
Automated Framework for FPGA-Based
Parallel Genetic Algorithms

Liucheng Guo, David Thomas
Dept. of EEE

Imperial College London, UK
Email: {gl512, dt10}@ic.ac.uk

Ce Guo, Wayne Luk
Dept. of Computing

Imperial College London, UK
Email: {ce.guo10, w.luk}@ic.ac.uk

Abstract—Parallel genetic algorithms (pGAs) are a variant of
genetic algorithms which can promise substantial gains in both
efficiency of execution and quality of results. pGAs have attracted
researchers to implement them in FPGAs, but the implementation
always needs large human effort. To simplify the implementa-
tion process and make the hardware pGA designs accessible
to potential non-expert users, this paper proposes a general-
purpose framework, which takes in a high-level description of
the optimisation target and automatically generates pGA designs
for FPGAs. Our pGA system exploits the two levels of parallelism
found in GA instances and genetic operations, allowing users to
tailor the architecture for resource constraints at compile-time.
The framework also enables users to tune a subset of parameters
at run-time without time-consuming recompilation. Our pGA
design is more flexible than previous ones, and has an average
speedup of 26 times compared to the multi-core counterparts over
five combinatorial and numerical optimisation problems. When
compared with a GPU, it also shows a 6.8 times speedup over a
combinatorial application.

I. INTRODUCTION

Genetic algorithms (GAs) have been shown to be effective
in solving optimization problems. Parallel GA (pGA) is a type
of GA which contains a number of GA instances evolving and
exchanging information in parallel. As the search processes
of GA instances are conducted in different areas of the search
space, pGAs can both decrease execution time and improve the
quality of solutions [1]. However, CPU-based pGAs may need
acceleration for real-time problems, and are not suitable for
embedded systems due to the high power consumption [14].

There have been previous attempts to adapt pGAs to
FPGAs for acceleration or low power consumption [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. However,
designing an FPGA-based pGA is not as easy as implementing
multiple hardware blocks supporting a set of GA instances.
Major challenges behind a good design include the following.
First, the information exchange between GA instances requires
communication. The design of the commutation scheme is
closely related to hardware resource consumption as well as the
optimisation power. Second, pGA systems are more complex
than single-thread ones because the user needs to control the
parallelism in addition to the optimisation routine. This com-
plexity brings difficulties to users especially for unprofessional
ones. Third, it might be necessary to recompile the system
after modification. As a compilation may take a long time,
a useful pGA design should be able to avoid unnecessary
recompilation. To address these challenges and make the pGA

designs accessible to non-expert users, we proposes a pGA
framework with the following contributions:

1) A general-purpose pGA framework for creating and
running multiple GA instances with an effective com-
munication scheme. (Section III.D)

2) A customisable pGA architecture which exploits both
fine and coarse-grained parallelism, allowing non-
expert users to specify problem settings and architec-
ture options in a high level without hardware design
expertise. (Section III and IV.B)

3) A fine-tuning mechanism for the pGA architecture,
enabling users to tune a set of run-time parameters
without recompiling the design. (Section IV.C)

After a qualitative comparison with existing FPGA-based
designs, our work shows improved flexibility in hardware
architecture and run-time tuning. When compared with a multi-
core CPU, our design shows an average speedup of 26 times
for an NP-hard combinatorial application and four numerical
benchmarks; when compared with a GPU, it also shows a 6.8
times speedup over the combinatorial application.

II. BACKGROUND AND RELATED WORK

A. Genetic Algorithms

Genetic algorithms emulate the natural evaluation process
with genetic operators, including selection, crossover and mu-
tation. A typical GA evolves an initial population of tentative
solutions (called individuals) towards better ones. Every indi-
vidual is a genetic representation (chromosome) of a candidate
solution in the search space, and associated with a fitness value
by an evaluation function. Based on their fitness values, pairs
of individuals are chosen by the selection operation. Then
two individuals in each pair exchange their information by
crossover, and are modified by mutation operators to gain
diversity. The evolution process is repeated for many iterations
(called generations) until a termination condition is reached,
for example maximal generation number is reached. GAs can
perform well when has a proper trade-off between exploration
on search space and the exploitation of good solutions [1].

