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of real metallic systems
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We present a systematic and comprehensive study of finite-size effects in diffusion quantum Monte
Carlo calculations of metals. Several previously introduced schemes for correcting finite-size errors
are compared for accuracy and efficiency, and practical improvements are introduced. In particular,
we test a simple but efficient method of finite-size correction based on an accurate combination of
twist averaging and density functional theory. Our diffusion quantum Monte Carlo results for lithium
and aluminum, as examples of metallic systems, demonstrate excellent agreement between all of the
approaches considered. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922619]

I. INTRODUCTION

Density functional theory (DFT) has dominated atomic-
scale materials modeling for the past three decades and
will continue to be extremely important. However, there are
plenty of problems where the accuracy of DFT falls short
of requirements. There are clear reasons to expect DFT to
struggle in strongly correlated solids, but these are not the only
systems for which DFT is insufficient. Take, for example, the
problem of distinguishing between molecular crystal phases
and competing low-energy polymorphs. Even in relatively
simple molecular solids such as crystalline benzene and its
polymorphs under pressure, the energy differences of interest
are less than a few kJ/mol. The most successful calculations
based on DFT are only reliable to ∼10 kJ/mol,1 and it has
recently been shown that the use of ab initio many-electron
wavefunction methods, such as quantum Monte Carlo (QMC),
is essential to tackle this problem successfully.2 Unlike DFT,
many-electron wavefunction methods can, in principle, be
improved systematically until the required convergence is
obtained.

Another important example is the adsorption of molecules
on surfaces, where DFT is sometimes unable to give predic-
tions of useful accuracy. DFT values of surface formation
energies of simple paradigmatic materials such as silicon
and magnesium oxide depend strongly on the assumed
exchange-correlation functional, and there is usually no way of
knowing in advance which functional to trust. The well-known
problem of calculating electronic band gaps could also be
mentioned.

The urgent practical need to go beyond DFT in these
and other areas is driving current efforts to develop more
accurate methods. There is abundant evidence that there are
large classes of problems for which QMC techniques, in
particular diffusion Monte Carlo (DMC), are considerably
more accurate than DFT.3–6 Just recently, using QMC methods,
chemically accurate ionization potentials have been obtained

a)s.azadi@imperial.ac.uk

for the first-row transition-metal atoms with a mean absolute
error of only 0.126 kcal/mol.7 By combining high accuracy
with good efficiency and scalability, QMC methods promise
to bring high accuracy to computational materials science as
a matter of routine.8

QMC simulations of extended systems are carried out
using finite simulation cells subject to periodic boundary
conditions. Practical and computational constraints restrict the
size of the simulation cell and so introduce finite-size (FS)
errors, which can be large and are one of the main problems
holding back the application of accurate QMC techniques
to solids.9,10 Quantifying and correcting these errors is an
essential part of all QMC simulations of extended systems,
particularly when high accuracy is required.

FS errors affect independent-particle approaches such as
DFT as well as many-body approaches such as QMC. For
calculations of perfect crystals, DFT FS errors can be reduced
simply by improving the accuracy of the Brillouin zone
integration, although the errors arise when periodic supercells
are used to model aperiodic systems which are less easily
dealt with. Independent-particle FS errors also affect many-
body calculations of perfect crystals13 and can be reduced
using twist averaging, which is the many-electron equivalent
of Brillouin zone integration. Even after twist averaging,
however, “many-body” FS errors with no independent-particle
analogues remain.

Another important contribution to the FS error in many-
body simulations of extended systems arises from the treat-
ment of the potential energy. The 1/r Coulomb interaction
is inconsistent with the periodicity of the simulation cell and
has to be replaced by the Ewald interaction, which is the
Green’s function of Poisson’s equation subject to periodic
boundary conditions. Unlike the Coulomb interaction, the
Ewald interaction depends on the size and shape of the
simulation cell, leading to additional finite-size errors.14 One
approach to circumventing this problem is to use a different
periodic function, the “model periodic Coulomb” (MPC)
interaction, in place of the Ewald interaction.14,16 Variational
quantum Monte Carlo (VMC)20,21 simulations using the MPC
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interaction suffer from smaller FS effects than simulations
using the standard Ewald interaction. It has also been shown
that using the MPC interaction reduces the FS errors in DMC
calculations of ground and excited states.17

A drawback of the MPC approach is that it only reduces
FS errors arising from the use of the Ewald interaction.
The charge density and exchange-correlation hole in a finite
simulation cell are often very similar to those of an infinite
solid, so the errors in the Coulomb energy are indeed primarily
due to the errors in the interaction, but the imposition of
periodic boundary conditions also affects the many-electron
wavefunction and thus the electronic kinetic energy. The
non-interacting part of the FS error in the kinetic energy
may be eliminated by twist averaging, but the many-body
contributions are not negligible.

