MCFDR on a dataset

with a high proportion of hypotheses from the null 152

B Appendix of Chapter 3 157
B.1 Proofs . 157
B.2 The Hommel procedure is not admissible 161

B.2.1 The Hommel procedure is monotonic 162

C Appendix of Chapter 4 163
C.1 Zero rejected hypotheses occur at low effort 163
C.2 Simulation study at a variable testing threshold 164
C.3 Common methods at a variable testing threshold 166

D Permissions to re-use own work 168

10

11

List of Tables

2.1 Comparison of the naive method to MMCTest 44

2.2 Comparison of MCFDR to MMCTest . 47

3.1 Repeated application of the improved and the unimproved naive method
to the same data . 86

4.1 Average misclassification numbers for the naive method compared to
QuickMMCTest for low and high effort using common multiple testing
procedures at a constant threshold 100

4.2 Average misclassification numbers for common methods compared to
QuickMMCTest for low and high effort using the Bonferroni correction
at a constant threshold . 105

4.3 Average misclassification numbers for common methods compared to
QuickMMCTest for low and high effort using the Benjamini-Hochberg
procedure at a constant threshold . 106

4.4 Number of updates nmax against misclassifications for QuickMMCTest 107

4.5 Parameter R against misclassification numbers for QuickMMCTest . . 108

4.6 Average misclassification numbers for QuickMMCTest and an alterna-
tive approach using pseudo-count estimates and empirical rejection
probabilities . 109

A.1 Comparison of the naive method to MMCTest for a high proportion of
true null hypotheses . 152

A.2 Comparison of MCFDR to MMCTest for a high proportion of true null
hypotheses . 155

C.1 Average misclassification numbers for the naive method compared to
QuickMMCTest for low and high effort using common multiple testing
procedures and a testing threshold of Pounds and Cheng 165

LIST OF TABLES

C.2 Average misclassification numbers for common methods compared to
QuickMMCTest for low and high effort using the Bonferroni correction
and a testing threshold of Pounds and Cheng 166

C.3 Average misclassification numbers for common methods compared to
QuickMMCTest for low and high effort using the Benjamini-Hochberg
procedure and a testing threshold of Pounds and Cheng 167

12

13

List of Figures

2.1 Example run of MMCTest on 10 hypotheses using the procedure of
Benjamini-Hochberg . 33

2.2 Progression of classifications in a single run of MMCTest for the thresh-
old 0.1 . 49

2.3 Quantiles of the effort against number of hypotheses 50
2.4 Quantiles of the effort against the number of unclassified hypotheses . 51
2.5 Estimated p-values belonging to significant and non-significant genes

and probabilities of being randomly classified 52

5.1 Real-valued optimal solution computed via Kuhn-Tucker constraint
and allocation of samples returned by QuickMMCTest 119

5.2 Indication of convergence of QuickMMCTest’s solution to the optimal
solution. 5%, 50% and 95%-quantiles of the number of correctly clas-
sified hypotheses of QuickMMCTest divided by the expected number of
correctly classified hypotheses. 121

5.3 Example of the expected number of misclassifications against the num-
ber of samples for a hypothesis below and above the testing threshold 124

5.4 Greedy solution of Algorithm 5.1 compared to the real-valued optimal
solution . 126

A.1 Fixed p-values for the Knijnenburg et al. (2009) dataset 151
A.2 Model of a realistic distribution with a proportion π0 = 0.9 of true null

hypotheses . 153

14

List of Algorithms

2.1 MMCTest . 32

3.1 Generic algorithm . 69

4.1 QuickMMCTest . 94

4.2 Alternative computation of weights replacing lines 4 to 8 in Algorithm 4.1 97

5.1 Greedy algorithm to compute an integer allocation of samples 123

15

1 Introduction

1.1 Preamble

Statistical hypothesis testing is a key technique to perform statistical inference. This

is achieved by testing a single hypothesis or multiple hypotheses on observed data

with the aim to determine if an observed outcome is unlikely to have occurred by

chance alone. In this case, the result is called statistically significant.

Traditionally, a null hypothesis representing a conservative belief (for instance, an

established opinion) is tested against an alternative. A discovery is made by rejecting

the null hypothesis and thus the established belief in favour of the alternative.

As decisions based on data are not perfect, two error critera are usually used as

guidelines for testing the null hypothesis. The type I error is the error occurring if

a true null hypothesis is rejected, thus leading to a false finding. The type II error

is the error associated to not rejecting a false null hypothesis. Typically, these two

errors are not equally weighted in that more emphasis is placed on avoiding to reject

a true null hypothesis (conservative belief), thus leading to type I error control.

A hypothesis is tested using a statistical test. A test statistic connects the hy-

pothesis of interest with the observed data used to test it. Deriving a statistical test

Introduction

which is meaningful for testing a particular hypothesis is not straightforward.

To carry out an actual test, the distribution of the test statistic (called T) un-

der the null hypothesis is needed. Given the distribution of T , its domain can be

partitioned into the two sets of values for which the null hypothesis is rejected (also

called the critical region) and non-rejected, where the critical region is chosen to have

a probability equal to the type I error probability. A test result can be obtained by

determining which region the test statistic evaluated on the observed data falls into.

An alternative but equivalent concept for testing a null hypothesis is the one

of a p-value. Assuming a statistical test rejects for large values of T , the p-value

p = P(T ≥ t) encodes the probability of observing a realisation at least as large (“as

extreme”) as the one of the observed data. Rejecting a null with a p-value below

the type I error threshold is equivalent to rejecting it based on the critical region. In

a frequentist approach (Fisher), p-values are given without a threshold. This allows

to assign a measure of significance to a hypothesis of interest without having to test

it immediately: although the p-value itself does not permit a probability statement

on the significance of an hypothesis, it allows to postpone the decision problem of

rejecting or non-rejecting the hypothesis and to determine this decision later for a

chosen threshold. This thesis will focus on such a test decision problem.

In many applications, neither the distribution of the test statistic under the null

hypothesis nor the p-value can be computed analytically. They are therefore approxi-

mated using Monte Carlo techniques such as bootstrap or permutation tests. We call

these tests Monte Carlo tests. A permutation test, for instance, is typically used to

determine if two groups A and B are different in some aspect of interest encoded in

the test statistic. To this end, the test pools A and B and randomly partitions the

16

Introduction

pooled sample into two groups again having sizes equal to the ones of A and B (this

is often referred to as relabelling the data). Evaluating the test statistic exhaustively

on all permutations allows to obtain a distribution for the null hypothesis that group

labels do not matter, which in turn can be used to calculate a p-value.

Monte Carlo tests such as permutation tests are a popular means to test hy-

potheses as they exist for any test statistic. Importantly, the distribution of the test

statistic under the null does not need to be known and in fact, it is often unobtainable

in practice as underlying models for natural phenomena are rarely known. Moreover,

modern computer power allows to easily approximate distributions of tests to high

precisions via Monte Carlo simulation. This makes Monte Carlo tests a preferred

choice to evaluate hypotheses even if a theoretical distribution could in principle be

derived. Also, permutation tests take into account the (unknown) dependence be-

tween the tests which would often be very challenging to incorporate analytically.

So far, only one hypothesis was considered at a time. In practice, several hy-

potheses are often tested together, for instance when testing several gene regions of

interest in a genome study. Testing multiple hypotheses, however, poses new chal-

lenges. Suppose 1000 hypotheses are to be tested together. If all of them were tested

independently at a constant threshold controlling the type I error, such as α = 0.05,

the probability of committing at least one type I error would be 1− (1−α)1000. This

probability is almost one, meaning that one or more decisions will almost certainly be

wrong. To counteract this phenomenon and to keep the error level at a pre-specified

level, it is necessary to correct for multiple comparisons.

Several error criteria are available to evaluate hypotheses while correcting for

multiple comparisons, for instance the familywise error rate (the probability of making

17

Introduction

one or more type I errors) or the less conservative false discovery rate (the expected

proportion of false discoveries among all discoveries).

Special procedures have been developed to control such error critera, called mul-

tiple testing procedures. Two popular examples are the Bonferroni (1936) correction

(Section 2.3.2) controlling the familywise error rate or the Benjamini and Hochberg

(1995) procedure (Section 2.3.1) controlling the false discovery rate.

1.2 Motivation and aim of the thesis

We would like to test m hypotheses H01, . . . , H0m for statistical significance using a

multiple testing procedure given by a mapping

h : [0, 1]m × [0, 1]→ P({1, . . . ,m}) (1.1)

which takes a vector of m p-values p ∈ [0, 1]m and a threshold α ∈ [0, 1] and returns

the set of indices of hypotheses to be rejected, where P denotes the power set. This

procedure could, for instance, be the Bonferroni (1936) correction, the Sidak (1967)

correction or the procedures of Holm (1979), Hochberg (1988) or Benjamini and

Hochberg (1995).

Standard procedures require knowledge of the p-values of all tests. We assume that

the p-values p∗ = (p∗1, . . . , p
∗
m) of the underlying tests cannot be computed explicitly.

For simplicity, we first assume in Chapter 2 that the threshold α∗ at which we would

like to test is constant and known, although this assumption is later relaxed in Chapter

3 to thresholds which may depend on the unknown p∗ and thus may be unknown

themselves.

18

Introduction

Even though p∗ is unknown, we assume that we can approximate p∗ and α∗ (in

the case where α∗ is not given) through Monte Carlo simulations, for instance by

resampling the data in case of bootstrap tests or by generating permutations when

using permutation tests. This is the main assumption underlying all chapters of the

thesis. The aforementioned scenario occurs widely in practical situations (Chen et al.,

2013; Nusinow et al., 2012; Rahmatallah et al., 2012).

The aim of this thesis is to compute h(p∗, α∗) using Monte Carlo simulations only.

Although the main focus lies on an exact computation, Chapters 4 and 5 also consider

ways to approximate h(p∗, α∗) with high accuracy.

The motivation for trying to achieve the same classification as the one obtained

with the p-values is mainly repeatability and objectivity of the results, which Gleser

(1996) called first law of applied statistics : “Two individuals using the same statisti-

cal method on the same data should arrive at the same conclusion.” The statement

of Gleser (1996) refers to the fact that Monte Carlo algorithms introduce additional

randomness into an experiment which is not existent in the data. Moreover, the col-

lection of Monte Carlo samples used by any such algorithm can introduce a substantial

amount of extraneous error as a whole even though single Monte Carlo approxima-

tions might be reasonably precise. To minimise this influence and to not perturb the

result, any additional randomness introduced by a Monte Carlo method has to be

negligible. The following chapters will show ways to achieve control of the Monte

Carlo variability in multiple hypothesis testing up to a guaranteed pre-specified error

probability. Another reason for comparing to the p-values is that all the theoretical

results of the multiple testing procedure based on the p-values still hold (again up to

the guaranteed error probability).

19

Introduction

It can additionally be remarked that setting the testing threshold also constitutes

an arbitrary choice which influences the result. Although there is no gold standard

for setting the threshold recent publications suggested revised guidelines to ensure

meaningful significance levels (Johnson, 2013).

The importance of being able to compute h(p∗, α∗) with pre-specified precision is

briefly demonstrated using an example which is treated in detail in Section 2.5.

We consider the classification of 9335 genes using real gene expression data from

yeast chemostat cultivations (Knijnenburg et al., 2009). For each gene, this dataset

contains 170 microarrays of yeast cultivations, divided into two classes: aerobically

grown yeast and anaerobically grown yeast. Each gene becomes one hypothesis.

The dataset is evaluated using the SAM (Significance Analysis of Microarrays) test

statistic of Tusher et al. (2001) to analyse for which hypotheses the difference in

expression between aerobically and anaerobically grown yeast is significant. As p-

values are not directly available for this test statistic, a permutation test is used to

approximate p-values.

We first draw a constant number of 1000 samples for each of the 9335 hypotheses,

approximate all p-values as the proportion of exceedances and classify the dataset

based on these p-value estimates. Repeating this 200 times shows that the decisions

(rejections/ non-rejections) on most genes are fairly consistent. However, the decision

on the particular gene YLR139C, previously reported as being significant by Rouillard

et al. (1996) in the Saccharomyces Genome Database (Cherry et al., 2011), switches

from significant to non-significant when repeatedly classified (each with roughly prob-

ability 0.5). Should YLR139C be claimed significant or insignificant?

This phenomenon occurs with many more hypotheses in real data studies and,

20

Introduction

more importantly, is not immediately resolved by drawing more samples as merely

using more samples in conventional methods, albeit giving more accurate results, does

not provide a guarantee on the correctness of each finding. The methods developed

in Chapter 2 will classify gene YLR139C as being significant and provide a guarantee

on the correctness of this result of at least 0.99 (chosen in advance by the user). To

our knowledge, no other method available in the literature to date is able to resolve

the correct classification of hypotheses (genes) in such a situation.

1.3 Brief literature review

Several algorithms published in the literature aim to approximate h(p∗, α∗) through

Monte Carlo simulation for various multiple testing procedures h. Some of them aim

to give guarantees on their result, but these guarantees are usually much weaker than

the ones presented in this thesis.

A widely used naive method to approximate h(p∗, α∗) was already used in Section

1.2: the naive approach draws a constant number of s samples for each of the m

hypotheses, approximates all p-values as the proportion of exceedances and classifies

the dataset based on these p-value estimates. Though being simple, no guarantees on

the correctness of the resulting decisions on individual hypotheses are usually given.

Guo and Peddada (2008) aim to improve upon the naive method by introducing an

early stopping rule used to stop drawing the pre-specified total number of s samples

for certain hypotheses. This is achieved using bounds on the p-values of all hypotheses

and a monotonicity property (Tamhane and Liu, 2008) of common multiple testing

procedures. The authors guarantee that their test result, even with some hypotheses

stopped from receiving all s samples, is identical to the one of the naive method.

21

Introduction

Though being related, the focus of the work of Guo and Peddada (2008) differs from

the one of this thesis in that the authors do not provide any guarantee on how their

test result relates to the one obtained with the underlying p-values p∗.

Jiang and Salzman (2012) present an early stopping procedure with a bound on

its computational savings. As Guo and Peddada (2008), Jiang and Salzman (2012)

aim at designing a procedure which gives the same result as the naive approach with

a fixed number of samples. Moreover, the authors show that their procedure only

controls the False Discovery Rate (FDR) (Benjamini and Hochberg, 1995) up to an

error term.

The ad-hoc method of van Wieringen et al. (2008) stops generating samples for

hypotheses for which a lower confidence level exceeds a pre-specified threshold (leading

to a non-rejection). No early stopping for rejections is proposed. Being an ad-hoc

method for a specific application, no explicit theoretical results are given.

The algorithm MCFDR of Sandve et al. (2011) is a modification of the algorithm

of Besag and Clifford (1991), which, for a single hypothesis, stops drawing further

samples when a fixed number of exceedances has been observed. The main idea of

MCFDR is to use the criterion of Besag and Clifford (1991) to obtain quick non-rejections

and to stop the entire algorithm once all remaining hypotheses are rejected based on

their current estimated p-values. Although MCFDR gives quick results, neither MCFDR

nor Besag and Clifford (1991) give any guarantees on how their test results relate to

the result obtained with the p-values p∗.

The method proposed by Knijnenburg et al. (2009) uses ordinary permutation

p-values if sufficiently many exceedances can be observed; otherwise, the authors

approximate the p-values using a fitted extreme value distribution. The aim is to

22

Introduction

efficiently compute an estimate of all p-values, without giving any theoretical guar-

antees.

Moreover, several specialised resampling-based testing procedures for various sam-

pling methods and various statistics can be found in Westfall and Young (1993). All

above methods do not try to take the (unknown) dependence between the test statis-

tics into account. Using permutation methods this can be attempted (Meinshausen,

2006; Westfall and Troendle, 2008).

1.4 Overview of all chapters

The contents of this thesis is as follows.

Chapter 2 introduces MMCTest, a sequential algorithm which gives, with arbitrarily

high probability, the same classification as a specific multiple testing procedure ap-

plied to p-values p∗ at a constant testing threshold α∗. The method can be used with

a class of multiple testing procedures which includes the Benjamini and Hochberg

(1995) False Discovery Rate (FDR) procedure and the Bonferroni (1936) correction

controlling the Familywise Error Rate. One of the key features of the algorithm is

that it stops the sampling for all the hypotheses which can already be decided as being

rejected or non-rejected. MMCTest can be interrupted at any stage and then returns

three sets of hypotheses: the rejected, the non-rejected and the undecided hypotheses.

A simulation study motivated by actual biological data shows that MMCTest is usable

in practice and that, despite the additional guarantee, it can be computationally more

efficient than other methods.

The MMCTest algorithm was published in Gandy and H. (2014). Apart from the

published contents, Chapter 2 contains the following additional sections: Section 2.5

23

Introduction

presents an additional real data example showing how the ability of MMCTest to com-

pute correct classifications up to a pre-specified error can be used in a genome study

to reveal the (previously unknown) true decision on certain genes. Section 2.6 deals

with the runtime of MMCTest. It shows that an algorithm computing complete classi-

fications of all hypotheses using the Benjamini and Hochberg (1995) procedure with

both a bounded error of misclassifications as well as a finite expected runtime cannot

exist. Moreover, Section 2.6 proves that in connection with the Bonferroni (1936)

correction, the runtime of MMCTest is finite when classifying all but two hypotheses.

The idea behind the MMCTest algorithm is generalised in Chapter 3 by providing a

framework to test multiple hypotheses based on Monte Carlo simulation. This frame-

work consists of a generic algorithm which incorporates several methods published in

the literature, in particular all the methods aforementioned. We establish conditions

which guarantee that the rejections and non-rejections obtained through Monte Carlo

simulations are identical to the ones obtained with the p-values. Our framework is

applicable to a general class of step-up and step-down procedures. Moreover, Chapter

3 shows how to use the framework to improve established methods in such a way as to

yield theoretical guarantees on their results. These modifications can easily be imple-

mented in practice and lead to a particular way of reporting multiple testing results

as three sets together with an error bound on the correctness of all reported rejections

and non-rejections, demonstrated exemplarily using a real biological dataset.

Chapter 4 looks at multiple testing from a practical perspective. In practice, it

might be desirable to sacrifice the computational effort needed to obtain a guarantee

on the test result and to invest it in a more precise ad-hoc classification instead –

thereby trying to achieve as few misclassifications (erroneously classified hypotheses)

24

Introduction

as possible at the expense of having no guarantee on the correctness of the test result.

The simple QuickMMCTest algorithm presented in Chapter 4 attempts this. It is based

on Thompson (1933) Sampling and designed to adaptively allocate new samples to

hypotheses whose p-values are closer to the testing threshold and thus whose decision

is more prone to random fluctuations. The algorithm works with arbitrary step-up

or step-down multiple testing procedures applied at a constant as well as a variable

testing threshold. Such variable thresholds, for instance, might take account of the

number of true null hypotheses. A simulation study demonstrates the higher accuracy

of our approach in comparison to a variety of methods published in the literature,

measured in numbers of erroneously classified hypotheses.

Finally, Chapter 5 revisits the QuickMMCTest algorithm designed to efficiently

make use of a finite number of samples with the aim to minimise numbers of er-

roneously classified hypotheses. We are now interested in allocating a pre-specified

total number of samples to all hypotheses in an optimal way – in the sense that the

allocation minimises the total expected number of erroneously classified hypotheses.

Neither using a constant number of samples per p-value estimate nor more sophisti-

cated approaches available in the literature guarantee the computation of an optimal

allocation in the above sense. Using the Kuhn-Tucker formalism, Chapter 5 derives

the optimal allocation of a finite total number of samples to a finite number of hy-

potheses tested using the Bonferroni (1936) correction. Simulation studies indicate

that the QuickMMCTest algorithm might not be too far away from asympotically

imitating this optimal allocation.

The thesis ends with a conclusion in Chapter 6. Future work is discussed in

Chapter 7. Additional material for each chapter such as further simulations and

25

Introduction

proofs can be found in the appendix where indicated.

1.5 List of publications

Chapter 2 of the thesis is published and the remaining chapters are available as articles

on the arXiv preprint server:

• Chapter 2: Gandy and H. (2014), published in the Scandinavian Journal of

Statistics and available on arXiv:1209.3963

• Chapter 3: Gandy and H. (2015a) on arXiv:1402.3019

• Chapter 4: Gandy and H. (2015c) on arXiv:1402.2706

• Chapter 5: Gandy and H. (2015b) on arXiv:1502.07864

26

27

2 MMCTest – A Safe Algorithm

for Implementing Multiple Monte

Carlo Tests

2.1 Introduction

This chapter introduces MMCTest, an algorithm to implement the multiplicity cor-

rection h for multiple Monte Carlo tests. Using Monte Carlo samples only, the algo-

rithm gives, with a pre-specified probability, the same classification (rejected and non-

rejected hypotheses) as the classification based on the p-values p∗. For permutation

tests, the p-values can in principle be obtained by running through all permutations.

For bootstrap tests, the p-value is the probability that a bootstrapped test statistic

is at least as extreme as the observed test statistic.

Our proposed algorithm is sequential: it starts with all hypotheses being unclas-

sified and then takes samples and classifies hypotheses until all but a certain number

of hypotheses have been classified or until a certain effort is reached. The proposed

algorithm can be stopped earlier while having the same guarantee on the probability

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

of misclassifications. When stopped before all hypotheses have been classified, the

algorithm returns three sets: the rejected, the non-rejected and the not yet classified

hypotheses.

Superficially, our algorithm is close to the algorithm proposed by Guo and Ped-

dada (2008). Both algorithms maintain confidence intervals for the p-value of each

hypothesis and stop generating samples for hypotheses for which a decision can be

reached. For this both algorithms rely on the monotonicity property of the Benjamini

and Hochberg (1995) procedure (Tamhane and Liu, 2008).

However, there are crucial differences. These mainly come from the different aim

of the algorithms: Guo and Peddada (2008) aim to reduce the effort compared to

the naive approach with a fixed number of samples per hypothesis. We aim to give

the same classification as the classification using the p-values. As a consequence,

their algorithm imposes an upper bound on the number of samples generated per

hypothesis, whereas our algorithm is open-ended. Their algorithm does not aim to

ensure repeatability, whereas we aim to do so. To be able to do this we judiciously

control the joint coverage probability of the intervals.

To be specific, the main results in Guo and Peddada (2008, Proposition 1, Theorem

1) are related to Lemma 2.3 in the present chapter, with the difference that Guo

and Peddada (2008) compare the classification to the naive approach with a fixed

number of samples, whereas we compare the classification to the one based on the

p-values. Furthermore, the chapter of Guo and Peddada (2008) has no equivalence to

our Theorem 2.6 in which we prove that the classification returned by our algorithm

converges to the one based on the p-values.

The basic MMCTest algorithm is described in Section 2.2. Moreover, Section 2.2

28

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

states conditions which bound the probability of classification errors and which guar-

antee the convergence of the testing result of MMCTest to the classification based on

the p-values. The multiple testing procedure of Benjamini and Hochberg (1995) and

the Bonferroni (1936) correction satisfy these conditions. This is shown in Section

2.3.

In Section 2.4, we first present an application of MMCTest motivated by real bio-

logical data, given by a microarray dataset of gene expressions for yeast chemostat

cultivations (Knijnenburg et al., 2009) (Sections 2.4.1 to 2.4.2). Afterwards, we con-

duct simulation studies motivated by this real data in Sections 2.4.3 and 2.4.4 with

the aim to compare the performance of a naive approach and of MCFDR (see Section

1.3) to MMCTest. Furthermore, we investigate the dependence of MMCTest on certain

parameters (Sections 2.4.6 and 2.4.7).

The present chapter contains additional sections which are not included in its pub-

lished version (Gandy and H., 2014). Section 2.5 revisits the application of MMCTest

to the Knijnenburg et al. (2009) dataset and shows how MMCTest can be used to

reveal the correct and previously unknown classification of certain genes (up to the

pre-specified error probability). To our knowledge, no other method to date is able

to resolve the correct classification of hypotheses in such a situation.

Section 2.6 looks at two aspects of the runtime of MMCTest. We prove that an

algorithm computing a complete classification using the Benjamini and Hochberg

(1995) procedure and with both a bounded error of misclassifications as well as a

finite expected runtime cannot exist (Sections 2.6.1 and 2.6.2). Moreover, Section

2.6.3 proves that in connection with the Bonferroni (1936) correction, the expected

runtime of MMCTest is finite when classifying all but two hypotheses.

29

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

We conclude with a discussion in Section 2.7. The MMCTest algorithm is im-

plemented in an R-package (simctest, available on CRAN, The Comprehensive R

Archive Network).

Most lemmas and theorems stated in this chapter are generalised in Chapter 3.

In order to not state the proofs twice, most proofs are postponed to the more general

versions in the next chapter.

Appendix A includes details on the simulation studies and an evaluation of a

second dataset.

2.2 Description of the algorithm

2.2.1 Basic algorithm

Consider testing m null hypotheses H01, . . . , H0m having corresponding test statistics

T1, . . . , Tm and observed values t1, . . . , tm. A large value of ti shall indicate evidence

against H0i.

We assume that for every hypothesis H0i, where i ∈ {1, . . . ,m}, we can obtain

independent samples from the test statistic Ti under the null hypothesis. We will

denote these by Tij, and the corresponding exceedance indicators will be denoted by

Xij = 1(Tij ≥ ti), j ∈ N, where 1 is the indicator function. In the case of a permu-

tation test, computing Tij involves generating permutations without replacement.

Testing is carried out using a multiple testing procedure h defined in (1.1) at a

constant and known threshold α∗. For simplicity, we drop the dependence of h on its

second argument α in the entire chapter.

Following Tamhane and Liu (2008), we call a multiple testing procedure h mono-

30

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

tonic if h(p) ⊇ h(q) ∀p ≤ q, where p, q ∈ [0, 1]m, i.e. if lower p-values lead to more

rejections.

The following generic algorithm is designed for monotonic multiple testing proce-

dures. It iteratively controls the set of hypotheses for which further samples need to

be drawn by refining confidence intervals for every p∗i through Monte Carlo sampling.

At iteration n, the confidence interval for the p-value p∗i is denoted by Ini . The up-

per confidence limit of a confidence interval Ini is denoted by max Ini and the lower

confidence limit is denoted by min Ini .

The following variables and functions control the behaviour of the algorithm. The

variable ∆ controls how many additional samples are drawn in each iteration. It is

increased geometrically by a constant a ≥ 1 in each step of the algorithm, starting at

∆0 ≥ 1. In the examples of this chapter we use a = 1.25 and ∆0 = 10. Two vectors

S, k ∈ Nm
0 keep track of counts.

The function f(S, k,∆) computes a confidence interval for the p-value of a hy-

pothesis based on the number of exceedances S and the number of samples k drawn

for this hypothesis. The dependence on the current value of ∆ is needed to be able

to guarantee a joint coverage probability of all confidence intervals produced in the

algorithm. For simplicity, we will assume that f returns closed confidence intervals.

In Section A.1 we give an example for such an f which computes Clopper and Pear-

son (1934) confidence intervals and uses a spending sequence to guarantee an overall

coverage probability.

The algorithm runs until at most c ≥ 0 hypotheses remain unclassified or until

the total number of samples drawn reaches a pre-specified limit kmax. The following

pseudo-code uses c = 0 and kmax = ∞, thereby computing a classification of all

31

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

hypotheses.

In the remainder of this chapter, | · | denotes the number of elements in a finite set

and the length of an interval. Moreover, ‖·‖ denotes the Euclidean norm of a vector.

Algorithm 2.1: MMCTest

input: (Xij)ij, f, c = 0, kmax =∞,∆0 = 10, a = 1.25
1 n← 0; ∆← ∆0; A0 ← ∅; A0 ← {1, . . . ,m};
2 I0

i ← [0, 1]; Si ← 0, ki ← 0 ∀i = 1, . . . ,m;

3 while |An \ An| > c and
∑m

i=1 ki ≤ kmax do
4 n← n+ 1;
5 ∆← ba∆c;
6 for i ∈ An−1 \ An−1 do

7 Si ← Si +
∑ki+∆

j=ki+1Xij;

8 ki ← ki + ∆;
9 Ini ← f(Si, ki,∆) ∩ In−1

i ;

10 for i /∈ An−1 \ An−1 do
11 Ini ← In−1

i ;
12 An ← h((max Ini)i=1,...,m);

13 An ← h((min Ini)i=1,...,m);

14 return (An, An);

The algorithm works as follows: The number of additional samples ∆ drawn in

every step is increased geometrically. The total number of samples drawn up to

iteration n for a hypothesis i ∈ {1, . . . ,m} is stored in ki and the total number

of observed exceedances is stored in Si. For all hypotheses which are still under

consideration, i.e. those in An−1\An−1, an additional batch of ∆ samples is drawn and

new confidence intervals are computed. The confidence intervals remain unchanged

for the other hypotheses. New classifications are then computed based on the updated

upper and lower confidence limits.

The confidence intervals Ini computed in Algorithm 2.1 are nested by construction.

32

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

rank of lower confidence limit

c
o
n
fi
d
e
n
c
e
 i
n
te

rv
a
l

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

rank of lower confidence limit
c
o
n
fi
d
e
n
c
e
 i
n
te

rv
a
l

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

rank of lower confidence limit

c
o
n
fi
d
e
n
c
e
 i
n
te

rv
a
l

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

rank of upper confidence limit

c
o
n
fi
d
e
n
c
e
 i
n
te

rv
a
l

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

rank of upper confidence limit

c
o
n
fi
d
e
n
c
e
 i
n
te

rv
a
l

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

rank of upper confidence limit

c
o
n
fi
d
e
n
c
e
 i
n
te

rv
a
l

Figure 2.1: Example run of MMCTest on m = 10 hypotheses using the Benjamini-
Hochberg procedure h: after the second iteration (left), after a few additional iter-
ations (center) and after the last iteration (right). Bold confidence intervals denote
elements of An in the upper row and elements of An in the lower row. The lower
(upper) confidence limits used to compute An (An) are marked with a cross.

Example 2.2. An example run of MMCTest (with m = 10 hypotheses and c = 0) is

shown in Figure 2.1. We use the Benjamini and Hochberg (1995) FDR controlling

procedure (see Section 2.3.1) with threshold α = 0.4 as the multiple testing func-

tion h. The function f given in Section A.1 is used to compute confidence intervals.

Columns show different iterations, the upper row shows the computation of An, the

lower row shows the computation of An. The indices contained in An and An are

visualised with bold confidence intervals. Additionally, the lower (upper) confidence

limits used to compute An (An) are marked with a cross. Only the lower (upper)

end of the confidence interval matters for the computation of An (An), thus the hy-

potheses are ordered by their lower (upper) confidence limit in the upper (lower) row.

33

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

In this example this turns out to be the same ordering. After the second iteration

(left column), MMCTest has already classified the last hypothesis as being non-rejected

as the lower confidence limit of its p-value lies above the line connecting the points

(0, 0) and (m,α) which we call the Benjamini-Hochberg line (or threshold line). All

other hypotheses are still undecided and thus their confidence intervals will be refined.