When applying GA to a problem, a user should first design
the chromosomes and define a fitness evaluation function for
the solution domain. The chromosome is often defined as a
binary encoding (a vector of bits), with the evaluation function
re-interpreting sub-sequences of the binary chromosome as
booleans, permutations, integers, or real components. Except

GA1 GA5

GA4GA2

GA3

GA

E1

E: Evaluation

GA GA GA

GA GA GA

GA GA GA

Fig. 1. Distributed (left), Master-slave (middle) and Cellular (right) pGAs

for the problem-dependent parts (chromosome and evaluation
function), the other parts in a typical GA such as genetic opera-
tors are problem-independent. Therefore, it is possible to build
a general-purpose library, which can offer various methods of
genetic operators for different types of chromosomes.

B. Parallel GA

Genetic algorithms may get stuck in a local optimum,
because the population will tend to cluster around the best
individual, so natural selection limits exploration of the sur-
round space. To explore a wider search space, parallel GAs
are proposed to invoke multiple GA instances evolving with
a group of sub-populations in parallel. Each GA instance
can carry identical or divergent parameters, and the divergent
parameters may result in different behaviours in each GA
instance [2].

The simplest pGA structure is the independent pGA (iGA),
which runs multiple parallel GA instances starting from differ-
ent initial populations, and with no mixing or communication
between instances during execution. A more popular and effec-
tive way is to establish communication between GA instances,
so we have coarse-grained pGAs and fine-grained pGAs (see
Fig. 1). A typical coarse-grained pGA is the distributed GA
(dGA), in which every GA instance maintains a sub-population
and the communication of instances is conducted by the in-
frequent migration. Master-slave GA is a popular fine-grained
pGA, contains multiple evaluation units valuing individuals
in parallel. Another type of fine-grained pGA is the cellular
GA (cGA), when every GA instance maintains several (usually
two or three) individuals and frequently communicates with its
neighbours in a net architecture. All these pGAs have potential
for hardware acceleration due to their natural parallelism.

C. FPGA-based Parallel GA

FPGAs balance the high performance and parallelism of
hardware with the flexibility of software, and so are a promis-
ing platform for acceleration. With the requirements of real-
time computing and low energy consumption, GAs were first
adapted for FPGAs in 1995 [3]. In addition to a considerable
number of conventional GA systems mentioned in [4], [5],
[6], [20], FPGA-based master-slave GAs and dGAs have been
demonstrated [7], [8], [9], [10], [11]. FPGA-based cGAs are
also proposed in [12], [13], [14]. In the top 6 rows of Table
II we summarise the features of these existing pGA systems.
Master-slave GAs and dGAs are likely to be easier for FPGA
place and route because of the simple and few connections
between GA instances, so there seem to be more systems for
them in FPGAs. For example, Kamimura implement a dGA
processor consisting of a migration unit and four GA instances

[11]. Their system is applied to three simple numeric functions.
In the paper we also focus on the pGA with master-slave
and distributed models, to exploit both fine and coarse-grained
parallelism.

Existing pGA systems suffer from at least one of the
following problems: 1) The system neglects the flexibility
of architecture, even an expert cannot easily tune resource
consumption against performance; 2) The system is designed
for specific problems in a low-level hardware language, such as
VHDL or Verilog, which is almost impossible for non-expert
users to modify to support new applications; 3) Tuning GA or
application parameters requires recompilation, which always
takes hours to complete.

To address these issues, we proposes a general-purpose
framework to create flexible pGA systems based on a high-
level description. To simplify the design process, a stream-
ing high-level synthesis tool Maxcompiler is used as an
intermediate-level target [15], [16], [17], [18]. We will show
how our proposed work addresses these problems in section
III and IV.

III. CUSTOMISABLE ARCHITECTURE OF GA KERNEL

Each GA instance in our pGA system is executed in a
customisable kernel, which is called GA kernel in this paper.
The overall and data processing of a GA kernel are shown in
Fig. 2. In the kernel, the basic steps of a typical GA mentioned
in the background have been implemented as hardware units,
which are fully pipelined and highly parallelised. The details
of these basic units are described in this section.

A. Initialisation Unit

Before using a GA to optimise a function, it is necessary to
define the representation of chromosomes and to generate an
initial population. The chromosome can be a set of booleans,
permutations, integers or real components. The GA kernel
will support each possible set with different sets of genetic
operations.