Under the assumption that the low-k behaviour of the
structure factor is independent of the choice of simulation
cell, Chiesa et al.15 proposed a method to estimate the many-
body contributions to the FS errors in both the potential and
kinetic energies without abandoning the Ewald interaction.
Employing this correction, which is based on the random-
phase approximation at long wavelength, one can calculate
FS corrections within a single simulation.

Another approach to the treatment of many-body finite-
size errors is provided by the Kwee-Zhang-Krakauer (KZK)
functional,19 which adds a correction computed from the
difference between the DFT energy evaluated using the local
density approximation (LDA) for an infinite system and the
DFT energy evaluated using a modified LDA specifically
designed to reproduce the total energy of the finite simulation
cell, including FS errors. Both the standard LDA and the KZK
LDA are parameterized on the basis of DMC simulations of
cells of uniform electron gas subject to periodic boundary
conditions, but the standard LDA uses DMC energies that
have been extrapolated to infinite cell size while the KZK
LDA does not.

In this paper, we systematically study the problem of
eliminating FS errors from QMC calculations of real metallic
systems, taking lithium and aluminum as examples. We
analyze twist-averaged DMC energies obtained using the
Ewald interaction and the MPC interaction,14,16 and finite-
size corrections based on the Chiesa formalism15 and the
KZK functional.19 We also investigate DFT-based corrections
designed to improve imperfectly twist-averaged results and
consider how best to combine the use of twist-averaged
boundary conditions18 with the KZK functional.19

II. COMPUTATIONAL DETAILS

A. Diffusion quantum Monte Carlo calculations

The diffusion quantum Monte Carlo method is a stochastic
technique for obtaining the ground-state energy of a many-
electron system. DMC has been described in many previous
papers9,10 and will not be discussed in detail here, but since
this work is focused on technical aspects of DMC simulations
we start with a brief explanation.

The DMC algorithm solves the imaginary-time
Schrödinger equation,

∂Ψ(R, τ)
∂τ

=
1
2

Ne
i=1

∇2
riΨ(R, τ) − (V (R) − ET)Ψ(R, τ), (1)

where R = (r1,r2, . . . ,rNe) is a 3Ne-dimensional vector
defining the positions of all Ne electrons in the simulation cell,
τ is the imaginary time (a real variable despite its name), V (R)
is the potential energy including electron-electron interactions,
and ET is a constant energy offset. (We work in Hartree
atomic units, where the numerical values of ~, e, me, and
4πε0 are all equal to 1.) The imaginary-time Schrödinger
equation resembles a 3Ne-dimensional diffusion equation
with diffusion constant D = 1/2. The potential energy term
causes the diffusers to “branch” (multiply or die out) at
a position-dependent rate. The wavefunction Ψ(R, τ) is the
number density of diffusers, which are normally known
as walkers or configurations and are points in the 3Ne-
dimensional configuration space, not individual electrons. The
DMC algorithm uses this simple physical interpretation to
simulate the imaginary-time evolution of the wavefunction
using a finite population of diffusing and branching walkers.

Solving the imaginary-time Schrödinger equation is
useful because it projects out the ground state as τ → ∞. If
the initial wavefunction is expanded as a linear combination of
energy eigenfunctions,Ψ(τ = 0) = i ciΨi, the solution of the
imaginary-time Schrödinger equation ∂Ψ/∂τ = −(Ĥ − ET)Ψ
is

Ψ(τ) =

i

cie−(Ei−ET )τΨi. (2)

Thus, as long as c0 , 0, the wavefunction Ψ(τ) becomes
proportional to Ψ0 as τ → ∞. By gradually adjusting ET to
maintain the normalization of the solution in the large τ limit,
we can find the ground-state energy E0.

An obvious difficulty with this approach is that the
wavefunction Ψ(R, τ), which is not necessarily positive, is
interpreted as a walker density, which must be positive. In fact,
a naive application of the DMC algorithm to a many-electron
system yields a totally symmetric many-boson ground state of
no physical interest. The fixed-node approximation introduces
a trial many-electron ground-state wavefunction, ΨT(R), and
forbids walker moves that cause ΨT to change sign. As long
as ΨT is properly antisymmetric, this is sufficient to ensure
that a fermionic solution is obtained. It may be shown9,11

that energies calculated within the fixed-node approximation
are variational: the result is greater than or equal to the
many-fermion ground-state energy and tends to the exact
energy as the (3Ne − 1)-dimensional nodal surface on which
ΨT = 0 tends to the ground-state nodal surface. The fixed-
node approximation is required for DMC simulations of large
systems but is the only fundamental limitation of the method.
Other approximations, such as the use of a finite time step or
the representation of ions by pseudopotentials, can be made
negligible or avoided given sufficient computer time. Fixed-
node DMC energies are in most cases comparable in accuracy
to energies calculated using the coupled-cluster single double
(triple) (CCSD(T)) method,12 which is often known as the
“gold standard” of quantum chemistry.

