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Abstract. We study liquid adsorption in narrow rectangular capped capillaries

formed by capping two parallel planar walls (a slit pore) with a third wall orthogonal

to the two planar walls. The most important transition in confined fluids is arguably

condensation, where the pore becomes filled with the liquid phase which is metastable

in the bulk. Depending on the temperature T , the condensation in capped capillaries

can be first-order (at T ≤ Tcw) or continuous (at T > Tcw), where Tcw is the capillary

wetting temperature. At T > Tcw, the capping wall can adsorb mesoscopic amounts of

metastable under-condensed liquid. The onset of condensation is then manifested

by the continuous unbinding of the interface between the liquid adsorbed on the

capping wall and the gas filling the rest of the capillary volume. In wide capped

capillaries there may be a remnant of wedge filling transition, which is manifested

by the adsorption of liquid drops in the corners. Our classical statistical mechanical

treatment predicts a possibility of three-phase coexistence between gas, corner drops

and liquid slabs adsorbed on the capping wall. In sufficiently wide capillaries we

find that thick prewetting films of finite length may be nucleated at the capping

wall below the boundary of the prewetting transition. Prewetting then proceeds in

a continuous manner manifested by the unbinding interface between the thick and

thin films adsorbed on the side walls. Our analysis is based on a detailed numerical

investigation of the density functional theory for the fluid equilibria for a number of

illustrative case studies.
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1. Introduction

Applications of adsorption in confined geometries range from the latest developments in

micro- and nanofluidics, the design of surfaces with controllable wetting properties [1–4],

to colloidal science and bioengineering [5–7]. At the same time, the rich surface phase

behavior of confined fluids, which arise when the parameters of the substrate geometry

and the fluid-substrate intermolecular potential act as thermodynamic variables [8–10]

makes their study particularly attractive from the fundamental point of view. When

fluids are confined in nano-pores, where the characteristic dimensions exceed the ranges

of molecular interactions by only one or two orders of magnitude, a satisfactory

theoretical description has to account for the inhomogeneities of the fluid structure and

the non-local character of molecular interactions. The density functional theory (DFT)

for fluids meets these requirements by offering a classical framework which introduces

the spatial dependence of the fluid density in the equation of state by approximating the

free energy of the fluid as a functional of the one-body fluid number density. Reasonably

far from critical points, the results of DFT are rather robust in describing the interfacial

properties and structure of soft systems [11–14]. One can obtain interfaces, menisci

shapes, and even complete surface phase diagrams with the single systematic approach

offered by DFT, which is also significantly less expensive computationally compared

to molecular dynamics simulations [15, 16]. Although classical DFT approaches were

originally developed to study systems at equilibrium, recent progress in the area also

includes the extension to dynamic DFTs which account for various hydrodynamic

effects [17, 18].

Consider a capped capillary pore sketched in figure 1. It is translationally invariant

along the z-axis, has macroscopic length along x-axis, and its width H along the y-axis

is of the order of several tens of molecular diameters. The pore is filled with a Lennard-

Jones (LJ) fluid at temperature T and chemical potential µ < µsat (T ), where µsat is the

bulk saturation value. Far from the capping wall, as x → ∞, the fluid density across

the capillary is essentially the same as the density of the fluid across a slit pore of the

same width (the associated slit pore). In the slit pore, a liquid-like phase metastable in

the bulk (capillary liquid) can coexist with gas (capillary vapor) during condensation

at µc < µsat [19, 20]. Within the macroscopic Kelvin approximation, the condensation

value is given by

µc = µsat −
2γvl cos Θ

H (ρliq − ρvap)
, (1)

where γvl is the vapor-liquid surface tension, Θ is Young’s contact angle, ρvap and

ρliq are the densities of the saturated vapor and liquid. In the capped capillary the

cumulative attractive effect of the slab of substrate behind the capping wall may lead

to the nucleation of capillary liquid on its surface even at µ < µc. In this case, capillary

liquid is metastable in the associated slit pore, so the phase adsorbed forms a slab

of finite length. The mechanism is analogous to the adsorption of liquid film on a

planar wall immersed in gas [19, 21]. By analogy with wall wetting, it is natural to
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Figure 1. Capped capillary of width H opening into a reservoir filled with gas

at temperature T and chemical potential µ < µsat. The system is transnationally

invariant along the z-axis (orthogonal to the page). The bricked area is a LJ substrate.

The hatched area is an inert wall coating of width H0. The grey-shaded area shows

the capillary liquid adsorbed from the gas.

expect that condensation in capped capillaries may be first-order or continuous. The

existence of continuous condensation transition has first been put forward by Parry et

al. [22], whereas a subsequent investigation by the present authors [23] demonstrated the

existence of the capillary wetting temperature Tcw, such that at T ≤ Tcw condensation

is first-order and at T ≤ Tcw, condensation is continuous. In another theoretical

and experimental study, Rascon et al. explored the nature of transition at Tcw and

revealed a relation between Tcw and Young’s contact angle of the capping wall, by

approximating the complicated fluid-fluid and fluid-substrate interactions by a local

effective Hamiltonian [24]. By accounting for the non-localities of molecular interactions

captured through DFT, the present authors recently showed that the approximation

found by Rascon et al. that the capillary wetting temperature is roughly equal to

the planar wetting temperature of the capping wall is reasonable for sufficiently wide

capillaries [25]. Noteworthy also are a number of works by other authors investigating

capped capillaries from different perspectives. Darbellay and Yeomans studied saturated

fluid in contact with a groove-like substrate and showed that condensation in grooves is

continuous, unlike condensation in slit pores [26]. Roth and Parry investigated drying in

over-saturated square-well fluid confined in a capped capillary, and found that capillary

evaporation can also be continuous [27]. Lastly, Malijevsky investigated wetting in the

same geometry and reported hysteresis in adsorption isotherms of fluids with short-range

fluid-fluid interactions [28].

In the present work we substantially extend our earlier analysis [23]. We consider

a number of examples which demonstrate the richness of the fluid phase behavior and

are suggestive of the general features of wetting in nano-sized capped capillaries. For

example, we explore in detail the connections in wetting of capped capillaries and wedge-

shaped pores, since the capped capillary shown in figure 1 can be viewed as a right-angled

wedge near the origin and as H → ∞ [29]. Moreover, we find that the formation of

prewetting films, which occurs for sufficiently large H and for µ̃pw < µc, where µ̃pw
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corresponds to the shifted prewetting of the walls of a slit pore of width H [30], is

a continuous transition in capped capillaries, as opposed to the associated slit pores

in which the transition is first order [19]. This difference can be attributed to the

interaction of the fluid with the capping wall, which, as we will see, is responsible for a

strikingly different physics of capped capillary when compared to slit pores.

The behavior of fluids in nano-pores is determined by the complicated interplay

between molecular fluid-fluid and fluid-substrate interactions. Unravelling the various

wetting mechanisms can only be achieved through a detailed computation or a carefully

set up experiment. Here, we perform a parametric study of the DFT model of adsorption

for a number of illustrative case studies. Most of the technical complexity of the

approach can be encapsulated within our numerical methodologies [31], as they provide

the means to obtain the phase portrait of the system in a systematic manner. This allows

us to argue in terms of the fluid structure and its phenomenology, and elucidate the

connections between wetting of different systems. In order to construct a roadmap of the

possible scenarios, the case studies we present are of increasing complexity, considering

their isotherms and full wetting phase diagrams. It is important to emphasize, however,

that in the present work we neglect the fluctuations of the fluid density along the z-axis

(see figure 1). Including fluctuations requires a non-classical approach, and is of separate

interest [24]. In the following section we provide details of the DFT approximation

employed, section 3 contains the discussion of phenomenology revealed by our numerical

experiments, which is summarized in the concluding remarks of section 4.

2. Density functional and governing equations

The fluid-fluid and fluid-substrate molecular interactions are given by the LJ potential:

ϕ6−12
ε,σ (r) = 4ε

[
−
(σ
r

)6
+
(σ
r

)12]
, (2)

where ε and σ control the well depth and the range of the potential, respectively.