The initial population (Ip) determines the number and
positions of start points in the search space. To spread the
starting points of the GA kernels over the search space, the
initialisation unit offers two ways to specify the initial popu-
lation: a random number generator; or loading pre-computed
sub-populations.

B. Evaluation Unit

The evaluation unit returns a fitness value for an indi-
vidual, which guides the exploring processes. Master-slave
GAs instantiate multiple evaluation units in parallel to reduce
execution time, so we also use this model and define the degree
of parallelism for the evaluation units as Ne. By customising
Ne, we can balance the resource usage against performance.
For example, in Fig. 2, the sub-population size (Np) is four.
If we have four evaluation units (Ne = 4), it will need
(Np/Ne = 1) cycle to finish all the four evaluation operations
after filling the pipeline, but when we reduce Ne by half
(N ′e = Ne/2 = 2), it will need only one extra cycle in the
pipeline (Np/N

′
e − Np/Ne = 1), which just slightly reduces

the performance.

Input Pool

...
...

Ns SCMs

Np
Individuals

1 0 0 1 0

1.5 0.8 1.1

or

SCM SCM

E

Gen 1

Gen Ng

Ne Evaluators

Crossover

Mutation

Selection
Method: Ms

E

Rate:
Rc

Rate:
Ru

Method:
Mc

Method:
Mu Gen Gm

Migration

Ip

20 10 30 9 Fitness

Fig. 2. Parameters and Data Processing in a GA Kernel

C. SCM Unit

As shown in Fig. 2, after evaluation, the three genetic oper-
ators, namely selection, crossover and mutation, will deal with
two individuals sequentially. This close relationship results in
a great potential for processing pairs in parallel. Therefore,
we combine these operators into a single SCM (selection,
crossover and mutation) unit and control the number of SCM
units by a compile-time parameter Ns. We can tune Ns inde-
pendently of Ne, allowing us to balance resource utilisation
and performance. Every SCM unit consists of one selection,
one crossover and two mutation operators, processing two
individuals concurrently. The specific methods (Ms,Mc,Mu)
used for the three genetic operators as well as the rates for
crossover and mutation (Rc, Ru) are customisable.

D. Migration Unit

Migration units control how the data are exchanged be-
tween GA kernels. A migration unit has an input pool and an
output pool for receiving and sending individuals. We use a
unidirectional ring to transfer a part of sub-population to one
of its neighbours. Three parameters in a pGA system decide
the migration policy:

1) Migration Gap and Rate: The migration gap (Gm)
controls the frequency of data exchange and the migration rate
Rm decides the probability of exchanging the data.

2) Number of Migrants: The parameter Nm determines the
number of individuals to be exchanged during one migration.

3) Method of Migrants Selection: This parameter (Mm)
decides how to select the migrants, either the current elite or
random individuals.

GA1 GA4

GA2 GA3

d

c

b

a

c
d

b

c
b

a

d

a

GA1 GA4

GA2 GA3

d

c

b

a

d

c

b

a

GA1 GA4

GA2 GA3

d

c

b

a

d

c

b

a

2 3

Stage2: Receiving Stage3: Preparing

Stage1: Sending

Fig. 3. Inter-Kernel Communication for Migration

Those parameters are all customisable in the migration
unit. To avoid waiting for data from the neighbour kernel,
we continually stream data in the links and control when to
accept them. The three stages of inter-kernel communication
are shown in Fig. 3. For example, at the initial stage, the four
kernels GA1, GA2, GA3 and GA4 place a, b, c and d in their
output pools (depth = Nm), then keep sending them to their
neighbours respectively. However, although receiving the data,
their neighbours do not update pools, until Gm generations
have been evolved. Afterwards, the data in input pools are
updated to d, a, b and c, while signals emitted from all GA
kernels still remain unchanged. At the end of next generation:
the data in output pools will be updated to a’, b’, c’ and
d’, which reaches preparing stage. In this way, we avoid the
unnecessary waiting for new data as the streaming links always
have data.

During the data processing, the random number generator
(RNG) produces random numbers for initial population, ge-
netic operators and migration. We implement an RNG based
on a method [19]. The sequence of random number generated
can be customised by a random seed Rs.