The diffusion/branching simulation described above is
unstable in practice because the potential energy V (R) diverges
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whenever electrons approach nuclei or each other, leading
to uncontrollable branching. This problem can be overcome
using an importance-sampling technique. The imaginary-time
Schrödinger equation is re-expressed in terms of the quantity
f (R, τ) = ΨT(R)Ψ(R, τ) to obtain

∂ f (R, τ)
∂t

=
1
2
∇2

R f (R, τ) − ∇R · [v(R) f (R, τ)]
− [EL(R) − ET] f (R, τ), (3)

where ∇R = (∇r1,∇r2, . . . ,∇rNe
) is the 3Ne-dimensional

gradient operator, ∇2
R = ∇R · ∇R is the corresponding Lapla-

cian, v(R) = ∇R ln |ΨT(R)| is the 3Ne-dimensional drift
velocity vector, and EL(R) = (1/ΨT(R))ĤΨT(R) is the local
energy. The importance-sampled imaginary-time Schrödinger
equation describes a diffusion process similar to that discussed
above, except that the walkers now drift with velocity v(R)
as well as diffusing and branching. The branching rate is
determined by the shifted local energy EL(R) − ET instead of
the shifted potential energy V (R) − ET . If the trial function is
a good approximation to the ground state, the local energy
is a smooth function of R, and the numerical difficulties
caused by divergences in V (R) are avoided. The fixed-node
approximation is imposed by rejecting walker moves that
change the sign of ΨT(R).

Our DMC simulations used the CASINO QMC code22

and a trial function of Slater-Jastrow (SJ) form,

ΨT(R) = exp[J(R)] det[ψn(r↑i )] det[ψn(r↓j)], (4)

where r↑i is the position of the i-th spin-up electron, r↓j is
the position of the j-th spin-down electron, exp[J(R)] is the
Jastrow factor, and det[ψn(r↑i )] and det[ψn(r↓j)] are Slater
determinants of spin-up and spin-down one-electron orbitals,
respectively. These orbitals were obtained from DFT calcula-
tions using the plane-wave-based Quantum Espresso code.23

A norm-conserving pseudopotential constructed within DFT
using the Perdew-Zunger parameterization of the local density
approximation24 was employed. We chose a very large basis-
set cutoff of 300 Ry to guarantee converge to the com-
plete basis-set limit.25 The one-electron orbitals, originally
expressed as linear combinations of plane waves, were
transformed into a blip polynomial basis for efficiency.26

The Jastrow function J(R) consisted of polynomial one-body
electron-nucleus (en) and two-body electron-electron (ee)
terms, the parameters of which were optimized by variance
minimization at the variational Monte Carlo level.27–30

B. Finite-size errors and correction methods

QMC FS errors are conventionally separated into one-
body and many-body contributions. One-body (independent-
particle) errors arise from the non-interacting kinetic, poten-
tial, and Hartree energies and include shell-filling effects.
These errors can be removed by twist averaging.18 Many-
body errors arise from the effects of exchange and correlation
on the Coulomb and kinetic energies and are not removed
by twist averaging. As explained in the Introduction, various
techniques may be used to reduce or cancel these errors, but
none is entirely successful and care is required. The oldest

approach is extrapolation, which remains useful. The use
of the modified periodic Coulomb interaction14,16,17 reduces
the Coulomb errors but not the kinetic energy errors and
must therefore be combined with other techniques. The
LDA-based KZK approach19 applies corrections obtained
from DFT calculations carried out using a modified exchange-
correlation functional explicitly designed to mimic the DMC
many-body errors.

To remove single-particle errors and eliminate shell
effects in the kinetic energies of metallic systems, we use
twist-averaged boundary conditions.18 A twist ks is imposed
by insisting that the many-electron wavefunction Ψks obeys
the Bloch boundary condition

Ψks(r1, . . . ,ri + L, . . . ,rNe)
= exp(iks · L)Ψks(r1, . . . ,ri, . . . ,rNe) (5)

for all electrons i, where L is any simulation-cell lattice vector.
Expectation values of observables are obtained by averaging
over twist vectors ks uniformly distributed over the simulation-
cell Brillouin zone,

⟨O⟩ = 1
Ntwist


ks

⟨Ψks |O |Ψks⟩. (6)

The twists can be chosen from a uniform Monkhorst-Pack
grid,31 preferably offset from Γ, or can be chosen randomly,
as in this work. The number of twists should be as large as
computational resources allow.

As the twist ks varies, the energies of some of the one-
electron states appearing in the Slater determinants may cross
the Fermi level. In the canonical approach to twist averaging,
the electron number is kept constant and the Fermi level is
allowed to vary with twist. This makes the twist-averaged
total energy slightly too large,10,18 but the bias reduces as the
simulation-cell increases in size and is normally negligible.
In the grand canonical approach to twist averaging, the
Fermi energy is fixed and the electron number is allowed
to vary with ks. As was demonstrated in Ref. 10, energies
obtained using grand-canonical twist averaging exhibit much
larger fluctuations than energies obtained using canonical twist
averaging with the same number of twists. Furthermore, these
fluctuations die away very slowly as the number of twists
is increased. To save effort, applications of QMC to real
systems normally use the smallest number of twists possible,
so canonical twist averaging is preferable despite the fact that it
suffers from small systematic errors. This work only considers
twist averaging within the canonical ensemble.