Treating the substrate as a spectator phase, we can obtain the cumulative potential

V (r) acting on a fluid molecule located at r

V (r) = ρ0

∫
v

dr′ϕ6−12
ε0,σ0

(|r− r′|) , (3)

i.e. it is given as an integral over the volume v occupied by the substrate, with ρ0
being the effective density of the substrate material. The expression above exhibits

a non-physical divergence at contact with the fluid. As a result, the fluid density

decays super-exponentially at contact with the substrate walls [31]. Capturing this

behaviour of the fluid density numerically requires a lot of mesh points near the wall,

which unnecessarily increases the computational cost, given that the present study is

focused on liquid–gas interfaces. We have therefore chosen to introduce a parameter

H0 as a means to remove some of the fluid layering near the wall by regularizing the

behaviour of V (r) at the fluid–wall interface. This essentially corresponds to introducing
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a coating of the substrate walls with a layer of some foreign inert material of width H0.

The coating serves to remove the singularity of V (r) at contact, because the LJ wall is

then situated at distance H0 from the fluid–substrate border. By doing so, the volume v

over which the integral in (3) is computed excludes the volume occupied by the foreign

material (see hatched area in figure 1). The foreign material coating the wall is such that

it does not exert any long-range forces on the fluid, and thus does not change the physics

of wetting: at high temperatures (above the bulk triple point) the physics of wetting

by liquid is controlled by the asymptotic tails of the interaction potentials [33]. For

example, it is straightforward to show that the value of planar Hamaker constant [33] is

not affected by a finite shift H0 of the planar wall potential [25]. Employing a shifting

parameter H0 is reasonable also because the molecular interactions at close distances are

known not to be well described by the LJ potential, and in fact the substrate potentials

obtained using ab initio quantum mechanics have a shifting parameter similar to H0 [32].

Referring to the capped capillary sketched in figure 1, the fluid occupies the domain

[0,∞]× [0, H]× [−∞,∞] along x-, y- and z-axes, respectively, and (3) takes the form:

Vcpd (x, y) = ρ0

∫ ∞
−∞

dz′ ×
(∫ ∞
−∞

dx′ ×
(∫ −H0

−∞
dy′ +

∫ +∞

H+H0

dy′
)

+

∫ −H0

−∞
dx′
∫ H+H0

−H0

dy′
)
× ϕ6-12

ε0,σ0

(√
(x− x′)2 + (y − y′)2 + z′2

)
. (4)

We also consider the limiting cases of (4), which correspond to the potentials of the

planar wall (the fluid occupies the volume [−∞,∞]× [0,∞]× [−∞,∞]):

Vwll (y) ≡ lim
H→∞

lim
x→∞

Vcpd (x, y) , (5)

the slit pore (the fluid occupies the volume [−∞,∞]× [0, H]× [−∞,∞])

Vslt (y) ≡ lim
x→∞

Vcpd (x, y) , (6)

and the right-angled wedge (the fluid occupies the volume [0,∞]× [0,∞]× [−∞,∞])

Vwdg (x, y) ≡ lim
H→∞

Vcpd (x, y) . (7)

2.1. Grand free energy functional

In broad terms, with DFT we construct approximations for the free energy functional of

the fluid in contact with the substrate, by taking as input the model of molecular fluid-

fluid and fluid-substrate interactions. More sophisticated DFTs may even reproduce

experimental results, consider, e.g., the recent studies of adsorption of Argon, Neon and

Xenon on planar substrates of various compositions [34–37]. A systematic development

of the formalism can be found, e.g., in topical reviews [12–14, 16, 38]. The grand free

energy functional of the fluid in contact with the substrate is given by

Ω [ρ (r)] = Fin [ρ (r)] +

∫
drρ (r) (V (r)− µ) , (8)

where integration is carried out over the domain occupied by the fluid and Fin [ρ] is the

intrinsic fluid free energy functional, which does not depend on the external potential
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V (r). The equilibrium density distribution ρ (r) minimizes Ω [ρ (r)], which is then equal

to the grand potential Ω (µ, T ). We approximate Fin [ρ] as a sum of the hard sphere

fluid free energy, Fhs [ρ], and a contribution due to attractions. The random phase

approximation is used for the latter, which recovers the correct asymptote of the direct

pair correlation function in the uniform limit [38]:

Fin [ρ (r)] =

∫
drfid (ρ (r)) + Fhs [ρ (r)]

+
1

2

∫
dr

∫
dr′ρ (r) ρ (r′)ϕattr (|r− r′|) , (9)

where fid (ρ) = kBTρ (ln (λ3ρ)− 1) is the ideal gas free energy, kB and λ are the

Boltzmann constant and the thermal wavelength, respectively. The fluid-fluid potential

ϕattr (r) is obtained from the LJ potential using the Barker–Henderson perturbation

expansion [39]:

ϕattr (r) =

{
0, r ≤ σ

ϕ6-12
ε,σ , r > σ

, (10)

where σ is equal to the hard sphere diameter in Fhs [ρ (r)].

The approximation for the configurational part of the hard sphere fluid free energy

corresponds to the Carnahan-Starling equation of state [40]:

ψ (ρ) = kBT
η (4− 3η)

(1− η)2
, η = πσ3ρ/6. (11)

Two different approximations for Fhs [ρ] are employed here, which can be written in the

following general form:

Fhs [ρ] =

∫
drρ (r)ψ (ρ̄ (r)) , ρ̄ (r) =

∫
dr′W (r− r′) ρ (r) , (12)

where integration is carried out over the volume occupied by the fluid. The

weighting function W (r) can be chosen to increase the accuracy of the corresponding

approximation for the pair-correlation function of the hard sphere fluid. We use a local

density approximation (LDA) [38] and a weighted density approximation (WDA) [41]:

W (r) =


3

4πσ3
Θ (σ − r) for WDA,

δ (r) for LDA,

(13)

where Θ (r) and δ (r) are, respectively, the step- and delta-functions. The LDA neglects

molecular correlations due to excluded volume interactions, but nevertheless is often

used as part of the perturbative treatment of Fin [ρ (r)] in (9). The WDA is arguably

a better choice as it was designed to capture the jump that occurs in the direct pair

correlation function of a hard sphere fluid at a distance σ [41]. Using WDA in (9)

accounts for the effects of excluded volume molecular interactions responsible for layering

and freezing in fluids. As a result, the WDA fluid density profiles possess a proper

oscillatory-like structure near the substrate walls. The most accurate description of

hard-sphere fluids is given by the fundamental measure theory [42,43], which uses three
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weighting functions but it is computationally much more demanding. Since we are not

after an accurate description of the physics near the walls, both LDA and WDA are

deemed sufficient for describing the features of the phenomenology in qualitative terms.

2.2. Governing equations

We can obtain ρ (r) from the extremum condition expressed by the Euler-Lagrange

equation (δΩ [ρ] /δρ = 0):

kBT ln ρ (r) + ψ (ρ (r)) +

∫
dr′ρ (r′)ψ′ρ (ρ̄ (r′))W (r− r′)

+

∫
dr′ρ (r′)ϕattr (|r− r′|) + V (r)− µ = 0, (14)

where ψ′ (ρ) denotes the derivative of ψ (ρ) with respect to ρ. For fixed T we can

obtain a set of solutions, {ρ (r)}µ, to the above equation parametrized by µ. The grand

potential Ω (µ) is a concave function of µ [44], so the density profiles which satisfy

(14) and correspond to stable (and metastable) fluid configurations, also correspond to

concave branches of Ω [{ρ (r)}µ] as a function of µ. The stable configurations (unlike

the metastable ones) also form the lower envelope of Ω [{ρ (r)}µ] as a function of µ.

The stable configurations from the set {ρ (r)}µ may belong to different fluid phases,

which can coexist at some value of µ, where Ω (µ) is non-analytic. First-order and

continuous phase transitions are characterized by jump discontinuities and singularities

in the derivative of Ω (µ), respectively.