IV. AUTOMATED FRAMEWORK

The framework incorporates both hardware and software,
improved from a conventional GA system in an earlier work
[20]. Our framework involves the customisable GA kernels in
section III to provide a general-purpose system. An overview
of the design and execution flow is shown in Fig. 4, while a
summary of its parameters is listed in Table I.

A. Problem-Independent Library

As mentioned in the background, genetic operators are
essentially problem independent, so it is possible to implement
them in advance, before knowing the specific application a
user will use them in. We have built a library consisting

Hardware
Generator

Library

Compile-
time Inputs

Run-time
Inputs

HLS

Software
Generator

B
R

A
M

B
R

A
M

B
R

A
M

Setup()

Run()

Recv()

Initilisation

Evolution
Host Software

Hardware

Setup()

Run()

Recv()

Fig. 4. Design Flow (left) and Execution Flow (right)

of different genetic operators, parameterisable GA kernels,
and host software. Various methods of performing genetic
operations are available for use in different circumstances,
selectable by the user. For selection, roulette wheel and tourna-
ment methods are offered. For mutation operation, we support:
bit-flip, which randomly inverts bits within the chromosome;
swap, to exchange integers within a permutation chromo-
some; and constraint, which generates random numbers within
some set bounds. Obviously, the swap method is suitable
for the chromosomes of sequential ordering problems, and
the constraint method is suitable for real-valued problems.
For the crossover operation, we support: one-point and multi-
point binary exchange; blending between real values [22]; and
reordering for permutations. Although a real value can be
mapped to integers or booleans, it may be more natural to use
the real-valued encoding and related methods. With this library,
our framework can support both combinatorial and numerical
optimisation.

B. Design Flow

In the design flow shown in Fig. 4, the inputs of the
framework are compile-time and run-time specifications, while
the outputs are the hardware implementation and host software
executable. Compile-time inputs include hardware-dependent
parameters and a high-level C-like description of the optimi-
sation problem. The problem-independent library provides the
architecture template and methods of genetic operators. The
hardware generator will combine them together to create a
full FPGA implementation by calling a high-level synthesis
tool Maxcompiler [18]. The generated hardware also has input
and output channels, and BRAM for communication. The run-
time inputs are hardware-independent parameters that control
the behaviour of the algorithm. After reading the inputs from
file or console, the software generator loads these parameters
into the host software, which will send them to the hardware.

The compile-time inputs include two following parts:

1) Architecture Parameters (Arch Param): The architec-
ture can be easily configured by the user as we offer seven
compile-time architecture parameters, including the degrees
of parallelism through the numbers of parallel kernels (Nk),
SCM units (Ns) and evaluation units (Ne), methods of genetic
operations (Ms,Mc,Mu) and migrants selection (Mm).

In this way, users gain the ability to control the hardware
layout via the parametrisation of external and internal par-

TABLE I. THE PARAMETERS OF USER INPUT

Architecture Parameters GA Parameters

Nk number of GA kernels Np sub-population size
Ne number of evaluation units Ng maximal generation
Ns number of SCM units Ru mutation rate
Mc crossover method: “one-point”,“multi-point”, Rc crossover rate

“blending”,“reordering” Rs random seed
Ms selection method: “roulette wheel” Ip initial population

“tournament” Nm number of migrants
Mu mutation method: “bit-flip”,“constraint”,“swap” Gm migration gap
Mm migrants selection method: “elite”, “random” Rm migration rate

allelism, without needing to understand how to modify the
FPGA architecture directly. In a kernel, Ne = Np and Ns

= Np/2 imply maximal parallelism and resource utilisation,
but minimal execution time per generation. Naturally, if the
whole population size NP = Nk × Np exceeds the available
hardware resources then multiple rounds of Nk, Ns and Ne

variation might be necessary. Our framework enables a user to
select suitable values of these parameters to maximize FPGA
resource utilisation or performance.

2) Application Description: The input optimisation prob-
lem is written in a C-like programming language, in order to
simplify the design process for a non-expert user. A description
contains two parts: 1) chromosome structure, which defines
the items making up the genetic representative; 2) fitness
function, which can contain for-loop statements (with non data-
dependent bounds), mathematical functions and any necessary
variables including application parameters and temporary vari-
ables. Examples will be provided in section V to show the
descriptions for different applications.