In metallic systems, even when substantial computational
resources are expended, the FS errors due to incomplete twist
averaging are substantial. We therefore define an incomplete-
twist-averaging correction as follows:

∆BZ = EDFT(∞) − EDFT
TAV (L), (7)

where EDFT(∞) is the DFT energy computed using a fully
converged k-point mesh, and

EDFT
TAV (L) = 1

Ntwist


ks

EDFT(L,ks) (8)
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is the twist-averaged DFT energy obtained using the same
simulation cell and set of twists as the DMC simulation.
The incomplete-twist-averaging correction tends to zero as
the DMC twist averaging is improved and works well if the
independent-particle finite-size errors are well approximated
by their DFT equivalents. In practice, this approach allows
accurate results to be obtained with surprisingly small sets of
DMC twists, even in metals.

We analyze three different methods for correcting the
many-body FS errors in DMC results. Two of these use
the structure-factor-based corrections proposed by Chiesa
et al.10,15 The first employs the standard Ewald form of
the periodic Coulomb interaction and Chiesa corrections for
both the kinetic and potential energies; the second uses the
MPC14,16,17 to deal with the Coulomb errors and a Chiesa
correction for the kinetic energy only. Results obtained with
both of these methods are expected to be similar in quality.10

The third FS-correction method considered here is the
KZK approach,19 which uses a system-size-dependent local
density approximation fitted to the results of DMC simulations
of finite cubic simulation cells of uniform electron gas. DFT
energies calculated using the KZK functional incorporate
DMC FS errors within an approximation analogous to the
LDA. To estimate the FS error in the DMC total energy of a
given simulation cell, the DFT total energy of exactly the same
simulation cell is calculated using the KZK functional. The
difference between this value and the DFT energy of an infinite
simulation cell calculated using the standard LDA provides an
estimate of the DMC FS error. The KZK functional was not
originally combined with twist averaging, but the combination
is easy to implement (see below) and very successful.

In the following, we explain how to combine twist
averaging and KZK corrections. In general, any FS correction
can be written as

∆EFS(L) = ∆FS
1B(L) + ∆FS

MB(L), (9)

where ∆FS
1B(L) includes contributions from the Hartree energy,

the electron-nuclear Coulomb interaction energy, and the one-
body component of the kinetic energy, while∆FS

MB(L) is a many-
body term that includes contributions from the exchange-
correlation energy and the many-body part of the kinetic
energy. More precisely, ∆FS

1B(L) may be defined as that part
of the total finite-size error that is also present in a DFT
calculation for the same simulation cell and can be corrected
using DFT results.

In their original paper,19 Kwee, Zhang, and Krakauer
considered the finite-size errors affecting a QMC simulation
carried out in a supercell of L × L × L primitive unit cells with
twist ks = 0. The corresponding one-particle finite-size error
is

∆
FS
1B(L) = EDFT(∞) − EDFT(L), (10)

where EDFT(∞) is the DFT energy obtained using a fully
converged k-point mesh and EDFT(L) is the Γ-point DFT
energy of the supercell. This, of course, can be calculated
using an L × L × L Monkhorst-Pack grid of k points in the
primitive Brillouin zone. Since ks = 0, the Monkhorst-Pack
grid includes the origin. The KZK approximation to the

many-body finite-size error is

∆
FS
MB(L) ≈ EDFT(L) − EKZK(L), (11)

where EKZK(L) is the Γ-point DFT energy of the supercell
computed using the KZK functional instead of the standard
LDA. The KZK approximation to the total finite-size error is

∆EFS(L) = ∆FS
1B(L) + ∆FS

MB(L) ≈ EDFT(∞) − EKZK(L). (12)

If twist averaging is used, the DMC energy becomes a
function of the twist ks, which lies in the small Brillouin
zone corresponding to the simulation supercell. The Slater
determinants appearing in the twisted trial wavefunction are
built using orbitals from a Monkhorst-Pack grid of L × L × L k
points within the larger primitive Brillouin zone, offset
by ks from the origin. In a DFT context, carrying out a
supercell calculation at a non-zero twist ks is equivalent to
approximating the integration over the primitive Brillouin zone
by a quadrature over this offset grid of k points.