During a first-order phase transition, at least two different equilibrium density

configurations, ρ1 (r) and ρ2 (r), satisfy the following

δΩ

δρ

∣∣∣
ρ1(r)

=
δΩ

δρ

∣∣∣
ρ2(r)

= 0 (15a)

Ω [ρ1 (r)]− Ω [ρ2 (r)] = 0. (15b)

In the absence of walls [so that V (r) ≡ 0], equations (15) provide the condition of

saturation and are equivalent to the balance µ (ρliq) = µ (ρvap) = µsat and P (ρliq) =

P (ρvap) = Psat, where

µ = kBT ln ρ+ ψ (ρ) + ρψ′ρ (ρ)− 32π

9
ρσ3ε, (16)

P = ρkBT
1 + η + η2 − η3

(1− η)3
− 16π

9
ρ2σ3ε. (17)

The presence of walls may lead to surface phase coexistence [19]. In that case, it is often

convenient to split the grand potential into the bulk and excess contributions. Usually

the bulk parts are equal in both coexisting phases, but the excess parts are different [45].

We solve (14) and (15) numerically. Wetting of a planar wall and a slit pore are

treated as one-dimensional (1D) numerical problems, whereas a capped capillary and a

right-angled wedge as two-dimensional (2D) problems. The working expressions for the

interaction potentials are provided in Appendix A. In practice, the domain is discretized



Condensation in capped capillaries 8

xl xv

0 15 30 45
0

10

20

30(a)

x

y

0 2 4 6
0.24

0.40

0.56(b)

√
x2 + y2

ρ
(x
,
y
)

0 5 10 15
0.05

0.12

0.19(d)

y

ρ
(x

v
,
y
)

0 5 10 15
0.32

0.42

0.52(c)

y

ρ
(x

l
,
y
)

Figure 2. (a) Density profile for a capped capillary with H = 30, ε0 = 0.85, σ0 = 1.5,

H0 = 2.8 (Tw = 0.868), at T = 0.88, ∆µ = −2.4 × 10−2; fluid treated in WDA. The

vertical lines mark the position of slices inside the capillary liquid, at xl = 14, and

inside the gas, at xg = 40. (b) Slice along the corner bisector. (c) and (d) Slices inside

capillary liquid and gas at xl and xg (shown for 0 ≤ y ≤ H/2); the dotted horizontal

lines are drawn at ρcliq = 0.5 and ρcvap = 0.07 for (c) and (d), respectively.

on a tensor product grid, which extends the spectral collocation method detailed

in our previous work [31] to 2D. Given the grid of conformally mapped Chebyshev

collocation points, all functions (including the unknown density profiles), are represented

by a unique polynomial [25], and integration is performed by computing matrix-vector

products. Noteworthy is that the spectral collocation approach allows us to represent

the fluid-fluid interaction potential (10) on the whole, untruncated, calculation domain.

By discretising only the domain occupied by the fluid, the hard wall boundary condition,

i.e. that the fluid density vanishes inside the substrate volume, is automatically satisfied.

Equations (14) and (15) are then reduced to a system of non-linear algebraic equations,

which we solve with Newton iterations. We use arc-length continuation technique (also

detailed in our previous work [31]) to obtain families of solutions to equations (14) and

(15) parametrized by µ and T . This allows us to obtain isotherms of wetting and phase

coexistence curves of various transitions.

In order to verify the numerical implementation, we have performed convergence

tests of the computer code developed to solve (14) in 2D with LDA and WDA for the

hard sphere part of the functional, see Appendix B. We also verified that the exact Gibbs

adsorption rule – see below – and the appropriate planar contact sum rules [25, 43] are

satisfied by the density profiles we obtain. Additionally, we made sure that the density

profiles of the planar wall and slit pore obtained using 1D and 2D solvers agree to within

the tolerance of the Newton method, taken to be 10−6. The fact that the planar wall

wetting temperatures Tw obtained from the Euler-Lagrange equation (14) (by computing

Young’s contact angle), and from the coexistence condition (15) (by computing the wall

prewetting curve) agree (see Appendix C) further attests to the correct implementation

of the numerical code for solving (15).
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Figure 3. Surface plot of the density profile from figure 2(a). The near-apex

oscillations and the near-wall layering are caused by the non-local excluded volume

molecular interactions.

3. Wetting phenomenology

Throughout this work we choose the parameters σ and ε of the fluid-fluid potential (10)

to be the units of length and energy in our computations. The bulk critical temperature

is then Tc = 1.006. It is also convenient to define ∆µ = µ−µsat < 0, and plot isotherms

and phase diagrams using ∆µ instead of µ. The dimensionless expressions for the fluid-

fluid and fluid-substrate potentials are provided in Appendix A. In our computations

we fixed ρ0 = 1 and varied the remaining substrate parameters, ε0, σ0 and H0. In the

present work we restrict our attention to combinations of ε0, σ0 and H0, which give

rise to first-order wetting in the planar wall case, as they typically exhibit a rich surface

phase behavior [11,21,29]. Another criterion for the specific choices of ε0, σ0 and H0 was

to illustrate different possible wetting scenarios. In Appendix C we present the phase

diagrams of planar wall wetting for the combinations of ε0, σ0 and H0 considered here.

The phase diagrams of wetting in slit pores and capped capillaries are also computed in

every case. For computational efficiency we also tried to select substrate materials with

high values of wetting temperatures, in order for the gas-liquid interfaces not to be very

steep, which require less computational cost to be resolved than steeper ones.

In order to obtain the fluid density distribution ρ (r) ≡ ρcpd (x, y) for the capped

capillary from figure 1, we use (4) to write V (r) ≡ Vcpd (x, y). From (6), we must

require that ρcpd (x, y)→ ρslt (y), as x→∞, i.e. as we move far from the capping wall.

Moreover, since the cumulative potential of the semi-infinite substrate slab which plugs

the slit pore to form the capped capillary is given by

Vcap (x, y) = ρ0

−H0∫
−∞

dx′
H+H0∫
−H0

dy′
∞∫

−∞

dz′ ϕ6−12
ε0,σ0

(|r− r′|)

=
−3

8

ρ0ε0σ
6
0πH

x4
+O

(
ρ0ε0σ

6
0HH0

x5

)
as x→∞, (18)

we find that ρcpd (x, y) = ρslt (y) + O(x−4), as x → ∞, where the next-order term can
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be readily obtained from the asymptotics of (14), by following the same procedure used

in [31] for a planar wall. So, in order to study the capped capillary, we need to obtain

the fluid density ρslt (y) for the associated slit pore for the values of µ and T of interest.

Just like the capped capillary, the fluid density ρ (r) ≡ ρslt (y) is found from (14), using

(6) to set V (r) ≡ Vslt (y). From the conditions of phase coexistence, (15), we can also

obtain the condensation curve µc (T ), which is sometimes approximated by the Kelvin

equation, (1). Since according to (6) the potential of the slit pore is a limiting case of the

potential of the capped capillary, µc (T ) also corresponds to the locus of non-analyticities

of the fluid free energy in the case of the capped capillary.

A typical density distribution ρcpd (x, y) at µ . µc is presented in figures 2 and 3.

The data in the contour plot [figure 2(a)] is scaled between ρcvap (white) and ρcliq (dark

grey), which are the roots of equation (16) at µ = µc. The fluid density has a distinct

oscillatory behavior at contact with the substrate. Considering the slice along the corner

bisector [figure 2(b)], we note pronounced oscillations set approximately one hard sphere

diameter apart, which demonstrate the tight packing of molecular layers at the apex.

Molecular layering at the corner and at the adjacent walls is better visualized in figure

3, where the local maxima of ρcpd (x, y) correspond to the tight packing of individual

fluid molecules. The amplitude of density oscillations rapidly decays into the volume of

the fluid due to the increasing relative role of inter-molecular attractions. The same can

be inferred from the vertical slice inside the capillary liquid (along xl) shown in figure

2(c). Even along a slice at xg, inside the gas, one can see a single near-wall oscillation

[figure 2(d)]. The plateaus of near-constant values for ρ (xg, y) and ρ (xl, y) at ρcvap and

ρcliq, respectively, serve to show that the denser phase adsorbed on the capping wall is

capillary liquid, which coexists with gas along a circular-arc meniscus. Structurally,

the fluid phases on either side of the meniscus are essentially the same as the phases

coexisting in a slit pore of the same width during capillary condensation. For wide pores,

the fine near-wall details of the fluid density can be ignored, and one can approximately

consider the slab to be of constant density ρcvap.