After a few additional iterations (middle column), the seven smallest values can be

classified as rejected as the upper confidence limit of the seventh value is below the

line. Likewise, the confidence interval of the ninth value has now been shrunk to be

entirely above the line which classifies this value as non-rejected. The eighth p-value

is still unclassified as its confidence interval overlaps with the line. After refining the

confidence interval further, the algorithm stops in the situation depicted in the right

column with a complete classification (An = An).

The monotonicity of h implies immediately that the sequence of sets An is increas-

ing, that the sequence of sets An is decreasing and, on an additional assumption, that

each An (An) is a subset (superset) of the ideal set of rejections h(p∗).

Lemma 2.3. Assume that h is monotonic.

1. (An)n∈N ↗ and (An)n∈N ↘.

2. If p∗i ∈ Ini ∀i, n, then An ⊆ h(p∗) ⊆ An ∀n ∈ N.

The statement of Lemma 2.3 also holds true for variable testing thresholds as

proven in Lemma 3.4. Lemma 2.3 is thus a special case of Lemma 3.4 for a constant

testing threshold.

34

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

2.2.2 Conditions and main results

In this section we show that under certain conditions the classification of MMCTest

is correct with high probability, meaning that all classifications are identical to the

classifications based on the p-values. Furthermore, we show that all hypotheses will

be classified.

The first condition pertains to the multiple testing procedure h. Besides asking

for monotonicity, it ensures that lowering the p-value of a rejected hypothesis or

increasing the p-value of a non-rejected hypothesis does not change the result of h.

Condition 2.4. 1. h is monotonic.

2. Let p, q ∈ [0, 1]m. If qi ≤ pi ∀i ∈ h(p) and qi ≥ pi ∀i /∈ h(p), then h(p) = h(q).

The second condition requires the function f to produce confidence intervals whose

length goes uniformly to 0 as more samples are drawn.

Condition 2.5. |f(S, k,∆)| converges uniformly to 0 as k →∞, i.e. ∀ε > 0 ∃k0 ∈ N

such that ∀k ≥ k0, ∀S ∈ {0, . . . , k} and ∀∆ ∈ N, we have |f(S, k,∆)| < ε.

The main theorem guaranteeing convergence is as follows:

Theorem 2.6. Suppose Conditions 2.4 and 2.5 hold and suppose that there exists

δ > 0 such that p ∈ [0, 1]m and ‖p− p∗‖ < δ imply h(p) = h(p∗). Then, on the event

{p∗i ∈ Ini ∀i, n}, both sequences (An)n∈N and (An)n∈N converge to h(p∗), i.e. there

exists n0 ∈ N such that An = An = h(p∗) ∀n ≥ n0.

Theorem 2.6 will be generalised in Theorem 3.6 to variable testing thresholds.

The condition on p∗ in Theorem 2.6 ensures that p∗ has a neighbourhood on which h

is constant.

35

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

As shown in Section 2.3, the FDR controlling procedure of Benjamini and Hochberg

(1995) and the Bonferroni (1936) correction both satisfy Condition 2.4. This is proven

in Corollary 2.10 and Corollary 2.13. Moreover, they both satisfy the condition on

p∗ in Theorem 2.6 (see Lemma 2.11 and Lemma 2.14) for almost all p∗.

The following third condition ensures that the confidence intervals computed by

the function f in Algorithm 2.1 have a guaranteed joint coverage probability. The

choice of f given in Section A.1 uses Clopper and Pearson (1934) confidence intervals

and satisfies Condition 2.5 and Condition 2.7 (see Lemma A.1).

Condition 2.7. For a given ε > 0, the function f computes confidence intervals Ini

in such a way that P(p∗i ∈ Ini ∀i, n) ≥ 1− ε.

The main theorem and Condition 2.7 together immediately give a bound on the

probability of misclassifications.

Corollary 2.8. Under the conditions of Theorem 2.6 and under Condition 2.7,

P(∃n0 : An = h(p∗) = An ∀n ≥ n0) ≥ 1− ε,

i.e. the probability that all classifications are correct is at least 1− ε.

Proof. By Theorem 2.6 we have An → h(p∗), An → h(p∗) as n → ∞ conditional

on {p∗i ∈ Ini ∀i, n}. Under Condition 2.7, this event occurs with probability P(p∗i ∈

Ini ∀i, n) ≥ 1− ε, hence P(An → h(p∗), An → h(p∗)) ≥ 1− ε.

2.3 Some properties of multiple testing procedures

We discuss how and under which circumstances two multiple testing procedures,

namely the Benjamini and Hochberg (1995) procedure and the Bonferroni (1936)

36

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

correction, satisfy the conditions of Theorem 2.6.

In this section and the following sections, Ac denotes the complement of A ⊆

{1, . . . ,m} with respect to {1, . . . ,m}, where m is the number of hypotheses under

consideration.

2.3.1 Properties of the Benjamini-Hochberg procedure

The False Discovery Rate controlling procedure of Benjamini and Hochberg (1995)

with threshold α > 0 is defined as follows. Given m p-values p1, . . . , pm, their order

statistic is denoted by p(1) ≤ p(2) ≤ . . . ≤ p(m). In case of a tie, equal values are

assigned a rank in arbitrary order. Let k be the largest index i for which p(i) ≤ i
m
α.

Then, rejecting all the hypotheses corresponding to p(1), . . . , p(k) ensures that the FDR

is at most α. The procedure can be expressed as

h(p) =

{
i ∈ {1, . . . ,m} : ∃j : rp(j) ≥ rp(i) and m

pj
rp(j)

≤ α

}
,

where rp(i) denotes the rank of pi in p(1) ≤ p(2) ≤ . . . ≤ p(m).

The following lemma states three properties of the Benjamini-Hochberg procedure

h which are slightly stronger than Condition 2.4.

Lemma 2.9. 1. h is monotonic.

2. Let p, q ∈ [0, 1]m. If qi ≤ |h(p)|α
m
∀i ∈ h(p) and qi = pi ∀i /∈ h(p), then h(p) =

h(q).

3. Let p, q ∈ [0, 1]m. If qi = pi ∀i ∈ h(p) and qi >
α
m
rp(i) ∀i /∈ h(p), then

h(p) = h(q).

37

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

The statements of Lemma 2.9 actually apply to any step-up and, in a slightly

modified fashion, to any step-down procedure. This is shown in Lemma B.1.

The second statement of Lemma 2.9 shows that all the p-values in the set of

rejections can be increased up to a certain bound without affecting the result of h.

The third statement states that h stays invariant if the p-values in the non-rejection

area are replaced by arbitrary values above the Benjamini-Hochberg line (see Example

2.2).

Corollary 2.10. h satisfies Condition 2.4.

Proof. Statement 1 of Condition 2.4 is satisfied as h is monotonic by Lemma 2.9.

To prove that the Benjamini-Hochberg procedure h also satisfies the second state-

ment of Condition 2.4, it suffices to show that for p, q ∈ [0, 1]m, both qi ≤ pi ∀i ∈ h(p)

and qi = pi ∀i /∈ h(p) as well as qi = pi ∀i ∈ h(p) and qi ≥ pi ∀i /∈ h(p) imply

h(p) = h(q).

Indeed, let p, q ∈ [0, 1]m be such that qi ≤ pi ∀i ∈ h(p) and qi = pi ∀i /∈ h(p).

We have pi ≤ |h(p)|α
m
∀i ∈ h(p) by definition of h, thus qi ≤ pi ≤ |h(p)|α

m
∀i ∈ h(p) and

h(p) = h(q) by statement 2 of Lemma 2.9.

Similarly, let p, q ∈ [0, 1]m be such that qi = pi ∀i ∈ h(p) and qi ≥ pi ∀i /∈ h(p).

Using that pi >
α
m
rp(i) ∀i /∈ h(p) it immediately follows that qi ≥ pi >

α
m
rp(i)

∀i /∈ h(p) and thus h(p) = h(q) by statement 3 of Lemma 2.9.

The next lemma states that h is locally constant for almost all arguments:

Lemma 2.11. If p∗ ∈ [0, 1]m with p∗(i) 6= iα/m, i ∈ {1, . . . ,m}, then there exists

δ > 0 such that p ∈ [0, 1]m and ‖p− p∗‖ < δ imply h(p∗) = h(p).

38

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

Proof. The function h stays invariant if all p-values do not change their rank outside

of a tie and if no p-value crosses the Benjamini-Hochberg threshold line.

As h is invariant to permutations, we may assume p∗1 ≤ · · · ≤ p∗m. Let δ :=

min
({

p∗i−p∗i−1

2
: i = 2, . . . ,m with p∗i−1 < p∗i

}
∪
{
|p∗i − iα

m
| : i = 1, . . . ,m

})
.

Let p ∈ [0, 1]m with ‖p− p∗‖ < δ. Then p∗i−1 < p∗i implies pi−1 < p∗i−1 + δ ≤

p∗i − δ < pi. Thus, by possibly permuting indices corresponding to tied values in p,

we may assume p∗1 ≤ · · · ≤ p∗m and p1 ≤ · · · ≤ pm. The ranks of the p-values in p∗

and p are therefore the same.

Furthermore, |pi − p∗i | < δ ≤ |p∗i − iα/m| for all i ∈ {1, . . . ,m}, implying that p∗i

and pi lie on the same side of the Benjamini-Hochberg line. Hence, h(p∗) = h(p).

Lemma 2.11 shows that the condition on p∗ in Theorem 2.6 is satisfied for all the

p-values except for those lying exactly on the Benjamini-Hochberg line.

2.3.2 Properties of the Bonferroni correction

The Bonferroni (1936) correction controls the Familywise Error Rate, defined by

FWER := P(V ≥ 1), where V is the number of true hypotheses which have been

rejected (false positives). The method tests all m hypotheses H01, . . . , H0m at thresh-

old α/m to guarantee FWER ≤ α. The Bonferroni correction hB returning the set

of rejected indices can be stated as

hB(p) = {i ∈ {1, . . . ,m} : pi ≤ α/m} .

Similarly to Lemma 2.9, the following lemma states two key properties of hB which

are slightly stronger than the corresponding statements of Condition 2.4.

39

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

Lemma 2.12. 1. hB is monotonic.

2. Let p, q ∈ [0, 1]m. If qi ≤ α
m
∀i ∈ hB(p) and qi >

α
m
∀i /∈ hB(p), then hB(p) =

hB(q).

Similarly to Lemma 2.9, Lemma 2.12 is a special case of Lemma B.1 for the

procedure of Bonferroni (1936).

The second statement of Lemma 2.12 shows that the result of hB is not affected if

p-values in the rejection (non-rejection) area are replaced by arbitrary values below

(above) the constant testing threshold α/m.

Corollary 2.13. hB satisfies Condition 2.4.

The proof of Corollary 2.13 is similar to the one of Corollary 2.10. Moreover,

Section 3.4.2 will show that Condition 2.4 is actually satisfied for a whole class of

step-up and step-down procedures including the one of Bonferroni (1936).

Similarly to Lemma 2.11, the Bonferroni correction is locally constant for almost

all values:

Lemma 2.14. For all p∗ ∈ ([0, α/m) ∪ (α/m, 1])m there exists δ > 0 such that p ∈

[0, 1]m and ‖p− p∗‖ < δ imply hB(p∗) = hB(p).

Proof. Let δ := mini∈{1,...,m} |p∗i − α/m|. Let p ∈ [0, 1]m with ‖p− p∗‖ < δ. For all

i ∈ {1, . . . ,m}, this implies that pi and p∗i lie on the same side of the threshold α/m.

Therefore, hB(p∗) = hB(p).

Lemma 2.14 shows that the condition on p∗ in Theorem 2.6 is satisfied for all the

p-values except for those lying exactly on the threshold α/m.

40

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

2.4 Simulation studies

This section starts with an overview of all simulation parameters used in the simula-

tion studies (Section 2.4.1).

We then demonstrate that MMCTest can be used to classify thousands of hypotheses

commonly encountered in real data studies (Section 2.4.2).

Moreover, this section shows that when matching the effort, MMCTest computes

classifications containing a number of unclassified hypotheses which is comparable to

the number of misclassifications incurred by current approaches like the naive method

or the MCFDR algorithm – even though MMCTest is able to guarantee the correctness of

all its classified hypotheses while for the two other methods, misclassified hypotheses

typically remain unidentified in the testing result (Section 2.4.3 and Section 2.4.4).

An ad-hoc variant of MMCTest computing a complete classification yields less misclas-

sifications and random classifications than the other methods, demonstrating that

MMCTest is the superior method for practical applications.

Section 2.4.5 illustrates the behaviour of the two sets An and An in a single run of

MMCTest. Section 2.4.6 studies the dependence of the computational effort of MMCTest

on the number of hypotheses m.

We conclude by empirically assessing the runtime of MMCTest in Section 2.4.7,

demonstrating that whilst a complete classification can be computationally very ex-

pensive, most hypotheses can be classified with a reasonable effort.

41

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

2.4.1 The set-up

The following parameters were used throughout Section 2.4. The batch size ∆ in

Algorithm 2.1 is increased by a = 1.25 in every iteration, starting with ∆0 = 10.

Confidence intervals are computed using the function f with Clopper and Pearson

(1934) confidence intervals and parameters ε = 0.01 and r = 10000 (see Section A.1).

The Benjamini-Hochberg procedure (at threshold α = 0.1) as defined in Section 2.3.1

always serves as multiple testing procedure.

We measure the effort of any algorithm in terms of N , the total number of samples

drawn during a run.

We use a yeast chemostat cultivation dataset of Knijnenburg et al. (2009). This

dataset consists of 170 microarrays of yeast cultivations. The first 80 microarrays cor-

respond to yeast which was grown aerobically, the second 90 microarrays correspond

to yeast which was grown anaerobically. Every microarray reacts to 9335 genes, thus

giving rise to 9335 null hypotheses (no effect of the gene onto the response). We eval-

uate this dataset using the SAM (Significance Analysis of Microarrays) test statistic

of Tusher et al. (2001) in connection with a permutation test to analyse for which

hypotheses the difference in expression between aerobically and anaerobically grown

yeast is significant (see Section A.2).

To speed up the computation of the simulation studies in this and the following

sections as well as to have an underlying “truth” for the Knijnenburg et al. (2009)

dataset, we estimated each of the m = 9335 p-values once by generating 106 per-

mutations per hypothesis as outlined in Sections A.3 and A.4. Such a number of

permutations is far more than what would commonly be used in practice. We then

42

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

define these approximated p-values to be the true underlying p-values p∗1, . . . , p
∗
m we

are interested in, although they do not necessarily have to be equal to the p-values

underlying each hypothesis. A plot of the p-values p∗1, . . . , p
∗
m is given in Section A.4.

In the following sections, we draw Bernoulli samples with success probabilities

p∗1, . . . , p
∗
m instead of generating actual permutations. The classification obtained by

applying the Benjamini-Hochberg procedure directly to the p-values p∗1, . . . , p
∗
m is used

to compute misclassifications.

Section A.5 contains another comparison of MMCTest to the naive method and to

MCFDR on a simulated dataset with a larger proportion of true null hypotheses than

the one of the dataset of Knijnenburg et al. (2009), broadly confirming the results of

Sections 2.4.3 and 2.4.4.

2.4.2 Application to Real Data

MMCTest is applied once to the p-values as described in Section 2.4.1.

After having drawn 24.5 · 106 samples all but 100 hypotheses are classified. This

corresponds to only around 2600 samples per hypothesis, thus making a classification

with such a precision fairly easy to compute. Drawing roughly the same number of

samples again (a total number of 49.7 · 106 samples) classifies all but 50 hypotheses.

MMCTest can be stopped whenever the user’s desired number of classifications is

achieved. All but 20 hypotheses are classified after 159 · 106 samples and all but 10

hypotheses after 255 ·106 samples. A classification of all but 5 hypotheses is obtained

after having drawn a total number of 12 · 109 samples. This is, of course, extremely

computationally intensive. The total number of samples drawn for a classification of

all but 5 hypotheses corresponds to roughly 1.3 · 106 samples per hypothesis.

43

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

Table 2.1: Comparison of the naive method to MMCTest
naive method MMCTest

guaranteed classification forced classification
s mis rc N unclassified hypotheses mis rc

100 238 680 933500 7677 236 686
1000 69 230 9335000 317 20 62

10000 21 65 93350000 32 3 6
s: number of samples used by the naive method for each hypothesis; mis : aver-
age number of misclassifications; rc: number of randomly classified hypotheses; N :
average total number of samples.

A comparison to the classification result obtained by applying the Benjamini and

Hochberg (1995) procedure to the p-values p∗1, . . . , p
∗
m shows that in all the classifica-

tions previously reported, none of the decided hypotheses was wrongly classified.

2.4.3 Comparison to the naive method

We compare MMCTest to the sampling scheme which draws a constant number of

samples s for each hypothesis. It then estimates each p-value via its proportion of

exceedances (a formula for this estimate is given in Section A.3) and computes a

classification by applying the multiplicity correction to the estimates, thus treating

the estimated p-values as if they were the p-values. We will call this the naive method.

The naive method is widely used in connection with the False Discovery Rate approach

to evaluate real biological data (Cohen et al., 2012; Gusenleitner et al., 2012; Nusinow

et al., 2012; Rahmatallah et al., 2012).

The results presented in this and the following section are based on 10000 runs.

In each run, we draw Bernoulli samples for the naive method and for MMCTest as

described in Section 2.4.1. The sampling standard deviation of averages is less than

the least significant digit we report in tables.

44

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

Table 2.1 shows the simulation results. The second column displays the average

number of misclassifications for the naive method. A considerable number of misclas-

sifications occurs; even when using s = 10000 samples to estimate each p-value about

21 misclassifications still occur on average for the naive method.

The third column in Table 2.1 shows an alternative criterion, the number of ran-

domly classified hypotheses (rc), which we define as follows. Let f ri be the proportion

of a rejection of hypothesis H0i in the 10000 runs. A hypothesis H0i is considered to

be randomly classified if min(f ri , 1− f ri) is strictly larger than 0.1.

The number of randomly classified hypotheses is substantially larger than the

average number of misclassifications. This demonstrates that for a substantial num-

ber of hypotheses, the decision reported is mainly determined by the Monte Carlo

randomness (as opposed to the relation of p∗ to the threshold).

The total number of samples N drawn during each run of the naive method is

given in the fourth column of Table 2.1.

MMCTest is run on the p-values (see Section 2.4.1) using at most the total number

of samples the naive method had used. The fifth column in Table 2.1 shows the

average number of remaining unclassified hypotheses upon termination.

The average number of unclassified hypotheses of MMCTest is larger than the num-

ber of misclassifications of the naive method. However, MMCTest gives a result which

is proven to be reliable with pre-specified probability in contrast to the one computed

by the naive method. For large values of s, MMCTest yields average numbers of un-

classified hypotheses which almost equal the number of misclassifications observed

for the naive method even though MMCTest guarantees the correctness of its classi-

fied hypotheses while the misclassifications in the testing result of the naive method

45

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

typically remain unidentified.

As shown in Table 2.1, at a high precision, MMCTest yields less unclassified hy-

potheses than the naive method yields randomly classified hypotheses. This indicates

that MMCTest gets competitive for a realistic precision and starts overtaking the naive

method for multiple testing settings which are evaluated at high precision.

MMCTest is stopped on reaching the number of samples used by the naive method.

Nevertheless, all the theoretical guarantees stated in Section 2.2 are still valid, but

not all hypotheses are being classified. A complete classification in an ad-hoc fashion

can be obtained by applying the multiple testing procedure h to the p-value estimates

p̂i = (Si+1)/(ki+1) after stopping (Si and ki are as in Algorithm 2.1). The theoretical

guarantees of Section 2.2 are not valid any more for the ad-hoc procedure.

The two last columns of Table 2.1 show the average number of misclassifications

and the number of randomly classified hypotheses for the ad-hoc procedure which

forces a complete classification upon termination. With this simple modification,

MMCTest yields considerably lower numbers of misclassifications and randomly classi-

fied hypotheses for a high precision than the naive method.

The forced classification should only be used if a complete classification is needed

within a limited effort. In all other cases, whenever the algorithm is stopped, we

recommend using the partioning of the hypotheses into rejected, non-rejected and

not classified hypotheses as testing result of the algorithm.

2.4.4 Comparison to MCFDR

We now focus on a comparison of MMCTest to MCFDR of Sandve et al. (2011), given

in Table 2.2. MCFDR is run first on the p-values (see Section 2.4.1) already used for

46

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

Table 2.2: Comparison of MCFDR to MMCTest
MCFDR MMCTest

guaranteed classification forced classification
u mis rc N unclassified hypotheses mis rc

10 172 524 1.3 · 106 7547 208 592
20 123 389 2.2 · 106 7268 130 398
50 80 267 5.3 · 106 763 50 168

100 57 186 10.5 · 106 288 18 54
200 40 128 21.0 · 106 132 9 29
500 25 72 52.5 · 106 49 4 8

1000 18 54 104.9 · 106 30 3 6
u: number of test statistics exceeding the reference statistic (tuning parameter of
MCFDR); mis : average number of misclassifications; rc: number of randomly classified
hypotheses; N : average total number of samples.

the comparison of MMCTest to the naive method and MMCTest is then applied with

matched effort. The MCFDR algorithm has one tuning parameter: the number u of test

statistics exceeding the reference statistic before stopping (this number was called h

in Sandve et al. (2011)). In Sandve et al. (2011) the authors recommend using u = 20,

but we will also consider larger values.

In its original statement in Sandve et al. (2011), the MCFDR algorithm uses a

modification of the Benjamini-Hochberg procedure of Pounds and Cheng (2006) which

uses an estimate π̂0(p) of the proportion of true null hypotheses. MCFDR can also

be used together with the standard Benjamini-Hochberg procedure by setting π̂0(p)

to one. The following results have been computed using the standard Benjamini-

Hochberg procedure (as defined in Section 2.3.1) for both MCFDR and MMCTest.

The first columns of Table 2.2 show the average number of misclassifications mis

and the number of randomly classified hypotheses rc for MCFDR for various values of

u. Similar to Table 2.1, the number of randomly classified hypotheses occurring for

MCFDR is generally larger than the average number of misclassifications.

47

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

When using MMCTest, the number of unclassified hypotheses is generally larger

than the number of misclassifications for MCFDR. The advantage of using MMCTest is,

as before, the guaranteed classification.

MMCTest becomes more competitive for higher precisions. For large values of u,

the MMCTest algorithm classifies all hypotheses with confidence up to a number which

almost equals the number of misclassifications of MCFDR, and which is less than the

number of randomly classified hypotheses of MCFDR.

The forced classification in MMCTest (the last two columns in Table 2.2) yields

a considerably better classification than MCFDR for high precisions, both in terms of

misclassifications and randomly classified hypotheses.

2.4.5 Progression of classifications of MMCTest

Figure 2.2 illustrates the size of the sets An and An in a single run of MMCTest on

the p-values. The parameters for MMCTest we used are the same as the ones given in

Section 2.4.1. MMCTest is run until all but c = 10 hypotheses are classified.

For the p-values used as the underlying “truth“ (see Section 2.4.1, a plot is avail-

able in Figure A.1) we expect a large proportion of hypotheses to be easily classified

to lie above the Benjamini-Hochberg line with threshold α = 0.1. Indeed, the size of

An drops quickly during the first iterations.

As we use a relatively low threshold of α = 0.1, a considerable effort is needed to

shrink the confidence intervals of the rejected hypotheses in such a way as to make

them lie entirely below the Benjamini-Hochberg line. This becomes visible in Figure

2.2 as the size of An remains unchanged over a large period of time and increases only

at a later stage.

48

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

1e+05 5e+05 5e+06 5e+07

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0

N

S
iz

e
 o

f
s
e

ts

Figure 2.2: Threshold α = 0.1. Size of An (dashed) and An (solid) as a function of
the total number of samples N drawn in a single run of MMCTest. The end of every
iteration is indicated by a circle. The horizontal axis has a log-scale.

The sudden increase in size of set An in Figure 2.2 shows that several hypotheses

are classified together.

2.4.6 Dependence of the effort on the number of hypotheses

How does the number of samples N depend on the number of hypotheses?

Figure 2.3 shows 50%-, 95%- and 99%-quantiles of the effort N for a classification

of m hypotheses, where m ranges from 500 to 10000 in steps of 100. Quantiles are

computed based on 10000 repetitions. For each value of m and each repetition, a new

p-value distribution is obtained by resampling with replacement from the the fixed

p-values p∗1, . . . , p
∗
m (see Section 2.4.1). MMCTest is then run on the new distribution

obtained in this way until all but c = 0.01m hypotheses are classified.

Figure 2.3 indicates that the effort N for a classification of all but c = 0.01m

49

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

Number of hypotheses

Q
u

a
n

ti
le

s
 o

f
N

2000 4000 6000 8000 10000

0
e

+
0

0
1

e
+

0
7

2
e

+
0

7
3

e
+

0
7

4
e

+
0

7

50% Quantile

95% Quantile

99% Quantile

Figure 2.3: 50%-, 95%- and 99%-quantiles of the effort N against the number of
hypotheses m. Quantiles are computed based on 10000 runs classifying all but c =
0.01m hypotheses. P-values for various values of m are obtained by resampling with
replacement from the fixed p-values p∗1, . . . , p

∗
m (see Section 2.4.1).

hypotheses increases linearly in m.

2.4.7 Dependence of the effort on the number of unclassified hypothe-

ses

Figure 2.4 shows the dependence of the effort N on the number of unclassified hy-

potheses for a fixed number of hypotheses m. The right hand side of Figure 2.4

corresponds to the situation of all hypotheses being unclassified. The classification

becomes more complete as the quantile curves approach the left hand side.

To generate this figure, MMCTest is applied 1000 times in the following way to

the p-values p∗1, . . . , p
∗
m (m = 9335, see Section 2.4.1): The current size c of the set

An \ An and the current total number of samples Nc are recorded in each iteration

50

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

Number of unclassified hypotheses

Q
u

a
n

ti
le

s
 o

f
N

10 50 100 500 1000 5000 9335

1
e

+
0

5
5

e
+

0
5

5
e

+
0

6
5

e
+

0
7

50% Quantile

95% Quantile

99% Quantile

Figure 2.4: Effort N against number of unclassified hypotheses. 50%-, 95%- and 99%-
quantiles of N based on 1000 simulations. Log-scale on both axes. The classification
becomes more complete as the quantile curves approach the left hand side.

n. If several p-values are classified together in an iteration, some c do not have a

corresponding Nc. To be conservative, a missing value Nc is set to Nc′ for the largest

c′ < c for which Nc′ is not missing. Each time the algorithm is run until all but c = 10

hypotheses are classified.

The effort is reasonable for classifying all but a few hypotheses. Classifying the

last few hypotheses seems to be computationally intensive.

The steps in Figure 2.4 are caused by several hypotheses with p-values far off the

Benjamini-Hochberg line being classified together. This effect also occurs in Figure 2.2

which shows that at a certain iteration n, several hypotheses are classified together,

thereby causing a sudden increase in the size of the set An.

51

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

p
−

va
lu

e

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

rank of p−value

p
−

v
a

lu
e

0 2000 4000 6000 8000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 2.5: Estimated p-values belonging to significant (bold dashed) and non-
significant (dashed) genes as well as probabilities of being randomly classified (solid
curve). P-values are computed using 1000 (top) as well as 10000 (bottom) permuta-
tions and random classification probabilities are based on 400 repetitions. Multiple
testing via Benjamini and Hochberg (1995) at threshold 0.1.

2.5 An application of multiple testing to gene expression

data

The following example demonstrates the capability of MMCTest to reveal the correct

classification of hypotheses (in this case of genes) with pre-specified probability – a

feature not provided by other methods available in the literature to our knowledge.

We re-consider the classification of 9335 genes using real gene expression data

from yeast chemostat cultivations (Knijnenburg et al., 2009) investigated in Section

2.4. As before, we use SAM (Significance Analysis of Microarrays) of Tusher et al.

(2001) as the test statistic. As p-values are not directly available for this test statistic,

a permutation test is used instead.

52

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

We are interested in the probability of a random classification, meaning the prob-

ability that a gene switches between being classified as significant or non-significant

when classified several times. For this, we generated N ∈ {1000, 10000} permuta-

tions per gene, approximated the p-value using these and then classified all genes

by applying the Benjamini and Hochberg (1995) procedure at threshold 0.1. This

was repeated r = 400 times. As before, we compute the empirical probabilities f ri

(fni = 1 − f ri) that gene i is rejected (non-rejected) in these r repetitions and use

min(f ri , f
n
i) ∈ [0, 0.5] as probability of being randomly classified.

Figure 2.5 shows the average estimated p-values over all r runs using 1000 (top)

and 10000 (bottom) permutations as well as significant (bold dashed) and non-

significant (dashed) genes. The classification was obtained by applying the Benjamini

and Hochberg (1995) procedure to these average p-values. For each gene, Figure 2.5

also displays the probability of being randomly classified (solid curve).

Figure 2.5 shows that most genes have a probability of being randomly classified of

almost zero. They can therefore be unambiguously classified as being either significant

or non-significant. However, a considerable number of genes with a p-value in the

neighbourhood of the last significant and first non-significant gene have a probability

of being randomly classified of up to 0.5, even when using N = 10000 permutations

to estimate each p-value.

Looking up genes which are reported to be significant in the Saccharomyces

Genome Database (Cherry et al., 2011) based on previous studies reveals that al-

most all genes which have been identified so far have a zero probability of being

randomly classified.

However, individual probabilities based on estimated p-values with 1000 permu-

53

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

tations show that gene YJL209W, previously reported to be significant in Chen and

Dieckmann (1997), has a non-zero probability (0.01) of being randomly classified and

gene Q0250 (Fox, 1979) is randomly classified with probability 0.24. More impor-

tantly, gene YLR139C, previously reported to be significant in Rouillard et al. (1996),

is randomly classified with probability 0.48.

Using p-value estimates with 10000 permutations shows that YLR139C (Rouillard

et al., 1996) still remains to be randomly classified with probability 0.21. The two

other genes mentioned before are not randomly classified with the increased number

of permutations.

This phenomenon also depends on the testing threshold. When using the Ben-

jamini and Hochberg (1995) procedure at the threshold 0.05 and 1000 permutations to

estimate p-values, genes Q0060 (DDB, 2001), Q0105 (Kreike et al., 1979) and Q0275

(Meunier, 2001) have high probabilities of being randomly classified (0.12, 0.12 and

0.25, respectively). When using 10000 permutations at the threshold 0.05, only gene

Q0275 (Meunier, 2001) remains randomly classified with non-zero probability (0.02).

The decision made on these genes therefore depends on the Monte Carlo error to

a considerable degree and not on the actual data.

We used the implementation of MMCTest in the package simctest on CRAN

with default values (in particular using a pre-specified error probability of ε = 0.01)

to resolve the classification of the genes YJL209W, Q0250 and YLR139C by re-

computing a complete classification of all hypotheses.

After the first iteration (for the default batch size of our R implementation this

amounts to a total number of 112020 permutations), the genes YJL209W and Q0250

were classified by MMCTest as being non-significant. The fact that both genes had

54

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

a vanishing probability of being randomly classified when estimating p-values with

10000 permutations explains why they could be classified easily.

