
An Efficient Sparse Conjugate Gradient Solver
Using a Beneš Permutation Network

Paul Grigoras, Gary Chow, Pavel Burovskiy and Wayne Luk
Department of Computing
Imperial College London

180 Queen’s Gate, London SW7 2AZ, UK
Email: paul.grigoras09@imperial.ac.uk

Abstract—The conjugate gradient (CG) is one of the most
widely used iterative methods for solving systems of linear
equations. However, parallelizing CG for large sparse systems
is difficult due to the inherent irregularity in memory access
pattern. We propose a novel processor architecture for the sparse
conjugate gradient method. The architecture consists of multiple
processing elements and memory banks, and is able to compute
efficiently both sparse matrix-vector multiplication, and other
dense vector operations. A Beneš permutation network with an
optimised control scheme is introduced to reduce memory bank
conflicts without expensive logic. We describe a heuristics for
offline scheduling, the effect of which is captured in a parametric
model for estimating the performance of designs generated from
our approach.

I. INTRODUCTION

Solving systems of linear equations is an essential step
in many scientific computing applications [1]. The sparsity
structure of very large linear systems can often be used to
reduce storage requirements. However, the irregular memory
access pattern introduced by sparse storage formats can reduce
computational efficiency. Methods for solving sparse linear
systems include algorithms such as the conjugate gradient
(CG), an instance of Krylov Subspace Iteration algorithms -
cited as one of the most important classes of algorithms of the
20th century [2].

The conjugate gradient algorithm for solving sparse linear
systems is difficult to accelerate on parallel platforms since 1)
the irregular memory access pattern makes the algorithm dif-
ficult to parallelise and 2) the algorithm requires a mixture of
both sparse and dense operations to be implemented efficiently.

We propose a solution to these challenges based on the
following contributions:

• a novel processor architecture utilising a Beneš per-
mutation network to improve the efficiency of concur-
rent access to on-chip memory; it supports both sparse
and dense operations required by CG. (Section III)

• efficient heuristics for scheduling CG operations stat-
ically onto the proposed architecture. (Section IV)

• an evaluation of the effectiveness of the proposed
architecture and heuristics for real-world problems on
a commercial reconfigurable system. (Section V)

To the best of our knowledge, this is the first time the
Beneš network is proposed for solving the multiple memory
bank access problem in a processor for sparse linear algebra.

II. BACKGROUND AND RELATED WORK

The conjugate gradient algorithm [3] constructs a set of
mutually conjugate directions to form a basis of a linear
space with respect to which it expands the solution vector ~x.
Iteratively, the new search direction ~p is chosen to minimise the
residual ~r (the approximate error of a solution). The expansion
of a solution vector in this new basis improves with every
further basis vector ~p, minimising the residual.

Algorithm 1 Conjugate gradient method.
1: function CONJUGATEGRADIENT(A, x, r)
2: for i ≤MaxIterations do
3: ~Ap ← A~p
4: α← rsold/(~p

T ~Ap)
5: ~x← ~x+ α~p
6: ~r ← ~r − α ~Ap
7: rsnew ← ~rT~r
8: if rsnew < AbsoluteError2 then
9: return x

10: end if
11: ~p← ~r + rsnew/rsold × ~p
12: rsold ← rsnew
13: end for
14: end function

CG implementations for dense systems [4] are easier to
pipeline and achieve considerably higher memory efficiency
due to the regular memory access pattern. On the other hand,
sparse CG (where the system matrix A is sparse) is harder to
parallelise due to the irregular access pattern and the mixture
of both sparse and dense operations. The operation on line 3 of
Algorithm 1 is a sparse matrix-vector multiplication (SpMV),
but all other operations are dense vector-vector operations.
Therefore, efficient SpMV implementations [5] are key to
obtaining good performance but, as explained in Sections III
and IV additional properties of the CG must be used to increase
overall efficiency.