C. Execution Flow

The host software in our framework controls the operation
of the FPGA system and divides the execution flow into two
steps shown in Fig. 4: initialisation and evolution. During the
initialisation step, the host software loads run-time parameters
into hardware by streaming them into the input channel or
storing them in the BRAM. In the evolution step, the hardware
pGA system evolves and outputs solutions to the host software.

The run-time user inputs contain application parameters
and GA parameters. Although the time for the first compilation
is limited by place-and-route speed, the system can be modified
without recompilation by updating these parameters, including:

1) Application Parameters (App Param): A specific prob-
lem can have various configurations but they only differ in
terms of some parameters. For example, the function F7 in
section V.B has a parameter a, so we can tune the value of a
at run-time after the system is created.

2) GA Parameters (GA Param): Nine GA parameters are
available for each kernel, including maximal generation num-
ber (Ng), sub-population size (Np), initial population (Ip), ran-
dom number seed (Rs), crossover and mutation rates (Rc, Ru),
number of migrants (Nm), migration gap (Gm) and rate (Rm).
It is quite common for a user to tune these parameters at run-
time, either globally to improve efficiency, or locally to give
each individual GA kernel different parameters. Our system
is more flexible than existing ones because in those systems,
these parameters are fixed across all GA kernels, and the tuning
of them also needs hours because of recompilation.

TABLE II. QUALITATIVE COMPARISONS OF FPGA-BASED PGAS

Work Year Operation Operation Migration Application Kernels’ Parallel Parallel Initial Custom PlatformRates Methods Parameters Parameters Parameters Evaluation SCM Population Language

[7] 1999 fixed one type none none identical yes no – VHDL SFL
[8] 2000 fixed one type none none identical yes no – VHDL PCIGEN10K
[9] 2006 fixed one type none none identical yes no rand C-like Stratix EPS1S10
[10] 2006 fixed one type none none identical no no rand VHDL Cyclone FPGA
[11] 2012 fixed one type none none identical no no rand VHDL Virtex 4 (XC4VLX25)
[14] 2013 fixed one type none none identical no no rand C-like Virtex 6 (XC6VLX240T-1)

Ours 2014 run-time multiple Mm, Nm run-time identical,
Ne Ns

run-time C-like Virtex 6 (SX475T)
Ru, Rc types Rm, Gm App Parm divergent Ip, rand

D. Qualitative Comparison

We summarise the features of our framework and compare
with other systems mentioned in the related work. In Table II, it
is clear that our pGA system is easier to use and more flexible
than others because: 1) Many parameters in Table I are mod-
ifiable at run-time, enabling a user to effectively tune them in
any kernel without time-consuming recompilation. 2) We gain
the maximal flexibility and parallelism in the architecture, the
degrees of both external and internal parallelism can be tuned
by non-expert users. 3) Our work is a general-purpose platform
for different chromosomes based on a problem-independent
library. 4) All the problem-dependent parts of a typical GA can
be specified in a high level programming language, requiring
little knowledge about the underlying hardware or tools from
the users.

V. EXPERIMENTS

The proposed framework can handle many problems, but
for space reasons here we choose an NP-hard combinato-
rial optimisation problem and four numeric ones. We select
an FPGA-based acceleration platform containing Virtex 6-
SX475T for hardware implementation [18]. We compare our
FPGA-based pGA with software and GPU quantitatively. We
implement software counterparts based on a third-party GA
[21] on an 2.67GHz Dual Intel Xeon X5650 CPU system,
which has 12 physical cores and 24 threads in total. The
number of threads used is optimised based on the number of
GA kernels and the communication cost. The CPU code is
well tuned with multi-threading techniques including Pthread
and SIMD, and the code is compiled by Intel C compilier
with highest optimisation level. For the maximum satisfiability
problem (MAXSAT), we also compare our pGA system with
a third-party GPU-based work on an nVidia Tesla C1060
[23]. We have compared our design with other FPGA-based
systems qualitatively in section IV, but it is nearly impossible
to compare quantitatively as they use different platforms and
do not provide enough details of their execution time.