The gene YLR139C was much harder to classify. After having drawn a total num-

ber of 1.7 · 108 permutations over all hypotheses, it was classified as being significant

by MMCTest. With probability at least 0.99 these decisions are correct in the sense

that they are identical to the ones obtained if underlying p-values had been available.

2.6 Expected runtime of MMCTest

This section comments on the runtime of MMCTest. First, under suitable assumptions,

an argument similar to the one used in Gandy (2009) establishes an infinite expected

runtime for the classification of one hypothesis in Section 2.6.1.

Section 2.6.2 applies this result to multiple testing using the Benjamini and

Hochberg (1995) procedure. It shows that an algorithm which classifies all but a

fixed number c ≥ 0 of hypotheses and which features both bounded error of misclas-

sifications and finite expected runtime cannot exist.

Though a complete classification takes an infinite expected runtime, the expected

runtime is finite for shrinking all but two confidence intervals to such a length as to

not make them overlap with the threshold line. This is proven in Theorem 2.16 in

Section 2.6.3. For the Bonferroni (1936) correction, MMCTest will thus terminate in

finite expected runtime if all but two hypotheses need to be classified.

55

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

2.6.1 A classification of a random p-value takes infinite expected run-

time

Under conditions, deciding one hypothesis having a p-value which is random takes

an infinite expected runtime. The derivation included in this section is similar to the

one in Gandy (2009).

Consider deciding m = 1 hypothesis H01 with a random p-value p1. Assume that

H01 is tested with a sequential algorithm approximating p1 which gives a guarantee

of 1− ε on the correctness of its decision as in Corollary 2.8.

Computing a decision on the single hypothesis H01 is equivalent to deciding

whether p1 lies above or below a testing threshold α. For some p1 > α, consider

testing H0 : p = α against H1 : p = p1. A test can be constructed by rejecting H0 if

and only if the algorithm used for classifying H01 reports not rejected. By the above

assumption (Corollary 2.8), both the Type 1 and the Type 2 error of this test are ε.

For such a sequential test, a lower bound on the expectation of the number N of

steps is given in Wald (1945) by

E(N |p = p1) ≥
ε log

(
ε

1−ε

)
+ (1− ε) log

(
1−ε
ε

)
p1 log

(
p1
α

)
+ (1− p1) log

(
1−p1
1−α

) .
Abbreviate the numerator by C and consider p1 as random in a Bayesian setup,

having distribution function F (p1) with derivative F ′(α) > 0. Assume that for a

suitable γ > 0, there exists a constant d > 0 such that F ′(p1) ≥ d in (α, α+γ). Then

56

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

the expected runtime is bounded by

E(N) =

∫ 1

0

E(N |p = p1)dF (p1) ≥
∫ α+γ

α

E(N |p = p1)dF (p1)

≥ C · d ·
∫ α+γ

α

(
p log

(p
α

)
+ (1− p) log

(
1− p
1− α

))−1

dp =∞,

as the integrand is proportional to (p− α)−2 as p→ α.

As the aforementioned assumptions on the algorithm used to derive the test on H0

apply to MMCTest, its expected runtime for classifying one hypothesis with random

p-value as above is infinite.

2.6.2 Extension to infinite expected runtime for multiple testing

The result of Section 2.6.1 can be extended to multiple hypothesis testing.

Assume that multiple testing is carried out using the Benjamini and Hochberg

(1995) procedure and that p-values are randomly distributed. This section shows

that under reasonable assumptions on the distribution of p-values, an algorithm which

classifies all but a fixed number c ≥ 0 of hypotheses and which features both bounded

error of misclassifications and finite expected runtime cannot exist.

Consider testing m ≥ 1 hypotheses H01, . . . , H0m. Suppose that the p-values

p1, . . . , pm for H01, . . . , H0m have a joint distribution with support [0, 1]m and multi-

variate density fp(p). The density fp(p) shall have the property that for all δ > 0,

there exists a τ > 0 such that fp(p) > τ on [δ, 1− δ]m. This condition is satisfied for

many common densities.

57

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

For a given threshold α and 0 < γ < α/(4m), define the set

A :=

[
α(m− 1)

m
+ 2γ, α− 2γ

]m−1

× [α− γ, α + γ].

Moreover, let B := [δ, 1− δ]m and choose δ in such a way that A ∩B 6= ∅.

Consider drawing a vector p̃ = (p̃1, . . . , p̃m) of p-values from fp conditional on

being in A. By definition of A, p̃m is the largest value in p̃. As p̃m is at most a

distance γ away from the threshold line and all other values are at least 2γ away, p̃m

is also the closest p-value to the line. The value p̃m may lie above or below the line,

all smaller values are surely above the line.

In this scenario, none of the hypotheses can be classified unless it is known whether

p̃m lies above or below the line. As shown in Section 2.6.1, the runtime needed to

decide H0m and thus all hypotheses is infinite. Thus E(N |p̃ ∈ A) = ∞, where N

denotes the number of samples.

By the Law of Total Expectation, the runtime can then be expressed as

E(N) ≥ E(N |p ∈ A) · P(p ∈ A) =∞,

where it was used that E(N |p ∈ A) = ∞ and that fp(p) > τ > 0 on B, thus

P(p ∈ A) ≥ P(p ∈ A ∩B) > 0.

The above consideration shows that for multiple testing using the Benjamini and

Hochberg (1995) procedure, an infinite expected runtime is needed even if not all

hypotheses are required to be classified. Similar constructions can be made for other

step-up and step-down procedures.

58

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

2.6.3 A finite expected runtime can be achieved for testing with the

Bonferroni (1936) procedure

Although a finite expected runtime for Benjamini and Hochberg (1995) testing cannot

be achieved, it can be proven that MMCTest decides all but two hypotheses in finite

expected time for the Bonferroni (1936) procedure.

To be precise, a slightly more general statement is proven in this section. Instead of

merely deciding whether each p-value lies above or below a constant threshold, assume

a modification of MMCTest is run which keeps on shrinking the confidence intervals of

all p-values (placed vertically at a rank in {1, . . . ,m} in a graphical representation)

until they lie entirely within one of the boxes

Cj :=

[
jα

m
,
(j + 1)α

m

)

for j ∈ {0, . . . ,m − 1} or within Cm := [α, 1], α < 1. Depending on the p-values,

none or more than one interval can be found to lie in one particular box.

A confidence interval lying entirely inside one of the boxes Cj is stopped from

being shrunk further. As all Cj start and end at a point of the form jα/m for

j ∈ {0, . . . ,m − 1} or at 1, knowing which box a confidence interval lies in implies

knowing whether the corresponding p-value is above or below the threshold line (for

the case of the Benjamini and Hochberg (1995) procedure). A similar construction

with boxes placed at the discrete critical values of other testing procedures other than

Benjamini and Hochberg (1995) is possible.

We assume that all intervals are two-sided Clopper and Pearson (1934) confidence

intervals, the default choice for MMCTest given in Section A.1. While drawing samples,

59

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

the length of a Clopper and Pearson (1934) confidence interval for each p-value goes

down to zero (Section A.1). More precisely, its maximal length after having drawn k

samples is given in the next lemma.

Lemma 2.15. The two-sided Clopper and Pearson (1934) confidence interval I with

coverage probability 1−ρk based on k samples has maximal length |I| ≤ 2
√
−1
2k

log(ρk).

The proof of Lemma 2.15 is identical to the first part of the proof of Lemma A.1.

Let g(k) := 2
√
−1
2k

log(ρk). Define D := maxj∈{0,...,m} d(p, Cj), where d(p, Ci)

denotes the distance of a random p to the complement of the interval Ci. Denote the

sample mean of a p-value p based on k samples by p̂k. Suppose that p ∈ Cj for a

suitable j ∈ {0, . . . ,m}.

If the distance of p to p̂k is less than D/2 and the confidence interval for p (centered

at p̂k) has a length less than D/2, the confidence interval for p will fit into its box Cj.

Therefore, sampling for p will be stopped on reaching

τ := inf{k : |p̂k − p| < D/2, g(k) < D/2}.

Let τ1, . . . , τm be the stopping times of m p-values as above and consider their

order statistic τ(1) ≤ · · · ≤ τ(m). The main statement of this section is the following

theorem.

Theorem 2.16. Consider m > 2 p-values independently distributed in [0, 1] according

to a density which is bounded above by a finite constant. If log(ρk) = o(k2(γ+0.5)) for

some −1
2
< γ < −1

3
, then E(τ(m−s)) <∞ for s ≥ 2.

Proof of Theorem 2.16. By assumption, the density of the p-values is bounded above

by a constant U . Thus the density of D is bounded above by (m+ 1)U .

60

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

In what follows, an upper bound on the survival function P(τ > t) will be derived.

The upper bound will then translate to an upper bound on the expectation of the

order statistic of the m random variables τ1, . . . , τm.

First, P(|p̂k − p| ≥ D/2) ≤ 2 exp(−1
2
D2k) by Hoeffding’s inequality (Hoeffding,

1963), where it was used that p̂k = 1
k

∑k
i=1 Yi for Yi ∼ Bernoulli(p) and 0 ≤ Yi ≤ 1.

Second, the event {g(k) < D/2} is implied by {D > kγ} for sufficiently large k

for any −1
2
< γ < −1

3
. Indeed, Dk−γ > 1 implies

g(k) = 2

√
−1

2k
log(ρk) <

D

2
k−γ−0.5 4√

2

√
− log(ρk).

Thus, using log(ρk) = o(k2(γ+0.5)), it follows that g(k) < D/2 for sufficiently large k.

The survival function P(τ > t) can now be bounded above by conditioning on D.

For large t,

P(τ > t) = P(τ > t|D ≤ tγ)P(D ≤ tγ) + P(τ > t|D > tγ)P(D > tγ)

≤ (m+ 1)Utγ + P(|p̂t − p| ≥ D/2 ∨ g(t) ≥ D/2|D > tγ)

≤ (m+ 1)Utγ + P(|p̂t − p| ≥ D/2|D > tγ)

≤ (m+ 1)Utγ + 2 exp

(
−1

2
t2γ+1

)
,

where P(τ > t|D ≤ tγ) ≤ 1 was used and P(D ≤ tγ) was bounded using the bound

on the density of D. Moreover, P(D > tγ) ≤ 1 and τ > t if either |p̂t − p| ≥ D/2 or

g(t) ≥ D/2. The latter vanishes in the limit as {D > tγ} implies {g(t) < D/2}. The

upper bound 2 exp(−1
2
D2t) on P(|p̂t−p| ≥ D/2) has already been derived above, and

D > tγ was then substituted. As 2γ + 1 > 0, 2 exp
(
−1

2
t2γ+1

)
decays exponentially

61

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

fast, hence P(τ > t) ∈ O(tγ).

Let X1, . . . , Xn be iid. random variables with cumulative distribution function

(cdf) FX and let r ∈ {1, . . . , n}. Then the cdf of the rth order statistic can be

expressed as FX(r)
(x) =

∑n
i=r

(
n
i

)
F i
X(x) (1− FX(x))n−i (David and Nagaraja, 2003).

Let m ≥ 3 and let r = m− s, s ≥ 2. Using the above expression for the rth order

statistic, the expectation of τ(m−s) can be bounded as

E(τ(m−s)) =

∫ ∞
0

1− Fτ(m−s)
(t)dt

=

∫ ∞
0

m−s−1∑
i=0

(
m

i

)
F i
τ (t) (1− Fτ (t))m−i dt

≤
m−3∑
i=0

(
m

i

)∫ ∞
0

P(τ > t)m−idt,

where Fτ (t) ≤ 1 was used and the fact that s ≥ 2, hence m − s − 1 ≤ m − 3.

Using P(τ > t) ∈ O(tγ), the integrals
∫∞

0
P(τ > t)m−idt behave like

∫∞
0
tγ(m−i)dt and

converge as γ < −1/3 and m ≥ 3 imply γ(m−i) < −1 for all i ∈ {0, . . . , (m−3)}.

As a consequence of the proof of Lemma A.1, the leading order term of the de-

fault spending sequence used for MMCTest (given at the beginning of Section A.1) is

proportional to k−2, hence Theorem 2.16 applies to it for any −1
2
< γ < −1

3
.

In particular, E(τ(m−2)) < ∞ for s = 2. This means that MMCTest, in case

hypotheses have not already been stopped earlier from receiving further samples, will

determine in expected finite runtime for all but two confidence intervals which box

Cj, j ∈ {1, . . . ,m}, they lie in.

For testing using the Benjamini and Hochberg (1995) procedure, unfortunately,

this result does not immediately allow to obtain a statement on the number of clas-

62

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

sified hypotheses (see Section 2.6.2). For the Bonferroni (1936) correction, however,

determining which box a confidence interval lies in implies determining if the corre-

sponding p-value lies above or below the threshold. As the threshold is constant, this

immediately gives a decision on all but two hypotheses in finite expected runtime.

2.7 Discussion

We presented an open-ended sequential algorithm designed to implement multiplic-

ity corrections for multiple Monte Carlo tests in the setting where the p-values are

unknown and can only be approximated through simulation. In order to ensure re-

peatability and objectivity for Monte Carlo based multiple testing, we aim to compute

the same classification as the one based on the p-values.

The main feature of MMCTest is that its output is guaranteed to be correct with

a pre-specified probability, meaning that all its classifications are identical to the

classifications based on the p-values.

Our simulation study shows that a complete classification can be computationally

expensive, but that most hypotheses can be classified using a reasonable effort. For

a realistic precision, MMCTest draws level with the performance of current methods

which unlike MMCTest do not give a guarantee on their classifications being correct,

such as the naive approach or the MCFDR algorithm. An ad-hoc variant of MMCTest

outperforms the naive method and MCFDR both in terms of misclassifications and

randomly classified hypotheses. Tuning the parameter r of the spending sequence,

spending all the remaining error probability or matching the effort exactly in the last

iteration leaves scope for further research.

Conditions were identified which guarantee the bounded risk of classification errors

63

A Safe Algorithm for Implementing Multiple Monte Carlo Tests

and the convergence of the algorithm’s output to the classification computed with the

p-values. By verifying these conditions we showed that the MMCTest algorithm works

for the Benjamini and Hochberg (1995) procedure as well as for the Bonferroni (1936)

correction.

64

65

3 A Framework for Monte Carlo

based Multiple Testing

3.1 Introduction

Using the same setting as the one considered in Chapter 2, this chapter aims to

generalise the results of Chapter 2 into a framework for Monte Carlo based multiple

testing. It thereby extends Chapter 2 in various ways: The framework allows to

obtain theoretical guarantees for the test results of established algorithms and it gives

theoretical bounds on the control of the false discovery rate. Moreover, it works with

arbitrary step-up and step-down procedures and incorporates testing at a variable

testing threshold.

Existing methods (Besag and Clifford, 1991; Lin, 2005; van Wieringen et al., 2008;

Guo and Peddada, 2008; Sandve et al., 2011) return a set of rejected hypotheses which,

at least to a certain extent, is random, where the randomness is coming from the

Monte Carlo simulations and not from the underlying data. Consider the following

example which will be revisited in Section 3.5. Sandve et al. (2011) use their method

MCFDR to classify a genome dataset of Pekowska et al. (2010) with the aim to test

A Framework for Monte Carlo based Multiple Testing

if a gene modification appears more often in certain gene regions. Each gene region

corresponds to one hypothesis. Sandve et al. (2011) report 2747 significant hypotheses

out of 3466 hypotheses without providing guarantees on the stability of their finding.

Recomputing the decisions on all hypotheses shows considerable variability: around

190 of the 3466 hypotheses are randomly classified in the sense that they switch

from being rejected to non-rejected in more than 10% of all cases when repeatedly

applying MCFDR. Conclusions based on the significances of these genes should therefore

be questioned.

In the present chapter we will show how algorithms such as MCFDR can be modified

to give a guarantee on the stability of their findings and thus how to reduce the Monte

Carlo randomness in their results. Although in principle, increased stability can be

achieved by augmenting the number of Monte Carlo samples, merely increasing the

number of samples does not provide a guarantee on the decision of each hypothe-

sis. The guarantees provided in the present chapter are effective for any number of

samples.

The contribution of the chapter is threefold. First, Section 3.2 provides a frame-

work for multiple hypothesis testing under the assumption that p-values are not avail-

able and thus have to be approximated using Monte Carlo methods. The framework

is phrased as a generic algorithm which, under conditions, computes sub- and super-

sets of h(p∗, α∗) that converge to h(p∗, α∗) (Lemma 3.4 and Theorem 3.6 in Section

3.2.2). The framework also incorporates multiple testing at a (possibly unknown)

corrected testing threshold, for instance using an estimate of the proportion of true

null hypotheses.

Second, we show how to use the framework to modify established algorithms in

66

A Framework for Monte Carlo based Multiple Testing

such a way as to provide certain proven guarantees on their test results (Section 3.3).

Third, we simplify the condition on the multiple testing procedure in Section 3.4,

yielding an easy-to-check criterion for an arbitrary step-up or step-down procedure

(Section 3.4.1). We then use the simplified criterion to show that many widely used

procedures can be employed in our framework (Section 3.4.2).

One specific implementation of our generic algorithm is the MMCTest algorithm.

In contrast to the present chapter which presents results for a generic algorithm and

a generic multiple testing procedure, MMCTest focuses on one specific implementation

only as well as on the two specific multiple testing procedures of Bonferroni (1936) and

Benjamini and Hochberg (1995). The present chapter therefore extends the previous

results by showing that a correct test result can also be obtained through appropiate

modifications of existing methods. Moreover, hypothesis testing at a variable testing

threshold is not possible with MMCTest, and the previous chapter did not provide a

simple criterion to prove whether an arbitrary step-up or step-down procedure allows

one to classify hypotheses without knowledge of the p-values.

In Section 3.5 we pick up our discussion of the biological dataset of Pekowska

et al. (2010). We show that our proposed modifications can easily be implemented

in practice, come at virtually no additional computational cost and lead to a certain

way of reporting multiple testing results as three sets together with an error bound

on their correctness.

The chapter concludes with a discussion in Section 3.6. Selected insightful proofs

are given in the chapter, lengthy and technical proofs can be found in Section B.1.

Throughout the chapter, let | · | denote the length of an interval or the size of a

set. Let ‖ · ‖ denote the Euclidean norm. For an interval I ⊂ R, let min I and max I

67

A Framework for Monte Carlo based Multiple Testing

denote its lower and upper limit, respectively. For any set S ⊆ {1, . . . ,m}, where

m ∈ N, let Sc denote the complement of S with respect to {1, . . . ,m}. We abbreviate

(x1, . . . , xn) by x1:n, where x1:0 = ∅.

3.2 The framework

Our framework includes two components, the multiple testing procedure h and a

generic algorithm presented in Section 3.2.1. Combining both the testing procedure

and the algorithm yields a framework which, under conditions, guarantees the cor-

rectness of its test result (Section 3.2.2).

3.2.1 The generic algorithm

We propose to use the following generic sequential algorithm to draw samples for each

hypothesis. As the p-values are unknown, in each iteration n, the generic algorithm

computes intervals I in for each p∗i , i ∈ {1, . . . ,m}, as well as an interval Im+1
n for α∗.

Usually, these intervals will be confidence intervals, in which case our algorithm will

compute sub- and supersets of h(p∗, α∗) (Section 3.2.2).

Although the threshold will be, in most cases, a function α∗ = g(p∗) of the p-

values (see Section 3.3), it is sensible to not restrict the multiple testing procedure to

h(p∗) = h(p∗, g(p∗)) and to keep a separate interval Im+1
n for α∗ instead: Naturally, one

could use confidence bounds on p∗ to obtain a plug-in interval for α∗ (provided that

g is monotonic). However, Example 3.10 demonstrates that for the testing threshold

of Pounds and Cheng (2006), Hoeffding’s inequality (Hoeffding, 1963) allows one to

construct a tighter confidence interval for α∗ than the plug-in interval, thus yielding

a faster convergence to h(p∗, α∗) as well as considerably more decisions on individual

68

A Framework for Monte Carlo based Multiple Testing

hypotheses in a real-data study (Section 3.5).

The generic algorithm draws Monte Carlo samples in each iteration n, denoted

by the observations On. These are typically sets of samples drawn for all hypotheses

or for a subset of the hypotheses. The decision which observations to sample may

depend on the history of observations drawn up to iteration n− 1.

Algorithm 3.1: Generic algorithm

1 A0 ← ∅; A0 ← {1, . . . ,m}; I i0 ← [0, 1], i ∈ {1, . . . ,m}, Im+1
0 = R;

2 for n = 1, 2, . . . do
3 Choose which On to sample based on O1:n−1;
4 Sample On;
5 I in ← Fi(O1:n) ∩ I in−1, i ∈ {1, . . . ,m+ 1};
6 An ← h((min I in)i∈{1,...,m},max Im+1

n);
7 An ← h((max I in)i∈{1,...,m},min Im+1

n);

In each iteration n, Algorithm 3.1 uses the history of samples observed up to

iteration n − 1 to determine a new set of observations On to be sampled. The key

idea of Algorithm 3.1 is to apply the multiple testing procedure h to lower (min I in)

and upper (max I in) confidence limits of the (I in)n∈N, i ∈ {1, . . . ,m}. This yields two

sets An and An. Each of these confidence intervals I in is computed by a function Fi, i ∈

{1, . . . ,m}, using the current history of observations O1:n, n ∈ N. For generality, we

do not impose that Fi computes any specific type of confidence interval. Intersecting

the intervals produces a nested sequence of (I in)n∈N for each i ∈ {1, . . . ,m}.

Example 3.2 (Improved naive method). A widely used method in practice to esti-

mate h(p∗, α∗) is to draw a constant number of samples s for each hypothesis H0i,

where i ∈ {1, . . . ,m}, then compute a point estimate of each p-value and classify all

hypotheses at a constant threshold α∗ based on these point estimates (Nusinow et al.,

2012; Gusenleitner et al., 2012; Rahmatallah et al., 2012; Zhou et al., 2013; Li et al.,

69

A Framework for Monte Carlo based Multiple Testing

2012; Cohen et al., 2012). We will call this the naive method. The naive method can

be applied to any multiple testing procedure h.

In the following we present an improvement of the naive method by stating a

concrete implementation of Algorithm 3.1. As shown in Section 3.3, under conditions

on h, the sets An (An) defined in Algorithm 3.1 will be subsets (supersets) of h(p∗, α∗)

in each iteration n of our improved naive method up to a pre-specified error probability.

One key ingredient of the improved naive method are the confidence sequences

given in Lai (1976): for independent Y1, Y2, . . . ∼ Bernoulli(p),

P(gβn(Sn) < p < fβn (Sn) ∀n ≥ 1) ≥ 1− β,

where Sn =
∑n

i=1 Yi and gβn(x) < fβn (x) are the two distinct (Lai, 1976) roots of

(n+ 1)
(
n
x

)
px(1− p)n−x = β for a given β ∈ (0, 1).

In many applications of the naive method, multiple tests are based on a test statis-

tic and it is possible to sample under the null hypothesis. Let X i
n = 1 if the test

statistic evaluated on the nth sample drawn for hypothesis H0i exceeds the observed

test statistic, otherwise X i
n = 0. For our improved naive method, we draw one new

sample per hypothesis in each iteration n.

The improved naive method is obtained by defining

On = (X1
n, . . . , X

m
n),

Fi(O) =

gβ|O|
 |O|∑

j=1

Oi
j

 , fβ|O|

 |O|∑
j=1

Oi
j

 , i = 1, . . . ,m,

Fm+1(O) = {α∗},

70

A Framework for Monte Carlo based Multiple Testing

where Oi
j = X i

j and |O1:n| = n.

Although the above method is open-ended, we usually stop the improved naive

method after a pre-specified total number of iterations s. In this case, solely the two

test results in As and As based on the intervals of the last iteration will be returned

as result of the algorithm.

In Example 3.2, the testing threshold α∗ is assumed to be constant. However, the

interval Fm+1(O1:n) for α∗ is needed if α∗ depends on p∗. For instance, this is the case

for thresholds depending on an estimate of the proportion of true null hypotheses

which is usually a functional of p∗. Using such an estimated threshold potentially

results in more significant hypotheses which is desired in practice.

Starting with the work of Schweder and Spjøtvoll (1982), many authors have

investigated estimators of the proportion of true null hypotheses, such as Benjamini

and Hochberg (2000), Storey (2002), Langaas et al. (2005), Cheng (2006), Pounds

and Cheng (2006), Jiang and Doerge (2008), Finner and Gontscharuk (2009), Hwang

(2011).

3.2.2 Convergence results

This section states our main results. For this we need the following extension of a

monotonic multiple testing procedure considered first in Section 2.2:

Definition 3.3. h is monotonic if h(p, α) ⊆ h(q, α′) for p ≥ q and α ≤ α′.

A multiple testing procedure is thus monotonic if smaller p-values (as introduced

in Tamhane and Liu, 2008) or a higher testing threshold (see Roth, 1999) lead to

more rejections.

71

A Framework for Monte Carlo based Multiple Testing

Suppose in each iteration n ∈ N, each p-value p∗i is contained in its interval

Fi(O1:n), i ∈ {1, . . . ,m}, and the testing threshold α∗ is contained in the interval

Fm+1(O1:n), expressed as the event

R1 = {α∗ ∈ Fm+1(O1:n), p∗i ∈ Fi(O1:n) ∀i ∈ {1, . . . ,m}, n ∈ N} .

The following lemma shows that on the event R1, classifying hypotheses based on

upper and lower interval bounds allows Algorithm 3.1 to compute sub- and supersets

of h(p∗, α∗) for monotonic multiple testing procedures h. The lemma extends a similar

result for MMCTest (Lemma 2.3) to a variable testing threshold.

Lemma 3.4. Let h be a monotonic multiple testing procedure. Then,

1. An ↗ and An ↘ as n→∞,

2. An ⊆ h(p∗, α∗) ⊆ An ∀n ∈ N on the event R1.

Proof. 1. By construction, Algorithm 3.1 computes nested intervals, thus pn =

(max I in)i∈{1,...,m} ↘ and αn = max Im+1
n ↘ as well as p

n
= (min I in)i∈{1,...,m} ↗

and αn = min Im+1
n ↗. Hence,

An = h(pn, αn) ⊆ h(pn+1, αn) ⊆ h(pn+1, αn+1) = An+1,

An = h(p
n
, αn) ⊇ h(p

n+1
, αn) ⊇ h(p

n+1
, αn+1) = An+1,

where the first (second) subset relation follows from the monotonicity of h in the first

(second) argument.

2. On the event R1, p∗i ∈ I in and α∗ ∈ Im+1
n for all i and n, thus pn ≥ p∗n ≥ p

n
and

αn ≤ α∗ ≤ αn. By monotonicity of h, An = h(pn, αn) ⊆ h(p∗, α∗) ⊆ h(p
n
, αn) = An

72

A Framework for Monte Carlo based Multiple Testing

∀n ∈ N.

The first part of Lemma 3.4 is not dependent on the event R1. It follows purely

from the construction of Algorithm 3.1 which computes nested intervals for each p∗i ,

i ∈ {1, . . . ,m}. The second part of Lemma 3.4 shows that on R1, in any iteration

n, all the hypotheses in the set An (A
c

n) can already be classified as being rejected

(non-rejected).

Additional properties of Algorithm 3.1 can be derived for any monotonic multiple

testing procedure h and choice of p∗, α∗ which satisfy the following condition.

Condition 3.5. 1. Let p, q ∈ [0, 1]m and α ∈ R. If qi ≤ pi ∀i ∈ h(p, α) and qi ≥ pi

∀i /∈ h(p, α), then h(p, α) = h(q, α).

2. There exists δ > 0 such that p ∈ [0, 1]m, α ∈ [0, 1] and ‖p− p∗‖ ∨ |α − α∗| < δ

imply h(p, α) = h(p∗, α∗).

Condition 3.5 ensures that lowering (increasing) the p-value of any rejected (non-

rejected) hypothesis does not affect the result of h. Moreover, we require that there

exists a neighbourhood of p∗ and α∗ on which h is constant. In Section 3.4 we will

simplify Condition 3.5 for so-called step-up and step-down procedures.

Condition 3.5 again is a generalisation of a similar condition seen in Chapter 2

for MMCTest: the first part is identical to Condition 2.4 whereas the second part now

requires the difference of the p-values p and p∗ as well as of α and α∗ to be less than

the constant δ.

We will call a monotonic multiple testing procedure h admissible for p∗ and α∗ if

it satisfies Condition 3.5. The multiple testing procedures we consider in this chapter

73

A Framework for Monte Carlo based Multiple Testing

(see Section 3.4) are admissible for all but a null set of p∗ and α∗ (with respect to the

Lebesgue measure).

A second condition is necessary to obtain convergence of the two bounds An and

An established in Lemma 3.4 to h(p∗, α∗) as n → ∞. Whereas on the event R1, all

hypotheses in An (A
c

n) can already be rejected (non-rejected), we additionally require

that the length of each interval belonging to a yet unclassified hypothesis in the set

An \ An or to the threshold goes to zero:

R2 =
{

max{|Fi(O1:n)| : i ∈ An \ An ∪ {m+ 1}} → 0 as n→∞
}
.

The following theorem improves upon Lemma 3.4 on the more restrictive event R =

R1 ∩ R2 and thus extends Theorem 2.6 proven for the MMCTest algorithm to the

situation of variable testing thresholds:

Theorem 3.6. Let h be an admissible multiple testing procedure for p∗ and α∗. On

the event R, both sequences (An)n∈N and (An)n∈N converge to h(p∗, α∗), i.e. there

exists n0 ∈ N such that An = h(p∗, α∗) = An ∀n ≥ n0.

Proof. Let αn = max Im+1
n , αn = min Im+1

n as well as Bn = An \ An. Suppose

∃i ∈ lim supn→∞Bn. On the event R2, |I in| → 0 as n → ∞ for i ∈ lim supn∈NBn as

well as |Im+1
n | → 0 as n→∞. Let δ be as given in Condition 3.5. As Bn ⊆ {1, . . . ,m}

is finite ∀n ∈ N, there exists n0 ∈ N such that |I in|2 < δ2/m and |αn − αn| < δ for

n ≥ n0 and all i ∈ lim supn→∞Bn.

We show that for all n ≥ n0,

An = h((min I in)i∈{1,...,m}, αn) = h(p∗, α∗) = h((max I in)i∈{1,...,m}, αn) = An.

74

A Framework for Monte Carlo based Multiple Testing

To do this, we show

h(p(1), αn) = h(p(2), αn) = h(p(3), αn),

h(p(3), αn) = h(p(4), α∗) = h(p(5), αn),

h(p(5), αn) = h(p(6), αn) = h(p(7), αn),

where

p(1) := (min I in)i∈{1,...,m}, p(4) := p∗,

p(2) :=


min I in i ∈ An,

p∗i i /∈ An,
p(5) :=


max I in i ∈ Bn,

p∗i i /∈ Bn,

p(3) :=


min I in i ∈ Bn,

p∗i i /∈ Bn,

p(6) :=


max I in i ∈ An,

p∗i i /∈ An,

and p(7) := (max I in)i∈{1,...,m}. The following holds true on the event R1.