To help analyze the FS errors, we write the DMC ground-
state energy of the infinite simulation cell as

EDMC(∞) ≈ EDMC
TAV (L) + ∆EFS

TAV(L), (13)

where

EDMC
TAV (L) = 1

Ntwist


ks

EDMC(L,ks) (14)

is the twist-averaged DMC energy of the L × L × L simulation
cell and ∆EFS

TAV(L) is the required FS correction. In the spirit
of KZK, this is approximated using the formula

∆EFS
TAV(L) ≈ EDFT(∞) − EKZK

TAV (L), (15)

where EDFT(∞) is the DFT energy computed within the LDA
using a fully converged k-point mesh (which in this work
means 28 × 28 × 28) and

EKZK
TAV (L) = 1

Ntwist


ks

EKZK(L,ks) (16)

is the twist-averaged KZK energy for the supercell, computed
using the same set of Ntwist twists employed in the DMC
simulations. The FS correction, ∆EFS

TAV(L), accounts both for
the many-body FS errors and for any one-body FS errors not
removed by the limited twist averaging employed in the DMC
simulations.

The use of twisted boundary conditions requires the use of
complex trial wavefunctions and increases the computational
cost a little because complex arithmetic is slower than
real arithmetic. In the VMC and wavefunction optimization
algorithms, since the expectation values of Hermitian oper-
ators must be real, only the real parts of the local-energy
components need to be calculated and collected. The run-time
and programming-time costs of twist averaging are therefore
small. The use of a complex trial function in DMC requires
the replacement of the fixed-node approximation, in which
the DMC wavefunction is constrained to have the same sign
as the trial wavefunction, by the fixed-phase approximation,35

in which the DMC and trial wavefunctions are constrained
to have the same phase. In practice, however, the fixed-node
and fixed-phase algorithms are very similar and little extra
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TABLE I. DMC energies of metallic lithium for different numbers N of atoms in the simulation cell. Every
energy appearing in the table is the outcome of a single Γ-point DMC simulation for the appropriate simulation
cell. Results obtained by applying Chiesa kinetic (∆KE) and potential (∆PE) finite-size corrections to DMC
energies calculated using the Ewald interaction agree well with results obtained by applying only the Chiesa
kinetic correction to DMC energies calculated using the modified periodic Coulomb interaction. Despite the
application of many-body finite-size corrections, the calculated energy depends strongly on the size of the
simulation cell. This indicates that the single-particle finite-size errors are large. Energies are in eV per atom.

N Ewald Ewald+∆KE Ewald+∆PE Ewald+∆KE+∆PE MPC MPC+∆KE

32 −6.943 07(3) −6.922 46(3) −6.874 50(3) −6.853 89(3) −6.862 19(4) −6.841 57(4)
48 −6.979 20(7) −6.978 52(7) −6.917 29(7) −6.916 61(7) −6.916 61(6) −6.915 93(6)
72 −6.982 53(3) −6.979 81(3) −6.944 71(3) −6.942 05(3) −6.940 62(3) −6.937 90(3)
96 −6.970 63(5) −6.968 45(5) −6.940 15(5) −6.938 04(5) −6.943 82(5) −6.941 71(5)
144 −6.894 91(2) −6.890 89(2) −6.876 34(2) −6.872 32(2) −6.876 40(2) −6.872 46(2)

coding is required: the real part of the drift vector is used
when proposing trial electron moves; it is neither necessary
nor possible to reject node-crossing electron moves, and, as in
VMC, only the real parts of the local energies are gathered.
Another important issue in twist averaging is the Jastrow
factor. This work uses the same optimized Jastrow for each
twist vector, as we found that re-optimizing the Jastrow factor
at every twist provides negligible improvements in the final
results.36 We note, finally, that the VMC or DMC runs at each
twist can be relatively short and need not be fully converged.
The idea is that we collect enough data to achieve an acceptable
error bar when the data are averaged over all twist vectors. If
a normal run without twist averaging takes N moves to arrive
at an acceptable error bar, each twist angle needs only to be
run for around N/Ntwist moves.

III. RESULTS AND DISCUSSION

This section presents DMC results obtained using
the three different FS-correction methods explained in the
Sec. II B. As simple example metals, we have studied
lithium (Li) and aluminum (Al), with one and three valence
electrons, respectively. The frozen ionic cores are represented
by non-local norm-conserving LDA pseudopotentials. The
KZK functional is essentially a LDA, so the use of LDA
pseudopotentials allows us to obtain a consistent comparison
of all three finite-size-correction approaches considered. There
is evidence that Hartree-Fock pseudopotentials may produce
more accurate results than LDA pseudopotentials when used in
DMC simulations, but since our aim is to investigate FS errors,

and since these are almost independent of pseudopotential, no
advantage would be gained by using another pseudopotential
type. To check the accuracy and convergence of the DMC
energy as a function of the number of atoms N in the
simulation cell, we have performed calculations for a range of
different values of N (and thus also different values of L).