One such property, the time invariance of A (A is not
updated during CG iterations) leads to an obvious optimisation
used in [6]: copy A to the hardware accelerator only once
for multiple iterations. We use this property to statically
schedule the entire algorithm (Section IV). One limitation of
[6] is the on-chip memory bottleneck which originates from
the need to replicate (many times) the vector involved in
SpMV to avoid bank conflicts. This is a common problem
with many (and more recent implementations [7]) of sparse

matrix computations on FPGAs and is exactly what this paper
addresses.

III. ARCHITECTURE

To overcome the limitations of existing implementations
for sparse CG we propose a new architecture using a per-
mutation network to reduce bank conflicts without expensive
resource usage. While this architecture benefits from a scalable
communication network connected to the vector memory, the
generation of appropriate control for this network requires
careful design; an optimised control encoding will be intro-
duced.

In the proposed architecture the matrix is stored as sparse
and the intermediary vector results are stored as dense. As
shown in Figure 1, the proposed architecture comprises the
following elements:

1) a shared vector memory with multiple banks (V Bi)
each capable of storing a subset of the elements of a
dense vector (e.g. ~p);

2) a shared register file for storing scalar values (e.g.
α, rsold, rsnew);

3) multiple processing elements (PEs) which can per-
form arithmetic with operands from local memories,
shared vector memory or the global register file
(Figure 2);

4) a permutation network which enables vector memory
banks to be accessed from any PE as long as no other
PEs are accessing the same memory bank;

5) a special processing element (SPE) for operations that
are required rarely (e.g. serial reduction of inputs,
comparison of inputs with relative error threshold,
scalar division);

6) an adder tree for reducing partial sums in the dot
product operations.

Permutation Network

...

PE2

+

PE1

+

PEn

VB1 VBnVB2

global

reg file

SPE

+

...

Signal Done

Fig. 1. Architecture of the proposed sparse CG solver.

The use of the permutation network allows more flexible
access to the banks of the vector memory which results in

better overall efficiency for the sparse matrix-vector multipli-
cation. This helps reduce the impact of the irregular memory
access pattern which is, as noted earlier, one of the greatest
challenges in paralellising the CG method. The proposed
architecture also achieves good performance for dense vector-
vector operations (another important challenge) through careful
PE design.

A. Shared Memories

The vector memory is used for storing ~p which is involved
in the SpMV operation thus requiring random access. Elements
of ~p are assigned to the N banks of the vector memory. At each
cycle N values of ~p can be read by providing N separate read
addresses. A particular permutation of these values is then sent
to the N PEs in our design (one per PE). Because the vector
memory is shared for all PEs, conflicts can occur when two
PEs require elements of ~p which are stored in the same bank.
We explain how we handle this in Section IV.

The register file is connected to every PE and the SPE and
can broadcast its values to either (e.g. α required by the dense
vector operations).

B. Processing Element

The majority of arithmetic operations required for CG are
performed concurrently across multiple PEs. The architecture
of a PE is shown in Figure 2.

Vsel MLMsel VRsel

x
+/-

... fpL

partial_sum LMBi

0/1

from Benes

Network

to LMi / Adder / Benes Network

LMAi

from DDR

0/10/1

from global

register file

Fig. 2. Architecture of the Processing Element (PE).

Nonzero matrix values are read from off-chip DRAM. To
minimise bank conflicts at runtime each PE has local storage
for intermediate results — LMAi, LMBi. The two local
memories are required to ensure the PE can simultaneously
access all required operands on one clock cycle. Table I
shows that all operators can be accessed concurrently with
the proposed memory allocation. Note that the same value of
~r and ~p can be read more than once per cycle since LMA and
the vector memory are connected to all three multiplexers.

Table II shows that the PE can perform all required op-
erations without structural hazards when accessing functional
units (multiplexers, multipliers, adders).

The SpMV operation introduces the complication of ac-
cumulating partial sums. As discussed in Section IV, each
matrix row is assigned to one PE and inner products are

TABLE I. MAPPING OF VECTORS TO MEMORIES SHOWS THERE IS NO
STRUCTURAL READ HAZARD FOR CG STEP (ALGORITHM 1).