(1) By definition, An = h(p(1), αn). As p
(2)
j = p∗j ≥ min Ijn = p

(1)
j ∀j /∈ An and

p
(2)
j = p

(1)
j ∀j ∈ An, the first part of Condition 3.5 yields An = h(p(1), αn) = h(p(2), αn)

for a fixed αn.

(2) As (max I in)i∈{1,...,m} ≥ p(3) and because h is monotonic, An ⊆ h(p(3), αn) ⊆

h(p(3), αn). As p
(2)
j = min Ijn ≤ p∗j = p

(3)
j ∀j ∈ An and p

(2)
j = p

(3)
j ∀j /∈ An, the first

part of Condition 3.5 yields h(p(2), αn) = h(p(3), αn).

(3) On the event R1, |αn − αn| < δ implies |α∗ − αn| < δ and |I in|2 < δ2/m

implies ‖p(3) − p∗‖ < δ. The second part of Condition 3.5 thus yields h(p(3), αn) =

h(p(4), α∗) = h(p∗, α∗) ∀n ≥ n0.

75

A Framework for Monte Carlo based Multiple Testing

Arguing similarly to (1), (2), (3) we can show h(p(4), α∗) = h(p(5), αn) as well as

h(p(5), αn) = h(p(6), αn) and h(p(6), αn) = h(p(7), αn) = An.

In the next section, we will use Lemma 3.4 and Theorem 3.6 to establish guarantees

on the test result of existing algorithms.

Suppose Algorithm 3.1 is used in connection with an admissible multiple testing

procedure controlling the familywise error rate (fwer). Then at any stage, the fwer

is also controlled for all the rejections in An ⊆ h(p∗, α∗). This is easily proven using

Boole’s inequality.

A similar statement, however, is not true for admissible multiple testing procedures

controlling the false discovery rate (fdr). Although the fdr is not generally controlled

for subsets An ⊆ h(p∗, α∗) or supersets An ⊇ h(p∗, α∗), the following guarantees hold

if Algorithm 3.1 is run with suitable stopping times.

Lemma 3.7. Let h control the fdr at level α, let V n (V n) be the set of rejected true

null hypotheses in An (An) for n ∈ N and let η ≥ 1, ξ ≥ 0.

1. E (|V s|/|As|) ≤ ηα for the stopping time s = min{n ∈ N : |An|/|An| ≤ η}.

2. E
(
|V t|/|At|

)
≤ α + ξ for t = min{n ∈ N : (|An| − |An|)/|An| ≤ ξ}.

Proof. Let R be the set of rejected hypotheses and V be the set of rejected true null

hypotheses. As An ⊆ R ⊆ An for all n ∈ N, |An| ≤ |R| ≤ |An|. Moreover, as An ⊆ R,

all rejected true null hypotheses in An are also in R and thus by definition also in V ,

hence V n ⊆ An ⊆ R implies |V n| ≤ |V |. As the difference in numbers of rejected true

null hypotheses in V and V n cannot differ by more than the number of undecided

hypotheses |An| − |An| for any n ∈ N it follows that |V | ≤ |V n| ≤ |V |+ (|An| − |An|).

76

A Framework for Monte Carlo based Multiple Testing

1. Using the above,

|V n|
|An|

=
|V |
|R|

+
|V n||R| − |An||V |

|An||R|
≤ |V |
|R|

+
|V |
|R|
|R| − |An|
|An|

≤ |V |
|R|
|R|
|An|

≤ |V |
|R|
|An|
|An|

for all n ∈ N, thus E(|V s|/|As|) ≤ ηE(|V |/|R|) = ηα.

2. Similarly,

|V n|
|An|

≤ |V |+ (|An| − |An|)
|An|

≤ |V |
|R|

+
|An| − |An|
|An|

for all n ∈ N, thus E(|V t|/|At|) ≤ E(|V |/|R|) + ξ = α + ξ.

In Lemma 3.7, we define the fraction in the definition of the stopping time s (time

t) to be zero if |An| (|An|) is zero as in this case, false rejection errors are impossible.

Lemma 3.7 thus provides two different guarantees on the fdr, a multiplicative one on

the set of rejected hypotheses As and an additive guarantee on the rejections in At

with respect to the two stopping times s and t.

3.3 Improving existing algorithms

In this section we introduce a class of established methods which estimate h(p∗, α∗)

and show how the framework given by Algorithm 3.1 can be used to modify these

methods in such a way as to provide a guarantee on the correctness of their test results.

We will demonstrate our proposed modifications by extending the improved naive

method presented in Example 3.2 to the situation of an estimated testing threshold.

Consider an existing method to compute h(p∗, α∗). The threshold α∗ can either be

constant or given by a monotonic (increasing or decreasing) function g : [0, 1]m → R,

77

A Framework for Monte Carlo based Multiple Testing

thus α∗ = g(p∗). In the latter case, α∗ is a function of p∗ and thus unknown itself.

Methods working with bootstrap point estimates of p∗ (Besag and Clifford, 1991;

van Wieringen et al., 2008; Sandve et al., 2011; Jiang and Salzman, 2012), fitted

distributions (Knijnenburg et al., 2009) or permutation based methods (Westfall and

Young, 1993; Westfall and Troendle, 2008; Meinshausen, 2006) can be phrased in

the following way: Draw independent samples Xij ∼ Bernoulli(p∗i), j ∈ N, for each

i ∈ {1, . . . ,m}. Use a finite number Si of these samples Xi1, . . . , Xi,Si
to compute a

p-value estimate p̂i of p∗i , where Si is a (random) index and i ∈ {1, . . . ,m}. Estimate

the testing threshold α∗ using the plug-in estimate α̂ = g(p̂), where p̂ = (p̂1, . . . , p̂m).

Return h(p̂, α̂) as the test result.

Based on Algorithm 3.1 we propose to modify any method of the above type by

1. Maintaining a confidence sequence (Lai, 1976) with a coverage probability of

1 − ε/m for each p-value p∗i , i ∈ {1, . . . ,m}, and by using each sequence as

Fi(O1:n) in Algorithm 3.1. The overall error probability ε is chosen by the user.

2. Computing plug-in bounds Fm+1(O1:n) for α∗ using the monotonicity of g and

the above confidence sequences.

3. Reporting hypotheses in An as rejected and in A
c

n as non-rejected. The remain-

ing hypotheses are still undecided.

As the confidence sequence of Lai (1976) satisfies P(∃n : p∗i /∈ Fi(O1:n)) < β for

each p∗i (see Example 3.2), the choice β = ε/m yields

P(∃i, n : p∗i /∈ Fi(O1:n)) ≤
m∑
i=1

P(∃n : p∗i /∈ Fi(O1:n)) ≤
m∑
i=1

ε/m = ε,

78

A Framework for Monte Carlo based Multiple Testing

and hence P(p∗i ∈ Fi(O1:n) ∀i ∈ {1, . . . ,m}, n ∈ N) ≥ 1− ε. The event R1 thus occurs

with probability at least 1− ε.

Consequently, any modified method of the above type has the following advantage

over its unimproved counterpart:

Remark 3.8. By Lemma 3.4, a modified method of the above type has the property

that all the hypotheses in the set An (A
c

n) which are rejected (non-rejected) in any

iteration n are indeed correctly rejected (non-rejected) with probability at least 1− ε.

Remark 3.8 applies to the improved naive method (Example 3.2) upon stopping in

iteration s as well as to the methods presented in the following two examples. First,

we generalise Example 3.2 to the situation where the testing threshold is unknown.

Example 3.9. Additionally to the setting of Example 3.2, we assume that multiple

testing is carried out at the corrected testing threshold α∗ = t∗/π̂0(p∗), where t∗ is an

uncorrected threshold (typically t∗ = 0.05 or t∗ = 0.1) and π̂0(p) = min
(
1, 2

m

∑m
i=1 pi

)
is an estimator of the proportion of true null hypotheses (Pounds and Cheng, 2006).

Recent applications of this threshold include Han and Dalal (2012), Lu et al. (2011),

Jupiter et al. (2010), Cheng (2009).

As π̂0(p∗) depends on the p-values, the corrected threshold α∗ is unknown in prac-

tice. We thus need to compute a confidence interval for it. The interval can be con-

structed using the monotonicity of π̂0(p): in iteration n, πn = π̂0(min I1
n, . . . ,min Imn)

is a lower bound on π̂0(p∗), likewise πn = π̂0(max I1
n, . . . ,max Imn) is an upper bound.

This immediately translates to the interval Fm+1(O1:n) = [t∗/πn, t
∗/πn] for α∗.

We try to improve Example 3.9 by using a (hopefully) tighter confidence interval

Fm+1(O1:n) for α∗ based on Hoeffding’s inequality (Hoeffding, 1963).

79

A Framework for Monte Carlo based Multiple Testing

Example 3.10. Suppose we have observed s samples X i
1, . . . , X

i
s per hypothesis H0i,

where X i
j is the indicator of an exceedance for the jth sample drawn for H0i as in

Example 3.2. Then for all u > 0, by Hoeffding’s inequality:

P

(∣∣∣∣∣ 1

ms

m∑
i=1

s∑
j=1

X i
j −

1

m

m∑
i=1

p∗i

∣∣∣∣∣ ≥ u

)
≤ 2 exp

(
−2msu2

)
.

Thus for a given η ∈ [0, 1],

1

ms

m∑
i=1

s∑
j=1

X i
j ±

√
− 1

2ms
log
(η

2

)

are boundaries of a 1− η confidence interval for 1
m

∑m
i=1 p

∗
i . Using the monotonicity

of the mapping x 7→ t∗/min(1, 2x), this immediately translates to a 1− η confidence

interval for α∗.

When using Hoeffding’s interval in the improved naive method, we allocate an

error of η = ε/(m + 1) to the computation of Hoeffding’s interval as well as to the

computation of each of the m confidence sequences for the p-values. As the improved

naive method is open-ended, we use a non-negative real sequence (ηn)n∈N satisfying∑∞
n=1 ηn = η to distribute η for Hoeffding’s interval over all iterations of the algo-

rithm, thus computing it at level ηn in each iteration n.

Both the plug-in interval (Example 3.9) and Hoeffding’s confidence interval (Ex-

ample 3.10) will be evaluated in Section 3.5.

80

A Framework for Monte Carlo based Multiple Testing

3.4 Admissibility of step-up and step-down procedures

Although the multiple testing procedure h does not have to be of a special form,

many procedures used in practice such as the ones of Bonferroni (1936), Sidak (1967),

Holm (1979), Hochberg (1988) or the one of Benjamini and Hochberg (1995) belong

to a certain class of procedures, called step-up and step-down procedures. We will

simplify Condition 3.5 for step-up and step-down procedures in Section 3.4.1 and use

the simplified condition in Section 3.4.2 to verify that many widely used procedures

are admissible. As shown in Section B.2, the Hommel (1988) procedure is an example

of a procedure which is not admissible.

3.4.1 A simplified admissibility condition

Suppose we are given an arbitrary step-up procedure hu or step-down procedure hd

(Romano and Shaikh, 2006) returning the set of rejected indices. For our purposes, we

phrase these two procedures in terms of a threshold function τα : {1, . . . ,m} → [0, 1]

which depends on a threshold α ∈ [0, 1] and returns the critical value τα(i) each p(i)

is compared to:

hu(p, α) =

{
i ∈ {1, . . . ,m} : pi ≤ max

j∈{1,...,m}
{p(j) : p(j) ≤ τα(j)}

}
, (3.1)

hd(p, α) =

{
i ∈ {1, . . . ,m} : pi < min

j∈{1,...,m}
{p(j) : p(j) > τα(j)}

}
, (3.2)

where max ∅ := 0, min ∅ := 1, and where the order statistic of p1, . . . , pm is denoted

by p(1) ≤ . . . ≤ p(m).

We assume that the threshold function τα satisfies the following condition.

81

A Framework for Monte Carlo based Multiple Testing

Condition 3.11. 1. τα(i) is non-decreasing in i for each fixed α.

2. τα(i) is continuous in α and non-decreasing in α for each fixed i.

By the following lemma, a step-up or step-down procedure is admissible if the

threshold function τα defining it satisfies Condition 3.11.

Lemma 3.12. If τα satisfies Condition 3.11 then the corresponding hu and hd are

monotonic and satisfy the first part of Condition 3.5. If moreover τα∗(i) 6= p∗(i) for all

i ∈ {1, . . . ,m}, hu and hd also satisfy the second part of Condition 3.5 for p∗ and α∗.

Remark 3.13. Suppose the p-values p∗ are random with a distribution that is ab-

solutely continuous with respect to the Lebesgue measure. Then, for a fixed α∗, the

p-values not satisfying the conditions of Lemma 3.12 form a null set.

3.4.2 Examples of admissible step-up and step-down procedures

This section shows that a variety of commonly used step-up and step-down procedures

are monotonic and satisfy Condition 3.11.

The following multiple testing procedures are determined by τα(i), where i ∈

{1, . . . ,m}, and control the fwer or the fdr at a threshold α. We denote the hypothesis

corresponding to the ordered p-value p(i) by H0(i), i ∈ {1, . . . ,m}.

In most cases, Condition 3.11 can be checked by considering the derivatives of

τα(i) with respect to α and i, thus regarding i as a continuous parameter. Unless

stated otherwise, all the threshold functions listed below are clearly non-decreasing

in both i and α as well as continuous in α and thus satisfy Condition 3.11.

The Bonferroni (1936) correction can be derived from either a step-up or a step-

down procedure using the constant threshold function τα(i) = α/m.

82

A Framework for Monte Carlo based Multiple Testing

The following step-up procedures are admissible:

1. The Simes (1986) procedure rejects ∩i∈{1,...,m}H0i if there exists k ∈ {1, . . . ,m}

such that p(k) ≤ kα/m. It can be used in our framework with the help of the

following modification: Once hu(p, α) for a step-up procedure with threshold

function τα(i) = iα/m is correctly determined, the Simes (1986) procedure

rejects ∩i∈{1,...,m}H0i if and only if |hu(p, α)| > 0.

2. The Hochberg (1988) procedure uses τα(i) = α/(m+ 1− i).

3. The Rom (1990) procedure increases the power of the Hochberg (1988) proce-

dure by replacing its critical values τα(i) = α/(m + 1 − i) by “sharper” values

τα(i) = ci. The ci are computed recursively as given in Rom (1990) and satisfy

ci ↗ for a fixed α. Moreover, the ci are non-decreasing in α.

4. The choice τα(i) = iα/m yields the Benjamini and Hochberg (1995) procedure.

5. The Benjamini and Yekutieli (2001) procedure controls the fdr under arbitrary

dependence by applying the Benjamini and Hochberg (1995) procedure at the

corrected constant threshold α/ (
∑m

i=1 i
−1).

Similarly, the following step-down procedures satisfy Condition 3.11:

1. The Sidak (1967) correction uses τα(i) = 1− (1− α)1/(m+1−i).

2. The choice τα(i) = α/(m+ 1− i) yields the Holm (1979) procedure.

3. The Shaffer (1986) procedure modifies the Holm (1979) procedure in order to

obtain an increase in power. For the tests under consideration, let 0 ≤ a1 <

83

A Framework for Monte Carlo based Multiple Testing

a2 < · · · < ar ≤ n be all possible numbers of true null hypotheses. Assum-

ing that H0(1), . . . , H0(i−1) are false, let ti = max{aj : aj ≤ n − i + 1} be

the maximum possible number of true null hypotheses. The Shaffer (1986)

procedure determines the minimal index k such that p(k) > α/tk and then re-

jects H0(1), . . . , H0(k−1). It can be obtained from a step-down procedure using

τα(i) = α/ti, which is clearly continuous and non-decreasing in α for a fixed i.

As ai ↗ and thus ti ↘, τα(i) is also non-decreasing in i for a fixed α.

For a given α∗, by Lemma 3.12, all the procedures listed above are admissible for

all but a null set of p-values p∗.

3.5 Using the framework in practice

The improved naive method derived in Example 3.2 is capable of computing test

results which consist, up to a pre-specified error probability ε, of sets of correctly

rejected and correctly non-rejected hypotheses as well as of a set of undecided hy-

potheses. The following contains an example of such a classification.

Sandve et al. (2011) use their method MCFDR to classify a dataset of gene modi-

fications (so-called H3K4me2-modifications) of Pekowska et al. (2010). This dataset

consists of gene regions and gene modifications within each region, characterised by

their midpoint. The beginning and the end of each region on the genome are normed

to 0 and 1, respectively. The authors test if the gene modifications appear more often

in a certain part of the gene region.

To be precise, Sandve et al. (2011) observe k random points Y1, . . . , Yk in [0, 1]

(these are the midpoints of the gene modifications) and test the null hypothesis H0 :

E
(

1
k

∑k
i=1 Yi

)
≥ 0.5 against the alternative H1 : E

(
1
k

∑k
i=1 Yi

)
< 0.5 using the test

84

A Framework for Monte Carlo based Multiple Testing

statistic T = 1
k

∑k
i=1 Yi. Each null hypothesis is tested by permuting the midpoints

in each region while preserving their inter-point distances.

Sandve et al. (2011) first filter the dataset for genes with at least 10 modifications

per gene region. Each such region becomes one hypothesis, leading to m = 3465

hypotheses (gene regions) under consideration. They evaluate the data using the

procedure of Benjamini and Hochberg (1995) with a corrected testing threshold at

level 0.1/π̂0(p̂), where π̂0 is the estimator of Pounds and Cheng (2006) introduced in

Example 3.9 and p̂ is an estimate of p∗ returned by MCFDR. Sandve et al. (2011) report

2747 significant hypotheses.

Nevertheless, the authors do not provide any guarantee on the correctness of their

findings. Recomputing the results of Sandve et al. (2011) indeed shows considerable

variability. To demonstrate this, we re-classify the H3K4me2 dataset using the MCFDR

algorithm of Sandve et al. (2011) a total number of r = 1000 times. Let psi (pni) be

the empirical probability that hypothesis H0i is significant (non-significant) in these

r repetitions.

We are interested in measuring the randomness in the output of an algorithm

and use pri = min(psi , p
n
i) as probability of H0i being randomly classified. We call all

hypotheses having pri > 0.1 “randomly classified” and denote their total number by

rc. For MCFDR we observe that 195 hypotheses remain randomly classified on average.

We first use the (unimproved) naive method (as defined at the beginning of Exam-

ple 3.2) with s ∈ {102, 103, 104} samples per hypothesis to classify the same dataset.

Table 3.1 shows the number of randomly classified hypotheses rc observed for the

naive method as a function of s (second column). For s = 102, the total effort is

comparable to the one of MCFDR and both methods yield equally high numbers of ran-

85

A Framework for Monte Carlo based Multiple Testing

Table 3.1: Repeated application of the improved and the unimproved naive method
to the same data.

naive improved naive method
method with plug-in interval (Ex.3.9) with Hoeffding’s interval (Ex.3.10)

s rc rejected non-rej. undec. rc rejected non-rej. undec. rc
102 196 0 161.8 3303.2 0 0 372.0 3093.0 0
103 60 2386.0 487.5 591.5 0 2568.5 576.0 320.5 0
104 18 2649.0 624.6 191.4 0 2697.3 661.7 106.0 0

s: number of samples drawn per hypotheses; rc: number of randomly classified hy-
potheses; rejected, non-rejected and undecided are average numbers based on 1000
repetitions.

dom decisions (rc ≈ 195). For high precision (s = 104), up to 18 hypotheses remain

inconsistently classified.

We then apply the improved naive method described in Example 3.2 to the same

dataset using an overall error probability of ε = 0.01. The improved method is stopped

after having drawn s samples per hypothesis. Table 3.1 shows rejected, non-rejected,

undecided (see Remark 3.8) and randomly classified hypotheses. We evaluate both

the plug-in interval for α∗ introduced in Example 3.9 (columns three to six) as well as

Hoeffding’s confidence interval derived in Example 3.10 (columns seven to ten). For

Hoeffding’s interval, we use ηn = νn − νn−1 with νn = n
n+s

ε
m+1

, n ∈ N.

Using a confidence interval for α∗ based on Hoeffding’s inequality (as opposed to

the plug-in interval) yields considerably more decisions (rejections and non-rejections)

and thus less undecided hypotheses for all ranges of precision.

Although for low numbers of samples many hypotheses remain undecided, the test

results of the improved naive method are consistent in the sense that no hypothesis

is randomly classified. The improved naive method therefore provides reliable test

86

A Framework for Monte Carlo based Multiple Testing

results and ensures repeatability. For a high precision (s = 104), the improved naive

method with Hoeffding’s interval for α∗ yields around 2700 rejections and 660 non-

rejections. The remaining 106 hypotheses are still unclassified, meaning that within

this limited computational effort, no statement about these hypotheses (gene regions)

should be made. The probability of the above results being correct is at least 0.99.

3.6 Discussion

We consider p-value based multiple testing under the assumption that the p-value of

each hypothesis is not available and thus has to be approximated using Monte Carlo

simulations. Although widely occurring in experimental studies, common methods

for this scenario do not give any guarantee on how their test results relate to the one

obtained if all p-values had been available.

Section 3.2 introduced a framework for Monte Carlo based multiple testing, both

in terms of a general multiple testing procedure and a generic algorithm. Conditions

on both the multiple testing procedure and the algorithm guarantee that the rejections

and non-rejections returned by our generic algorithm are identical to the ones obtained

with the p-values. A simplified condition for step-up and step-down multiple testing

procedures is derived.

The framework thus extends the idea behind the MMCTest algorithm of Chapter 2

to a wider range of both Monte Carlo algorithms used to test multiple hypotheses as

well as to a whole class of step-up and step-down procedures.

We demonstrate how to use our framework to modify established methods in such

a way as to yield theoretical guarantees on their test results. As demonstrated on a

class of commonly used methods, these modifications can easily be implemented in

87

A Framework for Monte Carlo based Multiple Testing

practice and come at virtually no additional computational cost.

Improved established methods, such as the improved naive method evaluated on a

real data study, allow one to report multiple testing results as three sets: rejected, non-

rejected and undecided hypotheses, together with an error bound on their correctness.

We recommend any multiple testing result to be reported in this fashion.

88

89

4 QuickMMCTest – Higher accu-

racy for multiple testing correc-

tions

4.1 Introduction

So far, Chapter 2 and Chapter 3 have focused on how to obtain theoretical guaran-

tees on the correctness of decisions computed by algorithms implementing a multiple

testing procedure. This chapter looks at multiple testing from a practical perspective:

In order to evaluate scientific studies, it may be desirable to spend the (additional)

effort needed to obtain a guarantee of correctness on certain hypotheses on a more

precise ad-hoc classification instead, thus sacrificing the theoretical guarantee in or-

der to minimise numbers of misclassifications. Such a complete classification of all

hypotheses might be more useful than methods computing guaranteed decisions at

the expense of leaving several hypotheses unclassified – especially as the total number

of samples available in practice is finite and the runtime of methods such as MMCTest

is high.

QuickMMCTest – Higher accuracy for multiple testing corrections

As before, we consider the scenario in which p-values cannot be computed exactly.

They are approximated using Monte Carlo tests such as permutation tests or boot-

strap tests. Permutation tests are widely used in practice as underlying models for

biological phenomena are rarely known (Lourenco and Pires, 2014; Mart́ınez-Camblor,

2014; Liu et al., 2013; Wu et al., 2013; Asomaning and Archer, 2012; Dazard and Rao,

2012).

As in Section 2.1 we are interested in the classification of all hypotheses obtained

with the full knowledge of all p-values. In the case of permutation tests, for instance,

these p-values are defined as the ones computed by exhaustively listing all permuta-

tions. For bootstrap tests the p-value is defined as the probability that a bootstrapped

test statistic is at least as extreme as the observed test statistic.

A simple method to apply a multiplicity correction in the scenario under con-

sideration is to first draw a constant number of samples for each hypothesis, then

approximate its p-value using a conservative p-value estimate and finally use the es-

timates as input for the multiple testing procedure, thus treating them as if they

were the p-values. This naive approach is widely used to evaluate multiple tests

without knowledge of the p-values (Nusinow et al., 2012; Gusenleitner et al., 2012;

Rahmatallah et al., 2012; Zhou et al., 2013; Li et al., 2012; Cohen et al., 2012).

However, the naive approach does not take into account that hypotheses whose p-

values clearly lie in the rejection or non-rejection area of the multiple testing procedure

should be allocated less samples than hypotheses whose p-values are closer to the

threshold and thus harder to classify. This leaves considerable scope to improve upon

the accuracy of the naive method.

This chapter introduces a sampling algorithm based on Thompson (1933) Sam-

90

QuickMMCTest – Higher accuracy for multiple testing corrections

pling. Our approach, called QuickMMCTest, uses a Beta-binomial model on each

p-value to adaptively decide which hypotheses need to receive more and which need

less samples to obtain fairly clear decisions (rejections/ non-rejections) on all tests.

One of its main features consists in avoiding to compute discrete p-value estimates

at any stage. As highlighted in the chapter, QuickMMCTest thus circumvents impre-

cisions observed in methods using such discrete estimates. QuickMMCTest works with

a variety of commonly used multiple testing procedures at constant testing thresh-

olds and, moreover, with variable testing thresholds, that is thresholds which are

functionals of the unknown p-values underlying the tests.

For the special case of the Bonferroni (1936) correction, empirical studies indicate

that the allocation of samples computed by QuickMMCTest could be asympotically

optimal in the sense that as the total number of samples drawn by QuickMMCTest

goes to infinity, its allocation seems to mimic the optimal allocation minimising the

expected number of misclassifications. This is demonstrated in Chapter 5.

The chapter is organised as follows. In Section 4.2 we introduce the set-up con-

sidered in this chapter, specifically the multiple testing procedure and the variable

testing threshold used as well as the relation of our approach to Thompson (1933)

Sampling. Section 4.2.1 presents QuickMMCTest and Section 4.2.2 discusses an alter-

native algorithm based on discrete p-value estimates, in particular its disadvantages

in comparison to QuickMMCTest.

QuickMMCTest is evaluated in a simulation study in Section 4.3 for a variety of com-

mon multiple testing procedures (Bonferroni, 1936; Sidak, 1967; Holm, 1979; Simes,

1986; Hochberg, 1988; Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001)

using a constant testing threshold. The study shows that our approach yields a con-

91

QuickMMCTest – Higher accuracy for multiple testing corrections

siderable decrease in the number of erroneously classified hypotheses in comparison

to the naive approach on simulated data. In a second simulation study, we compare

QuickMMCTest to a variety of commonly used methods (Besag and Clifford, 1991; Guo

and Peddada, 2008; Sandve et al., 2011; Jiang and Salzman, 2012; Gandy and H.,

2014) using the popular Bonferroni (1936) correction at a constant threshold, again

confirming the high accuracy of the proposed approach.

We conclude with a discussion in Section 4.4.

Appendix C repeats the simulation studies conducted in Section 4.3 for a variable

testing threshold.

QuickMMCTest has been implemented in an R-package (simctest, available on

CRAN, The Comprehensive R Archive Network).

In the following, we will denote the density of the Beta distribution with shape

parameters α and β as Beta(x;α, β).

4.2 Two sampling algorithms based on Thompson Sampling

We assume that the p-values p∗ = (p∗1, . . . , p
∗
m) of the tests for H01, . . . , H0m are not

available analytically. Instead, we assume that it is possible to draw samples under

the null hypothesis in order to approximate each p-value. To this end, we denote the

total number of samples drawn for each of the m hypotheses up to iteration n by kin

and the total number of exceedances observed among these kin samples by Sin, where

i ∈ {1, . . . ,m}. Moreover, the testing threshold α∗ at which all hypotheses are tested

can either be constant or a functional α(p∗) of the p-values p∗. In the latter case, α∗

is itself unknown.

We are interested in computing h(p∗, α(p∗)), where for a constant threshold,

92

QuickMMCTest – Higher accuracy for multiple testing corrections

α(p∗) = α∗ ∈ R is independent of p∗ and known. Our aim is to approximate

h(p∗, α(p∗)) in such a way as to minimise the number of misclassifications, that is

the number of decisions based on Monte Carlo sampling which differ from the ones

obtained if the p-values p∗ had been available.

Our approach is based on an idea related to Thompson Sampling (Agrawal and

Goyal, 2012; Thompson, 1933) and updates a Beta-Binomial model for each p-value

in each iteration: Starting with a Beta(1, 1) prior on each p-value, observing Sin

exceedances among kin samples results in a Beta(1 + Sin, 1 + kin − Sin) posterior.

The posterior distributions on the p-values are used to derive weights needed to

allocate samples adaptively to all hypotheses. These weights can be computed in two

different ways, leading to QuickMMCTest and an alternative approach presented in

the following two subsections.

4.2.1 The QuickMMCTest algorithm

The idea of QuickMMCTest is to use the posterior distributions available in the Beta-

Binomial model in the following way to obtain weights: In each iteration, all m p-

values are resampled from the posterior distributions. We then evaluate the multiple

testing procedure on the m resampled p-values and record the rejections and non-

rejections. Repeating the above a fixed number of R times allows one to compute an

empirical probability that each hypothesis H0i, i ∈ {1, . . . ,m}, is rejected (pri) and

non-rejected (1 − pri). The quantity wi = min(pri , 1 − pri) can then be viewed as a

measure of how stable the current decision (rejection, non-rejection) on H0i is.

In each iteration, a new batch of ∆ samples is allocated to all H0i proportional

to wi, i ∈ {1, . . . ,m}. This ensures that hypotheses already having a very stable

93

QuickMMCTest – Higher accuracy for multiple testing corrections

decision only receive few new samples.

The above approach is summarised in Algorithm 4.1. Algorithm 4.1 has two

parameters chosen by the user: the total number of samples K the algorithm is

allowed to spend and the number of iterations nmax (and thus the number of posterior

updates). These two parameters determine the batch size ∆ = K/nmax, that is the

number of samples spent in each iteration. Alternative approaches in which ∆ varies

over time are possible. Section 4.3.3 shows that for more than roughly 10 iterations,

the performance of Algorithm 4.1 does not substantially depend on the parameter

nmax any more.

Algorithm 4.1: QuickMMCTest

input: K, nmax

1 ∆← bK/nmaxc; ki0 ← 0; Si0 ← 0, wi ← 1, i ∈ {1, . . . ,m};
2 for n← 1 to nmax do
3 if n > 1 then
4 ri ← 0, i ∈ {1, . . . ,m};
5 repeat R times
6 pi ∼ Beta(1 + Sin−1, 1 + kin−1 − Sin−1) indep., i ∈ {1, . . . ,m};
7 ri ← ri + I(i ∈ h(p, α(p))), where p = (p1, . . . , pm), i ∈ {1, . . . ,m};
8 wi ← min(ri/R, 1− ri/R), i ∈ {1, . . . ,m};
9 if

∑m
j=1 wj = 0 then

10 wi ← 1, i ∈ {1, . . . ,m};
11 (w1, . . . , wm)← (w1, . . . , wm)/

(∑m
j=1wj

)
;

12 Draw ∆ samples with weights (w1, . . . , wm) using residual sampling and
update kin, Sin, i ∈ {1, . . . ,m};

13 return (S1
n, . . . , S

m
n), (k1

n, . . . , k
m
n);

Algorithm 4.1 uses residual sampling (Liu and Chen, 1998) in line 12: To guarantee

a deterministic minimal allocation of samples to each hypothesis, we first draw bwi∆c

samples for each H0i, i ∈ {1, . . . ,m}. The remaining ∆−
∑m

j=1bwj∆c samples are then

allocated to all hypotheses by drawing one sample at a time with weights proportional

94

QuickMMCTest – Higher accuracy for multiple testing corrections

to (w1∆−bw1∆c, . . . , wm∆−bwm∆c). For each hypothesis H0i, i ∈ {1, . . . ,m}, both

kin and Sin are updated according to the total number of samples drawn in this fashion

and the number of exceedances observed among these samples.