3.1. Capillary wetting temperature and prewetting

We define the adsorption and the excess grand potential in the capped capillary relative

to the associated slit pore:

Γ =

∞∫
0

dx

H∫
0

dy [ρcpd (x, y)− ρslt (y)] , (19)

Ωex = Ω [ρcpd (x, y)]− Ω [ρslt (y)] , (20)

where the first and second terms in (20) are given by (8) with V ≡ Vcpd and V ≡ Vslt,

respectively. We use Ωex because in the case of the capped capillary the computation of

Ω from (8) involves integrating the grand free energy density over a domain unbounded

along the x-axis, which does not yield a finite value. On the other hand, using Ωex allows

us to remove the slit pore contribution to Ω so that the value we obtain is bounded.
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Figure 4. Capillary prewetting transition at T = 0.93, ∆µcpw = −1.43 × 10−2 in

the capillary with H = 30, ε0 = 0.85, σ0 = 1.35, H0 = 2.2; fluid treated in WDA

(Tw = 0.927); ∆µc = −1.39× 10−2. (a) and (b) show adsorption and grand potential

isotherms. Dashed, solid and dotted branches with spinodals at ∆µ = −0.68 × 10−2

and ∆µ = −1.8 × 10−2 correspond to gas, capillary liquid slabs, and unstable fluid

states, respectively. Capillary prewetting at Ωex = −3.49 and Γ = {14, 214} is marked

by filled circles. Dotted vertical lines are drawn at ∆µc. (c) and (d) show the density

profiles at µcpw, shaded linearly between ρcvap = 0.1 (white) and ρcliq = 0.43 (dark

grey).

Moreover, it is straightforward to show that the Gibbs adsorption rule takes the form

Γ = −R−1∂Ωex/∂µ, where R is the macroscopic system size along the z-axis [25]. When

there is a single fluid phase in the associated slit pore at the given µ, both Γ (µ) and

Ωex (µ) are unique and finite for any fluid configuration compatible with the boundary

condition ρcpd (x, y)→ ρslt (y), as x→∞.

Figure 4 shows a wetting isotherm which corresponds to a family of density profiles

{ρ (r)}µ obtained as a function of µ at a fixed T < Tc (H) (the critical temperature of

the associated slit pore), where µ spans the interval from below condensation to nearly

µc. The excess grand potential [figure 4(a)] and its derivative [figure 4(b)] show how

hysteresis during adsorption is controlled by the reservoir parameter µ. The inflection

points linking the three branches of Ωex (µ) provide the spinodals of gas (dashed branch)

and capillary liquid slabs (solid branch). The lower envelope of Ωex (µ) (locus of

configurations with minimal Ωex (µ) at any given µ) consists of the stable parts of the

two branches, and is non-analytic in its first derivative at µ = µcpw, at which the

adsorption Γ (µ) undergoes a finite jump between the values marked by filled circles in

figures 4(a) and 4(b). Therefore, µcpw corresponds to a first-order transition. The fluid

configurations coexisting at µcpw are shown in figures 4(c) and 4(d). The gas phase
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Figure 5. (a) Wetting phase diagram of the capped capillary from figure 4. Capillary

prewetting, ∆µcpw (T ) (black curve), approaches condensation, ∆µc (T ) (grey curve),

tangentially at Tcw = 0.925. Open circles on ∆µcpw (T ) correspond to the menisci of

coexisting slab configurations plotted in (b). (b) The menisci correspond, left to right,

to decreasing values of T : 0.9616, 0.9352, 0.9281, 0.9263, 0.9256, 0.9253.

extends from below µc, up to the right-hand spinodal. The slab phase extends from the

left-hand spinodal, up to µc, where the length of the slab diverges. The divergence of

Γ (µ) as µ→ µc is readily seen in the plot. Therefore, the nature of the non-analyticity

of Ω (µ) at µc is a continuous phase transition. Due to (18), it is straightforward to

deduce that

Γ (µ) ∝ (µc − µ)−1/4 , as µ→ µc, (21)

as also shown by Parry et al. using effective Hamiltonians [22].

Using (15), we can investigate capillary prewetting with temperature and obtain

the µcpw (T )-curve [figure 5(a)], where capillary liquid slabs coexist with the gas pore

at different temperatures. We find that the curves µcpw (T ) and µc (T ) appear to merge

together at some temperature. When this happens, the menisci of the the coexisting slab

configurations unbind from the capping wall with lowering T [figure 5(b)], and Γ = Γslb

of the coexisting slab configurations diverges. We can argue theoretically that this is

the case, by considering the surface Clausius-Clapeyron equation derived in Appendix

D. Accordingly, for large Γslb we have

d (µc − µcpw)

dT
∝ 1

Γslb

, (22)

as Γslb →∞, where the constant of proportionality is both temperature-dependent and

positive. The above is equivalent to dµc/dT → dµcpw/dT as Γslb → ∞, so µcpw (T )

approaches µc (T ) tangentially at the capillary wetting temperature, Tcw. From the

asymptotics of (21) and by integrating (22), we obtain

µc − µcpw ∝ (T − Tcw)4/3 (23)
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Figure 6. Capillary prewetting followed by a metastable transition to corner drops.

(a) Excess grand potential isotherm of the capillary with parameters given in the

caption of figure 2 at T = 0.906. The concave branches correspond to gas (dashed),

capillary liquid slabs (solid black) and drops (solid grey, see inset). Dotted branches

are unstable. Capillary prewetting at ∆µcpw = −2.94× 10−2 is stable [see profiles on

(b) and (c)], the remnant of wedge prefilling at ∆µ̃wpf = −2.44 × 10−2 is metastable

[see inset on (a) and profiles on (d) and (e)]. Note that the pairs of coexisting profiles

(b), (c) and (d), (e) correspond in figure (a) to the intersection of the dashed branch

with the solid black and grey branches, respectively.

as T → Tcw, which is valid for LJ intermolecular potentials. Equation (23) can be used

to estimate the order of accuracy with which the value of Tcw is computed. Numerically,

we cannot go to infinite Γslb, and have to approximate Tcw with a value of T & Tcw so

that µcpw (T ) . µc (T ). Thus, knowing the difference µc (T )−µcpw (T ), (23) can provide

an estimate for T − Tcw. In all the phase diagrams presented, we have been able to

approach condensation to within µc − µcpw = O (10−3) along the capillary prewetting

curve, which corresponds to an accuracy of O(10−4) within the quoted value of Tcw.

For T < Tcw capillary liquid slabs of finite lengths adsorbed on the capping wall are

metastable. In general, for µ < µc the lower envelope of Ωex (µ) consists only of the

gas branch, and condensation at µc is first-order, just as in the associated slit pore. For

T > Tcw the capping wall may nucleate capillary liquid for µ ≥ µcpw (T ). The length

of adsorbed capillary liquid slab grows continuously with µ as µ → µc, and Γ (µc) is

singular. The condensation is continuous and is manifested by the unbinding of the

circular-arc meniscus of gas-capillary liquid interface.

3.2. Interplay with wedge wetting

By fixing the origin in figure 1 and taking the limit H → ∞, the capped capillary

becomes a wedge. Therefore, effects specific to wedge wetting should be manifested
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Figure 7. Wetting diagram of capillary from figures 2 and 6. Capillary prewetting

(black) is tangential to condensation (grey) at Tcw = 0.871, and pre-empts the remnant

wedge prefilling, ∆µ̃wpf (T ) (black), which occurs approximately for 0.905 < T < 0.908.

in capped capillaries with sufficiently isolated corners. Indeed, for a substrate already

considered above (see figures 2 and 3), we find a transition between the gas and drop-like

fluid configurations for a certain temperature range. Figure 6 shows an isotherm, where

apart from capillary prewetting [see the intersection of dashed and solid black branches

in figure 6(a) and the density profiles in figures 6(b) and 6(c)], we observe a transition

to corner drops [see the intersection of solid grey and dashed branches magnified in the

inset of figure 6(a) and the density profiles in figures 6(d) and 6(e)], which prompts

a connection to wedge prefilling [29]. The transition to corner drops (remnant wedge

prefilling) is metastable here, since the respective self-intersection of Ωex (µ) does not

belong to the lower envelope of Ωex (µ). The wetting phase diagram in figure 7 shows that

the remnant wedge prefilling is metastable everywhere and is pre-empted by capillary

prewetting. We attribute such fluid behavior to the particularly small value of H, which

leads to a significant Kelvin shift of the capillary coexistence curve µc (T ) with respect

to its bulk counterpart µsat (T ). By increasing H the fluid confined in the pore behaves

more like bulk fluid, i.e. the ∆µc (T )-curve flattens and approaches ∆µ ≡ 0 [25]. At the

same time, since the corners of the capped capillary become more isolated, the remnant

wedge prefilling curve, ∆µ̃wpf (T ), spans a wider temperature range, uncovering a larger

portion of the wedge prefilling curve, ∆µwpf (T ). Given that ∆µwpf (T ) is tangential

to ∆µ ≡ 0 [29], for sufficiently wide capped capillaries there will be an intersection

of ∆µ̃wpf (T ) and ∆µcpw (T ), and corner drops can become stable. In what follows, we

consider in some detail the DFT for prefilling transitions in wedges, which in turn allows

us to discuss the general features of wetting in capped capillaries of different widths.