Op. Mem. Step Used Concurrent With Hazard

A DDR 3 p No

p V 3, 4, 5, 11 A, Ap, x, p No

r LMA 6, 7, 11 Ap, r , p No

x LMA 5 p No

Ap LMB 4, 6 p, r No

TABLE II. THE PE CAN PERFORM ALL OPERATIONS USING AT MOST
ONE OF ALL UNITS, THUS NO STRUCTURAL HAZARDS ARE POSSIBLE.

Operation Op. Units Hazard

~Ap ← A~p MLMsel, VRsel, Vsel, add, mult No

α← rsold
(~pT ~Ap)

MLMsel, VRsel, mult No

x← x+ α~p Vsel, MLMsel, VRsel, add, mult No

r ← r − α ~Ap Vsel, MLMsel, VRsel, add, mult No

rsnew ← ~r~rT MLMsel, VRsel, mult No

r ← r − α ~Ap MLMsel, Vsel VRsel, mult, sub No

p← r + rsnew
rsold

~p Vsel, MLMsel, VRsel, add, mult No

accumulated inside the PE. The floating point accumulator
is highly pipelined to allow higher operating frequencies, but
this introduces the complication of keeping the accumulator
pipeline full and ensuring correctness of accumulated sums;
this complication is addressed through the static scheduling
strategy described in Section IV.

C. Beneš Permutation Network

During the matrix-vector multiplication step (Step 3, Al-
gorithm 1), an element of ~p is required which might come
from any of the V memory banks. Previous proposed archi-
tectures [6] use a crossbar to provide arbitrary access to the
vector memory, but their scalability is limited by an asymptotic
resource cost of O(N2) for an N bank vector memory. We
propose to solve this problem by utilising a Beneš network.

Permutation networks [8]–[10] such as the Beneš net-
work can be used to generate arbitrary permutations of input
elements by recursively connecting sub-blocks that permute
fewer and fewer elements. The base case is a block which
permutes two elements based on a binary control signal. This
divide and conquer approach results in lower resource usage of
O(Nlog(N)), making the Beneš network more scalable. Beneš
networks have been used on instruction level for performing
arbitrary permutations among sub-words to accelerate different
applications [11].

However, our solution must now generate control bits for
each of the network’s permutation block (on the order of
O(Nlog(N) control bits). Given the time invariance of A we
are only required to generate such control bits once, which
reduces the overall performance impact.

D. Special Processing Element

The special processing element (SPE) handles operations
which are used comparatively rarely during CG iterations.
Grouping all such operations in a separate processing element
(which is not replicated) reduces the number of idle functional
units, improving hardware utilisation. Operations performed by
the SPE are 1) serial reduction required for computing vector
norm, 2) scalar division and 3) threshold convergence test. For
serial reduction of N inputs we used a design with logarithmic
number of adders in the latency of the floating point adder as
described in [5].

E. Control Encoding

Control bits for the PEs, permutation network and other
elements of our architecture are pre-computed on the CPU of
the accelerator system and, due to time invariance of A, need
only be generated once for all iterations of the CG. Table III
gives an overview of the number of control bits required for
an architecture with NPE processing elements which supports
square system matrices with up to N rows. The maximum size
of each vector memory bank is V Bsize = k ∗N/NPE where
the meaning of k is explained in Section IV. One extra bit
per bank is required to control the write enable signal. Write
addresses into the vector memory are sequential and therefore
can be generated by counter state machines.

TABLE III. CONTROL BITS REQUIRED PER CYCLE.