Alternatively, one could replace the residual sampling by simple multinomial sam-

pling or other methods used in, for instance, particle filters.

Determining the weights is computationally fast as it only requires R draws per

hypothesis from a Beta distribution as opposed to drawing samples from the data

(for instance via permutations which can be costly). The dependence of Algorithm

4.1 on R investigated in Section 4.3.4 shows that although higher values of R result

in a more precise allocation of samples, increasing R beyond roughly R = 1000 does

not considerably improve performance.

Decisions on all hypotheses can be obtained with Algorithm 4.1 in various ways.

Naively, one could compute h(p̂, α(p̂)), where p̂ = (p̂1, . . . , p̂m) is a vector of estimates

p̂i = (Sinmax
+ 1)/(kinmax

+ 1), i ∈ {1, . . . ,m}, from the last iteration of the algorithm

computed using a pseudo-count (Davison and Hinkley, 1997) in both the numerator

and the denominator.

In the entire chapter, we do not consider computing unbiased p-value estimates

without a pseudo-count (that is Sinmax
/kinmax

) in order to classify all hypotheses: such

estimates lead to tests not keeping the prescribed error level (Davison and Hinkley,

1997; Manly, 1997; Edgington and Onghena, 1997).

A more sophisticated approach than the one based on p-value estimates is to

repeat the classification all hypotheses using draws from the Beta distributions in

lines 4 to 7 of Algorithm 4.1. Each hypothesis H0i, i ∈ {1, . . . ,m}, is then rejected if

and only if ri/R > 0.5, that is if H0i was predominantly rejected based on resampled

95

QuickMMCTest – Higher accuracy for multiple testing corrections

p-values. We recommend to obtain decisions in this fashion as this approach turns

out to empirically result in less misclassifications than approaches based on discrete

p-value estimates computed with a pseudo-count (Section 4.3.5). The cutoff of 0.5 is

arbitrary and can be replaced by higher (lower) values to make Algorithm 4.1 more

(less) conservative.

Algorithm 4.1 is evaluated in a simulation study in the next section, where we

will use the latter approach with a cutoff of 0.5 to obtain decisions on all hypotheses.

4.2.2 An alternative approach using discrete p-value estimates

Computing the weights in Algorithm 4.1 using samples from the Beta distributions

of all p-values introduces an additional source of randomness into the algorithm. To

avoid this and to be computationally more efficient, weights can also be computed

using the cumulative distribution function (cdf) of the Beta distribution – given that

an efficient implemention of the cdf of the Beta distribution is available. This modifi-

cation is discussed in the present section and comes at the cost of computing p-value

estimates which, as shown at the end of this section, also has severe disadvantages.

We use the posterior distribution of each p∗i to calculate the two probabilities

that p∗i lies below and above the estimated cutoff τ̂ separating the rejection from the

non-rejection area. Similarly to Algorithm 4.1, we then allocate the next batch of ∆

samples to each hypothesis H0i, i ∈ {1, . . . ,m}, according to the weighted minimal

probability of the two. This ensures that hypotheses having a considerable proportion

of the posterior mass on either side of the threshold (and thus a fairly clear decision

on whether their p-values lie in the rejection or non-rejection area) only receive few

new samples.

96

QuickMMCTest – Higher accuracy for multiple testing corrections

We approximate τ̂ as the midpoint of the last rejected and first non-rejected p-

value estimate, that is τ̂ = (max{p̂i : i ∈ h(p̂, α(p̂))} + min{p̂i : i /∈ h(p̂, α(p̂))})/2,

where p̂ = (S1
n/k

1
n, . . . , S

m
n /k

m
n) is a vector of p-value estimates in iteration n and α(p̂)

is the plug-in estimate of the threshold using the current estimates. As a convention,

we define max ∅ := 0 and min ∅ := 1.

The missing pseudo-count in the definition of τ̂ is crucial: Using a pseudo-count

causes all p-value estimates p̂i to be bounded below by 1/(kin + 1), where kin is the

number of samples taken for hypothesis H0i, i ∈ {1, . . . ,m}, up to iteration n. Due to

the multiplicity correction, this lower bound can be larger than the testing threshold

itself, in which case all hypotheses are consistently classified as non-rejected in each

repetition, thus producing meaningless results and an estimated cutoff equal to the

largest p-value estimate in every iteration. Section C.1 contains further details. It

it thus necessary to compute τ̂ without a pseudo-count, even at the expense of over-

rejecting hypotheses.

The above approach is summarised in Algorithm 4.2 which, apart from the new

computation of the weights replacing lines 4 to 8 in Algorithm 4.1, works identically

to QuickMMCTest. We therefore only state all modified lines in Algorithm 4.2.

Algorithm 4.2: Alternative computation of weights replacing lines 4 to 8 in
Algorithm 4.1

1 p̂← (S1
n/k

1
n, . . . , S

m
n /k

m
n);

2 τ̂ ← (max{p̂i : i ∈ h(p̂, α(p̂))}+ min{p̂i : i /∈ h(p̂, α(p̂))})/2;

3 ŵi ←
∫ τ̂

0
Beta(x; 1 + Sin, 1 + kin − Sin)dx, i ∈ {1, . . . ,m};

4 wi ← min (ŵi, 1− ŵi), i ∈ {1, . . . ,m};

A final testing result of Algorithm 4.2 can be computed in the same fashion as

done for Algorithm 4.1 by either classifying all hypotheses using p-value estimates

97

QuickMMCTest – Higher accuracy for multiple testing corrections

computed with a pseudo-count or by computing empirical rejection probabilities (see

Section 4.2.1). Section 4.3.5 contains a study comparing the accuracy of both Algo-

rithm 4.1 and 4.2 for the two decision techniques.

This study in Section 4.3.5 shows that Algorithm 4.2 indeed suffers from not

being able to record any rejections when using a pseudo-count to compute p-value

estimates after termination, and moreover that Algorithm 4.2 yields up to twice as

many erroneously rejected hypotheses (false findings) as Algorithm 4.1. Therefore,

the following main simulation study in Section 4.3 focuses on QuickMMCTest instead

of Algorithm 4.2 when comparing our approach to published methods.

4.3 Simulation study

We evaluate QuickMMCTest on a simulated dataset in two ways. First, we compare

the performance of QuickMMCTest to the one of a naive sampling method using a

variety of commonly used multiple testing procedures at a constant testing threshold

(Section 4.3.1). Second, we fix the Bonferroni (1936) procedure as multiple testing

procedure and compare QuickMMCTest to a variety of common methods published in

the literature (Section 4.3.2).

Section 4.3 also investigates the influence of the number of updates nmax on

QuickMMCTest in Section 4.3.3 as well as the dependence of QuickMMCTest on the

parameter R controlling the accuracy used to compute weights (Section 4.3.4).

Moreover, both Algorithm 4.1 and Algorithm 4.2 are compared using two different

approaches to report final testing results: one based on p-values and one based on

empirical rejection probabilities (Section 4.3.5).

As a model for p-value distributions occuring in real data studies, we use the

98

QuickMMCTest – Higher accuracy for multiple testing corrections

model of Sandve et al. (2011) consisting of a proportion π0 ∈ [0, 1] (the proportion

of true null hypotheses) drawn from a Uniform[0, 1] distribution and the remaining

proportion 1− π0 drawn from a Beta(0.25, 25) distribution. A high proportion π0 is

to be expected in realistic scenarios. We therefore use π0 = 0.9 and draw m = 5000 p-

values from the above mixture distribution. These p-values remain fixed throughout

the remainder of this chapter. Comparing the test result returned by each algorithm

under investigation to the one obtained by applying the multiple testing procedure to

the fixed set of m p-values allows one to compute numbers of misclassifications. By

a misclassification we refer to any decision (rejection, non-rejection) of an individual

hypothesis which is different from the one obtained by applying the multiple testing

procedure to the fixed p-values.

In the entire section, we use a total number of nmax = 10 iterations (posterior

updates) for QuickMMCTest and always estimate empirical rejection and non-rejection

probabilities using R = 1000 draws from the Beta posteriors.

All results are based on 1000 repetitions.

4.3.1 Comparison to a naive method using various multiple testing

procedures

We compare QuickMMCTest to the naive approach introduced in Section 4.1 on a va-

riety of commonly used multiple testing procedures, precisely the step-up procedures

of Bonferroni (1936), Simes (1986), Hochberg (1988), Benjamini and Hochberg (1995)

and Benjamini and Yekutieli (2001), as well as to the step-down procedures of Sidak

(1967) and Holm (1979).

The naive method uses a fixed number of s samples to estimate each p-value

99

QuickMMCTest – Higher accuracy for multiple testing corrections

Table 4.1: Average misclassification numbers (average numbers of erroneously re-
jected hypotheses in brackets) for the naive method at a low effort (s = 1000) and a
high effort (s = 10000) compared to QuickMMCTest (Alg. 4.1) for common multiple
testing procedures at the constant testing threshold 0.1.

low effort (s=1000) high effort (s=10000)
procedure naive Alg. 4.1 naive Alg. 4.1

Bonferroni (1936) 87 (0) 43.8 (2.6) 87 (0) 3 (1.7)
Simes (1986) 32 (9.6) 2 (0.9) 9 (3.8) 0.1 (0.1)

Hochberg (1988) 87 (0) 43.4 (2.5) 87 (0) 3.2 (2)
Benjamini and Hochberg (1995) 31.9 (9.5) 2 (1) 9.1 (3.8) 0.1 (0.1)
Benjamini and Yekutieli (2001) 162 (0) 14.5 (3.3) 22 (5.5) 0.6 (0.6)

Sidak (1967) 90 (0) 36.3 (2.9) 90 (0) 3.5 (1.6)
Holm (1979) 88 (0) 39.5 (3.2) 88 (0) 3.4 (2.1)

and then applies the multiple testing procedure to the estimates, thus treating the

estimates as if they were the p-values. Each p-value p∗i is estimated using a pseudo-

count (Davison and Hinkley, 1997) as p̂i = (ei + 1)/(s + 1), where ei is the number

of exceedances observed for H0i, i ∈ {1, . . . ,m}, and s is the number of samples.

This naive approach is widely used to evaluate multiple tests without knowledge of

the analytical p-values (Nusinow et al., 2012; Gusenleitner et al., 2012; Rahmatallah

et al., 2012; Zhou et al., 2013; Li et al., 2012; Cohen et al., 2012).

We assume that the testing threshold is fixed at α∗ = 0.1 and evaluate the naive

method as well as QuickMMCTest on the fixed p-values by calculating numbers of

misclassifications. For this, the naive method is repeatedly applied at both a low

effort (using a constant number of s = 1000 samples to estimate the p-value of

each hypothesis) and a high effort (s = 10000) and in both cases QuickMMCTest

is applied with a matched effort. Alternatively, one could also consider comparing

several methods by differentiating which hypotheses generated from the null and the

100

QuickMMCTest – Higher accuracy for multiple testing corrections

alternative are erroneously classified.

Table 4.1 presents simulation results. It shows that the phenomenon of consis-

tently non-rejecting all hypotheses due to the usage of a pseudo-count can be observed

in the naive method. As described in Section 4.2.2 and Section C.1, the pseudo-count

causes all p-value estimates to be bounded from below and thus may result in all hy-

potheses being consistently non-rejected. In this case, the number of misclassifications

is hence equal to the number of the undetected rejections. This phenomenon occurs

when applying the naive method to the procedures of Bonferroni (1936), Hochberg

(1988), Sidak (1967) and Holm (1979), both at a low and at a high effort. For the

Benjamini and Yekutieli (2001) procedure, results are meaningful only at a high ef-

fort. This can be seen in Table 4.1 by looking at the number of erroneously rejected

hypotheses (given in brackets behind the misclassification numbers), which is zero

(indicating that a method either perfectly classifies rejections or that no rejections

are recorded at all, where the latter applies).

The naive method is only able to compute meaningful results at low effort for the

two procedures of Simes (1986) and Benjamini and Hochberg (1995), though results

still contain around 30 misclassifications on average. Most importantly, the naive

method erroneously rejects considerably more hypotheses than QuickMMCTest (in the

cases where rejections can be observed at all), thus reporting more false findings which

are undesired in practice.

In contrast to the naive method, QuickMMCTest does not rely on computing p-

value estimates and therefore computes meaningful results for all procedures. These

are very accurate for the procedures of Simes (1986) and Benjamini and Hochberg

(1995) at low effort. For all other methods, QuickMMCTest yields around 35 to 45

101

QuickMMCTest – Higher accuracy for multiple testing corrections

misclassifications.

When applying the naive method at a high effort, drawing s = 10000 samples per

hypothesis is still not enough to observe any rejections for the procedures of Bonferroni

(1936), Hochberg (1988), Sidak (1967) and Holm (1979). For the procedures of Simes

(1986), Benjamini and Hochberg (1995) and Benjamini and Yekutieli (2001), the

naive method yields around 10 to 20 misclassifications.

The advantages of the more efficient allocation scheme of QuickMMCTest becomes

even more apparent at a high effort. When being allowed to use more samples,

QuickMMCTest yields considerably less misclassifications than the naive method for

all testing procedures considered in this section and essentially no misclassifications

for the procedures of Simes (1986) and Benjamini and Hochberg (1995). Similarly to

the comparison at a low effort, QuickMMCTest again erroneously rejects considerably

less hypotheses than the naive method, a feature desired for practical use.

The above results are confirmed by a second study with a variable testing thresh-

old which depends on the unknown p-values: to be precise, we correct the testing

threshold using α(p∗) = α∗/π̂0(p∗), where α∗ = 0.1 and π̂0(p) = min (1, 2/m
∑m

i=1 pi)

is a robust estimate of the proportion π0 of true null hypotheses of Pounds and Cheng

(2006). Results for this variable testing threshold are contained in Section C.2 and

are qualitatively similar to the ones in Table 4.1.

4.3.2 Comparison to a variety of common methods

A second simulation study compares QuickMMCTest to common algorithms available

in the literature to test multiple hypotheses based on Monte Carlo sampling. These

algorithms are the naive method and the algorithms of Besag and Clifford (1991),

102

QuickMMCTest – Higher accuracy for multiple testing corrections

Guo and Peddada (2008), Sandve et al. (2011), Jiang and Salzman (2012) as well as

Gandy and H. (2014).

The naive method is used as a reference for setting the effort: we define low

effort as K = 1000m, that is the effort equivalent to spending s = 1000 samples per

hypothesis, and similarly high effort as K = 10000m.

All methods are run with standard parameters suggested by their authors:

1. The naive method was run with s = 1000 samples per hypothesis at low effort

and s = 10000 samples at a high effort. Estimates were computed using a

pseudo-count (Davison and Hinkley, 1997) as (e + 1)/(s + 1), where e is the

number of exceedances and s is the number of samples. A decision on all

hypotheses is obtained by evaluating the multiple testing procedure on the

estimates.

2. In order to match the overall effort, the algorithm of Besag and Clifford (1991)

was run by repeatedly drawing one sample for each hypothesis until either h =

20 exceedances were observed (as proposed by the authors) or the total effort

was reached. P-values were computed with a pseudo-count in the numerator as

proposed by the authors.

3. The algorithm of Guo and Peddada (2008) was implemented using a geometric

sequence B0 ≤ B1 ≤ . . . BN , where N = 9, B0 = 10, Bi+1 = aBi and the geo-

metric increase a was computed in order to match the overall effort. Confidence

intervals were computed using the method of Clopper and Pearson (1934) as

proposed by the authors. P-value estimates were computed with a pseudo-count

in both the numerator and denominator.

103

QuickMMCTest – Higher accuracy for multiple testing corrections

4. The MCFDR algorithm of Sandve et al. (2011) is the only one whose effort cannot

easily be matched to a pre-specified total effort. We therefore tune the only

parameter h of MCFDR to meet the upper bound for the effort: for h = 65,

the effort of MCFDR roughly equals K = 1000m, and for h = 650, the effort

roughly equals K = 10000m, where m = 5000 is the number of hypotheses.

In both cases, MCFDR is stopped on reaching K samples in order to have a fair

comparison, and both Algorithm 4.1 and 4.2 are applied after MCFDR using at

most the number of samples MCFDR spent instead of the actual K = 1000m or

K = 10000m. P-value estimates were computed with a pseudo-count in both

the numerator and denominator.

5. The method of Jiang and Salzman (2012) was run with parameters a = 10 and

δ = 0.01 as proposed by the authors in the simulation study included in their

article. One new sample is drawn per hypothesis in each iteration and p-values

were computed as proposed in the original article.

6. The MMCTest algorithm was run as suggested in Chapter 2. We used 10 itera-

tions and a geometric increase a in MMCTest set to the same value as the one

used in the implemention of the algorithm of Guo and Peddada (2008) in order

to exactly match the overall effort. P-value estimates were computed with a

pseudo-count in both the numerator and denominator.

We apply all methods to the m = 5000 p-values fixed in Section 4.3 using the

popular Bonferroni (1936) correction at a constant threshold of 0.1.

Table 4.2 shows the simulation results for both a low and a high effort. For

a low effort, Table 4.2 demonstrates that due to the very low threshold of 0.1/m

104

QuickMMCTest – Higher accuracy for multiple testing corrections

Table 4.2: Average misclassification numbers (average numbers of erroneously re-
jected hypotheses in brackets) for common methods compared to QuickMMCTest (Al-
gorithm 4.1) for the Bonferroni (1936) correction at the constant threshold 0.1.

low effort high effort
(K = 1000m) (K = 10000m)

Naive method 87 (0) 87 (0)
Besag and Clifford (1991) 87 (0) 4.9 (2.4)
Guo and Peddada (2008) 87 (0) 4.5 (2.1)

Sandve et al. (2011) 87 (0) 19 (1.6)
Jiang and Salzman (2012) 87 (0) 16.3 (3.7)

Gandy and H. (2014) 87 (0) 5 (2.2)
QuickMMCTest 43.7 (2.6) 3 (1.7)

K: total number of samples; m: number of hypotheses.

for Bonferroni (1936), all methods except for QuickMMCTest are unable to compute

p-value estimates with a resolution sufficient to detect any rejections. They thus non-

reject all hypotheses, leading to misclassification numbers equal to the 87 rejections

observed when applying the Bonferroni (1936) correction to the fixed p-values. As

already seen in Section 4.3.1, QuickMMCTest on the other hand does not suffer from

this problem.

For a high effort, most methods compute acceptable test results with around 5

misclassifications with the exception of the naive method which is still unable to

detect any rejections.

Table 4.3 repeats the previous comparison using the Benjamini and Hochberg

(1995) procedure controlling the false discovery rate. Due to the less conservative

nature of the Benjamini and Hochberg (1995) procedure, all methods are able to

compute meaningful test results at both a low and a high effort. The naive method

and the one of Besag and Clifford (1991) perform poorly in this new scenario. The

105

QuickMMCTest – Higher accuracy for multiple testing corrections

Table 4.3: Average misclassification numbers (average numbers of erroneously re-
jected hypotheses in brackets) for common methods compared to QuickMMCTest using
the Benjamini and Hochberg (1995) procedure. Constant threshold 0.1.

low effort high effort
(K = 1000m) (K = 10000m)

Naive method 31.9 (9.7) 9.1 (3.7)
Besag and Clifford (1991) 18.3 (7.5) 18.3 (7.4)
Guo and Peddada (2008) 4.5 (2.1) 0.3 (0.3)

Sandve et al. (2011) 10 (4) 2.8 (1.3)
Jiang and Salzman (2012) 13.2 (4.9) 3.5 (1.6)

Gandy and H. (2014) 9.9 (4.1) 0.8 (0.6)
QuickMMCTest 2 (1) 0.1 (0.1)

K: total number of samples; m: number of hypotheses.

method of Guo and Peddada (2008) performs very well and is only outperformed by

QuickMMCTest at a low effort (yielding half as many misclassifications as Guo and

Peddada (2008) and a multiple fold decrease compared to all other methods). At a

high effort, Guo and Peddada (2008) perform comparably to QuickMMCTest.

The similar performance of the algorithms of Guo and Peddada (2008), Gandy

and H. (2014) as well as QuickMMCTest is not a coincidence: Both Guo and Peddada

(2008) as well as Gandy and H. (2014) use confidence intervals for all p-values in con-

nection with a monotonicity property of the multiple testing procedure of Tamhane

and Liu (2008) to stop the sampling for certain hypotheses, thus concentrating sam-

ples on hypotheses which are hard to classify. Nevertheless, neither Guo and Peddada

(2008) nor Gandy and H. (2014) use any weights to tune the allocation of samples

to individual hypotheses, a feature attempted in QuickMMCTest which yields another

improvement in accuracy compared to the other two methods.

The above results are consistent even for a variable testing threshold: A second

106

QuickMMCTest – Higher accuracy for multiple testing corrections

Table 4.4: Number of updates nmax against misclassifications for QuickMMCTest.

nmax 1 2 5 10 20 50 100 200
misclassifications 31.735 10.594 3.448 1.967 1.689 1.628 1.571 1.572

simulation study contained in Section C.3 confirms the above results when comparing

QuickMMCTest to the same set of algorithms using the variable testing threshold of

Pounds and Cheng (2006).

4.3.3 Dependence on the number of updates

How does the performance of QuickMMCTest (Algorithm 4.1) depend on the parameter

nmax controlling the number of iterations and thus the number of posterior updates?

QuickMMCTest was run on the fixed p-values (Section 4.3) using R = 1000 samples

from the Beta posteriors, the Benjamini and Hochberg (1995) procedure and a total

effort of K = 1000m, where m = 5000 is the number of hypotheses. The parameter

nmax was varied.

Table 4.4 shows simulation results. As expected, the number of misclassifications

decreases first with an increasing number of updates due to the more accurate com-

putation of weights. This effect dominates until, for even larger values of nmax than

displayed in Table 4.4, the available total number of samples for all hypotheses per

iteration is so low that hypotheses with very low weights essentially do not receive

any samples any more per iteration, thus increasing again their susceptibility to mis-

classifications. Running QuickMMCTest with more updates also considerably increases

its runtime, therefore using nmax = 10 or nmax = 20 seems reasonable as it seems to

yield a good trade-off between speed and accuracy. The choice nmax = 10 is used as

107

QuickMMCTest – Higher accuracy for multiple testing corrections

Table 4.5: Parameter R against misclassification numbers for QuickMMCTest.

R 10 100 1000 10000
misclassifications 4.629 2.314 2.052 2.022

a default choice in Section 4.3.

4.3.4 Dependence on the number of repetitions to estimate rejection

probabilities

Next, the influence of the parameter R on QuickMMCTest is evaluated using the same

set-up as in Section 4.3.3. The parameter R controls the accuracy with which weights

are estimated in each iteration. The default choice of nmax = 10 determined in Section

4.3.3 is kept fixed.

Results are shown in Table 4.5. Not surprisingly, the test results returned by

Algorithm 4.1 become more and more accurate with an increasing effort of the weights.

In order to not spend too much time on the computation of weights, using R = 1000

as a default choice (see Section 4.3) seems to yield a reasonable trade-off between

speed and accuracy.

4.3.5 Reporting testing results in two different ways

Two methods to compute a final testing result with QuickMMCTest (Algorithm 4.1)

and Algorithm 4.2 are considered: classifications based on p-value estimates computed

using a pseudo-count p̂i = (Sinmax
+ 1)/(kinmax

+ 1), where Sin, kin and nmax are as in

Algorithm 4.1, as well as classifications based on empirical rejection probabilities ri/R

108

QuickMMCTest – Higher accuracy for multiple testing corrections

Table 4.6: Reporting testing results in two different ways. Average misclassification
numbers (average numbers of erroneously rejected hypotheses in brackets) at a low
effort (K = 1000m) for Algorithm 4.1 (QuickMMCTest) and Algorithm 4.2 for common
multiple testing procedures at the constant testing threshold 0.1.

Algorithm 4.1 Algorithm 4.2
procedure p.c. e.r.p. p.c. e.r.p.

Bonferroni (1936) 64.5 (1) 43.8 (2.6) 87 (0) 26.3 (5.5)
Simes (1986) 2 (0.9) 2 (0.9) 2.1 (1) 2.1 (1)

Hochberg (1988) 64.2 (1) 43.4 (2.5) 87 (0) 22.7 (5.8)
Benjamini and Hochberg (1995) 2 (1) 2 (1) 2 (1) 2 (1)
Benjamini and Yekutieli (2001) 15 (2.8) 14.5 (3.3) 9.8 (3.3) 9.7 (3.4)

Sidak (1967) 74.4 (0.6) 36.3 (2.9) 89.5 (0) 24.4 (5)
Holm (1979) 76.5 (0.5) 39.5 (3.2) 87.5 (0.1) 45.5 (3.8)

p.c.: pseudo-count; e.r.p.: empirical rejection probabilities.

(compared to a cutoff of 0.5, see Section 4.2.1).

We repeat the simulation study presented in Section 4.3.1 for a low effort using

the fixed p-value distribution of Section 4.3. In particular, the results reported for

Algorithm 4.1 using empirical rejection probabilities correspond to the ones reported

in Table 4.1.

Table 4.6 shows simulation results. For Algorithm 4.1, using empirical rejection

probabilities instead of pseudo-count estimates to classify hypotheses yields, on aver-

age, a considerable decrease in the number of misclassifications.

Occasionally, testing results of Algorithm 4.2 obtained with pseudo-count esti-

mates contain no rejections (for the procedures of Bonferroni (1936) and Hochberg

(1988)) and are thus not suitable for practical use. Although Algorithm 4.2 yields less

misclassifications than QuickMMCTest for some procedures, Algorithm 4.2 still relies

on p-value estimates and is thus susceptible to incurring zero rejections at other efforts

or other datasets. We therefore do not recommend using Algorithm 4.2 with pseudo-

109

QuickMMCTest – Higher accuracy for multiple testing corrections

count estimates. On the other hand, results of Algorithm 4.2 obtained with empirical

rejection probabilities contain up to twice as many erroneously rejected hypotheses

(and thus false findings) than the ones of Algorithm 4.1. We thus recommend to use

QuickMMCTest.

At a high effort, both Algorithm 4.1 and 4.2 yield equally precise results for both

p-value estimates and empirical rejection probabilities (table not shown).

4.4 Discussion

Assuming the main scenario underlying this thesis in which it is not possible to

compute p-values analytically for all tests, we aim to use Monte Carlo samples to

approximate h(p∗, α(p∗)) as accurately as possible.

An idea based on Thompson (1933) Sampling is proposed to efficiently allocate

samples to multiple hypotheses. We derived an iterative algorithm based on this prin-

ciple, called QuickMMCTest, which adaptively allocates more samples to hypotheses

whose decision (rejected/ non-rejected) is still unstable at the expense of allocating

less samples to hypotheses which can easily be classified.

QuickMMCTest has two main features: First, it never computes any p-value esti-

mates during its run, thus avoiding to incur consistently non-rejecting all hypotheses

as observed in other methods published in the literature. Second, computing final

testing results based on empirical rejection probabilities (that is empirical proba-

bilities of being rejected or non-rejected obtained through repeated classification of

resampled p-values) instead of p-value estimates empirically results in less erroneously

classified hypotheses. The algorithm works for a variety of common multiple testing

procedures at both a constant as well as a variable testing threshold.

110

QuickMMCTest – Higher accuracy for multiple testing corrections

QuickMMCTest was evaluated in a simulation study. By comparing its performance

to both a widely used naive sampling method for a variety of commonly used multiple

testing procedures as well as to a variety of algorithms published in the literature, we

demonstrated that QuickMMCTest yields meaningful testing results even at a low effort

and up to a multiple fold decrease in the number of erroneously classified hypotheses

at a high effort.

111

112

5 Optimal allocation of samples

5.1 Introduction

The final chapter picks up the discussion of the QuickMMCTest algorithm introduced

in Chapter 4. This algorithm has proved to work excellently in connection with

a number of multiple testing procedures, thus raising the natural question if the

allocation of samples returned by QuickMMCTest is optimal in a certain sense.

This chapter contains preliminary work. All results presented in this chapter are

not yet proven and rely on simulations.

We are interested in deriving the optimal allocation of a finite number of sam-

ples to a finite number of hypotheses tested using the Bonferroni (1936) correction.

By optimal we refer to the allocation which minimises the total expected number of

misclassified hypotheses, that is the expected number of hypotheses whose decisions

(rejected, non-rejected) differ from the ones obtained with the p-values. Recent ex-

amples for studies evaluated with the Bonferroni (1936) correction and approximated

p-values, even though the optimal allocation of samples was not guaranteed in these

studies, include Thulin (2014); Zhang (2008); Kim et al. (2007).

Several methods to compute significant and non-significant hypotheses based on

Optimal allocation of samples

approximated p-values are available in the literature. For instance the method of

Besag and Clifford (1991), the approaches by Lin (2005), van Wieringen et al. (2008),

Guo and Peddada (2008), the MCFDR algorithm of Sandve et al. (2011) or the MMCTest

algorithm of Gandy and H. (2014). However, it is unclear how the allocation of sam-

ples to each hypothesis computed by any of the algorithms aforementioned compares

to the optimal allocation.

In Section 5.2 we will first state a mathematical formulation of the problem under

investigation (Section 5.2.1). We then solve for the optimal allocation minimising the

overall expected number of misclassifications under the assumption that the number

of samples to be allocated can take real values and can be modelled using a normal

approximation (Sections 5.2.2 and 5.2.3). This is achieved by solving a suitable

optimisation problem using a Kuhn and Tucker (1951) constraint.

Section 5.3 indicates empirically that QuickMMCTest introduced in Chapter 4

might be close to asympotically imitating the optimal allocation of samples.

As in practice any allocation of samples is discrete, the original discrete optimi-

sation problem (without normal approximation) is heuristically solved with a greedy

algorithm to indicate that both the real-valued (normal approximated) and the inte-

ger optimal solutions might not differ by much (Section 5.4).

The chapter concludes with a discussion in Section 5.5.

5.2 Deriving the optimal allocation for a normal approxima-

tion

The following section introduces the problem under investigation in this chapter and

presents a mathematical formulation as an optimisation problem. The optimal allo-

113

Optimal allocation of samples

cation minimising the expected number of misclassifications is derived with the help

of a Kuhn and Tucker (1951) constraint.

5.2.1 Formulation of the problem

Suppose we are interested in testing m hypotheses H01, . . . , H0m for statistical signifi-

cance using the Bonferroni (1936) correction at a fixed threshold α ∈ (0, 1). As usual,

the unknown p-value underlying each hypothesis H0i is denoted by p∗i , i ∈ {1, . . . ,m}.