More details on wedge wetting can be found, e.g. in the works by Hauge [46] and Rejmer

et al. [29].

For a wedge with an opening angle 2α immersed in gas at ∆µ . 0, Hauge found

that a macroscopic amount of liquid, which is metastable in the bulk, may coexist

with undersaturated gas, if the former is situated on the concave side of the curved

meniscus separating the two [46]. This condition is satisfied by a macroscopic amount
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Figure 8. Wedge in undersaturated gas. Substrate parameters ε0 = 0.7, σ0 = 2,

H0 = 5; using LDA, Tw = 0.755, Tf = 0.693. (a) and (b) Stable configurations at

Tw > T = 0.715 > Tf (Θ = 36.3◦, ρvap = 0.02, ρliq = 0.67), ∆µ = −1.5 × 10−2 and

T = 0.89 > Tw (Θ = 0, ρvap = 0.08, ρliq = 0.5), ∆µ = −0.8× 10−2, respectively. The

data in the contour plots is scaled between the respective ρvap (white) and ρliq (dark

grey), and the sharp interfaces are defined at (ρvap + ρliq)/2. (c) Gas-liquid interfaces

of configurations coexisting with gas during wedge prefilling. The interfaces, as we

move outwards from the apex, correspond, respectively, to the following pairs of values

of
(
T,∆µ× 102

)
: (0.865,−5.8), (0.8,−2.3), (0.748,−0.6), (0.73,−0.26).

of liquid adsorbed in the wedge apex if the temperature is higher than the wedge filling

temperature Tf, for which Θ (Tf) = π/2 − α, i.e. for a flat meniscus of zero curvature.

Moreover, Hauge showed that the filling of the wedge by liquid is continuous for T > Tf,

and proceeds via the unbinding meniscus as ∆µ → 0 isothermally. For T > Tf
and ∆µ < 0 microscopic mean-field approaches predict first-order wedge prefilling

transition [29], where a microscopic amount of liquid adsorbed in the apex coexists

with gas. The locus of wedge prefilling, µwpf (T ), approaches saturation tangentially at

Tf, and demarcates the region of stability of liquid drops adsorbed in the wedge apex.

Employing an LDA functional, which is less computationally expensive compared

to other DFTs allowed us to perform a technically complicated parametric study in the

T – ∆µ space, in order to highlight the connections between wetting in a right-angled

wedge and in rectangular capped capillaries of the same substrate material. In this case,

α = π/4 and we can obtain Tf by computing Θ (T ) and solving Θ (Tf) = π/4 graphically

(see Appendix C and figure C1 therein). The fluid density distribution inside the wedge,

ρwdg (x, y), is found from (14) by using (7) to set V (r) ≡ Vwdg (x, y) in (14). The curve

µwpf (T ) is obtained using (15).

Computing the wedge prefilling curve in the vicinity of Tf is highly demanding and

deserves a separate study. In the present work, we have restricted the temperature range

for computing µwpf (T ) to T ≥ 0.735 > Tf = 0.693, see figures 9 (dotted curve) and 10

(curve 2, which – as expected – will approach the ∆µ axis tangentially). Two stable

fluid configurations at ∆µ . 0, and with the menisci at mesoscopic distances from the

wedge apex are presented in figures 8(a) and 8(b), and correspond to temperatures below

and above Tw, respectively. Figure 8(c) shows the interfaces of several drops coexisting

with gas during the first-order transition along the µwpf (T )-curve. Note that as T

approaches Tf, the amount of coexisting adsorbate grows, becoming macroscopic in the

limit T → Tf. Above Tf wedge filling is continuous and is called complete wedge filling
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by analogy with planar wetting [29, 46]. The apparent contact angle of approximately

45◦, which one may infer from figures 8(a) and 8(c), illustrates that the filling of the

wedge for Tf ≤ T < Tw, proceeds via a continuously unbinding flat meniscus. The

apparent contact angle should not be confused with Young’s angle Θ, which is defined

for a macroscopic sessile drop sitting on a flat planar wall at ∆µ = 0. In the case

of the mesoscopic amount of liquid adsorbed in the wedge apex, both walls affect the

fluid configuration, and a flat meniscus of zero curvature is energetically preferable to a

curved one [46]. However, for a macroscopic amount of adsorbate at T ≥ Tf, the effect

of one wedge wall on the contact line on the other becomes negligible and the apparent

contact angle can attain values that are closer to Θ ≤ π/4 [46]. In contrast to the case

of a non-zero Θ, for T > Tw the wetting films developing on the wedge walls lead to

zero apparent contact angle of mesoscopic liquid adsorbate – see figure 8(b).

Computing µwpf (T ) (see figures 9 and 10) allows us to frame the discussion on

phase transitions near the capping wall of the capillary in relation to its associated

topologically-limiting systems. In very narrow pores, the effects of the Kelvin shift of

bulk saturation are quite important, and lead to the wedge prefilling being pre-empted

by capillary condensation, see, e.g. the wetting phase diagram in figure 5(a). Increasing

H isolates the corners of the capped capillary, which may give rise to a metastable

remnant wedge prefilling, µ̃wpf (T ) (see figures 7 and 9, where µwpf (T ) and µ̃wpf (T ) are

plotted with dotted and solid curves, respectively). Note that in figure 9 the right-

most end point of µ̃wpf(T ) is a mean-field critical point, whereas the left-most end point

corresponds to a situation where the branches of the grand potential which form the

curve µ̃wpf(T ) no longer intersect. Further increasing H significantly reduces the Kelvin

shift while isolating the corners more. Eventually, the remnant wedge prefilling becomes

stable, there may also be a triple point at T 3
cpd, where gas, corner drops, and capillary

liquid slab coexist (see the intersection of curves 6, 7 and 8 in figure 10). In the limit

H → ∞, µ̃wpf (T ) tends to µwpf (T ), while at the same time µcpw (T ) tends to µpw (T )

of the capping wall. Since Tf < Tw, the triple point at T 3
cpd must disappear for large

H. Therefore, stability of the three phases near the capping wall of the capillary is only

possible for an intermediate range of mesoscopic capillary widths, and disappears in too

narrow or too wide pores.

The phase diagram in figure 10 summarizes the mean-field wetting phenomenology

of capped capillaries with mesoscopic values of H. The different transition curves

and labels marking the regions of phase stability are coloured black for the structural

transitions in the fluid associated with the capping wall (capillary prewetting, curves 6

and 8, and remnant wedge prefilling, curve 7), and grey for the transitions that also occur

in the associated slit pore (condensation, curves 3 and 5, and remnant prewetting on

the side walls, curve 4). Due to the Kelvin shift of bulk coexistence, remnant transitions

in the capped capillary occur at lower values of the chemical potential than do wedge

prefilling (curve 1) and planar prewetting (curve 2) [47], which are superimposed on

the phase diagram to highlight the connections to these topologically limiting systems.