Element Symbol Number of Bits

Permutation Network BPN NPE log2NPE

Processing Element Control BPE 4

Special Processing Element BSPE 2

Register File BRF 4

Vector Memory BV M NPE ∗ (dlog2(V Bsize)e)

According to Figure 2 each PE requires 13 control bits: 12
bits for the two 5-input and one 6-input multiplexers and one
bit for add/subtract selection. However, since the total number
of distinct operations performed by the PE is less than 16,
we can minimise this to just 4 control bits per PE. The SPE
requires two bits to select between the three operations it can
perform. The register file requires two bits to select between
broadcasting α, rsold, rsold/rsnew and two bits for write
enable (corresponding to disabled, update α, update rsnew).

Thus the number of control bits required per cycle is:

BControl = BPN +BPE +BSPE +BRF +BVM (1)

Some control bits can be generated on the FPGA, to reduce
the DRAM transfer overhead. For example, write and read
addresses for the LMA and LMB could be replaced by on-
chip state machines since their values can be fully determined
based on cycle count and operation stage. In addition, many
control bits will not change for hundreds, possibly thousands
of instructions. For example, the control bits for the register
file will not change while computing the SpMV or from steps
4 to 6, the control bits of the PEs will also not change

while computing an SpMV (with the exception of the case
where a stall is required) etc. We expect that compressing
the control bits (e.g. via run-length encoding) could lead to
much improved results in practice but leave such optimisation
opportunities as future work.

This encoding leads to a specific sparse storage format,
in which we encode a matrix as a tuple of (nonzero values,
control bits), as opposed to the traditional Compressed Sparse
Row (CSR).

F. Operation

On the whole, the operations performed by the proposed
architecture to support one iteration of CG are:

1) Fetch nonzeros and control bits from memory

2) Run corresponding operations:
a) SpMV - parallel on all the PEs
b) Dot product (PEs in parallel for inner-

products, adder tree and SPE for reduction)
c) Compute and update PE memories from

steps 4, 5 (dense add, subtract, multiply)
d) Compute rsnew (dense dot product)

3) Check value of Signal Done and stop if high

4) Compute new value of ~p

5) Copy ~p to vector memory for next iteration

IV. SCHEDULING

In this section, we introduce heuristics for mapping the
irregular SpMV operations onto our proposed architecture. The
mapping procedure can be divided into 2 parts: allocating
elements of ~p into different memory banks (index alloca-
tion), and allocating the actual SpMV operations into each
PE (SpMV allocation). Although it is possible to develop
heuristics to achieve the goal by considering both index and
SpMV allocation at the same time, such heuristics will be time
consuming and hence they are considered separately. The two
static scheduling heuristics are computed on the CPU of the
accelerator system.

A. Index allocation

In our architecture, each vector memory bank stores a
subset of the elements of ~p for the SpMV operation. This
arrangement can generate conflicts when multiple PEs require
access to elements which are stored in the same bank. To
minimise the idle cycles resulting from bank conflicts during
the SpMV, elements of ~p should be allocated to different
memory banks such that each memory bank will be accessed
the same number of times in each SpMV iteration. To achieve
this goal, we define the workload (wl) of index i as the number
of non-zeros in the column i of matrix A,

wli = nnz(Ai,∗) (2)

By defining the set of indices allocated to memory bank k as
idk, the workload of memory bank k can be defined as,

bankloadk =
∑

wli (i ∈ idk) (3)

and the goal of the index allocation heuristic is to minimise
the following cost function f ,

f = max(bankloadk)−min(bankloadk) (4)

Although we might achieve a reduced cost function by
allocating a different number of indices to different banks, we
restrict our heuristic to allocate the same number of indices to
each bank so that the resulting design is more uniform. The
heuristic performs the allocations in batches of NPE indices
iteratively. In every iteration, we select NPE unallocated
indices and sort them with their workload wli. We also sort
the memory bank with their bank workload bankloadk, and
allocate exactly one index to each bank such that the memory
bank currently having lowest workload will get the index
with highest workload. The bank workload bankloadk will
be updated and next iteration will continue until all indices
are allocated. Figure 3 shows how indices are allocated for
even bankload.

x

x x

x

x

x

x

x

wli = 1 1 3 4

A p

x

x

x

x

VB1

bankload1 = 4

x

VB2

bankload2 = 5

Fig. 3. Example of index allocation.