We first investigate the effects of applying Chiesa and
MPC corrections to the results of Γ-point DMC simulations
with no twist averaging. Table I shows the Γ-point DMC
results for Li obtained using various different FS correc-
tion methods. As expected,10 results (denoted Ewald + ∆KE
+ ∆PE) obtained by adding Chiesa kinetic and potential
energy corrections to the DMC energy calculated using the
Ewald interaction are in good agreement with results (denoted
MPC + ∆KE) obtained using the modified periodic Coulomb
interaction with a Chiesa correction for the kinetic energy only.
Note that the higher-order kinetic energy corrections defined
according to Eq. (55) in Ref. 10 are included in ∆KE. Because
of the lack of twist averaging, the single-body FS errors are
large and the calculated ground-state energies depend strongly
on the size of the simulation cell. The choice of the Γ-point,
ks = 0, maintains the symmetry of the system but usually
increases shell-filling effects in metallic systems, making the
independent-particle FS errors even worse. It is clear, however,
that no calculation carried out at a single twist vector will yield
satisfactorily accurate results. The use of twist averaging is
essential in metals.

Tables II and III present twist-averaged DMC results for
Li and Al, respectively, again corrected using the Chiesa and
MPC approaches. The integration over the simulation-cell

TABLE II. DMC energies of lithium for different numbers N of atoms in the simulation cell. Every energy
appearing in the table is an average of the outcomes of 24 separate DMC simulations with different randomly
chosen twists. Results obtained by applying Chiesa kinetic (∆KE) and potential (∆PE) finite-size corrections to
DMC energies calculated using the Ewald interaction agree well with results obtained by applying only the Chiesa
kinetic correction to DMC energies calculated using the modified periodic Coulomb interaction. The use of twist
averaging has much reduced the independent-particle finite-size errors observed in Table I. Energies are in eV per
atom.

N Ewald Ewald+∆KE Ewald+∆PE Ewald+∆KE+∆PE MPC MPC+∆KE

32 −7.0008(4) −6.9802(4) −6.9334(4) −6.9128(4) −6.9301(6) −6.9095(6)
48 −6.9708(4) −6.9699(4) −6.9100(4) −6.9092(4) −6.9089(5) −6.9080(5)
72 −6.9590(3) −6.9563(3) −6.9207(3) −6.9180(3) −6.9203(2) −6.9177(2)
96 −6.9489(2) −6.9467(2) −6.9184(2) −6.9162(2) −6.9207(2) −6.9176(2)
144 −6.9291(2) −6.9251(2) −6.9113(2) −6.9073(2) −6.9118(2) −6.9078(2)
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TABLE III. DMC energies of aluminum for different numbers N of atoms in the simulation cell. Every energy
appearing in the table is an average of the outcomes of 24 separate DMC simulations with different randomly
chosen twists. Results obtained by applying Chiesa kinetic (∆KE) and potential (∆PE) finite-size corrections to
DMC energies calculated using the Ewald interaction agree well with results obtained by applying only the Chiesa
kinetic correction to DMC energies calculated using the modified periodic Coulomb interaction. Energies are in
eV per atom.

N Ewald Ewald+∆KE Ewald+∆PE Ewald+∆KE+∆PE MPC MPC+∆KE

24 −56.175(2) −56.170(2) −55.932(2) −55.927(2) −56.095(2) −56.091(2)
32 −56.203(1) −56.152(1) −56.074(1) −56.022(1) −56.0585(2) −56.003(2)
48 −56.155(1) −56.138(1) −56.048(1) −56.031(1) −56.058(2) −56.041(2)
72 −56.0922(7) −56.0808(7) −56.0212(7) −56.0098(7) −56.0226(8) −56.0112(8)

Brillouin zone that produces the twist-averaged energy would
completely remove the single-particle FS errors if carried out
exactly, but in practice, the integration has to be approximated
as a summation over a finite set of twists. The summation
tends to the integral as either the number N of atoms in
the simulation cell or the number Ntwist of twists used tends
to infinity but is far from perfect in practice. Checking the
convergence with respect to both N and Ntwist is important,
since fully twist-averaged calculations for finite simulation
cells still contain many-body FS errors and do not necessarily
provide accurate results. The main reason is that the fully twist-
averaged exchange-correlation energy still depends on N , even
though the one-electron part of the fully twist-averaged kinetic
energy does not. Comparing the finite-size-corrected and
twist-averaged DMC energies from Table II with the Γ-point
energies from Table I shows that twist averaging much reduces
the finite-size errors and allows accurate results to be obtained
using much smaller simulation cells. In this particular case (but
not in general), it also produces a lower ground state energy.

Our twist-averaged DMC results were obtained using 24
randomly sampled twists (values of ks) in the simulation-
cell Brillouin zone. Two other practical sampling schemes
exist. One is to use a uniform Monkhorst-Pack grid31 of ks

points centered on the Γ-point of the simulation-cell Brillouin
zone, and the other is to use a uniform grid centered on the
Baldereschi point32 of the simulation-cell Brillouin zone. As
either the number of twists or the size of the simulation cell
tends to infinity, all three twist-averaging methods yield the
same results.