Note that if considered on their own, the grey transition curves in figure 10 essentially
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Figure 9. Wetting diagram of capped capillary with H = 30 and the same substrate

as in figure 8 showing condensation (grey), wedge prefilling (black, Tcw = 0.780), wedge

prefilling (dotted) and its remnant in the capillary (black, which occurs approximately

for 0.870 < T < 0.885).
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Figure 10. Wetting diagram of the capped capillary with H = 40; potential

parameters are the same as in figure 8. Stable (solid) and metastable (dashed)

transitions near the capping wall (black) and in the associated slit pore (grey)

demarcate the regions of stability of different surface phases (labelled). Insets zoom

into the triple points T 3
cpd = 0.865 and T 3

slt = 0.920. All transition curves are numbered.

1: planar prewetting (Tw = 0.755); 2: wedge prefilling (only part shown, Tf = 0.693); 3

and 5: condensation; 4: remnant of planar prewetting in the slit pore; 6 and 8: capillary

prewetting (Tcw = 0.770); 7: remnant of wedge prefilling in the capped capillary.



Condensation in capped capillaries 18

y
x

(a)

0 10 20
0

20

40

x

(b)

0 10 20
x

(c)

0 10 20

−6.5 −6.1 −5.7
−5.8 

−5.55

−5.3 

∆µ1 ∆µ2

∆µ × 102

Ω
ex

(d)

Figure 11. Three stable fluid surface phases in the capillary from figure 10 at T = 0.87

(ρcvap = 0.06, ρcliq = 0.5). (a)–(c) Representative density profiles of each phase. (d)

Stable branches of the excess grand potential isotherm at T = 0.87: gas (dashed), drops

(solid grey), and capillary liquid slab (solid black); ∆µ1 ≡ ∆µcpw (T ) = −6.15× 10−2,

∆µ2 ≡ ∆µ̃wpf (T ) = −5.92 × 10−2, ∆µc = −3.89 × 10−2. Open circles correspond,

from left to right, to the profiles in (a)–(c), respectively.

form the phase diagram of the associated slit pore. However, due to the interactions

between the fluid and the capping wall, the first-order condensation of the slit pore and

the first-order prewetting on the side walls of the slit pore become continuous transitions

in the capped capillary. Our investigation of the continuous prewetting on the side walls

is detailed in the following subsection.

Figure 11 shows the stable fluid phases just above T 3
cpd. For ∆µ < ∆µ1 ≡ ∆µcpw

the pore is filled with gas – see figure 11(a). In the region ∆µ1 < ∆µ < ∆µ2 ≡ ∆µ̃wpf

corner drops – figure 11(b) – are stable and gas is metastable. For ∆µ > ∆µ2 corner

drops are metastable, and the liquid slabs – figure 11(c) – are stable. At ∆µc the length

of the liquid slab diverges. The Ωex (µ) isotherm – figure 11(d) – has three concave

branches forming its lower envelope, and corresponding to each of the stable surface

phases.

3.3. Prewetting on the side walls

For sufficiently large H there may be a remnant prewetting on the side walls of a slit

pore at µ̃pw < µc [47]. Here we show how in capped capillaries with the same H, the

capping wall may nucleate thick prewetting films below µ̃pw. The wetting diagram in

figure 10 provides an example of a capped capillary, where the associated slit pore has

a triple point at T 3
slt (given by the intersection of curves 3, 4 and 5) corresponding to

the coexistence between capillary vapor, capillary liquid and prewetting films. Fixing
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T = 0.93 & T 3
slt, we computed an isotherm across the transition curves 8, 4 and 5.

Representative density profiles in the capped capillary for µ below and above µ̃pw are

presented in figures 12(a)–(c) and 12(d)–(f), respectively. We can see the interface

between the thick and thin prewetting films unbind as µ approaches µ̃pw from below.

Above µ̃pw the development of capillary liquid slab signifies continuous condensation.

The corresponding isotherms of adsorption and excess grand potential in the capped

capillary and in the associated slit pore at T = 0.93 are presented in figures 13(a)–(c).

The filled and open circles on the isotherms correspond to the density profiles in figure

12, and are labelled accordingly in figure 13(a).

Consider first the excess grand potential of the associated slit pore Ωex
slt (µ) given by

Ωex
slt (µ) = Ω [ρslt (y)] + AHP (ρb) , (24)

where A is the surface area of the walls forming the slit pore and ρb is the bulk

fluid density obtained from (16) [47]. Figure 13(c) shows the concave branches of

Ωex
slt (µ) corresponding to gas (dashed), prewetting films (solid grey) and capillary liquid

(solid black). Remnant prewetting and condensation in the slit pore are first-order

transitions which correspond to jump discontinuities in the lower envelope of Ωex
slt (µ).

Using the isotherm, we obtain ∆µ1, ∆µ2 = ∆µ̃pw and ∆µ3 = ∆µc, which respectively

correspond to the lower-µ spinodal of the remnant prewetting, remnant prewetting, and

condensation. These values are marked by the labelled vertical dotted lines in figures

13(a)–(c).

Due to phase coexistence in the associated slit pore, there is an ambiguity in the

definitions of Γ (µ̃pw) and Ωex (µ̃pw). In order to plot the branches of Γ (µ) and Ωex (µ)

corresponding to prewetting (grey) and condensation (black) in figures 13(a) and 13(c),

we used in (19) and (20) the density profiles of the coexisting thin and thick films,

respectively. In the phase diagram in figure 10, the isotherm at T = 0.93 crosses

transition curve 8 at ∆µcpw = −7 × 10−2, and there is a corresponding near-critical

hysteresis loop of Γ (µ) in figure 13(a).

The condensation branches of the wetting isotherms begin at ∆µ1, but as can

be inferred from figure 13(a), Γ (µ) decays between ∆µ1 and ∆µ2, so this part of the

condensation branch is unstable (according to the Gibbs rule), and the system follows

along the grey branch at ∆µ1 ≤ ∆µ < ∆µ2. As ∆µ → ∆µ2 the thin-thick film

interface unbinds from the capping wall at a rate which is controlled by the large-x

asymptote of Vcpd (x, y), (18). Therefore, similarly to (21), the grey branch of Γ (µ)

diverges as Γ ∝ (µ− µ̃pw)−1/4 for µ → µpw = µ2. According to the Gibbs rule, the

remnant prewetting is continuous in the capped capillary, since the derivative of the

grand potential exhibits a singularity at ∆µ2. For µ > µ̃pw, a capillary liquid slab is

nucleated at the capping wall, and fills the capillary continuously as µ→ µc = µ3. The

adsorption and grand potential isotherms at T > T 3
slt (but not too far), thus, consist of

two diverging branches, and there are two continuous transitions in the fluid – prewetting

and condensation.
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Figure 12. Density profiles at T = 0.93 (ρcvap = 0.09, ρcliq = 0.41) of the

capped capillary from figure 10. (a)–(c) Approaching remnant prewetting from below,

along the grey curve in figure 12(c); corresponding values of ∆µ (top to bottom):

(−4.37;−3.82;−3.80) × 10−2. (d)–(f) Above remnant prewetting, approaching

condensation from below, along the black curve in figure 13(c); corresponding values

of ∆µ (top to bottom): (−8.28;−4.62;−4.37)× 10−2.
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Figure 13. Isotherm at T = 0.93 in the capillary from figure 10; ∆µ1 = −4.6× 10−2,

∆µ2 ≡ ∆µ̃pw (T ) = −4.37× 10−2, ∆µ3 ≡ ∆µc (T ) = −3.8× 10−2, marked by vertical

dotted lines. (a) Adsorption isotherm of the capped capillary. Branches correspond

to prewetting (µ < µ2, grey) and condensation (µ1 < µ < µ3, black). (b) Stable

branches of the excess grand potential of the associated slit pore: gas (dashed), film

(grey, spinodal at µ1), and capillary liquid (black). (c) Excess grand potential of the

capped capillary, branches colored as in (a). Filled and open circles correspond to

profiles (a)–(c) and (d)–(f) in figure 12, respectively. Note that Γ (µ̃pw) and Ωex (µ̃pw)

is defined differently for grey and black branches (see main text).
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4. Conclusions

In this work we have investigated aspects of phase behavior of fluids confined to groove-

like capillary pores of nanoscopic width. Computing the wetting phase diagrams

of capped capillaries and their topologically limiting systems, i.e. planar walls, slit

pores and wedges, allowed us to interpret various wetting mechanisms and capture

the complexity of their fluid phase equilibria in groove-like pores. The investigation

was based on DFTs with local and non-local hard sphere contributions, which are

known to reproduce the qualitative aspects of wetting above the bulk triple point. We

have considered a number of representative test cases in which a parametric study was

undertaken by letting the temperature and chemical potential vary, while keeping all

other parameters fixed. The results obtained are suggestive of the generic behavior of the

system, and the methodology employed is applicable to similar studies of other pores.