B. SpMV allocation

After the index allocation, the next step of our static
scheduling process is to map each sparse vector-vector mul-
tiplication onto our proposed architecture. Algorithm 2 shows
the SpMV allocation heuristic: in each iteration, an element
of the row vector being computed by a PE will be picked to
update the partial product with ai,j×pi if pi can be found on a
memory bank unused in this iteration. If none of the elements
in the current computing row vector can be scheduled (i.e. bank
conflict), a stall operation will be used (i.e. partial product plus
zero).

Algorithm 2 SpMV allocation heuristic.
1: R = set of unallocated row vector in A sorted descendingly

with # elements, Ck = set of element in a row vector to be
scheduled to PE k currently, U = set of unused memory
banks in this iteration.

2: while R 6= ∅ or Ck 6= ∅ do
3: U ← {1, 2, ...NPE}
4: for k = 1 to NPE do
5: if Ck = ∅ then
6: Ck ← elements of first vector of R
7: end if
8: remove an element from Ck such that its column

index is found in bank j, j ∈ U , remove j from U
9: end for

10: end while

Another constraint of the SpMV scheduling is the latency
of the partial sum accumulation loop. Due to the pipeline

latency of the floating point adder, the partial sum can only
be added once every fpL cycles. Hence, we divide the rows
of A into fpL groups having roughly the same number of
nonzeros (i.e. workload). fpL independent runs of algorithm 2
are used to schedule each group. The time required to finish the
entire SpMV is thus the maximum required iteration among
all fpL scheduling.

C. Vector duplication

As follows from Algorithm 2, the efficiency of the SpMV
is significantly affected by the number of stall operations due
to bank conflicts. To reduce such efficiency degradation, we
duplicate and rotate the vector ~p in the V memory bank so
that each memory bank holds (Ndup ×N)/NPE elements of
~p rather then N/NPE elements where Ndup is the number of
duplications. Although this arrangement reduces the maximum
dimension of the vector we can handle given the same amount
of memory, experimental results show that 2 to 3 duplications
are enough for us to achieve good efficiency in the SpMV step
for most of our real-world benchmarks.

V. EVALUATION

Since the performance of Krylov Subspace methods is
highly dependent on the systems, we use system matrices
from real-life applications obtained from the University of
Florida Sparse Matrix Collection [12] as our benchmarks. All
matrices used are symmetric and positive definite, which is a
prerequisite of the CG method. We analyse matrices whose
dimension is larger than 10K elements, since for smaller sizes
a direct solver approach would be better suited.

A. CPU, GPU and FPGA Solvers

We implement the proposed architecture on a Maxeler Maia
accelerator card with an Altera Stratix V D8 chip, 48 GB of
on-board memory and Infiniband connection to a Xeon E5-
2640.

Table IV shows that the maximum size of the architecture
which can be built on the D8 is bounded by the BRAM
usage of the PE’s local memories, followed by that of the
vector memory. We note that the BRAM usage of the adder
tree corresponds to additional buffering introduced by Max-
Compiler. Additional resources (not shown) are used for the
memory controller and input/output buffering, resulting in full
utilization of the available BRAM resources.

TABLE IV. RESOURCE USAGE FOR ALL COMPONENTS.

Element FF % LUT % BRAM % DSP %

Permutation Network 0.02 5.57 0.78 0.00

Vector Memory 5.38 3.72 14.96 0.00

Adder Tree 14.30 7.87 12.47 0.00

Special Processing Element 0.64 0.38 0.70 0.00

128 Processing Elements 29.20 20.43 44.88 6.52

Total 49.54 37.97 73.78 6.52

Therefore the largest possbile design on a commercially
available FPGA has 128 single precision processing elements
(each with 844 element deep local memories) and a vector
memory of 128 banks, each 563 elements deep. Both sizes

enable us to fit matrices up to 36K elements with duplication
or matrices up to 72K elements without duplication.