In applications of DMC to real systems using computers
routinely available to researchers, it is rarely possible to
treat very large simulation cells or numbers of twists.
Restricting the number of twists is particularly problematic
in metallic systems, where the Fermi surface discontinuity
makes the integrand (for example, the total kinetic energy)
a discontinuous function of ks at zero temperature. The
convergence with system size and number of twists is therefore
much slower for metals than for insulators. Hartree-Fock
calculations for the uniform electron gas10 show that energies
obtained using Baldereschi twist averaging converge faster
than energies obtained using random twist averaging at very
large numbers of twists (although it could be argued that the
choice of the Baldereschi point introduces a systematic bias
into the unconverged results), but that both methods converge
slowly. Here, we show that the use of the incomplete-twist-
averaging correction defined in Eq. (7) allows well-converged

results to be obtained with very small numbers of twists. The
choice between Baldereschi and random twist sampling is then
unimportant.

Tables IV and V compare twist-averaged DMC re-
sults obtained using the ∆BZ incomplete-twist-averaging FS
correction and several different many-body FS-correction
methods. The convergence of the FS-corrected DMC energies
with system size N is excellent and there is no difficulty in
reaching an accuracy of a few meV per atom. As before,
our DMC energies are averages over 24 randomly chosen
twists in the simulation-cell Brillouin zone, corresponding to
24 randomly translated L × L × L Monkhorst-Pack k-point
meshes in the primitive Brillouin zone. We also carried
out twist-averaged DMC calculations using 36 twists; the
change in the total energy was less than 1.5 meV/atom for
Li and less than 2.7 meV/atom for Al. This shows that twist-
averaged DMC energies including ∆BZ corrections converge
very rapidly as the number of twists is increased.

Figure 1 shows how the FS-corrected DMC energies
of metallic Li depend on system size, allowing an easy
comparison of the three different many-body FS-correction
methods considered in this work. All DMC energies are
averaged over 24 randomly chosen twists and include ∆BZ
corrections. Red squares indicate DMC results calculated
using the Ewald interaction with Chiesa corrections for the
kinetic and potential energies (Ewald + ∆KE + ∆PE + ∆BZ);
green circles indicate DMC results obtained using the modified

TABLE IV. DMC energies of lithium for different numbers N of atoms
in the simulation cell. Every DMC energy is an average of the outcomes
of 24 separate DMC simulations with different randomly chosen twists.
The incomplete-twist-averaging finite-size correction ∆BZ is included in all
energies. Results obtained by applying the Chiesa kinetic (∆KE) and potential
(∆PE) finite-size corrections to DMC energies calculated using the Ewald
interaction agree well with results obtained by applying the Chiesa kinetic
correction to DMC energies calculated using the modified periodic Coulomb
interaction. Results obtained using the twist-averaged KZK method, which
also include an equivalent of the ∆BZ correction, are also in good agreement.
Energies are in eV per atom.

N Ewald+∆KE+∆PE+∆BZ MPC+∆KE+∆BZ TAV-KZK

32 −6.9299(4) −6.9267(4) −6.9126(4)
48 −6.9183(4) −6.9172(4) −6.9095(4)
72 −6.9186(3) −6.9182(3) −6.9126(3)
96 −6.9149(2) −6.9163(2) −6.9123(2)
144 −6.9142(2) −6.9147(2) −6.9125(2)
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TABLE V. DMC energies of aluminum for different numbers N of atoms
in the simulation cell. Every DMC energy is an average of the outcomes
of 24 separate DMC simulations with different randomly chosen twists.
The incomplete-twist-averaging finite-size correction ∆BZ is included in all
results. Results obtained by applying the Chiesa kinetic (∆KE) and potential
(∆PE) finite-size corrections to DMC energies calculated using the Ewald
interaction agree well with results obtained by applying the Chiesa kinetic
correction to DMC energies calculated using the modified periodic Coulomb
interaction. Results obtained using the twist-averaged KZK method, which
also include an equivalent of the ∆BZ correction, are also in good agreement.
Energies are in eV per atom.

N Ewald+∆KE+∆PE+∆BZ MPC+∆KE+∆BZ TAV-KZK

24 −56.019(2) −56.183(2) −56.025(2)
32 −56.088(1) −56.069(2) −56.088(1)
48 −56.078(1) −56.088(2) −56.081(1)
72 −56.0607(7) −56.0621(8) −56.0626(7)

periodic Coulomb interaction with Chiesa corrections for the
kinetic energy only (MPC + ∆KE + ∆BZ); and blue circles
indicate KZK-corrected DMC results, again incorporating
∆BZ corrections. Even for the smallest simulation cell
considered, with just 32 atoms, the errors in the Ewald
+ ∆KE + ∆PE + ∆BZ and MPC + ∆KE + ∆BZ total energies
are only 15.7 and 12 meV/atom, respectively. The errors in
Ewald DMC energies corrected using the KZK scheme are
even smaller, at approximately 3 meV/atom.