Since DFT retains microscopic details of the fluid at a significantly lower computational

cost, compared to a molecular dynamics or Monte-Carlo simulations, the methodology

developed for the purposes of the present study may provide an attractive tool for

probing into the phase behavior of confined fluids.

Although capping a slit pore is a seemingly minor modification of its geometry,

it leads to a strikingly different and rich physics of wetting. In particular, the order

of condensation in a capped capillary depends on the applied temperature. It is first-

order at T ≤ Tcw and continuous at T > Tcw, thus capillary wetting temperature Tcw is

an important physical property of the system, which is determined by the microscopic

details of fluid-fluid and fluid-substrate interactions. The fact that Tcw and µcpw (T ) exist

in all of the capillaries considered and persist for both LDA and WDA for molecular fluid-

fluid repulsions, suggests that the change of the order of condensation at Tcw and the

existence of µcpw (T ) are generic features of the pore geometry. The width dependence

of Tcw is investigated, e.g., in our previous work [25], where we have found that with

increasing the pore width, Tcw tends to the planar wetting temperature Tw of the capping

wall. Increasing the width of the pore isolates the corners and the side walls of the capped

capillary, which lead to new physical effects. In particular, remnant wedge prefilling and

remnant prewetting may be manifested by the adsorption of capillary liquid drops in the

corners and films on the side walls of the capillary, respectively. The same effects can

be brought about by choosing a substrate material with a lower wetting temperature.

For example, the phase diagrams in figures 5(a) and 7 show how the remnant of wedge

prefilling is brought into play by changing the fluid-substrate potential, and the phase

diagrams in figures 9 and 10 show how the same effect occurs due to changes in the pore

width.

The classical DFT has shown a possibility of the triple point at T 3
cpd between gas,

corner drops and capillary liquid slab. Although, various fluctuation effects are omitted

within DFT, there still may exist regimes where the structural transitions in the fluid

near the capping wall can be experimentally accessible [29,48]. On the other hand, the

triple point at T 3
slt manifested by the coexistence between capillary vapor, liquid and
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prewetting films, is known to exist beyond the classical picture [30]. As we have seen, for

T > T 3
slt prewetting on the side walls takes place in continuous fashion. The prewetting

films are nucleated at the capping wall below µ̃pw, and grow with µ tending to µ̃pw,

so that in the limit µ → µ̃pw, there are stable thick prewetting films covering the side

walls of the capped capillary. Such behavior is demonstrative that prewetting on an

isolated wall and on a side wall of a capillary may have different orders. We believe the

continuous prewetting regime to be potentially important for experimental investigations

of prewetting, since, as far as we are aware, registering experimentally the existence of

the prewetting curve is notoriously difficult, as it spans a short range of temperatures

and also lies very close to bulk saturation [30]. As a result, using capped pores may

provide new possibilities and ideas to facilitate the design of intelligent experiments to

capture prewetting. Noteworthy also is that this possibility to observe wall prewetting

has been discussed, but not demonstrated as done here for capped capillaries, by Hauge

for 2D wedges [46] and by Saam for step-like substrates [19].

As already mentioned, our present study neglects the fluctuations of the fluid

density along the z-axis, because such an investigation requires a non-classical approach

such as, e.g., that used in [24], and is beyond what DFT can offer at the moment. The

capillary wave-like fluctuations of the interfaces along the z-axis are likely to affect the

transitions discussed here, especially near their respective critical points. Investigations

of criticality are certainly of interest and can form dedicated studies complementary

to the present one [24, 29, 48]. Other studies expanding the present investigation may

include wetting of non-homogeneous capped capillaries with corrugated or chemically

decorated walls, investigation of layering transitions on the side walls, which may occur

continuously, similarly to prewetting. The ramifications of multiple fluid phase equilibria

for lowering the nucleation barriers and various other dynamic processes are also of

interest, and may be investigated using dynamic DFT models, such as, e.g., those

developed by Goddard et al. [18, 49].
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Appendix A. Interaction potentials and working expressions

Here we provide the expressions for the interaction potentials, which were used in

computations. In all cases, the profile ρ (r) is obtained by solving the Euler-Lagrange

equation, (14). The non-local terms in (14) can be simplified considerably by integrating

over the directions along which the density is assumed to be invariant. The expressions
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that follow are based on the non-dimensionalization we have assumed throughout,

setting σ = 1 and ε = 1.

In 1D problems the attractive term in (10) takes the form ϕattr (y) ≡∫
dz
∫

dx ϕattr

(√
x2 + y2 + z2

)
:

ϕattr (y) =


−6π

5
, if |y| ≤ 1,

4π

(
1

5y10
− 1

2y4

)
, if |y| > 1.

(A.1)

The WDA weight-function in (13) takes the form:

W (y) =
3

4

(
1− y2

)
Θ (1− y) . (A.2)

In 2D problems ϕattr (x, y) ≡
∫

dz ϕattr

(√
x2 + y2 + z2

)
:

ϕattr (x, y) =



2

∞∫
√
1−r2

dz ϕ6−12
1,1

(√
r2 + z2

)
, if r ≤ 1,

3π

2

[
−
(

1

r

)5

+
21

32

(
1

r

)11
]
, if r > 1,

(A.3)

where r =
√
x2 + y2. Although the integral in the above expression can be given in

closed form for r ≤ 1, see, e.g., the appendix in the study by Pereira and Kalliadasis [50],

it is cumbersome and leads to roundoff errors and for these reasons it is computed

numerically. When r > 1, we use the exact expression provided. The WDA weight-

function in 2D problems is given by

W (x, y) =
3π

2

(
1− r2

)
Θ (1− r) . (A.4)

All integrals in (4)–(7) can be obtained in closed form. In order to do so, we first

found the potential V0, due to a substrate occupying the space {(x, y, z) : x ≤ 0, y ≤
0,−∞ < z <∞, namely:

V0 (x, y) = ρ0

∫ ∞
−∞

dz′
∫ 0

−∞
dy′
∫ 0

−∞
dx′ ×

ϕLJ
ε0,σ0

(√
(x− x′)2 + (y − y′)2 + z′2

)
. (A.5)

Computing the integrals yields

V0 (x, y) =
ρ0ε0σ

6
0π

3

(
− 1

x3
− 1

y3
+

2x4 + x2y2 + 2y4

2x3y3 (x2 + y2)1/2

)

+
2ρ0ε0σ

12
0 π

45

{
1

x9
+

1

y9

− 1

128x9y9 (x2 + y2)7/2
[
280

(
x10y6 + x6y10

)
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+128
(
x16 + y16

)
+ 35x8y8 + 560

(
x4y12 + x12y4

)
+448

(
x14y2 + x2y14

)]}
, (A.6)

so the substrate potentials are written as

Vwll (x) = V0 (x+H0,−y) + V0 (x+H0, y) , (A.7)

Vwdg (x, y) = Vwll (x) + V0 (−x−H0, y) , (A.8)

Vcpd (x, y) = Vslt (x) + Vwll (y)− V0 (x+H0, y +H0)

− V0 (−x−H0 −H, y +H0) . (A.9)

Note that it readily follows from (A.6) and (A.7), that the coated planar wall has a

well-known shifted “3-9” potential [33]:

Vwll (x) = 4πρ0ε0σ
3
0

(
−1

6

(
σ0

H0 + x

)3

+
1

45

(
σ0

H0 + x

)9
)
. (A.10)

Appendix B. Convergence test

Here we present the test performed to assess the rate of convergence of the solutions to

(14). Similar convergence tests for 1D and 2D problems can be found in our previous

works, [25, 31]. For LDA, we considered a pore with H = 30σ, ε0 = 0.7ε, σ0 = 2σ and

H0 = 5σ, at T = 0.9 and ∆µ = −8× 10−2, where ∆µ = µ− µsat is under-saturation at

the given T . For WDA, we considered a pore with H = 30σ, ε0 = 0.85ε, σ0 = 1.35σ

and H0 = 2.2σ, at T = 0.96 and ∆µ = −1.9 × 10−2. With these parameters, we

obtain density profiles which look similar to the density profile depicted in figure 2(a).