The static scheduling heuristics described in Section IV
and Algorithm 2 are implemented in carefully optimised
multithreaded C++ routines using the Boost library. These
routines run once for the entire conjugate gradient solver of
Algorithm 1.

We compare our approach with optimised CPU and GPU
solvers by measuring the average time per iteration for CPU
and GPU. For both solvers we use an AbsoluteError (Al-
gorithm 1, line 8) of 1E-6, which is considered sufficiently
accurate for many real-life applications.

The GPU version uses an optimised CG solver from the
Cusp framework, based on the CUDA SDK 5.0 and the Thrust
framework for parallel algorithms. We compile the design
using the CUDA Compiler with -O3 -use_fast-math
-m64 optimisation flags and run it on a Tesla C2070 card (448
Cores and 5375MB of DDR3 memory). All measurements do
not include the time to transfer data over PCIe to the GPU’s on-
board DRAM. We use the CSR format for the sparse matrix.

The CPU benchmark uses an optimised double precision
CG solver based on Intel MKL Sparse BLAS routines [13].
MKL does not provide a single precision Conjugate Gradient
routine and as such we use symmetric CSR stoarge in the
CPU implemntation to offset the memory overhead introduced
by double precision storage format. The symmetric storage
almost halves the data size, making symmetric double matrix
comparable to non-symmetric double storage. However for
each nonzero entry two vector updates must be performed
and memory traffic (due to vector element transfer) is not
directly halved since additional performance degradation may
result from reduced locality due to the double precision vector
format. We use both double precision Conjugate Graident
solver (dc_get, dc) and symmetric sparse matrix vector mut-
liplication (mkl_dcsrsymv). The CPU solver is compiled
using the Intel C Compiler 12.1.4, with optimisation flags -O3
-m64 and run on 6 core Xeon X5650 with HyperThreading
(12 threads total), with peak memory bandwidth of 32GB/s.

B. Performance Model for FPGA Implementation

We estimate the execution time for one iteration of the
Conjugate Gradient on the proposed architecture using the
following performance model which analyses both DRAM
transfer and compute time. We assume the sparse matrix and
control bits are stored in DRAM memory on the accelerator
and do not include overhead of PCIe transfer in our model.
Parameters used in our estimation are summarised in Table V.

1) Transfer Time: Peak DRAM bandwidth on the tested
device is 65GB/s:

DRAMb = 65 ∗ 10243 ∗ 8

The number of bits per cycle is therefore:

BpC = DRAMb/F

The number of data bits to transfer is given by:

DB = Nnnzs ∗Dwidth

TABLE V. PARAMETERS USED TO ESTIMATE THE EXECUTION TIME OF
ONE CG ITERATION ON THE PROPOSED ARCHITECTURE.

Parameter Description Value

N Matrix Dimension Matrix Specific

Nnnzs Number of nonzeros Matrix Specific

F Clock Frequency 150 MHz

DRAMb DRAM Bandwidth 65 GB / s

NPE Number of PEs 128

Dwidth Data width 32 bits

fpAddl Floating point adder latency 16 cycles

fpSubl Floating point subtractor latency 16 cycles

fpMull Floating point multiplier latency 30 cycles

fpDivl Floating point divider latency 30 cycles

The number of control bits is given by Equation 1:

CB = BPN +BPE +BSPE +BRF +BVM

The total FPGA transfer time is then:

Ttransfer = (DB + CB)/DRAMb

2) Compute Time: The time for transferring data and
control bits during the SpMV operation is:

CSpMV Transfer = (CSpMV ∗ CB +DB)/BpC

where CSpMVMax is determined using the scheduling heuristic
and takes into account conflicts in memory banks.