In all sections, the multiple testing procedure h is assumed to be the Bonferroni

(1936) correction returning the indices of rejected hypotheses, defined as h(p, α) =

{i : pi ≤ α}, where p = (p1, . . . , pm) is a vector of m p-values. Typically, the threshold

α is a fixed significance level α∗ divided by the number of hypotheses m to correct

for multiple tests, that is α = α∗/m.

As the p-values p∗i are unknown, we assume that Monte Carlo methods are used

to approximate them as p̂i = Si/ki without a pseudo-count, where Si is the number

of exceedances observed among ki samples drawn for H0i. The exceedances can be

modelled as Si ∼ Binomial(ki, p
∗
i).

We assume that in practical applications in which p-values are unknown, H0i is

rejected if Si/ki ≤ α, that is if its p-value estimate p̂i is below the constant threshold

α. All remaining hypotheses are non-rejected. This approach to computing rejections

and non-rejections is employed in all the real data studies mentioned in Section 5.1.

We are interested in finding the allocation of samples k1, . . . , km to the hypotheses

H01, . . . , H0m which minimises the expected number of misclassifications, subject to

the constraint that
∑m

i=1 ki = K for a total number of samples K ∈ N specified in

advance by the user.

114

Optimal allocation of samples

Let

Mi = {Si/ki > α ∧ p∗i ≤ α} ∪ {Si/ki ≤ α ∧ p∗i > α}

be the event that the hypothesis H0i is misclassified. For the Bonferroni (1936)

correction under consideration, this event occurs if the p-value estimate p̂i = Si/ki

and the p-value p∗i for H0i are on two different sides of the threshold α.

Using the event Mi, the total number of misclassifications can be expressed as

M =
∑m

i=1 IMi
, where I is the indicator function. For an allocation of k = (k1, . . . , km)

samples to all hypotheses, the expected total number of false decisions is given by

g(k) := E(M |k) =
m∑
i=1

P(Mi|ki)

=
m∑
i=1

[P(Si/ki > α|p∗i) · I(p∗i ≤ α) + P(Si/ki ≤ α|p∗i) · I(p∗i > α)] ,

where Si ∼ Binomial(ki, p
∗
i). The aim of this chapter is to solve

min
k∈Nm

g(k) subject to
m∑
i=1

ki = K. (5.1)

The function g goes to zero as mini=1,...,m ki → ∞. This is to be expected as by

the Law of Large Numbers, the estimates converge to the p-values as more samples

are drawn, hence the probability for a wrong classification decreases.

5.2.2 Deriving the optimal allocation for a normal approximation

The vector k minimising g under the condition
∑m

i=1 ki = K is determined using

a Kuhn and Tucker (1951) constraint. As derivatives are needed for the Kuhn and

115

Optimal allocation of samples

Tucker (1951) formulation, the binomial distribution in g is replaced by its normal

approximation

g(k) ≈
m∑
i=1

[(
1− Φ

(
ki(α− p∗i)√
kip∗i (1− p∗i)

))
· I(p∗i ≤ α)

+ Φ

(
ki(α− p∗i)√
kip∗i (1− p∗i)

)
· I(p∗i > α)

]
=: γ(k),

where Φ is the cumulative distribution function of the standard normal distribution.

The derivative of γ is given by

∂γ

∂ki
=

p∗i − α
2
√
kip∗i (1− p∗i)

φ

(
ki(α− p∗i)√
kip∗i (1− p∗i)

)
· I(p∗i ≤ α)

+

(
− p∗i − α

2
√
kip∗i (1− p∗i)

)
φ

(
ki(α− p∗i)√
kip∗i (1− p∗i)

)
· I(p∗i > α) ≈ ∂g

∂ki
,

where φ is the density function of the standard normal distribution. Each partial

derivative ∂γ/∂ki depends on ki only.

The function γ needs to be optimised under the constraints k > 0 and
∑m

i=1 ki =

K, meaning that each hypothesis receives at least one sample and that the total

number of samples allocated equals K. The optimal solution k∗ minimising γ satisfies

∇γ(k∗) =
m∑
i=1

µi∇ui(k∗) + λ∇v(k∗), (5.2)

for a suitable λ, where ui(k) = −ki and v(k) = K−
∑m

i=1 ki (Kuhn and Tucker, 1951).

The functions ui encode the constraints ki > 0 (primal feasibility) with µi ≥ 0 (dual

feasibility) and satisfy µiui(k
∗) = 0 (complementary slackness), where i ∈ {1, . . . ,m}.

Complementary slackness and the condition ki > 0 imply that µi = 0 for all

116

Optimal allocation of samples

i ∈ {1, . . . ,m}. As each partial derivative ∂γ/∂ki only depends on ki, the problem

simplifies to finding a k∗ such that ∂γ/∂ki(k
∗
i) = −λ∗ for i ∈ {1, . . . ,m} and a λ∗ ≥ 0

such that v(k∗) = 0.

5.2.3 Solving for the optimal allocation

This section looks at useful computational considerations for solving (5.2). The op-

timal allocation for a normal approximation is obtained by tuning the parameter λ

towards an optimal value λ∗ with the property that the corresponding optimal vector

k∗ = (k∗1, . . . , k
∗
m) solving (5.2) satisfies v(k∗) = 0.

The optimal λ∗ can be found using a binary search as follows. Similarly to g,

the function γ is positive and monotonically decreases to zero as mini=1,...,m ki →∞.

The derivatives ∂γ/∂ki are therefore negative for ki > 0 and monotonically increase

to zero as ki →∞. As a consequence, when solving ∂γ/∂ki(ki) = −λ for ki, smaller

values of λ correspond to larger values of ki and vice versa.

This observation applies to all ki, i ∈ {1, . . . ,m}. Thus
∑m

i=1 ki also monotonically

decreases for each vector k solving (5.2) as λ → ∞. The optimal value can hence

be found easily with a binary search. Likewise, as γ is monotonic, the solution ki of

∂γ/∂ki(ki) = −λ can be found with a binary search in ki for each proposed value of

λ.

117

Optimal allocation of samples

5.3 Empirical comparison of QuickMMCTest to the optimal al-

location of samples

5.3.1 The QuickMMCTest algorithm

A runtime study conducted in this section indicates that the allocation of samples to

multiple hypotheses computed by the QuickMMCTest algorithm (Chapter 4) might be

asympotically close to the optimal allocation derived under the normal approximation.

QuickMMCTest is used to iteratively allocate samples to all m hypotheses. The

algorithm is designed in such a way as to allocate more samples adaptively to hy-

potheses with p-values which are closer to the testing threshold and thus harder to

classify. Although QuickMMCTest is capable, in principle, of computing allocations

for tests evaluated with arbitrary step-up and step-down procedures, we use it in

connection with the Bonferroni (1936) correction h(p, α) only (Section 5.2.1). More-

over, QuickMMCTest depends on two parameters: the total number of samples K to

be spent and the total number of iterations nmax. The choice of K and nmax is given

individually in each of the following subsections.

5.3.2 Empirical comparison to the optimal allocation

The allocation of samples computed by QuickMMCTest will be compared to the real-

valued optimal allocation derived in Section 5.2. Although we use the real-valued

optimal allocation as a reference for the comparison, a greedy integer solution obtained

in Section 5.4 indicates that the integer and real-valued optimal solutions might not

considerably differ.

118

Optimal allocation of samples

0 100 200 300 400 500

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

rank of p−value

n
u

m
b

e
r

o
f

s
a

m
p

le
s

Figure 5.1: Real-valued optimal solution (solid line) computed via Kuhn-Tucker con-
straint and allocation of samples returned by QuickMMCTest (crosses).

For all comparisons in this section, we use the mixture distribution of Sandve et al.

(2011) introduced in Section 4.3. We fix a realisation generated from this mixture

distribution with m = 500 p-values and parameter π0 = 0.5. The p-values were then

sorted in order to be able to plot the real-valued optimal allocation as a smooth curve

and hence to increase clarity in plots. The fixed p-values will be referred to as p∗i ,

i ∈ {1, . . . ,m}.

We compute the optimal real-valued allocation for our fixed distribution as de-

scribed in Section 5.2.3. Additionally, we apply QuickMMCTest to the fixed p-values

and record its allocation of samples to each hypothesis. Testing was carried out using

a Bonferroni (1936) threshold of α = 0.1/m.

Figure 5.1 shows the real-valued optimal solution (solid curve) as well as the

number of samples allocated to each hypothesis by QuickMMCTest (crosses). The

119

Optimal allocation of samples

total number of samples was K = 106. The cutoff for multiple testing (the last

p-value in the rejection region of the test) occurred at the 80th p-value.

As visible from the real-valued optimal allocation in Figure 5.1, as expected, p-

values far away from the cutoff point and thus far away from the threshold are not

allocated many samples. On approaching the cutoff, more samples are needed to

accurately classify which p-values belong to the rejection and which belong to the

non-rejection region of the testing procedure. However, p-values which are too close

to the threshold on either side are not worth being allocated too many samples as

deciding them is out of scope for a limited effort (see Section 2.6.1 and Section 2.6.2).

Therefore, the real-valued optimal allocation decreases on approaching the closest

p-value to the threshold from both sides, yielding a bimodal allocation.

The allocation computed by QuickMMCTest roughly resembles the shape of the

optimal allocation in the sense that the optimal allocation seems to be some kind of

rough hull curve for the allocation of QuickMMCTest. Both the optimal allocation and

the one of QuickMMCTest fairly coincide for p-values considerably above the threshold.

Moreover, QuickMMCTest allocates samples to hypotheses with p-values above the

threshold in such a way that its allocation roughly approximates the second mode

of the real-valued allocation. However, the first mode of the real-valued allocation

is poorly approximated as QuickMMCTest seems to give an equal number of samples

(according to Figure 5.1: about 10000 samples) to each hypothesis below the cutoff.

5.3.3 Asympotic behaviour of the allocation of samples

We investigate how the real-valued optimal allocation and the one of QuickMMCTest

behave as the total number K of samples to be spent increases.

120

Optimal allocation of samples

2e+06 4e+06 6e+06 8e+06 1e+07

0
.9

6
0

.9
8

1
.0

0
1

.0
2

1
.0

4

total number of samples

ra
ti
o

 o
f

c
o

rr
e

c
t

c
la

s
s
if
ic

a
ti
o

n
s

5 % Quantile

50 % Quantile

95 % Quantile

Figure 5.2: Indication of convergence of QuickMMCTest’s solution to the optimal
solution. 5%, 50% and 95%-quantiles of the number of correctly classified hypotheses
of QuickMMCTest divided by the expected number of correctly classified hypotheses.

This is done using the fixed set of m = 500 p-values for a varying total number

of samples K which was increased from 105 to 107 in 100 steps. We calculate 5%,

50% and 95% quantiles of the empirical number of correctly classified hypotheses

for QuickMMCTest divided by the expected number of correctly classified hypotheses

(based on r = 10 repetitions only as computing the optimal allocation is very costly for

large total sample numbers). The expected number of correctly classified hypotheses

is obtained by evaluating γ on the optimal allocation derived in Section 5.2.2 and by

subtracting the resulting value from m. A plot is given in Figure 5.2.

Figure 5.2 indicates that the ratio of correct classifications of QuickMMCTest to the

ones of the optimal allocation might converge to one as K →∞. Based on Figure 5.1

and 5.2, one could conjecture that the allocation returned by QuickMMCTest behaves

121

Optimal allocation of samples

in such a way as to mimic the optimal one in terms of correctly classified hypotheses.

5.4 A greedy solution to the integer version of the optimal

allocation problem

We investigate one of many possible greedy algorithms which tries to compute a

discrete optimal allocation for a given set of p-values, thus attempting to solve (5.1)

directly.

The aim of this section is to argue that, although unknown, the optimal integer

allocation is most likely of a similar form as the real-valued optimal solution derived

in Section 5.2.

5.4.1 A greedy algorithm

For notational convenience, the function g introduced in Section 5.2 is expressed as

g(k) =
∑m

i=1 gi(ki) for k = (k1, . . . , km) using functions

gi(ki) = P(Mi|ki) = P(Si/ki > α|p∗i) · I(p∗i ≤ α) + P(Si/ki ≤ α|p∗i) · I(p∗i > α),

where Mi = {Si/ki > α ∧ p∗i ≤ α} ∪ {Si/ki ≤ α ∧ p∗i > α} and Si ∼ Binomial(ki, p
∗
i)

(see Section 5.2). We consider the following greedy approach (Algorithm 5.1) to

compute a discrete optimal allocation for a given vector of p-values p∗ = (p∗1, . . . , p
∗
m).

122

Optimal allocation of samples

Algorithm 5.1: Greedy algorithm to compute an integer allocation of samples

input: p, α, K

1 jump← 1/α; j ← 1; bi ← 0, ki ← I(p∗i ≤ α), i ∈ {1, . . . ,m};

2 while
∑m

i=1 ki + bj < K do

3 kj ← kj + bj;

4 for i← 1 to m do

5 bi ←


min{z ∈ N : gi(ki + z) < gi(ki)} pi > α,

jump− 1 pi ≤ α, ki < jump,

jump pi ≤ α, ki ≥ jump.

6 di ← gi(ki + bi)− gi(ki);

7 j ← arg maxi=1,...,m di/bi;

8 return (k1, . . . , km);

Apart from the p-values, the greedy algorithm also requires the testing threshold

α and the total number K of samples to be allocated to the m hypotheses under

consideration.

In order to highlight the reasoning behind Algorithm 5.1, consider the behaviour

of the function gi for a p-value p∗i below and above the threshold α as illustrated

exemplarily in Figure 5.3. We used m = 500 p-values and a threshold α = 0.1/m =

1/5000. Figure 5.3 displays the expected number of misclassifications, obtained by

evaluating gi, against the number of samples for a hypothesis below (left) and above

(right) the threshold. Drawing no samples is defined to yield a p-value of zero and

hence a correct rejection if the hypothesis corresponding to that p-value is rejected.

As shown in Figure 5.3, the behaviour of gi exhibits a particular structure caused

by the following effect. A rejection is obtained if a p-value estimate is below the

123

Optimal allocation of samples

0 5000 10000 15000 20000

0
.0

0
0
.0

5
0
.1

0
0
.1

5

number of samples

fu
n
c
ti
o
n
 h

0 5000 10000 15000 20000
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

number of samples

fu
n
c
ti
o
n
 h

Figure 5.3: Example showing the expected number of misclassifications (obtained by
evaluating the function gi) against number of samples for a hypothesis below (left)
and above (right) the threshold.

threshold at α = 1/5000. Thus for a p-value below α (left plot), when using less than

5000 samples, a p-value will be classified as rejected only if 0 exceedances are observed.

Consequently, using that no samples yield a p-value of zero, drawing more samples

only potentially increases the probability of making a false decision. When reaching

1/α = 5000 samples, observing both 0 exceedances or 1 exceedance will lead to a

rejection and hence to a correct decision. The expected number of misclassifications

drops. This effect repeats itself every 1/α samples.

For a p-value above α (right plot), the inverse effect happens. Drawing no sam-

ples leads to a rejection (a p-value of 0) and thus to a sure misclassification. Drawing

more samples decreases the expected number of misclassifications as observing 0 ex-

ceedances out of ki samples (the only case in which the hypothesis will be rejected

and thus misclassified) becomes less and less likely as ki approaches 1/α = 5000.

124

Optimal allocation of samples

When reaching 1/α = 5000 samples, as before, observing both 0 exceedances and 1

exceedance lead to a rejection and thus to a misclassification. The expected number

of misclassifications increases again.

As expected, the probability for a misclassification of an hypothesis H0i vanishes

in both cases as ki →∞.

Algorithm 5.1 works by greedily trying to fill up a zero vector k storing the final

allocation of samples in such a way as to decrease the function g in every step,

subject to the constraint
∑m

i=1 ki = K. In each iteration, Algorithm 5.1 individually

determines a sensible number of bi samples to be allocated to each hypothesis H0i,

i ∈ {1, . . . ,m}. This number varies for each hypothesis: for hypotheses above the

threshold, bi is determined as the smallest increase that leads to a decrease in g. For

hypotheses below the threshold, only “jumping“ by an amount of (1/α− 1) samples

is sensible if ki = 1 or jumping 1/α samples in the case ki = 0: that is, Algorithm 5.1

jumps to the left end of each of the branches in the left plot of Figure 5.3.

Certain jumps might lead to a large decrease in the value of the function g, but only

at the cost of also spending (too) many samples on just one hypothesis. Algorithm 5.1

therefore determines the decrease di in function g for each H0i associated to spending

bi samples and allocates the batch of bi samples to the hypothesis yielding the best

ratio di/bi.

Algorithm 5.1 is just one of many possible greedy approaches to compute a sensible

integer allocation of samples. We tried various variants and allocation rules, all with

a similar behaviour as Algorithm 5.1 and resulting in similar allocations.

125

Optimal allocation of samples

0 1000 2000 3000 4000 5000

1
e

−
1

0
1

e
−

0
7

1
e

−
0

4
1

e
−

0
1

1
e

+
0

2
1

e
+

0
5

rank of p−value

n
u

m
b

e
r

o
f

s
a

m
p

le
s

Figure 5.4: Greedy solution of Algorithm 5.1 (bold) compared to the real-valued
optimal solution (dotted) computed as described in Section 5.2.3. Log scale on the
y-axis.

5.4.2 Comparison of the greedy integer solution to the optimal real-

valued solution

Figure 5.4 compares two allocations, the greedy discrete one computed by Algorithm

5.1 (bold) and the real-valued optimal one computed via Kuhn and Tucker (1951)

constraint (dotted) as described in Section 5.2.3.

For Figure 5.4, a new realisation of m = 5000 p-values was drawn from the mixture

distribution introduced in Section 5.3.2 with parameter π0 = 0.5. Testing was carried

out at a constant (uncorrected, that is not divided by m) threshold of 0.1.

Figure 5.4 shows that the two allocations are qualitatively similar, in particular

they largely agree for hypotheses having p-values above the threshold (the thresh-

126

Optimal allocation of samples

old intersects the p-value distribution around rank 2900). The allocations are also

qualitatively similar for p-values below the threshold even though Algorithm 5.1 allo-

cates slightly more samples than the optimal allocation in this case. This discrepancy

increases as the p-values tend to zero (to be precise, to low ranks in Figure 5.4). How-

ever, as seen in the plot, the optimal allocation distributes fractions of a sample to

low p-values. These would, for instance, be rounded up to one sample per hypothesis

when drawing samples in practice, thus making the greedy discrete and the optimal

real-valued allocations coincide.

The optimal real-valued allocation and the greedy one of Algorithm 5.1 differ

around the threshold. Strikingly, the greedy solution does not allocate more samples

than the pre-set one initial sample to rejected hypotheses close to the threshold (to

be precise, it allocates one sample each over a rather large interval to the left of

the threshold), whereas the real-valued Kuhn and Tucker (1951) solution allocates

samples roughly symmetrically and very confined around the threshold.

5.5 Discussion

Many algorithms published in the literature are designed to evaluate multiple hy-

potheses using Monte Carlo simulations. Though sensible, it is unclear if these algo-

rithms are able to draw samples in an optimal way defined, for instance, as minimising

the expected number of misclassified hypotheses.

The present chapter is concerned with the allocation of samples which minimises

the expected number of misclassified hypotheses. We derive the optimal allocation

of a finite number of samples under the assumption that the p-values are known and

that the number of samples is real-valued using a Kuhn and Tucker (1951) constraint

127

Optimal allocation of samples

and a normal approximation. Though all simulations and conclusions are based on

the optimal solution assuming real and not integer values for the number of samples,

we demonstrate exemplarily that the real-valued solution derived under a normal

approximation is qualitatively similar to a greedy integer solution, indicating that

the real-valued and the unknown optimal integer solution might be similar.

A simulation study indicates that the allocation of samples to each hypothesis

computed by the simple QuickMMCTest algorithm (Chapter 4) might behave roughly

similarly to the optimal allocation of samples. In contrast to the optimal allocation

which was derived using full knowledge of all p-values, QuickMMCTest does not require

knowledge of any p-value as long as it is possible to obtain samples under each null

hypothesis.

128

129

6 Conclusion

The present thesis investigates multiple testing from several perspectives. The theme

connecting all chapters is the assumption that several hypotheses are to be tested

for statistical significance without knowledge of the p-values underlying the tests.

Instead, all p-values have to be approximated via Monte Carlo simulation, precisely by

drawing samples for each hypothesis under the null. Such a scenario is commonplace

is most applications involving real biological datasets.

The first part of this thesis focuses on the computation of test results with a

guarantee on their correctness in the aforementioned scenario, that is test results

which are identical to the ones obtained if all p-values had been available analytically.

Chapter 2 offers a solution to this problem by presenting MMCTest, an algorithm to

implement a multiple testing procedure. In contrast to algorithms published in the

literature, Chapter 2 proves that up to a pre-specified error probability, MMCTest

yields correct decisions on all hypotheses based solely on Monte Carlo simulation.

By exemplarily considering the classification of a real gene expression dataset, we

demonstrate that MMCTest can be used to reveal the (previously unknown) correct

decision (significant, non-significant) of certain genes of interest (up to the error

probability), a unique feature not provided by other methods.

Conclusion

The ideas behind MMCTest can be generalised and applied to a whole range of

existing algorithms available in the literature. Chapter 3 demonstrates that existing

methods giving no guarantee on their test result can be modified to yield theoretical

guarantees on the correctness of their outputs. Chapter 2 and 3 together thus provide

a means of achieving Monte Carlo based multiple hypothesis testing with guarantees

on the correctness of all test results.

In practice, it might be desired to sacrifice the computational effort needed to ob-

tain a guaranteed test result and to invest it instead in the computation of an ad-hoc

test result with a high accuracy. Here, the accuracy of a test result is measured in

terms of misclassifications, that is decisions on single hypotheses which are different

from the ones obtained if the p-values underlying the tests had been available. Chap-

ter 4 presents an algorithm for this scenario based on Thompson (1933) Sampling,

called QuickMMCTest. The algorithm achieves an excellent accuracy in a simulation

study on a variety of multiple testing procedures and it offers a solution to Monte

Carlo based multiple testing without the use of discrete p-value estimates, a desir-

able feature for practical use as it circumvents a phenomenon observed in published

methods leading to meaningless results consisting of non-rejected hypotheses only.

Chapter 5 demonstrates empirically that QuickMMCTest might behave close to

being optimal in the sense that its allocation roughly mimics the optimal allocation of

samples, understood as the one minimising the expected number of misclassifications.

For this, the optimal allocation of a finite number of samples is derived under a

normal approximation and the assumption that multiple testing is carried out using

the Bonferroni (1936) correction.

130

131

7 Future work

The topics dealt with in this thesis leave considerable scope for further improvements

and extensions.

Several topics related to the MMCTest algorithm (Chapter 2) are still unsolved

or leave scope for extensions. First, a detailed analysis of the runtime of MMCTest

is still pending. Although it is proven that the expected runtime for a complete

classification is infinite, it would be of great interest to explore further under which

circumstances and for which procedures a finite runtime can be achieved. This could

be attempted by analysing the speed with which the length of certain confidence

intervals goes to zero. Deriving a precise runtime analysis will be challenging as the

runtime of MMCTest depends both on the multiple testing procedure used as well as

on the (potentially unknown) p-value distribution.

Chapter 3 extends the idea behind MMCTest by presenting a framework for multiple

testing. This framework can be extended to ever more multiple testing situations,

for instance to the emerging topic of testing in directed acyclic graphs (Goeman and

Mansmann, 2008). Such scenarios naturally occur in hierarchical multiple testing

problems having a natural ordering of the tests, for instance due to subset relations

(SNPs, genes, chromosomes). Usually, a node hypothesis is true if all its children are

Future work

true, and the truth of any node implies the truth of all its children. Hypotheses in

an acyclic directed graph can be tested, for instance, using a bottom-up or top-down

approach, and the overall testing threshold can be distributed in a variety of ways.

Also, if a combined hypothesis is false, then at least one child hypothesis must be

false which opens up the possibility for various shortcuts to avoid actually carrying

out all tests.

Moreover, new approaches to multiple testing have emerged recently, such as the

one of Goeman and Solari (2011): the authors reverse the classical roles in multiple

testing by proposing to choose the set of rejections freely and provide a method

based on modified closed testing procedures which gives a confidence statement on

the number of false rejections. It will be interesting to extend the ideas behind

the MMCTest algorithm to such scenarios and provide guarantees on the number of

erroneous decisions when p-values have to be approximated in a Monte Carlo scenario.

Second, this thesis also views multiple testing from a practical point of view:

Chapter 4 proposes an algorithm called QuickMMCTest based on Thompson (1933)

Sampling. Empirical results demonstrate that such an approach to fine-tune the

allocation of samples results in a superior accuracy compared to published methods.

Although the method has been tested on several thousand hypotheses, it remains to

investigate to which extent it is scalable to large scale multiple testing problems, to

apply it to large scale multiple testing and to enhance the method if needed.

Importantly, Chapter 5 demonstrates empirically that QuickMMCTest seems to

mimic the optimal allocation of samples when classifying hypotheses using the Bon-

ferroni (1936) correction (assuming that the analytical p-values are known and hence

the optimal allocation of samples can be calculated). Here, the optimal (real-valued)

132

Future work

allocation is understood as the one minimising the expected number of erroneously

classified hypotheses when numbers of samples are allowed to take real as opposed to

integer values, derived via Kuhn and Tucker (1951) constraint. A rigorous proof of this

optimality statement is still pending and would greatly underpin the QuickMMCTest

approach. I would like to attempt this by analysing by how much the current allo-

cation of QuickMMCTest in each iteration differs from the optimal Kuhn and Tucker

(1951) solution.

Assuming full knowledge of all p-values in order to compute the optimal alloca-

tion of samples, it will be straightforward to demonstrate that the QuickMMCTest

algorithm also asymptotically mimics the optimal allocation when using any arbi-

trary step-up or step-down procedure to correct for multiple tests. This is due to

the fact that the testing result of any step-up or step-down procedure can also be

obtained using the Bonferroni (1936) correction applied with the p-value of the last

rejected hypothesis as constant and known threshold. As a derivation of the discrete

(integer-valued) optimal allocation seems infeasible (due to the fact that the problem

is non-convex), one approach to demonstrate optimal behaviour of QuickMMCTest

could be to prove that any optimum derived via Kuhn and Tucker (1951) formalism

is also (one of the) optima of the discrete allocation: this could, in principle, be shown

using subdifferential versions of the Kuhn and Tucker (1951) conditions (Ruszczynski,

2006).

Multiple testing is traditionally carried out by merely differentiating between sig-

nificant and non-significant hypotheses. However, the traditional approach might not

always be desired when evaluating real data studies. Instead, ranking hypotheses

based on their p-values or merely obtaining the k lowest p-values has immediate ad-

133

Future work

vantages as it allows to distinguish between more and less interesting hypotheses. The

parameter k is often given as a limiting factor in practice: k could be, for instance, the

maximal number of genes which can be included in follow-up studies due to budget

constraints. In this case, one wishes to select the most promising hypotheses, mean-

ing the ones having the lowest p-values, independently of their actual testing result

(significant or non-significant). In fact, recent research has shown that hypotheses

with a low p-value were worth being included in follow-up studies even though they

were not significant. For instance, Xu and Taylor (2009) report that a SNP consid-

ered in a prostate cancer study had an initial p-value (Yeager et al., 2007) of “only

0.042, but the P-value was 7.31 · 10−13 in a follow up study” of Thomas et al. (2008).

I would like to investigate this approach further following the spirit of MMCTest by

providing a method that gives, with pre-specified probability chosen by the user, a

set that is equal to or that is guaranteed to contain the k most significant p-values.

This can be achieved by excluding hypotheses successively from the target set using

confidence intervals on all p-values.

134

135

References

Agrawal, S. and Goyal, N. (2012). Analysis of Thompson Sampling for the Multi-

armed Bandit Problem. JMLR: Workshop and Conference Proceedings of the 25th

Annual Conference on Learning Theory, 23(39):1–26.

Asomaning, N. and Archer, K. (2012). High-throughput dna methylation datasets for

evaluating false discovery rate methodologies. Comput Stat Data An, 56:1748–1756.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A

practical and powerful approach to multiple testing. Journal of the Royal Statistical

Society, Series B (Methodological), 57(1):289–300.

Benjamini, Y. and Hochberg, Y. (2000). On the adaptive control of the false discovery

rate in multiple testing with independent statistics. J. Edu. Behav. Stats., 25(1):60–

83.

Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in

multiple testing under dependency. The Annals of Statistics, 29(4):1165–1188.

Besag, J. and Clifford, P. (1991). Sequential Monte Carlo p-values. Biometrika,

78(2):301–304.

REFERENCES

Bonferroni, C. (1936). Teoria statistica delle classi e calcolo delle probabilità. Pubbli-

cazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze,

8:3–62.

Chen, J., Bushman, F., Lewis, J., Wu, G., and Li, H. (2013). Structure-constrained

sparse canonical correlation analysis with an application to microbiome data anal-

ysis. Biostatistics, 14(2):244–258.

Chen, W. and Dieckmann, C. (1997). Genetic evidence for interaction between Cbp1

and specific nucleotides in the 5’ untranslated region of mitochondrial cytochrome

b mRNA in Saccharomyces cerevisiae. Mol Cell Biol, 17(11):6203–6211.

Cheng, C. (2006). An adaptive significance threshold criterion for massive multiple

hypotheses testing. IMS Lecture Notes – Monograph Series of the 2nd Lehmann

Symposium – Optimality, 49:51–76.

Cheng, C. (2009). Internal validation inferences of significant genomic features in

genome-wide screening. Computational Statistics and Data Analysis, 53:788–800.

Cherry, J., Hong, E., Amundsen, C., Balakrishnan, R., Binkley, G., Chan, E.,

Christie, K., Costanzo, M., Dwight, S., Engel, S., Fisk, D., Hirschman, J., Hitz, B.,

Karra, K., Krieger, C., Miyasato, S., Nash, R., Park, J., Skrzypek, M., Simison, M.,

Weng, S., and Wong, E. (2011). Saccharomyces Genome Database: the genomics

resource of budding yeast. Nucleic Acids Res, 40(D):700–705.

Clopper, C. and Pearson, E. (1934). The use of confidence or fiducial limits illustrated

in the case of the binomial. Biometrika, 26(4):404–413.

136

REFERENCES

Cohen, O., Ashkenazy, H., Burstein, D., and Pupko, T. (2012). Uncovering the co-

evolutionary network among prokaryotic genes. Bioinformatics, 28(ECCB):i389–

i394.

David, N. and Nagaraja, H. (2003). Order Statistics. Wiley.

Davison, A. and Hinkley, D. (1997). Bootstrap Methods and Their Application. Cam-

bridge University Press.

Dazard, J.-E. and Rao, S. (2012). Joint adaptive meanvariance regularization and

variance stabilization of high dimensional data. Comput Stat Data An, 56:2317–

2333.

DDB (2001). Gene Ontology annotation through association of InterPro records with

GO terms. unpublished.

Edgington, E. and Onghena, P. (1997). Randomization tests. Fourth Edition, Chap-

man & Hall/CRC, Boca Raton, FL.

Finner, H. and Gontscharuk, V. (2009). Controlling the familywise error rate with

plug-in estimator for the proportion of true null hypotheses. Journal of the Royal

Statistical Society: Series B (Methodological), 71(5):1031–1048.