The reference profile, denoted by ρ0, was computed on a 162 × 80 grid along the x-

and y-directions, respectively. The computation was repeated to obtain solutions ρN
at coarser grids, where N is the total number of unknowns corresponding to the grids

32× 16, 48× 24, 72× 36 and 108× 54. In order to compare ρN with ρ0, we interpolated

both on a uniform grid of K = 40 × 60 points with the grid density of 2 points per

molecular diameter along each dimension, and computed the mean Euclidean norm of

the difference between the interpolated data:

E =
1

K

√√√√ K∑
i=0

[ρ
(i)
N − ρ

(i)
0 ]2. (B.1)

The results of this test are shown in figure B1, and demonstrate a satisfactory

performance of the spectral collocation numerical scheme. Note that the calculation

with WDA converges less rapidly due to the near-wall oscillatory structure of ρ (r).
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Figure B1. Convergence of solutions for 2D problems using LDA (grey) and WDA

(black) with the number N of grid points. Circles represent convergence data.
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Figure C1. Young’s contact angles (top panel) and planar wall prewetting curves

(bottom panel) of the substrates considered. The respective substrate parameters

{ε0, σ0, H0} are (left to right): {0.7, 2, 5} (LDA, Tw = 0.755), {0.85, 1.5, 2.8}
(WDA, Tw = 0.868), {0.85, 1.35, 2.2} (WDA, Tw = 0.927). The open circle shows

the graphical solution of Θ (Tf) = 45◦, which is used in section 3.2 to obtain the wedge

filling temperature.

Appendix C. Planar wetting

Here we provide the planar prewetting curves, ∆µpw (T ) = µpw (T ) − µsat (T ), and

Young’s contact angles, Θ (T ), for the fluid-substrate potentials considered, which allow

us to extract the values of Tw quoted throughout this work. The data is given in

the system of units where ε = 1 and σ = 1 in (10). The computation was done by

applying arc-length continuation in T to (15) with V (r) = Vwll (y), as discussed in

section 3.1, and detailed in our previous work [31]. We consider the following sets of

substrate parameters {ε0, σ0, H0}: for the fluid treated within WDA, we use {0.85, 1.35,

2.2} and {0.85, 1.5, 2.8}; for the fluid treated within LDA, we use {0.7, 2, 5}. The
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computed Θ (T ) and ∆µpw (T ) curves for each set of parameters are plotted in the top

and bottom panels of figure C1. As expected, the prewetting curves show a tangential

approach to saturation (∆µ ≡ 0) at Tw [19]. Young’s contact angles vanish at the

respective wetting temperatures, which further affirms the correct implementation of

our numerics, because in practice ∆µpw (T ) and Θ (T ) are obtained independently from

(15) and (14), respectively. Young’s contact angle is defined by

γwv − γwl = γlv cos Θ, (C.1)

where γwv and γwl are the surface tensions of the saturated vapor and liquid in contact

with the wall, respectively. The surface tension of a planar interface of area A is given

by [45]

γA = Ω + PAL⊥, (C.2)

where Ω is the grand potential (8), P is the pressure (17), and L⊥ is the dimension

of the system in the direction perpendicular to the interface. The surface tensions γwv

and γwl are obtained from (C.2) by setting P = Psat of saturation in (17) and using the

density profiles ρvap (y) and ρliq (y) of the saturated vapor and liquid in contact with

the planar wall, with ρvap (y) → ρvap and ρliq (y) → ρliq as y → ∞, respectively. The

liquid-vapor surface tension γlv is obtained in the same manner, by setting V (r) ≡ 0 in

(14) and solving for the density profile ρlv (y) of the free liquid-vapor interface, taking

ρlv (y)→ ρvap and ρlv (y)→ ρliq as y → ±∞, respectively.

Appendix D. Slope of capillary prewetting

For fixed H, ε0, σ0 and H0, the differential of the total energy of the fluid of N particles

inside the capped capillary is given by

dE = TdS − PdV + µdN + γdA, (D.1)

where S is the entropy, V is the fluid volume, γ is the interfacial tension and A is

the surface area. With the Gibbs dividing surfaces defined for all interfaces, each

extensive property can be expressed as the sum of volume and surface contributions,

e.g., N = ρV + nAA, where ρ and nA are the number of particles per unit volume and

per unit area, respectively. The Gibbs-Duhem relation, which follows from (D.1) has

the form

SdT − V dP +Ndµ+ Adγ = 0, (D.2)

which leads to the Clausius-Clapeyron equation for the slope of a phase coexistence

curve µcoex (T ) in the T – µ plane:

dµcoex

dT
= − S1 − S2

N1 −N2

, (D.3)

where N1, S1 and N2, S2 are the particle numbers and entropies of the coexisting fluid

phases. Equation (D.3) can be used, e.g., to relate the planar prewetting curve µpw (T )

to the saturation curve µsat (T ) [51–53]. Here we will use it to relate the prewetting curve
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µcpw (T ) of the capped capillary to the condensation curve µc (T ) of the associated slit

pore.

Consider a capillary with macroscopic dimensions L and R along the x- and z-axes,

respectively. The number of particles, N cpd
1 , in the fluid configuration, where a capillary

liquid slab of length l is separated from gas by a meniscus is approximately written as

N cpd
1 = ρcliqRHl + nc

l-wRH + 2nc
l-wRl + nc

l-gAl-g

+ ρcvapRH (L− l) + 2nc
g-wR (L− l) , (D.4)

where nc
l-w, nc

g-w and nc
l-g are the particle densities per area of the capillary liquid-wall,

gas-wall, and capillary liquid-gas interfaces, respectively, and Al-g is the area of the

capillary liquid-gas interface. Likewise, the number of particles N cpd
2 in the capillary

filled by gas is found from

N cpd
2 = ρcvapRHL+ nc

g-wRH + 2nc
g-wRL, (D.5)

so that

N cpd
1 −N cpd

2 = l
[
ρcliqRH + 2nc

l-wR−
(
ρcvapRH + 2nc

g-wR
)]

+RH
(
nc
l-w − nc

g-w

)
+ nc

l-gAl-g. (D.6)

For the entropies Scpd
1 and Scpd

2 , we use S = s̃V + sAA to obtain a similar expression,

where s̃ and sA are the entropies per unit volume and per unit area of the interface,

respectively

Scpd
1 − Scpd

2 = l
[
s̃cliqRH + 2scl-wR−

(
s̃cvapRH + 2scg-wR

)]
+RH

(
scl-w − scg-w

)
+ scl-gAl-g. (D.7)

Analogous considerations of the condensation in the associated slit pore lead to

N slt
1 −N slt

2 = L
[
ρcliqRH + 2nc

l-wR−
(
ρcvapRH + 2nc

g-wR
)]

(D.8)

Sslt
1 − Sslt

2 = L
[
s̃cliqRH + 2scl-wR−

(
s̃cvapRH + 2scg-wR

)]
, (D.9)

where the phases 1 and 2 correspond to the pore filled with capillary liquid and gas,

respectively. Substituting (D.6) and (D.7) into (D.3) with N1,2 ≡ N cpd
1,2 , S1,2 ≡ Scpd

1,2 and

µcoex ≡ µcpd, we take the limit l→∞ and obtain

dµcpw

dT
→ dµc

dT
, as l→∞. (D.10)

The equation above demonstrates that µcpw (T ) approaches µc (T ) tangentially, as the

length l of the coexisting capillary liquid slab grows. Furthermore, to leading order in l

the difference (dµc/dT )− (dµcpw/dT ) is inversely proportional to the first term on the

right hand side of (D.6). Noting that for the spatially varying fluid density this term is

given by the expression for Γ in (19) and that l→∞ is equivalent to Γ→∞, we arrive

at (22).
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