Accounting for duplication as explained in Section IV-C,
the time required to update the V memory with the new value
of ~p (where k is the number of duplications):

Ccopy = N/NPE ∗ k

Cycle count to perform the other operations required by
the CG algorithm accounts for two floating point divisions:

Cdiv = 2 ∗ fpDivl

two vector dot products:

Cdot = 2 ∗ (log2(NPE) +N/NPE + fpMultl + fpAddl)

and three vector operations (2 additions, 1 subtraction, each
pre-multiplied with a constant):

Cvop = 3 ∗ (N/NPE + fpMultl) + fpAddl + fpSubl

The total number of cycles required for other operations is
therefore:

Cother = Cvop + Cdiv + Cdot

The total number of cycles required for one iteration of the
CG is therefore:

CT = max(CSpMV Transfer, CSpMV) + Ccopy + Cother

This gives the total compute time:

Tcompute = CT /F

Therefore the total FPGA execution time is:

Ttotal = max(Tcompute, Ttransfer)

C. Results

Table VI shows that for larger matrices the proposed
architecture could be up to 3.6 times faster than the CPU and
up to 2.6 times faster than the GPU. For smaller matrices,
the conjugate gradient method converges quickly and the
overheads for GPU initialisation are significant and workload is
not high enough to saturate all cores. Hence our FPGA solver
and CPU solver are considerably faster than GPU solver for
the smaller matrices in our benchmark.

However, the FPGA solver cannot significantly outperform
the CPU solver in the Pres_Poisson benchmark because
its performance gains in the SpMV kernel and other vector
operations are offset by the initial static scheduling overhead.
For larger matrices, the CG solvers require more iterations to
converge, and our FPGA solver outperforms both CPU and
GPU solvers in these benchmarks (Figure 4).

TABLE VI. AVERAGE TIME PER CONJUGATE GRADIENT ITERATIONS
AND SPEEDUP VERSUS CPU (S CPU) AND GPU (S GPU).

Matrix Size CPU
(ms)

GPU
(ms)

FPGA
(ms)

S CPU S GPU

Pres Poisson 14822 0.25 0.64 0.2146 1.14 2.98

olafu 16146 0.37 0.66 0.1078 3.44 6.11

nd6k 18000 2.53 1.34 0.9852 2.57 1.36

smt 25710 0.92 1.03 0.5029 1.82 2.04

thread 29736 1.47 1.22 0.4640 3.17 2.64

ship 001 34290 1.81 1.27 0.4921 3.68 2.57

nd12k 36000 5.59 2.27 1.7698 3.16 1.28

cant 62451 1.75 1.16 0.4578 3.82 2.54

crankseg 1 52804 4.97 2.04 1.5604 3.18 1.31

crankseg 2 63838 6.53 2.60 1.8566 3.52 1.40

Fig. 4. FPGA solver speedup (compared with CPU) and average number of
nonzeros per row for the benchmark set.

Figure 5 shows that increasing the number of duplications
does not substantially improve the efficiency achieved. This
removes the need for duplication for larger matrices providing
the opportunity for a run-time trade-off between the size of

the matrix supported and the efficiency of the scheduling. The
efficiency achieved without duplication is still high enough,
so that we observe a good speedup for large matrices such as
crankseg_1, cant, crankseg_2 for which the corre-
sponding conjugate vector ~p would otherwise be too large to
fit in the vector memory.

Fig. 5. Efficiency of SpMV in proposed FPGA solver for different number
of vector duplication Ndup.

Figure 6 shows that for the larger matrices in our bench-
mark the scheduling overhead is small compared to the total
execution time (maximum of transfer time and compute time).
With the exception of the Pres_Poisson benchmark, the
static scheduling accounts for at most 25.10% of the average
execution time per conjugate gradient iteration.

Fig. 6. Scheduling, transfer and compute time for a CG iteration on the
proposed architecture.

Based on the evaluation we can conclude that our approach
is better applicable to larger systems where acceleration is most
needed.