A. Maximum Satisfiability Problem

MAXSAT is a classic NP-hard problem to determine an
optimised assignment of a set of boolean variables V =
{V1, V2, . . . , Vu}. A literal is a boolean variable or its negation,
i.e. L ∈ {V,¬V }. A clause Ck is the disjunction (“or”) of mk

literals in the form

Ck =

mk∨
i=1

Lki (1)

TABLE III. THE USER INPUTS FOR MAXSAT

Compile-time Inputs Run-time Inputs

Chromesome { bool v[100]; } App_Param{ }
Fitness{ GA_Param{
bool c[430]={false}; K1{
uint count=0; Np = 32;
c[0] = v[25]|(!v[98])|v(6); Ng = 1000000;
... // remove for space Ru = 0.065;
c[429] = v[59]|v[91]|(!v(72)); Rc = 0.65;
for (int i=0; i≤429; i++) Rs = 0xffffff;
count += c[i] ? 1:0; Nm = 4;

return count; } Gm = 8;
} Rm = 0.8;
Arch_Param { Nk=4; Ip = {b10...1
K1{ Ne=2; Ns=2; Mm="elite"; ,...}

Mc:"multi-point crossover"; }
Ms:"roulette wheel select"; K2{...}//kernel 2
Mu:"bit-flip mutation"; } ...

K2{...} ... K4{...} //kernel Nk K4{...}//kernel Nk

} }

TABLE IV. RESOURCE USAGE AND COMPILATION TIME

Configuration GA1 pGA2 pGA4/iGA4 pGA8

kernel number Nk 1 2 4 8
Ne in one kernel 8 4 2 1
Ns in one kernel 8 4 2 1
Resource Usage (%) 74.96 50.46 41.44 32.46
Compilation Time 5h38m 4h02m 2h28m 1h49m

A formula F in the conjunctive normal form is defined as the
conjunction (“and”) of M clauses, i.e.

F =

M∧
k=1

Ck =

M∧
k=1

(

mk∨
i=1

Lki) (2)

Let Ξ = (V1/v1, V2/v2, ..., Vu/vu) be an assignment of V.
Then the optimisation target of the MAXSAT problem is

g(Ξ) = max
Ξ

M∑
k=1

δ(Ck|Ξ) (3)

where δ(Ck) =

{
1 if Ck = true

0 otherwise

We define Ξ as a binary chromosome containing multiple
booleans and describe the high-level inputs in Table III, then
a hardware implementation with four kernels will be created.
As shown, the parameters can be divergent for every kernel.
Here we apply the pGA system to a hard instance uf100-430,
which contains 100 variables and 430 clauses [1].

1) Resource Usage and Compilation Time: We use our
framework to generate FPGA-based pGA systems with differ-
ent compile-time configurations, namely GA1, pGA2, pGA4,
pGA8, and iGA4. GA1 is a conventional architecture with

 360

 370

 380

 390

 400

 410

 420

 430

 0 0.2 0.4 0.6 0.8 1

CPU4
GA1

pGA2
pGA4
pGA8
iGA4

Time (s)

Fi
tn
es
s

Fig. 5. Best Fitness Found in Scale of Time

one kernel. iGA4 has the same hardware as pGA4, but is
configured as an independent parallel GA with a very large
migration gap, so there is not communication between the GA
kernels. The differences of resource usages and compilation
time are shown in Table IV with various numbers of kernels
(Nk), internal evaluation units (Ne) and SCM units (Ns).
As shown, when maintaining the same total population, pGA
systems can not only have smaller resource usages, due to
reduced fan-out and minimised control complexity, but also
have shorter compilation time, as it is easier to place-and-route
multiple smaller kernels than a few large ones. The change
of resource usages is non-linear, as the streaming links also
occupy resources.

2) Computational Effort: We record the execution time of
the FPGA-based pGA designs and their CPU-based counter-
parts, i.e. CPU4 is the counterpart of pGA4. As shown in
Table V, our systems have an average speedup of 24 times
over the multi-core CPU. Moreover, pGA4 system gains 6.8
times speedup over the GPU-based system proposed in [23]
on the nVidia Tesla C1060, when comparing the wall clock
time taken to find the optimum solution.

We also observe the best fitness found with these configu-
rations, and the times when the solutions are achieved, which
are shown in Fig. 5. Overall the pGA systems can achieve
better results than the iGA or CPU-based ones, and we can
also make the following three observations:

First, the conventional GA1 and independent iGA4 reach
plateaus, but the systems with multiple GA kernels and migra-
tion reach better solutions. This is because GA1 and iGA4 are
vulnerable to local optimal solutions while other configurations
avoid similar circumstance by exploring different sub-spaces
and by sharing information. The observation demonstrates the
importance of accelerating pGAs rather than iGAs for solution
quality, and the need to include communication channels
between GA kernels.