Fox, T. (1979). Genetic and physical analysis of the mitochondrial gene for subunit

II of yeast cytochrome c oxidase. J Mol Biol, 130(1):63–82.

Gandy, A. (2009). Sequential implementation of Monte Carlo tests with uni-

formly bounded resampling risk. Journal of the American Statistical Association,

104(488):1504–1511.

137

REFERENCES

Gandy, A. and H., G. (2014). MMCTest – A Safe Algorithm for Implementing

Multiple Monte Carlo Tests. Scandinavian Journal of Statistics, 41(4):1083–1101.

Gandy, A. and H., G. (2015a). A framework for Monte-Carlo based multiple testing.

arXiv:1402.3019.

Gandy, A. and H., G. (2015b). Optimal allocation of samples for Monte-Carlo based

multiple testing and comparison to Thompson Sampling. arXiv:1502.07864.

Gandy, A. and H., G. (2015c). QuickMMCTest – Higher accuracy for Monte-Carlo

based multiple testing. arXiv:1402.2706.

Gleser, L. (1996). Comment on ’Bootstrap Confidence Intervals’ by T. J. DiCiccio

and B. Efron. Statist. Sci., 11:219–221.

Goeman, J. and Mansmann, U. (2008). Multiple testing on the directed acyclic graph

of gene ontology. Bioinformatics, 24(4):537–544.

Goeman, J. and Solari, A. (2011). Multiple testing for exploratory research. Statistical

Science, 26(4):584–597.

Guo, W. and Peddada, S. (2008). Adaptive choice of the number of bootstrap samples

in large scale multiple testing. Stat Appl Genet Mol Biol., 7(1):1–16.

Gusenleitner, D., Howe, E., Bentink, S., Quackenbush, J., and Culhane, A. (2012).

iBBiG: iterative binary bi-clustering of gene sets. Bioinformatics, 28(19):2484–

2492.

Han, B. and Dalal, S. (2012). A Bernstein-type estimator for decreasing density with

138

REFERENCES

application to p-value adjustments. Computational Statistics and Data Analysis,

56:427–437.

Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance.

Biometrika, 75(4):800–802.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables.

Journal of the American Statistical Association, 58(301):13–30.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian

Journal of Statistics, 6(2):65–70.

Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified

Bonferroni test. Biometrika, 75(2):383–386.

Hwang, Y.-T. (2011). Comparisons of estimators of the number of true null hypotheses

and adaptive fdr procedures in multiplicity testing. Computational Statistics and

Data Analysis, 81(2):207–220.

Jiang, H. and Doerge, R. (2008). Estimating the proportion of true null hypotheses

for multiple comparisons. Cancer Informatics, 6:25–32.

Jiang, H. and Salzman, J. (2012). Statistical properties of an early stopping rule for

resampling-based multiple testing. Biometrika, 99(4):973–980.

Johnson, V. (2013). Revised standards for statistical evidence. Proc Natl Acad Sci,

110(48):19313–19317.

Jupiter, D., Sahutoglu, J., and VanBuren, V. (2010). TreeHugger: A new test for

139

REFERENCES

enrichment of gene ontology terms. INFORMS Journal on Computing, 22(2):210–

221.

Kim, S.-B., Yang, S., Kim, S.-K., Kim, S., Woo, H., Volsky, D., Kim, S.-Y., and Chu,

I.-S. (2007). GAzer: gene set analyzer. Bioinformatics, 23(13):1697–1699.

Knijnenburg, T., Wessels, L., Reinders, M., and Shmulevich, I. (2009). Fewer permu-

tations, more accurate p-values. Scandinavian Journal of Statistics, 25(12):i161–

i168.

Kreike, J., Bechmann, H., Van Hemert, F., Schweyen, R., Boer, P., Kaudewitz, F.,

and Groot, G. (1979). The Identification of Apocytochrome b as a Mitochon-

drial Gene Product and Immunological Evidence for Altered Apocytochrome b in

Yeast Strains having Mutations in the COB Region of Mitochondrial DNA. Eur J

Biochem, 101(2):607–617.

Kuhn, H. and Tucker, A. (1951). Nonlinear Programming. Proc. Second Berkeley

Symp. on Math. Statist. and Prob., pages 481–492.

Lai, T. (1976). On Confidence Sequences. Ann. Statist., 4(2):265–280.

Langaas, M., Lindqvist, B., and Ferkingstad, E. (2005). Estimating the proportion

of true null hypotheses, with application to dna microarray data. Journal of the

Royal Statistical Society: Series B (Methodological), 67(4):555–572.

Li, G., Best, N., Hansell, A., Ahmed, I., and Richardson, S. (2012). BaySTDetect:

detecting unusual temporal patterns in small area data via bayesian model choice.

Biostatistics, 13(4):695–710.

140

REFERENCES

Li, J., Tai, B., and Nott, D. (2009). Confidence interval for the bootstrap p-value and

sample size calculation of the bootstrap test. Journal of Nonparametric Statistics,

21(5):649–661.

Lin, D. (2005). An efficient Monte Carlo approach to assessing statistical significance

in genomic studies. Bioinformatics, 21(6):781–787.

Liu, J. and Chen, R. (1998). Sequential monte carlo methods for dynamic systems.

Journal of the American Statistical Association, 93(443):1032–1044.

Liu, J., Huang, J., Ma, S., and Wang, K. (2013). Incorporating group correlations

in genome-wide association studies using smoothed group Lasso. Biostatistics,

14(2):205–219.

Lourenco, V. and Pires, A. (2014). M-regression, false discovery rates and outlier

detection with application to genetic association studies. Comput Stat Data An,

78:33–42.

Lu, H.-F., Dong, H.-T., Sun, C.-B., Qing, D.-J., Li, N., Wu, Z.-K., Wang, Z.-Q., and

Li, Y.-Z. (2011). The panorama of physiological responses and gene expression of

whole plant of maize inbred line yq7-96 at the three-leaf stage under water deficit

and re-watering. Theor Appl Genet, 123:943–958.

Manly, B. (1997). Randomization, bootstrap and MonteCarlo methodsin biology. Sec-

ond Edition, Chapman & Hall, London.

Mart́ınez-Camblor, P. (2014). On correlated z-values distribution in hypothesis test-

ing. Comput Stat Data An, 79:30–43.

141

REFERENCES

Meinshausen, N. (2006). False discovery control for multiple tests of association under

general dependence. Scandinavian Journal of Statistics, 33(2):227–237.

Meunier, B. (2001). Site-directed mutations in the mitochondrially encoded subunits

I and III of yeast cytochrome oxidase. Biochem J, 354(2):407–412.

Nusinow, D., Kiezun, A., O’Connell, D., Chick, J., Yue, Y., Maas, R., Gygi, S., and

Sunyaev, S. (2012). Network-based inference from complex proteomic mixtures

using SNIPE. Bioinformatics, 28(23):3115–3122.

Pekowska, A., Benoukraf, T., Ferrier, P., and Spicuglia, S. (2010). A unique h3k4me2

profile marks tissue-specific gene regulation. Genome Research, 20(11):1493–1502.

Phipson, B. and Smyth, G. (2010). Permutation P-values Should Never Be Zero:

Calculating Exact P-values When Permutations Are Randomly Drawn. Stat. Appl.

Genet. Mol. Biol., 9(1):1–12.

Pounds, S. and Cheng, C. (2006). Robust estimation of the false discovery rate.

Bioinformatics, 22(16):1979–1987.

Rahmatallah, Y., Emmert-Streib, F., and Glazko, G. (2012). Gene set analysis for self-

contained tests: complex null and specific alternative hypotheses. Bioinformatics,

28(23):3073–3080.

Rom, D. (1990). A sequentially rejective test procedure based on a modified Bonfer-

roni inequality. Biometrika, 77(3):663–665.

Romano, J. and Shaikh, A. (2006). Stepup procedures for control of generalizations

of the familywise error rate. The Annals of Statistics, 34(4):1850–1873.

142

REFERENCES

Roth, A. (1999). Multiple comparison procedures for discrete test statistics. J Statist

Plann Inference, 82(1-2):101–117.

Rouillard, J., Dufour, M., Theunissen, B., Mandart, E., Dujardin, G., and Lacroute,

F. (1996). SLS1, a new Saccharomyces cerevisiae gene involved in mitochondrial

metabolism, isolated as a syntheticlethal in association with an SSM4 deletion. Mol

Gen Genet, 252(6):700–708.

Ruszczynski, A. (2006). Nonlinear Optimization. Princeton University Press.

Sandve, G., Ferkingstad, E., and Nyg̊ard, S. (2011). Sequential Monte Carlo multiple

testing. Bioinformatics, 27(23):3235–3241.

Schweder, T. and Spjøtvoll, E. (1982). Plots of p-values to evaluate many tests

simultaneously. Biometrika, 69(3):493–502.

Shaffer, J. (1986). Modified sequentially rejective multiple test procedures. Journal

of the American Statistical Association, 81(395):826–831.

Sidak, Z. (1967). Rectangular confidence regions for the means of multivariate normal

distributions. Journal of the American Statistical Association, 62(318):626–633.

Simes, R. (1986). An improved Bonferroni procedure for multiple tests of significance.

Biometrika, 73(3):751–754.

Storey, J. (2002). A direct approach to false discovery rates. Journal of the Royal

Statistical Society: Series B (Methodological), 64(3):479–498.

Tamhane, A. and Liu, L. (2008). On weighted Hochberg procedures. Biometrika,

95(2):279–294.

143

REFERENCES

Thomas, G., Jacobs, K., Yeager, M., Kraft, P., Wacholder, S., Orr, N., Yu, K.,

Chatterjee, N., Welch, R., Hutchinson, A., Crenshaw, A., Cancel-Tassin, G., Staats,

B., Wang, Z., Gonzalez-Bosquet, J., Fang, J., Deng, X., Berndt, S., Calle, E.,

Feigelson, H., Thun, M., Rodriguez, C., Albanes, D., Virtamo, J., Weinstein, S.,

Schumacher, F., Giovannucci, E., Willett, W., Cussenot, O., Valeri, A., Andriole,

G., Crawford, E., Tucker, M., Gerhard, D., Fraumeni Jr, J., Hoover, R., Hayes,

R., Hunter, D., and Chanock, S. (2008). Multiple loci identified in a genome-wide

association study of prostate cancer. Nature Genetics, 40(3):310–315.

Thompson, W. (1933). On the Likelihood that One Unknown Probability Exceeds

Another in View of the Evidence of Two Samples. Biometrika, 25(3/4):285–294.

Thulin, M. (2014). A high-dimensional two-sample test for the mean using random

subspaces. Comput. Stat. Data An., 74:26–38.

Tusher, V., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays

applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA, 98(18):5116–

5121.

van Wieringen, W., van de Wiel, M., and van der Vaart, A. (2008). A test for

partial differential expression. Journal of the American Statistical Association,

103(483):1039–1049.

Wald, A. (1945). Sequential tests of statistical hypotheses. The Annals of Mathemat-

ical Statistics, 16(2):117–186.

Westfall, P. and Troendle, J. (2008). Multiple testing with minimal assumptions.

Biom J., 50(5):745–755.

144

REFERENCES

Westfall, P. and Young, S. (1993). Resampling-based multiple testing: Examples and

methods for p-value adjustment. Wiley, New York.

Wu, H., Wang, C., and Wu, Z. (2013). A new shrinkage estimator for dispersion

improves differential expression detection in rna-seq data. Biostatistics, 14(2):232–

243.

Xu, Z. and Taylor, J. (2009). Snpinfo: integrating gwas and candidate gene infor-

mation into functional snp selection for genetic association studies. Nucleic Acids

Res, 37(Web server issue):W600–5.

Yeager, M., Orr, N., Hayes, R., Jacobs, K., Kraft, P., Wacholder, S., Minichiello,

M., Fearnhead, P., Yu, K., Chatterjee, N., Wang, Z., Welch, R., Staats, B., Calle,

E., Feigelson, H., Thun, M., Rodriguez, C., Albanes, D., Virtamo, J., Weinstein,

S., Schumacher, F., Giovannucci, E., Willett, W., Cancel-Tassin, G., Cussenot,

O., Valeri, A., Andriole, G., Gelmann, E., Tucker, M., Gerhard, D., Fraumeni,

J. J., Hoover, R., Hunter, D., Chanock, S., and Thomas, G. (2007). Genome-wide

association study of prostate cancer identifies a second risk locus at 8q24. Nature

Genetics, 39(5):645–649.

Zhang, Y. (2008). Poisson approximation for significance in genome-wide ChIP-chip

tiling arrays. Bioinformatics, 24(24):2825–2831.

Zhou, Y.-H., Barry, W., and Wright, F. (2013). Empirical pathway analysis, without

permutation. Biostatistics, 14(3):573–585.

145

146

A Appendix of Chapter 2

A.1 Clopper and Pearson (1934) confidence intervals

The particular choice of the function f used in Example 2.2 and the empirical studies

in Section 2.4 computes “exact” Clopper and Pearson (1934) confidence intervals. We

choose f in such a way as to guarantee a joint coverage probability of 1 − ε for all

confidence intervals over all iterations, where the overall error probability ε is chosen

by the user.

A sequence (ηk)k∈N0
satisfying η0 = 0 and ηk → ε as k →∞ is used to control how

ε is spent over the iterations of the algorithm. We will call (ηk) spending sequence.

Throughout Chapter 2 we use ηk := k
k+r

ε for some constants r > 0 and ε > 0 (all the

parameters used for the simulation studies are given in Section 2.4.1).

We then define f(S, k,∆) to be the Clopper and Pearson (1934) confidence interval

based on S and k (see Algorithm 2.1) with a coverage probability of 1−(ηk−ηk−∆)/m.

Appendix of Chapter 2

Precisely,

f(S, k,∆) :=


[1− qBeta

k−S,S+1(ρk), 1− qBeta
k+1−S,S(1− ρk)] 0 < S < k,

[0, 1− ρ1/k
k] S = 0,

[ρ
1/k
k , 1] S = k,

where ρk = (ηk − ηk−∆)/(2m). The quantiles qBeta
α,β (ε) of the Beta(α, β) distribution

being used are defined by P(Z ≤ qBeta
α,β (ε)) = ε for a random variable Z with probability

density function Γ(α+β)
Γ(α)Γ(β)

zα−1(1− z)β−1. The Clopper and Pearson (1934) confidence

intervals we compute are slightly conservative in practice (Li et al., 2009).

We show in the following lemma that our particular choice of f defined beforehand

satisfies Condition 2.5 and Condition 2.7 stated in Section 2.2.2. Therefore, ε is a

bound on the probability of having any false classification. Other functions f , for

example based on other spending sequences, can obviously be used as long as they

satisfy Conditions 2.5 and 2.7.

Lemma A.1. The confidence intervals computed by the function f satisfy Conditions

2.5 and 2.7.

Proof. First, we consider an individual Clopper and Pearson (1934) confidence inter-

val Ini computed in Algorithm 2.1 using f as defined in Section A.1. To ease notation,

we drop the indices i and n.

We show that |I| ≤ 2ξ, where ξ =
√
−1
2k

log ρ and ρ = (ηk − ηk−∆)/(2m). The

following probabilities are conditional on S and k.

Suppose S < k. Then the upper limit pu of the interval I is the solution to

P(N ≤ S|p = pu) = ρ, where N ∼ Binomial(k, p). If p > S/k+ξ then, by Hoeffding’s

147

Appendix of Chapter 2

inequality (Hoeffding, 1963),

P(N ≤ S) = P
(
N

k
− E

(
N

k

)
≤ S

k
− E

(
N

k

))
≤ exp

(
−2(S/k − p)2k2

k

)
< ρ.

Thus pu ≤ S/k + ξ. If S = k then pu = 1, implying pu ≤ S/k + ξ.

Similarly, it can be shown that the lower limit pl of I satisfies pl ≥ S/k−ξ. Hence,

|I| = pu − pl ≤ 2ξ.

Now consider |f(·, k, ·)| for k → ∞, see Condition 2.5. The function f(S, k,∆)

given in Section A.1 computes Clopper and Pearson (1934) confidence intervals with

coverage probability 1 − (ηk − ηk−∆)/m, where ηk := k
k+r

ε for a constant r > 0.

The sequence ηk satisfies ηk − ηk−∆ ∼ k−2, implying log(ηk − ηk−∆) = o(k). As

|Ini | ≤ 2
√

log((ηk − ηk−∆)/(2m))/(−2k), |Ini | → 0 as k →∞. This proves Condition

2.5.

Second, we show that the function f given in Section A.1 computes confidence

intervals in such a way that P(p∗i ∈ Ini ∀i, n) ≥ 1− ε, thus satisfying Condition 2.7.

Let kni denote the value of ki in iteration n, and let ∆n denote the value of ∆

in iteration n, where k0
i = k1

i − ∆1 = 0, i ∈ {1, . . . ,m}. The function f defined in

Section A.1 computes Clopper and Pearson (1934) confidence intervals Ini such that

P(p∗i /∈ Ini) ≤ (ηkni − ηkni −∆n)/m.

This then yields

P(∃i, n : p∗i /∈ Ini) ≤
m∑
i=1

∞∑
n=1

P(p∗i /∈ Ini) ≤
m∑
i=1

∞∑
n=1

(ηkni − ηkni −∆n)/m =
1

m

m∑
i=1

ε = ε,

using properties of ηk = k
k+r

ε, where r > 0 is constant. Condition 2.7 is thus satisfied.

148

Appendix of Chapter 2

A.2 The SAM statistic

In Section 2.4 we analyse a yeast chemostat cultivation dataset of Knijnenburg et al.

(2009). This dataset consists of 170 microarrays of yeast cultivations. The first 80

microarrays correspond to yeast which was grown aerobically, the second 90 microar-

rays correspond to yeast which was grown anaerobically. Every microarray reacts to

9335 genes, thus giving rise to a multiple hypothesis problem with 9335 hypotheses.

We want to detect the differential expression of genes between the two types of

yeast using a permutation test for each gene.

We use the test statistic SAM (Significance Analysis of Microarrays) of Tusher

et al. (2001) as the basis for the permutation test. The SAM statistic works as follows:

Let a permutation of the data be given which divides the expression data x(i) of a

single gene into two groups I of size l1 = 80 and U of size l2 = 90. Then, the relative

difference d(i) in expression for gene i is given by

d(i) =
xI(i)− xU(i)

s(i) + s0

,

where xI(i) is the average in gene expression for gene i in group I and xU(i) is the

average in gene expression for gene i in group U . The so-called gene-specific scatter

s(i) is defined as

s(i) =

√√√√a

(∑
m

(xm(i)− xI(i))2 +
∑
n

(xn(i)− xU(i))2

)
,

where
∑

m denotes the sum over all expressions in group I and
∑

n denotes the sum

over all expressions in group U . The constant a is defined as a = (1/l1 + 1/l2)/(l1 +

149

Appendix of Chapter 2

l2 − 2), where l1 and l2 are the group sizes of group I and U , respectively.

As suggested in Tusher et al. (2001), a constant s0 is added to the denominator

of d(i). The rationale for this is as follows: SAM compares values of d(i) across genes

having expressions with different means and variances. Especially for low expression

levels, the authors note in Tusher et al. (2001) that the variance in d(i) can be high.

To resolve this problem, the normalising constant s0 is added to the denominator of

the SAM statistic. The value of s0 is determined by fitting the statistic to the data

in its initial partioning into two classes I and U : s0 is chosen in such a way as to

minimise the coefficient of variation of d(i) across all genes and is then kept fixed

for all permutations. We used the R package samr to fit s0 to the yeast cultivation

dataset of Knijnenburg et al. (2009).

A.3 The permutation test p-value

As it is usually the case in practice, listing all
(
l
l1

)
= l!/(l1!(l− l1)!) permutations of an

observation of length l (divided into two groups of sizes l1 and l2 = l− l1) is infeasible.

This is also the case for the dataset of Knijnenburg et al. (2009) consisting of l = 170

microarrays. The permutation test p-value is thus estimated using a number λ ≤
(
l
l1

)
of samples.

For each gene i, let the λ permutations of its expression data be denoted by

d(i)∗j for j ∈ {1, . . . , λ}. We approximate the permutation test p-value as done in

Knijnenburg et al. (2009) by comparing the permutation values |d(i)∗j | for all the

permutations j ∈ {1, . . . , λ} directly to the value of |d(i)| for the reference statistic.

As proposed in Davison and Hinkley (1997), a pseudocount is usually added in both

150

Appendix of Chapter 2

rank

p
−

v
a

lu
e

0 2000 4000 6000 8000 9335

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure A.1: Fixed p-values for the Knijnenburg et al. (2009) dataset.

the numerator and denominator. The permutation test p-value we compute is thus

p̂perm(i) =

∑λ
j=1 I(|d(i)∗j | ≥ |d(i)|) + 1

λ+ 1
,

where I denotes the indicator function.

The permutation p-value we compute is obtained through sampling with replace-

ment. For permutation p-values without replacement see Phipson and Smyth (2010).

A.4 The dataset

In order to be able to speed up the computation of the simulation studies and in

order to have an underlying “truth” for the real data study, we estimated each of

the m = 9335 p-values for the Knijnenburg et al. (2009) dataset once by generating

106 permutations per hypothesis as outlined in Section A.2 and Section A.3. Such

151

Appendix of Chapter 2

Table A.1: Comparison of the naive method to MMCTest for a high proportion of true
null hypotheses

naive method MMCTest
guaranteed classification forced classification

s mis rc N unclassified hypotheses mis rc
100 368 0∗ 5e+05 860 99 220

1000 30 94 5e+06 225 8 23
10000 7 23 5e+07 6 0.1 1

s: number of samples used by the naive method for each hypothesis; mis : aver-
age number of misclassifications; rc: number of randomly classified hypotheses; N :
average total number of samples.

a large number of permutations is far more than what would commonly be used in

practice. We then define these approximated p-values to be the p-values p∗1, . . . , p
∗
m

we are interested in, although they do not necessarily have to be equal to the p-values

underlying each hypothesis. A plot of the fixed p-values is given in Figure A.1.

As done in the main chapter, we draw Bernoulli samples with success probabilities

p∗1, . . . , p
∗
m in order to obtain new samples instead of generating actual permutations.

The classification obtained by applying the Benjamini-Hochberg procedure directly

to the p-values p∗1, . . . , p
∗
m is used to compute misclassifications.

A.5 Comparison of MMCTest to the naive method and to MCFDR

on a dataset with a high proportion of hypotheses from

the null

We conducted another comparison of MMCTest to the naive method and to MCFDR

using a different distribution. The p-value distribution of Knijnenburg et al. (2009)

used in Chapter 2 has a low proportion of true null hypotheses, whereas the one used

in this section has a large proportion of true null hypotheses.

152

Appendix of Chapter 2

rank

p
−

v
a

lu
e

0 2000 4000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure A.2: Model of a realistic distribution with a proportion π0 = 0.9 of true null
hypotheses.

We used the setup introduced in Sandve et al. (2011) to model p-value distri-

butions for gene expression data for a given proportion π0 of true null hypotheses.

Sandve et al. (2011) generate m p-values from a mixture distribution consisting of a

proportion π0 of p-values drawn from a Uniform[0, 1] distribution and a proportion

1− π0 of p-values drawn from a Beta(0.25, 25) distribution.

In this section, we analyse a simulated dataset generated from the mixture distri-

bution described beforehand with m = 5000 hypotheses and a proportion π0 = 0.9 of

hypotheses from the null. A plot of this distribution is given in Figure A.2.

The setup of Sandve et al. (2011) allows to generate p-value distributions which

qualitatively resemble the ones occurring in real data studies (compare Figure A.2

showing the p-values we use in this section to Figure A.1) while allowing to select the

number of hypotheses from the null.

Apart from the new dataset, the setup we use in this section is the same as the

153

Appendix of Chapter 2

one used in the simulation studies of Chapter 2. All the studies presented in this

section are based on 1000 repetitions.

Table A.1 confirms the overall picture already seen in Section 2.4.3. The classi-

fications of the naive method generally contain a large number of misclassifications

and randomly classified hypotheses. On a realistic dataset, 23 random classifications

occur on average (out of m = 5000 hypotheses), even at a high precision of s = 10000

samples.

No randomly classified hypotheses occur in the value annotated with a star in

Table A.1 because of the following. When using a pseudocount as proposed in Davison

and Hinkley (1997) (see Section A.3), the low resolution of only s = 100 replicates

per p-value estimate causes all hypotheses to be consistently non-rejected in all the

runs, independently of the actual p-value estimates. Thus, no randomly classified

hypotheses occur. This phenomenon is identical to the one already observed in Section

4.2.2.

MMCTest was run on the same p-values using at most the overall number of samples

spent by the naive method. MMCTest is not capable of classifying many hypotheses

with confidence when only using s = 100 samples per hypotheses (i.e. a total number

of 5 · 105 samples): around 860 unclassified hypotheses remain on average after each

run. However, at a high precision (s = 10000 samples per hypothesis), MMCTest is

able to classify all hypotheses with confidence except for a number of hypotheses

which is smaller than the number of misclassifications incurred by the naive method.

As stressed in Chapter 2, all the classifications of MMCTest except for the unclas-

sified hypotheses are correct up to the pre-specified error probability while the naive

method does not give any guarantee on its result.

154

Appendix of Chapter 2

Table A.2: Comparison of MCFDR to MMCTest for a high proportion of true null hy-
potheses

MCFDR MMCTest
guaranteed classification forced classification

u mis rc N unclassified hypotheses mis rc
10 24 81 1.1 · 106 605 28 91
20 16 55 1.8 · 106 537 19 65
50 9 32 4.1 · 106 300 9 31

100 6 18 8.1 · 106 118 4 12
200 4 12 16.1 · 106 40 1.4 6
500 2.2 6 40.2 · 106 7 0.3 1

1000 1.4 6 80.3 · 106 3 0.03 1
u: number of test statistics exceeding the reference statistic (tuning parameter of
MCFDR); mis : average number of misclassifications; rc: number of randomly classified
hypotheses; N : average total number of samples.

The forced classification method of MMCTest based on point estimates yields con-

siderably less misclassifications and random classifications than the naive method,

especially at a high precision.

The comparison to the MCFDR algorithm of Sandve et al. (2011) in Table A.2

confirms these results. MCFDR yields less misclassifications and randomly classified

hypotheses as the precision increases, but still incurs around 6 randomly classified

hypotheses (on average) at a high precision.

As noted before, MMCTest yields a large number of unclassified hypotheses at a low

precision. At a high precision, using the same number of samples as MCFDR, MMCTest

classifies all hypotheses except for 3 (out of m = 5000 hypotheses). This almost

equals the number of misclassifications of MCFDR, for which no guarantee is given, and

it is less than the number of random classifications of MCFDR at a high precision.

The forced classification method of MMCTest quickly overtakes MCFDR in terms of

misclassifications and randomly classified hypotheses as the precision increases. As

155

Appendix of Chapter 2

already seen in Table A.1 for the naive method, MMCTest computes classifications at

a high precision which are virtually free of misclassifications and only contain one

random classification on average.

156

157

B Appendix of Chapter 3

B.1 Proofs

For simplicity of notation, the dependence of the multiple testing procedure h(p, α)

on the threshold α is sometimes omitted.

The following two lemmas will be needed for the proof of Lemma 3.12. First,

Lemma B.1 proves three properties of step-up and step-down procedures which are

slightly stronger than the requirements stated in Condition 3.5. For a vector p =

(p1, . . . , pm), we denote the rank of pi in the sorted sequence p(1) ≤ . . . ≤ p(m) by rp(i).

Lemma B.1 generalises Lemma 2.9 for arbitrary step-up and step-down procedures.

Lemma B.1. Let p, q ∈ [0, 1]m. Let hu (hd) be a step-up (step-down) procedure

defined through a threshold function τα satisfying Condition 3.11.

1. hu is monotonic.

2. If qi ≤ τα(|hu(p)|) ∀i ∈ hu(p) and qi = pi ∀i /∈ hu(p), then hu(p) = hu(q).

3. If qi = pi ∀i ∈ hu(p) and qi > τα(rp(i)) ∀i /∈ hu(p), then hu(p) = hu(q).

4. hd is monotonic.

5. If qi ≤ τα(rp(i)) ∀i ∈ hd(p) and qi = pi ∀i /∈ hd(p), then hd(p) = hd(q).

Appendix of Chapter 3

6. If qi = pi ∀i ∈ hd(p) and qi > τα(|hd(p)|+ 1) ∀i /∈ hd(p), then hd(p) = hd(q).

Proof. As hu and hd are invariant to permutations, we may assume p1 ≤ · · · ≤ pm.

1. Let p ∈ [0, 1]m and i ∈ {1, . . . ,m}. It suffices to show that hu(p) ⊇ hu(q) for

any q ∈ [0, 1]m given by qj = pj ∀j 6= i and qi > pi.

Let k := |hu(p)| be the largest rejected index. We need to show that j /∈ hu(q)

∀j ≥ k + 1. Let α be fixed.

Case 1: rq(i) ≤ k. This implies rq(j) = j ∀j ≥ k + 1 and hence qj = pj > τα(j) =

τα(rq(j)). Therefore, j /∈ hu(q) ∀j ≥ k + 1.

Case 2: rq(i) ≥ k + 1. Let j ≥ k + 1, j 6= i. Then the rank of the jth p-

value can only drop by one when pi is replaced by qi, i.e. rq(j) ∈ {j − 1, j}. Thus

qj = pj > τα(j) ≥ τα(rq(j)) on Condition 3.11 (using that τα(i) is non-decreasing in

i). Furthermore, as rq(i) ≥ k + 1, qi takes the position of the former prq(i) in the

ordered sequence of values from q, i.e. qi ≥ prq(i). Hence, rq(i) /∈ hu(p) because of

rq(i) ≥ k+ 1 and thus qi ≥ prq(i) > τα(rq(i)). Therefore, {k+ 1, . . . ,m}∪{i} /∈ hu(q).

This proves the monotonicity in the first argument of hu.

The monotonicity in the second argument of h is immediate as pi ≤ maxj{p(j) :

p(j) ≤ τα(j)} for all i ∈ hu(p, α). On Condition 3.11, using that τα is non-decreasing

in α, α ≤ α′ implies τα(j) ≤ τα′(j) ∀j, hence i ∈ hu(p, α′). This proves 1.

2. All i /∈ hu(p) satisfy pi > τα(rp(i)) > τα(|hu(p)|) whereas by assumption,

qi ≤ τα(|hu(p)|) ∀i ∈ hu(p). Hence, using qi = pi ∀i /∈ hu(p), it follows that rq(i) =

rp(i) ∀i /∈ hu(p). Thus, qi = pi > τα(rp(i)) = τα(rq(i)) for all i /∈ hu(p). Hence

hu(p)
c ⊆ hu(q)

c.

Conversely, define q̃ := max{qi : i ∈ hu(p)}. As q̃ ≤ τα(|hu(p)|) < qi for all

i /∈ hu(p) and as there are precisely |hu(p)| values qi ≤ q̃, the rank of q̃ in q is

158

Appendix of Chapter 3

precisely |hu(p)|. As qi ≤ q̃ ≤ τα(|hu(p)|) ∀i ∈ hu(p), all {qi}i∈hu(p) are rejected, so

hu(p) ⊆ hu(q). This proves 2.