We emphasize the importance of the success of the twist-
averaged KZK method from a practical point of view. It is
known, for example, that the cheap and widely used DFT
approach often fails to provide accurate enough results33 to
understand the behavior of materials at high pressure. There-
fore, to study the very interesting phase diagram of Li,34 it will
be necessary to perform full many-body computations, most
likely using DMC. The drawback is that DMC calculations
are typically at least a 1000 times more expensive than DFT
calculations. The twist-averaged KZK approach allows one to
investigate a large number of possible crystal structures and

FIG. 1. Total DMC energies of Li as function of the number of particles in
the simulation cell. All energies are averaged over 24 randomly chosen twists
and include ∆BZ corrections. Red squares indicate DMC results calculated
using the Ewald interaction with Chiesa corrections for the kinetic and
potential energies (Ewald+∆KE+∆PE+∆BZ); green circles indicate DMC
results obtained using the modified periodic Coulomb interaction with Chiesa
corrections for the kinetic energy only (MPC+∆KE+∆BZ); and blue circles
indicate KZK-corrected DMC results, again incorporating ∆BZ corrections.

FIG. 2. Total DMC energies of Al as function of the number of particles in
simulation cell. All energies are averaged over 24 randomly chosen twists
and include ∆BZ corrections. Red squares indicate DMC results calculated
using the Ewald interaction with Chiesa corrections for the kinetic and
potential energies (Ewald+∆KE+∆PE+∆BZ); green circles indicate DMC
results obtained using the modified periodic Coulomb interaction with Chiesa
corrections for the kinetic energy only (MPC+∆KE+∆BZ); and blue circles
indicate KZK-corrected DMC results, again incorporating ∆BZ corrections.

construct the Li phase diagram whilst keeping the cost of the
DMC simulations within reasonable bounds.

Figure 2 shows how the FS-corrected DMC energy of
metallic Al depends on the number of atoms in the simulation
cell. All DMC energies are averaged over 24 randomly chosen
twists and include ∆BZ corrections. Red squares indicate
FS-corrected results obtained using the Ewald interaction
with Chiesa corrections for the kinetic and potential energies
(Ewald + ∆KE + ∆PE + ∆BZ); green circles indicate DMC
results obtained using the MPC interaction with Chiesa
corrections for the kinetic energy only (MPC + ∆KE + ∆BZ);
and blue circles indicate KZK-corrected DMC results, again
incorporating ∆BZ corrections. For all simulation-cell sizes,
the Ewald + ∆KE + ∆PE + ∆BZ and KZK results are in
almost perfect agreement. The difference between the MPC
+ ∆KE + ∆BZ energies and those obtained using the other
two FS-correction methods is about 7 meV/atom for a cell
containing just 48 atoms and decreases rapidly with increasing
simulation-cell size.

The results of this section have shown that the addition
of an incomplete twist-averaging correction, ∆BZ, allows
accurate results to be obtained with a remarkably small number
of twists, even for metals. In most of the cases studied (except
for the 96-atom Li simulation cell), the ∆BZ correction lowers
the total DMC energy. The values of ∆BZ for Li simulation
cells containing 32, 48, 72, 96, and 144 atoms are −0.0171,
−0.0091, −0.0006, +0.0013, and −0.0069 eV, respectively. In
the case of Al simulation cells containing 24, 32, 48, and 72
atoms, the values of ∆BZ are −0.092, −0.066, −0.047, and
−0.050 eV, respectively. A recent paper by Shulenberger and
Mattsson37 provided accurate benchmark DMC results for a
wide range of different bulk materials. They required 216 and
64 twists to obtain converged results for Li and Al supercells
containing 28 and 108 atoms, respectively. Because we use
incomplete twist-averaging corrections, ∆BZ, we are able
to obtain similarly accurate results with considerably fewer
twists.
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IV. CONCLUSION

We have systematically analyzed and compared the
various schemes that have been proposed for correcting FS
errors in QMC simulations of real metallic systems. We have
explained how to combine the use of twist-averaged boundary
conditions with the KZK functional and shown the value of
incomplete-twist-averaging corrections based on DFT. The
reassuring news is that all of the commonly used approaches
work well.

We believe that the use of DFT-based incomplete-twist-
averaging corrections will have an important role to play in
DMC simulations of real metallic systems. The reliance on
DFT could be considered a drawback, but it is important to bear
in mind that any valid FS-correction method must yield the
same total energy in the limit of a large enough simulation cell.
The important question is not whether the unattainable limiting
value is correct but how rapidly it is approached. The use of
incomplete-twist-averaging corrections significantly improves
this convergence. Furthermore, energies calculated using the
twist-averaged KZK scheme (which implicitly incorporates
a ∆BZ incomplete-twist-averaging correction) often settle
down to a system-size-independent constant more quickly
than energies calculated using other methods incorporating
∆BZ corrections.

We believe that this paper will provide a useful guide and
benchmark for researchers using QMC and other many-body
electronic structure methods such as CCSD(T) and the Green’s
function methods such as GW approximation to study metallic
systems.
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