Second, FPGA-based systems generated by our framework
offer high quality solutions in less time than CPU-based
systems. This is because the FPGA-based systems can compute
many more generations per unit time. This observation sug-
gests the practical usefulness of the systems, as a user always
expects satisfactory results within shorter time.

Third, it is not clear which particular configuration achieves
the best result. This is a common observation in GA systems.

x

Fig. 6. Search Space of F7

Chromosome { float x, y; }
Fitness {
 float result = 0.0;
 result = x * sin (4 * y) +

 a * y*sin(2*y);
 return result;
}
Arch_Param{ Mu =“constraint”;
 ... , Mc =“blending” }

App_Param{ float a = 1.1; ...}

Fig. 7. User Inputs of F7

TABLE V. RESOURCES USAGE (RES.) AND SPEEDUPS OVER A CPU

App. Nk Np Ne Ns Res.% Speedup Chromosome

MAXSAT 4 32 2 2 41.44 24 100 x 1-bit
BF6 4 16 2 2 23.74 28 16-bit integer
2DS 4 16 2 2 60.42 34 2 x 8-bit integers
F7 4 16 2 2 27.95 21 2 x floating points
F11 4 16 2 2 55.34 23 2 x floating points
Average - - - - - 26

Practically, this observation suggests the need for flexibility of
a GA system, because inflexible systems may prevent the users
from fine-tuning them. In contrast, we pay special attention
to the flexibility in our framework, allowing users to specify
various properties of the system to pursue better solutions.

B. Numerical Optimisation Problems

To test the ability of dealing with numeric computation
in our pGA systems, we solve four GA benchmarks with
different encodings. Binary F6 (BF6) and 2-D Shubert function
(2DS) are from [6], while F7 and F11 are from [21]. All these
benchmarks are considered to be complex to solve, but our
system can easily find their optimum. For example, Fig. 6
shows the solution search space of F7, which contains many
local optimum that may trap the search algorithm. The red
cross in the figure shows the best solution. Fig. 7 demonstrates
the user inputs for the real-valued function F7; here we
choose constraint mutation and blending crossover for this
task. An application parameter a is defined in the run-time
inputs, allowing users to change it for a different scale without
recompilation. The resource usages and speedups are shown
in Table V, when the frequencies of the systems are 160 MHz.
Based on the resources left over, we can tailor the architectures
according to the complexity of an evaluation unit.

VI. CONCLUSION AND FUTURE WORK

As a variant of genetic algorithms, parallel GA has great
potential for hardware acceleration. To simplify the design and
execution flow of FPGA-based pGA systems for non-expert
users, this paper proposes an automated framework to generate
them based on a high-level description of a target problem.
This general-purpose framework mainly contains customisable
GA kernels and a problem-independent library for different
types of chromosomes. The flexible architecture created by our
framework exploits two levels of parallelism, allowing users to
customise the degrees of both fine-grained and coarse-grained
parallelism. Once created, the framework also enables a user
to tune run-time parameters without time-consuming recompi-
lation, including algorithmic and application parameters. Our
system is more flexible compared with existing pGA work;
when compared with a multi-core software implementation,

our system also shows an average speedups of 26 times for an
NP-hard problem and four benchmarks; our system is also 6.8
times faster than a GPU over the NP-hard problem.

In the future, we will enhance the framework to generate
more variants of pGAs such as cellular pGAs, and extend
the library to support more genetic operators, for example the
mutation using Gaussian random number.

ACKNOWLEDGMENT

The first and third authors are financially supported by the
CSC-Imperial Scholarships which are co-founded by Imperial
College London and the China Scholarship Council (CSC).

REFERENCES

[1] G. Luque, and E. Alba. Parallel Genetic Algorithms: Theory and Real
World Applications. Vol. 367. Springer. 2011.

[2] S. N. Sivanandam, and S. N. Deepa. Introduction to Genetic Algorithms.
Springer Berlin Heidelberg. 2008.

[3] S. Scott, et al. “HGA: A hardware-based genetic algorithm.” ACM
International Symposium on Field-Programmable Gate Arrays. pp. 53-
59, 1995.