3. As qi = pi for all i ∈ hu(p), we have hu(p) ⊆ hu(q).

Let i /∈ hu(p). If rq(i) ≤ rp(i), then qi > τα(rp(i)) ≥ τα(rq(i)) by Condition 3.11.

If rq(i) > rp(i), qi replaces a qj > τα(rp(j)) at rank rp(j) in the sorted sequence

of q, hence rq(i) = rp(j) and qi ≥ qj > τα(rp(j)) = τα(rq(i)). Thus qi > τα(rq(i))

∀i /∈ hu(p), which implies hu(p)
c ⊆ hu(q)

c. This proves 3.

In a similar fashion, 4., 5. and 6. can be proven for step-down procedures hd.

For step-up procedures hu, part 2. of Lemma B.1 shows that p-values of rejected

hypotheses can be increased up to τα(|hu(p)|), the threshold evaluated at the last

rejected hypothesis, without affecting the result of hu. Part 3. of Lemma B.1 shows

that hu is invariant if p-values in the non-rejection area are replaced by arbitrary

values above the threshold (at their ranks).

Similarly, step-down procedures hd are invariant if p-values of rejected hypotheses

are replaced by arbitrary values below the threshold (part 5.) or p-values of non-

rejected hypotheses are replaced by arbitrary values above τα(|hd(p)|+1), the thresh-

old evaluated at the first non-rejected hypothesis (part 6.).

The following Lemma B.2 will also be needed for the proof of Lemma 3.12. In the

following, ‖τα‖∞ shall denote the maximal value attained by τα : {1, . . . ,m} → [0, 1]

on {1, . . . ,m}.

Lemma B.2 generalises Lemma 2.11 proven for the Benjamini and Hochberg (1995)

procedure: it provides the same statement, though now for the threshold function of

an arbitrary step-up and step-down procedure and it does not require the testing

threshold to be constant any more.

159

Appendix of Chapter 3

Lemma B.2. Let h stand for hu or hd. If p∗ ∈ [0, 1]m, α∗ > 0 with p∗(i) 6= τα∗(i)

∀i ∈ {1, . . . ,m}, then there exists δ > 0 such that p ∈ [0, 1]m, τα : {1, . . . ,m} → [0, 1]

and ‖p∗ − p‖ ∨ ‖τα∗ − τα‖∞ < δ ∀i ∈ {1, . . . ,m} imply h(p, α) = h(p∗, α∗).

Proof. Let

δ′ = min

({
p∗i − p∗i−1

2
: p∗i−1 < p∗i

}
i=1,...,m

∪ {|p∗i − τα∗(i)|}i=1,...,m

)

and let δ = δ′/2.

By assumption, ‖p − p∗‖ < δ < δ′, hence pi−1 < p∗i−1 + δ′ ≤ p∗i − δ′ < pi. This

means that p∗i and pi have the same ranks in p∗ and p, respectively.

Moreover, |p∗i −τα∗(i)| ≤ |p∗i −τα(i)|+ |τα(i)−τα∗(i)| ≤ |p∗i −τα(i)|+‖τα−τα∗‖∞ ≤

|p∗i − τα(i)| + δ. Hence 2δ = δ′ ≤ |p∗i − τα∗(i)| ≤ |p∗i − τα(i)| + δ, meaning that

δ ≤ |p∗i − τα(i)| for i ∈ {1, . . . ,m}.

So |p∗i − pi| < δ ≤ |p∗i − τα(i)|, hence pi and p∗i lie on the same side of the testing

threshold.

Proof of Lemma 3.12. 1. The monotonicity of hu and hd follows from Lemma B.1

(part 1.) and (part 4.), respectively.

2. To prove that hu satisfies the first part of Condition 3.5, it suffices to show that

for p, q ∈ [0, 1]m, both qi ≤ pi ∀i ∈ hu(p) and qi = pi ∀i /∈ hu(p) as well as qi = pi

∀i ∈ hu(p) and qi ≥ pi ∀i /∈ hu(p) imply hu(p) = hu(q).

Indeed, let p, q ∈ [0, 1]m be such that qi ≤ pi ∀i ∈ hu(p) and qi = pi ∀i /∈ hu(p).

We have pi ≤ τα(|hu(p)|) ∀i ∈ hu(p), thus qi ≤ pi ≤ τα(|hu(p)|) ∀i ∈ hu(p) and

hu(p) = hu(q) by Lemma B.1 (part 2.).

Similarly, let p, q ∈ [0, 1]m be such that qi = pi ∀i ∈ hu(p) and qi ≥ pi ∀i /∈ hu(p).

160

Appendix of Chapter 3

Using pi > τα(rp(i)) ∀i /∈ hu(p), it instantly follows that qi ≥ pi > τα(rp(i)) ∀i /∈ hu(p)

and thus hu(p) = hu(q) by Lemma B.1 (part 3.).

To prove that hd satisfies the first part of Condition 3.5, it equally suffices to show

that for p, q ∈ [0, 1]m, both qi ≤ pi ∀i ∈ hd(p) and qi = pi ∀i /∈ hd(p) as well as qi = pi

∀i ∈ hd(p) and qi ≥ pi ∀i /∈ hd(p) imply hd(p) = hd(q).

Indeed, let p, q ∈ [0, 1]m be such that qi ≤ pi ∀i ∈ hd(p) and qi = pi ∀i /∈ hd(p).

Using pi ≤ τα(rp(i)) ∀i ∈ hd(p), it immediately follows that qi ≤ pi ≤ τα(rp(i))

∀i ∈ hd(p) and thus hd(p) = hd(q) by Lemma B.1 (part 5.).

Similarly, let p, q ∈ [0, 1]m be such that qi = pi ∀i ∈ hd(p) and qi ≥ pi ∀i /∈ hd(p).

We have pi > τα(|hd(p)|+ 1) ∀i /∈ hd(p), thus qi ≥ pi > τα(|hd(p)|+ 1) ∀i /∈ hd(p) and

hd(p) = hd(q) by Lemma B.1 (part 6.).

3. As τα(i) is continuous in α ∀i ∈ {1, . . . ,m} by Condition 3.11, for each εi > 0

there exists a δi > 0 such that |α∗ − α| < δi implies |τα∗(i) − τα(i)| < εi. Applying

continuity to εi = δ yields a δi for each i ∈ {1, . . . ,m}, where δ > 0 is given by Lemma

B.2. The second part of Condition 3.5 then follows for all p ∈ [0, 1]m and α ∈ [0, 1]

satisfying ‖p− p∗‖ ∨ |α− α∗| < min{δ, δ1, . . . , δm}.

B.2 The Hommel procedure is not admissible

The Hommel (1988) procedure determines the largest index k satisfying p(m−k+j) >

jα/k for all j = 1, . . . , k and then rejects all the H0i with pi ≤ α/k. If no such k

exists, all hypotheses are rejected.

The Hommel (1988) procedure h(p, α) is not a classical step-up or step-down

procedure. Given p, determining the index k corresponds to applying m step-up

procedures hj, j ∈ {1, . . . ,m}, to Pj = (p(m−j+1), . . . , p(m)) using the threshold func-

161

Appendix of Chapter 3

tions τj(i) = iα/j, i ∈ {1, . . . , j} (these step-up procedures are admissible). Once

kp = max{j : hj(Pj) = ∅} is determined, rejections are calculated by applying the

Bonferroni (1936) correction (defined in Section 3.4.2) at threshold α/kp to all p-values

p, i.e. h(p, α) = hBonferroni(p,mα/kp).

The Hommel (1988) procedure is monotonic (proven below in Section B.2.1 for

completeness) but fails to satisfy Condition 3.5.

Indeed, for qi ≥ pi ∀i /∈ h(p, α), the first part of Condition 3.5 is not satisfied.

Consider p = [α/3+ε, α/2+ε, 1], where 0 < α < 1 and 0 < ε ≤ α/6. Then h1(P1) = ∅,

h2(P2) = ∅, h3(P3) = {1, 2}, so kp = 2. Therefore, h(p, α) = {1}. Increasing p2 to

p2 = 2α/3 + ε yields h1(P1) = h2(P2) = h3(P3) = ∅, hence kp = 3 and h(p, α) = ∅.

B.2.1 The Hommel procedure is monotonic

For p = (p1, . . . , pm) and j ∈ {1, . . . ,m}, let Pj = (p(m−j+1), . . . , p(m)) as before and

likewise define Qj = (q(m−j+1), . . . , q(m)) for q = (q1, . . . , qm).

The Hommel (1988) procedure is monotonic in the first argument. Indeed, for

p ≤ q, Pj ⊆ Qj ∀j and thus hj(Pj) ⊇ hj(Qj) by monotonicity of hj (using that all

hj are admissible). Therefore, hj(Pj) = ∅ implies hj(Qj) = ∅, meaning that kp ≤ kq.

Using the monotonicity of the Bonferroni (1936) correction, α/kp ≥ α/kq implies

h(p, α) ⊇ h(q, α).

The monotonicity of h(p, α) in the second argument follows directly from the

monotonicity of the Bonferroni (1936) correction.

162

163

C Appendix of Chapter 4

C.1 Zero rejected hypotheses occur at low effort

The naive method draws a constant number of samples per hypothesis and computes

p-value estimates p̂i = (ei + 1)/(s + 1) as proposed in Davison and Hinkley (1997),

where ei denotes the number of exceedances observed for hypothesis H0i among s

samples.

Assuming full knowledge of all p-values, let τ0 be the proportion of non-rejected

hypotheses observed when applying the multiple testing procedure to the p-values.

In order to observe the correct number of rejections with approximated p-values, the

(1 − τ0)mth ordered p-value estimate has to be the last one lying below the critical

value at its rank in the sorted sequence of estimates.

For the Hochberg (1988) procedure applied at α∗ = 0.1, a constant number of 87

misclassifications were observed for the naive method at both low and high effort in

Table 4.1 of Section 4.3.1. Indeed, applying the Hochberg (1988) procedure to the

fixed p-values leads to 87 rejections and 4913 non-rejections, thus τ0 = 4913/5000 =

0.9826. The critical value of the Hochberg (1988) procedure at the 87th p-value is

approximately 2 · 10−5.

Appendix of Chapter 4

Estimated p-values with a pseudo-count are bounded from below by L = 1/(s+1),

where s is the number of samples. Even for s = 10000 (high effort), L > 2 · 10−5 and

thus all p-value estimates lie above the (correct) rejection area. Although theoretically

it would be possible that another (possibly underestimated) p-value lies below a

critical value again at a higher rank (as most critical values are non-decreasing), this

rarely happens as hypotheses having higher ranked p-values are typically non-rejected,

hence their p-values (and estimates) are expected to be (much) larger than their

corresponding critical values. Thus in most cases, the fact that L > 2 · 10−5 actually

leads to all hypotheses being consistently non-rejected in each run, independently

of the actual number of exceedances observed. It is hence impossible to record any

rejection.

This phenomenon disappears in three cases. First, using more samples s to es-

timate each p-value will decrease the lower bound L. Alternatively, datasets with

less hypotheses from the null and thus lower τ0 lead to a higher threshold at the

(1− τ0)mth p-value. Third, estimating p-values without a pseudo-count leads to esti-

mates which attain a value of zero and hence allow one to observe rejections for any

number of samples s, though using such estimates does not guarantee appropriate

error control (Section 4.2.1).

C.2 Simulation study at a variable testing threshold

The simulation study comparing the naive approach to QuickMMCTest (Section 4.3.1)

was also carried out at a variable testing threshold. Apart from the testing threshold,

the set-up we used, in particular the fixed p-value distribution, is identical to the one

of Section 4.3.1.

164

Appendix of Chapter 4

Table C.1: Common multiple testing procedures at the variable testing threshold
of Pounds and Cheng (2006) – Average misclassification numbers (average numbers
of erroneously rejected hypotheses in brackets) for the naive method at a low effort
(s = 1000) and a high effort (s = 10000) compared to QuickMMCTest (Alg. 4.1).

low effort (s=1000) high effort (s=10000)
procedure naive Alg. 4.1 naive Alg. 4.1

Bonferroni (1936) 90 (0) 40.4 (2.5) 90 (0) 3.5 (1.4)
Simes (1986) 30.7 (10.1) 1.9 (0.9) 8.9 (4.4) 0 (0)

Hochberg (1988) 90 (0) 39.9 (2.5) 90 (0) 3.5 (1.6)
Benjamini and Hochberg (1995) 30.4 (9.9) 1.9 (0.8) 9.1 (4.5) 0 (0)
Benjamini and Yekutieli (2001) 168 (0) 14 (3.8) 22.5 (7) 1.7 (1.2)

Sidak (1967) 94 (0) 31 (2.4) 94 (0) 3.1 (0.5)
Holm (1979) 91 (0) 33.3 (3) 91 (0) 3.4 (1.6)

We corrected the threshold using the estimate π̂0(p) = min (1, 2/m
∑m

i=1 pi) of

the proportion π0 of true null hypotheses of Pounds and Cheng (2006), employed in

various real data studies (Han and Dalal, 2012; Lu et al., 2011; Jupiter et al., 2010;

Cheng, 2009). The corrected testing threshold is given by α(p∗) = α∗/π̂0(p∗), where

α∗ = 0.1 is an uncorrected threshold.

To apply the naive method to a variable testing threshold, one simply computes

usual p-value estimates p̂ with a pseudo-count and classifies all hypotheses using these

estimates at the plug-in threshold α(p̂).

Simulation results are given in Table C.1. These agree with the ones presented in

Section 4.3.1. As shown in the table, the naive method either observes no rejections

or performs poorly at a low effort when being applied to common multiple testing

procedures. As observed in Section 4.3.1, Algorithm 4.1 is able to compute meaningful

results for all procedures at a low effort, nevertheless its results contain up to 40

misclassifications. Its test results are again especially accurate for the procedures of

165

Appendix of Chapter 4

Table C.2: Average misclassification numbers (average numbers of erroneously re-
jected hypotheses in brackets) for common methods compared to QuickMMCTest for
the Bonferroni (1936) correction. Threshold of Pounds and Cheng (2006) at α∗ = 0.1.

low effort high effort
(K = 1000m) (K = 10000m)

Naive method 90 (0) 90 (0)
Besag and Clifford (1991) 90 (0) 5.8 (1.5)
Guo and Peddada (2008) 90 (0) 6.1 (1.1)

Sandve et al. (2011) 90 (0) 20.1 (1.3)
Jiang and Salzman (2012) 90 (0) 17.4 (2.7)

Gandy and H. (2014) 90 (0) 8.8 (1.1)
QuickMMCTest 40.2 (2.3) 3.6 (1.4)

K: total number of samples; m: number of hypotheses.

Simes (1986) and Benjamini and Hochberg (1995), and generally only contain few

erroneously rejected hypotheses.

Similarly to Section 4.3.1, the naive method still fails to record any rejections for

some procedures at a high effort. Algorithm 4.1 yields a multiple fold decrease in

misclassifications compared to the naive method and only few erroneously rejected

hypotheses.

C.3 Common methods at a variable testing threshold

We use the p-values fixed in Section 4.3 and evaluate all algorithms considered in

Section 4.3.2 using the Bonferroni (1936) procedure at the variable testing threshold

of Pounds and Cheng (2006) with an uncorrected threshold of α∗ = 0.1 (same testing

setting as in Section C.2).

The comparison of commonly used methods to QuickMMCTest (Algorithm 4.1)

in Table C.2 confirms the picture already observed at a constant threshold (Section

166

Appendix of Chapter 4

Table C.3: Average misclassification numbers (average numbers of erroneously re-
jected hypotheses in brackets) for common methods compared to QuickMMCTest us-
ing the Benjamini and Hochberg (1995) procedure. Testing threshold of Pounds and
Cheng (2006) at α∗ = 0.1.

low effort high effort
(K = 1000m) (K = 10000m)

Naive method 32.1 (9.6) 9 (3.4)
Besag and Clifford (1991) 18.4 (7.5) 18.8 (7.5)
Guo and Peddada (2008) 4.4 (2) 0.2 (0.2)

Sandve et al. (2011) 10.5 (4.2) 2.7 (1.3)
Jiang and Salzman (2012) 13.7 (5.1) 3.6 (1.6)

Gandy and H. (2014) 9.8 (3.9) 0.6 (0.5)
QuickMMCTest 2.4 (1.2) 0.2 (0.1)

K: total number of samples; m: number of hypotheses.

4.3.2): due to the low threshold, all methods except for Algorithm 4.1 fail to compute

meaningful test results at a low effort.

At a high effort, the naive method is again unable to observe any rejections,

whereas most other methods yield test results with reasonable accuracy. The methods

of Besag and Clifford (1991) and Guo and Peddada (2008) perform especially well

and are only outperformed by QuickMMCTest.

When using the Benjamini and Hochberg (1995) procedure, the picture observed

in Table C.3 again resembles the one observed in Section 4.3.2: For the Benjamini and

Hochberg (1995) procedure, all methods are able to observe rejections and thus to

compute meaningful test results for both a low and a high effort. As in Section 4.3.2,

the method of Guo and Peddada (2008) and QuickMMCTest perform comparably well

and considerably better than the other methods. The precise numbers in Table C.3

are almost the same as the ones in Table 4.3 of Section 4.3.2.

167

168

D Permissions to re-use own work

Permission for the article “MMCTest – A Safe Algorithm for Implementing Multiple

Monte Carlo Tests” published in Gandy and H. (2014):

Title: MMCTest—A Safe Algorithm for
Implementing Multiple Monte Carlo
Tests

Author: Axel Gandy,Georg Hahn

Publication: Scandinavian Journal of Statistics

Publisher: John Wiley and Sons

Date: Apr 1, 2014
© 2014 Board of the Foundation of the Scandinavian
Journal of Statistics.

 Logged in as:

 Georg Hahn

 Account #:
 3000878555

Review Order

Please review the order details and the associated terms and conditions.

No royalties will be charged for this reuse request although you are required to obtain a license and comply with the
license terms and conditions. To obtain the license, click the Accept button below.

Licensed Content
Publisher

John Wiley and Sons

Licensed Content
Publication

Scandinavian Journal of Statistics

Licensed Content Title MMCTest—A Safe Algorithm for Implementing Multiple Monte Carlo Tests

Licensed Content Author Axel Gandy,Georg Hahn

Licensed Content Date Apr 1, 2014

Licensed Content Pages 19

Type of use Dissertation/Thesis

Requestor type Author of this Wiley article

Format Print and electronic

Portion Full article

Will you be translating? No

Title of your thesis /
dissertation

Statistical Methods for Monte-Carlo based Multiple Hypothesis Testing

Expected completion
date

Mar 2015

Expected size (number
of pages)

160

Requestor Location Georg Hahn
Huxley Building, 180 Queens Gate
Imperial College London
South Kensington Campus
London, United Kingdom SW7 2AZ
Attn: Georg Hahn

Total 0.00 GBP

Edit Order Details

Edit Requestor Location This location may be used to determine your tax liability

 I agree to these terms and conditions.

 I understand this license is for reuse only and that no content is provided.

Customer Code (if supplied) APPLYAPPLY

BACKBACK DECLINEDECLINE ACCEPT ORDERACCEPT ORDER

Copyright © 2015 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement.
Comments? We would like to hear from you. E-mail us at customercare@copyright.com

JOHN WILEY AND SONS LICENSE
TERMS AND CONDITIONS

Feb 05, 2015

This Agreement between Georg Hahn ("You") and John Wiley and Sons
("John Wiley and Sons") consists of your license details and the terms and
conditions provided by John Wiley and Sons and Copyright Clearance
Center.

License Number 3562420498476

License date Feb 05, 2015

Licensed Content Publisher John Wiley and Sons

Licensed Content Publication Scandinavian Journal of Statistics

Licensed Content Title MMCTest—A Safe Algorithm for Implementing Multiple Monte Carlo Tests

Licensed Content Author Axel Gandy,Georg Hahn

Licensed Content Date Apr 1, 2014

Pages 19

Type of use Dissertation/Thesis

Requestor type Author of this Wiley article

Format Print and electronic

Portion Full article

Will you be translating? No

Title of your thesis / dissertation Statistical Methods for Monte-Carlo based Multiple Hypothesis Testing

Expected completion date Mar 2015

Expected size (number of pages) 160

Requestor Location Georg Hahn
Huxley Building, 180 Queens Gate
Imperial College London
South Kensington Campus
London, United Kingdom SW7 2AZ
Attn: Georg Hahn

Billing Type Invoice

Billing Address Georg Hahn
Huxley Building, 180 Queens Gate
Imperial College London
South Kensington Campus
London, United Kingdom SW7 2AZ
Attn: Georg Hahn

Total 0.00 GBP

Terms and Conditions

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John
Wiley & Sons, Inc. or one of its group companies (each a"Wiley
Company") or handled on behalf of a society with which a Wiley Company
has exclusive publishing rights in relation to a particular work (collectively

"WILEY"). By clicking �accept� in connection with completing this
licensing transaction, you agree that the following terms and conditions
apply to this transaction (along with the billing and payment terms and
conditions established by the Copyright Clearance Center Inc., ("CCC's
Billing and Payment terms and conditions"), at the time that you opened
your Rightslink account (these are available at any time at
http://myaccount.copyright.com).

Terms and Conditions

The materials you have requested permission to reproduce or reuse
(the "Wiley Materials") are protected by copyright.

You are hereby granted a personal, non-exclusive, non-sub
licensable (on a stand-alone basis), non-transferable, worldwide,
limited license to reproduce the Wiley Materials for the purpose
specified in the licensing process. This license is for a one-time use
only and limited to any maximum distribution number specified in
the license. The first instance of republication or reuse granted by
this licence must be completed within two years of the date of the
grant of this licence (although copies prepared before the end date
may be distributed thereafter). The Wiley Materials shall not be used
in any other manner or for any other purpose, beyond what is
granted in the license. Permission is granted subject to an
appropriate acknowledgement given to the author, title of the
material/book/journal and the publisher. You shall also duplicate the
copyright notice that appears in the Wiley publication in your use of
the Wiley Material. Permission is also granted on the understanding
that nowhere in the text is a previously published source
acknowledged for all or part of this Wiley Material. Any third party
content is expressly excluded from this permission.

With respect to the Wiley Materials, all rights are reserved. Except as
expressly granted by the terms of the license, no part of the Wiley
Materials may be copied, modified, adapted (except for minor
reformatting required by the new Publication), translated,
reproduced, transferred or distributed, in any form or by any means,
and no derivative works may be made based on the Wiley Materials
without the prior permission of the respective copyright owner. You
may not alter, remove or suppress in any manner any copyright,
trademark or other notices displayed by the Wiley Materials. You
may not license, rent, sell, loan, lease, pledge, offer as security,
transfer or assign the Wiley Materials on a stand-alone basis, or any
of the rights granted to you hereunder to any other person.

The Wiley Materials and all of the intellectual property rights therein
shall at all times remain the exclusive property of John Wiley & Sons
Inc, the Wiley Companies, or their respective licensors, and your
interest therein is only that of having possession of and the right to

reproduce the Wiley Materials pursuant to Section 2 herein during
the continuance of this Agreement. You agree that you own no right,
title or interest in or to the Wiley Materials or any of the intellectual
property rights therein. You shall have no rights hereunder other
than the license as provided for above in Section 2. No right, license
or interest to any trademark, trade name, service mark or other
branding ("Marks") of WILEY or its licensors is granted hereunder,
and you agree that you shall not assert any such right, license or
interest with respect thereto.

NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR
REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY,
EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE
MATERIALS OR THE ACCURACY OF ANY INFORMATION CONTAINED IN
THE MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED
WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY
QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY,
INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES
ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED
BY YOU

WILEY shall have the right to terminate this Agreement immediately
upon breach of this Agreement by you.

You shall indemnify, defend and hold harmless WILEY, its Licensors
and their respective directors, officers, agents and employees, from
and against any actual or threatened claims, demands, causes of
action or proceedings arising from any breach of this Agreement by
you.

IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR
ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY
SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR
PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN
CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING
OR USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION,
WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY,
TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING,
WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA,
FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES),
AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY
NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY
LIMITED REMEDY PROVIDED HEREIN.

Should any provision of this Agreement be held by a court of
competent jurisdiction to be illegal, invalid, or unenforceable, that
provision shall be deemed amended to achieve as nearly as possible
the same economic effect as the original provision, and the legality,
validity and enforceability of the remaining provisions of this

Agreement shall not be affected or impaired thereby.

The failure of either party to enforce any term or condition of this
Agreement shall not constitute a waiver of either party's right to
enforce each and every term and condition of this Agreement. No
breach under this agreement shall be deemed waived or excused by
either party unless such waiver or consent is in writing signed by the
party granting such waiver or consent. The waiver by or consent of a
party to a breach of any provision of this Agreement shall not
operate or be construed as a waiver of or consent to any other or
subsequent breach by such other party.

This Agreement may not be assigned (including by operation of law
or otherwise) by you without WILEY's prior written consent.

Any fee required for this permission shall be non-refundable after
thirty (30) days from receipt by the CCC.

These terms and conditions together with CCC�s Billing and
Payment terms and conditions (which are incorporated herein) form
the entire agreement between you and WILEY concerning this
licensing transaction and (in the absence of fraud) supersedes all
prior agreements and representations of the parties, oral or written.
This Agreement may not be amended except in writing signed by
both parties. This Agreement shall be binding upon and inure to the
benefit of the parties' successors, legal representatives, and
authorized assigns.

In the event of any conflict between your obligations established by
these terms and conditions and those established by CCC�s Billing
and Payment terms and conditions, these terms and conditions shall
prevail.

WILEY expressly reserves all rights not specifically granted in the
combination of (i) the license details provided by you and accepted
in the course of this licensing transaction, (ii) these terms and
conditions and (iii) CCC�s Billing and Payment terms and conditions.

This Agreement will be void if the Type of Use, Format, Circulation, or
Requestor Type was misrepresented during the licensing process.

This Agreement shall be governed by and construed in accordance
with the laws of the State of New York, USA, without regards to such
state�s conflict of law rules. Any legal action, suit or proceeding
arising out of or relating to these Terms and Conditions or the breach
thereof shall be instituted in a court of competent jurisdiction in New
York County in the State of New York in the United States of America
and each party hereby consents and submits to the personal
jurisdiction of such court, waives any objection to venue in such
court and consents to service of process by registered or certified

mail, return receipt requested, at the last known address of such
party.

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in
Subscription journals offering Online Open. Although most of the fully
Open Access journals publish open access articles under the terms of the
Creative Commons Attribution (CC BY) License only, the subscription
journals and a few of the Open Access Journals offer a choice of Creative
Commons Licenses:: Creative Commons Attribution (CC-BY) license
Creative Commons Attribution Non-Commercial (CC-BY-NC) license and
Creative Commons Attribution Non-Commercial-NoDerivs (CC-BY-NC-ND)
License. The license type is clearly identified on the article.

Copyright in any research article in a journal published as Open Access
under a Creative Commons License is retained by the author(s). Authors
grant Wiley a license to publish the article and identify itself as the
original publisher. Authors also grant any third party the right to use the
article freely as long as its integrity is maintained and its original authors,
citation details and publisher are identified as follows: [Title of
Article/Author/Journal Title and Volume/Issue. Copyright (c) [year]
[copyright owner as specified in the Journal]. Links to the final article on
Wiley�s website are encouraged where applicable.

The Creative Commons Attribution License

The Creative Commons Attribution License (CC-BY) allows users to copy,
distribute and transmit an article, adapt the article and make commercial
use of the article. The CC-BY license permits commercial and
non-commercial re-use of an open access article, as long as the author is
properly attributed.

The Creative Commons Attribution License does not affect the moral
rights of authors, including without limitation the right not to have their
work subjected to derogatory treatment. It also does not affect any other
rights held by authors or third parties in the article, including without
limitation the rights of privacy and publicity. Use of the article must not
assert or imply, whether implicitly or explicitly, any connection with,
endorsement or sponsorship of such use by the author, publisher or any
other party associated with the article.

For any reuse or distribution, users must include the copyright notice and
make clear to others that the article is made available under a Creative
Commons Attribution license, linking to the relevant Creative Commons
web page.

To the fullest extent permitted by applicable law, the article is made
available as is and without representation or warranties of any kind
whether express, implied, statutory or otherwise and including, without

limitation, warranties of title, merchantability, fitness for a particular
purpose, non-infringement, absence of defects, accuracy, or the presence
or absence of errors.

Creative Commons Attribution Non-Commercial License

The Creative Commons Attribution Non-Commercial (CC-BY-NC) License
permits use, distribution and reproduction in any medium, provided the
original work is properly cited and is not used for commercial
purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The Creative Commons Attribution Non-Commercial-NoDerivs License
(CC-BY-NC-ND) permits use, distribution and reproduction in any medium,
provided the original work is properly cited, is not used for commercial
purposes and no modifications or adaptations are made. (see below)

Use by non-commercial users

For non-commercial and non-promotional purposes, individual users may
access, download, copy, display and redistribute to colleagues Wiley
Open Access articles, as well as adapt, translate, text- and data-mine the
content subject to the following conditions:

The authors' moral rights are not compromised. These rights include
the right of "paternity" (also known as "attribution" - the right for the
author to be identified as such) and "integrity" (the right for the
author not to have the work altered in such a way that the author's
reputation or integrity may be impugned).

Where content in the article is identified as belonging to a third
party, it is the obligation of the user to ensure that any reuse
complies with the copyright policies of the owner of that content.

If article content is copied, downloaded or otherwise reused for
non-commercial research and education purposes, a link to the
appropriate bibliographic citation (authors, journal, article title,
volume, issue, page numbers, DOI and the link to the definitive
published version on Wiley Online Library) should be maintained.
Copyright notices and disclaimers must not be deleted.

Any translations, for which a prior translation agreement with Wiley
has not been agreed, must prominently display the statement: "This
is an unofficial translation of an article that appeared in a Wiley
publication. The publisher has not endorsed this translation."

Use by commercial "for-profit" organisations

Use of Wiley Open Access articles for commercial, promotional, or
marketing purposes requires further explicit permission from Wiley and

will be subject to a fee. Commercial purposes include:

Copying or downloading of articles, or linking to such articles for
further redistribution, sale or licensing;

Copying, downloading or posting by a site or service that
incorporates advertising with such content;

The inclusion or incorporation of article content in other works or
services (other than normal quotations with an appropriate citation)
that is then available for sale or licensing, for a fee (for example, a
compilation produced for marketing purposes, inclusion in a sales
pack)

Use of article content (other than normal quotations with appropriate
citation) by for-profit organisations for promotional purposes

Linking to article content in e-mails redistributed for promotional,
marketing or educational purposes;

Use for the purposes of monetary reward by means of sale, resale,
licence, loan, transfer or other form of commercial exploitation such
as marketing products

Print reprints of Wiley Open Access articles can be purchased from:
corporatesales@wiley.com

Further details can be found on Wiley Online Library
http://olabout.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions:

v1.9

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable license for your
reference. No payment is required.