VI. CONCLUSION

We introduce a novel architecture for an efficient conjugate
gradient solver on reconfigurable accelerator system which
can achieve speedups of up to 3.6 times over an optimised
multithreaded CPU. This uses a Beneš permutation network
and a simple but effective static scheduling heuristic to al-
low better and cheaper conflict resolution for sparse matrix
vector multiplication operations. Since it supports all required

operations our approach can be easily extended to cover other
Krylov Subspace methods such as the biconjugate gradient
[14]. Such extensions are left as future work along with many
possible optimisations such as exploiting the symmetry of
matrices to increase performance [15], development of more
optimised scheduling heuristics [16], compression of control
bits and storage formats [17] and use of fixed point arithmetic
[18].

ACKNOWLEDGEMENT

This work is supported in part by the European Union
Seventh Framework Programme under grant agreement num-
ber 257906, 287804 and 318521, by the UK EPSRC, by
the Maxeler University Programme, by the HiPEAC NoE, by
Altera, and by Xilinx.

REFERENCES

[1] G. Dahlquist and Å. Björck, Numerical Methods. Dover Publications,
2003.

[2] J. Dongarra and F. Sullivan, “Guest editors introduction: the top 10
algorithms,” Computing in Science & Engineering, vol. 2, no. 1, pp.
22–23, 2000.

[3] J. Nocedal and S. J. Wright, Conjugate gradient methods. Springer,
2006.

[4] A. R. Lopes and G. A. Constantinides, “A high throughput FPGA-based
floating point conjugate gradient implementation,” in Proc. ARC, 2008,
pp. 75–86.

[5] L. Zhuo and V. K. Prasanna, “Sparse matrix-vector multiplication on
FPGAs,” in Proc. FPGA. ACM, 2005, pp. 63–74.

[6] G. R. Morris, V. K. Prasanna, and R. D. Anderson, “A hybrid approach
for mapping conjugate gradient onto an FPGA-augmented reconfig-
urable supercomputer,” in Proc. FCCM, 2006, pp. 3–12.

[7] R. Dorrance, F. Ren, and D. Marković, “A Scalable Sparse Matrix-
vector Multiplication Kernel for Energy-efficient Sparse-blas on FP-
GAs,” in Proc. FPGA, 2014, pp. 161–170.

[8] V. E. Beneš, Mathematical theory of connecting networks and telephone
traffic. Academic Pr, 1965, vol. 17.

[9] A. D. Ruslanov and J. R. Johnson, “An FPGA Implementation of Bene”
Permutation Networks,” in Proc. FPGA, 2004, pp. 245–245.

[10] A. Waksman, “A permutation network,” Journal of the ACM, vol. 15,
no. 1, pp. 159–163, 1968.

[11] C. H. Ho, W. Luk, J. Szefer, and R. Lee, “Tuning instruction customi-
sation for reconfigurable system-on-chip,” in Proc. SOCC, 2009, pp.
61–64.

[12] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Transactions on Mathematical Software, vol. 38, no. 1,
p. 1, 2011.

[13] J. Dongarra, V. Eijkhout, and A. Kalhan, “Reverse communication
interface for linear algebra templates for iterative methods,” UT, CS-
95-291, May, 1995.

[14] R. Fletcher, “Conjugate gradient methods for indefinite systems,” in
Numerical Analysis. Springer, 1976, pp. 73–89.

[15] J. D. Bakos and K. K. Nagar, “Exploiting matrix symmetry to improve
FPGA-accelerated conjugate gradient,” in Proc. FCCM, 2009, pp. 223–
226.

[16] D. Nassimi and S. Sahni, “Parallel algorithms to set up the Benes
permutation network,” IEEE Transactions on Computers, vol. 100,
no. 2, pp. 148–154, 1982.

[17] S. Kestur, J. D. Davis, and E. S. Chung, “Towards a universal FPGA
matrix-vector multiplication architecture,” in Proc. FCCM, 2012, pp.
9–16.

[18] J. L. Jerez, G. A. Constantinides, and E. C. Kerrigan, “Fixed point lanc-
zos: Sustaining TFLOP-equivalent performance in FPGAs for scientific
computing,” in Proc. FCCM, 2012, pp. 53–60.