[4] J. Pimery, and K. Pinit. “Development of a flexible hardware core for
genetic algorithm.” Intelligent Computing and Intelligent Systems. Vol.
1, pp. 867-870, 2009.

[5] C. Effraimidis, K. Papadimitriou, A. Dollas and I. Papaefstathiou. “A
self-reconfiguring architecture supporting multiple objective functions
in genetic algorithms.” International Conference on Field Programmable
Logic and Applications (FPL). pp. 453-456, 2009.

[6] P. R. Fernando, R. Zebulum, and A. Stoica. “Customizable FPGA IP
core implementation of a general-purpose genetic algorithm engine.”
IEEE Transactions on Evolutionary Computation. Vol. 14, No. 1, pp.
133-149, 2010.

[7] N. Yoshida, and T. Yasuoka. “Multi-gap: parallel and distributed genetic
algorithms in VLSI.” In Systems, Man, and Cybernetics. Vol. 5, pp.
571-576, 1999.

[8] Y. Choi, and D. J. Chung. “VLSI processor of parallel genetic algo-
rithm.” IEEE Asia Pacific Conference on ASIC. pp. 143-146, 2000.

[9] M. S. Jelodar, et al. “SOPC-based parallel genetic algorithm.” IEEE
Congress on Evolutionary Computation. pp. 2800-2806, 2006.

[10] T. Tachibana, et al. “General architecture for hardware implementation
of genetic algorithm.” IEEE Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM). pp. 291-292, 2006.

[11] T. Kamimura, and A. Kanasugi. “A parallel processor for distributed
genetic algorithm with redundant binary number.” 6th International
Conference on New Trends in Information Science and Service Science
and Data Mining (ISSDM). pp. 125-128, 2012.

[12] Y. Jewajinda, and P. Chongstitvatana. “FPGA implementation of a cel-
lular compact genetic algorithm.” NASA/ESA Conference on Adaptive
Hardware and Systems (AHS). pp. 385-390, 2008.

[13] P. V. d. Santos, J. C. Alves, and J. C. Ferreira. “A scalable array for
Cellular Genetic Algorithms: TSP as case study.” IEEE International
Conference on Reconfigurable Computing and FPGAs (ReConFig), pp.
1-6, 2012.

[14] P. V. d. Santos, J. C. Alves, and J. C. Ferreira. “A framework for
hardware cellular genetic algorithms: an application to spectrum al-
location in cognitive radio.” 23rd International Conference on Field
Programmable Logic and Applications (FPL). pp. 1-4, 2013.

[15] J. M. P. Cardoso, P. C. Diniz, and M. Weinhardt. “Compiling for
reconfigurable computing: a survey.” ACM Computing Survey. Vol. 42,
No. 4, pp. 1-65, 2010.

[16] T. J. Todman, G. A. Constantinides, S. J. Wilton, O. Mencer, W. Luk
& P. Y. Cheung, “Reconfigurable computing: architectures and design
methods.” Proceedings on IEEE Computers and Digital Techniques, vol.
152, no. 2, pp. 193-207, 2005.

[17] K. Compton and S. Hauck, “Reconfigurable Computing: A Survey of
Systems and Software.” ACM Computing Surveys, vol. 34, no. 2, pp.
171-210, 2002.

[18] Maxeler Tech. “Programming MPC Systems White Paper.” 2013.

[19] D. B. Thomas, and W. Luk. “The LUT-SR family of uniform random
number generators for FPGA architectures.” IEEE Transactions on Very
Large Scale Integration Systems (VLSI) Vol. 21, No. 4, pp. 761-770,
2013.

[20] L. Guo, D. B. Thomas, and W. Luk. “Customisable Architectures for the
Set Covering Problem.” International Symposium on Highly Efficient
Accelerators and Reconfigurable Technologies (HEART). pp. 69-74,
2013.

[21] D. A. Coley. An Introduction to Genetic Algorithms for Scientists and
Engineers. World Scientific. 1999.

[22] R. L. Haupt, and S. E. Haupt. Practical Genetic Algorithms. John Wiley
and Sons. 2004.

[23] A. Munawar, et al. “Hybrid of genetic algorithm and local search to
solve MAX-SAT problem using nVidia CUDA framework.” Genetic
Programming and Evolvable Machines. Vol. 10, No. 4, pp. 391-415,

2009.

